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Chapter 1IntroductionIn this thesis we consider typed and untyped lambda calculi. In this introduction, �rstly,we give an informal explanation of the untyped lambda calculus, of the concept of typeand an overview of the lambda calculi with types. Finally, we summarise the contents ofthis thesis.1.1 Lambda CalculusThe lambda calculus is a formal system based on a function notation invented by A. Church[Chu41]. It captures the most basic aspects of the manners in which operators are combinedto form other operators.We give some motivations for the syntax of the �-calculus. In mathematics, a functionthat given x produces x2 is written as follows.f : x 7! x2This notation is not adequate when higher-order functions are involved (functions whichadmit other functions as arguments). Church used a notation involving the special symbol� to construct functions in a systematic way. In Church's notation the example above iswritten as �x:x2.The �-terms are formed with two constructors, namely the application ( ) and theabstraction �. We write (f a) to express that a function f is applied to the argumenta. Let b(x) be an expression containing x. A function that assigns the value b(a) to theargument a is denoted by (�x: b(x)). This justi�es the de�nition of a relation on the setof �-terms called �-reduction.((�x: b(x)) a)!� b(a) �-reductionIn the example, we have that ((�x:x2) 3) �-reduces to 32. We usually omit a pair ofparenthesis when this does not cause confusion, for example we write (�x:x2) 3 for theterm above. 1



2 CHAPTER 1. INTRODUCTIONThe equivalence relation generated by the �-reduction is called �-conversion and isdenoted by  $!� and the transitive closure of !� is denoted by!!�.An important property of �-reduction is con
uence. Since a term may contain severalsubterms of the form (�x: b(x)) a (called redexes), the �-reduction is not functional. Thisis not an obstacle for the theory of the lambda calculus due to the fact that it has theproperty of con
uence. Con
uence means that if we have the solid arrows of the diagramthen we also have the dotted ones. b����	� ���	 @@@@R�@@@Rb1 b2p p p p p p p p p p p p p p p pR� R pppppppppppppppp	 �	dA term that can not be reduced any further is said to be a normal form (or to be innormal form). For example (�x:x) y!� y and y is in normal form.An important property of �-terms is normalisation. Normalisation and terminationare synonymous. In �-calculus, termination of the reduction is not guaranteed, e.g.
 = (�x:(x x)) (�x:(x x)) reduces to itself. A term is said to be weakly normalising(or normalising) if there is a reduction sequence that ends in a normal form. For example,the term (�x:x) y is weakly normalising. There may be �-terms that are normalising butthey have some reduction sequence that is not �nite, e.g. the term (�x:y)
 reduces to y ifwe contract the leftmost redex and to itself if we contract 
. A term is said to be stronglynormalising if any reduction sequence starting from the term terminates. Clearly, (�x:y)
is weakly normalising but not strongly normalising.The trace of a redex can be followed by marking the corresponding abstraction. Inthe term (�x:(x x)) ((�x:x) y), we have marked the second redex that we want to trace.When this term is reduced to ((�x:x) y)((�x:x) y), two redexes are created which are calledresiduals of the initial marked redex. The �-reduction restricted to the marked redexes iscalled �-reduction. Developments are reduction sequences where only residuals of redexesthat are present in the initial term are contracted. In other words, a development is a�-rewrite sequence. For example, a development is the rewrite sequence(�x:(x x)) ((�x:x) y) !� ((�x:x) y) ((�x:x) y)!� y ((�x:x) y)!� (y y):An important classical result in the lambda calculus is that all developments are �nite(�niteness of developments) [Bar85]. To prove that the developments are �nite is to prove



1.2. LAMBDA CALCULI WITH TYPES 3that the �-reduction, the �-reduction restricted to the marked redexes, is strongly normal-ising.Even though the con
uence property of the lambda calculus guarantees that the systemis `functional', it is important from the practical point of view to �nd adequate reductionstrategies, i.e. functions that determine `a way of reducing'. A strategy is called nor-malising if it �nds the normal form of a weakly normalising �-term. For example, thestrategy that reduces only the leftmost redex of a �-term is normalising. The importanceof the existence of normalising strategies is that it implies the decidability of �-conversionrestricted to the weakly normalising terms. In order to check if two weakly normalisingterms are convertible, we compute their normal forms by applying the normalising strategyand we check whether the two normal forms are syntactically equal. Due to the fact thatthere exists a normalising strategy for the lambda calculus, �-conversion restricted to the�-weakly normalising �-terms is decidable.We also consider perpetual strategies, i.e. strategies that preserve the property of non-termination. In the term (�x:y)
, a perpetual strategy has to reduce 
 and not the leftmostredex. To have a perpetual strategy is important because a term is strongly normalising ifand only if the perpetual strategy yields a �nite reduction sequence.In this thesis, we present new proofs of �niteness of developments and superdevelop-ments (a generalisation of developments) and of the fact that some strategies are perpetual.1.2 Lambda Calculi with TypesTypes were introduced for the �rst time in the combinatory logic (a variant of the lambdacalculus) in [Cur34] and in the lambda calculus itself in [Chu40]. Nowadays types are usedfor many purposes as will be explained later. In order to give a �rst insight of the notionof type, we give one simple motivation related to set theory. The �-terms do not representthe mathematical set-theoretic notion of function, with domain and range as part of thede�nition of the function. However, they can be modi�ed to �t this notion by adding thenotion of type.We want to say that in the term �x:x2, the variable x ranges over the set of naturalnumbers. This could be expressed by considering a special symbol Nat which could beinterpreted in set theory as the set of natural numbers. The �-term is now written as�x : Nat:x2. We read x : Nat as x has type Nat and the intended meaning of x :Nat isthat the variable x ranges over the set of natural numbers.We need another symbol! to express that this is a function from the natural numbersinto the natural numbers. �x : Nat:x2 : Nat!NatThis is read as follows: the term �x : Nat:x2 has type Nat ! Nat and its intendedmeaning is that �x :Nat:x2 is a function from the set of natural numbers into itself.The types Nat and Nat ! Nat should be syntactic expressions de�ned in a formallanguage with the notion of set as a possible interpretation for them. The lambda calculuswith this kind of types is called simply typed lambda calculus (or �!).



4 CHAPTER 1. INTRODUCTIONThe two original papers by Curry and Church introduced two di�erent families oflambda calculi with types. In the systems �a la Church, the variable of the abstractioncontains the information of its type like in the example �x : Nat:x2. The terms of thesesystems usually have the property of uniqueness of types since the types of the variablesdetermine the type of the whole term.In the systems �a la Curry, the types for the variables of the abstractions are not declaredand the types assigned to the �-terms are not unique. The term �x:x may have the typeNat!Nat but also may have the type �! � for an arbitrary type �.Types may become more complex if we want to enrich the expressiveness of our lan-guage. The identity function �x:Nat:x is `the same function' as �x:Bool:x except for thetype. The language of types may be extended to express that the identity function maybe applied to any type. The language of terms is extended with a new abstraction � anda quanti�er on types 8. The identity is written as��:�x:�: xThe type of the identity is 8�:(�! �)The fact that ��:�x:�: x has type 8�:(� ! �) means that for any type �, the function�x :�: x has type (� ! �) The abstraction � and the quanti�er 8 are applied to typevariables, i.e. a variable that can be substituted by types. In this example, the typevariable � can be substituted by types like Nat and Bool.(��:�x:�: x)Nat !� �x:Nat:xA function constructed with � is called polymorphic, i.e. the argument of the function isa type. For example, (��:�x:�: x) is the polymorphic identity.The extension of the simply typed lambda calculus with polymorphism is called poly-morphic typed lambda calculs (F or �2 or second order typed lambda calculus) and it wasintroduced independently by [Gir72] and [Rey74].Implementations of Lambda calculiThe �-calculus is the foundation of functional programming languages. The �-calculusitself could be considered as an abstract programming language. It contains the concept ofcomputation in full generality and strength but in a pure form with a very simple syntax.The �rst typed programming languages developed to avoid typing errors at compile-time,were ALGOL-60 and PASCAL where variables have to be declared in the programs (typ-ing �a la Church). More sophisticated typed languages appeared later, like ML [HMM86],Miranda [Tur85] and Haskell [HW88]. The last mentioned languages are functional pro-gramming languages based on fragments of F �a la Curry. In this approach, types areintroduced in the programming language to ensure correctness of programs. Types are away of classifying the objects to use them in a correct way. Hence the type of a program



1.2. LAMBDA CALCULI WITH TYPES 5gives a partial speci�cation of the program. Terms are viewed as programs and types asspeci�cations for the programs. Another approach to the notion of type is the so-calledpropositions-as-types interpretation [Bru70] [How80]. A type is viewed as a proposition anda term as its proof. The �rst systems of proof checking (type checking) based on this inter-pretation of propositions-as-types and proofs-as-terms were the systems of AUTOMATH[NGdV94]. Modern systems that also provide computer-assistance for the construction ofproofs are Coq [Dow91], Lego [LP92], Constructor [HA91], Nuprl [Con86] and Alf [Mag94].Coq is based on the calculus of constructions [CH88] extended with inductive de�nitions[CP90]. Lego is a proof assistant for the extended calculus of constructions [Luo90] withinductive types. Constructor is a partly automated proof assistant for pure type systems.The �rst version of Alf [ACN90] is based on Martin-L�of's type theory [NPS90] and theactual version [Mag94] is based on the monomorphic type theory with explicit substitution[Tas93].1.2.1 Pure Type SystemsIn this thesis we work with pure type systems. They provide a framework to describe a largeclass of type systems �a la Church in a uniform way. They were introduced independentlyby S. Berardi [Ber88] (see also [Ber90]) and J. Terlouw [Ter89]. Many systems can bedescribed in this way, for instance the simply and the polymorphic typed lambda calculus,the systems of the AUTOMATH family [NGdV94], the Calculus of Constructions (and allthe systems of the �-cube [Bar92]) and the inconsistent system �� [Gir72].They are called `pure' because there is only one type constructor and only one reductionrule, namely the type constructor � and the �-reduction.If A is a type and B(x) is a family of types indexed over A then �x:A: B(x) is also atype. The term �x:A: b(x) has type �x:A: B(x) if for every a of type A, the term b(a)has type B(a).In case the expressionB(x) does not depend on x, �x:A: B is equivalent to the ordinaryfunction type A! B.In pure type systems we have only one rule for all possible `functions types'. Thetyping rule for a product depends on some parameters. By instantiating the parameters,we obtain di�erent product rules that allow to have di�erent kinds of functions. Forexample the abstractions � and � of the polymorphic typed lambda calculus are replacedby the unique abstraction � of pure type systems and the type constructors ! and 8are replaced by the unique type constructor �. Since we have the same symbol for theabstraction of type variables and of term variables, we have to distinguish them in otherway. When we write � : �, we mean that � is a type variable. The polymorphic identity iswritten in a pure type system style using the abstraction � instead of � and writing � : �for �. ��:�:�x:�:xThe type of the polymorphic identity is written using the product � instead of the quanti�er



6 CHAPTER 1. INTRODUCTION8 and writing � : � for �. ��:�:(�x:�:�)One instantiation of the product rule allows to type the product (�x:�:�) that correspondsto � ! � in the polymorphic typed lambda calculus. Another instantiation of the samerule allows to type �� : �:(�x : �:�) that corresponds to 8�:(�! �) in the polymorphictyped lambda calculus.1.2.2 De�nitionsAny programming language provides a mechanism to introduce de�nitions, i.e. an abbrevi-ation or name for a larger term that can be used several times in a program. De�nitions areusually considered in a meta-level and not as part of the language of the lambda calculus.In the systems of the AUTOMATH family [NGdV94] de�nitions are considered as partof the formal language. The meta-theory of these systems is treated in detail in [Daa80].Howewer, some of the proofs apply only to the particular type system that they considerand do not extend to other type systems.We consider it important to include de�nitions in the syntax of the lambda calculusand to study the properties that are preserved by the extension. This study can be donein a very general manner if we use the framework of pure type systems.We suppose that we have a context or environment where we can introduce de�nitions.The de�nitions of the context are called global de�nitions and they can be used anywherein the program or term. A global de�nition is written as x=a :A. This means that thename x is an abbreviation for the term a whose type is A. There are de�nitions that havea restricted scope and they are called local de�nitions. A local de�nition is written asx=a:A in b. This means that x is an abbreviation for the term a whose type is A but itcan be used only inside the term b. In our opinion it is important for practical use to haveboth ways of introducing de�nitions: global and local.The intended meaning of a de�nition x=a:A is that the de�niendum x can be unfoldedby the de�niens a in its scope, either globally or locally. The unfolding of a de�nition isnot the substitution of all the occurrences of the de�nition at once like for the �-reduction.Instead one occurrence of the de�nition is unfolded at a time. The reduction that performsthe unfolding of de�nitions is called �-reduction.The equality x = a can be used not only in the evaluation of a term but also in thetyping of a term. We can use the fact that the de�niendum and the de�niens are equal inorder to type terms that could not be typed otherwise. Suppose that the de�nition x=a:�is a type and x occurs in another type B of the expression b, the typing of b may dependon the fact that we can use that x is equal to a.A de�nition x=a:A in b has a similar behaviour as (�x:A: b)a. However the two factsmentioned above suggest that they are in fact di�erent, both from the point of view of theevaluation and the typing.We give an example in �2 that shows the importance and usage of de�nitions in the



1.2. LAMBDA CALCULI WITH TYPES 7evaluation and in the typing. First we introduce the global de�nition `Bool' as follows.Bool = �� : �:�! �! � : �The elements of Bool are true and false and they are given by the following globalde�nitions. true = ��:�: �x:�: �y:�: x : Boolfalse = ��:�: �x:�: �y:�: y : BoolObserve that in a de�nition we can make use of the de�nitions introduced previously, inthe de�nitions of true and false, we make use of Bool that was de�ned before.The if-then-else is also introduced as a global de�nition.if-then-else = ��:�: �b:Bool: �x:�: �y:�: (b � x y): (��:�: Bool! �! �! �)The function that yields the negation of a boolean is abbreviated by the global de�nitionnot. not = �b : Bool: (if-then-else Bool b false true) : Bool! BoolThe term (not true) evaluates to false and the term (not false) evaluates to true.In the evaluation of (not true) it is convenient to unfold one occurrence of true andto leave the other without being unfolded. In the following ��-rewrite sequence, we �rstunfold the de�nition of not, then we perform one �-reduction step, we unfold the de�nitionof if-then-else and perform some �-reduction steps.(not true) !�((�b : Bool: if-then-else Bool b false true) true) !�(if-then-else Bool true false true) !�((��:�: �b:Bool: �x:�: �y:�: (b � x y)) Bool true false true) !!�(true Bool false true)In order to get the result, the �rst occurrence of true in (true Bool false true) shouldbe unfolded but the second occurrence need not be unfolded. This shows the convenienceof unfolding one occurrence of the de�nition at a time.The terms de�ned above are all typable because we can use the fact that the de�nien-dum and the de�niens are equal.For example, true would not have type Bool if we were not allowed to use the factthat the de�endum Bool is equal to its de�niens �� : �:(�! �! �). The type of trueis ��:�:� ! � ! � and by using the fact that Bool is equal to �� : �:� ! � ! �, wededuce that true has type Bool.The if-then-else would not be typable at all if we could not use the fact that thede�niendum Bool is equal to its de�niens �� :�:(� ! � ! �). In the de�nition of if-then-else, the type of the argument b is Bool. Since b is the operator of an application,



8 CHAPTER 1. INTRODUCTIONthe type of b should be a function type and the symbol Bool is far from being a functiontype unless we can unfold its de�nition.The typing rules for pure type systems are extended to include de�nitions. The ruleshave to be extended in such a way that the fact that the de�niendum and the de�niensare equal can be used in type derivation. This is achieved by adding the �-conversion rule.In this thesis we study the behaviour of the �-reduction and the combination of the � withthe �-reduction in pure type systems with de�nitions. The extension is done in such a waythat almost all the properties that are valid for a pure type system are also valid for itsextension with de�nitions.1.2.3 NormalisationWe are interested in the property of normalisation in type systems. If all the terms thatare typable in the type system are (strongly) normalising then the system itself is said tobe (strongly) normalising .Normalisation is important due to the fact that if the type system is normalising theconversion when restricted to the typable terms is decidable. If we want to check if twotypable terms are convertible, we apply a reduction strategy to �nd their normal forms andcheck if the normal forms are syntactically equal. The operation that computes the normalform can be exponential (or even worse!) and so in practical situations it is advisable to�nd a good strategy for computing a common-reduct of two terms (not necessarily thenormal form) in a reasonable time.Strong normalisation is also important. The normalising strategies in lambda calculus,e.g. the leftmost reduction, are not always e�cient. They may even take longer pathsto the normal forms than other strategies. We would like to have the freedom to choosethe strategy to compute the normal form (or some partial value). In this case, to ensuretermination we have to prove that any strategy is normalising, i.e. strong normalisation.Examples of pure type systems that are strongly normalising are the simply typedlambda calculus [Tai67] [Tro73], the systems of the AUTOMATH family [NGdV94], thepolymorphic typed lambda calculus [Gir72], the Calculus of Constructions [GN91] (and allthe systems of the �-cube) and the `pure' part of the extended calculus of constructions[Luo90]. However the pure type systems that are inconsistent like �� are not weaklynormalising [Gir72]. We do not know any pure type system that is weakly normalising butnot strongly normalising.In this thesis we consider two extensions of pure type systems (one that is obtainedby weakening the abstraction rule and the other by adding de�nitions) and prove thatnormalisation is preserved by these extensions. We also prove that the �-reduction, theunfolding of de�nitions, is strongly normalising.1.2.4 Type InferenceLook at the following problems related to type systems.



1.3. SUMMARY OF THE CONTENTS OF THIS THESIS 91. Type checking. Given a and b, does a have type b?2. Type inference. Given a, does a have any type?3. Inhabitation. Given b, is b the type of some term?They are important in the implementations of functional programming languages, proofcheckers and proof assistants.Type inference for systems �a la Curry is not always decidable, not even for normalis-ing ones. For example, type inference for the simply typed lambda calculus is decidable[Cur69] [Mil78] but for �! (or F!) is undecidable [Urz93b]. An incomplete overview ofthe decidability of type inference in the systems �a la Curry can be found in a table onpage 183 in [Bar92]. This table can be �lled in completely by now: type checking andinference in �2 (or F ) have been proved undecidable in [Wel94] and the inhabitation of�\ has been proved undecidable in [Urz93a]. Type inference for ML [DM82] is decidablebecause polymorphism can be used only in a weaker form (the universal quanti�ers canoccur only in the outermost position of a type).For systems �a la Church, in all known cases the problems of type checking and typeinference are equivalent. Moreover decidability of type inference is very closely related tonormalisation. Decidability of type inference for normalising pure type systems whose setof sorts is �nite is proved in [BJ93] and decidability for normalising pure type systemswhose speci�cation is recursive and singly sorted (also semi-full) is proved in [Pol96]. Un-decidability of type inference for inconsistent impredicative pure type systems is proved in[CH94] generalising the result in [MR86].The problem of inhabitation in systems �a la Church presents the same complicationsas for systems �a la Curry. For the inconsistent systems, inhabitation is trivial since all thetypes have at least one inhabitant. In the systems of the �-cube, inhabitation is decidableonly for the simply typed lambda calculus(�!) and for �!. For the rest of the systems inthe �-cube inhabitation is undecidable [Spr95].In this thesis, we give solutions for the problem of type inference in pure type systems(also with de�nitions). We present a type inference procedure (it is not an algorithm, i.e.a program that always terminates) for pure type systems. It can be applied to any singlysorted pure type system (systems with the uniqueness of types property), including thenon-normalising ones. In order to prove that it behaves correctly (it terminates and yieldsthe type of a term if the term is typable and it may not terminate otherwise), we use theresults proved in this same thesis concerning normalisation.1.3 Summary of the Contents of this ThesisThis thesis is divided into three parts: 1) an abstract presentation of rewriting and typing,2) lambda calculus and 3) pure type systems with de�nitions.



10 CHAPTER 1. INTRODUCTIONAn abstract presentation of rewriting and typingIn this part, the concepts of computation and typing are formalised in an abstract way asbinary relations on an arbitrary set. The word abstract is due to the fact that we do not�x a set of terms or expressions, instead we take an arbitrary set. In this way, we give acommon framework for the systems presented in the rest of the thesis. We believe thatthis abstract presentation gives uniformity and clarity to the exposition.In chapter 2, we start by recalling the notion of abstract rewriting systems. Therewrite relation intends to model the concept of computation. This setting has been usedto capture some properties of the concept of computation like con
uence and normalisationin an abstract way.In chapter 3, with the intention to clarify the basic abstract properties of con
uenceand normalisation we compare abstract rewriting systems with topological structures and�nd the relationship of the mentioned properties with well known topological concepts.In chapter 4, as one of the main purposes of the thesis is to study the behaviour ofcon
uence and normalisation under di�erent kinds of extensions of pure type systems, weintroduce the notion of abstract rewriting systems with typing which intends to model theinteraction between the concepts of computation and typing.Chapters 2 and 4 are partly joined work with Femke van Raamsdonk. We were bothinterested in an abstract notion for type systems in order to have a common frameworkfor pure type systems and for higher order rewriting systems. For the use of these abstractnotions in the context of higher order rewriting systems, we refer to [Raa96].Chapter 3 is based on a paper with Walter Ferrer [FS93].Lambda CalculusIn this part, we give some new characterisations of the set of weakly and strongly normal-ising �-terms focusing on expansion rather than reduction. These characterisations of theset of strongly normalising �-terms permit us to give new and simple proofs of classicalresults about �-calculus. In most cases the new proofs are essentially simpler than thealready existing ones and help us to understand not only the mechanics of the proofs ofthe results but also the reasons for their validity.In chapter 5, we give new characterisations of the set of weakly and strongly normal-ising �-terms.In chapter 6, we de�ne two perpetual strategies Gbk and G1 similar to Fbk [BK82] andF1 [BBKV76]. In order to prove that a strategy F is perpetual, we prove that if F (M)is strongly normalising then so is M and we use one of the characterisations of the set ofstrongly normalising �-terms given before. We also prove that the strategies Gbk and Fbkare maximal, i.e. the length of the Gbk and Fbk-reduction sequences are maximal.In chapter 7, we give two proofs of �niteness of developments and superdevelopments.We de�ne the �-reduction as the �-reduction restricted to marked redexes. In order to prove�niteness of developments we have to prove that the �-reduction is strongly normalising.In the �rst proof we de�ne by induction a set that coincides with the set of �-strongly



1.3. SUMMARY OF THE CONTENTS OF THIS THESIS 11normalising terms, then we prove that this set is equal to the set of �-terms. In otherwords, we prove that all the �-terms are �-strongly normalising. In the second proof wewrite a function from the set of �-terms to the set of strongly normalising �-terms thatpreserves the reduction.In chapter 8, we prove strong normalisation for the simply typed lambda calculus.We use again the new characterisation of the strongly normalising �-terms.This part is based on a paper with Femke van Raamsdonk [RS95].Pure Type Systems with De�nitionsIn this part, we study the meta-theory of pure type systems with de�nitions in detail. Wealso give semi-algorithms of type inference for singly sorted pure type systems with andwithout de�nitions. A semi-algorithm of type inference is a program that terminates andinfers the type if the term is typable, otherwise it may not terminate.In chapter 9 we recall the notion of pure type systems. First we look at the the notionof speci�cation (the parameters of the typing rules for pure type systems.) We de�nethe notion of morphism between speci�cations. Then we recall the typing rules for puretype systems. Pure type systems are obtained from the typing rules by instantianting thespeci�cation. We give some examples of speci�cations, and show which lambda calculiwith types correspond to the typing rules of pure type systems instantiated with thesespeci�cations.In chapter 10 we de�ne a function that infers the type for singly sorted pure typesystems (systems with the uniqueness of types property). We weaken the rules of puretype systems by removing a premise from the abstraction rule. This premise, called the�-condition, states that (�x:A: B) should be well-typed in order to be able to give the type(�x:A: B) to the abstraction �x:A: b. We study the metatheory of the pure type systemswithout the �-condition. We prove that if a singly sorted pure type system is normalisingthen so is the corresponding pure type system without the �-condition. Using this resultwe de�ne a set of rules for pure type systems that are syntax directed, i.e. the last rulein a type derivation is determined by the shape of the term and the context. We provethe equivalence between the syntax directed set of rules and the original ones. Finally, wede�ne a function that infers the type in a singly sorted pure type system based on thissyntax directed set of rules. This chapter is based on the paper [Sev96].In chapter 11, we study the metatheory for pure type systems extended with de�ni-tions. We prove properties like con
uence and subject reduction for the combination ofthe � and �-reduction. We prove strong normalisation for the �-reduction and de�ne aperpetual and maximal strategy for the �-reduction similar to Fbk for �-reduction. Also,we prove that weak normalisation is preserved by the extension, i.e. if a pure type system isweakly normalising then so is its extension with de�nitions. Moreover, we prove for certainpure type systems, including the Calculus of Constructions, that strong normalisation ispreserved by the extension. This chapter is based on a paper with Erik Poll [SP93, SP94].In chapter 12, we de�ne a function that infers the type of a term in a singly sortedpure type system with de�nitions. Similarly to pure type systems, we de�ne a set of rules



12 CHAPTER 1. INTRODUCTIONfor pure type systems with de�nitions that is syntax directed and prove the equivalencebetween the syntax directed set of rules and the original ones. We de�ne a function thatinfers the type in a singly sorted pure type system with de�nitions based on this syntaxdirected set of rules.
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Chapter 2Abstract Rewriting Systems2.1 IntroductionThe concept of computation can be modelled in an abstract way as a binary relation ona set. This relation is called the rewrite relation, usually denoted by!. A pair consistingof a set and a binary relation is called an abstract rewriting system. We are interested,for example, in computing the value of an element. A computation is represented by asequence of elements a0! a1 ! a2 : : :! an whose last element an represents the value ofthe computation. Several properties can be studied in this abstract setting, like con
uence,weak and strong normalisation. A �nal value of a computation can be represented by anelement that cannot be reduced any further and is called normal form. If all the elementshave a normal form then the system is said to be weakly normalising. The intuitive meaningof con
uence is that any procedure that computes the value of an element yields the sameresult, the intuitive meaning of strong normalisation is that any procedure is �nite.This setting allows us to give criteria to prove properties like con
uence, weak andstrong normalisation in a very general way.We summarise the contents of the sections of this chapter. In section 2.2, we recall thebasic concepts concerning abstract rewriting systems. In section 2.3 we de�ne the notionsof morphism between abstract rewriting systems and of rewrite sequences. In section 2.4we recall the concepts of con
uence, weak and strong normalisation. We also give somegeneral criteria to prove con
uence, weak and strong normalisation.2.2 Abstract Rewriting SystemsIn this section we recall the de�nition of abstract rewriting system. The abstract notion ofrewrite relation was �rst formalised by Newman (see [New42]) under the name of `move'or indexed 1-complex. They are also called abstract reduction systems in [Klo80]. We callthem abstract rewriting systems as in [Oos94].15



16 CHAPTER 2. ABSTRACT REWRITING SYSTEMSDe�nition 2.2.1. An abstract rewriting system is a structure (A;!) where A is a set ofobjects and ! is a subset of A�A called a rewrite relation (or reduction).De�nition 2.2.2. We say that (a; b) 2! is a rewrite step in the abstract rewriting system(A;!). We write a! b instead of (a; b) 2!.The re
exive closure of ! is denoted by !=. The transitive closure of ! is denotedby !+. The transitive-re
exive closure of ! is written as !!. The inverse relation of !is denoted as  . The equivalence relation generated by ! is written as  $! and calledconversion.Example 2.2.3.1. For each n 2 IN we de�ne the abstract rewriting system,In = (fi j 0 � i � ng; f(i; i+ 1) j 0 � i � (n� 1)g)Diagrammatically, I1 0! 1I2 0! 1! 2...In 0! 1! 2! : : :! n2. I = (IN; f(i; i+ 1) j i � 0g). Diagrammatically,0! 1! 2! : : :2.3 MorphismsIn this section we introduce the notion of morphism for abstract rewriting systems (seealso [Raa96]). We think that the concept of morphism is the natural one. It allows us toexpress several concepts like the notions of rewrite sequence and extension as morphisms.A morphism should preserve the structure. For abstract rewriting systems a morphismis a function between sets that preserves the rewrite relation!. These are the morphismsassociated to the category of abstract rewriting systems. In case the function preservesother relations like !+, !!, we call it re�ning and implementing morphism respectively.Morphisms that preserve conversion $! are de�ned later.De�nition 2.3.1. Let (A;!�) (B;!�) be two abstract rewriting systems. A morphismfrom (A;!�) to (B;!�) is a function f : A ! B such that for all a; a0 2 A if a !� a0then f(a)!� f(a0).



2.3. MORPHISMS 17The category whose objects are the abstract rewriting systems and the morphisms areas de�ned above is denoted as Ars.We de�ne di�erent kinds of morphisms between abstract rewriting systems dependingon the relation they preserve.De�nition 2.3.2. Let (A;!�) and (B;!�) be two abstract rewriting systems.A re�ning morphism from (A;!�) to (B;!�) is a function f : A ! B such that for alla; a0 2 A if a!� a0 then f(a)!+� f(a0).An implementing morphism from (A;!�) to (B;!�) is a function f : A ! B such thatfor all a; a0 2 A if a!� a0 then f(a)!!� f(a0).A forgetting morphism from (A;!�) to (B;!�) is a function f : A! B such that for alla; a0 2 A if a!� a0 then f(a) = f(a0). By =, we mean equality between elements in a set.De�nition 2.3.3. Let (A;!�) and (B;!�) be two abstract rewriting systems.We say that (B;!�) is an extension of (A;!�) if A � B and the inclusion mapping is amorphism from (A;!�) to (B;!�).We say that (B;!�) is a conservative extension of (A;!�) if (B;!�) is an extension of(A;!�) and for all a; a0 2 A, if a!� a0 then a!� a0.We say that (B;!�) is a strong conservative extension of (A;!�) if (B;!�) is a conser-vative extension of (A;!�) and A is closed under !�, i.e. if a 2 A and a !� a0 thena0 2 A.A �nite computation is represented by a �nite rewrite sequence of elements a0! a1 !a2 ! : : : an in an abstract rewriting system. We will formally de�ne a �nite rewritesequence in an abstract rewriting system (A;!) as a morphism from In to (A;!).A computation can also be in�nite and it is represented by an in�nite rewrite sequencea0! a1! : : :. We will formally de�ne an in�nite rewrite sequence in an abstract rewritingsystem (A;!) as a morphism from I to (A;!).De�nition 2.3.4. Let (A;!) be an abstract rewriting system, a 2 A and n 2 IN.A rewrite sequence of length n starting at a is a triple (a; n; �) such that � is a morphismfrom In to (A;!) and �(0) = a. In a diagram:0 ! 1 ! 2 : : : ! n�(0) ! �(1) ! �(2) : : : ! �(n)We denote a rewrite sequence (a; n; �) as � : �(0) ! �(1) ! : : : ! �(n) or � : �(0) !!�(n).



18 CHAPTER 2. ABSTRACT REWRITING SYSTEMSA rewrite sequence of in�nite length starting at a is a pair (a; �) such that � is a morphismfrom I to (A;!) and �(0) = a. In a diagram:0 ! 1 ! 2 : : :�(0) ! �(1) ! �(2) : : :We denote an in�nite rewrite sequence (a; �) as � : �(0)! �(1)! : : :.The length of � is denoted by k�k. We have that k�k is either a natural number or 1.The domain of � is denoted by dom(�).Note that a morphism f : A ! B from (A;!�) to (B;!�) `preserves rewrite se-quences'. If (a; n; �) is a �nite rewrite sequence in (A;!�) then (f(a); n; f ��) is a rewritesequence in (B;!�). If (a; �) is an in�nite rewrite sequence in (A;!�) then (f(a); f � �)is an in�nite rewrite sequence.In the following de�nition, we introduce the notion of lifting which will be used to de�nethe notion of development in chapter 7.De�nition 2.3.5. Let f : A ! B be a morphism from the abstract rewriting system(A;!�) to (B;!�). A rewrite sequence � in (A;!�) is an f-lifting of a rewrite sequence� if f � � = �.The notion of lifting for rewrite sequence has been de�ned in [RS95] in the context ofindexed abstract rewriting systems. Note that this is the categorical notion of lifting formorphisms.De�nition 2.3.6. A rewrite sequence � : a!! b is maximal if for all � : a!! b we havek�k � k�k.2.4 Properties of Abstract Rewriting SystemsIn this section we de�ne the basic properties of con
uence, weak and strong normalisationin an abstract rewriting system.An element that cannot be reduced any further is called normal form and it can beviewed as the �nal value of the computation. If all the elements have a computation thatends in a normal form then the system is said to be weakly normalising. Other importantproperties of abstract rewriting systems are con
uence and strong normalisation.De�nition 2.4.1. Let (A;!) be an abstract rewriting system and a 2 A.We say that a is con
uent if for all b; c 2 A such that a !! b and a !! c, there exists anelement d such that b!! d and c!! d.We say that a is a normal form (or !-normal form) if there is no b such that a! b.



2.5. STRATEGIES 19We say that a has a normal form (or has a !-normal form) if there exists a normal formb such that a!! b.We say that a is weakly normalising (or !-weakly normalising) if a has a normal form.We say that a is strongly normalising (or !-strongly normalising) if there is no in�niterewrite sequence starting at a.The notions of con
uence, weak and strong normalisation can be extended to abstractrewriting systems.De�nition 2.4.2. Let (A;!) be an abstract rewriting system.We say that (A;!) or ! is con
uent if for all a 2 A, a is con
uent.We say that (A;!) or! is weakly normalising if for all a 2 A, a is!-weakly normalising.We say that (A;!) or ! is strongly normalising if for all a 2 A, a is !-strongly normal-ising.In the following we de�ne the simple and transitive reductions graphs of an elementwhich represent the set of values of all the computations starting from this element. Wealso de�ne the simple and transitive expansion graphs of an element which represent theset of inputs whose computation yields the element.De�nition 2.4.3. Let (A;!) be an abstract rewriting system and a 2 A. We de�ne thefollowing subsets of A.a) G!(a) = fb 2 A j a! bg and G!!(a) = fb 2 A j a!! bg. We call them the simple andthe transitive reduction graphs of a.b) E!(a) = fb 2 A j b! ag and E!!(a) = fb 2 A j b!! ag. We call them the simple andthe transitive expansion graphs of a.Note that E!(a) = G (a) and that E!!(a) = G  (a).De�nition 2.4.4. Let (A;!�) and (B;!�) be two abstract rewriting systems. Theunion of (A;!�) and (B;!�) is de�ned by (A [B;!� [ !�). We write !�� instead of!� [ !�.2.5 StrategiesIn this section, we de�ne the notion of strategy. A strategy is a procedure that determinesthe way we reduce an element.De�nition 2.5.1.



20 CHAPTER 2. ABSTRACT REWRITING SYSTEMS1. A strategy for the rewrite relation ! is a mapping f : A! A such that for all a 2 Aa!! f(a).2. A one-step strategy for the rewrite relation ! is a mapping f : A! A such that forall a 2 A not in normal form, we have that a! f(a).In chapter 6, we need to consider strategies that yield a set of reducts instead of onlyone. For that reason, we introduce the following de�nition.De�nition 2.5.2.1. A non-deterministic strategy for the rewrite relation ! is a mapping F : A! P(A)such that for all a 2 A, b 2 F (a) we have that a!! b.2. A non-deterministic one-step strategy for the rewrite relation ! is a mapping F :A ! P(A) such that for all a 2 A not in normal form, we have that F (a) 6= ; andfor all b 2 F (a), a! b.For example, the function de�ned by F (a) = fag for all a 2 A is a (trivial) non-deterministic strategy.Let f be a one-step strategy. We de�ne an f -rewrite sequence starting from a. Intu-itively, an f -rewrite sequence is a sequence of the forma! f(a)! f2(a)! : : :possibly ending in the normal form of a.De�nition 2.5.3. Let F be a (non-deterministic) one-step strategy for !. We say thata rewrite sequence � is an F -rewrite sequence if for all n 2 dom(�) such that n > 0,�(n) 2 F (�(n� 1)).De�nition 2.5.4. A (non-deterministic) one-step strategy F is maximal if all the F -rewrite sequence starting are maximal.De�nition 2.5.5. A non-deterministic strategy F : A ! P(A) is called normalising iffor all a 2 A such that a is weakly normalising, there exists an F -rewrite sequence from ato a normal form.The importance of the existence of normalising strategies in weakly normalising abstractrewriting systems is that the decidability of the equality on normal forms implies thedecidability of the conversion. In order to check if two elements are convertible, we computetheir normal forms by applying the normalising strategy and we check that the two normalforms are equal.De�nition 2.5.6. A non-deterministic strategy F : A ! P(A) is called perpetual if forall a 2 A such that a is not strongly normalising we have that all the elements in F (a) arenot strongly normalising.



2.6. CRITERIA 21For a perpetual strategy F , if a is not strongly normalising then all the F -rewritesequences starting at a are in�nite.De�nition 2.5.7. A non-deterministic strategy F : A ! P(A) is called con
uent if forall a; b 2 A such that a  $! b implies that the F -rewrite sequences starting at a and bintersect.If (A;!) is con
uent then the simple graph G! is a con
uent strategy.De�nition 2.5.8. A common-reduct strategy is a function F : A� A ! P(A) if for alla; b 2 A such that a $! b then for all c 2 F (a; b) we have that a!! c and b!! c.The importance of the existence of a common-reduct strategy F is that we can checkif two elements are convertible in a con
uent abstract rewriting system. In order to checkif two elements a and b are convertible, we check if F (a; b) is not the empty set.In the next lemma we prove that con
uent strategies are particular cases of common-reduct strategies. This is evident since a con
uent strategy has only one argument and acommon-reduct strategy has two.Lemma 2.5.9. If F : A ! P(A) is a con
uent strategy then G : A � A ! P(A)de�ned by G(a; b) = F n(a) \ Fm(b) where n;m are the least natural numbers such thatF n(a) \ Fm(b) 6= ; is a common-reduct strategy.An example of a common-reduct strategy is F : A�A! P(A) de�ned from the simplegraph G! by F (a; b) = Gn!(a)\ Gm!(b) where n;m are the least natural numbers such thatGn!(a) \ Gm!(b) 6= ;.More examples of common-reduct strategies are given in chapters 10 and 12.2.6 CriteriaIn this section we give some criteria to prove con
uence and normalisation that will beused in the following chapters of this thesis. They are expressed in terms of the notion ofmorphism. We study the manner in which the properties of con
uence, weak and strongnormalisation are transported from one abstract rewriting system (A;!�) to the abstractrewriting system (B;!�) depending on the class of morphism we can �nd from (A;!�)to (B;!�).Forgetting morphisms give rise to a criterion for con
uence provided they are strategies.This criterion is used in chapter 11 in the proof of con
uence for the �-reduction.Lemma 2.6.1. (Con
uence Criterion) Let (A;!�) be an abstract rewriting system.If there is a forgetting morphism f : A ! A which is a strategy for !�, then !� iscon
uent.Proof: The proof is illustrated by the following diagram.



