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ABSTRACTIn this work we compare two parameter optimizationtechniques for discriminative training using the MMI cri-terion: the extended Baum-Welch (EBW) algorithm andthe generalized probabilistic descent (GPD) method. Us-ing Gaussian emission densities we found special expres-sions for the step sizes in GPD, leading to reestimationformula very similar to those derived for the EBW algo-rithm. Results were produced for both the TI digitstringand the SieTill corpus for continuously spoken AmericanEnglish and German digitstrings. The results for bothtechniques do not show signi�cant di�erences. This ex-perimental results support the strong link between EBWand GPD as expected from the analytic comparison.1. INTRODUCTIONIn an increasing number of applications discriminativetraining criteria such as Maximum Mutual Information(MMI) [8, 12, 15] and Minimum Classi�cation Error(MCE) [2, 5, 15] have been used. In MCE training, anapproximation for the error rate on the training data isoptimized, whereas MMI optimizes the a posteriori prob-ability of the training utterances and hence the class sep-arability.It has been shown that discriminative training crite-ria are able to produce signi�cant improvements in worderror rate in comparison to the conventional MaximumLikelihood (ML) training criterion. Since there does notexist any discriminative training method which is guar-anteed to converge under all practical conditions, muche�ort has been made to develop parameter optimizationtechniques with fast and reliable convergence.Here two parameter optimization techniques for dis-criminative training, the Extended Baum Welch (EBW)algorithm [12] and the Generalized Probabilistic Descent(GPD) [2, 5, 15], will be discussed. EBW is an extensionto the standard Baum Welch algorithm designed for opti-mization of the MMI criterion. GPD, which is commonlyused for MCE, essentially performs a gradient descent onthe discriminative training criterion and hence is easilytransferred to other criteria like MMI.In this work the MMI criterion is applied to train con-nected digit recognizers. The parameter optimizationmethods EBW and a special form of GPD will be com-pared analytically. Experimental results are presented onthe TI digitstring and the SieTill corpus applying correc-tive training [12].

2. DISCRIMINATIVE TRAININGThe training data shall be given by r = 1; :::; R trainingutterances, each consisting of a sequence Xr of acous-tic observation vectors xr;1; xr;2; :::; xr;Tr and the corre-sponding sequenceWr of spoken words wr;1; wr;2; :::wr;Nr .The a posteriori probability for the word sequence Wrgiven the acoustic observation vectors Xr shall be de-noted by p�(WrjXr). Similarly, p�(XrjWr) and p(Wr)represent the emission and language model probabilitiesfor the acoustic observation sequence Xr and the wordsequence Wr. In the following, the language model prob-abilities are supposed to be given. Hence the parameter �represents the set of all parameters of the emission prob-abilities p�(XrjWr).Then the MMI criterion, which is de�ned by the sumover the logarithms of the a posteriori probabilities ofeach training utterance, is given by:F (�) = RXr=1 log p�(WrjXr)= RXr=1 log p(Wr)p�(XrjWr)PW p(W )p�(XrjW ) :Clearly an optimization of the MMI criterion tries to si-multaneously maximize the emission probabilities of thespoken training sentences and to minimize a weightedsum over the emission probabilities of each competingsentence given the acoustic observation sequence for eachtraining utterance. The weights in the sum over the com-peting sentences are given by the language model prob-abilities relative to the spoken sentence. Thus the MMIcriterion optimizes the class separability according to thewords under consideration of the language model.2.1. Parameter OptimizationHere only the case of single Gaussian densities with den-sity speci�c variances will be discussed. Similar calcula-tions hold for the more general cases of mixture densitieswith pooled, mixture or density speci�c variances.2.1.1. Gradient DescentOne possibility to maximize the MMI criterion consistsof a gradient descent with the following iterative reesti-mation formula for the parameters:� = �+ � � @F (�)@� : (1)Now let p(xj�s) be the emission probability of the acous-tic observation vector x given an HMM state s, with �s