22 CHAPTER 2. ABSTRACT REWRITING SYSTEMSa���	����	 @@@R�@@@Ra1 ?�? a2?�? ?�?f(a1)= f(a) =f(a2)2 Implementing morphisms give rise to a criteria for con
uence provided they are strate-gies. This criterion is used in chapter 11 in the proof of con
uence for the ��-reduction.Lemma 2.6.2. (Con
uence Criteria) Let (A;!�) and (B;!�) be abstract rewritingsystems and suppose that there are implementing morphisms f : A ! B and g : B ! Asuch that f � g : B ! B is a strategy for !�. If !� is con
uent then so is !�.Proof: Suppose that b !!� b1 and b !!� b2. Since g is an implementing morphism from(B;!�) to (A;!�) we have that g(b)!!� g(b1) and g(b)!!� g(b2). Since!� is con
uentwe have that there exists a 2 A such that: g(b)����	� ���	 @@@@R�@@@Rg(b1) g(b2)p p p p p p p p p p p p p p p pR� R pppppppppppppppp	 �	aSince f � g is a strategy for !� and f is an implementing morphism from (A;!�) to(B;!�) we have the following picture: b����	� ���	 �??@@@@R�@@@Rb1 b2�?? f � g(b) �??����	� ���	 @@@@R�@@@Rf � g(b1) f � g(b2)p p p p p p p p p p p p p p p pR� R pppppppppppppppp	 �	f(a)



2.6. CRITERIA 232 Strategies from one abstract rewriting system to a conservative extension give rise to aweak normalisation criterion.Lemma 2.6.3. (Weak Normalisation Criterion) Let (B;!�) be a strong conservativeextension of the abstract rewriting system (A;!�). Suppose there exists a strategy f :B ! B for !� such that f(B) � A. If !� is weakly normalising then so is !�.Proof: Suppose b 2 B. Then b !!� f(b) and f(b) 2 A. Since !� is weakly normalisingthere exists an !�-normal form c 2 A of f(b). Since!��!� we have that f(b)!!� c.Since (B;!�) is a strong conservative extension of (A;!�) and c 2 A is an!�-normalform, we have that c is an !�-normal form. Suppose towards a contradiction that c is notan !�-normal form. Then there exists d such that c !� d. Since A is closed under !�,we have that d 2 A. Since !� \(A�A) �!� we have that c!� d. This contradicts thefact that c is an !�-normal form. 2For proving preservation of weak normalisation from one abstract rewriting system(A;!�) to another abstract rewriting system (B;!�), the requirement that (B;!�) is astrong conservative extension of (A;!�) can be weakened. Assume we can split the rewriterelation !� into two relations !� and !�. We require that only (B;!�) is a strongconservative extension of (A;!�). In this case we need !� to be weakly normalising.This criterion is used in chapter 4 to prove a criterion that is applied in chapter 11 in theproof of weak normalisation for pure type systems with de�nitions.Lemma 2.6.4. (Weak Normalisation Criterion) Let (B;!�) be a strong conservativeextension of the abstract rewriting system (A;!�) and let (B;!�) be an abstract rewritingsystem. Suppose the following conditions are veri�ed.a) The relation !� is weakly normalising.b) For all b 2 B such that b is a �-normal form, we have that b 2 A.c) If a is in �-normal form and a!� a0 then a0 is in �-normal form.If !� is weakly normalising then so is !��.Proof: Suppose b 2 B. By a) there exists d such that d is the �-normal form of b. Thenb !!� d. It follows from b) that d 2 A. Since !� is weakly normalising there exists c an!�-normal form of d. Since !��!� we have that d !!� c. Since (B;!�) is a strongconservative extension of (A;!�), c is in!�-normal form. By c) we also have that c is in!�-normal form. 2Re�ning morphisms give rise to a criterion for strong normalisation since they mapin�nite rewrite sequences into in�nite rewrite sequences. This criterion is used in chapter7 in the second proof of �niteness of developments and superdevelopments.



24 CHAPTER 2. ABSTRACT REWRITING SYSTEMSLemma 2.6.5. (Strong Normalisation Criterion) Let (A;!�), (B;!�) be twoabstract rewriting systems and suppose there is a re�ning morphism f : B ! A.If !� is strongly normalising then so is !�.In order to prove the preservation of strong normalisation from one abstract rewritingsystem (A;!�) to another abstract rewriting system (B;!�), in the case it is not possibleto �nd a re�ning morphism from (B;!�) to (A;!�), a method is to split the reduction!�into two reductions !� and !� and �nd a re�ning morphism from (B;!�) to (A;!�).In the case that!� is strongly normalising, we have a strong normalisation criterion. Thiscriterion is used to prove the criterion of chapter 4 that is used in the proof of strongnormalisation for pure type systems with de�nitions in chapter 11.Lemma 2.6.6. (Strong Normalisation Criterion) Let (A;!�), (B;!��) be abstractrewriting systems. Suppose there is a mapping f : B ! A such that:a) f is an implementing morphism from (B;!�) to (A;!�).b) f is a re�ning morphism from (B;!�) to (A;!�).If !� and !� are strongly normalising then !�� is strongly normalising.Proof: Suppose towards a contradiction that !�� is not strongly normalising, i.e. thereis an in�nite!��-rewrite sequence starting at b 2 B.Observe that the number of �-rewrite steps in this sequence is in�nite, i.e. 8n 2IN 9m > n : bm !� bm+1. Otherwise it would follow that there is n0 2 IN such that8m> n0 bm !� bm+1. Hence the sequence bn0+1 !� bn0+2 !� ::: would be in�nite. As !�is strongly normalising, this can not happen. Hence the number of �-rewrite steps in thesequence b!�� b1!�� b2::: is in�nite. Then this sequence is of the formb!!� bn1 !� bn2 !!� bn3 !� bn4 !!� bn5 !� bn6 !!� : : :By hypothesis a) and b) there is an in�nite �-rewrite sequence starting at f(b):f(b)!!� f(bn1)!+� f(bn2)!!� f(bn3)!+� f(bn4)!!� f(bn5)!+� f(bn6)!!� : : :which contradicts the assumption that !� is strongly normalising. 22.7 Conclusions and Related WorkIn this chapter, we have presented the notion of abstract rewriting system in a categoricalway, by introducing di�erent types of morphisms and we have proved some general lemmasconcerning con
uence and normalisation.In the literature abstract rewriting systems are not usually presented in a categoricalmanner. We have introduced the notion of morphism and considered the category ofabstract rewriting systems. In our opinion, the categorical presentation is more elegant. For



2.7. CONCLUSIONS AND RELATED WORK 25example the notion of rewrite sequence can be de�ned economically in terms of morphisms.The application of a function to a rewrite sequence is the composition of two morphisms.The notion of lifting of a development coincides in this way with the categorical notion oflifting.We have introduced the general notion of common-reduct strategy in order to use it laterin the de�nitions of the type inference semi-algorithms. A common-reduct strategy can beused to check conversion in con
uent abstract rewriting systems, if F is a common-reductstrategy, the terms a and b are convertible if and only if F (a; b) 6= ;.The Church-Rosser strategy presented in [Bar85] is a particular case of a common-reduct strategy for �-reduction. The main di�erence between a common-reduct strategyand a Church-Rosser strategy is that the former depends on two arguments and the latteron one. The normalising strategies are important for checking conversion but they ensuretermination only on the set of weakly normalising elements.The way in which conversion is checked in [Coq91] supposes implicitly the existenceof a common-reduct strategy. In [Coq91], an algorithm for checking conversion is de�ned.For that purpose a computable binary relation is de�ned which is equivalent to the ��-reduction. This relation depending on two arguments can be considered as a common-reduct strategy. We de�ne this strategy for � in chapter 10 and a similar one for �� inchapter 12. Also in these chapters we give more examples of common-reduct strategies for� and ��-reduction.The criteria to prove con
uence, weak and strong normalisation have been obtainedgeneralising the original proofs done for pure type systems with de�nitions (see [SP94]).Many other criteria came up as generalisations of existing proofs (see [New42], [Klo90],[Oos94] and [GLM92]). The proofs of [SP94] are rewritten as applications of the newcriteria in chapter 11. Moreover these criteria will also be applied to other particularcases.
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Chapter 3Topology3.1 IntroductionIn this chapter we dress many of the basic properties of abstract rewriting systems ina topological costume. It will not be formally used later and the readers who are notinterested can skip it.We de�ne a topology (A;T!) associated to an abstract rewriting system (A;!). Theclosed sets of this topology are those subsets of A that are closed under the rewrite relation! and the open sets are those subsets of A that are closed under the inverse relation  .The closure operator applied to an element a 2 A is the transitive reduction graph of theelement, G!!(a). This is the smallest closed set that contains a. In the context of preorders,the topology associated to a preorder is called the Alexandro� topology. This topology isvery special in the sense that the open sets are closed under arbitrary intersections (notonly �nite ones) and there is another operator besides the closure that yields the expansionsof a set.We give some topological characterisations of con
uence. An abstract rewriting system(A;!) is con
uent if and only if the topology associated to (A;!) veri�es that the in-tersection of any pair of closed sets that are subsets of G!!(a) is non-empty or in informallanguage if the closed subsets of G!!(a) are `large'. Moreover, we prove that an abstractrewriting system (A;!) is con
uent if and only if the two operators in the topology asso-ciated to (A;!) verify a subcommutation condition.We also give characterisations of normal forms and the properties of weak and strongnormalisation for what we call irre
exive abstract rewriting systems.A normal form in an irre
exive abstract rewriting system is a closed point in thetopology associated to the abstract rewriting system.An irre
exive abstract rewriting system is weakly normalising if and only if all theclosed sets of the associated topology contain a closed point. Another characterisationstates that an irre
exive abstract rewriting system is weakly normalising if and only if Ais the result of applying the expansion operator to the set of closed points.An irre
exive abstract rewriting system is strongly normalising if and only if the fol-27



28 CHAPTER 3. TOPOLOGYlowing two conditions are veri�ed:1. The family of principal closed open sets is noetherian.2. The closure of two points is the same if and only if they are the same point.This chapter is organised as follows. In section 3.2 we de�ne the topology associated toan abstract rewriting system and the abstract rewriting system associated to a topology.In section 3.3, we show that there is an equivalence between the preorders and symmetrictopological spaces. In section 3.4, we give topological characterisations of con
uence, weakand strong normalisation.3.2 TopologyIn this section we associate a topology T! to an abstract rewriting system (A;!). Theclosed sets of this topology are the subsets of A that are closed under the rewrite relation!. The closure operator is the extension of the transitive graph of an element of A tosubsets of A. Conversely, we associate an abstract rewriting system to a topology. Therewrite relation is de�ned as follows: an element a rewrites to b if b is in the closure of theelement a. This rewrite relation is re
exive and transitive.We recall the de�nition and the basic properties of closure operators on a set (see[Kel55]).De�nition 3.2.1. A map C : P(A)! P(A) is called a closure operator if it veri�es:1. ;c = ;,2. X � Xc,3. Xc = (Xc)c,4. (X1 [X2)c = X1c [X2c for all X;X1;X2 � A.De�nition 3.2.2. IfC : P(A)! P(A) is a closure operator then F = fX � A j X = Xcgand T = fX � A j A�X 2 Fg form the family of closed and open sets of a topology in A.We associate a topology T! to an abstract rewriting system (A;!). The closed setsof this topology are the subsets of A that are closed under the rewrite relation !. Theclosure operator is the extension of the transitive graph of an element of A to subsets ofA.De�nition 3.2.3. Let (A;!) be an abstract rewriting system. We de�ne a mappingC : P(A)! P(A) de�ned for X � A by C(X) = fb 2 A j 9x 2 X x!! bg.



3.2. TOPOLOGY 29For each subset X of A, C(X) is the set of all the elements in A that are obtained byrewriting some element in X. It is easy to prove that this mapping is a closure operator.Lemma 3.2.4. Let (A;!) be an abstract rewriting system. The operator C : P(A)!P(A) is a closure operator.We denote byFA (or F!) and TA (or T!) the family of closed and open sets with respectto the topology associated to an abstract rewriting system. This topology is sometimescalled the Alexandro� topology associated to !. It has been considered especially in thecase in which ! is a preorder on A, see [GLSH92].In the case that X = fag we write C(a) instead of C(fag). The closure of a point is thetransitive reduction graph of the point and it is a closed set. In other words, if a 2 A thenC(a) = fx 2 A j a!! xg = G!!(a). Observe also that C(X) = Sa2X C(a) = Sa2X G!!(a).Note also that a!! b, b 2 C(a), C(b) � C(a).Also the transitive expansion graph of a point is an open set. In other words, E!!(a) =fx 2 A j x!! ag is an open set. It is the smallest set that is open and contains the elementa. Note also that b!! a, b 2 E!!(a), E!!(b) � E!!(a).In the following lemma, we prove that the closed sets are invariant under the rewriterelation and the open sets are invariant under the inverse relation.Lemma 3.2.5.1. A subset X � A is closed if and only if it is invariant under the rewrite relation !.In other words X is closed if and only if x 2 X;x! y implies y 2 X for all x; y 2 A.2. A subset X � A is open if and only if it is invariant under the rewrite relation  .In other words X is open if and only if x 2 X; y! x implies y 2 X for all x; y 2 A.3. A subset of A is T! open if and only if it is T closed, i.e. T! = F and F! = T .De�nition 3.2.6.The family of all sets of the form C(a) with a 2 A is called the family of principal closedsets and is denoted as P! � F!.The family of all sets of the form E!!(a) with a 2 A is called the family of principal opensets and is denoted as O! � T!.Note that the family of open sets O! is a basis for the topology T!.We associate to each abstract rewriting system (A;!) the topological space (A;T!)by means of a functor. It is easy to prove that if f : A! B is a morphism from (A;!�)to (B;!�) then f is a continuous function from (A;T!�) into (B;T!� ).De�nition 3.2.7. The functor H : Ars! Top is de�ned as follows:H(A;!) = (A;T!) for (A;!) an abstract rewriting system,



30 CHAPTER 3. TOPOLOGYH(g) = g for g a morphism between abstract rewriting systems.We associate an abstract rewriting system to a topology. The rewrite relation is de�nedas follows: an element a rewrites to b if b is in the closure of the element a.De�nition 3.2.8. Let (A;T ) be a topological space whose closure operator is c. Wede�ne a binary relation!T on A as follows.a!T b if b 2 ac.This binary relation is the rewrite relation associated to T . The abstract rewritingsystem associated to T is (A;!T ).Note that !T is re
exive and transitive.We associate to each topological space (A;T ) an abstract rewriting system (A;!T ) bymeans of a functor. It is easy to prove that if f is a continuous function from (A;T ) into(B;T 0) then f : A! B is a morphism from (A;!T ) to (B;!T 0).De�nition 3.2.9. The functor G : Top! Ars is de�ned as follows:G(A;T ) = (A;!T ) for (A;T ) a topological space,G(f) = f for f : A! B a continuous function of topological spaces.3.3 EquivalenceThe abstract rewriting systemswhose rewrite relation veri�es re
exivity and transitivity arecalled preorders and the topological spaces whose open sets are closed under intersectionsare called symmetric topological spaces. In this section, we prove that there is an equivalencebetween the preorders and the symmetric topological spaces.We can associate the re
exive-transitive closure of an abstract rewriting system bymeans of a functor.De�nition 3.3.1. The functor transitive closure for abstract rewriting systems is denotedas TC : Ars! Ars and de�ned as follows:TC(A;!) = (A;!!) for (A;!) an abstract rewriting system,TC(f) = f for f a morphism between abstract rewriting systems.Lemma 3.3.2. The functor TC veri�es that TC2 = TC.We de�ne the notion of symmetric topological space.De�nition 3.3.3. Let (A;T ) be a topology on A. We say that (A;T ) is a symmetrictopology if the family of open sets is closed by intersections.



3.3. EQUIVALENCE 31De�nition 3.3.4. Let (A;T ) be a topological space and T0 � T be an arbitrary subfamilyof T and call OT0 the set OT0 = TO2T0 O. We de�ne the symmetric topology associated toT (denoted as Tr) as the topology whose basis is the set fOT0 j T0 � T g.Note that Tr � T . The construction above can be expressed as a functor.De�nition 3.3.5. De�ne a functor R from the category of topological spaces into itself,R : Top! Top, as follows:R(A;T ) = (A;Tr) for (A;T ) a topological space,R(f) = f for f a continuous function.Lemma 3.3.6. The functor R veri�es that R2 = R.The symmetric topology is very special in the sense that there is another operator thatyields the smallest open set that contains a given element. This set is just the transitiveexpansion graph E  (a).Lemma 3.3.7. The following statements are equivalent.a) T is a symmetric topology.b) T is a topology and there exists another topology T 0 in A , such that if F 0 denotesthe family of closed sets of T 0, then F 0 = T .c) T is a topology and the following condition is veri�ed.(M) For all a 2 A, there exists a unique set S(a) that is the smallest open set thatcontains the point a, i.e. S(a) � X for all X 2 T such that a 2 X.Proof: To prove a)) c) we take a symmetric topology (A;T ) and observe that it veri�es(M) because TfU ja2U2Tg U is the smallest open set containing a.Conversely, a topology (A;T ) that veri�es (M) is a symmetric topology. Suppose thatT0 � T and X = TU2T0 U 6= ;. Take a 2 X then for any U 2 T0, S(a) � U and thenS(a) � X. So that X = Sa2X S(a) is an open set. 2Lemma 3.3.8. Suppose that T is a topology on the set A and Tr the associated symmetrictopology. For every point a 2 A we have that CT (a) = CTr (a).Lemma 3.3.9. Let T be a symmetric topology on the set A.a) For any X � A there exists an open set S(X) that is the smallest open subset of Athat contains X. Moreover S(X) = Sa2X S(a).b) Let a; b 2 A. We have that b 2 ac, a 2 S(b), S(a) � S(b).c) The family of open sets S(a) with a 2 A form a basis for the topology T .



32 CHAPTER 3. TOPOLOGYNote that if (A;!) is an abstract rewriting system, the topology T! is a symmetrictopology.In the following theorem we prove that there is an equivalence between the preordersand the symmetric topologies.Theorem 3.3.10. Let Preord be the subcategory of Ars consisting of the preordersand Tops the subcategory of Top consisting of the topological spaces whose topology is asymmetric topology. Let H;G;TC and R be the functors de�ned before.a) The composition G � H satis�es G � H = TC.b) The composition H � G satis�es H � G = R.c) The functorsH and G are inverses of each other when respectively restricted to Preordand Tops.d) The functor H : Preord ! Tops is an equivalence of categories. Its inverse is thefunctor G : Tops! Preord.Proof: Parts a) and b) are easy to prove. Part c) follows immediately from parts a), b)and the fact that R and TC are projection functors onto Tops and Preord respectively.Part d) follows immediately from the previous parts. 23.4 Topological CharacterisationsIn this section, we give topological characterisations of con
uence, weak and strong nor-malisation.In the following theorem, we give some topological characterisations of con
uence. Anabstract rewriting system (A;!) is con
uent if and only if in the topology associated to(A;!), the intersection of any pair of closed subsets of G!!(a) is non-empty. Moreover, weprove that an abstract rewriting system (A;!) is con
uent if and only if the two operatorsin the topology associated to (A;!) verify some subcommutation condition.Theorem 3.4.1. (Topological Characterisation of Con
uence)The following statements are equivalent.1. The abstract rewriting system (A;!) is con
uent.2. For all a in A and for every pair C and D of non empty T! closed subsets of C(a),C \D 6= ;.3. For all X � A, C(S(X)) � S(C(X)).Proof:



3.4. TOPOLOGICAL CHARACTERISATIONS 33(1, 2). Suppose (A;!) is con
uent and C and D are as above. Take c 2 C and d 2 D.As c; d 2 C(a) we have that d  a!! c. Then there exists an x 2 A such that d!! x  c.As d 2 D , C(d) � D and as d !! x, x 2 C(d) � D. Similarly, x 2 C(c) � C. Hencex 2 C \D.Conversely, suppose that we have a; d; c 2 A such that d  a!! c. Then C(d) � C(a)and C(c) � C(a). By hypothesis, there exists an element x 2 C(d) \C(c). That meansthat d!! x  c and hence that (A;!) is con
uent.(1, 3). Observe thatC(S(X)) = fz : 9y; y!! z & y!! x & x 2 XgS(C(X)) = fu : 9v; u!! v & x!! v & x 2 Xg2 Next we give a topological characterisation of normal forms. The closed points in thetopology associated to the abstract rewriting systems are either elements that rewrite toitself or normal forms.First we recall the notion of loop and irre
exive abstract rewriting systems.De�nition 3.4.2. Let (A;!) be an abstract rewriting system.We say that a rewrite sequence starting at a is a loop if it is of the form a!+ a.We say that a one-step loop is a loop of length 1.For example, in the �-calculus < �;!�> one-step loops are of the form C[
]! C[
]with 
 = (�x:x x) (�x:x x).De�nition 3.4.3. We say that an abstract rewriting system is irre
exive if there is notany one-step loop.We de�ne the notion of terminal loops as loops that cannot rewrite to anything elsethan itself.De�nition 3.4.4. A terminal loop is a loop a !+ a such that there is no b 6= a witha!! b.Note that the only terminal loops are loops of one step.De�nition 3.4.5. An abstract rewriting system (A;!) is weakly irre
exive if there isnot any terminal loop.



34 CHAPTER 3. TOPOLOGYFor example, the pure type systems de�ned in chapter 9 are weakly irre
exive. Thereare no terminal loops.In order to give a topological characterisation of normal forms we require that theabstract rewriting system should be weakly irre
exive. In this case the normal forms areexactly the closed points in the topology associated to the abstract rewriting system.In the following lemma, we give a topological characterisation of normal forms forweakly irre
exive abstract rewriting systems: an element of a weakly re
exive abstractrewriting system is a normal form if it is a closed point in the associated topology.Lemma 3.4.6. (Topological characterisation of normal forms)Let (A;!) be a weakly irre
exive abstract rewriting system. An element a 2 A is anormal form i� fag is a T! closed set.In the following theorem, we give some topological characterisations of weak normali-sation for weakly irre
exive abstract rewriting systems.The �rst characterisation says that an abstract rewriting system is weakly normalisingif and only if every closed set has a closed point.Note that the weakly normalising elements are the expansion of some normal form.This give us the other characterisation: (A;!) is weakly normalising if A can be obtainedby applying the operator S to the set of closed points.Theorem 3.4.7. (Topological characterisations of weak normalisation)Let (A;!) be a weakly irre
exive abstract rewriting system. The following statementsare equivalent.1. (A;!) is weakly normalising.2. Every non empty closed subset of A with respect to the topology associated to (A;!)has a closed point.3. If X is the set of closed points of A then A = S(X).Proof:(1 , 2). Suppose (A;!) is weakly normalising. Take C 6= ; a closed subset of A. Takec 2 C and consider a 2 A such that a is the normal form of c. Hence a 2 C because Cis closed and a is a closed point because of lemma 3.4.6. Conversely, suppose that everynon empty closed set has a closed point. Then for any b 2 A the closed set C(b) containsa closed point c. Then b!! c and c is in normal form.(1, 3). Easy. 2To characterise strong normalisation we need the concept of noetherian family of sub-sets.



3.5. CONCLUSIONS AND RELATED WORK 35De�nition 3.4.8. Let A be an arbitrary set and S a family of subsets of A, i.e. S � P(A).We say that S is noetherian if and only if all decreasing subfamilies of S stabilize, i.e. foran arbitrary family fSi : i 2 INg � S such that S1 � S2 � S3 � :: � Sn � :: ) 9m 2 INsuch that Sm = Sm+1 = ::.Theorem 3.4.9. (Topological characterisation of strong normalisation)Let (A;!) be a weakly irre
exive abstract rewriting system.(A;!) is strongly normalising if and only if the following two conditions are veri�ed:1. The family P! � F! of principal closed sets of A is noetherian.2. C(a) = C(b), a = b.Proof: Suppose ! is strongly normalising. We prove the two conditions:1. Suppose that we have a decreasing family of sets in P!, i.e. a family of the form:C(a1) � C(a2) � : : : � C(an) � C(an+1) � : : :This family produces a sequence of reductions a1 !! a2 !! :::an !! an+1 : : :. Thereexists m 2 IN such that am = am+1 = : : :. Then C(am) = C(am+1) = : : : and hencethe family stabilizes.2. If C(a) = C(b) with a 6= b, we would have a reduction of in�nite length a!+ b!+a!+ b : : :.Conversely, any reduction a1 ! a2 ! : : : an ! an+1 : : : produces a family of principalclosed sets, C(a1) � C(a2) � : : : � C(an) � C(an+1) � : : :. By the noetherian hypothesiswe conclude that there exists an m 2 IN such that C(am) = C(am+1) = : : :. Hence byhypothesis 2 we conclude that am = am+1 = : : :. 23.5 Conclusions and Related WorkThe topology associated to an abstract rewriting system is the well-known Alexandro�topology that has been considered mainly for preorders. The comparison between ab-stract rewriting systems and topological structures has the novelty of �nding topologicalcharacterisations for con
uence and normalisation.We see that in these topological characterisations of con
uence, weak and strong nor-malisation expansion is as important as reduction. Expansion has also played a role in thecharacterisation of the set of strongly normalising �-terms in chapter 5.This chapter is logically independent of the rest of the thesis. Although we did notapply these results later, we think that it is relevant because to illuminate the same objectwith light from di�erent angles can be sometimes very productive.This topology does not look at the structure of the term (neither does the notion ofabstract rewriting system) but only at the reduction graph of the term. In earlier work,other topologies associated to a reduction relation have been considered. In all these casesthe topology depends on the structure of the terms (see [Bar85], [KKSdV91] and [KKS95]).
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Chapter 4Abstract Typing Systems4.1 IntroductionIn computer science the notions of computation and typing are basic, and play an essentialrole in the theory and its applications. In chapter 2 we have formalised the notion ofcomputation in an abstract way as a binary relation on a set.The concept of typing can be modelled also as a binary relation. In this case therelation is called the typing relation (usually denoted by : ). An element a is typable ifthere exists b such that a : b and it is inhabited if there exists b such that b : a.In the case that the binary relation represents the rewrite relation, we are interested inlooking at properties associated to its transitive closure like con
uence and normalisation.In the case of a binary relation that represents the typing relation, we are interested inother kinds of properties like for example uniqueness of types. A typing relation does nothave much use by itself and we believe it makes sense in an abstract setting only whenconsidered together with a rewrite relation.We consider a triple (A;!; : ) consisting of a set and two binary relations, one repre-senting the rewrite relation and the other representing the typing relation. There shouldbe some interaction between these two relations. Now we discuss the kind of interactionwe consider interesting.We use the typing relation in order to restrict the domain of the rewrite relation to theset of elements that are typable or inhabited. This is useful when the abstract rewritingsystem does not verify weak or strong normalisation.We want the set of typable elements together with the rewrite relation to be a subsystemof the original. This is veri�ed when the set of typable elements and the set of inhabitedelements are closed under the rewrite relation. These properties are called subject reductionand type reduction respectively.Hence, we need that the rewrite and typing relations verify the subject and the typereduction properties. We say that the triple (A;!; : ) is an abstract rewriting system withtyping if it veri�es the subject and the type reduction properties.We want that the abstract rewriting system obtained by restricting the domain A to37



38 CHAPTER 4. ABSTRACT TYPING SYSTEMSthe set of typable or inhabited elements veri�es weak and strong normalisation. In thischapter we prove these properties for abstract rewriting systems with typing under certainhypothesis.Finally, we introduce an abstract notion of environment (also called context). The typ-ing relation and the rewrite relation may depend on environments. We consider indexedfamilies of abstract rewriting systems with typing where the indices represent the envi-ronments. These families are called environmental abstract rewriting systems with typing.We summarise the contents of the sections of this chapter. In section 4.2, we introducethe notions of abstract typing system and of type. In section 4.3, we introduce the abstractconcepts of subject reduction and type reduction. Also we de�ne the notions of abstractrewriting system with typing. We de�ne the properties of uniqueness of types and of weakand strong normalisation. Also we give some general criteria to prove these properties. Insection 4.4, we introduce the notion of environment. We add this feature to all the abstractstructures de�ned in the previous section. In section 4.5, we introduce a general notion ofsemantics.4.2 Abstract Typing SystemsIn this section, we introduce the notion of abstract typing systems (see also [Raa96]) toformalise the notion of typing. As we said before a typing relation is formalised in anabstract way as a binary relation.De�nition 4.2.1. An abstract typing system is a pair (A; : ) consisting of a set A and arelation : � A�A called typing relation.De�nition 4.2.2. Let (A; : ) be an abstract typing system.We say that a has type b if a : b.We say that a is a term (or typable) if there exists b such that a : b.We say that b is a type (or inhabited) if there exists a such that a : b.We say that a is a toptype if a is a type that is not typable.De�nition 4.2.3. We de�ne a morphism from (A; :�) to (B; :�) as a function f : A! Bsuch that if a :� a0 then f(a) :� f(a0) for all a; a0 2 A.The category whose objects are the abstract typing systems and whose morphisms arethe ones de�ned above is denoted by Ats.De�nition 4.2.4. We say that (B; :�) is an extension of (A; :�) if A � B and the inclusionmapping is a morphism from (A; :�) to (B; :�).De�nition 4.2.5. We say that an extension (B; :�) of (A; :�) is conservative if a :� a0implies a :� a0 for all a; a0 2 A.



4.3. ABSTRACT REWRITING SYSTEMS WITH TYPING 394.3 Abstract Rewriting Systems with TypingIn this section, we consider triples (A;!; : ) consisting of a set A and two binary relations,one representing the rewrite relation and the other representing the typing relation. Thereshould be some interaction between these two relations. We will require that the rewriterelation and the typing relation commute in di�erent ways.De�nition 4.3.1. (Commutation of the rewrite and the typing relations)Let (A;!; : ) be a set A and two binary relations ! and : on the set A.1. Reducing the term. If a has type b then we can rewrite the subject a to a0 anda0 should have a type b0 related to b. According to the relation between b and b0, weclassify the way in which these two relations interact as follows.(a) We say that (A;!; : ) satis�es very weak subject reduction if for all a; b; a0 suchthat a : b and a! a0, there exists b0 such that a0 : b0 and b $! b0.(b) We say that (A;!; : ) satis�es weak subject reduction if for all a; b; a0 such thata : b and a! a0, there exists b0 such that a0 : b0 and b!! b0.a : b? pppppppp??a0 : b0(c) We say that (A;!; : ) satis�es subject reduction if for all a; b; a0 such that a : band a! a0 we have that a0 : b. a : b?a0 : bNote that (A;!; : ) satis�es (weak) subject reduction if and only if (A;!!; : )satis�es (weak) subject reduction.2. Reducing the type. If a has type b then we can rewrite the type b to b0 and b0should have an inhabitant a0 related to a. According to the relation between a anda0, we classify the way in which these two relations interact as weak type reductionand type reduction.(a) We say that (A;!; : ) satis�es weak type reduction if for all a; b; b0 such thata : b and b! b0, there exists a0 such that a0 : b0 and a!! a0.



40 CHAPTER 4. ABSTRACT TYPING SYSTEMSa : bpppppppp?? ?a0 : b0(b) We say that (A;!; : ) satis�es type reduction if for all a; b; b0 such that a : band b! b0 we have that a : b0. a : b?a : b0Note that (A;!; : ) satis�es (weak) type reduction if and only if (A;!!; : ) satis�es(weak) type reduction.3. Expanding. If a has type b then we can expand a or b. We introduce the notionsof subject expansion and type expansion.(a) We say that (A;!; : ) satis�es subject expansion if for all a; b; a0 such that a : b,a0 is typable and a0! a we have that a0 : b.(b) We say that (A;!; : ) satis�es type expansion if for all a; b; b0 such that a : b, b0is typable and b0! b we have that a : b0.An abstract rewriting system with (very, weak) typing consists of a set, two binaryrelations which satisfy some commutation requirements.De�nition 4.3.2.We say that (A;!; : ) is an abstract rewriting system with very weak typing if (A;!; : )satis�es very weak subject reduction.We say that (A;!; : ) is an abstract rewriting system with weak typing if (A;!; : ) satis�esweak subject and weak type reduction.We say that (A;!; : ) is an abstract rewriting system with typing if (A;!; : ) satis�essubject and type reduction.A morphism between abstract rewriting systems with typing is a function between setsthat preserves the rewrite and the typing relations.De�nition 4.3.3. We de�ne a morphism from (A;!�; :� ) to (B;!�; :� ) as a functionf : A ! B such that f is a morphism in Ars from (A;!�) to (B;!�) and a morphismin Ats from (A; :� ) to (B; :� ).



4.3. ABSTRACT REWRITING SYSTEMS WITH TYPING 41The category whose objects are the abstract rewriting systems with (weak) typing andwhose morphisms are the ones de�ned above is denoted by (Arst!) Arst.In a similar way as above, we can de�ne the notions of re�ning, implementing andforgetting morphism.If (A;!; : ) is an abstract rewriting system with (weak) typing then the set Al = fa ja is typable or a is inhabitedg is closed under the rewrite relation! and the pair (Al;!)is an abstract rewriting system.De�nition 4.3.4. Let (A;!; : ) be an abstract rewriting system with (weak) typing.We de�ne the restriction of (A;!) by (A; : ) as the abstract rewriting system (Al;!).The most commonly used abstract rewriting systems do not satisfy the necessary prop-erties of weak or strong normalisation. Abstract rewriting systems are combined withabstract typing systems in order to restrict the original system (A;!) to (Al;!) to havethese properties. Intuitively, an abstract rewriting system with (weak) typing (A;!; :)veri�es some property if the restriction of (A;!) by (A; : ) veri�es this property.De�nition 4.3.5. Let (A;!; :) be an abstract rewriting system with (weak) typing. Wesay that (A;!; :) is (weakly) strongly normalising if the restriction of (A;!) by (A; : ) is(weakly) strongly normalising.The restriction of an abstract rewriting system by an abstract typing system de�nedabove can be expressed by means of a functor.De�nition 4.3.6. We de�ne a functor L : Arst! ! Ars as follows.L(A;!; : ) = (Al;!) for (A;!; : ) 2 Arst!;where Al = fa j a is typable or a is inhabitedg. This functor is de�ned for morphisms inthe obvious way.Lemma 4.3.7. A (re�ning, implementing, forgetting) morphism from (A;!�; :� ) to(B;!�; :� ) is a (re�ning, implementing, forgetting) morphism from L(A;!�; :� ) toL(B;!�; :� ).Notice that, a morphism from L(A;!�; :�) to L(B;!�; :�) is a function that preservesthe rewrite relation on a restricted domain. This function may not preserve the rewriterelation on the whole set and hence it may not be a morphism between abstract rewritingsystems with typing.The criteria for weak and strong normalisation given for abstract rewriting systemscan be adapted to abstract rewriting system with (weak) typing. The weak normalisationcriteria are used in the proof of weak normalisation for pure type systems with de�nitionsof chapter 11. The second strong normalisation criterion is used in the proof of strongnormalisation for pure type systems with de�nitions in chapter 11.



42 CHAPTER 4. ABSTRACT TYPING SYSTEMSLemma 4.3.8. (Weak Normalisation Criterion) Let (A;!�; :�) and (B;!�; :�)be abstract rewriting systems with (weak) typing. Suppose the following conditions areveri�ed.a) (B;!�) is a strong conservative extension of (A;!�).b) There exists a function f : B ! A that is a strategy for !� and a morphism from(B; :�) to (A; :�).If (A;!�; :�) is weakly normalising then so is (B;!�; :�).Lemma 4.3.9. (Weak Normalisation Criterion) Let (A;!�; :�) and (B;!��; :�)be abstract rewriting systems with (weak) typing. Suppose the following conditions areveri�ed.a) (B;!�) is a strong conservative extension of (A;!�).b) If a is in �-normal form and a!� a0 then a0 is in �-normal form.c) The relation!� is weakly normalising.d) The �-normal form is a morphism nf � : B ! A from (B; :�) to (A; :�).If (A;!�; :�) is weakly normalising then so is (B;!��; :�).Lemma 4.3.10. (Strong Normalisation Criterion) Let (A;!�; :�), (B;!�; :�) betwo abstract rewriting systems with typing and suppose there is a re�ning morphismf : B ! A between them. If (A;!�; :�) is strongly normalising then so is (B;!�; :�).Lemma 4.3.11. (Strong Normalisation Criterion) Let (A;!�; :� ) to (B;!��; :� )be abstract rewriting systems with (weak) typing. Suppose there is a mapping f : B ! Asuch that:a) f is an implementing morphism from (B;!�; :� ) to (A;!�; :� ).b) f is a re�ning morphism from (B;!�; :� ) to (A;!�; :� ).c) (B;!�; :� ) is strongly normalising.If (A;!�; :� ) is strongly normalising then so is (B;!��; :� ).Proof: This follows from lemma 2.6.6. We consider the abstract rewriting systems:L(A;!�; :� ), L(B;!�; :� ) and L(B;!�; :� ). 2We de�ne uniqueness of types property (up to conversion).



4.4. ENVIRONMENTS 43De�nition 4.3.12. Let (A;!; : ) be an abstract rewriting system with (weak) typing.We say that (A;!; : ) veri�es uniqueness of types if for all a such that a : b and a : b0, wehave that b $! b0.We give a criterion to prove that the uniqueness of types property is preserved fromone system to its extension. This criterion is used to prove uniqueness of types for singlysorted pure type systems with de�nitions in chapter 11.Lemma 4.3.13. (Uniqueness of Types Criterion) Let (B;!�) be an extension of(A;!�). Suppose there is a mapping f : B ! A that is a strategy for!� and a morphismfrom (B; :�) to (A; :�). If (A;!�; :�) veri�es uniqueness of types so does (B;!�; :� ).Proof: Let b 2 B be such that b :� c and b :� c0. Since f is a morphism, we havethat f(b) :� f(c) and f(b) :� f(c0). By uniqueness of types for (A; :�) we have thatf(c) $!� f(c0). Since!��!�, we have that f(c) $!� f(c0). Since f is a strategy we havethat c $!� c0. 24.4 EnvironmentsBoth the rewrite relation and the typing relation may depend on environments (also calledcontexts). The typing relation for pure type systems de�ned in chapter 9 and the reductionof global de�nitions de�ned in chapter 11 are examples of this dependency. In order tohave an abstract picture of that situation for the reduction of global de�nitions we con-sider indexed families of abstract rewriting systems and for pure type systems we considerindexed families of abstract rewriting systems with typing where the indices represent theenvironments.De�nition 4.4.1. Let A and C be sets. We say that the triple (A;C;!) is an environ-mental abstract rewriting system if ! is a function from C to P(A�A).We write !� instead of ! (�).Note that (A;!�) is an abstract rewriting system for � 2 C.The elements of C might be called pseudoenvironments (or pseudocontexts). The de�-nition of environment appears later.De�nition 4.4.2. Let (A;C;!) be as above.A rewrite step in � is a !�-rewriting step. We write � ` a! b instead of a!� b.A rewrite sequence in � is de�ned as a !�-rewriting sequence. We write � ` a1 ! a2 !a3 : : : instead of a1!� a2!� a3 : : :.De�nition 4.4.3. Let (A;C;!�) and (A;C;!�) be two environmental abstract rewritingsystems. The union of !� and !� in � is de�ned as the union of !�� and !��. Wewrite � ` a!�� b instead of a!���� b.



44 CHAPTER 4. ABSTRACT TYPING SYSTEMSWe de�ne the notion of morphism for environmental abstract rewriting systems. Amorphism is a pair of functions, one of the functions transforms the environments (orindices) and the other transforms the elements.De�nition 4.4.4. Let (A;C;!�) and (B;D;!�) as above. We say that the pair (f; g)with f : C ! D and g : C �A ! B is a morphism from (A;C;!�) to (B;D;!�) if forall a; b 2 A and � 2 C, if � ` a!� b then f(�) ` g(�; a)!� g(�; b).In a similar way, we can de�ne the notions of re�ning, implementing and forgettingmorphism.De�nition 4.4.5. Let (A;C;!) as above. We say that f : C � A ! A is a strategy if� ` a!! f(�; a) for all � 2 C and a 2 A. (Sometimes we write f�(a) instead of f(�; a)).Intuitively, an element a of A veri�es a property in � if a veri�es this property in theabstract rewriting system (A;!�). Moreover, an environmental abstract rewriting system(A;C;!) veri�es a property if (A;!�) veri�es this property for all � 2 C.De�nition 4.4.6. Let (A;C;!) as above and � 2 C.We say that a is (weakly) strongly normalising in � if a is (weakly) strongly normalisingin the abstract rewriting system (A;!�).We say that (A;C;!) is (weakly) strongly normalising if (A;!� ) is (weakly) stronglynormalising for all � 2 C.We say that (A;C;!) is con
uent if (A;!� ) is con
uent for all � 2 C.De�nition 4.4.7. Let A and C be sets. We say that the triple (A;C; : ) is an environ-mental abstract typing system if : is a function from C to P(A�A).Note that (A; :� ) is an abstract typing system for � 2 C.De�nition 4.4.8. Let (A;C; : ) be as above and � 2 C. We say that a has type b in �if a :� b. We write � ` a : b instead of a :� b.De�nition 4.4.9. We say that � 2 C is an environment (or a context) if there are a andb such that � ` a : b.De�nition 4.4.10. Let (A;C; : ) as above and � 2 C.We say that a is a term (or typable) in � if a is a term in the abstract typing system(A; :� ). We denote that a is not typable in � by � 6` a : �.We say that a is a term (or typable) if there exists � such that a is a term in �.We say that a is a type (or inhabited) in � if a is a type in the abstract typing system(A; :� ).



4.4. ENVIRONMENTS 45We say that a is a type (or inhabited) if there exists � such that a is a type in �.We say that a is a toptype in � if a is a toptype in the abstract typing system (A; :� ).We say that a is a toptype if there exists � such that a is a toptype in �.De�nition 4.4.11. We say that the quadruple (A;C;!; : ) is an environmental abstractrewriting system with (very weak , weak) typing if! and : are functions from C to P(A�A)and for all � 2 C, (A;!�; :�) is an abstract rewriting system with (very weak, weak) typing.Most of the examples of environmental abstract rewriting systems have a rewrite rela-tion ! that does not depend on the set C. In these cases, a! a0 can be considered as anabbreviation of � ` a! a0, for all � 2 C.An environmental abstract rewriting system with (weak) typing (A;C;!; : ) veri�es aproperty if (A;!�; :� ) veri�es this property for all � 2 C.De�nition 4.4.12. Let (A;C;!; : ) as above and � 2 C.We say that (A;C;!; : ) is (weakly ) strongly normalising if (A;!�; :� ) is (weakly)strongly normalising for all � 2 C.We say that (A;C;!; : ) veri�es uniqueness of types if (A;!�; :� ) veri�es uniqueness oftypes for all � 2 C.De�nition 4.4.13. Let A = (A;C;!�; :� ) and B = (B;D;!�; :� ) as above.We say that B is an extension of A if the following conditions are veri�ed.1. A � B.2. C � D.3. � ` a!� a0 then � ` a!� a0 for all a; a0 2 A and � 2 C.4. � ` a :� a0 then � ` a :� a0 for all a; a0 2 A and � 2 C.We de�ne the notion of morphism for environmental abstract rewriting systems withtyping as a pair of functions. One of the functions transforms the contexts and the othertransforms the elements. These functions preserve the rewrite relation and the typingrelation. Note that they also preserve rewrite sequences.De�nition 4.4.14. Let A = (A;C;!�; :� ) and B = (B;D;!�; :� ) as above.We say that (f; g) is a morphism from A to B if f : C ! D, g : C � A ! B and thefollowing conditions are veri�ed.1. If � ` a!� b then f(�) ` g(�; a)!� g(�; b).2. � ` a :� b then f(�) ` g(�; a) :� g(�; b).



46 CHAPTER 4. ABSTRACT TYPING SYSTEMSIf the rewrite relation !� in the de�nition above does not depend on D then the �rstclause is replaced by the following one: if � ` a!� b then g(�; a)!� g(�; b).We denote the category whose objects are the environmental abstract rewriting systemswith typing as Carst, the category whose objects are the environmental abstract rewritingsystems with weak typing as Carst! and the category whose objects are the environmentalabstract rewriting with very weak typing as Carst�!) (in all these cases, the morphismsare the ones considered above).In a similar way, we can de�ne the notions of implementing, re�ning and forgettingmorphisms for environmental abstract rewriting systems with (weak) typing.4.5 SemanticsThe notion of interpretation can be formalised in an abstract way by means of a morphismthat preserves the conversion relation. The codomain of the interpretation can be seenas the semantics of the respective domain. For all the categories de�ned in the previoussections, we de�ne the notions of interpretation and semantics. This section has beenintroduced to state and prove formally the corollary 11.4.16.De�nition 4.5.1. Let (A;!�) (B;!�) be two abstract rewriting systems.We de�ne an interpretation (or a converting morphism) from (A;!�) to (B;!�) as afunction f : A ! B such that if a  $!� a0 then f(a)  $!� f(a0) for all a; a0 2 A. If thereexists an interpretation from (A;!�) to (B;!�), we say that (B;!�) is a semantics for(A;!�).De�nition 4.5.2. We de�ne an interpretation (or converting morphism) from (A;!�; :� )to (B;!�; :� ) as a function f : A ! B such that f is an interpretation in Ars from(A;!�) to (B;!�) and a morphism in Ats from (A; :� ) to (B; :� ). If there exists aninterpretation from (A;!�; :� ) to (B;!�; :� ), we say that (B;!�; :� ) is a semanticsfor (A;!�; :� ).De�nition 4.5.3. Let A = (A;C;!�; :� ) and B = (B;D;!�; :� ) be environmentalabstract rewriting systems with typing.We say that (f; g) is an interpretation (or converting morphism) from A to B if f :C ! D, g : C �A! B and the following conditions are veri�ed.1. If � ` a!� b then f(�) ` g(�; a) $!� g(�; b).2. � ` a :� b then f(�) ` g(�; a) :� g(�; b).If there exists an interpretation from (A;C;!�; :� ) to (B;D;!�; :� ), we say that(B;D;!�; :� ) is a semantics for (A;C;!�; :� ).In the following, we de�ne the notion of weak converting morphismas a pair of functions.The function that transforms contexts depends on the context and on the element.



4.6. CONCLUSIONS AND RELATED WORK 47De�nition 4.5.4. Let A = (A;C;!�; :� ) and B = (B;D;!�; :� ) as above.We say that f : C � A ! D � B is a weak converting morphism from A to B if thefollowing conditions are veri�ed for all a; b 2 A and � 2 C. Suppose f(�; a) = (�; c) andf(�; b) = (�0; d).1. If � ` a $!� b then � ` c $!� d.2. If � ` a :� b then � ` c :� d.This special kind of morphisms is used in chapter 10. Note that the contexts � and�0 have no relationship and the �rst clause cannot be replaced by `� ` a !� b then� ` c $!� d'.A weak converting morphism from A to B could be seen as a weak interpretation fromA to B.4.6 Conclusions and Related WorkIn this chapter, we have introduced the notions of abstract typing system and abstractrewriting system with typing. The concepts will not surprise the specialists in the subject,�rstly because they are extremely natural and secondly because even though they appearas `new', they were already `there' in a sort of ghostly manner. All these de�nitions andproperties are used in the rest of the thesis.We think it is necessary to have a formal basis for type systems in the same fashionas the notion of abstract rewriting systems is a formal basis for the lambda calculus. Forexample, the whole section 4.5 was introduced in order to be able to formally describe aproperty for models of pure type systems with de�nitions. Intuitively, the interpretationof a pure type system with de�nitions is obtained by computing �rst the �-normal formand then applying the interpretation of the original system without de�nitions. In [Pol94],this result is stated in an informal way. Since we introduce the general setting of abstracttyping systems, we can say formally what an interpretation is and the considered propertycan be formalised adequately.Abstract formalisations of the notion of logic can be found in [Bar74], [Mes89], [HST89],[Avr92] and [Acz95]. These formalisations are aimed to model di�erent aspects of logic.For example, the notion of a proof is modelled in [Mes89] but the rewrite relation betweenproofs is not considered important. The notion of abstract rewriting systems with typingintends to capture the notions of terms (proofs), types (propositions) and the reductionof terms (the simpli�cation of proofs). Hence our formalisation is aimed to model theinteraction between the typing relation and the rewriting relation. This is because we areinterested in properties of the typing systems like weak and strong normalisation.We think that it could be possible to de�ne the abstract notion of derivation and relateit with the abstract logics de�ned in [Avr92] and [Acz95]. In that case we should introducean abstract notion of typing rules and of typing relation generated by these rules. Also weshould probably add more structure to the notion of environment.
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Chapter 5Strongly Normalising �-terms5.1 IntroductionIn this chapter we give some characterisations of the set of �-strongly normalising �-terms. We use these characterisations (see chapters 6-8) to give new proofs of some resultsconcerning normalisation in �-calculus.This chapter is organised as follows. In section 5.2 we de�ne the set of �-terms and the�-reduction. In section 5.3, �rst we de�ne a set SN 0 by induction that re
ects the intuitionof what should be the set of strongly normalising terms. Then we de�ne another set SNthat is equal to SN 0. Finally we prove that SN is the set of �-strongly normalising terms.5.2 Lambda CalculusIn this section we recall the de�nition of the untyped lambda calculus with �-reduction.The set of variables is denoted by V = fv; v0; v00; : : :g and arbitrary variables in V aredenoted by x; y; z; : : :.De�nition 5.2.1. The set � of �-terms is de�ned as the smallest set satisfying thefollowing clauses.1. V � �,2. if M 2 � then �x:M 2 �,3. if M 2 � and N 2 � then (M N) 2 �.De�nition 5.2.2. The mapping FV : � � P(V ) is de�ned as follows.FV (x) = fxgFV (�x:M) = FV (M)� fxgFV (MN) = FV (M) [ FV (N)51



52 CHAPTER 5. STRONGLY NORMALISING �-TERMSA variable x is said to occur free in M if x 2 FV (M).De�nition 5.2.3. The mapping BV : � � P(V ) is de�ned as follows.BV (x) = ;BV (�x:M) = BV (M) [ fxgBV (MN) = BV (M) [BV (N)A variable x is said to occur bound in M if x 2 BV (M).We de�ne substitution as in [CF58].De�nition 5.2.4. The result of the substitution of N for x in M is de�ned as follows.x[x := N ] = Ny[x := N ] = y if x 6= y(PQ)[x := N ] = (P [x := N ]Q[x := N ])(�x:P )[x := N ] = (�x:P )(�y:P )[x := N ] = (�z:P [y := z][x := N ]) if y 6= x, y 2 FV (N) and z is fresh(�y:P )[x := N ] = (�y:P [x := N ]) otherwiseDe�nition 5.2.5. A change of a bound variable in the term M is the replacement of asubterm (�x:N) by (�y:N [x := y]) where y 62 FV (N).The relation of �-conversion between �-terms is de�ned as follows.De�nition 5.2.6. The termM is �-convertible to N if N is the result of applying to Ma series of changes of bound variables or vice versa.Convention 5.2.7. Two terms are identi�ed if they are �-convertible.We de�ne now the notion of context in the lambda calculus as a term with holes in it.De�nition 5.2.8. We de�ne the set P by induction as follows.1. x 2 P,2. [ ] 2 P,3. if C1[ ] 2 P and C2[ ] 2 P then (C1[ ] C2[ ]) 2 P,4. if C1[ ] 2 P then (�x:C1[ ]) 2 P.A context is an element of P and is denoted by C[ ]. If C[ ] 2 P and M 2 � then C[M ]denotes the result of placing M in the holes of C[ ].The essential feature of a context C[ ] is that a free variable in M may become boundin C[M ].De�nition 5.2.9. The �-reduction (or �-rewrite relation) is de�ned as follows.C[(�x:M)N ]!� C[M [x := N ]]where C[ ] 2 P has only one occurrence of [ ].We use the usual abbreviations: I = �x:x, K = (�x:�y:x), ! = �x:(xx) and 
 = (!!).There are terms in the �-calculus that are not strongly normalising like 
 and (K I 
).



5.3. THE SET SN 535.3 The set SNIn this section we give two de�nitions by induction of the set of strongly normalising�-terms. These de�nitions use �-expansion.An easy observation is that the set that contains all normal forms and that is closedunder expansion is exactly the set of all weakly normalising terms. So we have the followingde�nition.De�nition 5.3.1. The set W is the smallest set of �-terms satisfying the following:1. all normal forms are in W,2. if C[P [x := Q]] 2 W, then C[(�x:P )Q] 2 W.The �rst naive attempt to obtain the set of all strongly normalising terms, is to addthe requirement that the argument of the redex introduced by the expansion is stronglynormalising. The set S is the smallest set that satis�es1. all normal forms are in S,2. if C[P [x := Q]] 2 S and Q 2 S, then C[(�x:P )Q] 2 S.However, it is easy to see that there are terms that are not strongly normalising that belongto S. For example, take ! = �y:(yy) and the rewrite sequence(�x:(�y:z)(xx))! !� (�x:z)!!� !The last term in the sequence, !, is in normal form then ! 2 S. If we go backwards in thesequence we get that (�x:z)! 2 S and also (�x:(�y:z)(xx))! 2 S. But this term is notstrongly normalising because(�x:(�y:z)(xx))! !� (�y:z)(!!)!� (!!)The problem is that expansions cannot be allowed to take place just everywhere. Theexpansion as in the second clause of the de�nition of S above will be required to create aspine redex, i.e. a head redex or if there is no head redex an outermost redex.De�nition 5.3.2. The set O of contexts with a hole at a spine position is de�ned as theminimal set that satis�es1. if C[ ] 2 O then x M1 : : : C[ ] : : :Mn 2 O,2. if C[ ] 2 O then �x:C[ ] 2 O,3. [ ]P1 : : : Pn 2 O.



54 CHAPTER 5. STRONGLY NORMALISING �-TERMSThe redex in C[(�x:M)N ] is called a spine redex if C[ ] 2 O [BKKS87].De�nition 5.3.3. The set SN 0 is de�ned as the smallest set that satis�es1. all normal forms are in SN 0,2. if C[P [x := Q]] 2 SN 0, Q 2 SN 0 and C[ ] 2 O, then C[(�x:P )Q] 2 SN 0.In order to obtain another de�nition of the set of strongly normalising �-terms, observethat the set of normal forms can be de�ned by induction in the following way.De�nition 5.3.4. The set NF is the smallest set of �-terms satisfying the following:1. if x is a variable and M1; : : : ;Mn 2 NF for some n � 0, then xM1 : : :Mn 2 NF ,2. if M 2 NF then �x:M 2 NF ,We de�ne the set SN as follows.De�nition 5.3.5. The set SN is the smallest set of �-terms satisfying the following:1. if x is a variable and M1; : : : ;Mn 2 SN for some n � 0, then xM1 : : :Mn 2 SN ,2. if M 2 SN then �x:M 2 SN ,3. if M [x := N ]P1 : : : Pn 2 SN and N 2 SN , then (�x:M)NP1 : : : Pn 2 SN .In the following theorem, we prove that the set SN characterises the set of stronglynormalising terms.Theorem 5.3.6. (Characterisation of the strongly normalising �-terms)M is strongly normalising if and only if M 2 SN .Proof:). Let M be a strongly normalising term. The proof proceeds by induction on the pair(maxred(M);M), lexicographically ordered by the usual ordering on IN and the subtermordering. Here we denote by maxred(M) the length of a maximal rewrite sequence fromM to normal form.The base case is trivial since it is easy to see that all normal forms are in SN .Suppose the maximal reduction of M to normal form takes k + 1 steps. Let M =�x1 : : : �xn:PQ1 : : :Qm. There are two cases.Case 1. P = y. Then the normal form of M is of the form �x1 : : : �xn:yQ01 : : : Q0m withQi !!� Q0i for i = 1; : : : ;m. By induction hypothesis, Q1 2 SN ; : : : ; Qm 2 SN . By the�rst and second clause of the de�nition of SN , we haveM = �x1 : : : �xn:yQ1 : : : Qm 2 SN .



5.4. CONCLUSIONS AND RELATED WORK 55Case 2. P = �y:P0. We haveM = �x1 : : : �xn:(�y:P0)Q1Q2 : : : Qm ! �x1 : : : �xn:P0[y :=Q1]Q2 : : :Qm. By induction hypothesis, �x1 : : : �xn:P0[y := Q1]Q2 : : : Qm 2 SN . Also byinduction hypothesis, Q1 2 SN . By the last clause of the de�nition of SN , we haveM = �x1 : : : �xn:(�y:P0)Q1 : : : Qm 2 SN .(. Suppose M 2 SN . We prove by induction on the derivation of M 2 SN that M isstrongly normalising.1. If M = xM1 : : :Mn with M1; : : : ;Mn 2 SN , then the statement follows easily byinduction hypothesis.2. If M = �x:M0 with M0 2 SN , then by induction hypothesis M0 is strongly normal-ising. Then also M = �x:M0 is strongly normalising.3. Let M = (�x:M0)M1M2 : : :Mn with M0[x := M1]M2 : : :Mn 2 SN and M1 2 SN .Consider an arbitrary rewrite sequence � :M = P0 !� P1 !� P2 !� : : : starting inM . There are two possibilities: in � either the head redex of M is contracted or thehead redex of M is not contracted.In the �rst case, there is an i such that Pi = M 00[x := M 01]M 02 : : :M 0n, with M0 !!�M 00; : : : ;Mn !!� M 0n. Then Pi is a result of rewriting the termM0[x :=M1]M2 : : :Mn.The latter is by induction hypothesis strongly normalising. Hence Pi is stronglynormalising so � is �nite.In the second case, all terms in � are of the form (�x:M 00)M 01M 02 : : :M 0n with M0 !!�M 00; : : : ;Mn !!� M 0n. By induction hypothesis, the term M0[x := M1]M2 : : :Mn isstrongly normalising. ThereforeM0;M2; : : : ;Mn are strongly normalising. Moreover,we have by induction hypothesis thatM1 is strongly normalising. Hence all the termsin the rewrite sequence are strongly normalising and hence � is �nite.2Theorem 5.3.7. SN 0 = SN .Proof: SN 0 � SN is proved by induction on SN 0. For SN � SN 0, we prove that the setof strongly normalising �-terms is a subset of SN 0 by induction on (maxred(M);M). 25.4 Conclusions and Related workWe have de�ned the sets SN and SN 0 and proved that they are equal to the set of �-strongly normalising �-terms. In the chapters 6-8, we use the set SN to give new proofsof classical results in lambda calculus. The use of SN to prove normalisation properties isvery convenient because its de�nition is by induction and furthermore it recalls the notionof saturated set.A saturated set is a subset X of the set of strongly normalising �-terms that satis�esthe following properties.



56 CHAPTER 5. STRONGLY NORMALISING �-TERMS1. if x is a variable and M1; : : : ;Mn are strongly normalising terms then the termxM1 : : :Mn 2 X,2. if M [x := N ]P1 : : : Pn 2 X and N is strongly normalising then the term(�x:M)NP1 : : : Pn 2 X.The �rst and second clauses in the de�nition of SN are also conditions in the de�nitionof a saturated set. In the de�nition of SN , we have an additional clause for abstractions,and in the de�nition of saturated set it is necessary to add the requirement that the setshould be a subset of the set of strongly normalising terms.Our de�nition of SN �rst appeared in [RS95] and more or less simultaneously a similarde�nition appeared in [Loa95].



Chapter 6Perpetual Strategies6.1 IntroductionIn this chapter we de�ne two strategies Gbk and G1 similar to Fbk [BK82] and F1[BBKV76]. These strategies are perpetual, which means that they yield an in�nite rewritesequence whenever possible. We prove that Gbk and G1 are perpetual by using the char-acterisation of the set of strongly normalising terms. As a consequence, we deduce thatFbk and F1 are perpetual.This chapter is organised as follows. In section 6.2 we prove that the strategies Gbkand Fbk are perpetual. Then we prove that the strategies G1 and F1 are perpetual. Forthe strategies G1 and F1, we prove in section 6.4 that they are not only perpetual butalso maximal. That is, they yield the longest possible reduction to normal form wheneverthe initial term is strongly normalising, and an in�nite rewrite sequence otherwise. This isdone by computing the length of the rewrite sequence to the normal form.6.2 The Strategies Fbk and GbkFirst we consider the strategy Fbk as introduced in [BK82].De�nition 6.2.1. Suppose that M 2 � is not in normal form.Let M = C[(�x:P )Q] where (�x:P )Q is the leftmost redex of M .Fbk(C[(�x:P )Q]) = ( C[P [x := Q]] if Q is strongly normalisingC[(�x:P )Fbk(Q)] otherwiseWe de�ne the strategy Gbk as a variant of Fbk. We reduce any spine redex instead ofjust the leftmost redex. This yields a non-deterministic strategy.57



58 CHAPTER 6. PERPETUAL STRATEGIESDe�nition 6.2.2. We de�ne Gbk : �! P(�) as follows.Gbk(xM1 : : :Mn) = Si=ni=1f(xM1 : : : Ni : : :Mn)jNi 2 Gbk(Mi)gGbk(�x:M) = f(�x:N)jN 2 Gbk(M)gGbk((�x:M)NP1 : : : Pn) = ( fM [x := N ]P1 : : : Png if N is strongly normalisingf(�x:M)QP1 : : : PnjQ 2 Gbk(N)g otherwiseTheorem 6.2.3. Gbk is a perpetual strategy.Proof: We prove that if Gbk(M) � SN then M 2 SN by induction on the structure ofM .1. Suppose that the term is (xM1 : : :Mn). Since Gbk(xM1 : : :Mn) � SN , we have thatGbk(Mi) � SN for all i = 1 : : : n. By induction hypothesis we have that Mi 2 SN .Hence (xM1 : : :Mn) 2 SN .2. Suppose that the term is (�x:M). Since Gbk(�x:M) � SN , we have that Gbk(M) �SN . Moreover, by induction hypothesis M 2 SN . Therefore (�x:M) 2 SN .3. Suppose that the term is (�x:M)NP1 : : : Pn. We have two cases:(a) If N is strongly normalising then N 2 SN . SinceM [x := N ]P1 : : : Pn 2 SN wehave that (�x:M)NP1 : : : Pn.(b) If N is not strongly normalising then there exists non-strongly normalising termQ in Gbk((�x:M)NP1 : : : Pn).2 The strategy Fbk is contained in Gbk.Lemma 6.2.4. Let M 2 � not in normal form. Then Fbk(M) 2 Gbk(M).Theorem 6.2.5. Fbk is a perpetual strategy.This follows from lemma 6.2.4 and theorem 6.2.3.6.3 The Strategies F1 and G1We now consider the strategy F1 that is de�ned in [BBKV76]. This strategy does notcheck whether the argument of the leftmost redex is strongly normalising or not. Instead,it is checked whether the leftmost redex is an I-redex. If it is, it is contracted. If it is not,contracting it could imply loosing the possibility of having an in�nite reduction sequence.Therefore, in that case, the leftmost redex is only contracted if the argument is a normalform. If the argument is not a normal form, the strategy is applied to the argument.



6.4. MAXIMAL STRATEGIES 59De�nition 6.3.1. Suppose that M 2 � is not in normal form.Let M = C[(�x:P )Q] where (�x:P )Q is the leftmost redex of M .F1(C[(�x:P )Q]) = ( C[P [x := Q]] if x 2 FV (P ) or Q 2 NFC[(�x:P )F1(Q)] otherwiseThe merit of F1 is that it is decidable.We de�ne the strategy G1 as a variant of F1. We do not only reduce the leftmostredex but also any spine redex. This yields a non-deterministic strategy.De�nition 6.3.2. We de�ne G1 : �! P(�) as follows.G1(xM1 : : :Mn) = Si=ni=1f(xM1 : : : Ni : : :Mn)jNi 2 G1(Mi)gG1(�x:M) = f(�x:N)jN 2 G1(M)gG1((�x:M)NP1 : : : Pn) = ( fM [x := N ]P1 : : : Png if x 2 FV P or Q 2 NFf(�x:M)QP1 : : : PnjQ 2 G1(N)g otherwiseTheorem 6.3.3. G1 is a perpetual strategy.We prove that if G1(M) � SN then M 2 SN by induction on the structure of M .Lemma 6.3.4. Let M 2 � not in normal form. Then F1(M) 2 G1(M).As an immediate consequence of the previous lemma we have that F1 is perpetual.Theorem 6.3.5. F1 is a perpetual strategy.6.4 Maximal StrategiesIn this section we prove that the strategies F1 and G1 are maximal, which means thatthey compute for each term M the longest possible rewrite sequence. In particular, amaximal strategy is perpetual. The converse is not necessarily true, as witnessed by thestrategy Fbk de�ned in [BK82].Example 6.4.1. The Fbk-rewrite sequence starting at (�x:z)(II) has length 1.(�x:z)(II)!� zHowever the length of the maximal rewrite sequence is 2.(�x:z)(II) !� (�x:z)I!� z



60 CHAPTER 6. PERPETUAL STRATEGIESOur proof that G1 is a maximal strategy makes use of the characterisation of stronglynormalising terms. We de�ne a mapping h that computes the length of a G1-rewritesequence of a term. Then it is proved that the mapping h computes the length of amaximal rewrite sequence to normal form.We de�ne a map h : � ! IN [ f1g that computes for each term the length of itsF1-rewrite sequence.De�nition 6.4.2.1. The map h : SN ! IN is de�ned by induction on the de�nition of SN .h(xM1 : : :Mn) = 8><>: 0 if n = 0nXi=1 h(Mi) if n 6= 0h(�x:M) = h(M)h((�x:M)NP1 : : : Pn) = ( h(M [x := N ]P1 : : : Pn) + 1 if x 2 FV (M)h(M P1 : : : Pn) + h(N) + 1 if x 62 FV (M)2. We extend h : SN ! IN to h : �! IN [ f1g by de�ning h(M) =1 if M 62 SN .We prove that the map h has the following two properties:� it computes the length of all the G1-rewrite sequences of a term M ,� it computes the length of a maximal rewrite sequence starting in M .From these we conclude that G1 and F1 are maximal strategies.First we prove the following lemma.Lemma 6.4.3. Let M 2 SN .1. If M 2 NF then h(M) = 0.2. If M 62 NF then h(M) = h(N) + 1 for all N 2 G1(M).Proof:1. Trivial.2. Suppose that M is not in normal form. We prove that h(M) = h(N) + 1 for allN 2 G1(M) by induction on M 2 SN .We consider these two cases:



6.4. MAXIMAL STRATEGIES 61(a) The termM is of the form yQ1 : : :Qm.By induction hypothesis we have h(Qi) = h(Ni) + 1 for all Ni 2 G1(Qi).Take i and Ni 2 G1(Qi). Hence we haveh(M) = mXk=i h(Qk)= h(Qi) +Xk 6=i h(Qk)= h(Ni) + 1 +Xk 6=i h(Qk)= h(yQ1 : : : Ni : : : Qn) + 1(b) The termM is (�y:P0)Q1 : : : Qm. Two cases are distinguished.i. y 2 FV (P0). Then G1(M) = fP0[y := Q1] Q2 : : : Qmg.We have that h(M) = h(P0[y := Q1] Q2 : : :Qm) + 1.ii. y 62 FV (P0). Again two cases are distinguished.A. If Q1 is not in normal form thenG1(M) = f(�y:P0)N Q2 : : : QmjN 2 G1(Q1)gBy induction hypothesis, h(Q1) = h(N)+1 for all N 2 G1(Q1). Hencewe have h(M) = h(P0 Q2 : : : Qm) + h(Q1) + 1= h(P0 Q2 : : : Qm) + h(N) + 1 + 1= h((�y:P0)N Q2 : : : Qm) + 1B. If Q1 is in normal form thenh(M) = h((�y:P0)Q1Q2 : : : Qm)= h(P0 Q2 : : :Qm) + h(Q1) + 1= h(P0 Q2 : : :Qm) + 0 + 12Theorem 6.4.4. The map h : �! IN[ f1g computes the length of all the G1-rewritesequence of a term M .Proof: If M 2 SN then a G1-rewrite sequence is of the formM !� M1 !� : : :!� Mn with M in normal form.It follows by induction on n that h(M) = n using lemma 6.4.3.If M 62 SN then a G1-rewrite sequence of M is in�nite and indeed h(M) =1. 2



62 CHAPTER 6. PERPETUAL STRATEGIESNow we prove that h : �! IN[f1g computes the length of a maximal rewrite sequencestarting at M . Here maxred(M) denotes the length of a maximal rewrite sequence startingin M .Theorem 6.4.5. Let M 2 �. We haveh(M) = maxred(M)Proof: If M 62 SN , then h(M) =1 so it is clear that the statement holds.Suppose that M 2 SN is not in normal form. We will prove that the length of anarbitrary reduction to normal form is less than or equal to h(M). The proof proceeds byinduction on the number of steps in the derivation of M 2 SN . The term M is of theform �x1 : : : xn:PQ1 : : :Qm where P can be either a variable y or an abstraction �y:P0. Weconsider these two cases:1. P = y. An arbitrary reduction from M to normal form can be transformed into areduction sequence of the same length such that:�x1 : : : �xn:yQ1 : : : Qm n1!!� �x1 : : : �xn:y nf(Q1)Q2 : : : Qmn2!!� �x1 : : : �xn:y nf(Q1) nf(Q2) : : :Qm!!� : : :nm!!� �x1 : : : �xn:y nf(Q1) nf(Q2) : : :nf(Qm)Here nf(M) denotes the normal form of M .The number of steps of this sequence is n1 + : : :+ nm. By induction hypothesis, wehave h(Qi) � ni for i = 1; : : : ;m. Hence we haveh(M) = mXi=1 h(Qi)� mXi=1 ni2. P = �y:P0. Two cases are distinguished.(a) y 2 FV (P0). An arbitrary reduction sequence fromM to normal form is of theform M = �x1 : : : �xn:(�y:P0)Q1Q2 : : :Qmp!!� �x1 : : : �xn:(�y:P 00)Q01Q02 : : :Q0m!� �x1 : : : �xn:P 00[y := Q01]Q02 : : : Q0ml!!� nf(M)



6.4. MAXIMAL STRATEGIES 63It can be transformed into a rewrite sequence of the formM = �x1 : : : �xn:(�y:P0)Q1Q2 : : :Qm!� �x1 : : : �xn:P0[y := Q1]Q2 : : : Qmk!!� �x1 : : : �xn:P 00[y := Q01]Q02 : : : Q0ml!!� nf(M)with k � p. By induction hypothesis, h(P0[y := Q1]Q2 : : :Qm) � k + l. Henceh(M) = h(P0[y := Q1]Q2 : : : Qm) + 1� k + l + 1� p + l+ 1(b) y 62 P0. An arbitrary reduction sequence from M to normal form can be trans-formed into a reduction sequence of the same length of the form:M = �x1 : : : �xn:(�y:P0)Q1Q2 : : : Qmp!!� �x1 : : : �xn:(�y:P0)Q01Q2 : : : Qm!� �x1 : : : �xn:P0 Q2 : : : Qml!!� nf(M)By induction hypothesis we have that h(Q1) � p andh(P0Q2 : : : Qm) � l. Henceh(M) = h(P0Q2 : : :Qm) + h(Q1) + 1� l + p+ 12Theorem 6.4.6. (Maximal Strategy) The strategy G1 is maximal.Proof:1. By theorem 6.4.4 we have that h(M) is the length of all the G1-rewrite sequencesof M .2. By theorem 6.4.5 we have that h(M) = maxred(M) is the maximum length of allreductions sequences starting at M .Hence the strategy G1 is maximal. 2As a consequence of the previous theoremwe have that the strategy F1 is also maximal.



64 CHAPTER 6. PERPETUAL STRATEGIES6.5 Conclusions and Related WorkIn this chapter the strategies Gbk and G1 are de�ned which are similar to Fbk [BK82] andF1 [BBKV76]. Instead of looking at the leftmost redex, the new strategies look at thespine redexes. As a consequence, these strategies are non-deterministic.The original proofs of the facts that Fbk and F1 are perpetual proceed by a case analysis[Bar85]. In order to prove that a strategy F is perpetual it is proved that F (M) admits anin�nite rewrite sequence ifM does so. In order to prove that the strategies Gbk and G1 areperpetual, we use the set SN . In order to prove that a strategy G is perpetual, we provethat G(M) � SN ) M 2 SN . The deterministic strategies Fbk and F1 are particularcases of Gbk and G1 and so they are perpetual. Proving G(M) � SN ) M 2 SN andusing the de�nition of SN make our proofs more perspicuous.The fact that F1 is a maximal strategy has been proved by R�egnier [Reg94] using arelation that permits the permutation of redexes. Much more in the spirit of the presentwork is a paper by S�rensen ([Sor94]), who gives a proof that is very similar to ours. Hiswork was developed independently and simultaneously. In our case we have proved thatG1 is maximal. Since F1 is a particular case of G1, we deduce that F1 is also maximal.



Chapter 7Developments andSuperdevelopments7.1 IntroductionIn this chapter we give two new and short proofs of the fact that in �-calculus all �-developments terminate. In order to prove that all �-developments are �nite it is su�cientto prove that the � is strongly normalising. For the �rst proof we de�ne a set that charac-terises the �-strongly normalising terms. Then we prove that any term belongs to this set.As a consequence of this we have that all the terms are �-strongly normalising. For thesecond proof we de�ne a mapping from the underlined �-terms to the set SN . We provethat this is a morphism between abstract rewriting systems.Applying similar methods, we give two new and short proofs of the fact that in �-calculus all �-superdevelopments terminate.This chapter is organised as follows. In section 7.2 we recall the de�nition of develop-ment. In section 7.3 we give a short and simple proof of �niteness of developments. Insection 7.4 we give another proof of �niteness of developments that makes direct use ofthe set SN . In section 7.5 we recall the de�nition of superdevelopments. In section 7.6we prove that all superdevelopments are �nite. In section 7.7 another proof of �nitenessof superdevelopments that makes direct use of the set SN and similar to the one in 7.4.7.2 DevelopmentsWe shortly recall some de�nitions, for a complete formal treatment see [Bar85]. A devel-opment is a rewrite sequence in which only descendants of redexes that are present in theinitial term may be contracted.Usually, �-developments are de�ned via a set of underlined �-terms and an underlined�-reduction rule. 65



66 CHAPTER 7. DEVELOPMENTS AND SUPERDEVELOPMENTSDe�nition 7.2.1. The set of underlined �-terms � is de�ned by induction as follows.1. x 2 � for every variable x,2. if M 2 �, then �x:M 2 �,3. if M 2 � and N 2 �, then MN 2 �,4. if M 2 � and N 2 �, then (�x:M)N 2 �.The notion of context C[ ] with holes is de�ned similar to de�nition 5.2.8.The �-reduction is de�ned as follows.C[(�x:M)N ]!� C[M [x := N ]]where C[ ] is a context with only one occurrence of [ ].Note that � is closed under �-reduction.We de�ne a mapping e that erases underlinings.De�nition 7.2.2. The mapping e : �! � is de�ned as follows.e(x) = xe(�x:M) = �x:e(M)e(MN) = e(M)e(N)e((�x:M)N) = (�x:e(M))e(N)Lemma 7.2.3. The mapping e is a morphism from (�;!�) to (�;!�).De�nition 7.2.4. A rewrite sequence � : M !!� N in � is a development if there is arewrite sequence � in � that is an e-lifting of �. Diagrammatically,J �̂ -(�;!�)@@@@@@R� ?e(�;!�)The abstract rewriting system J can be either In for some n or I (see example 2.2.3).Example 7.2.5. The following �-rewrite sequence is a development.�x:(x x) �x:(x x)!� �x:(x x) �x:(x x)The e-lifting of this development is the following �-rewrite sequence.�x:(x x) �x:(x x)!� �x:(x x) �x:(x x)The term �x:(x x) �x:(x x) is in �-normal form.



7.3. FIRST PROOF OF FINITENESS OF DEVELOPMENTS 67We write a function that computes the �-normal form.De�nition 7.2.6. The mapping nf� : �! � is de�ned as follows.nf�(x) = xnf�(�x:M) = �x:nf�(M)nf�(MN) = nf�(M)nf�(N)nf�((�x:M)N) = nf�(M)[x := nf�(N)]Note that nf�(M) does not contain �'s so it is in �-normal form.Lemma 7.2.7.1. M !!� nf�(M).2. If M !� N then nf�(M) = nf�(N).So we have that nf�(M) is the �-normal form of M and is unique. The functions e andnf� are used in [Bar92] to prove con
uence for �-reduction.In the following sections, we prove that � is strongly normalising.7.3 First Proof of Finiteness of DevelopmentsWe give a new and short proof of �niteness of developments by considering another induc-tive de�nition D of the set of all underlined �-terms. Like in the de�nition of the set SN ,we make use of the expansion. We prove that all the terms in D are �-strongly normalising.Finally, we prove that D = �.De�nition 7.3.1. The set D is the smallest set of �-terms satisfying1. x 2 D for all variables x,2. if M 2 D, then �x:M 2 D,3. if M 2 D and N 2 D, then MN 2 D.4. if M [x := N ] 2 D and N 2 D, then (�x:M)N 2 D.The proof of the following lemma is immediate.Lemma 7.3.2. If P in PQ is not of the form �x:P0, then all �-reducts of PQ are of theform P 0Q0 with P !!� P 0 and Q!!� Q0.



68 CHAPTER 7. DEVELOPMENTS AND SUPERDEVELOPMENTSTheorem 7.3.3. If M 2 D, then all �-rewrite sequences starting in M are �nite.Proof: The proof proceeds by induction on the derivation of M 2 D.1. If M is a variable then it is trivial.2. Let M = �x:P with P 2 D. By induction hypothesis, we have that P is strongly�-normalising. So M is strongly �-normalising.3. Let M = PQ with P 2 D and Q 2 D. Note that P is not of the form �x:P0. Bylemma 7.3.2, every �-reduct of M is of the form P 0Q0 with P !!� P 0 and Q!!� Q0.By induction hypothesis there are no in�nite �-rewrite sequences starting in P or inQ. Therefore M is strongly �-normalising.4. Let M = (�x:P )Q with P [x := Q] 2 D and Q 2 D. Consider an arbitrary �-rewritesequence � : M = M0 !!� M1 !!� M2 !!� : : :. There are two possibilities: in � thehead redex of M is contracted or the head redex of M is not contracted.In the �rst case there is an i such that Mi = P 0[x := Q0], with P !!� P 0 andQ !!� Q0. The term Mi is a result of rewriting P [x := Q], and the latter is byinduction hypothesis strongly �-normalising. Hence � is �nite.In the second case all terms in � are of the form (�x:P 0)Q0 with P !!� P 0 andQ !!� Q0. By induction hypothesis, P [x := Q] is strongly �-normalising, whichyields that P is strongly �-normalising, and moreover Q is strongly �-normalising.Hence all terms in � are strongly normalising so � is �nite.2Lemma 7.3.4. If M 2 D and N 2 D then M [x := N ] 2 D.This lemma is proved by induction on M 2 D.Lemma 7.3.5. If M [x := N ] 2 � then M 2 �.Theorem 7.3.6. � = D.Proof:�. Let M 2 �. We prove by induction on M that M 2 D. We prove the case thatM = (�x:P )Q. By induction hypothesis, P 2 D and Q 2 D. By lemma 7.3.4 wehave that P [x := Q] 2 D and by the de�nition of D we have that (�x:P )Q 2 D.�. Let M 2 D. By induction on the derivation of M 2 D we prove that M 2 �. Weprove the case that M = (�x:P )Q. By induction hypothesis, P [x := Q] 2 � andQ 2 �. By lemma 7.3.5, P 2 �. Hence (�x:P )Q 2 �.2Corollary 7.3.7. (Finiteness of Developments)All �-developments are �nite.