the parameters of the acoustic model in state s. Then thederivative of the MMI criterion with respect to parame-ters �s is given by:@F (�)@�s = �s�@ log p(xj�s)@�s � ; (2)where the discriminative averages �s are de�ned by:�s (g(x)) = RXr=1 TrXt=1 �
r;t(s;Wr)� 
genr;t (s)� g(xr;t): (3)These make use of the Forward-Backward (FB) probabil-ities of the spoken word sequence Wr:
r;t(s;Wr) = p�(st = sjXr;Wr); (4)and the generalized FB probabilities for the sums over allcompeting word sequences W :
genr;t (s) = XW p�(W jXr) 
r;t(s;W )= p�(st = sjXr):The generalized FB probability is simply a sum over theconventional FB probabilities of each competing sentenceweighted by its posterior probability.2.1.2. Extended Baum-Welch AlgorithmDiscriminative training with the MMI criterion usuallyapplies an extended version of Baum Welch training, theEBW algorithm [11, 12, 13]. There the MMI criterion ismaximized via the following auxiliary function:S(�; �)= Xs RXr=1 TrXt=1 �
r;t(s;Wr)� 
genr;t (s)� log p(xr;tj�s)+Xs Ds Z dx p(xj�s) log p(xj�s);which is to be optimized iteratively. Di�erentiation withrespect to the iterated parameters �s leads to the follow-ing expression, from which reestimation formulae can bederived:@S(�; �)@�s = �s�@ log p(xj�s)@�s �+Ds Z dx p(xj�s)@ log p(xj�s)@�s :2.1.3. Reestimation FormulaeLet the emission probabilities be given by single Gaus-sians with diagonal covariances. Then the reestimationformulae for initial mean and variance vectors for state s,�s and �2s are given as follows:� GPD:�̂s;(GPD) = �s + ��s�2s [�s(x)� �s(1)�s]�̂2s;(GPD) = �2s + ��s2�4s [�s(x2)� 2�s(x)�s+ �s(1) � (�2s � �2s)]:

� EBW:�̂s;(EBW) = �s(x) +Ds�s�s(1) +Ds�̂2s;(EBW) = �s(x2) +Ds(�2s + �2s)�s(1) +Ds � �̂2sAlthough there do exist proofs of convergence for bothGPD [4] and EBW [3, 7], the step sizes needed to guar-antee convergence are impractical by leading to veryslow convergence [12]. In practice, faster convergence isachieved in the EBW case, if the iteration constants Dsare chosen such that the denominators in the reestimationequations and the according variances are kept positive:Ds = h �max�Ds;min; 1� � �s(1)� : (5)Here Ds;min denotes an estimation for the minimal it-eration constant which guarantees the positivity of thevariance in state s, and the iteration factor h > 1 con-trols the convergence of the iteration process, high valuesleading to low step sizes. The constant � > 0 is chosento prevent over
ow caused by low-valued denominators.2.1.4. Comparison GPD vs. EBWA direct comparison of the reestimation formulae forGPD and EBW leads to the following special expressionsfor the iteration step sizes for GPD:��s = 2�2s��s = 2�4s min� 1�s(1) + hDmin ; �h� : (6)Using Eq. 6 we �nd the reestimation formulae for GPDand EBW to be very similar:�̂s;(GPD) = �̂s;(BW)�̂2s;(GPD) = �̂2s;(BW) + (�s � �̂s;(BW))2:In addition this comparison shows that the choice of theiteration constant in the EBW case implies an upperbound of the resulting step size, which is given by theconstant �=h.2.2. ApproximationsIn the following experiments we use an approximation forthe calculation of the generalized FB probabilities. Thesum over all competing sentence hypotheses is typicallyevaluated using N -best lists or, especially for large vocab-ulary, word graphs produced by a preceding recognitionpass over the training data. Here the competing model isreduced to the best recognized sentence only, such thatthe generalized FB probability could be replaced by theconventional FB probability for the best recognized sen-tence. As a consequence only misrecognized training sen-tences make a contribution to the optimization process.This method is called corrective training [12].In addition, time alignment for calculation of the FBprobabilities is performed using the Viterbi approxima-tion [10]. 3. RESULTSExperiments were done for the recognition of continuousdigitstrings using both the TI digitstring [9] corpus forAmerican English digits and the SieTill [6] corpus for