7.4. SECOND PROOF OF FINITENESS OF DEVELOPMENTS 697.4 Second Proof of Finiteness of DevelopmentsIt is possible to prove in a di�erent way, also using the set SN , that all developments are�nite. We de�ne a morphism (�;!�) l�! (SN ;!�)Let Abs denote a distinguished variable.De�nition 7.4.1. We de�ne l : �! SN as follows.l(x) = xl(�x:M) = Abs�x:l(M)l(MN) = l(M)l(N)l((�x:M)N) = (�x:l(M))l(N)Lemma 7.4.2. l(M [x := N ]) = l(M)[x := l(N)].Theorem 7.4.3.1. if M 2 � then l(M) 2 SN ,2. if M 2 � and M !� N , then l(M)!� l(N).Corollary 7.4.4. The mapping l is a morphism from (�;!�) into (SN ;!�).Theorem 7.4.5. The rewrite relation � is strongly normalising.Proof: This follows from lemma 2.6.5 and corollary 7.4.4. 2Corollary 7.4.6. (Finiteness of Developments)All �-developments are �nite.7.5 SuperdevelopmentsIn [Raa93], superdevelopments were introduced and proved to be �nite. Superdevelopmentsform an extension of the notion of development. In a superdevelopment not only redexesthat descend from the initial term may be contracted, but also some redexes that arecreated during reduction.There are three ways of creating new redexes (see [Lev78]):1. ((�x:�y:M)N)P !� (�y:M [x := N ])P2. (�x:x)(�y:M)N !� (�y:M)N



70 CHAPTER 7. DEVELOPMENTS AND SUPERDEVELOPMENTS3. (�x:C[xM ])(�y:N)!� C 0[(�y:N)M 0] where C 0 and M 0 are obtained from C and Mby replacing all free occurrences of x by (�y:N).The �rst two kinds of created redexes are `innocent' and they may be contracted ina superdevelopment. The result that all superdevelopments are �nite shows that in�nite�-reduction sequences are due to the presence of the third type of redexes.In the following two sections we give two new proofs of the fact that in �-calculus all�-superdevelopments terminate.First we shortly repeat the de�nition of a superdevelopment. The de�nition makes useof a set of labelled �-terms and a notion of labelled �-reduction. Since application nodeswill be labelled, we write them explicitly.De�nition 7.5.1. The set �!l of labelled �-terms is de�ned by induction as follows.1. x 2 �!l for every variable x,2. if M 2 �!l and i 2 IN, then �ix:M 2 �!l ,3. if M;N 2 �!l and X � IN, then @X(M;N) 2 �!l .Sometimes we write i instead of fig for i 2 IN.The notion of context C[ ] with holes is de�ned similar to de�nition 5.2.8.On the set �!l , the �l-reduction is de�ned as follows.C[@X(�ix:M;N)]! C[M [x := N ]] if i 2 Xwhere C[ ] has only one occurrence of [ ].We de�ne a mapping from �l to � that erases the labels.De�nition 7.5.2. The mapping el : �!l ! � is de�ned by induction on the de�nition of�l as follows. el(x) = xel(�ix:M) = �x:el(M)el(@X(M;N)) = el(M)el(N)The proof of the following lemma is straightforward.Lemma 7.5.3. The mapping el is a morphism from (�!l ;!�l) to (�;!�).The �l-reduction is not strongly normalising on the set �!l since any �-rewrite sequencecan be lifted in a �l-rewrite sequence. This is illustrated by the following example.



7.5. SUPERDEVELOPMENTS 71Example 7.5.4. Let ! = �1x:@1(x; x).@1(!; !) !�l @1(!; !)The term @1(!; !) is not �l-strongly normalising.We restrict the set �!l to a set �l of well-labelled terms.De�nition 7.5.5.1. A termM 2 �l is said to be well-labelled if the label X of an application node nevercontains the label i of a � outside the scope of the application node. The set ofwell-labelled �-terms is denoted by �l.2. A term M 2 �l is initially labelled if it is well-labelled and all �'s have a di�erentlabel.The set �l of well-labelled terms is closed under �l-reduction.Lemma 7.5.6. (�l-closure) If M 2 �l and M !�l N then N 2 �l.This is proved by induction on M 2 �!l .De�nition 7.5.7. A rewrite sequence � :M !!� N in � is a superdevelopment if there isa rewrite sequence � in �l that starts in an initially labelled term and that is an el-liftingof �. Diagrammatically, J �̂ -(�l;!�l)@@@@@@R� ?el(�;!�)The abstract rewriting system J is either In or I (see example 2.2.3 and de�nition 2.3.4).Example 7.5.8. The following �-rewrite sequence is a superdevelopment.(�x:�y:xy)(�z:z)u !� (�y:(�z:z)y)u!� (�z:z)uAn el-lifting for this �-rewrite sequence is, for example, the following �l-rewrite sequence.@2(@1(�1x:�2y:@3(x; y); �4z:z); u) !�l @2(�2y:@3(�4z:z; y); u)!�l @3(�4z:z; u)In the �rst step, the variable x is replaced by �4z:z. This corresponds to the third way ofcreating a redex and so @3(�4z:z; y) is not a �l-redex.



72 CHAPTER 7. DEVELOPMENTS AND SUPERDEVELOPMENTSWe de�ne a function that computes the �l-normal form of a term.De�nition 7.5.9. The function nf�l : �l ! �l is de�ned by induction on the de�nitionof �l as follows.nf �l(x) = xnf �l(�ix:M) = �ix:nf �l(M)nf �l(@X(M;N)) = 8><>: M0[x := nf �l(N)] if nf �l(M) = �ix:M0 and i 2 X@X(nf �l(M);nf �l(N)) otherwiseLemma 7.5.10. If @X(M;N) 2 �l then nf �l(M [x := N ]) = nf �l(M)[x := nf �l(N)].Lemma 7.5.11. Let M 2 �l.1. M !!�l nf �l(M) and nf �l(M) is in �l-normal form.2. If M !�l M 0 then nf �l(M) = nf �l(M 0).So we have nf �l(M) is the �l-normal form of M and it is unique. As a consequence ofthis we have that �l is con
uent.In the following sections, we prove that �l is strongly normalising.7.6 First Proof of Finiteness of SuperdevelopmentsWe give a new proof of the fact that all superdevelopments are �nite. It is similar to theproof of �nite developments in section 7.3. We de�ne a set SD of underlined �-terms byinduction. In this case we make use of the expansion looking at the cases 1) and 2) ofcreating new redexes. We prove that the terms in SD are �-strongly normalising. Finally,we write a morphism (�l;!�l) u�! (SD;!�)De�nition 7.6.1. The set SD is de�ned by induction as follows.1. x 2 SD for all variables x,2. if M 2 SD, then �x:M 2 SD,3. if M 2 SD and N 2 SD, then MN 2 SD,4. if M [x := N ]P1 : : : Pn 2 SD and N 2 SD, then (�x:M)NP1 : : : Pn 2 SD,5. if (�y:M)NP1 : : : Pn 2 SD, then (�x:x)(�y:M)NP1 : : : Pn 2 SD.



7.6. FIRST PROOF OF FINITENESS OF SUPERDEVELOPMENTS 73The notion of context C[ ] with holes is de�ned similar to de�nition 5.2.8.The �-rewrite relation is de�ned as follows.C[(�x:M)N ]!� C[M [x := N ]]where C[ ] has only one occurrence of [ ].Lemma 7.6.2. If M;N 2 SD then M [x := N ] 2 SD.Lemma 7.6.3. (�-Closure) Let M 2 SD. If M !� M 0 then M 0 2 SD.Lemma 7.6.4. Let M = PQ with P 2 SD and Q 2 SD. If M !!� M 0, then M 0 = P 0Q0with P !!� P 0 and Q!!� Q0.Theorem 7.6.5. If M 2 SD, then all �-rewrite sequences starting at M are �nite.Proof: The proof proceeds by induction on the derivation of M 2 SD.1. If M is a variable then it is trivial.2. Let M = �x:P with P 2 SD. By induction hypothesis, we have that P is strongly�-normalising. So M is strongly �-normalising.3. Let M = PQ with P 2 SD and Q 2 SD. By induction hypothesis P and Q are�-strongly normalising. It follows from lemma 7.6.4 that any �-sequence starting atM is �nite.4. Let M = (�x:P )QN1 : : :Nn with P [x := Q]N1 : : :Nn 2 SD. Consider an arbitrary�-rewrite sequence � :M =M0 !!� M1 !!� M2!!� : : :. There are two possibilities:in � the head redex of M is contracted or the head redex of M is not contracted.In the �rst case, there is an i such that Mi = P 0[x := Q0]N 01 : : : N 0n with P !!� P 0;Q!!� Q0; N1 !!� N 01; : : : ; Nn !!� N 0n.The term Mi is obtained by rewriting P [x := Q]N1 : : : Nn and the latter term is byinduction hypothesis strongly �-normalising. Hence � is �nite.In the second case, all terms in � are of the form (�x:P 0)Q0N 01 : : :N 0n with P !!� P 0; Q !!� Q0; N1 !!� N 01; : : : ; Nn !!� N 0n. Since P [x := Q]N1 : : :Nn and Q areby induction hypothesis strongly �-normalising, we have that P;Q;N1; : : : ; Nn arestrongly �-normalising. So all terms in � are strongly �-normalising and hence � is�nite.5. Let M = (�x:x)(�y:N)PN1 : : : Nn with (�y:N)PN1 : : : Nn 2 SD. Consider an ar-bitrary �-rewrite sequence � : M = M0 !!� M1 !!� M2 !!� : : :. There are twopossibilities: in � the head redex of M is contracted or the head redex of M is notcontracted.



74 CHAPTER 7. DEVELOPMENTS AND SUPERDEVELOPMENTSIn the �rst case, there is an i such that Mi = (�y:N 0)P 0N 01 : : :N 0n with N !!�N 0; P !!� P 0; N1 !!� N 01; : : : ; Nn !!� N 0n. The term Mi is obtained by rewritingthe term (�y:N)PN1 : : : Nn and the latter term is by induction hypothesis strongly�-normalising. So Mi is strongly �-normalising and hence � is �nite.In the second case, all terms in � are of the form (�x:x)(�y:N 0)P 0N 01 : : : N 0n withN !!� N 0; P !!� P 0; N1!!� N 01; : : : ; Nn !!� N 0n.By induction hypothesis, (�y:N)PN1 : : : Nn is strongly �-normalising.Hence N;P;N1; : : : ; Nn are all strongly �-normalising. This yields that � is �nite.2 We de�ne a set �! of `liberal' underlined �-terms.De�nition 7.6.6. The set �! is the smallest set satisfying the following.1. x 2 �! for every variable x,2. if M 2 �!, then �x:M 2 �!,3. if M 2 �! then (�x:M) 2 �!,4. if M 2 �! and N 2 �!, then MN 2 �!.We de�ne a mapping (�)� : SD ! �! that underlines one special � of a term. IfM !!� �x:M0 then the value M� is obtained from M by underlining the � that descendsto the head lambda in �x:M0.De�nition 7.6.7. We de�ne (�)� : SD ! �! by induction on the length of the maximal�-rewrite sequence to normal form.(�x:M)� = �x:M((�x:M)NP1 : : : Pn)� = (�x:M 0)N 0P 01 : : : P 0n if (M [x := N ]P1 : : : Pn)� =M 0[x := N 0]P 01 : : : P 0nM� = M otherwiseLemma 7.6.8. If M;N 2 SD then M�N 2 SD.Proof: Let M 2 SD. Then M is either of the form (xU1 : : :Un), or (�x:P )U1 : : : Unor (�x:P )QU1 : : : Un. We proceed by induction on the length of the maximal �-rewritesequence to normal form.1. Let M = (�x:P ). Then (�x:P )� = �x:P . By lemma 7.6.2, we have that P [x := N ] 2SD. Hence (�x:P )�N 2 SD.



7.6. FIRST PROOF OF FINITENESS OF SUPERDEVELOPMENTS 752. Let M = xU1 : : : Un. Then M� =M and MN 2 SD.3. Let M = (�x:P )QU1 : : : Un. Then M� =M and MN 2 SD.4. Let M = (�x:P )QU1 : : : Un. By induction hypothesis, we have that(P [x := Q]U1 : : :Un)�N 2 SD. Hence M�N 2 SD.2Lemma 7.6.9. Let M 2 SD. If M 6= (xN1 : : :Nn) then (M [x := P ])� =M�[x := P ].The proof proceeds by induction on the length of a maximal �-rewrite sequence tonormal form.De�nition 7.6.10. The mapping u : �l! �! is de�ned as follows.u(x) = xu(�ix:M) = �x:u(M)u(@X(M;N)) = 8><>: u(M)� u(N) if nf �l(M) = �ix:M0 and i 2 Xu(M) u(N) otherwiseTheorem 7.6.11. Let M 2 �l. Then u(M) 2 SD.The previous theorem is proved by induction on M 2 �l and using lemma 7.6.8.Lemma 7.6.12. Let M 2 �l. If u(M) = (xN1 : : : Nn) then nf �l(M) is of the form(xP1 : : : Pn) for some terms P1, . . . , Pn.This lemma is proved by induction on M 2 �l.Lemma 7.6.13. Let @X(M;N) 2 �l. Then u(M [x := N ]) = u(M)[x := u(N)].Proof: The proof proceeds by induction on M 2 �l. We prove only the case of theapplication M = @X(P;Q) with nf �l(P ) = �ix:P0 and i 2 X.It follows from lemma 7.5.10 and the fact that the terms are well-labelled thatnf �l(P ) = �ix:P0 if and only if nf �l(P [x := N ]) = �ix:P0[x := nf �l(N)].Thereforeu(@X(P;Q))[x := u(N)] = u(P )� u(Q)[x := N ] by de�nition 7.6.10= u(P [x := N ])� u(Q[x := N ]) by lemmas 7.6.9 and 7.6.12= u(@X(P;Q)[x := N ]) by de�nition 7.6.102



76 CHAPTER 7. DEVELOPMENTS AND SUPERDEVELOPMENTSTheorem 7.6.14. Let M 2 �l. If M !�l N in �l then u(M)!� u(N) in SD.This theorem is proved by using lemma 7.6.13.Theorem 7.6.15. The mapping u is a morphism from (�l;!�l) to (SD;!�).The proof follows from theorems 7.6.11 and 7.6.15.Corollary 7.6.16. (Finiteness of Superdeveloments)All superdevelopments are �nite.7.7 Second Proof of Finiteness of SuperdevelopmentsAnother proof of the fact that all superdevelopments are �nite can be given in a way similarto the one in section 7.4. We de�ne a morphism(�l;!�l) ��! (SN ;!�)Let App denote a distinguished variable.De�nition 7.7.1. The mapping � : �l! SN is de�ned as follows.�(x) = x�(�ix:M) = �x:�(M)�(@X(M;N)) = 8><>: �(M)�(N) if nf �l(M) = �ix:M and i 2 XApp�(M)�(N) otherwiseLemma 7.7.2. Let M 2 �l, �(M) 2 SN and N 2 SN . Then �(M)[x := N ] 2 SN .Proof: The proof proceeds by induction on the derivation of �(M) 2 SN .1. Suppose �(M) = yP1 : : : Pn with Pi 2 SN for i = 1; : : : ; n. If n > 0 then y = App.By induction hypothesis, �(Pi)[x := N ] 2 SN for i = 1; : : : ; n. Hence �(M)[x :=N ] 2 SN .2. Suppose �(M) = �y:P with P 2 SN . Using induction hypothesis we obtain that�(M)[x := N ] 2 SN .3. Suppose �(M) = (�y:P )Q1Q2 : : :Qn with P [y := Q1]Q2 : : :Qn 2 SN and Q1 2 SN .By induction hypothesis, we have (P [y := Q1]Q2 : : : Qn)[x := N ] 2 SN andQ1[x := N ] 2 SN . This yields �(M)[x := N ] 2 SN .



7.7. SECOND PROOF OF FINITENESS OF SUPERDEVELOPMENTS 772Lemma 7.7.3. Let M 2 �l, �(M) 2 SN and N 2 SN . Then �(M)N 2 SN .Proof: The proof proceeds by induction on the derivation of �(M) 2 SN .1. Suppose �(M) = xP1 : : : Pn with Pi 2 SN for i = 1; : : : ; n. Then �(M)N 2 SN .2. Suppose �(M) = �x:P with P 2 SN . Then M = �ix:M0 and �(M0) = P . By theprevious lemma we have P [x := N ] 2 SN . Hence �(M)N 2 SN .3. Suppose �(M) = (�x:P )Q1Q2 : : : Qn with P [x := Q1]Q2 : : :Qn 2 SN and Q1 2 SN .By induction hypothesis, we have P [x := Q1]Q2 : : : QnN 2 SN . Moreover Q1 2 SN ,hence �(M)N 2 SN .2Lemma 7.7.4. Let @X(M;N) 2 �l. Then �(M)[x := �(N)] = �(M [x := N ]).This lemma is proved by induction on M 2 �l.Theorem 7.7.5. Let M 2 �l.1. �(M) 2 SN .2. If M !�l N in �l then �(M)!� �(N) in SN .Proof: The proof of the �rst part proceeds by induction on M 2 �l and makes use of thelemmas 7.7.2 and 7.7.3. The second part uses lemma 7.7.4. 2Corollary 7.7.6. The mapping � is a morphism from (�l;!�l) to (SN ;!�).Theorem 7.7.7. !�l is strongly normalising.This theorem follows from lemma 2.6.5 and corollary 7.7.6.Corollary 7.7.8. (Finiteness of Superdeveloments)All superdevelopments are �nite.



78 CHAPTER 7. DEVELOPMENTS AND SUPERDEVELOPMENTS7.8 Conclusions and Related WorkThe result that all �-developments are �nite is a classical result in �-calculus and var-ious proofs already exist. Church and Rosser proved �niteness of developments for the�I-calculus with �-reduction in [CR36]. The �rst proof for the full �-calculus is given bySchroer in [Sch65]. Other proofs have been given in [Hyl73] and [Bar85]. In [Klo80], �nite-ness of developments is proved from strong normalisation for a �-reduction with `memory'[Ned73] (see also section 11.5). There is a short and elegant proof by de Vrijer [Vri85],in which an exact bound for the length of a development is computed. For proving thatthe bound is an exact bound, he makes in fact use of the strategy F1. Another proofcan be found in [Par90] (see also [Kri93]) that uses strong normalisation of the simplytyped lambda calculus with intersection types. In this proof a morphism from the set ofunderlined lambda terms to the simply typed lambda calculus with intersection types isde�ned similar to our morphism used in the second proof of �niteness of developments(see de�nition 7.4.1). A similar proof using strong normalisation of simply typed lambdacalculus appears in [Ghi94]. In [Mel96] an axiomatic and general proof of �niteness ofdevelopments is given.In [Raa93] the proof that the superdevelopments are �nite uses the method of mini-malisation.Superdevelopments are related to the so-called `generalised �-reduction'. The gener-alised �-reduction �rst appers in [Ned73] (see also [KN95]) as a natural generalisation ofthe �-reduction in the item notation. A �-redex in item notation is a �-item (an applica-tion) followed by a �-item (an abstraction) like if they were a pair () of parentheses. Thenotion of �-redex is generalised to include more complicated structures of parentheses like(()). For example, a generalised �-rewrite step (or �g-rewrite step) in our notation is thefollowing: (�x:�y:M)NP !�g (�x:M [y := P ])NIf we underline the �g-redexes, we get the underlined �-redexes of a superdevelopment.An way of labelling alternative to the one presented in [Raa93] (see de�nition 7.5.5) is torepresent the term in item notation and to mark all the � and �-items that match as ifthey were parentheses.



Chapter 8Simply Typed Lambda Calculus8.1 IntroductionIn this section we give a new proof of the fact that the simply typed �-calculus is �-stronglynormalising. In the proof we make use of the characterisation of the strongly normalising�-terms.This chapter is organised as follows. In section 8.2 we recall the de�nition of the simplytyped lambda calculus �a la Church. In section 8.3, we give a new proof of the fact that thesimply typed lambda calculus is strongly normalising.8.2 Simply Typed �-calculusIn this section we shortly recall the de�nition of simply typed �-calculus.De�nition 8.2.1. The set Type is de�ned as follows.1. 0 2 Type,2. if � 2 Type and � 2 Type then (� ! �) 2 Type.Types are written as �; �; : : :. We write �1 ! �2 ! �3 instead of (�1! (�2 ! �3)).Note that a type � is always of the form �1 ! : : :! �n ! 0.We assume that we have an in�nite number of variables, V� = fv� ; v0� : : :g for each� 2 Type.The set V of variables is S�2Type V� .A variable that ranges on V� is denoted by x; y; : : :. If x 2 V� and y 2 V� with � 6= �then x 6= y.De�nition 8.2.2. We de�ne the family f��g�2Type of subsets of � as follows.79



80 CHAPTER 8. SIMPLY TYPED LAMBDA CALCULUS1. V� � �� ,2. if M 2 ��!� and N 2 �� then (M N) 2 ��,3. if M 2 �� and x 2 V� then �x:M 2 ��!�.De�nition 8.2.3. The simply typed lambda calculus �� (or �!) is the abstract rewritingsystem with typing de�ned by (�;!�; f(M; � ) jM 2 ��g)Substitution and �-reduction are de�ned as in chapter 5.Lemma 8.2.4. (Substitution Lemma)Let x 2 V� . If M 2 �� and N 2 �� then M [x := N ] 2 ��.De�nition 8.2.5. If A � �� and B � ��, we de�neA! B = fM 2 ��!� j 8N 2 A :MN 2 BgNote that if A � A0 then A0! B � A! B and that if B � B 0 then A! B � A! B 0.Lemma 8.2.6. ��!� = �� ! ��.Proof: If M 2 ��!� and N 2 �� then MN 2 ��. Conversely, if M 2 �� ! ��, then(Mx) 2 �� for x 2 V� . Therefore M 2 ��!�. 28.3 Strong NormalisationIn this section we prove that the simply typed �-calculus is �-strongly normalising.De�nition 8.3.1. The set SN (� ) is de�ned as follows.SN (� ) = �� \ SNTheorem 8.3.2. SN (� ! �) � SN (� )! SN (�).Proof: Let M 2 SN (� ) ! SN (�). We have that M 2 SN , because MN 2 SN (�). If(Mx) 2 �� for x 2 V� then M 2 ��!�. 2The converse inclusion is not so easy to prove. First we need the following lemma.Lemma 8.3.3. Let N 2 SN (�1)! : : :! SN (�n)! SN (0).If P 2 SN (�) and x 2 V�1!:::!�n!0 then P [x := N ] 2 SN (�).Proof: The proof proceeds by induction on the derivation of P 2 SN .



8.3. STRONG NORMALISATION 811. Suppose P = yP1 : : : Pk with P1; : : : ; Pk 2 SN . By induction hypothesis, we havePi[x := N ] 2 SN for i = 1; : : : ; k. We write P �i for Pi[x := N ] for i = 1; : : : ; k.If y 6= x, then P [x := N ] 2 SN follows from the fact that P �i 2 SN for i = 1; : : : ; k.Using lemma 8.2.4, we obtain P [x := N ] 2 SN (�).If y = x, then we have to prove that NP �1 : : : P �k 2 SN (�). By the inductionhypothesis and lemma 8.2.4, we have that P �i 2 SN (�i) for i = 1; : : : ; k. Furthermore,N 2 SN (�1)! : : :! SN (�n)! SN (0) � SN (�1)! : : :! SN (�k)! SN (�), bytheorem 8.3.2. Hence we have P [x := N ] = NP �1 : : : P �k 2 SN (�).2. Suppose P = �y:P0 with P0 2 SN . By induction hypothesis, we have P0[x := N ] 2SN . Therefore P [x := N ] = (�z:P0)[x := N ] 2 SN (�).3. Suppose P = (�y:P0)P1P2 : : : Pk with P0[y := P1]P2 : : : Pk 2 SN and P1 2 SN . Byinduction hypothesis, we have (P0[y := P1]P2 : : : Pk)[x := N ] 2 SN and P1[x :=N ] 2 SN . Hence P [x := N ] = ((�y:P0)P1P2 : : : Pk)[x := N ] 2 SN (�).2 Now we can prove the following theorem.Theorem 8.3.4. SN (� ! �) � SN (� )! SN (�).Proof: Let M 2 SN (� ! �). We prove that for all N 2 SN (� ), we have MN 2 SN (�).Let N 2 SN (� ). Note that MN 2 ��. It remains to prove that MN 2 SN . This isproven by induction on � and for each � by induction on the derivation of M 2 SN .� is 0. The proof of this part proceeds by induction on the derivation of M 2 SN .1. Suppose M = xM1 : : :Mk with M1; : : : ;Mk 2 SN . We have N 2 SN becauseN 2 SN (� ). This yields MN = xM1 : : :MkN 2 SN .2. Suppose M = �x:P with P 2 SN . We have that x 2 V� and P 2 ��, so actuallyP 2 SN (�). For proving (�x:P )N 2 SN , we need to prove P [x := N ] 2 SN . Thisfollows from an application of lemma 8.3.3.3. Suppose M = (�x:M0)M1M2 : : :Mk with M0[x := M1]M2 : : :Mk 2 SN and M1 2SN . By induction hypothesis of the induction on the derivation of M 2 SN , wehave M0[x :=M1]M2 : : :MkN 2 SN . Moreover M1 2 SN .This yields (�x:M0)M1M2 : : :MkN 2 SN .



82 CHAPTER 8. SIMPLY TYPED LAMBDA CALCULUS� is a composed type. The proof of this part proceeds as well by induction on thederivation of M 2 SN .1. Suppose M = xM1 : : :Mk with M1; : : : ;Mk 2 SN . Since N 2 SN , we have thatMN 2 SN .2. Suppose M = �x:P with P 2 SN . For proving (�x:P )N 2 SN , we need to provethat P [x := N ] 2 SN . We have � = �1 ! : : : ! �n ! 0. By the inductionhypothesis of the induction on � , we have N 2 SN (�1)! : : :! SN (�n)! SN (0).Lemma 8.3.3 yields that P [x := N ] 2 SN .3. Suppose M = (�x:M0)M1M2 : : :Mk with M0[x := M1]M2 : : :Mk 2 SN and M1 2SN . By induction hypothesis of the induction on the derivation of M 2 SN , wehave M0[x :=M1]M2 : : :MkN 2 SN . Moreover M1 2 SN . This yields MN 2 SN .2Corollary 8.3.5. SN (� ! �) = SN (� )! SN (�).Theorem 8.3.6. (Strong Normalisation for �!)For all � 2 Type, if M 2 �� then M 2 SN (� ).Proof: The proof proceeds by induction on the derivation of M 2 �� .1. Suppose x 2 �� then x 2 SN (� ).2. Suppose M = �x:P 2 ��!�0 with x 2 V� and P 2 ��0 . By induction hypothesis, wehave P 2 SN (�0). This yields (�x:P ) 2 SN (� ! �0).3. Suppose M = PQ 2 �� . Then P 2 ��!� and Q 2 ��. By induction hypothesis,P 2 SN (�! � ) and Q 2 SN (�).By the previous theorem we have SN (�! � ) = SN (�)! SN (� ).Therefore PQ 2 SN (� ).28.4 Conclusions and Related WorkAn interesting proof of the normalisation of the simply typed lambda calculus is the onegiven by Tait in [Tai67]. Tait de�ned the class of computable terms (or reducible terms).Using Tait's method one can also prove strong normalisation for the simply typed lambdacalculus and some of its extensions, like G�odel's T [Tro73]. Girard [Gir72] introduced theconcept of candidate of reducibility to generalise Tait's method to include polymorphism



8.4. CONCLUSIONS AND RELATED WORK 83(for the systems F to F !). For an explanation of the method and applications to provecon
uence see [Gal90].The conditions in the de�nition of candidate of reducibility in [Gir72] were modi�ed in[Tai75] and [Mit86] and a new de�nition was introduced: a saturated set. The de�nitionsof the set SN and of saturated sets are very similar (see chapter 5).Our proof di�ers from the proof by Tait in the fact that in his method an interpretationfor types is used. A type � is interpreted as a set of �-terms and denoted by [[� ]]. Then,the interpretation of a type � ! � is de�ned to be [[� ]]! [[�]]. So [[� ! �]] = [[� ]]! [[�]] byde�nition. In our proof the equality SN (� ! �) = SN (� )! SN (�) needs to be proved.On the other hand, in Tait's method one has to prove that [[� ]]! [[�]] is a subset of the setof strongly normalising terms. In our proof, the set SN (� ! �) is a subset of the set ofstrongly normalising terms by de�nition.In [Vri87] strong normalisation for the simply typed lambda calculus is proved by givinga function that computes the length of the maximal rewrite sequence and by implictlyfollowing the strategy F1 of maximal length. In our proof we make use of the set SNwhich also implicitly uses this strategy.It seems that the method used here cannot be extended to G�odel' s T nor to thecombinatory version of �!. Our method does not extend because it fails in theorem 8.3.4which is proved by induction on the structure of the type. The type of the newly createdredexes may be more complex and thus it is not possible to apply the induction hypothesis.This seems related to the proof of normalisation for the simply typed lambda calculus byTuring [Gan80]. In our opinion, this method, being too simple, will not be easily extensible.It is possible to express the proof of strong normalisation of the simply typed lambdacalculus in Peano Arithmetic (PA). On the other hand, strong normalisation for G�odel'sT cannot be proved in PA and the system F cannot be proved in PA2.A topic for further investigation is to implement our proof in a proof checker like Coq,Lego or Alf.
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Chapter 9Pure Type Systems9.1 IntroductionPure type systems provide a way to describe a large class of type systems �a la Church in auniform way. They were introduced independently by S. Berardi [Ber88] (see also [Ber90])and J. Terlouw [Ter89]. Important pure type systems are the systems of the �-cube [Bar92].They are called `pure' because there is only one type constructor and only one reductionrule, namely the type constructor � and the �-reduction.This chapter is organised as follows. In section 9.2 we recall the notion of speci�cationand of morphism between speci�cations. In section 9.3 we recall the de�nition of pure typesystems.9.2 Speci�cationsIn this section we de�ne the notion of speci�cation. The speci�cations are `the parameters'in the de�nition of pure type systems.De�nition 9.2.1. A speci�cation is a triple S = (S;A;R) such that1. S is a set of symbols called sorts,2. A � S � S called set of axioms,3. R � S �S �S called set of rules.Sorts are denoted by s; s0; : : : ; s1; s2; : : : :The set of axioms and the set of rules are used in the typing rules of pure type systems(see section 9.3). The set A determines the axioms and the set R determines all `thefunctions' we can form in the system. 87



88 CHAPTER 9. PURE TYPE SYSTEMSExample 9.2.2. We give two examples of speci�cations. These speci�cations will makesense in section 9.3 after introducing the typing relation.1. The speci�cation PRED is de�ned as follows.S f�s; �p; �f ;2s;2pgPRED A f(�s;2s); (�p;2p)gR f(�p; �p; �p); (�s; �p; �p); (�s;2p;2p); (�f ; �s; �f ); (�s; �f ; �f )gThe sort �p is for propositions, the sort �s is for sets and �f is for �rst order functionsbetween the sets in �s. The rule (�p; �p; �p) allows the formation of implicationbetween propositions, the rule (�s; �p; �p) allows quanti�cation over sets, the rule(�s;2p;2p) allows the formation of �rst order predicates, the rule (�f ; �s; �f ) allowsthe formation of function spaces between the basic set �s and the rule (�s; �f ; �f )allows the formation of curried functions of several arguments in the basic set.2. The speci�cation P is de�ned as follows.S f�;2gP A f(�;2)gR f(�; �; �); (�;2;2)gThe sort � is used for types and the sort 2 is used for kinds. The rule (�; �; �) allowsthe formation of types and (�;2;2) allows the formation of kinds.De�nition 9.2.3. We de�ne a morphism from the speci�cation S = (S;A;R) to S 0 =(S0;A0;R0) as a function f : S ! S0 that satis�es the following conditions.1. If (s1; s2) 2 A then (f(s1); f(s2)) 2 A0.2. If (s1; s2; s3) 2 R then (f(s1); f(s2); f(s3)) 2 R0.We denote the category whose objects are the speci�cations and morphisms the onesde�ned above by Spec.Several examples of morphisms between speci�cations are given in [Geu93] and [Bar92].Example 9.2.4. An important example of morphism between speci�cations is the fol-lowing one used for the propositions-as-types interpretation.We de�ne p : f�s; �p; �f ;2s;2pg ! f�;2g as follows.p(�s) = � p(2s) = 2p(�p) = � p(2p) = 2p(�f ) = �It is easy to see that p is a morphism from PRED to P .



9.3. PURE TYPE SYSTEMS 89De�nition 9.2.5. Let S = (S;A;R) be a speci�cation. A sort s in S is called a topsortif there is no s0 2 S such that (s; s0) 2 A.De�nition 9.2.6. Let S = (S;A;R) be a speci�cation. The speci�cation S is calledsingly sorted if1. (s1; s2); (s1; s3) 2 A implies s2 = s32. (s1; s2; s3); (s1; s2; s4) 2 R implies s3 = s4.De�nition 9.2.7. Let S = (S;A;R) be a speci�cation.The speci�cation S = (S;A;R) is called full if R = f(s1; s2; s2) j s1; s2 2 Sg.The speci�cation S = (S;A;R) is called semi-full if for all (s1; s2; s3) 2 R and s02 2 Sthere exists s03 2 S such that (s1; s02; s03) 2 R.De�nition 9.2.8. Let S = (S;A;R) be a speci�cation.The speci�cation S is called logical if it veri�es the following conditions.1. The set S contains two distinguished sorts � and 2.2. The set A contains the axiom (�;2).3. The set R contains the rule (�; �; �).4. There is no sort s such that (s; �) 2 A.The speci�cation S is called non-dependent if it is logical and the only rules concerning �are of the form (s; �; �) for some sort s.The speci�cation S is called impredicative if it is logical and (2; �; �) 2 R.9.3 Pure Type SystemsWe present the notion of pure type systems in a slightly di�erent way than usual. We �rstde�ne a functor � from the category of speci�cations to the category of abstract rewritingsystems with typing. We think that the presentation of pure type systems is more neat inthis way.A pure type system is a value �(S) of � given by a 4-tuple:1. a set T of pseudoterms,2. a set C of pseudocontexts,3. a reduction relation on pseudoterms, called �-reduction,4. a typing relation denoted by `.



90 CHAPTER 9. PURE TYPE SYSTEMSFirst we de�ne the components of this 4-tuple. Pseudoterms are expressions formedwith a constructor � for the abstractions, the brackets ( ) for the application and theconstructor � for the product (function space).De�nition 9.3.1. The set TS (or T for short) of pseudoterms is de�ned as follows.T ::= V j S j (T T ) j (�V :T : T ) j (�V :T : T )where V is a set of variables and S is the set of sorts.Variables will be denoted as x; y; z; : : : ; �; �; 
 : : :. Pseudoterms will be denoted asa; b; c; d; : : : ; A;B;C; : : :. The usual parenthesis conventions for abstraction, applicationand product will be used (see [Bar92]).De�nition 9.3.2. The mapping FV : T ! P(V ) is de�ned as follows.FV (x) = fxgFV (c) = ;FV (a b) = FV (a) [ FV (b)FV (�x:A: a) = FV (A) [ (FV (a)� fxg)FV (�x:A: a) = FV (A) [ (FV (a)� fxg)We say that x is free in a if x 2 FV (a).De�nition 9.3.3. The mapping BV : T ! P(V ) is de�ned as follows.BV (x) = ;BV (c) = ;BV (a b) = BV (a) [ BV (b)BV (�x:A: a) = BV (A) [ (BV (a) [ fxg)BV (�x:A: a) = BV (A) [ (BV (a) [ fxg)We say that x is bound in a if x 2 BV (a).De�nition 9.3.4. The result of substituting d for (the free occurrences of) x in e isdenoted as e[x := d] and is de�ned as follows.s[x := d] = sx[x := d] = dy[x := d] = y if x 6= y(�x:A: a)[x := d] = (�x:A: a)(�y:A: a)[x := d] = (�y:A[x := d]: a[x := d]) if x 6= y and y 62 FV (d)(�y:A: a)[x := d] = (�z:A[x := d]: a[y := z][x := d]) if x 6= y, y 2 FV (d) and z is fresh(a b)[x := d] = (a[x := d] b[x := d])(�x:A: a)[x := d] = (�x:A: a)(�y:A: a)[x := d] = (�y:A[x := d]: a[x := d]) if x 6= y and y 62 FV (d)(�y:A: a)[x := d] = (�z:A[x := d]: a[y := z][x := d]) if x 6= y, y 2 FV (d) and z is fresh



9.3. PURE TYPE SYSTEMS 91The set of pseudoterms with holes in it is de�ned by the following grammar.De�nition 9.3.5. The set H is de�ned as follows.H ::= [ ] j V j S j (H H) j (�V :H: H) j (�V :H: H)where V is the set of variables and S is the set of sorts.An element in H is denoted by C[ ].Pseudocontexts are lists of pairs consisting of one variable and one pseudoterm. Thepseudocontexts are used in the de�nition of the typing relation in order to assign types tothe variables.De�nition 9.3.6. The set CS (or C for short) of pseudocontexts is de�ned as follows.C ::= � j < C; V :T >Pseudocontexts will be denoted as �;�0; : : : ;�;�0; : : :.The expression �; x:A stands for < �; x:A >.Next we de�ne a mapping Dom that gives the set of variables declared in a pseudocon-text.De�nition 9.3.7. The mapping Dom : C ! P(V ) is de�ned as follows.Dom(�) = ;Dom(�; x:A) = Dom(�) [ fxgDe�nition 9.3.8. The result of substituting d for (the free occurrences of) a variable xin � such that x 62 Dom(�) is denoted as �[x := d] and is de�ned as follows.�[x := d] = �< �; y:A > [x := d] =< �[x := d]; y:A[x := d] >De�nition 9.3.9. Let d 2 T . A change of a bound variable in the term d is thereplacement of a subterm (�x:A: b) or (�x:A: b) by (�y:A: b[x := y]) or (�y:A: b[x := y]),respectively, where y =2 FV (b).De�nition 9.3.10. The pseudoterm b is �-convertible to b0 if b0 is the result of applyingto b a series of changes of variables or vice versa.Convention 9.3.11. Two terms are identi�ed if they are �-convertible.De�nition 9.3.12. The �-reduction is de�ned by the following rule:C[(�x:A: b)a]!� C[b[x := a]]where C[ ] 2 H has only one occurrence of [ ].



92 CHAPTER 9. PURE TYPE SYSTEMSDe�nition 9.3.13. The typing relation `S (or ` for short) is the smallest relation onC � T � T closed under the following rules.(axiom) � ` s1 : s2 for (s1; s2) 2 A(start) � ` A : s�; x : A ` x : A where x is �-fresh(weakening) � ` b : B � ` A : s�; x : A ` b : B where x is �-fresh(formation) � ` A : s1 �; x : A ` B : s2� ` (�x:A:B) : s3 for (s1; s2; s3) 2 R(abstraction) �; x : A ` b : B � ` (�x:A: B) : s� ` (�x:A: b) : (�x:A: B)(application) � ` b : (�x:A: B) � ` a : A� ` (b a) : B[x := a](conversion) � ` b : B � ` B 0 : s B  $!� B0� ` b : B 0where s ranges over sorts, i.e. s 2 S.Explanation of the typing rules. Variables are typable by means of the start rule,abstractions by means of the abstraction rule, applications by means of the applicationrule and the product by means of the formation rule.The start and the weakening rules allows to enlarge the context. They ensure that allthe components of a pseudocontext are typable. Besides they do not allow the repetitionof variables in the context since a variable is added to the context only if it is fresh. Oneconsequence of this is that we cannot have two nested abstractions with the same boundvariable.Note that the typing rules have two `parameters'. One parameter is the set A in the�rst rule which determines the set of axioms we have in the system and the other is theset R in the formation rule which determines the products and hence the abstractions wecan form in the system. When we �x the triple (S;A;R), we obtain a particular typingsystem.The conversion rule ensures that types are `closed under reduction and expansion'.De�nition 9.3.14. The functor � : Spec! Carst is de�ned as follows.�(S) = (T ; C;!�;`) S 2 Spec�(f) = (f̂1; f̂0) f : S ! S 0 2 Spec



9.3. PURE TYPE SYSTEMS 93The functions f̂0 and f̂1 are the extension of f to the set of pseudoterms and pseudocontextsrespectively. f̂0(s) = f(s)f̂0(�x:A: b) = �x:f̂0(A): f̂0(b)f̂0(�x:A: B) = �x:f̂0(A): f̂0(B)f̂0(F a) = (f̂0(F ) f̂0(a))f̂1(�) = �f̂1(�; x:A) = f̂1(�); x:f̂0(A)There are several things that we need to verify. Amongst the properties of pure typesystems below, we list subject and type reduction. This means that (T ; C;!�;`) 2 Carst.Moreover the function �(f) is a morphism in Carst since it preserves the rewrite and thetyping relations.De�nition 9.3.15. (Pure Type Systems)� A pure type system (PTS) is an element of �(Spec) = f�(S) j S 2 Specg.� A singly sorted pure type system is an element of f�(S) j S 2 Spec& S is singly sortedg.For example, �(PRED) and �(P ) are pure type systems and �(p) is a morphism from�(PRED) to �(P ).The �-cube consists of eight systems [Bar92] de�ned by the same set of sorts and thesame set of axioms. They di�er in the set of rules R.De�nition 9.3.16. Let S0 = f�;2g and A0 = f(�;2)g.We will write S0 
 S0 for f(s1; s2; s3) j s2 = s3 & s1; s2; s3 2 S0g.The �-cube is a mapping from P(S0 
 S0) into Carst de�ned as follows.System R�! (�; �)�2 (�; �) (2; �)�P (�; �) (�;2)�P2 (�; �) (2; �) (�;2)�! (�; �) (2;2)�! (�; �) (2; �) (2;2)�P! (�; �) (�;2) (2;2)�P! = �C (�; �) (2; �) (�;2) (2;2)



94 CHAPTER 9. PURE TYPE SYSTEMSThe systems of the �-cube correspond to some known systems with some variations:�! is the simply typed lambda calculus [Chu40], �2 is the second order typed lambdacalculus [Gir72] and [Rey74], �P is AUT-QE and LF [Bru70] and [RHP87]. The system�! is POLYREC and �! is F! [Gir72]. The last element in the table, �C, corresponds tothe Calculus of Constructions.All the systems in the �-cube have only one topsort, namely 2.De�nition 9.1. The system of higher order logic can be described by the followingspeci�cation (see [Geu93]). S f�;2;4gHOL A f(�;2); (2;4)gR f(�; �); (2; �); (2;2)gThere is only one topsort in �(HOL) and that is 4.De�nition 9.2. The Calculus of Constructions extended with an in�nite type hierarchycan be described by the following speci�cation.S INC1 A f(n; n+ 1) j n 2 INgR f(m; 0; 0) j m 2 INg[f(m;n; r) j m;n 2 IN & max(m;n) � rgThe system �C1 extended with strong �-types and cumulativity is the system ECC (see[Luo89]). We can see that �C1 is an extension of �C and of �(HOL) writing � instead of0, 2 instead of 1 and 4 instead of 3.Note that there is no topsort in �C1.De�nition 9.3.17. Let S be a logical speci�cation. The pure type system �(S) is saidto be inconsistent if for all A, there exists a such that a has type A in the context A : �.For example, an inconsistent pure type system is �� determined by the speci�cation(S;A;R) where S = f�g, A = f(�; �)g and R = f(�; �)g (see [Gir72] and [Bar92]).Properties of Pure Type SystemsThe advantage of pure type systems is that we can do the metatheory of several typesystems at the same time. There are several properties that can be proved for all thesesystems.



9.3. PURE TYPE SYSTEMS 95Theorem 9.3.18.1. (T ;!!�) is con
uent2. Correctness of types, i.e. if � ` d : D then there exists a sort s such that � ` D : sor D = s for all � 2 C; d;D 2 T .3. Subject reduction, i.e. if � ` d : D. and d!� d0 then � ` d0 : D for all d; d0;D 2 Tand � 2 C.4. Type reduction, i.e. if � ` d : D and D !� D0 then � ` d : D0 for all d;D;D0 2 Tand � 2 C.5. Strengthening, i.e. if �1; x:A;�2 ` b : B and x =2 FV (�2) [ FV (b) [ FV (B) then�1;�2 ` b : B.6. Let S be a singly sorted speci�cation. Then �(S) veri�es uniqueness of types.7. Let S be a logical speci�cation. If �(S) is inconsistent then �(S) is not normalising.The proofs of these properties can be found in [GN91] and [Bar92] except for strength-ening that is proved in [BJ93].Theorem 9.3. (Strong Normalisation)1. The system �C1 is �-strongly normalising.2. The systems of the �-cube are �-strongly normalising.3. The system �(HOL) is �-strongly normalising.Proof: The system ECC is strongly normalising (see [Luo89]) and contains �C1, thesystems of the �-cube and �(HOL). 2There are pure type systems that are not normalising, e.g. the system �� which isinconsistent (see theorem 9.3.18 part 7).Theorem 9.3.19. (Decidability of Type Inference and Type Checking)Let S = (S;A;R).1. If S is �nite then type inference and type checking in �(S) are decidable.2. Suppose that S is singly sorted or semi-full and that the sets S, A and R arerecursive. Then type inference and type checking in �(S) are decidable.The proof of the �rst part can be found in [BJ93] and the second one in [BJMP93] and[Pol96].



96 CHAPTER 9. PURE TYPE SYSTEMSTheorem 9.3.20. (Undecidability of Type Inference and Type Checking)Let S = (S;A;R) be a singly sorted, non-dependent and impredicative speci�cation.If �(S) is inconsistent then type inference and type checking in �(S) are undecidable.This is proved in [CH94] as a generalisation of the result of [MR86].The problem of inhabitation in �! and in �! are decidable but in the rest of the systemsof the cube is undecidable [Spr95]. For the inconsistent systems, inhabitation is trivial.9.4 Conclusions and Related WorkAs we said before, pure type systems were introduced independently by S. Berardi [Ber88]and J. Terlouw [Ter89]. In the typing rules for pure type systems, the axiom depends onthe set A and the product rule depends on the set R. In other words, we have a family ofaxioms and product rules depending on A and R. The typing rules are parametric and theparameters are the speci�cations, i.e. triples of the form (S;A;R). The dependency on thespeci�cation is expressed with the notation �(S) for the pure type system correspondingto the speci�cation S = (S;A;R). We made a `slight change' in the de�nition of puretype systems. We have written the functor � : Spec! Carst instead of `giving a set ofvalues �(S)'. We could think that now we have given `a house' (or perhaps `a type') for �to live in and this house is the category of functors from Spec to Carst.Extensions of pure type systems are also de�ned as functors from the category ofspeci�cations Spec into the category of environmental abstract rewriting systems withtyping Carst. The category CarstSpec of functors from Spec to Carst is an adequate`place' to put the pure type systems and all their extensions. Comparison of pure typesystems and their extensions is made via morphisms in the category of functors from Specto Carst, i.e. via natural transformations.



Chapter 10Type Inference for Pure TypeSystems10.1 IntroductionIn this chapter we de�ne a partial function that infers the type of a term in a singly sortedpure type system. If the term has type in a singly sorted pure type system then thisfunction terminates and yields the type of the term (up to �-conversion). This functioncan be constructed if we have a set of typing rules that is syntax directed. A set ofrules is called syntax directed if the last rule in the derivation of a term is determinedby the structure of the term and of the context. The rules of pure type systems are notsyntax directed since the weakening and the conversion rules can be applied at any pointin the derivation. In order to make this set of rules syntax directed, we should removethe non-structural rules (like the weakening and the conversion ones) and keep only thestructural rules (the ones for term constructors). The system obtained by eliminating thenon-structural rules should be equivalent to the original one. The proof of the equivalence(soundness and completeness) between the original rules and the corresponding syntaxdirected ones is problematic for some pure type systems (see [BJMP93] and also [Pol93a]).Here we present a syntax directed set of rules for singly sorted pure type systems similarto the one presented in [BJMP93]. As in [BJMP93], we use an auxiliary system to checkfor the �-condition, i.e. the premise that the product (�x:A: B) should be well-typed inthe abstraction rule. The auxiliary system we use to de�ne the syntax directed set of rulesis the corresponding pure type system without the �-condition. The convenience of thissystem is that it permits us to prove soundness and completeness of the original rules forpure type systems with respect to the syntax directed ones.This chapter is organised as follows. In section 10.2, we de�ne a functor �w fromthe category of speci�cations to the category of contextual abstract rewriting systems withweak typing. We de�ne the class of pure type systems without the �-condition as the imageof �w. A pure type system without the �-condition can be considered as an extension of97



98 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMSthe corresponding system with the �-condition. The new terms of the extension are theabstractions (�x:A: b) whose type (�x:A: B) is not typable and applications of the form(F a) whose operator F has a type that is not typable. Hence we are led to consider typesthat are not typable. We call them toptypes. In section 10.3, we prove the basic propertiesof pure type systems without the �-condition, e.g. weak subject reduction theorem. Insection 10.4, we analyse the shape of a toptype. We give a characterisation of the set oftoptypes and prove weak type reduction. In the case of singly sorted speci�cations we giveanother characterisation of the set of toptypes and prove that it is closed under substitutionand �-reduction. In section 10.5, we consider those �-redexes whose abstraction has atype that is not typable and we call them illegal redexes. We introduce a mapping ' thatcontracts all the illegal redexes of a term. Using ' we prove that weak normalisation ispreserved by the extension from �(S) to �!(S) in the case that S is singly sorted. Moreover' can be used to de�ne a morphism from �!(S) to �(S) for each singly sorted speci�cationS. In section 10.6, we de�ne the notion of ��-reduction as the contraction of the illegalredexes. We prove that all the terms typable in a singly sorted pure type system are ��-strongly normalising. In section 10.7, we de�ne a syntax directed set of rules for singlysorted pure type systems. In section 10.8, we de�ne a partial function type that computesthe type of a term in a singly sorted pure type system based upon the syntax directed setof rules de�ned in the previous section.10.2 Pure Type Systems without the �-conditionIn this section we de�ne the notion of pure type systems without the �-condition. For puretype systems the type of an abstraction (�x:A: b) is a dependent product (�x:A: B) andthe abstraction rule has the premise that the product (�x:A: B) should be well-typed. Thispremise is called the �-condition. The problem with the �-condition is that sometimes itis not well-adapted to induction. The idea is to remove this condition in order to de�ne asyntax directed set of rules and prove the equivalence of the original rules with the syntaxdirected ones.De�nition 10.2.1. The �-condition is the premise � ` (�x:A: B) : s of the abstractionrule in a pure type system.De�nition 10.2.2. We de�ne a functor �! : Spec! Carst! such that for S 2 Spec wehave that �!(S) = (T ; C;!�;`!).We de�ne the components of this 4-tuple as follows. The sets T , C and the relation!� are de�ned as in de�nition 9.3.14.The typing relation `! (or `!S) is the smallest relation de�ned by the same rules as inde�nition 9.3.14 except for the abstraction rule that is replaced by the following one.(abstraction) �; x : A `! b : B� `! (�x:A: b) : (�x:A: B)



10.3. BASIC PROPERTIES 99The functor �! : Spec! Carst! is de�ned for morphisms in the obvious way.There are two things that remain to be veri�ed, i.e. �!(S) 2 Carst! and �!(f) 2Carst!. For �!(S) 2 Carst!, we have to prove that a pure type system without the�-condition veri�es weak subject and weak type reduction. This will be proved in the nextsections. For �!(f) 2 Carst!, we have to prove that �!(f) preserves the rewrite and thetyping relation. This is very easy to prove.De�nition 10.2.3. (Pure Type Systems without the �-condition)A pure type system without the �-condition is an element of the set�!(Spec) = f�!(S) j S 2 Specg:A singly sorted pure type system without the �-condition is an element of the setf�!(S) j S 2 Spec & S is singly sortedg:Note that if a term is typable in �(S) then it is typable in �!(S). Therefore �!(S) isan extension of �(S).The converse is not true. There may be terms typable in �!(S) which are not typablein �(S). For example, the type (A ! 2) is not typable in the context A : � either in�(C) or in �!(C). However in �!(C) we can derive that the term �x:A:(� ! �) has type(A! 2) in the context A : �.10.3 Basic PropertiesIn this section we prove the generation lemma, the thinning lemma and the weak subjectreduction theorem for pure type systems without the �-condition. Since correctness oftypes does not hold, we prove some weaker lemmas that we call correctness of contextsand correctness of types for variables. Finally we prove uniqueness of types for singlysorted speci�cations.Lemma 10.3.1. (Generation Lemma)1. If � `! s : D then there exists s0 such that (s; s0) 2 A and D  $!� s0.2. If � `! x : D then there are s, b and B such that � `! B : s, x : B 2 � and B  $!� D.3. If � `! (�x :A:B) : D then there is a rule (s1; s2; s3) 2 R such that � `! A : s1,�; x:A `! B : s2 and D  $!� s3.4. If � `! (�x :A: b) : D then there are s and B such that �; x :A `! b : B andD  $!� (�x:A: B).5. If � `! (b a) : D then there are A;B such that � `! b : (�x:A: B), � `! a : A andD  $!� B[x := a].



100 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMSAll parts of the generation lemma are proved by induction on the derivation of a term.Lemma 10.3.2. (Correctness of Contexts) If �; x:A;�0 `! b : B then there exists ans such that � `! A : s.This lemma is proved by induction on the derivation of �; x:A;�0 `! b : B.Lemma 10.3.3. (Correctness of Types for Variables) If � `! x : A then thereexists s such that � `! A : s.This lemma is proved by induction on the derivation of � `! x : A.Lemma 10.3.4. Let � `! (�x:A: b) : D. Then there exists aB such that �; x : A `! b : B.Moreover either D = (�x:A: B) or � ` D : s and D $!� (�x:A: B) for some sort s.This lemma is proved by induction on the derivation of � `! (�x:A: b) : D.Lemma 10.3.5. If � `! A : s and � ` a : A then � ` A : s0 for some sort s0.Proof: By the lemma of correctness of types for pure type systems, we have that � ` A : s00or A = s00 for some s00. In case A = s00, we have that (s00; s) is an axiom. 2Lemma 10.3.6. (Thinning Lemma) Let �0 `! b : B.If � `! a : A and � � �0 then �0 `! a : A.This lemma is proved by induction on the derivation of � `! a : A.Lemma 10.3.7. (Substitution Lemma) If � `! a : A and �; x:A;�0 `! b : B then�;�0[x := a] `! b[x := a] : B[x := a].This lemma is proved by induction on the derivation of �; x:A;�0 `! b : B.Lemma 10.3.8. (Correctness of Domains) If � `! F : �x:A: B then � `! A : s forsome sort s.This lemma is proved by induction on the derivation of � `! F : �x:A: B.Theorem 10.3.9. (Weak Subject Reduction Theorem)Let � `! e : E.a) If e!� e0 then there exists E 0 such that E !!� E 0 and � `! e0 : E 0.b) If �!� �0 then �0 `! e : E.Proof: The two statements are proved by simultaneous induction on the derivation of� `! e : E. We only consider the statement a) for the case of the application rule.



10.3. BASIC PROPERTIES 101(application) � `! b : (�x:A: B) � `! a : A� `! (b a) : B[x := a]There are several cases when we reduce the application (b a).1. Suppose (b a) !� (b0 a) with b !� b0. By induction we have that � `! b0 : (�x:A0: B 0) for A !!� A0 and B !!� B0. By lemma 10.3.8 we have that � `! A0 : s forsome sort s. Therefore we can apply the conversion rule and we obtain � `! a : A0.Then we apply the application rule and we have a derivation of � `! (b a) : B 0[x :=a].2. Suppose (b a)!� (b a0) with a!� a0. By induction we have that � `! a0 : A0 forA !!� A0. By lemma 10.3.8 we have that � `! A : s. Therefore we can apply theconversion rule and we have that � `! a0 : A. Then we apply the application ruleand we obtain a derivation of � `! (b a0) : B[x := a0].3. Suppose (�x:A0: d)a!� d[x := a]. By lemma 10.3.4 we have that �; x:A0 `! d : B 0.Moreover by lemma 10.3.4 we know there are two possibilities, either (�x:A: B) =(�x:A0: B 0) or (�x:A: B) $!� (�x:A0: B 0) and � `! (�x:A: B) : s.(a) Suppose (�x :A: B) = (�x :A0: B 0). Hence A = A0 and B = B 0. By thesubstitution lemma we have that � `! d[x := a] : B[x := a].(b) Suppose (�x:A: B)  $!� (�x:A0: B 0) and � `! (�x:A: B) : s for some s. Bylemma 10.3.8 we have that � `! A0 : s0 for some s0. Therefore we can applythe conversion rule and we have that � `! a : A0. By the substitution lemmawe have that � `! d[x := a] : B 0[x := a]. Since � `! (�x:A: B) : s, it followsfrom the generation lemma that �; x :A `! B : s2 for some sort s2. By thesubstitution lemma we have that � `! B[x := a] : s2 and by conversion rule wehave that � `! d[x := a] : B[x := a].The rest of the cases are easy to prove. 2The next example shows that subject reduction does not hold for pure type systemswithout the �-condition. If � `! e : E and e !� e0 then e0 may not have type E. Thishappens when the type E is not typable and hence we cannot apply conversion rule.Example 10.3.10. Let � =< 
 : � >.e = (��:�:�x:�:�)((��:�:�)
)!� (��:�:�x:�:�)
 = e0In �!(C), we have that � `! e : (��:�:�)
 ! 2 and � `! e0 : 
 ! 2 but not � `! e0 : (��:�:�)
 ! 2 (the latter can be proved by some meta-theoretical reasoning).Theorem 10.3.11. (Uniqueness of Types) Let S be a singly sorted speci�cation. If� `! a : A and � `! a : B then A $!� B.This theorem is proved by induction on the derivation of � `! a : A.



102 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMS10.4 Description of ToptypesToptypes are types that are not typable. In this section we study the form of a toptypefor pure type systems without the �-condition and prove weak type reduction. Also weprove for singly sorted speci�cations that the set of toptypes is closed under �-reductionand under substitution.Recall that A is a toptype in � if there exists a such that � `! a : A and � 6`! A : �and that A is a toptype if there are a and � such that � `! a : A and � 6`! A : � (seede�nitions 4.2.2 and 4.4.10).Note that for pure type systems the only toptypes are the topsorts that are inhabited.Next we give examples of toptypes in pure types systems without the �-condition.Example 10.4.1.a) In �!(C) we can derive A : � `!C �x:A:(� ! �) : (A! 2)We have that (A! 2) is a toptype.b) In �!! we can derive `! (��:�:�x:�:x) : ��:�:�! �We have that ��:�:�! � is a toptype.De�nition 10.4.2. We say that the product �x:A: B can be formed in the context � ifthere exists an s such that � `! (�x:A: B) : s.Note that the product �x:A: B cannot be formed in the context � if for all s1; s2 suchthat � `! A : s1 and �; x:A `! B : s2 we have that there is no sort s with (s1; s2; s) 2 R.We de�ne the setM� of `potencial' toptypes in �. The setM� is not exactly the setof toptypes. If an element is in the setM� then it is not typable in �. However it may ormay not be inhabited.De�nition 10.4.3. Let � 2 C. We de�ne the set M� as the smallest subset of Tsatisfying the following clauses.1. if s is a topsort then s 2 M�,2. if �; x:A `! B : s for some s and the product (�x:A: B) cannot be formed in � then(�x:A: B) 2 M�.3. if B 2 M�;x:A then (�x:A: B) 2 M�.



10.4. DESCRIPTION OF TOPTYPES 103De�nition 10.4.4. Let � 2 T . A mapping depth� :M� ! IN is de�ned as follows.depth�(s) = 0 if s is a topsortdepth�(�x:A: B) = 1 if �; x:A `! B : s for some sand (�x:A: B) cannot be formed in �depth�(�x:A: B) = depth�;x:A(B) + 1 otherwiseWe extend the mapping depth to pseudoterms as follows.depth�(A) = 0 for A 2 T �M� and � 2 C.Next we prove that a pseudoterm in the setM� is a sequence of products whose `heart'is either a topsort or it is a product that cannot be formed.Lemma 10.4.5. Let � 2 C and A 2 T . The following two statements are equivalent:1. A 2 M�, n = depth�(A),2. there are A1; : : : ; An; B such that A = �x1:A1 : : :�xn:An:B whereeither n � 0 and B is a topsort s0or n � 1 and �; x1:A1; : : : ; xn:An `! B : s for some sort s and(�xn:An: B) cannot be formed in �; x1:A1; : : : ; xn�1:An�1.Proof:(1) 2). This is proved by induction on A 2 M�.1. Suppose that the pseudoterm is a topsort s. Take n = 0 and the second statementholds.2. Suppose that the pseudoterm is (�x :A: B) with �; x :A `! B : s for some s. Weknow that the product �x:A: B cannot be formed in �; x:A. Take n = 1 and thesecond statement holds.3. Suppose that the pseudoterm is (�x:A: B) with B 2 M�;x:A. By induction we havethat B = �x1:A1 : : :�xn:An:B 0 whereeither n � 0 and B 0 is a topsort s0or n � 1 and �; x:A;x1:A1; : : : ; xn:An `! B0 : s for some sort s and(�xn:An: B 0) cannot be formed in �; x:A;x1:A1; : : : ; xn�1:An�1.Therefore the second statement holds for (�x:A: B).



104 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMS(2) 1). There are two cases:1. Suppose n � 0 and B is a topsort s0. We apply once the �rst clause and then ntimes the third clause.2. Suppose that �; x1 :A1; : : : ; xn :An `! B : s for some sort s and the product (�xn :An: B) cannot be formed in the context �; x1:A1; : : : ; xn�1:An�1.We apply once the second clause and then n times the third clause.2 Next we prove that the pseudoterms in the setM� are not typable in the context �.Lemma 10.4.6. If A 2 M� then � 6`! A : �.Proof: This is proved by induction on A 2 M�.1. Suppose that the pseudoterm is a topsort s. Suppose towards a contradiction that� `! s : D for some D. Using the generation lemma we deduce that there is a sorts0 such that (s; s0) 2 A. This is a contradiction. Hence � 6`! s : �.2. Suppose that the pseudoterm is (�x :A: B) and that there are A and s such that�; x :A `! B : s. Also, we know that the product �x :A: B cannot be formed in�; x:A.Suppose towards a contradiction that � `! (�x :A: B) : D for some D. By thegeneration lemma, there are sorts s1; s2; s3 such that � `! A : s1, �; x:A ` B : s2 and(s1; s2; s3) 2 R. This is a contradiction.3. Suppose that the pseudoterm is (�x:A: B) with B 2 M�;x:A. By induction we havethat �; x:A 6`! B : �.Suppose towards a contradiction that � `! (�x :A: B) : D for some D. By thegeneration lemma there is a sort s2 such that �; x:A ` B : s2. This is a contradiction.2Lemma 10.4.7. Let � `! a : A. If there is no sort s such that � `! B[x := a] : s thenthere is no sort s such that � `! (�x:A: B) : s.Proof: Suppose � `! (�x:A: B) : s0. By the generation lemma we have that �; x:A `!B : s. By the substitution lemma we have that � `! B[x := a] : s. 2Next we prove that a type in � that does not have a sort as type is in the setM�.Lemma 10.4.8. Suppose that � `! a : A.



10.4. DESCRIPTION OF TOPTYPES 105If there is no sort s such that � ` A : s then A 2 M�.Proof: This lemma is proved by induction on the derivation of � `! a : A. We will provethe cases of the abstraction and the application.� (abstraction) �; x:D `! e : E� `! (�x:D: e) : (�x:D: E) .1. Suppose that �; x:D `! E : s. The product (�x:D: E) cannot be formed in �.Hence (�x:D: E) 2 M�.2. Suppose that there is no sort s such that �; x :D `! E : s. By inductionE 2 M�;x:D. Hence (�x:D: E) 2 M�.� (application) � ` f : (�x:D: E) � ` d : D� ` (f d) : E[x := d] .If there is no s such that � `! E[x := d] : s then by lemma 10.4.7 there is no s suchthat � ` (�x:D: E) : s.By induction we have that (�x :D: E) 2 M�. By lemma 10.4.5 we have thatE = �x1:A1 : : :�xn :An:H where either H is a topsort s0 or �; x:D;x1 :A1; : : : ; xn :An `! H : s for some sort s.Then E[x := d] = �x1:A1[x := d] : : :�xn :An[x := d]:H[x := d] where H[x := d] iseither a topsort s0 or �; x1:A1[x := d]; : : : ; xn:An[x := d] `! H[x := d] : s.1. Suppose that H[x := d] is a topsort s0. By lemma 10.4.5 we have thatE[x := d] 2 M�.2. Suppose that �; x1:A1[x := d]; : : : ; xn:An[x := d] `! H[x := d] : s. There shouldbe a natural number k with 1 � k � n and a sort s0 such thata) �; x1:A1[x := d] : : : xk:Ak[x := d] `! (�xk+1:Ak+1 : : :�xn:An: B)[x := d] : s0andb) the product (�xk:Ak : : :�xn:An: B)[x := d] cannot be formed in the context�; x1:A1[x := d] : : : xk�1:Ak�1[x := d].Therefore by lemma 10.4.5 we have that E[x := d] 2 M�.The rest of the cases are easy to prove. 2The next theorem says that a type is not typable in a context � if and only if it is inthe setM�. Hence, A is a toptype in � if and only if A is a type in � and it is in the setM�.Theorem 10.4.9. (Description of Toptypes) Let � `! a : A. The following statementsare equivalent:



106 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMS1. � 6`! A : �,2. There is no sort s such that � ` A : s,3. A 2 M�.Proof: The proof of (1 ) 2) is trivial. The implication (2 ) 3) is lemma 10.4.8. Theimplication (3) 1) is lemma 10.4.6. 2Lemma 10.4.10. Let � `! e : E and � 6`! E : � be such that depth(E) = n andE = (�x1 :A1 : : :�xn :An: B). Then there exists e0 = (�x1 :A1 : : : �xn :An: b) such thate!!� e0 and � `! e0 : E.Proof: This is proved by induction on the derivation of � `! a : A. Only one case isconsidered. � `! b : (�x:A: B) � `! a : A� `! (b a) : B[x := a] :By induction hypothesis we have that b!!� b0, b0 = (�x:A: �x1:A1 : : : �xm:Am: d) and� `! b0 : (�x:A: B) for some A1; : : :Am and d.Note that depth(B[x := a]) = n � m = depth(�x:A: B).Therefore (b a)!!� d and d = (�x1:A1[x := a] : : : �xm:Am[x := a]: d[x := a]). By thesubstitution lemma we have that � `! d : B[x := a]. 2Theorem 10.4.11. (Weak Type Reduction Theorem)If � `! e : E and E !� E 0 then there exists e0 such that e!!� e0 and � `! e0 : E 0.Proof: There are two possibilities, either E 0 is a toptype or not.1. Suppose E 0 is not a toptype. By theorem 10.4.9, � `! E0 : s. Applying the conversionrule, we have that � ` e : E 0.2. Suppose E 0 is a toptype. Then E is a toptype and E = (�x1:A1 : : :�xn:An: B) withn = depth(E).By lemma 10.4.10 there exists e0 such that e !!� e0 = (�x1 :A1 : : : �xn :An: b) and� `! e0 : E. Hence �; x1:A1 : : : ; xn:An `! b : B.(a) If Ai !� A0i then by the weak subject reduction theorem �; x1 : A1 : : : xi :A0i; : : : ; xn:An `! b : B.(b) If B !� B0 then by lemma 10.4.5 and the weak subject reduction theorem wehave that �; x1:A1 : : : ; xn:An `! B0 : s.Applying the conversion rule we have that �; x1:A1; : : : ; xn:An `! b : B 0.2



10.4. DESCRIPTION OF TOPTYPES 107For singly sorted speci�cations, we give another characterisation of the set of toptypes.Using this characterisation we prove that for singly sorted speci�cations, the toptypes areclosed under �-reduction and substitution.Next we de�ne the set N� similar to the setM�. The elements in N� are not typableand they may or may not be inhabited.De�nition 10.4.12. We de�ne the set N� as the smallest subset of T satisfying thefollowing clauses.1. if s is a topsort then s 2 N�,2. if there are sorts s1; s2 such that � `! A : s1, that �; x:A `! B : s2 and there is no s3such that (s1; s2; s3) 2 R then (�x:A: B) 2 N�.3. if B 2 N�;x:A then (�x:A: B) 2 N�.Note that de�nitions 10.4.3 and 10.4.12 di�er only in the second clause. For the case ofsingly sorted speci�cations, to require that the product (�x:A: B) cannot be formed in � isequivalent to require that there are sorts s1; s2 such that � `! A : s1, that �; x:A `! B : s2and there is no sort s3 such that (s1; s2; s3) 2 R.Note that the inclusionM� � N� holds for any speci�cation. If the speci�cation is notsingly sorted, N� may have more elements thanM�.Example 10.4.13. Let S = (S;A;R) be the non-singly sorted speci�cation such thatS = f0; 1g, A = f(0; 1); (0; 2)g and R = f(2; 2; 2)g. We have that (0 ! 0) 2 N� but(0! 0) 62 M�.In the following lemma, we prove thatM� = N� for singly sorted speci�cations.Lemma 10.4.14. Let S be a singly sorted speci�cation. ThenM� = N�:Proof: [M� � N�]. We proceed by induction on the de�nition of D 2 M�. Only one caseis considered. Suppose that the pseudoterm D is (�x:A: B), there are A and s2 such that�; x:A `! B : s2 and the product (�x:A: B) cannot be formed in �; x:A. By lemma 10.3.2we have that there is some s1 such that � `! A : s1. There is no s such that (s1; s2; s) 2 R.Therefore (�x:A: B) 2 N�.[N� � M�]. We proceed by induction on the de�nition of D 2 N�. Only one case isconsidered. Suppose that the pseudoterm D is (�x:A: B) and that there are sorts s1; s2such that � `! A : s1, �; x:A `! B : s2 and there is no sort s3 such that (s1; s2; s3) 2 R.Suppose towards a contradiction that (�x:A: B) can be formed in �. Then there aresorts s01; s02 such that � `! A : s01, �; x:A `! B : s02. By uniqueness of types we have thats1 = s01 and s2 = s02. This is a contradiction. 2As a consequence of the previous lemma, the set N� has the same properties as the setM� if the speci�cation is singly sorted.



108 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMSLemma 10.4.15. Let S be a singly sorted speci�cation.If A 2 N� then � 6`! A : �.Proof: This follows from lemmas 10.4.6 and 10.4.14. 2The next theorem states that a type is in N� if and only if this type is not typable.Hence A is a toptype in � if and only if A is a type and it is in the set N�.Theorem 10.4.16. Let S be a singly sorted speci�cation and � `! a : A.The following statements are equivalent:1. � 6`! A : �.2. A 2 N�.Proof: This follows from theorem 10.4.9 and lemma 10.4.14. 2In the following lemma we prove that the set N� is closed under �-reduction.Lemma 10.4.17. If D 2 N� and D !!� D0 then D0 2 N�.Proof: The following two statements are proved by induction on the de�nition of D 2 N�.a) if D !� D0 then D0 2 N�,b) if �!� �0 then D 2 N�0.We only prove statement a).1. Suppose the pseudoterm D is a topsort s. Note that s is in �-normal form.2. Suppose that the pseudoterm D is (�x :A: B) and that there are sorts s1; s2 suchthat � `! A : s1, �; x:A ` B : s2 and there is no sort s3 such that (s1; s2; s3) 2 R.If A !� A0 then it follows from weak subject reduction theorem that � `! A0 : s1and �; x:A `! B : s2. Hence (�x:A0: B) 2 N�.Similarly if B !� B0 we have that (�x:A: B 0) 2 N�.3. Suppose that the pseudoterm D is (�x:A: B) with B 2 N�;x:A.If A!� A0 then it follows from induction that B 2 N�;x:A0. Therefore (�x:A0: B) 2N�.Similarly if B !� B0 we have that (�x:A: B 0) 2 N�.2 As a consequence of the previous lemma, we have that the set of toptypes is closedunder �-reduction.



10.4. DESCRIPTION OF TOPTYPES 109Theorem 10.4.18. (�-closure of toptypes) Let S be a singly sorted speci�cation.If A is a toptype and A!!� A0 then A0 is a toptype.Proof: If A is a toptype then there are � and a such that � `! a : A and � 6`! A : �.By theorem 10.4.16 we have that A 2 N�. By lemma 10.4.17 we have that A0 2 N�.By lemma 10.4.15 we have that � 6`! A0 : �. By the weak type reduction theorem we havethat there exists a0 such that � ` a0 : A0. Hence A0 is a toptype. 2Corollary 10.4.19. Let S be a singly sorted speci�cation and � `! b : B.If there exists a sort s such that � `! B0 : s and B 0 $!� B then � `! B : s.Proof: By Church-Rosser theorem, there exists a common reduct D0 of B and B 0. Byweak subject reduction theorem we have that � `! D0 : s. By theorem 10.4.18 we havethat � `! B : s0 for some s0. By weak subject reduction � `! D0 : s0 and by uniquenessof types we have that s = s0. 2In the following, we prove that the set of toptypes is closed under substitution.Lemma 10.4.20. Let S be a singly sorted speci�cation. Let � ` d : D.If E 2 N�;y:D;�0 then E[y := d] 2 N�;�0[y:=d].Proof: This is proved by induction on E 2 N�;y:D;�0. Only one case is considered.Suppose that E is (�x:A: B) and that there are sorts s1; s2 such that �; y:D;�0 `! A : s1and �; y:D;�0; x:A ` B : s2. Moreover there is no sort s3 such that (s1; s2; s3) 2 R.Substitution lemma yields �;�0 `! A[y := d] : s1 and �;�0[y := d]; x:A[y := d] ` B[y :=d] : s2. Hence (�x:A: B)[y := d] 2 N�;�0[y:=d]. 2Theorem 10.4.21. (Substitution on Toptypes) Let S be a singly sorted speci�cation.Suppose that �; y:D;�0 ` e : E and that � ` d : D.If �; y:D;�0 6`! E : � then �;�0[y := d] 6`! E[y := d] : �.Proof: By theorem 10.4.16 we have that E 2 N�;y:D;�0. By lemma 10.4.20 we have thatE[y := d] 2 N�;�0[y:=d]. By lemma 10.4.15 we have that �;�0[y := d] 6`! E[y := d] : �. 2Corollary 10.4.22. Let S be a singly sorted speci�cation. Let � `! F : (�x :A: B),� `! B[x := a] : s and � `! a : A. Then �; x:A `! B : s.The next example shows that when the speci�cation is not singly sorted, a toptype maybecome typable after substitution.Example 10.4.23. The following speci�cation is not singly sorted:S 0; 1; 2S A 0 : 1; 0 : 2; 1 : 2R (2; 2)Given the context < x:1 >, the term (x ! x) is a toptype. Substituting x by 0 weobtain (0! 0) which has type 2.



110 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMS10.5 Normalisation for �-reductionIn this section we de�ne the notion of illegal redex and a function ' : C � T ! T thatcontracts the illegal redexes of a term (we write '�(a) instead of '(�; a)). We prove that '�is a strategy for the �-reduction. Moreover we prove that for singly sorted speci�cations,if a term b is typable in �!(S) then '�(b) does not contain illegal redexes. For each singlysorted speci�cation, we de�ne a converting morphism from �!(S) to �(S). Finally we provethat weak normalisation of �(S) implies weak normalisation of �!(S) if S is singly sorted.De�nition 10.5.1. Let S be a singly sorted speci�cation.We say that an abstraction �x:A:b is illegal in the context � if there exists D such that� `! �x:A:b : D and � 6`! D : �.An abstraction is legal if it is typable in � and it is not illegal in �.We say that (�x:A:b)a is an illegal �-redex in � if the abstraction �x:A:b is illegal in thecontext �.Lemma 10.5.2. Let S be a singly sorted speci�cation. An abstraction �x:A:b is legal inthe context � if and only if there exists D such that � `! �x:A:b : D and � `! D : s.Proof:()) Obvious.(() Since � `! �x:A:b : D, the abstraction �x:A:b is typable in �. Suppose there existsD0 such that � `! �x:A:b : D0. By the uniqueness of types theorem we have thatD0  $!� D. Corollary 10.4.19 yields � `! D0 : s.2 We de�ne the mapping ' that contracts the illegal redexes of a term.De�nition 10.5.3. We de�ne ' : C � T ! T as follows.'�(x) = x'�(s) = s'�(a b) = 8><>: a0[x := '�(b)] if '�(a) = �x:A:a0 is an illegal abstraction in �('�(a) '�(b)) otherwise'�(�x:A: a) = (�x:'�(A): '�;x:A(a))'�(�x:A: B) = (�x:'�(A): '�;x:A(B))Sometimes we write '(a) instead of '�(a).