telephone line recorded German digits. In Table 1 someinformation on corpus statistics is summarized.Table 1. Corpus statistics for the TI digitstring and theSieTill corpus.corpus female malesent. digits sent. digitsTI test 4389 14424 4311 14159train 4388 14414 4235 13915SieTill test 6176 20205 6938 22881train 6113 20115 6835 22463The recognition systems for both corpora are based onwhole word HMMs using continuous emission densities.They are characterized as follows:TI digitstring recognition system:� single Gaussian densities using state dependent vari-ance vectors� gender dependent whole word HMMs for 11 Englishdigits including 'oh' and gender dependent silencemodels� per gender 357 states plus one state for silence� 16 cepstral features with �rst and second derivatives.SieTill recognition system:� single Gaussian densities using a pooled variance vec-tor� gender dependent whole word HMMs for 11 Germandigits including 'zwo' and gender dependent silencemodels� per gender 223 states plus one state for silence.� 12 cepstral features with �rst derivatives and the sec-ond derivative of the energy.Both baseline recognizers apply ML training using theViterbi approximation [10] and their results serve as start-ing points for the additional discriminative training. Adetailed description of the baseline system could be foundin [16].Since discriminative training methods could not guar-antee convergence under realistic conditions, we �rst in-vestigated the convergence behaviour of the MMI crite-rion. Using iteration factors h = 5 for mixture speci�c(TI digitstring, cf. Fig. 1) and h = 2 for pooled variances(SieTill) we found relatively smooth convergence for bothGPD and EBW.Similar results could be observed for the word errorrates on test and training data, as is shown in Fig. 2 forthe male portion of the TI digitstring corpus. Clearly,convergence on test and training data is comparable andthus the convergence of the error rate on the training datacould be used as criterion to stop an iteration.
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Table 2. Recognition results for the TI digitstring corpus.corp. method del/ins/sub WER[%] SER[%]train ML 79/11/68 0.56 1.69EBW 0/0/0 0.0 0.0GPD 2/2/2 0.02 0.06test ML 56/31/120 0.72 2.00EBW 35/24/83 0.50 1.38GPD 36/24/75 0.47 1.32Table 3. Recognition results for the SieTill corpus.corp. method del/ins/sub WER[%] SER[%]train ML 449/189/1983 6.2 16.9EBW 249/185/683 2.6 7.5GPD 231/183/656 2.5 7.2test ML 621/324/2297 7.5 19.7EBW 445/318/1173 4.5 11.7GPD 419/322/1132 4.4 11.3It should be noted that, using ML training, our recogni-tion systems perform better with single Laplacians thanwith single Gaussians. The ML result for the sentenceerror rate on the TI digitstring corpus was 1:69%. Simi-larly, for the SieTill corpus the word error rate with MLtrained single Laplacians was 6:1%. In comparison tothese results, the error rates for MMI training with singleGaussians still outperform the ML training with singleLaplacians at least by 20% relatively.4. CONCLUSIONTwo approaches for the optimization of discriminativecriteria, the generalized probabilistic descent (GPD) andthe extended Baum-Welch (EBW) algorithm were inves-tigated. For the case of Gaussian densities, step sizesfor the GPD algorithm were presented, showing strongsimilarities between GPD and EBW. Comparative ex-periments on both the TI digitstring and the SieTill cor-pus were done. In con�rmation with the analytic results,the experimental results do not inidicate signi�cant dif-ferences between GPD and EBW. Using single densitiesrelative improvements of more than 30% on the TI digit-string and of 40% on the SieTill corpus in comparison tothe initial ML results could be achieved.Acknowledgement. This work was partly supportedby Siemens AG, Munich.REFERENCES[1] C. M. Ayer, M. J. Hunt, D. M. Brookes. \A Discrim-inatively Derived Transform for Improved SpeechRecognition," Proc. 1993 Europ. Conf. on SpeechCommunication and Technology, Vol. 1, pp. 583-586,Berlin, September 1993.[2] J. Bauer. \Enhanced Control and Estimation of Pa-rameters for a Telephone Based Isolated Digit Rec-ognizer," Proc. 1992 Int. Conf. on Acoustics, Speechand Signal Processing, Vol. 2, page 1531-1534, Mu-nich, April 1997.[3] L. E. Baum, J. A. Eagon. \An Inequality with Ap-plications to Statistical Estimation for Probabilis-tic Functions of Markov Processes and to a Modelfor Ecology," Bulletin of the American Mathemati-cal Society, Vol. 73, pp. 360-363, 1967.[4] W. Chou, B.-H. Juang, C.-H. Lee. \Segmental GPDTraining of HMM Based Speech Recognizer," Proc.
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