10.5. NORMALISATION FOR �-REDUCTION 111De�nition 10.5.4. We de�ne ' : C ! C as follows.'(�) = �'(�; x:A) = '(�); x:'�(A)The following lemma states that '� is the identity on �(S).Lemma 10.5.5. Let S be a singly sorted speci�cation. If � ` a : A then '(�) = �,'�(a) = a and '�(A) = A.The following lemma states that '� is a strategy for �-reduction.Lemma 10.5.6. For all �, a!!� '�(a).Lemma 10.5.7. Let S be a singly sorted speci�cation. If �; x :A;�0 `! b : B and� `! a : A then '�;x:A;�0(b)[x := '�(a)] = '�;�0(b[x := a]).Proof: We prove the case of the application.'(F b) = ( a0[y := '(b)] if '(F ) = �y:A:a0 is illegal('(F ) '(b)) otherwise'((F b)[x := a]) = ( a1[y := '(b[x := a])] if '(F [x := a]) = �y:A0:a1('(F [x := a]) '(b[x := a])) otherwiseBy induction we have that '(F )[x := '(a)] = '(F [x := a]) and '(b)[x := '(a)] ='(b[x := a]).Note that F and '(F ) are typable in �; x:A;�0 and '(F )[x := '(a)] is typable in �;�0.There are several cases:1. Suppose '(F ) = �y:E: a0 is an illegal abstraction.Therefore �; x :A;�0 `! �y :E:a0 : D and �; x :A;�0 6`! D : � for some D. Itfollows from the weak subject reduction theorem that � `! '(a) : A0 with A!!� A0.Since � `! A : s we have that � ` '(a) : A. It follows from lemma 10.3.7 that�;�0[x := '(a)] `! '(F )[x := '(a)] : D[x := '(a)]. By theorem 10.4.21, we havethat �;�0[x := '(a)] 6`! D[x := '(a)] : �. Therefore '(F )[x := '(a)] is an illegalabstraction too.Moreover we have that'(F [x := a]) = '(F )[x := '(a)]= �y:E[x := '(a)]:a0[x := '(a)]We conclude that '(F b)[x := '(a)] = '((F b)[x := a]) as follows.'(F b)[x := '(a)] = a0[y := '(b)][x := '(a)]= a0[x := '(a)][y := '(b)[x := '(a)]]= '(F [x := a] b[x := a])



112 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMS2. Suppose '(F ) is not an illegal abstraction.(a) Suppose that '(F ) is not an abstraction. If '(F )[x := '(a)] = '(F [x := a])were an abstraction we would have that '(F ) = x and '(a) = �y :E: a0. Wehave that � `! '(a) : A and � `! A : s. By lemma 10.5.2 we have that'(F )[x := '(a)] is a legal abstraction. Hence the value of the application canbe computed as follows.'(F b)[x := '(a)] = ('(F ) '(b))[x := '(a)]= ('(F )[x := '(a)] '(b)[x := '(a)])= ('(F [x := a]) '(b[x := a]))= '(F [x := a] b[x := a])Hence '(F b)[x := '(a)] = '((F b)[x := a]).(b) Suppose that '(F ) is an abstraction but legal. By lemma 10.5.2 we havethat '(F [x := a]) is a legal abstraction. The equality '(F b)[x := '(a)] ='((F b)[x := a]) is proved as in case a).The rest of the cases are easy to prove. 2The next example shows that if the speci�cation is not singly sorted '(b[x := a]) maynot be syntactically equal to '(b)[x := '(a)].Example 10.5.8. The following speci�cation is not singly sorted:S 0; 1; 2S A 0 : 1; 0 : 2; 1 : 2R (2; 2)We take < � = x : 1; z : x > and b = (�y:x:y)z. Note that b contains illegal abstractionsbut b[x := 0] does not. Hence '(b[x := 0]) 6= '(b)[x := '(0)].In the following theorem, we prove that if b is typable in �!(S) then '(b) does notcontain illegal redexes when S is a singly sorted speci�cation. The value '(b) is of theform �x1 :A1: : : : �xn :An: b with b typable in �(S) and the abstractions whose boundvariables are x1; : : : ; xn are illegal.Theorem 10.5.9. (Preservation of the typing relation)Let S be a singly sorted speci�cation.If � `! a : A, n = depth(A) and A = �x1:A1 : : :�xn:An:B then'(�; x1:A1 : : : xn:An) ` a0 : '(B) with '(a) = �x1:'(A1) : : : �xn:'(An):a0.Proof: This property is proved by induction on the derivation of � `! a : A. We considerthe cases of the abstraction, the application and the conversion rule.



10.5. NORMALISATION FOR �-REDUCTION 113� (abstraction) �; x : A `! b : B� `! (�x:A: b) : (�x:A: B) .There are two possibilities, either (�x:A: B) is a toptype or not.1. Suppose � `! (�x:A: B) : s. By the generation lemma we have that �; x:A `!B : s2, � `! A : s1 and (s1; s2; s) 2 R.By induction we have that '(�; x : A) ` '(b) : '(B).Using weak subject reduction theorem we deduce that '(�; x:A) `! '(B) : s2.By lemma 10.3.5 we have that '(�; x : A) ` '(B) : s02 for some sort s02.Besides we have that '(�) ` '(A) : s01 for some sort s01.Since the speci�cation is singly sorted, we have that s1 = s01 and s2 = s02 andwe know that (s1; s2; s) 2 R.We obtain the following derivation:'(�; x:A) ` '(b) : '(B) '(�) ` '(A) : s1 '(�; x:A) ` '(B) : s2'(�) ` '(�x:A: B) : s'(�) ` '(�x:A: b) : '(�x:A: B)2. Suppose � 6`! (�x:A: B) : �. There are two possibilities, either B is a toptypeor not.(a) Suppose �; x:A `! B : s. By induction we have that:'(�; x:A) `! '(b) : '(B)where '(�x:A: b) = �x:'(A): '(b)(b) Suppose �; x:A 6`! B : �. It follows from induction that'(�; x:A;x1:A1 : : : xn:An) ` b0 : '(B 0)where B = �x1:A1 : : :�xn:An:B 0,'(b) = �x1:'(A1) : : : �xn:'(An):b0� (application) � `! b : (�x:A: B) � `! a : A� `! (b a) : B[x := a] .There are two possibilities: either B[x := a] is a toptype in � or not.1. Suppose � `! B[x := a] : s.(a) Suppose � `! (�x:A: B) : s0. By induction we have that'(�) ` '(b) : '(�x:A: B)By the generation lemma we have that � `! A : s1. By induction we havethat '(�) ` '(a) : '(A).Using the weak subject reduction theorem, we deduce that � `! '(b) : Dand � `! D : s. Hence '(b) is not an illegal abstraction in � and '(b a) =('(b) '(a)).Hence we have the following derivation:



114 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMS'(�) ` '(b) : '(�x:A: B) '(�) ` '(a) : '(A)'(�) ` '(b a) : '(B)[x := '(a)]By lemma 10.5.7 we have that '(B)[x := '(a)] = '(B[x := a]).(b) Suppose � 6`! (�x:A: B) : �.By lemma 10.3.8 we have that � `! A : s1. By induction we have that'(�) ` '(a) : '(A).By corollary 10.4.22 we have that �; x:A `! B : s2. By induction we havethat '(�; x:A) ` b0 : '(B) with '(b) = �x:'(A):b0.We have that � `! �x:'(A):b0 : (�x:'(A): '(B)). By theorem 10.4.18 wehave that � 6`! (�x:'(A): '(B)) : �. Therefore '(b) = �x:'(A):b0 is anillegal abstraction in the context �.Since '(b) = �x:A0:b0 is an illegal abstraction, we have that '(b a) = b0[x :='(a)].By the substitution lemma,'(�) ` b0[x := '(a)] : '(B)[x := '(a)]By lemma 10.5.7, we have that '(B)[x := '(a)] = '(B[x := a]).2. Suppose � 6`! B[x := a] : �.It follows from lemma 10.4.7 that � 6`! (�x:A: B) : �.By lemma 10.3.8 we have that � `! A : s1. By induction we have that '(�) `'(a) : '(A) and that '(�; x:A;x1:A1; : : : ; xn:An) ` b0 : '(B0) with '(b) = �x:'(A): �x1:'(A1) : : : �xn:'(An):b0 and B = �x1:A1 : : :�xn:An: B0.Weak subject reduction theorem yields � `! '(b) : (�x :A0: B 0). By theo-rem 10.4.18 we have that � 6`! (�x :A0: B 0) : �. Therefore '(b) is an illegalabstraction and then the value of '(b a) is computed as follows.'(b a) = �x1:'(A1)[x := '(a)] : : :�xn:'(An)[x := '(a)]:b0[x := '(a)]By the substitution lemma we have that b0[x := '(a)] has type '(B0)[x := '(a)]in the context '(�); x1:'(A1)[x := '(a)]; : : : ; xn:'(An)[x := '(a)]).By lemma 10.5.7 we have that: '(B0)[x := '(a)] = '(B0[x := a]).By theorem 10.4.21, we have that n = depth�(B[x := a]) = depth�;x:A(B).� (conversion) � `! b : B � `! A : s B  $!� A� `! b : ABy corollary 10.4.19, we have that � `! B : s0. By induction we have that '(�) `'(b) : '(B) and '(�) ` '(A) : s. After applying the conversion rule, we obtain'(�) ` '(b) : '(A).The rest of the cases are easy to prove. 2



10.6. WEAK AND STRONG NORMALISATION FOR ��-REDUCTION 115De�nition 10.5.10. Let S a singly sorted speci�cation. We de�ne '�S : C � T ! C � Tas follows.'�S(�; a) = 8>>>>>>>>>>><>>>>>>>>>>>: (< '(�); x1:A1 : : : xn:An >; b) if � `! a : A for some A, n = depth(A) and'(a) = �x1:A1 : : : xn:An: b(< '(�); x1:A1 : : : xn:An >; b) if a is a toptype in �, n = depth(a) and'(a) = �x1:A1 : : : xn:An: b(�; a) otherwiseSometimes we write ' instead of '�.Corollary 10.5.11. (Converting morphism from �!(S) to �(S))Let S be a singly sorted speci�cation. There is a weak converting morphism from �!(S)to �(S).Proof: By the previous theorem we have that '�S preserves the typing relation. Since ' isa strategy, '�S preserves conversion. Hence '�S is a weak converting morphism from �!(S)to �(S). 2Note that the previous theorem in fact shows that '� is a natural transformation from �!to � when these are considered as functors from the category of singly sorted speci�cationsinto a category analogous to Carst! where morphisms only preserve �-conversion.Corollary 10.5.12. (Weak Normalisation) Let S be a singly sorted speci�cation.If �(S) is weakly normalising then so is �!(S).10.6 Weak and Strong Normalisation for ��-reductionThe mapping ' contracts the illegal redexes in a given order. Now we contract the illegalredexes in any order by means of a reduction called ��-reduction. In this section we de�nethe notion of ��-reduction and prove that for singly sorted speci�cations if � `! a : A thena is ��-strongly normalising.De�nition 10.6.1. We de�ne the illegal �-reduction in � (or ��-reduction) by the fol-lowing rules:



116 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMS� ` (�x:A: b)a!�� b[x := a] if (�x:A: b)a is an illegal redex in �.�; x:A ` b!�� b0� ` (�x:A: b)!�� (�x:A: b0) � ` A!�� A0� ` (�x:A: b)!�� (�x:A0: b)�; x:A ` b!�� b0� ` (�x:A: b)!�� (�x:A: b0) � ` A!�� A0� ` (�x:A: b)!�� (�x:A0: b)� ` b!�� b0� ` (b a)!�� (b0 a) � ` a!�� a0� ` (b a)!�� (b a0)In the following lemma, we prove that ' is a strategy for ��-reduction.Lemma 10.6.2. Let S be a singly sorted speci�cation. If � `! a : A then � ` a !!��'�(a).In the following lemma, we prove that ' is a forgetting morphism.Lemma 10.6.3. Let S be a singly sorted speci�cation. If � `! a : A and � ` a !�� bthen '�(a) = '�(b).Proof: We prove only one case. Suppose that � ` (�x:A: b)a!�� b[x := a] and (�x:A: b)ais an illegal redex in �. Note that '(�x:A: b) is illegal. We have that'((�x:A: b)a) = '(b)[x := '(a)]= '(b[x := a]) by lemma 10.5.7.2Theorem 10.6.4. (Weak Normalisation for ��-reduction)Let S be a singly sorted speci�cation. If � `! b : B then b is ��-weakly normalising.Proof: Suppose � `! a : A. By lemma 10.6.2, � ` a !!�� '�(a). By theorem 10.5.9, wehave that '�(a) does not contain illegal redexes and hence it is in ��-normal form in �. Bylemma 10.6.3 the normal form is unique. 2For singly sorted speci�cations, the illegal abstractions of a term b constitute an initiallabelling for a superdevelopment (see chapter 7).We write a morphism, �!(S) L�! (�l;!�l)The function L puts labells in the illegal abstractions of a pseudoterm.



10.6. WEAK AND STRONG NORMALISATION FOR ��-REDUCTION 117De�nition 10.6.5. We de�ne the mapping L : C � T ! �l as follows (we write L(b)instead of L(�; b)).L(x) = xL(�x:A: b) = 8><>: @f0g(�0z:�ix:L(b);L(A)) if �x:A: b is illegal in �,take some i and z fresh@f0g(�0z:�0x:L(b);L(A)) otherwiseL(b a) = 8><>: @fig(L(b);L(a)) if nf �l(L(b)) = �ix: b0 and i > 0@;(L(b);L(a)) otherwiseIn the case of the abstraction, the function L puts a fresh label (greater than 0) toan illegal abstraction and the label 0 to a legal one. The terms in �l are untyped so thedeclaration x:A of an abstraction �x:A: b in T is encoded as a �l-redex whose argument isthe type A.In the case of the application, the function L puts the label i > 0 to the applicationwhose operator reduces to �ix: b0, an abstraction that corresponds to an illegal abstraction.All the illegal abstractions should have di�erent labels. In the case of the abstraction,we assume that all the labels of the illegal abstractions in L(b) and in L(A) are di�erent.Similarly, in the case of the the application, we assume that all the labels of the illegalabstractions in L(b) and in L(a) are di�erent.Lemma 10.6.6. Let S be a singly sorted speci�cation. If � `! b : B then L(b) 2 �l.Lemma 10.6.7. Let S be a singly sorted speci�cation and �; x:A `! b : B and � `! a : A.Suppose that all the abstractions in L(b) and in L(a) have di�erent labels except for 0.L(b[x := a]) = L(b)[x := L(a)]Theorem 10.6.8. Let S be a singly sorted speci�cation. If � `! b : B and � ` b!�� b0then L(b)!+�l L(b0).Corollary 10.6.9. Let S be a singly sorted speci�cation. Then L is a morphism from�!(S) equipped with ��-reduction to (�l;!�l).As a consequence, a ��-rewrite sequence can be mapped into a superdevelopment andso it is strongly normalising.Corollary 10.6.10. (Strong Normalisation for ��-reduction)Let S be a singly sorted speci�cation. If � `! b : B then b is ��-strongly normalising.



118 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMS10.7 Syntax Directed RulesIn this section we de�ne a syntax directed set of rules for any singly sorted pure typesystem. This system will be used in the following section to de�ne a function that infersthe type.When we try to infer the type of a term, we construct the derivation tree bottom-up,from the conclusion to the premises. This tree is constructed by means of an analysis ofthe term and of the context. According to the structure of the term we try to deducewhich rule may �t as the last rule in the derivation tree. For a term like an abstraction,the last rule in the derivation tree should be the abstraction rule. However the weakeningand the conversion rules of a pure type system can always be applied at any point in thederivation. This means that in the case of the abstraction, the last rule in the derivationtree might be either the abstraction, or the weakening or the conversion rules. The lastrule is not determined by the shape of the term. If the term constructor together withthe context determine the last rule to be applied then we can build the derivation treeof the term. A set of rules is called syntax directed if it has this property: the last rulein the derivation of the type of a term is determined by the structure of the term and ofthe context. The rules for pure type systems are not syntax directed since the last rulein the derivation can be the conversion or the weakening rules besides the correspondingstructural rule. In order to make these sets of rules syntax directed, we should removethe non-structural rules (like the weakening and the conversion ones) and keep only thestructural rules (the ones for term constructors). The system obtained by eliminating thenon-structural rules should be equivalent to the original one. Therefore, the weakeningrule is not removed but restricted to variables or constants and eventhough the conversionrule is removed, reduction or conversion is needed in the premises of almost all the rules.The equivalence (soundness and completeness) between the syntax directed set of rulesand the original one for pure type systems is not easy to be proved. In order to be ableto prove soundness and completeness we do not check the �-condition in the same systembut in a weaker one. The weaker system is the pure type system without the �-condition.First we de�ne the weak head �-reduction.De�nition 10.7.1. The weak head �-reduction is de�ned by the following rules:(�x:A: b)a!wh� b[x := a]F !wh� F 0(F a)!wh� (F 0 a)Note that this reduction is not closed under the compatibility rules, i.e. it is not truethat C[a]!wh� C[b] if a!wh� b.We de�ne a sytem �!sd(S) whose rules are syntax directed and is proved to be `equivalent'to �!(S). We denote that � ` A : C and C !! B by � ` A :!! B for an arbitrary typingrelation ` and a rewrite relation !.



10.7. SYNTAX DIRECTED RULES 119De�nition 10.7.2.The functor �!sd : Spec! Carst�! is de�ned as �!sd(S) = (T ; C;!�;`!sd) for S 2 Spec.The sets T and C and the relation !� are as in de�nition 9.3.14. The typing relation `!sdis de�ned as the smallest relation closed under the following rules.(axiom) � `!sd c : s for (c; s) 2 A(start) � `!sd A :!!� s�; x : A `!sd x : A where x is �-fresh(weakening) � `!sd b : B � `!sd A :!!� s�; x : A `!sd b : B where x is �-fresh and b 2 C [ V(formation) � `!sd A :!!� s1 �; x : A `!sd B :!!� s2� `!sd (�x:A:B) : s3 for (s1; s2; s3) 2 R(abstraction) �; x : A `!sd b : B� `!sd (�x:A: b) : (�x:A: B)(application) � `!sd b :!!wh� (�x:A: B) � `!sd a : A0� `!sd (b a) : B[x := a] A $!� A0where s 2 S.Since the conversion rule is removed, reduction or conversion is needed in the premisesof almost all the rules. In the start, the weakening and the product rules, the types arereduced to some sort. In the application rule, the type of F is reduced to (�x:A: B) andthe type A0 of a should be convertible to A.Note that these rules are syntax directed if the speci�cation is singly sorted. If thespeci�cation is not singly sorted, given a context � and a term b, the type of b may not beunique and the last rule to be applied in the derivation of the type of b is not determinedby the shape of b and �.Note that these systems verify only very weak subject reduction (see de�nition 4.3.1).We prove that the system �!sd(S) is `equivalent' to �!(S) (soundness and completeness).Lemma 10.7.3. If � `! A : D and D !!� s then � `! A : s.Proof: Suppose that � `! D : s0 for some s0. By the weak subject reduction theorem,� ` s : s0 and applying the conversion rule, we obtain � ` A : s.If D is a toptype, we have that D = s. 2Theorem 10.7.4. (Soundness)If � `!sd a : A then � `! a : A.Proof: The proof proceeds by induction on the derivation of � `!sd a : A. Only two casesare considered.



120 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMS� (product) � `!sd A :!!� s1 �; x : A `!sd B :!!� s2� `!sd (�x:A:B) : s3 for (s1; s2; s3) 2 R.By induction hypothesis and lemma 10.7.3, we have � `! A : s1 and �; x : A `! B :s2. Hence � `! (�x:A:B) : s3.� (application) � `!sd b :!!wh� (�x:A: B) � `!sd a : A0� `!sd (b a) : B[x := a] with A $!� A0.By induction hypothesis, we have that � `! b : D and D !!wh� (�x :A: B). Also� `! a : A0. There are two cases.1. Suppose that � `! D : s for some s. By weak subject reduction, we have that� `! (�x:A: B) : s. Generation lemma yields � `! A : s0 for some s0. Hence� `! a : A and so � `! (b a) : B[x := a].2. Suppose that D is a toptype in �. By the description of toptypes theorem, wehave that D 2 M� and so D = �x:A00: B 00 for some A00 and B 00. The weak headnormal form of D is D itself, so A = A00 and B 00 = B.2 The proof of completeness is straightforward.Theorem 10.7.5. (Completeness)If � `! a : A then there exists A0 such that � `!sd a : A0 and A $!� A0.Next we de�ne a system �sd(S) whose rules are syntax directed. We prove that if S issingly sorted then �sd(S) is `equivalent' to �(S). The systems �sd(S) and �!sd(S) di�er onlyin the abstraction rule. The abstraction rule in �!sd(S) does not contain the �-conditionand the one in �sd(S) does. The �-condition of �sd(S) is not checked in the same system�sd(S) but in �!sd(S). The idea is to use an auxiliary system to check for the �-condition[BJMP93] so that we can prove the `equivalence' between �sd(S) and �(S). In our case,the auxiliary system is the corresponding pure type system without the �-condition.De�nition 10.7.6.The functor �sd : Spec! Carst�! is de�ned by �sd(S) = (T ; C;!�;`sd) for S 2 Spec.The sets T and C and the relation !� are as in de�nition 9.3.14. The typing relation `sdis the smallest relation closed under the same rules as in de�nition 10.7.2 except that theabstraction rule is replaced by the following one.(abstraction) �; x : A `sd b : B � `!sd (�x:A: B) :!!� s� `sd (�x:A: b) : (�x:A: B)where s 2 S.



10.8. TYPE INFERENCE 121Observe that in the abstraction rule we have the requirement that (�x:A: B) shouldbe typable in �!sd(S).Note that these systems verify only very weak subject reduction (see de�nition 4.3.1).Theorem 10.7.7. (Soundness) Let S be a singly sorted speci�cation.If � `sd a : A then � ` a : A.Proof: We prove only the case of the abstraction rule.(abstraction) �; x : A `sd b : B � `!sd (�x:A: B) :!! s� `sd (�x:A: b) : (�x:A: B)By induction hypothesis we have that �; x :A ` b : B. By lemma 10.5.5, we have that'(�) = �, '(A) = A, '(b) = b and '(B) = B. By theorem 10.7.4 and lemma 10.7.3 wehave that � `! (�x:A: B) : s. By theorem 10.5.9 we have that � ` (�x:A: B) : s. 2Theorem 10.7.8. (Completeness) If � ` a : A then there exists A0 such that� `sd a : A0 and A $!� A0.Proof: We prove only the case of the abstraction rule.(abstraction) �; x : A ` b : B � ` (�x:A: B) : s� ` (�x:A: b) : (�x:A: B)By induction hypothesis we have that �; x:A `sd b : B 0 for some B 0 such that B  $!� B0.By the previous theorem (soundness) we have that �; x:A ` b : B 0.If � ` (�x:A: B) : s then there exists s1 and s2 such that (s1; s2; s) 2 R, � ` A : s1 and�; x:A ` B : s2. By correctness and unicity of types we have that �; x:A ` B 0 : s2. Hence� ` (�x:A: B 0) : s. By theorem 10.7.5 we have that � `!sd (�x:A: B 0) : D and D !!� s. 210.8 Type InferenceIn this section we de�ne a semi-algorithm of type inference for the class of singly sortedpure type systems. A semi-algorithm of type inference is a partial function or program thatterminates and yields the type of a term if the term is typable and it may not terminateotherwise.We cannot expect to �nd a terminating algorithm for the class of singly sorted pure typesystems since typability (and also conversion) for some non-normalising pure type systemsis not decidable (see theorem 9.3.20). Hence we de�ne a type inference semi-algorithm, forthe class of singly sorted pure type systems, including the non-normalising ones.In order to de�ne such a semi-algorithm, we use the syntax directed set of rules pre-sented in section 10.7. Although those rules are syntax directed when the speci�cationis singly sorted, they are not yet deterministic. There are several conditions, called sideconditions, that should be solved. For these conditions we have to verify if some element



122 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMSbelongs to some of the sets in a speci�cation, or we have to perform �-reduction or checkif two types are �-convertible.If the sets S, A and R of the speci�cation are not recursively enumerable (recursive)then the conditions s 2 S, (s1; s2) 2 A and (s1; s2; s3) 2 R are not semi-decidable (decid-able). In order to have a semi-algorithm we have to assume that these sets are recursivelyenumerable.There are several ways of �-reducing or checking �-conversion. We should specify inwhich way we reduce and how we check if two types are convertible. We write semi-algorithms or partial functions to compute the weak head normal form and to check for�-conversion. The �rst one computes the weak head normal form if it exists and it maynot terminate otherwise. The second one is a common-reduct strategy. The terminationof the semi-algorithm of type inference depends on the termination of these two functions.Therefore, in order to reduce the cases of non-termination of the type inference semi-algorithm, it is su�cient to reduce the cases of non-termination in the semi-algorithm thatcomputes the weak head normal form and in the common-reduct strategy.Reducing to a sort or to a product. In the cases of the start, weakening and productrules the types are reduced to a sort. In case the term is typable, we know that the weakhead normal form exists and it is a sort. In the application rule, the type of the operatoris a product (�x:A: B) also a weak head normal form.A weak head normal form can be either an abstraction (�x:A: b), or a product (�x:A: B), or an application (b a1 : : : an) where b is a sort or a variable or a product.Now we write a function that computes the weak head �-normal form if it exists.De�nition 10.8.1. A function whnf : T ! T is de�ned as follows .whnf (a) = a if a is in weak head normal formwhnf((�x:A: b) a d1 : : : dn) = whnf (b[x := a]d1 : : : dn)This function is a semi-algorithm, i.e. it may not terminate only in case the term isnot weak head normalising.Lemma 10.8.2. Let a 2 T be weak head normalising. Then whnf (a) is the weak headnormal form of a.This lemma is proved by induction on the number of steps of the leftmost reduction tonormal form.Checking �-conversion. In the application rule we have to check if two types are �-convertible. It would be su�cient to �nd a computable common-reduct strategy F :T � T ! P(T ) and then check if F (a; b) 6= ;.The strategy presented in [Coq91] (see also [Mag94]) reduces as less as possible byperforming weak head reduction. The idea is to compute the weak head normal forms of



10.8. TYPE INFERENCE 123the terms and compare their heads. In spite of being e�cient, it gives a set of common-reducts only if both terms are normalising. It might happen that a  $!� b and Fn(a; b)does not terminate if a or b are not normalising.De�nition 10.8.3. We de�ne Fn : T � T ! P(T ) as follows.Fn(d; d0) = fdg if d = d0Fn((�x:A: b); (�x:A0: b0)) = f(�x:A00: b00) j A00 2 Fn(A;A0) & b00 2 Fn(b; b0)gFn((�x:A: B); (�x:A0: B 0)) = f(�x:A00: B 00) j A00 2 Fn(A;A0) & B 00 2 Fn(B;B 0)gFn((x a1 : : : an); (x a01 : : : a0n)) = f((x a001 : : : a00n) j a00i 2 Fn(ai; a0i)gFn(d; d0) = Fn(whnf (d);whnf (d0))if d or d0 are not in weak head normal formFn(d; d0) = ; otherwiseThe next lemma says that the function Fn is a common-reduct strategy only for nor-malising pseudoterms, i.e. for all a; b 2 T that are normalising, for all c 2 Fn(a; b) we havethat a!!� c and b!!� c.Lemma 10.8.4. Let a and b be weakly normalising. Then1. Fn(a; b) terminates.2. For all c 2 Fn(a; b), we have that a!!� c and b!!� c.3. a $!� b if and only if Fn(a; b) 6= ;.All the parts of the previous lemma are proved by induction on (l(a)+ l(b);n(a)+n(b))where l computes the number of steps of the leftmost reduction to normal form and ncomputes the number of symbols.This strategy may not terminate when one of the terms is not weakly normalising. Forexample, suppose that 
 = (�x:A: x x)(�x:A: x x). Then Fn(b;
) does not terminate forany b 2 T .This common-reduct strategy is not satisfactory because we do not want to restrict ourtype inference procedure to normalising pure type systems.Now we de�ne three common-reduct strategies that work also for non-normalising pseu-doterms and hence for non-normalising pure type systems. The three compute the boundedgraphs of the terms (see also section 2.5) step by step. We compare these three strategiesaccording to their order and the number of cases they do not terminate. The third strategyis the best one for having a best order and least cases of non-termination.



124 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMSThe �rst strategy is called F and it always computes the bounded reduction graphs ofthe terms step by step. In each step, we have to check only if the `new part' of the graphhas a common element with the other set. This strategy terminates and gives at least onecommon reduct if both terms are �-convertible and it may not terminate otherwise.De�nition 10.8.5. We de�ne F : T � T ! P(T ) as follows.F(a; b) = If a = b thenj fagelsej H(fag; fbg)endNext we de�ne the function H : P(T ) �P(T )! P(T ). We suppose that it is alwaysapplied to subsets X;Y of T that verify the following preconditions.1. X and Y are the n and m-bounded reduction graphs of a and b, i.e. they are of theform G<n!� (a) = fd j a!!� d in less than n stepsgand G<m!� (b) = fd j a!!� d in less than m stepsg2. The intersection of X and Y is empty.3. 0 � n�m � 1.We only have to check if G!� (X) has elements in commonwith Y . If it does, G!� (X)\Yare the common-reducts we are looking for.H(X;Y ) = If G!� (X) \ Y 6= ; thenj G!� (X) \ Yelsej H(Y;X [ G!� (X))endNote that Y takes the role of X in the else-part.In the following lemma we prove that the function F is a common-reduct strategy.Lemma 10.8.6.1. If a  $!� b then F(a; b) terminates and yields a non-empty set that veri�es that forall c 2 F(a; b) we have that a!!� c and b!!� c.



10.8. TYPE INFERENCE 1252. If F(a; b) 6= ; then a $!� b.Proof:1. If a $!� b then there exists m and n such that 0 � m�n � 1 and G<n!� (a)\G<m!� (b) 6=;. Hence F(a; b) terminates and yields a non-empty set of common-reducts.2. Suppose F(a; b) 6= ;. Note that F(a; b) yields a set of common reducts for a and b.Hence a $!� b.2 This strategy presents some drawbacks, the order and the cases of non-termination.Firstly, its order is clearly exponential since we compute the bounded reduction graphsof the terms. Secondly, this function does not terminate in cases the terms are not con-vertible but normalising. For example, the terms (K x 
) and y are not convertible andF((K x 
); y) does not terminate.The next two common-reduct strategies we present try to improve these two features,order and cases of non-termination, by avoiding the computation of the bounded graphsand by reducing the cases of non-termination.A �rst improvement in this direction can be done if we use a normalising strategy. Inthe case we �nd a normal form in one of the bounded graphs, we stop computing them.Supposing the terms were convertible and one of them normalising then the other termshould also be normalising. Here we could apply a normalising strategy to the second term.We �rst write a function nf that �nds the normal form (if it exists) by reducing the spineredexes (see [BKKS87]).De�nition 10.8.7. A function nf : T ! T is de�ned as follows.nf (�x:A: b) = (�x:nf(A): nf(b))nf (�x:A: B) = (�x:nf(A): nf (B))nf (x a1 : : : an) = (x nf(a1) : : :nf (an))nf((�x:A: b) a1 : : : an) = nf(b[x := a1] : : : an)nf((�x:A: B) a1 : : : an) = (�x:nf(A): nf (B))nf(a1) : : :nf (an)The function nf reduce all the spine redexes at the same time. It is a semi-algorithm,i.e. it computes the normal form if the term is weakly normalising and it may not terminateotherwise.Lemma 10.8.8. Let a 2 T be weakly normalising. Then nf(a) is the normal form of a.



126 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMSThe second common-reduct strategy is called F+ and applies the function nf to one ofthe terms when it �nds that the other is weakly normalising.De�nition 10.8.9. We de�ne F+ : T � T ! P(T ) as follows.F+(a; b) = If a = b thenj f a gelsej If a or b are in normal form thenj If nf(a) = nf (b) thenj fnf(a)gelsej ;endelsej H+(fag; fbg)endendNext we de�ne the function H+ : P(T )�P(T )! P(T ). We suppose that it is alwaysapplied to subsets X;Y of T that verify the following preconditions.1. X and Y are the n and m-bounded reduction graphs of a and b.2. The intersection of X and Y is empty.3. 0 � n�m � 1.4. X and Y do not contain any normal form.If we �nd that G!(X) contains a normal form then we do not go on computing thebounded graph. We choose one element of Y and reduce it to normal form.H+(X;Y ) = If G!� (X) \ Y 6= ; thenj G!� (X) \ Yelsej If there exists a 2 G!� (X) in normal form thenj If for some b 2 Y , nf (b) = a thenj fagelsej ;endelsej H+(Y;X [ G!� (X))endend



10.8. TYPE INFERENCE 127In the following lemma we prove that F+ is a common-reduct strategy. The proof issimilar to the one of lemma 10.8.6.Lemma 10.8.10.1. If a $!� b then F+(a; b) terminates and yields a non-empty set that veri�es that forall c 2 F+(a; b) we have that a!!� c and b!!� c.2. If F+(a; b) 6= ; then a $!� b.In a sense the strategy F+ is `worse' than F since in F+ the operation nf that computesthe normal form can consume a great amount of time and space. One can also argue thatF+ is `better' than F for having a better order and less cases of non-termination.On one hand, in some cases the order of F+ is less than the order of F. The function Falways computes the bounded graph of the terms in a silly way. While F+ stops computingthe bounded reduction graph if one of the terms is weakly normalising. On the other hand,there are cases in whichF does not terminate whileF+ does. If the terms are not convertibleand normalising then F+(a; b) terminates and yields the empty set. However F does notterminate in some of these cases, like we have shown before.We de�ne a third common-reduct strategy that uses weak head reduction. This strategyis the best amongst the ones we presented for having the best order and least cases of non-termination.De�nition 10.8.11. We de�ne F++ : T � T ! P(T ) as follows.F++(a; b) = If a = b thenj fagelsej If a or b are in weak head normal form thenj L(whnf (a);whnf(b))elsej H++(fag; fbg)endendNote that whnf(a) and whnf (b) may not terminate. If they both terminate, thefunction L is applied only to weak head normal forms. We de�ne the function L : T �T !P(T ) as follows. In case both terms are weak head normal forms and their heads are equal,we try to �nd a common-reduct for their subterms. In any other case, this function yieldsthe empty set.



128 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMSL((�x:A1: b1); (�x:A2: b2)) = f(�x:A3: b3) j A3 2 F++(A1; A2) & b3 2 F++(b1; b2)gL((�x:A1: b1); (�x:A2: b2)) = f(�x:A3: b3) j A3 2 F++(A1; A2) & b3 2 F++(b1; b2)gL((x a1 : : : an); (x b1 : : : bn)) = f((x c1 : : : cn) j 8 i = 1; n ci 2 F++(ai; bi)gL(a; b) = ; otherwiseThe function H++ : P(T )�P(T )! P(T ) is always applied to subsets X and Y of Tthat verify the following preconditions.1. X and Y are the n and m-bounded reduction graphs of a and b.2. The intersection of X and Y is empty.3. 0 � n�m � 1.4. X and Y do not contain any weak head normal form.If the bounded graphs X contains a weak head normal form, we choose a b of Y andreduce it to weak head normal form.H++(X;Y ) = If G!�(X) \ Y 6= ; thenj G!�(X) \ Yelsej If there exists a 2 G!� (X) in weak head normal form thenj Choose b 2 Y , L(a;whnf(b))elsej H++(Y;X [ G!� (X))endendIn the following lemma we prove that the function F++ is a common-reduct strategy.Lemma 10.8.12.1. If a  $!� b then F++(a; b) terminates and yields a non-empty set that veri�es thatfor all c 2 F++(a; b) we have that a!!� c and b!!� c.2. If F++(a; b) 6= ; then a $!� b.



10.8. TYPE INFERENCE 129The proof of lemma is similar to the proof of lemma 10.8.6.The strategy F++ is better than F+ (and better than F) again for having a betterorder and less cases of non-termination. On one hand, in some cases the order of F++ isless than the order of F. The function F++ avoids constructing the bounded graphs inmore cases than F+. This is very important since the bounded graphs grow exponentially.If we �nd that one of the terms is weak head normalising, we try to reduce the other toweak head normal form. On the other hand, the function F++ terminates in cases that F+does not. More precisely, the strategy F++ terminates and yields the empty set when theterms are not normalising but they are both weak head normalising and their heads aredi�erent. The strategy F+ does not terminate in some of these cases like in for exampleF+((�x:A: 
); (�x:B: x)). Many of these cases can appear when we have recursion.In table 10.1, we compare the strategies de�ned before by answering the question: doesthe strategy terminate?.Reduction behaviour of the terms a and b Fn F F+ F++a $! b a , b are WN Yes Yes Yes YesOtherwise May not Yes Yes YesOtherwise a , b are WN Yes May not Yes YesOtherwise a , b are WN with 6= heads Yes May not May not YesOtherwise May not May not May Not May NotTable 10.1: Termination of the StrategiesSemi-algorithm of type inference. Now we de�ne a function type that computes thetype of a term (up to �-conversion) in a singly sorted pure type system. If a is typable in� in a singly sorted pure type system then type(�; a) terminates and yields the type of ain � (up to �-conversion), i.e. if � ` a : A then type(�; a)  $!� A. If the term a is nottypable in � then type(�; a) either yields ? or it does not terminate.This function is obtained from the syntax directed set of rules de�ned in section 10.7 forpure type systems. For each rule, we write a case of `pattern matching'. The �rst case inthis de�nition is for the axiom rule. The following three cases correspond to the start , theweakening and the product rules. The conditions that appear in these rules that are of theform `� ` A :!!� s' are replaced by `whnf(type(�; A)) = s'. The �fth case correspondsto the abstraction rule. Here we need to de�ne an auxiliary function type! to computethe type in a pure type system without the �-condition. The condition that appears inthis rule, `� `! (�x:A: B) :!!� s' is replaced by `whnf (type!(�; (�x:A: B))) = s'. Thelast case corresponds to the application rule. The condition `� ` b :!!� (�x:A: B)' thatappears in this rule is replaced by `whnf(type(�; b)) = (�x:A: B)'. The other conditionin this same rule `A $!� A0' is replaced by F++(A;A0) 6= ;.De�nition 10.8.13. The function typeS : C � T ! T? (or just type) is de�ned asfollows.



130 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMStype(�; s) = s0 if (s; s0) 2 Atype(< �; x : A >;x) = A if whnf (type(�; A)) = s 2 Sand x is �-freshtype(< �; x : A >; b) = type(�; b) if b 2 C [ V , b 6= x x is �-fresh andwhnf (type(�; A)) = s 2 Stype(�; (�x:A:B)) = s3 if whnf (type(�; A)) = s1,whnf (type(< �; x : A >;B)) = s2,and (s1; s2; s3) 2 Rtype(�; (�x:A: b)) = (�x:A: B) if type(< �; x : A >; b) = B andwhnf (type!(�;�x:A: B)) = s 2 Stype(�; (b a)) = B[x := a] if whnf (type(�; b)) = (�x:A: B),type(�; a) = A0 and F++(A;A0) 6= ;type(�; a) = ? otherwiseThe function type!S : C � T ! T? is de�ned exactly like type except for the casethat corresponds to the abstraction rule. In that case, the condition whnf (type!(�;�x:A: B)) = s 2 S is removed. The function type! computes the type of a term in a puretype system without the �-condition.The �rst part of the following theorem says that if the term has a type in a singlysorted pure type system then this is computed by type (up to �-conversion). The secondpart says that the value type(�; a) 6= ? is the type of a in � in a singly sorted pure typesystem.Theorem 10.8.14. (Correctness of `type') Let S = (S;A;R) be singly sorted suchthat the sets S, A and R are recursively enumerable.1. If � ` a : A then type(�; a) terminates and type(�; a) $!� A.2. If type(�; a) terminates and yields A then � ` a : A.Three functions are used in the de�nition of type: type!,whnf and F++. The functiontype! computes the type of a term in a pure type system without the �-condition. Theother two functions are used to solve the side-conditions, whnf computes the weak headnormal form of a term and the other F++ is a common-reduct strategy.The termination of type! and type depend on the termination of whnf and F++. Ifwhnf or F++ do not terminate then neither do type and type!.Type checking can be solved from type inference. Using the function type that infersthe type of a term, we write another function check that checks if a term has certain type.



10.9. CONCLUSIONS AND RELATED WORK 131De�nition 10.8.15. We de�ne the function check : C � T � T ! Bool as follows.check(�; a;A) = 8>>><>>>: true if whnf(type(�; A)) = s 2 S,type(�; a) 6= ? andF++(type(�; a); A) 6= ;false otherwiseWe have the following conclusion which has been proved before in [BJMP93] and [Pol96](see theorem 9.3.19).Theorem 10.8.16. (Decidability of Type Inference and Type Checking)Let S = (S;A;R) be singly sorted such that the sets S, A and R are recursive.If �(S) is �-weakly normalising then type inference and type checking in �(S) aredecidable.Proof: Suppose that �(S) is normalising. Then whnf and F++ are applied to normalisingterms and hence they terminate. Since the sets of the speci�cation are recursive, we havethat type! terminates and so do type and check. Therefore type inference and typechecking for �(S) are decidable. 210.9 Conclusions and Related WorkType Inference semi-algorithm. In order to solve the type inference problem for puretype systems we have �rst considered a syntax directed set of rules and then we have writtena function that infers the type based on this syntax directed set of rules. In table 10.2 weillustrate our methods.�-condition Originaltype system Type systemwith syntaxdirected rules Type inferencesemi-algorithmincluded �(S) �sd(S) typeremoved �!(S) �!sd(S) type!Table 10.2: Type Inference Semi-algorithmIn the �rst column of the table we indicate if the �-condition is included or removed,in the second one we give the names of the original type systems (with and without the �-condition), in the third one we give the corresponding type systems with a syntax directedset of rules and �nally the functions that infer the type in the original systems.The de�nitions of type and type! are based on the systems that appear next to themin the preceding column.The �-condition of �(S) is checked in the same system, whereas the one of �sd(S) ischecked in �!sd(S). Therefore in the de�nition of type, the �-condition is checked usingthe function type! and not type. In other words, we have to use type! to de�ne type.The �-condition of �sd(S) is checked in �!sd(S) that is weaker than �sd(S).



132 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMSWe have proved that if S is a singly sorted speci�cation then �sd(S) is `equivalent' to�(S) by using the relations shown in the diagram below. (see theorems 10.7.7 and 10.7.8).�(S) �= �sd(S)��-' \ \�!(S) �= �!sd(S)Related work. Several syntax directed sets of rules for pure type systems are studied in[BJMP93]. Our de�nition of a syntax directed set of rules follows the idea in [BJMP93] ofusing an auxiliary system to check for the �-condition. In that paper, the auxiliary systemis much weaker than �(S). In our case, the auxiliary system is �!(S), which is very closeto �(S). Moreover, �!(S) preserves some properties of �(S) like normalisation.In [Pol93a] a syntax directed set of rules for bijective pure type systems is presented.The class of bijective pure type systems includes all systems of the �-cube and is a propersubclass of the class we study here, the class of singly sorted pure type systems. Theclass of bijective pure type systems does not include any of the systems of the family ofAUTOMATH as described on page 216 and 217 in [Bar85].Decidability of type checking for normalising pure type systems whose set of sorts is�nite is proved in [BJ93]. In that paper, a type inference algorithm is de�ned that computesthe normal form in all the rules. A discussion on the side-conditions can be found in [Pol96].In this paper, decidability of type inference is proved for normalising pure type systemsthat are either singly sorted or semi-full under the assumption that the sets forming thespeci�cation are recursive. In theorem 10.8.16, we have given a new proof of the sameresult for the singly sorted but not for the semi-full pure type systems.Concerning the problem with �-conversion, we de�ne substitution for the set of pseu-doterms as in [CF58]. Using this de�nition of substitution the variable convention in[Bar85] is not necessary. The typing rules for pure type systems do not allow to typeterms unless their nested variables are all di�erent. In the start and the weakening rulesa variable is added to the context only if it is �-fresh. The term (�x:A: �x:B: x) is nottypable because the second occurrence of x is not < A : �; x:A >-fresh. It is necessary toperform �-conversion to ensure subject reduction. In fact subject reduction holds up to �-conversion (see [Pol93b]). In the context A : �, the term (�y:(A! A): �x:A: y)(�x:B: x)is typable in a pure type system. This term reduces to (�x :A: �x :B: x) which is nottypable. Subject reduction holds if we identify (�x:A: �x:B: x) with (�z:A: �x:B: x)A solution to the implementation of �-conversion appeared in [Bru72]. Here, referencenumbers to the positions of the abstractions are used instead of name variables. Anothersolution can be found in [Coq96]. In this case, a semantical argument is used to prove thecorrectness of the type checking algorithm.For pure type systems, the problem of uni�cation does not arise when inferring thetype. In typing �a la Curry, since the types of the variables are unknown, we have to solve



10.9. CONCLUSIONS AND RELATED WORK 133the uni�cation problem when checking and inferring the type. If we are checking whetheran application (f a) has a type B we do not know the type of the argument a. We couldinfer a type for a and a type for f . The terms f and a may have several types but we couldinfer the principal type, i.e. a type from which all others can be obtained by substitution.When we have inferred the principal types of f and a, we need to �nd a uni�er for thetype of f and a type whose domain is the type of a. The uni�cation and type inferenceproblems for normalising systems �a la Curry are not always decidable.
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Chapter 11Pure Type Systems with De�nitions11.1 IntroductionA pure type system does not provide the possibility to introduce a de�nition, i.e. anabbreviation (name) for a larger term which can be used several times in a program orproof. A de�nition mechanism is essential for practical use, and indeed implementationsof pure type systems such as Coq [Dow91], Lego [LP92] or Constructor [HA91] do providesuch a facility, even though the formal de�nition of the systems they implement do not.In this chapter, we extend the pure type system to include (non-recursive) de�nitions.The extension of a pure type system with de�nitions looks very harmless and thismay not seem a topic worthy of investigation. However the local de�nitions complicatematters and it is an open problem whether extending an arbitrary pure type system withde�nitions preserves strong normalisation or not. Worse still, proving strong normalisationfor particular pure type systems extended with de�nitions is already a problem. The strongnormalisation proofs for particular type systems given in [Coq85], [Luo89], [GN91], [Bar92]cannot be extended in any obvious way.In this chapter, we show how strong normalisation of a pure type system extended withde�nitions follows from strong normalisation of another (larger) pure type system. Thisenables us to prove that for all strongly normalising pure type systems that we know theextensions with de�nitions are also strongly normalising.In the systems of the AUTOMATH family [NGdV94] de�nitions are considered as partof the formal language. The meta-theory of these systems -including strong normalisation- is treated in detail in [Daa80]. However, the proofs of strong normalisation apply only tothe particular type system that they consider and do not extend to other type systems.This chapter is organised as follows. In section 11.2 we de�ne the pseudoterms andthe pseudocontexts extended with de�nitions, the �-reduction and the typing rules forde�nitions. In section 11.3 we prove properties for all pseudoterms like con
uence for ��-reduction and strong normalisation for �-reduction. In section 11.4 we prove propertiesfor typable terms. We prove that weak normalisation is preserved by the extension. This135



136 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONSproperty is easy to prove. We �rst unfold all the de�nitions and then we perform �-reduction. The unfolding of de�nitions may be ine�cient and we want to perform otherstrategies for ��. Hence we prove that strong normalisation is preserved by the extensionfor a class of pure type systems.11.2 Pure Type Systems with De�nitionsWe de�ne a functor �� from the category of speci�cations to the category of environmentalabstract rewriting systems with typing similar to �. A pure type systems with de�nitionsis a value ��(S) for S 2 Spec of �� given by a 4-tuple:1. a set T� of pseudoterms2. a set C� of pseudocontexts,3. two reduction relations on pseudoterms and pseudocontexts: one reduction is the�-reduction and the other relation is called �-reduction,4. a typing relation denoted by �̀.11.2.1 PseudotermsDe�nitions will be of the form x=a:A. A de�nition x=a:A introduces x as an abbreviationof the term a of type A.De�nitions are allowed both in pseudocontexts, e.g. �; x=a :A, and in pseudoterms,e.g. x=a:A in b. De�nitions in pseudocontexts are called global de�nitions and de�nitionsin pseudoterms are called local de�nitions.Next we extend the set of pseudoterms to include local de�nitions, expressions of theform (x=a:A in b).De�nition 11.2.1. Let S = (S;A;R) be a speci�cation. The set T� of pseudoterms isgiven by T� ::= V j S j (T� T�) j (�V :T�: T�) j (�V :T�: T�) j (V=T�:T� in T�)where V is the set of variables and S is the set of sorts.De�nition 11.2.2. The mapping FV : T� ! P(V ) is de�ned as in de�nition 9.3.2 byadding the following case.FV (x=a:A in b) = FV (A) [ FV (a) [ (FV (b)� fxg)We say that x is free in a if x 2 FV (a).



11.2. PURE TYPE SYSTEMS WITH DEFINITIONS 137De�nition 11.2.3. The mapping BV : T� ! P(V ) is de�ned as in de�nition 9.3.3 byadding the following case.BV (x=a:A in b) = BV (A) [ BV (a) [ (BV (b) [ fxg)We say that x is bound in a if x 2 BV (a).De�nition 11.2.4. The result of substituting d for (the free occurrences of) x in e isdenoted as e[x := d] and de�ned as in de�nition 9.3.4 by adding the following cases.(x=a:A in b)[x := d] = (x=a:A in b)(y=a:A in b)[x := d] = (y=a[x := d]:A[x := d] in b[x := d]) if x 6= y and y 62 FV (d)(y=a:A in b)[x := d] = (z=a[x := d]:A[x := d] in b[y := z][x := d]) if x 6= y, y 2 FV (d)and z is freshThe set of pseudoterms with holes in it is de�ned as follows.De�nition 11.2.5. Let S = (S;A;R) be a speci�cation. The set H� is given byH� ::= [ ] j V j S j (H� H�) j (�V :H�: H�) j (�V :H�: H�) j (V=H�:H� in H�)where V is the set of variables and S is the set of sorts.An element in H� is denoted by C[ ].Next we extend the set of pseudocontexts to include global de�nitions, expressions ofthe form �; x=a:A;�0.De�nition 11.2.6. Let S be a speci�cation. The set C� of pseudocontexts is given byi) � 2 C�ii) < �; x:A > 2 C� if � 2 C�, x 2 V ,A 2 T� and x is �-freshiii) < �; x= a :A > 2 C� if � 2 C�, x 2 V a 2 T�, A 2 T�, x is �-fresh and x 62FV (a) [ FV (A)Note that the set of pseudocontexts is not given byC� ::= � j C�; V : T� j C�; V = T� : T� :We have additional requirements for the well-formation of the pseudocontext �; x=a:A.We require that x should be �-fresh in order to avoid capture of bound variables in thede�nition of �-reduction given below. Moreover we require that x 62 FV (a) [ FV (A) inorder that de�nitions are not recursive.The expression �; x=a:A stands for the pseudocontext < �; x=a:A >.Next we de�ne a mapping Dom that gives the set of variables declared in a pseudocon-text.



138 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONSDe�nition 11.2.7. The mapping Dom : C� ! P(V ) is de�ned as de�nition 9.3.7 byadding the case for de�nitions.Dom(�; x=a:A) = Dom(�) [ fxgNext we de�ne a mapping Def that gives the set of variables declared as de�nitions ina pseudocontext.De�nition 11.2.8. The mapping Def : C� ! P(V ) is de�ned as follows.Def (�) = ;Def (�; x:A) = Def (�)Def (�; x=a:A) = Def (�) [ fxgDe�nition 11.2.9. The result of substituting d for (the free occurrences of) a variable xin � such that x 62 Dom(�) is denoted as �[x := d] and is de�ned as in de�nition 9.3.8 byadding the following case for de�nitions.< �; y=a:A > [x := d] =< �[x := d]; y=a[x := d]:A[x := d] >De�nition 11.2.10. Let d 2 T�. A change of a bound variable in the term d is thereplacement of a subterm (x=a:A in b), (�x:A: b) or (�x:A: b) by (y=a:A in b[x := y]),(�y:A: b[x := y]) or (�y:A: b[x := y]), respectively, where y =2 FV (b).De�nition 11.2.11. The pseudoterm b is �-convertible to b0 if b0 is the result of applyingto b a series of changes of variables or vice versa.Convention 11.2.12. Two terms are identi�ed if they are �-convertible.11.2.2 ReductionsIn this section we de�ne the � and the �-reduction. The �-reduction is de�ned as usual.De�nition 11.2.13. The �-reduction is written as a!� a0 and is de�ned by the followingrule. C[(�x:A: b)a]!� C[b[x := a]]where C[ ] 2 H� has only one occurrence of [ ].The intended meaning of a de�nition (x= a :A in b) is that the de�niendum x canbe substituted by the de�niens a in the expression b. A de�nition (x=a:A in b) can beconsidered as having a similar behaviour to (�x:A: b)a, i.e. the substitution of the variablex by a in the expression b. In the �-reduction where (�x:A: b)a reduces to b[x := a], theoperation b[x := a] is the substitution of all the occurrences of x by a in the expressionb. In contrast to �-reduction, the expression (x= a :A in b) reduces to the expression(x=a:A in b0) where b0 is obtained from b by unfolding one occurrence of x by a. Thisis clearly illustrated in the example we presented in section 1.2.2. In order to perform theunfolding of a de�nition, we introduce a new relation called �-reduction.



11.2. PURE TYPE SYSTEMS WITH DEFINITIONS 139De�nition 11.2.14. We de�ne the �-reduction (or !�) as the smallest relation onC��T��T� closed under the following rules (we write � ` d!� d0 instead of (�; d; d0) 2!�):�1; x=a:A;�2 ` x!� a� ` (x=a:A in b)!� b if x =2 FV (b)�; x=a:A ` b!� b0� ` (x=a:A in b)!� (x=a:A in b0)� ` a!� a0� ` (x=a:A in b)!� (x=a0:A in b) � ` A!� A0� ` (x=a:A in b)!� (x=a:A0 in b)� ` a!� a0� ` (a b)!� (a0 b) � ` b!� b0� ` (a b)!� (a b0)�; x:A ` a!� a0� ` (�x:A: a)!� (�x:A: a0) � ` A!� A0� ` (�x:A: a)!� (�x:A0: a)�; x:A ` a!� a0� ` (�x:A: a)!� (�x:A: a0) � ` A!� A0� ` (�x:A: a)!� (�x:A0: a)When � is the empty pseudocontext, a!� a0 is written instead of � ` a!� a0.Unfolding of de�nitions. The �rst rule allows to unfold de�nitions. The de�niens xreduces to its de�niendum a. This rule together with the compatibility rules perform theunfolding of global de�nitions. In a pseudocontext �; x=a:A;�0 a term d is �-reduced to aterm d0 if d0 is obtained replacing one occurrence of x by a in d.The third rule allows to unfold local de�nitions. We consider a local de�nition as if itwere global. The declaration x=a:A passes from the pseudoterm to the pseudocontext.Besides, we keep the bound variable x in (x=a:A in b) until we unfold all the occurrencesof x in b.After unfolding all the occurrences of x in b, we can remove the de�nition x=a:A fromthe term. The second rule allows to remove de�nitions when the variable x does not occurin b.Reductions depending on pseudocontexts. The �-reduction is an example of arewrite relation depending on a pseudocontext. We have that (T�; C�;!�) and (T�; C�;!��)are environmental abstract rewriting systems. If R 2 f!!�; $!�;!!��; $!��g a pseudocon-text has to be speci�ed, i.e. � ` a R b for a; b 2 T� and � 2 C�.Renaming of variables. The variables introduced as de�nitions are bound variables.Therefore �-conversion is necessary when rewriting terms. For example,x=y:A ` (y=z:u in x) $!� (y0=z:u in x)!� (y0=z:u in y)



140 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONSThe variable y occurs in the term (y=z:u in x) and in the pseudocontext x=y:A.From now on, we assume that all the bound variables of the term and all the declaredvariables of the pseudocontext are di�erent.We extend the de�nition of �-reduction to pseudocontexts.De�nition 11.2.15. We de�ne the �-reduction on pseudocontexts (or!�) as the smallestrelation on C� � C� closed under the following rules:� ` E !� E0�; y:E;�0 !� �; y:E 0;�0� ` E !� E0�; y=e:E;�0 !� �; y=e:E 0;�0� ` e!� e0�; y=e:E;�0 !� �; y=e0:E;�0We extend the de�nition of �-reduction to pseudocontexts.De�nition 11.2.16. We de�ne the �-reduction on pseudocontexts (or!�) as the smallestrelation on C� � C� closed under the following rules:� ` E !� E 0�; y:E;�0 !� �; y:E 0;�0� ` E !� E 0�; y=e:E;�0 !� �; y=e:E 0;�0� ` e!� e0�; y=e:E;�0 !� �; y=e0:E;�011.2.3 TypesWe de�ne the typing relation �̀ which allows to type de�nitions.De�nition 11.2.17. The typing relation �̀S (or �̀ for short) is the smallest relation onC � T � T closed under the following rules and the rules of de�nition 9.3.14 (we write� �̀ b : B instead of (�; b; B) 2 �̀) :(� � start) � �̀ a : A�; x=a:A �̀ x : A where x is �-fresh(��weakening) � �̀ b : B � �̀ a : A�; x=a:A �̀ b : B where x is �-fresh(��formation) �; x=a:A �̀ B : s� �̀ (x=a:A in B) : s(��introduction) �; x=a:A �̀ b : B � �̀ (x=a:A in B) : s� �̀ (x=a:A in b) : (x=a:A in B)(��conversion) � �̀ b : B � �̀ B0 : s � ` B  $!� B0� �̀ b : B 0



11.2. PURE TYPE SYSTEMS WITH DEFINITIONS 141where s ranges over sorts, i.e. s 2 S.De�nition 11.2.18. The functor �� : Spec! Carst is de�ned for S 2 Spec as follows.��(S) = (T�; C�;!��; �̀).The functor �� : Spec ! Carst is de�ned for f 2 Spec as the extension of f to theset of pseudoterms and pseudocontexts.We have to verify that ��(S) 2 Carst and that ��(f) 2 Carst. For ��(S) 2 Carst, wehave to prove the subject and type reduction properties. which are proved in the followingsections. For the second one, we have to verify that ��(f) preserves the rewrite and thetyping relations. This is very easy to prove.De�nition 11.2.19.A pure type system with de�nitions (DPTS) is de�ned as an element of��(Spec) = f��(S) j S 2 SpecgA singly sorted pure type system with de�nitions is de�ned as an element off��(S) j S 2 Spec & S is singly sorted gObserve that the system ��(S) is an extension of �(S).Explanation of the typing rules. The �-start and �-weakening rules allow the typingof global de�nitions. We cannot add x=a:A to the context � unless the term a has typeA in �. These rules ensure the correctness of what we abbreviate. Moreover they do notallow to abbreviate topsorts. For example in the systems of the �-cube it is not possibleto abbreviate 2.The �-formation and �-introduction rules allow the typing of local de�nitions. Theserules are similar to the abstraction and the �-formation rules. They di�er in the fact thatthe �-formation rule is not restricted by a set R of rules like the �-formation rule.We could have removed the �-formation rule and the condition `� �̀ (x=a:A in B) : s'of the �-introduction rule. In that case correctness of types and subject reduction wouldhold in a weaker form. The weaker form of correctness of types is stated as follows: if� �̀ a : A then either A !!�� s or � �̀ A : B and B !!�� s. The weaker form of subjectreduction is stated as follows: if � �̀ a : A and a !!�� a0 then there exists A0 such that� �̀ a0 : A0 and A!!�� A0 (see also de�nition 4.3.1).The �-conversion rule plays an important role in typing de�nitions. This rule allows touse the fact that the de�niens x and the de�niendum a are (�-)equal for typing a term.



142 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONSDe�nition vs abstraction and application. A de�nition (x=a:A in b) is not anotherway of writing (�x :A: b)a. There are important di�erences between (x=a :A in b) and(�x :A: b)a, both regarding their reduction behaviour and their typing. One reason forconsidering (x=a:A in b) and not (�x:A: b)a is that in some cases it is convenient to havethe freedom of substituting only in some of the occurrences of an expression in a givenformula.Another reason for considering (x=a:A in b) and not (�x:A: b)a is that the �rst maybe typable when the second is not. There are two situations where this happens:1. The fact that x is an abbreviation for a can be used to type b. This is shown in thefollowing example.Example 11.2.20. The term �� : �: (X = � : � in �y :X: �f : � ! �: fy) istypable in the system �2 extended with de�nitions. But it is not possible to typethe corresponding term expressed with an application and an abstraction in �2. Asa matter of fact, the following term is not typable in any system of the �-cube.��:�: (�X:�: �y:X: �f :�! �: fy)�In this term the application fy is not well-typed because the type X of the argumenty does not match the type �! � of the function f . In the �rst term this applicationis well-typed because we know that X is an abbreviation of �. Note that here weapply the �-conversion rule.2. The abstraction (�x:A: b) may not be allowed in a given type system.Example 11.2.21. The term (X=� ! �:� in �y:X: �f :X ! X: fy) is typablein the system �! extended with de�nitions. The corresponding term expressed withan application and an abstraction, i.e. (�X:�: �y:X: �f :X ! X: fy)� ! �, is nottypable in �! because in �! abstractions over type variables are not allowed.Properties of pure type systems with de�nitions. In the following sections we willprove these properties:� Con
uence for !� and for !��.� Strong normalisation for !�.� (T�; C�;!��; �̀) veri�es subject reduction, i.e. if � ` b !�� b0 and � �̀ b : B then� �̀ b0 : B.� (T�; C�;!��; �̀) veri�es type reduction, i.e. if � ` B !�� B0 and � �̀ b : B then� �̀ b : B 0.



11.3. PROPERTIES OF PSEUDOTERMS 143� Uniqueness of types for singly sorted speci�cations, i.e. if � �̀ d : D and � �̀ d : D0then � ` D $!�� D0 with S a singly sorted speci�cation.� Conservativity, i.e. for A 2 T , � 2 C 9a � ` a : A i� 9a � �̀ a : A.� Strengthening, i.e. if �1; x:A;�2 �̀ b : B and x 62 FV (�2) [ FV (b) [ FV (B) then�1;�2 �̀ b : B.� If a pure type system is ��-weakly normalising then the corresponding pure typesystem with de�nitions is ��-weakly normalising.� An extension of a pure type system is ��-strongly normalising if a `slightly' larger puretype system is �-strongly normalising. In particular, the Calculus of Constructionsextended with de�nitions is ��-strongly normalising.11.3 Properties of PseudotermsIn this section, we prove properties of � and �-reductions for all pseudoterms. Amongstthese properties, we will prove con
uence for � and for ��. Besides we will prove weak andstrong normalisation for �-reduction.11.3.1 Basic PropertiesIn the following lemma we show that a �-reduction step remains invariant if we enlarge thecontext. The proof is done by induction on the de�nition of !�.Lemma 11.3.1. Let < �1;�2;�3 >2 C� be such that �1;�3 ` b!� b0. Then�1;�2;�3 ` b!� b0:Both implications from left to right of the following lemma are a particular case oflemma 11.3.1. Both implications from right to left allow to make the context shorter. The�rst part states that declarations of the form x:A can always be removed from the context.The second part states that declarations of the form x=a :A can be removed from thecontext only if x 62 FV (b). This allows to remove global de�nitions as the second rule inthe de�nition of �-reduction does for local de�nitions. Both parts are proved by inductionon the de�nition of � and �.Lemma 11.3.2.1. Let < �; x:A;�0 >2 C� and b 2 T�.�;�0 ` b!�� b0if and only if �; x:A;�0 ` b!�� b02. Let < �; x=a:A;�0 >2 C� and b 2 T� be such that x =2 FV (b).�;�0 ` b!�� b0 if and only if �; x=a:A;�0 ` b!�� b0.



144 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONSIn the following lemma we show that the compatibility rule for (x=a:A in b) when wereduce inside b is a derivable rule.Lemma 11.3.3. The following rule is derivable from the ones in the de�nition of !�.� ` b!� b0� ` (x=a:A in b)!� (x=a:A in b0)Proof: By lemma 11.3.1, it follows that �; x=a :A ` b !� b0. By de�nition of !�, itfollows that � ` (x=a:A in b)!� (x=a:A in b0). 2We will prove that a de�nition (x=a:A in b) has the same behaviour as (�x:A: b)a inthe sense that the de�nition (x=a:A in b) �-reduces in several steps to b[x := a]. Then theunfolding of de�nitions that is achieved via the �-reduction corresponds to the operationof substitution b[x := a]. The proof is done by induction on the structure of b.Theorem 11.3.4. Let � =< �1; x=a:A;�2 >. Then� ` b!!� b[x := a]:Corollary 11.3.5. � ` (x=a:A in b)!+� b[x := a].Proof: By theorem 11.3.4, it follows that �; x=a:A ` b!!� b[x := a]. Then� ` (x=a:A in b) !!� (x=a:A in b[x := a])!� b[x := a]Note that x =2 FV (b[x := a]). 2The following lemma is proved by induction on the structure of a.Lemma 11.3.6. (Substitution Lemma) Suppose x 6= y and x =2 FV (d). Thena[x := b][y := d] = a[y := d][x := b[y := d]]The following lemma shows that � is substitutive. It is proved by induction on thegeneration of !�.Lemma 11.3.7. (Substitutivity for �) If a!� a0 then a[x := b]!� a0[x := b]:The following example shows that � is not substitutive for those variables which arede�nitions.



11.3. PROPERTIES OF PSEUDOTERMS 145Example 11.3.8. Let � be the context < A : �; id=(�y:A: y):(�y:A: A) >.� ` id!� (�y:A: y)But it is not true that � ` id[id := b]!� (�y:A: y)[id := b] for all b 2 T�. In this case thevariable id is a de�nition, this means that it can be substituted only by the de�niendum(�y:A: y).Lemma 11.3.9. If �; x=a:A;�0 ` b!�� b0 then �;�0[x := a] ` b[x := a]!!�� b0[x := a].In the following lemma we reduce inside the pseudoterm a of b[x := a]. This lemmaholds for any variable x, including those which are de�nitions. It is proved by inductionon the structure of b.Lemma 11.3.10. If � ` a!�� a0 then � ` b[x := a]!!�� b[x := a0]:Lemma 11.3.11. If � ` a!�� a0 and �; x=a:A;�0 ` b!� b0 then �; x=a0:A;�0 ` b!!��b0. The previous lemma is proved by induction on the de�nition of �; x=a:A;�0 ` b!� b0.11.3.2 Con
uence for �, � and ��-reductionsThe proof of con
uence for �-reduction is very easy. It follows from the fact that thecombinatorial reduction system < T�;!�> is orthogonal(see [Klo90]).Theorem 11.3.12. (Con
uence for �-reduction) Let a; a1; a2 2 T� such that a!!� a1and a!!� a2. Then there exists a pseudoterm a3 such that a1!!� a3 and a2 !!� a3.We prove con
uence for � and ��-reductions using the criteria proved in chapter 4.The idea of the proof of con
uence for �-reduction is as follows. We de�ne a `projectionmapping', j� j� : C��T� ! T . The `projection' jaj� is a pseudoterm that is obtained froma by unfolding all the de�nitions occurring in � and in a. First we prove that this mappingis a strategy for �-reduction. Then we prove that this mapping is a forgetting morphismfrom (T�; C�;!�) to (T ;!�). Finally, the proof of con
uence for ��-reduction follows fromthe previous considerations and the fact that the projection mapping is an implementingmorphism from (T�;!�) to (T ;!�).Next we de�ne the mapping j � j�.De�nition 11.3.13. The mapping j � j� : C� � T� ! T is de�ned as follows.jxj� = ( jaj�1 if � = �1; x=a:A;�2x otherwisejsj� = sja bj� = jaj�jbj�j�x:A: aj� = (�x:jAj�: jaj�;x:A)j�x:A: Bj� = (�x:jAj�: jBj�;x:A)jx=a:A in bj� = jbj�[x := jaj�] where x is �-fresh.



146 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONSThe value jdj� is obtained from d by unfolding all the global and local de�nitions. Theunfolding of global de�nitions is performed in the �rst line jxj� = jaj�1. The unfolding oflocal de�nitions is performed in the last line jx=a:A in bj� = jbj�[x := jaj�].Note that jdj� does not contain either local or global de�nitions, i.e. jdj� 2 T andDef (�) \ FV (jdj�) = ;. Conversely, if d 2 T is such that Def (�) \ FV (d) = ; thenjdj� = d. This means that for those pseudoterms which contain neither global nor localde�nitions, the mapping j � j� is the identity. Hence j � j� is a `projection' from T� and C�to T . Later, we will prove that jdj� is the �-normal form of the pseudoterm d.The function FV : T� ! P(V ) is extended to C� �T�. We say that FV�(b) is the set offree variables of b with respect to �.De�nition 11.3.14. The mapping FV : C� � T� ! P(V ) is de�ned as follows.FV�(b) = FV (b)FVx:A;�(b) = FV (A) [ (FV�(b)� fxg)FVx=a:A;�(b) = FV�(A) [ FV (a) [ (FV�(b)� fxg)Lemma 11.3.15.1. If x 62 FV (b) and x is �-fresh then x 62 FV (jbj�).2. Let < �1;�2;�3 >2 C� and b 2 T� be such that (FV�3(b)) \ Def (�2) = ;. Thenjbj�1;�2;�3=jbj�1;�3:3. Let < �1; x=a:A;�2 >2 C� and a 2 T�. Then jaj�1;x=a:A;�2 = jaj�1.Proof:1. It is proved by induction on the number of symbols occurring in � and b.2. It is proved by induction on the structure of b.3. None of the variables in Def (x=a :A;�2) can occur in a. Hence the result followsimmediately from the previous part.2 The following lemma states that j � j� preserves substitution. Also it shows that j � j�yields the same value for global and local de�nitions and this value is given by substitution.It is proved by induction on the structure of b.Lemma 11.3.16. Let < �; x=a:A >2 C� and b 2 T�. Thenjbj� [x := jaj�] = jb[x := a]j� = jbj�;x=a:AThe following lemma states that a pseudoterm reduces to its projection.



11.3. PROPERTIES OF PSEUDOTERMS 147Lemma 11.3.17. The `projection mapping' is a strategy for �-reduction. In other words,� ` d!!� jdj� for all d 2 T�, � 2 C�.Proof: It is proved by induction on the number of symbols occurring in � and in d. Onlytwo cases are considered.� Assume d = x. There are two possibilities, either x 2 Def (�) or not.If x 2 Def (�) then � =< �1; x=b:B;�2 >.� ` x !� b!!� jbj�1 by induction hypothesis and lemma 11.3.1= jxj�If x =2 Def (�) then � ` x!!� x = jxj�.� Assume d = (x=a:A in b). By induction hypothesis, it follows that � ` a!!� jaj�,� ` A!!� jAj� and that � ` b!!� jbj�.� ` (x=a:A in b) !!� (x=jaj�:jAj� in jbj�) by de�nition of � and lemma 11.3.3!!� jbj�[x := jaj�] by corollary 11.3.5= jx=a:A in bj�The rest of the cases are easy to prove. 2The following lemma states that the projections of two pseudoterms that are in!� areequal.Lemma 11.3.18. The projection mapping is a forgetting morphism from (T�; C�;!�) to(T ;!�), i.e. if � ` c!� d then jcj� = jdj� for all c; d 2 T� and � 2 C�.Proof: It is proved by induction on the structure of c. Only some cases are considered.� Suppose that c = x. This means that � = �1; x=a:A;�2 and � ` x!� a.jxj� = jaj�1= jaj� by lemma 11.3.15� Suppose that c is (x=a:A in b) and � ` (x=a:A in b)!� b with x =2 FV (b).jx=a:A in bj� = jbj�[x := jaj�]= jbj� by lemma 11.3.15 part 1The rest of the cases are easy to prove. 2



148 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONSTheorem 11.3.19. (Con
uence for �-reduction) If � ` a !!� a1 and � ` a !!� a2then there exists a3 such that � ` a1!!� a3 and � ` a2!!� a3.Proof: By theorem 11.3.17, the projection mapping is a strategy for �-reduction. Moreoverit follows from lemma 11.3.18 that this mapping is a forgetting morphism. By lemma 2.6.1,!� is con
uent. 2The following lemma states that the projection preserves �-reduction.Lemma 11.3.20. Let � 2 C�. The projection mapping j�j� is an implementingmorphismfrom (T�;!�) to (T ;!�), i.e. if a!� a0 then jaj� !!� ja0j�, for all a; a0 2 T�.Proof: It is proved by induction on the structure of a. Only the case a = (�x:B: b)d and(�x:B: b)d!� b[x := d] is considered.jaj� = j(�x:B: b)dj�= (�x:jBj�: jbj�)jdj�!� jbj�[x := jdj�]= jb[x := d]j� by lemma 11.3.16The rest of the cases are easy to prove. 2Theorem 11.3.21. (Con
uence for ��-reduction) If � ` a !!�� b and � ` a !!�� cthen there exists d 2 T� such that � ` b!!�� d and � ` c!!�� d.Proof: We apply lemma 2.6.2 to the abstract rewriting system (T ;!�) and the environ-mental abstract rewriting system (T�; C�;!��). We �x a pseudocontext, say � 2 C� andwe consider the ��-reduction in � (we write !�� instead of !��� ).� The inclusion mapping is an implementing morphism from (T ;!�) to (T�;!��).� By lemma 11.3.17, we have that the projection mapping j � j� is a strategy for � andhence for ��-reduction.� By lemmas 11.3.18 and 11.3.20, the projection mapping is an implementingmorphismfrom (T�;!��) to (T ;!�).Since (T ;!�) is con
uent so is (T�; C�;!��). 2Note that if the contexts � and �0 are di�erent then jaj� may be di�erent from jaj�0.Lemma 11.3.22. If �!!�� �0 then jaj�  $!� jaj�0.This is proved by induction on the length of a and �.



11.3. PROPERTIES OF PSEUDOTERMS 14911.3.3 Weak and Strong Normalisation for !�In this section an illustrative and intuitive proof of weak normalisation for �-reductionis presented. In order to prove strong normalisation for !!�, the well-known method ofde�ning a function w�(�) : C� � T� ! IN which decreases with �-reduction is used. Thisfunction computes the length of a maximal �-rewrite sequence from a term to the �-normalform.Note that a pseudoterm can be in �-normal form but not in �-normal form, for example(�y:�: y)(�y:A: y).According to the following theorem, a pseudoterm a is in �-normal form in a context� if and only if a does not contain either global or local de�nitions. The pseudotermsthat do not contain local de�nitions are in T . The pseudoterms that do not containglobal de�nitions are those pseudoterms whose free variables are not included in the set ofde�nitions of the context. The proof follows easily by induction on the structure of a.Theorem 11.3.23. Let a 2 T�.a is in �-normal form in � if and only if a 2 T and FV (a) \Def (�) = ;.The projection jaj� does not contain either global or local de�nitions. Therefore jaj� isin �-normal form. Since �-reduction is con
uent we have that the �-normal form is unique.As a consequence of this we have the result that follows.Corollary 11.3.24. (Weak Normalisation for �-reduction)The pseudoterm jaj� is the �-normal form of a in �.Note that by corollary 11.3.24 the �-normal form for an arbitrary pseudoterm exists,but it is not guaranteed that all �-paths starting at the pseudoterm are �nite.Next we de�ne a function w�(�) : C� � T� ! IN that decreases with �-reduction. Weuse this function in order to prove strong normalisation for �. We also prove that w�(b)computes the length of a maximal �-rewrite sequences starting at b.De�nition 11.3.25. If � 2 C� and b 2 T�, w�(b) is de�ned by induction on the numberof symbols in � and in b as follows.w�1;x=a:A;�2(x) = w�1(a) + 1w�(x) = 0 if x =2 Def (�)w�(s) = 0w�(x=a:A in b) = w�(a) + w�(A) + w�;x=a:A(b) + 1w�(a b) = w�(a) + w�(b)w�(�x:A: a) = w�;x:A(a) + w�(A)w�(�x:A: a) = w�;x:A(a) + w�(A)



150 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONSLemma 11.3.26. If FV (b) \Def (�2) = ; then w�1;�2;�3(b)=w�1;�3(b):The previous lemma is proved by induction on the number of symbols in < �1;�2;�3 >and in b.Lemma 11.3.27. w�1;x=a:A;�2(b) � w�1;�2(b):The previous lemma is proved by induction on the number of symbols in �1; x=a:A;�2and in b.Lemma 11.3.28. If � ` d!� d0 then w�(d) > w�(d0):Proof: The following two properties are proved simultaneously by induction on the numberof symbols in � and in d.1. If � ` d!� d0 then w�(d) > w�(d0).2. If �!� �0 then w�(d) � w�0(d).We only consider the proof of the �rst property for the case that d = x. We have that� = �1; x = a : A;�2 and � ` x!� a.w�(x) = w�1;x=a:A;�2(x)= w�1(a) + 1> w�1(a)= w�(a) by lemma 11.3.262 As an immediate consequence of lemma 11.3.28, we have the result that follows.Theorem 11.3.29. (Strong Normalisation for �)The reduction � is strongly normalising.Finiteness of developments can be deduced from strong normalisation of �-reduction.This is our third proof of �niteness of developments (see chapter 7).We write a function that maps a marked redex (�x:A: b)a into a de�nition x=a:A in b.This function maps one step of �-rewrite step into one or more steps of �-reduction.We suppose that the terms in � are typed.De�nition 11.3.30. The mapping � : �! T� is de�ned as follows.�(x) = x�(�x:A:b) = �x:�(A): �(b)�(b a) = �(b) �(a)�((�x:A:b)a) = (x=�(a):�(A): �(b))



11.3. PROPERTIES OF PSEUDOTERMS 151The last clause maps a marked redex (�x:A:b)a into a de�nition x=a:A in b.Lemma 11.3.31. �(b[x := a]) = �(b)[x := �(a)]This function is a re�ning morphism, i.e. it maps one step of �-reduction to one ormore steps of �-reduction.Lemma 11.3.32. If a!� b then �(a)!+� �(b).This lemma is proved by induction on the structure of a. In the case of a marked redex,(�x:A:b)a, we use corollary 11.3.5 and the previous lemma.Theorem 11.3.33. (Finiteness of Developments)The �-reduction is strongly normalising.Proof: By the criterion on strong normalisation 2.6.5, we have that the �-reduction isstrongly normalising. 2Note that w�(a) is an upper bound for the number of reductions steps in a �-reductionsequence starting at a in �, i.e. for all n, a1; : : : ; an,if � ` a = a1 !� a2!� : : :!� an�1 !� an then w�(a) � n.We will show that w�(a) is the length of a maximal �-rewrite sequence from a to its �-normal form. In order to show that w�(a) is a maximum we will build a �-reductionsequence of this length. We will de�ne a strategy F �1 : C� � T� ! T� for �-reduction suchthat the F �1-reduction sequence of a has length w�(a).The �-reduction unfolds only one occurrence of a variable at a time. We need to givean order to these occurrences in order to de�ne a strategy of reduction. We choose tounfold them from left to right. We will de�ne e[x0 := d] as the substitution of the leftmostoccurrence of the variable x for d in the expression e.De�nition 11.3.34. Let x 2 FV (e). The result of substituting d for the leftmostoccurrence of x in e is denoted as e[x0 := d] and is de�ned as follows.y[x0 := d] = ( d if x = yy otherwise(a b)[x0 := d] = ( (a[x0 := d] b) if x 2 FV (a)(a b[x0 := d]) otherwise(y=a:A in b)[x0 := d] = 8><>: y=a[x0 := d]:A in b if x 2 FV (a)y=a:A[x0 := d] in b if x =2 FV (a) and x 2 FV (A)y=a:A in b[x0 := d] if x =2 FV (a) [ FV (A)(�y:A: B)[x0 := d] = ( (�y:A[x0 := d]: B) if x 2 FV (A)(�y:A: B[x0 := d]) otherwise(�y:A: a)[x0 := d] = ( (�y:A[x0 := d]: a) if x 2 FV (A)(�y:A: a[x0 := d]) otherwise



152 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONSThe strategy we de�ne for �-reduction is similar to the perpetual strategy F1 on �-terms and for �-reduction(see section 6). The leftmost �-redex of a pseudoterm couldbe either a global or a local de�nition. If the leftmost redex is a variable x such thatx=a:A is in the context then the strategy gives the pseudoterm obtained by unfolding thisoccurrence of x by its de�niendum a. If the leftmost redex is a de�nition (x=a:A in b),we check whether the variable x occurs as a free variable in b or not. If it does, then thestrategy yields the pseudoterm obtained by unfolding the leftmost occurrence of x in b. Ifthe variable x does not occur as a free variable in b then we do not remove the de�nition.We will apply the strategy �rst to the de�niendum a and then to the type A. Only in thecase that both a and A are in �-normal form we remove the de�nition.De�nition 11.3.35. The mapping F �1 : C� � T� ! T� is de�ned as follows (we writeF �1(b) instead of F �1(�; b)).F �1(x) = ( a if � = �1; x=a:A;�2x otherwiseF �1(s) = sF �1(x=a:A in b) = 8>>>>>>>>>>><>>>>>>>>>>>: x=a:A in b[x0 := a] if x 2 FV (b)x=F �1(a):A in b if x =2 FV (b) anda is not in �-normal form in �x=a:F �1(A) in b if x =2 FV (b), a is in �-normal form in �and A is not in �-normal form in �b if x =2 FV (b) anda and A are in �-normal form in �F �1(a b) = ( (F �1(a) b) if a is not in �-normal form in �(a F �1(b)) otherwiseF �1(�x:A: B) = ( (�x:F �1(A): B) if A is not in �-normal form in �(�x:A: F �1(B)) otherwiseF �1(�x:A: a) = ( (�x:F �1(A): a) if A is not in �-normal form in �(�x:A: F �1(a)) otherwiseThe following two lemmas are proved by induction on the structure of the term.Lemma 11.3.36. Let x 2 FV (b). Then w�1;x=a:A;�2(b) = w�1;x=a:A;�2(b[x0 := a]) + 1.Lemma 11.3.37.1. If b is in �-normal form in � then F �1(b) = b.



11.4. PROPERTIES OF WELL-TYPED TERMS 1532. If b is not in �-normal form in � then � ` b!� F �1(b) and w�(b) = w�(F �1(b)) + 1The next theorem states that the F �1-reduction sequence of a has length w�(a). Theproof follows immediately from the previous lemma.Theorem 11.3.38. Let n = w�(a). Then� ` a!� F �1(a)!� : : : (F �1)n�1(a)!� (F �1)n(a) = jaj�.As a corollary we have that w�(a) is the length of a maximal �-rewriting sequencestarting at a and that the strategy F �1 is maximal. Here maxred(a) denotes the length ofthe maximal �-rewrite sequence starting at a.Corollary 11.3.39. (Maximal Strategy for �)w�(a) = maxred(a) and F �1 is maximal.Proof: By theorem 11.3.28, w�(a) is an upper bound for the number of reductions stepsin a �-reduction sequence starting at a in �, i.e. for all n, a1; : : : ; an,if � ` a = a1 !� a2!� : : :!� an�1 !� an then w�(a) � n.By the previous theorem, there is a �-rewrite sequence of length w�(a) that is the F �1-rewrite sequence. Hence w�(a) is the length of the maximal �-rewrite sequence and F �1 isa maximal strategy. 211.4 Properties of Well-Typed TermsThe properties in this section are proved for all terms typable in a pure type system withde�nitions, i.e. for pseudoterms a such that 9A;�[� �̀ a : A]. Amongst these properties,we will prove that �(S) is weakly normalising if and only if ��(S) is weakly normalising.Also we will prove strong normalisation of ��-reduction for a class of pure type systemswith de�nitions.11.4.1 Basic PropertiesIn the following lemmawe will show that the structure of the term gives an idea of the shapeof its type and its derivation. For example, the type of an abstraction will be a product(up to ��-conversion) and the last part of the derivation consists of the application of theabstraction rule and then 0 or more applications of the � or the �-conversion rules.The di�erent cases of next lemma are all proved by induction on the derivation.Lemma 11.4.1. (Generation Lemma)1. If � �̀ s : D then there exists a sort s0 such that � ` D $!�� s0 and (s; s0) 2 A.



154 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONS2. If � �̀ x : D then there exists s such that � ` B  $!�� D, either � �̀ B : s andx : B 2 � or � �̀ b : B and x = b : B 2 � for some b.3. If � �̀ (�x:A:B) : D then there are sorts such that (s1; s2; s3) 2 R, that � �̀ A : s1,that �; x:A �̀ B : s2 and � ` D $!�� s3.4. If � �̀ (�x :A: b) : D then there are s and B such that � �̀ (�x :A: B) : s, that�; x : A �̀ b : B and � ` D  $!�� (�x:A: B).5. If � �̀ (b a) : D then there are A and B such that � �̀ b : (�x:A: B), � �̀ a : Aand � ` D  $!�� B[x := a].6. If � �̀ (x=a:A in b) : D then there exists B such that either �; x=a:A �̀ b : B,� �̀ (x=a:A in B) : s and � ` D  $!�� (x=a:A in B) or �; x=a:A �̀ b : s and� ` D $!�� sObserve that in 6, the type of a term (x=a:A in b) can be a sort s or an expression ofthe form (x=a:A in B).Lemma 11.4.2. (Correctness of Types) If � �̀ A : B then there exists s such thateither B = s or � �̀ B : s.The previous lemma is proved by induction on the derivation of � �̀ A : B.Lemma 11.4.3. If � �̀ b : (�x :A:B) then there are sorts (s1; s2; s3) 2 R such that� �̀ A : s1 and �; x:A �̀ B : s2.Proof: It follows from lemma 11.4.2 that � �̀ (�x:A:B) : s. By the generation lemma part3, it follows that there are sorts (s1; s2; s3) 2 R such that � �̀ A : s1 and �; x:A �̀ B : s2.2 Recall that � is a context if there are b and B such that � �̀ b : B.Lemma 11.4.4. (Correctness of Contexts)1. If �; x:A;�0 is a context then there exists a sort s such that � ` A : s.2. If �; x=a:A;�0 is a context then � �̀ a : A.Both parts of the previous lemma are proved by induction on the derivation.Lemma 11.4.5. (Thinning Lemma) Let �0 be a context.If � �̀ a : A and � � �0 then �0 �̀ a : A.The previous lemma is proved by induction on the derivation of � �̀ a : A.



11.4. PROPERTIES OF WELL-TYPED TERMS 155Lemma 11.4.6. If � �̀ a : A and �; x:A;�0 �̀ b : B then �; x=a:A;�0 �̀ b : B.The previous lemma is proved by induction on the derivation of �; x:A;�0 �̀ b : B.Example 11.4.7. It is not true that if �; x=a:A;�0 �̀ b : B then �; x:A;�0 �̀ b : B.For instance, we can derive �:�;X=�:�; y:X; f :(�! �) �̀ (f y) : �.But there is no term B such that �:�;X:�; y:X; f :(�! �) �̀ (f y) : B. This exampleis similar to example 11.2.20.Lemma 11.4.8. (Substitution Lemma)1. If �; x=a:A;�0 �̀ b : B then �;�0[x := a] �̀ b[x := a] : B[x := a]2. If � �̀ a : A and �; x:A;�0 �̀ b : B then �;�0[x := a] �̀ b[x := a] : B[x := a].Proof: The �rst part is proved by induction on the derivation of �; x=a:A;�0 �̀ b : B.The second part follows by lemma 11.4.6 and the previous part. 2Theorem 11.4.9. (Subject Reduction Theorem)If � �̀ d : D and � ` d!�� d0 then � �̀ d0 : D.Proof: The following properties are proved simultaneously by induction on the derivationof � �̀ d : D.1. If � ` d!�� d0 and � �̀ d : D then � �̀ d0 : D2. If �!�� �0 and � �̀ d : D then �0 �̀ d : DWe only give the proof for some cases of the �rst property. Suppose that the last rulein the derivation of � �̀ d : D is:� (application) � �̀ b : (�x:A: B) � �̀ a : A� �̀ (b a) : B[x := a]Only one case is considered.Assume b = (�x:A1: b1) and � ` (�x:A1: b1)a!� b1[x := a]. Generation lemma part4 and con
uence for ��, yield A  $!�� A1 and by also using the conversion rule wehave �; x : A1 �̀ b1 : B. By generation lemma part 3, it follows that � �̀ A1 : s andby using the conversion rule we have that � �̀ a : A1. By substitution lemma 11.4.8part 2, it follows that � �̀ b1[x := a] : B[x := a].



156 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONS� (� -introduction) �; x=a:A �̀ b : B � �̀ (x=a:A in B) : s� �̀ (x=a:A in b) : (x=a:A in B)Only one case is considered.Assume � ` (x=a:A in b)!� b under the hypothesis x =2 FV (b).By lemma 11.4.4, it follows that � �̀ a : A. By the substitution lemma 11.4.8 part 1,it follows that � �̀ b[x := a] : B[x := a]. Since x =2 FV (b), the equality b[x := a] = bholds.By corollary 11.3.5, it follows that � ` (x=a:A in B) $!� B[x := a].By conversion rule, � �̀ b : (x=a:A in B).The rest of the cases are easy to prove. 2Theorem 11.4.10. (Type Reduction Theorem)If � �̀ d : D and � ` D!�� D0 then � �̀ d : D0.The previous theorem is proved using correctness of types lemma and subject reductiontheorem.We extend the mapping j � j� to contexts.De�nition 11.4.11. The mapping j � j : C� ! C is de�ned as follows.j�j = �j�; x:Aj = j�j; x:jAj�j�; x=a:Aj = j�jNote that if � 2 C then j�j = �. This means that for contexts that do not containde�nitions the mapping j � j is the identity. This mapping j � j is the projection from C�to C.In the following theorem we prove that the range of j� j restricted to the set of typableterms in ��(S) is the set of typable terms in �(S).Theorem 11.4.12. If � �̀ a : A then j�j ` jaj� : jAj�.Proof: Suppose that the last rule in the derivation of � �̀ a : A is:� (�- start) � �̀ a : A�; x=a:A �̀ x : A where x is �-fresh.By induction j�j ` jaj� : jAj�. By de�nition 11.3.13 we have that jxj�;x=a:A = jaj�. Bylemma 11.3.15 part 2, it follows that jAj�;x=a:A = jAj�. Hence j�; x=a:Aj ` jxj�;x=a:A :jAj�;x=a:A.



11.4. PROPERTIES OF WELL-TYPED TERMS 157� (�-introduction) �; x=a:A �̀ b : B � �̀ (x=a:A in B) : s� �̀ (x=a:A in b) : (x=a:A in B) .By induction, j�; x=a :Aj ` jbj�;x=a:A : jBj�;x=a:A. By lemma 11.3.16 and de�nition11.3.13 we have that jbj�;x=a:A = jbj�[x := jaj�]= jx=a:A in bj�jBj�;x=a:A = jBj�[x := jaj�]= jx=a:A in Bj�:Hence j�j ` jx=a:A in bj� : jx=a:A in Bj�.The rest of the cases are easy to prove. 2The �rst part of the next corollary states that a term is typable in �(S) i� it is typablein ��(S). The second part states that a type is inhabited in �(S) if and only if it isinhabited in ��(S). If we interpret types as propositions and terms as proofs, this meansthat a proposition is provable in �(S) i� it is provable in ��(S).Corollary 11.4.13. (Conservativity) Let a 2 T and � 2 C. Then1. 9A � ` a : A i� 9A � �̀ a : A.2. Let A 2 T . Then � ` a : A i� � �̀ a : A.3. 9A � ` A : a i� 9A � �̀ A : a.As a consequence of conservativity, we have the following result.Corollary 11.4.14. (Undecidability)Let S = (S;A;R) be a speci�cation. The problems of type inference, type checkingand inhabitation are undecidable in ��(S) if they are undecidable in �(S).Therefore, type inference and type checking is undecidable in inconsistent pure type sys-tem with de�nitions whose speci�cation is impredicative and non-dependent (see theorem9.3.20). The problem of inhabitation in the systems of the ��-cube (the �-cube extendedwith de�nitions) except for ��! and ��! is undecidable.Theorem 11.4.15. (Implementing morphism from ��(S) to �(S)) The pair (j j; j j )of projections mappings is an implementing morphism from ��(S) to �(S).Proof: By theorem 11.4.12, the pair (j j; j j ) preserves the typing from ��(S) to �(S). Itfollows from lemmas 11.3.18 and 11.3.20 that (j j; j j ) is an implementing morphism from��(S) to �(S). 2



158 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONSWe write j j instead of (j j; j j ).Note that the previous theorem in fact shows that there is a natural transformationfrom �� to � when these are considered as functores from the category of speci�cationsinto a category analogous to Carst where morphisms are the implementing morphisms.Corollary 11.4.16. (Semantics) A semantics for �(S) is a semantics for ��(S).Proof: Suppose there is an intepretation f from �(S) to some environmental abstractrewriting system with typing A. The proof is shown in the following diagram.��(S) j j�! �(S) f�! A2 We apply the uniqueness of types criteria of chapter 4 to prove the following theorem.Theorem 11.4.17. (Uniqueness of Types)Let S be a singly sorted speci�cation. Then ��(S) veri�es uniqueness of types.Proof: By lemma 11.3.17, we know that j j is a strategy for �-reduction. Moreoverby lemma 11.4.12, this mapping preserves the typing. Since S is singly sorted, we havethat �(S) veri�es uniqueness of types. It follows from lemma 4.3.13 that if �(S) veri�esuniqueness of types so does ��(S). 211.4.2 StrengtheningIn this section we will prove strengthening. This is a property we expect to hold: if in aderivation a variable x occurs only in the declaration x:A in the context then we should beable to construct a derivation omitting this variable from the context. When the variablehas been declared as a de�nition x=a :A in the context, this property is an immediateconsequence of the substitution lemma. We need to prove it for the case of variables whichare not de�nitions.In order to prove strengthening, we use the corresponding result for pure type systems(see [BJ93]).Lemma 11.4.18. Let �0 be a context. If �0 !!�� � and � �̀ a : A then �0 �̀ a : A.Proof: By induction on the number of steps in the derivation of � �̀ a : A. Only somecases are considered.� (formation) � �̀ A : s1 �; x : A �̀ B : s2� �̀ (�x:A:B) : s for (s1; s2; s) 2 R.By induction we have that �0 �̀ A : s1. Therefore �0; x:A is a context. By inductionwe have that �0; x : A �̀ B : s2. Hence�0 �̀ A : s1 �0; x : A �̀ B : s2�0 �̀ (�x:A:B) : s



11.4. PROPERTIES OF WELL-TYPED TERMS 159� (� - formation) �; x=a:A �̀ B : s� �̀ (x=a:A in B) : s .There exists a derivation of � �̀ a : A that has less number of steps than thisderivation of �; x=a :A �̀ B : s. By induction we have that �0 �̀ a : A. Hence�0; x=a:A is a context. By induction we have that �0; x=a:A �̀ B : s.� (conversion) � �̀ b : B � �̀ B0 : s0 � ` B  $!�� B0� �̀ b : B 0By induction we have that �0 �̀ b : B and that �0 �̀ B0 : s0. By lemma 11.3.22 wehave that �0 ` B  $!�� B0.The rest of the cases are easy to prove. 2Lemma 11.4.19. If �1; z:D;�2 �̀ e : E and z =2 FV (�2) [ FV (e) then there exists E 0such that �1;�2 ` E !!�� E0 and �1;�2 �̀ e : E 0.Proof: By induction on the number of steps in the derivation of �1; z:D;�2 �̀ e : E. Onlysome cases are considered.� (abstraction) Suppose that the last rule in the derivation is the abstraction:�1; z:D;�2; x : A �̀ b : B �1; z:D;�2 �̀ (�x:A: B) : s�1; z:D;�2 �̀ (�x:A: b) : (�x:A: B)By induction, there exists B 0 such that �1;�2 ` B !!�� B0 and that:�1;�2; x : A �̀ b : B 0 (i)By generation lemma there exist s1 and s2 such that (s1; s2; s) 2 R.�1; z:D;�2 �̀ A : s1 (ii)�1; z:D;�2; x:A �̀ B : s2 (iii)There exists a derivation of �1; z:D;�2 �̀ A : s1 that has less number of steps thanthe derivation of �1; z:D;�2 �̀ (�x:A: B) : s. It follows by induction that�1;�2 �̀ A : s1 (iv)We can not apply the induction hypothesis to (iii) because the variable z may occurin B.Since the mapping j j preserves the typing, in particular for (iii) we have that:j�1; z:D;�2; x:Aj ` jBj�1;z:D;�2;x:A : s2Note that jBj�1;z:D;�2;x:A = jBj�1;�2.



160 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONSIt follows from subject reduction theorem for pure type systems thatj�1; z:D;�2; x:Aj ` jB 0j�1 ;�2;x:A : s2The variable z does not occur in jB 0j�1;�2;x:A. By strengthening for pure type systems,j�1;�2; x:Aj ` jB 0j�1;�2 : s2 (v)By lemma 11.4.18, �1;�2; x:A �̀ jB 0j�1;�2 : s2 (vi)This is a derivation of �1;�2 �̀ (�x:A: b) : (�x:A: jB 0j�1;�2):�1;�2 ` B 0 $!�� jB0j�1;�2 (i) (vi)�1;�2; x : A �̀ b : jB 0j�1;�2 (iv) (vi)�1;�2 �̀ (�x:A: jB 0j�1;�2) : s�1;�2 �̀ (�x:A: b) : (�x:A: jB 0j�1;�2)� (� -introduction) �1; z:D;�2; x=a:A �̀ b : B �1; z:D;�2 �̀ (x=a:A in B) : s�1; z:D;�2 �̀ (x=a:A in b) : (x=a:A in B) .By induction, there exists B 0 such that �1;�2; x=a:A ` B !!�� B0 and that:�1;�2; x=a:A �̀ b : B 0 (i)We can not apply the induction hypothesis to �1; z :D;�2 �̀ (x= a :A in B) : sbecause the variable z may occur in B.We apply correctness of types to (i) and we have that either �1;�2; x=a:A �̀ B0 : s0or B 0 = s0.1. Suppose �1;�2; x=a:A �̀ B0 : s0. This is a derivation of �1;�2 �̀ (x=a:A in b) :(x=a:A in B 0) with �1;�2; x=a:A ` B !!�� B0.�1;�2; x=a:A �̀ b : B 0 �1;�2; x=a:A �̀ B0 : s0�1;�2 �̀ (x=a:A in B 0) : s0�1;�2 �̀ (x=a:A in b) : (x=a:A in B 0)Note that this case is not di�cult like the case of the abstraction rule. The proofof the case for the abstraction rule is complicated because the �-formation rulehas more restrictions than the �-formation rule.2. Suppose B 0 = s0. By generation lemma �1; z:D;�2; x=a:A �̀ B : s. By subjectreduction theorem we have that �1; z:D;�2; x=a:A �̀ B0 : s. Then (s0; s) is anaxiom. Since �1;�2 is a context we have that�1;�2; x:A �̀ s0 : s (ii)



11.4. PROPERTIES OF WELL-TYPED TERMS 161This is a derivation of �1;�2 �̀ (x=a:A in b) : (x=a:A in s0).�1;�2; x=a:A �̀ b : s0 �1;�2; x=a:A �̀ s0 : s�1;�2 �̀ (x=a:A in s0) : s�1;�2 �̀ (x=a:A in b) : (x=a:A in s0)The rest of the cases are easy to prove. 2Strengthening for arbitrary speci�cations follows immediately from the previous lemma.Theorem 11.4.20. (Strengthening for arbitrary speci�cations)If �1; x:A;�2 �̀ b : B and x =2 FV (�2) [ FV (b) [ FV (B) then �1;�2 �̀ b : B.11.4.3 Weak and Strong Normalisation for ��-reductionIn this section we prove that if �(S) is weakly normalising so is ��(S). Also we prove that apure type system with de�nitions ��(S) is ��-strongly normalising if a slightly larger puretype system �(S 0) is �-strongly normalising. The idea of the proof of strong normalisationis as follows.� We de�ne a mapping f g : T��C� ! T similar to the projection j j . The value fag�is a term that is obtained from a by unfolding all the global and local de�nitions.However f g di�ers from j � j� in the value given to (x= a :A in b). Instead ofremoving the local de�nition it is translated to a �-redex, i.e. an application and anabstraction.� This function f g maps an in�nite �� reduction sequence to an in�nite � reductionsequence.� The function f g maps terms that are typable in a DPTS ��(S) to terms that aretypable in a PTS slightly larger than �(S).Theorem 11.4.21. (Weak Normalisation for ��)Let S be a speci�cation.�(S) is �-weakly normalising if and only if ��(S) is ��-weakly normalising.Proof: By theorem 11.3.23, the mapping j j computes the �-normal form. By 11.4.15 thismapping is an implementing morphism from ��(S) to �(S). It follows from lemma 4.3.9that if �(S) is �-weakly normalising then ��(S) is ��-weakly normalising. 2The function j j is not a re�ning morphism. It may not map in�nite �-reductionsequences to in�nite �-reduction sequences as the following example shows.



162 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONSExample 11.4.22. Suppose there is an in�nite �-reduction sequence starting at a andhence at (x=a:A in b). If x 62 FV (b) and b is a �� normal form then there is no �-reductionsequence starting at j x=a:A in b j�= b.The mapping j j erases the term a which could contain an in�nite reduction sequence.We de�ne a new function f g that is a re�ning morphism.De�nition 11.4.23. The mapping f g : C� � T� ! T is de�ned as follows.fxg� = ( fag�1 if � = �1; x=a:A;�2x otherwisefsg� = sfa bg� = fag�fbg�f�x:A: bg� = �x:fAg�: fbg�;x:Af�x:A: bg� = �x:fAg�: fbg�;x:Afx=a:A in bg� = (�x:fAg�: fbg�;x=a:A)fag�Like j j , the value fag� is the unfolding of all the de�nitions occurring in the context �and in the term a. Global de�nitions are unfolded in the �rst line fxg� = fag�1. Localde�nitions are unfolded in the last line since fbg�;x=a:A = fbg�[x := fag�]. However f gdi�ers from j � j� in the value given to (x= a :A in b). Instead of removing the localde�nition, it is translated to a �-redex. The bound variable x of the local de�nition istransformed into the bound variable of an abstraction. The abbreviation a is transformedinto the argument of an application.Example 11.4.24. Recall that in example 11.2.20 we show that (�x:A: b)a may not betypable when (x=a:A in b) is. Let e = ��:�: (x=�:� in �y :x: �f :� ! �: fy) be theterm used in example 11.2.20. The corresponding term expressed as an application and anabstraction is not typable in any system of the �-cube. Butfeg� = ��:�: (�x:�: �y:�: �f :�! �: fy)�is typable in �2. This is because the de�nition of x is unfolded by � and then x does notoccur in the expression �y:�: �f :�! �: fy.The mapping f g is extended to contexts.De�nition 11.4.25. The mapping f�g : C� ! C is de�ned as follows.f�g = �f�; x : Ag = f�g; x : fAg�f�; x=a:Ag = f�g; x : fAg�



11.4. PROPERTIES OF WELL-TYPED TERMS 163Similar properties proved for the projection j j hold for the function f g .Lemma 11.4.26.1. If x is �-fresh and x 62 FV (b) then x 62 FV (fbg�).2. Let < �1;�2;�3 >2 C� and b 2 T� be such that (FV�3(b)) \ Def (�2) = ;. Thenfbg�1;�2�3 = fbg�1;�3:3. Let < �1; y=a:A;�2 >2 C�. Then fag�1;y=a:A;�2 = fag�1.The following lemma is proved by induction on the structure of the term b.Lemma 11.4.27. fbg�[x := fag�] = fb[x := a]g� = fbg�;x=a:ALemma 11.4.28. The mapping f g is an implementing morphism from (T�; C�;!�) to(T ;!�). More precisely, if � ` c!� d then fcg�!=� fdg� for all c; d 2 T� and � 2 C�.Proof: This is proved by induction on the structure of c. Only some cases are considered.� Suppose c = x. This means that � = �1; x = d : D;�2 and � ` x!� d.fxg�1;x=d:D;�2 = fdg�1= fdg�1;x=d:D;�2 by lemma 11.4.26 part 3� Suppose c = (x=a:A in b) and � ` (x=a:A in b)!� b with x 62 FV (b).fx=a:A in bg = (�x:fAg�: fbg�;x=a:A)fag�!� fbg�;x=a:A[x := fag�]= fbg�;x=a:A by lemma 11.4.26= fbg�The rest of the cases are easy to prove. 2By the following lemma, f g maps an in�nite ��-reduction sequence to an in�nite�-reduction sequence.Lemma 11.4.29. The mapping f g is a re�ning morphism from (T�;!�) to (T ;!�), i.e.if c!� d then fcg� !+� fdg�.Proof:This is proved by induction on the structure of c. Only the case c = (�x :A: b)awith (�x:A: b)a!� b[x := a] is considered.fcg� = f�x:A: bg�fag�= (�x:fAg�: fbg�)fag�!� fbg�[x := fag�]= fb[x := a]g� by lemma 11.4.272



164 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONSDe�nition 11.4.30. The speci�cation S = (S;A;R) is called quasi-full if for all s1,s2 2 S there exists s3 2 S such that (s1; s2; s3) 2 R.Note that if a speci�cation is full then it is quasi-full. But the converse is not true.De�nition 11.4.31. Let S = (S;A;R) and S 0 = (S0;A0;R0) be such that1. S � S0, A � A0, and R � R02. S 0 is quasi-full3. for all s 2 S there is a sort s0 2 S0 such that (s : s0) 2 A0 (i.e. the sorts of S are nottopsorts in S 0).Then the speci�cation S 0 is called a completion of S.Example 11.4.32. The speci�cation C1 is a completion of C, HOL and itself.This de�nition is necessary in order to prove that f g maps terms that are typable in apure type system with de�nitions ��(S) to terms that are typable in a slightly larger puretype system �S 0 with S 0 a completion of S.Remember that f g translates a local de�nition to a �-abstraction with an argument:fx=a:A in bg� = (�x:fAg�: fbg�;x=a:A)fag�Condition 2 is necessary to ensure that all these �-abstractions introduced by f g areallowed in S 0. The typing of the abstraction is restricted by the set R of rules whereasthe typing of (x= a :A in b) is not. Let e = (x= � : � in �y : x: �f : x ! x: fy) bethe term in the example 11.2.21. This term is typable in the system ��! but the termfeg� = (�x:�: �y:�: �f :�! �: fy)� is not typable in �!.Condition 3 is necessary because we can not type these abstractions introduced by f g ifA is a topsort. For example the term (x = � : 2 in x) is typable in ��C butfx = � : 2 in xg� = (�x:2: �)�is not typable in �C.The next lemma is proved by induction on the derivation.Lemma 11.4.33. Let S = (S;A;R). If s occurs either in A or in a or in � and � �̀S a : Athen s 2 S.The next lemma states that a �S 0 type that is in the range of f g cannot be one ofthe topsorts of �S 0.Lemma 11.4.34. Let S = (S;A;R) and S 0 = (S0;A0;R0) be such that S 0 is a completionof S. Then If � �̀S a : A and � �̀S0 fag� : fAg� then � �̀S0 fAg� : s.



11.4. PROPERTIES OF WELL-TYPED TERMS 165Proof: Assume � �̀S0 fag� : fAg�. By correctness of types � �̀S0 fAg� : s0 or fAg� = s.Suppose fAg� = s. Since � �̀S a : A and by lemma 11.4.33 we have that s 2 S. By thecondition (3) of the de�nition of completion, there is a sort s0 2 S 0 such that (s; s0) 2 A0and hence � �̀S0 s : s0, i.e. � �̀S0 fAg� : s0. 2The next theorem states that f g maps terms that are typable in ��(S) to terms that aretypable in the pure type system �S 0 with S 0 a completion of S.Theorem 11.4.35. Let S = (S;A;R) and S 0 = (S0;A0;R0) be such that S 0 is acompletion of S. Then � �̀S a : A ) f�g �̀S0 fag� : fAg�.Proof: By induction on the derivation of � �̀S a : A. Only some cases are considered.� (�-start) � �̀S a : A�; x = a : A �̀S x : ABy induction f�g �̀S0 fag� : fAg�. By de�nition we have that fxg�;x=a:A = fag�. Bylemma 11.4.26 part 2 we have that fAg�;x=a:A = fAg�.It follows from lemma 11.4.34 that f�g �̀S0 fAg� : s. By weakening rule, we havethat f�g; x : fAg� �̀S0 fxg�;x=a:A : fAg�.� (�-weakening) � �̀S b : B � �̀S a : A�; x = a : A �̀S b : BBy induction, f�g �̀S0 fbg� : fBg� and f�g �̀S0 fag� : fAg�. Then by lemma 11.4.34,we have that f�g �̀S0 fAg� : s. By weakening rule we have that f�g; x : fAg� �̀S0fbg� : fBg�.We have that x 62 FV (b) and x 62 FV (B). By lemma 11.4.26, we have thatfbg�;x=a:A = fbg� and that fBg�;x=a:A = fBg�.� (�-formation) �; x=a:A �̀S B : s� �̀S (x=a:A in B) : sBy induction f�; x=a:Ag �̀S0 fBg�;x=a:A : s (i)The derivation of �; x=a:A �̀S B : s contains a (shorter) derivation of � �̀S a : A, soalso by induction f�g �̀S0 fag� : fAg� (ii)By lemma 11.4.34 it follows from (i) and (ii) that there are s1; s2 2 S0 such thatf�; x=a:Ag �̀S0 s : s2 (iii)f�g �̀S0 fAg� : s1 (iv)



166 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONSThe following is a derivation of f�g �̀S0 fx=a:A in Bg� : s.(iii) (iv)f�g �̀S0 (�x:fAg�: s) : s3 (prod) (i)f�g �̀S0 (�x:fAg�: fBg�;x=a:A) : (�x:fAg�: s) (abs) (ii)f�g �̀S0 (�x:fAg�: fBg�;x=a:A)fag� : s[x := fag�] (app)and (�x:fAg�: fBg�;x=a:A)fag� = fx=a:A in Bg�.� (�-introduction) �; x=a:A �̀S b : B � �̀S (x=a:A in B) : s� �̀S (x=a:A in b) : (x=a:A in B)By induction f�; x=a:Ag �̀S0 fbg�;x=a:A : fBg�;x=a:A (i)f�g �̀S0 fx=a:A in Bg� : s (ii)The derivation of �; x=a:A �̀S b : B contains a (shorter) derivation of � �̀S a : A, soalso by the induction f�g �̀S0 fag� : fAg� (iii)By lemma 11.4.34 it follows from (i) and (iii) that there are s1; s2 2 S0 such thatf�; x=a:Ag �̀S0 fBg�;x=a:A : s2 (iv)f�g �̀S0 fAg� : s1 (v)Then (iv) (v)f�g �̀S0 (�x:fAg�: fBg�;x=a:A) : s3 (prod) (i)f�g �̀S0 (�x:fAg�: fbg�;x=a:A) : (�x:fAg�: fBg�;x=a:A) (abs) (iii)f�g �̀S0 (�x:fAg�: fBg�;x=a:A)fag� : fBg�;x=a:A[x := fag�] (app)fx=a:A in bg� = (�x:fAg�: fbg�;x=a:A)fag� andfx=a:A in Bg� = (�x:fAg�: fBg�;x=a:A)fag� $!� fBg�;x=a:A[x := fag�] (vi)so using the conversion rulef�g �̀S0 fx=a:A in bg� : fBg�;x=a:A[x := fag�] (ii) (vi)f�g �̀S0 fx=a:A in bg� : fx=a:A in Bg� (� � conv)� (�-conversion) � �̀S b : B � �̀S B0 : s � ` B  $!� B0� �̀S b : BIt follows from induction that f�g �̀S0 fbg� : fBg� and f�g �̀S0 fB 0g� : s. By lemma 11.4.28it follows from � ` B  $!� B0 that fBg�  $!� fB 0g�. Then using the �-conversion rulef�g �̀S0 fbg� : fB 0g�.



11.5. CONCLUSIONS AND RELATED WORK 167The rest of the cases are easy to prove. 2Theorem 11.4.36. (Implementing morphism from ��(S) to �(S 0))Let S 0 be a completion of S. The pair (f g; f g ) is an implementing morphism from��(S) to �(S 0).Proof: By theorem 11.4.35, the pair (f g; f g ) preserves the typing from ��(S) to �(S 0).It follows from lemmas 11.4.28 and 11.4.29 that this pair is an implementing morphismfrom ��(S0) to �(S). 2We write f g instead of (f g; f g ).Theorem 11.4.37. (Strong Normalisation for ��)Let S = (S;A;R) and S 0 = (S0;A0;R0) be such that S 0 is a completion of S.If �(S 0) is �-strongly normalising, then ��(S) is ��-strongly normalising.Proof: By theorem 11.3.29, the �-reduction is strongly normalising. It follows from lemma11.4.29 and theorem 11.4.35 that f g is a re�ning morphism from ��(S 0) with only �-reduction to �(S). Moreover it follows from lemma 11.4.28 and theorem 11.4.35 that f g isan implementing morphism from ��(S 0) with only �-reduction to �(S). By lemma 4.3.11,if �(S 0) is �-strongly normalising, then ��(S) is ��-strongly normalising. 2Corollary 11.4.38. The following systems are strongly normalising:1. The system �(C1) extended with de�nitions, i.e. ��(C1).2. The calculus of constructions extended with de�nitions, i.e. ��C.3. The system of higher order logic extended with de�nitions, i.e. ��(HOL) is stronglynormalising.Proof: The system �(C1) is strongly normalising. This speci�cation C1 is a completionof itself. Hence it follows from the previous theorem that ��(C1) is strongly normalising.Since ��(C1) contains ��C and ��(HOL), the parts 2 and 3 follow from part 1. 2Theorem 11.4.37 is somewhat unsatisfactory. It would be nicer to prove a strongerproperty, namely that ��(S) is ��-strongly normalising if �(S) is �-strongly normalising.On the other hand, we do not know any strongly normalising pure type system �S for whichtheorem 11.4.37 cannot be used to prove strong normalisation of ��(S). In particular, allstrongly normalising pure type systems given in [Bar92] have a completion that is �(C1).11.5 Conclusions and Related WorkIn this chapter we have considered de�nitions as part of the formal language. In ouropinion, this extension has been done in a neat and general way (for pure type systems).The inclusion of de�nitions in the formal language and its study have not been consideredbefore except for the systems of the AUTOMATH family [NGdV94].



168 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONSDe�nitions vs local �-reduction. In the systems of the AUTOMATH family, de�ni-tions are written as �-redexes [Ned73] [Daa80]. A reduction called local �-reduction tounfold one occurrence of a variable at a time is introduced in [Ned92]. In some laterversions of AUTOMATH, de�nitions are connected with local �-reduction. We prefer, asin the original AUTOMATH systems, to have a special constructor for de�nition and areduction for the unfolding of de�nitions to make a clear distinction between de�nitionsand �-redexes.Global and Local De�nitions. Our extension provides global and local de�nitions, i.e.de�nitions in the context and in the term. Coq [Dow91] provides only global de�nitions.In our opinion, it is important to have local de�nitions as well as global ones for practicaluse. The study of the meta-theory is rather simple if we have only global de�nitions andin this case, it is easy to prove that strong normalisation is preserved by the extension.De�nitions vs Abstraction and Application: the third proof of �niteness ofdevelopments. As we said before, a de�nition and a �-redex are very similar. Intuitively,we know that a �-redex (�x:A: b)a is 'like' a de�nition x=a:A in b. However the �-reductionis �ner than the �-reduction since one step of �-reduction corresponds to several steps of�-reduction.The relation between de�nitions and �-redexes is formalised by the morphism �. Thismorphism maps a marked redex (�x:A: b)a into a de�nition x=a:A in b. Moreover thisfunction maps one step of �-reduction into one or more steps of �-reduction, i.e. it is are�ning morphism.A development is then mapped into a �-rewrite sequence via the morphism �. Since �is strongly normalising, we conclude that all the developments are �nite. This is our thirdproof of �niteness of developments (see chapter 7) and it is similar to the proof of the sameresult in [Klo80] using �-reduction with memory.The length of a development is always smaller than the length of the corresponding�-rewrite sequence. This can also be formalised. The function w�(�) used to prove strongnormalisation of � computes the length of a maximal �-rewrite sequence to the normal form.In [Vri85], a mapping h is de�ned that computes the length of a maximal development, i.e.the length of a maximal �-rewrite sequence. The mapping w�(�) composed with � is anupper bound for the number of steps in a development. It is easy to verify that w;(�(a)) isgreater than h(a). It is clear that the di�erence between w;(�(a)) and h(a) is the numberof extra-steps needed in the �-rewrite sequence.De�nitions vs Explicit Substitution. There is a common reason to introduce de�ni-tions x=a:A in b and explicit sustitution is bfx := ag: to delay the global substitution ofx for a in b and perform the substitution for one occurrence of the variable x at a timebecause the substitution for all the occurrences at once may not be desirable.The substitution is said to be explicit if it is not a meta-operation on terms but part ofthe formal language with a special constructor bfx := ag and a special rewrite relation �x



11.5. CONCLUSIONS AND RELATED WORK 169to de�ne `the substitution behaviour' [ACCL91] [KN93] [BG96] [Tas93].The �x-reduction and the �-reduction are very similar, they both unfold one occurrenceof a variable at a time. They di�er in the way they perform this unfolding.In a �x-rewrite step, the explicit substitution `fx := ag' is pushed inside the structureof the term b until a variable is found. For example in the case of the application(b c)fx := ag !�x (bfx := ag cfx := ag)In a �-rewrite step, the de�nition x=a:A is always kept outside the term b (in a context).In the moment of unfolding the variable, the explicit susbtitution `fx := ag' is insidethe term and the unfolding is performed as follows.xfx := ag !�x aIn the moment of unfolding the variable, the de�nition x=a:A is taken from the context�; x=a:A;�0 and the unfolding is performed as follows.�; x=a:A;�0 ` x!� aThe length of a �-rewrite sequence depends on the number of occurrences of the variablex in the term b. The �x-reduction needs more steps than the �-reduction to perform theunfolding of one occurrence of a variable. The extra-steps that �x needs depend on thestructure of the term b. We do not see any reason to have these extra-steps if we just wantto perform the unfolding of one occurrence at a time. De�nitions achieve this purposevery well besides having all the good properties. On the other hand, it is not clear how tode�ne a type system for explicit substitutions [Blo97] that veri�es all the good propertieslike subject reduction.The main di�erence, however, between de�nitions and explicit substitution is that theexplicit substitution is de�ned together with a rule that creates a �x-redex from a �-redex.(�x:A: b)a!�0x bfx := ag:The crucial problem for explicit substitution is called preservation of strong normalisationand is the following.If a term b is �-strongly normalising, is the term b also �x�0x-strongly normalising?.So �x-reduction is in fact a re�nement of �-reduction whereas �-reduction is not. Onestill has to consider the combination of the � with the �-reduction. The problem analogousto this for de�nitions is the following: if b 2 T� is �-strongly normalising then b is ��-strongly normalising. This is not true since there may be pseudoterms that are �-stronglynormalising but not ��-strongly normalising. For example,! = (�x:A: x x):B in (!!)!!� (�x:A: x x)(�x:A: x x)The pseudoterm ! = (�x:A: x x):B in (!!) is in �-normal form but it is not ��-stronglynormalising. Therefore in the case of de�nitions, we need to restrict the set of terms byusing types. The problem for de�nitions is then the following.If a pure type system �(S) is �-strongly normalising, is its extension with de�nitions��(S) ��-strongly normalising?.



170 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONSNormalisation for ��. In order to prove that weak and strong normalisation are pre-served by the extension we have written two morphisms that are illustrated in the followingdiagram. ��(S)���	j j @@@Rf g�(S) �(S 0)The �rst one is j j and computes the �-normal form of a term. This is an implementingmorphism from a pure type system with de�nitions to the corresponding pure type systemwithout de�nitions. By the results of chapter 4, this morphism allows us to prove thatweak normalisation is preserved by the extension.The second one is f g and transforms a �-redex into a �-redex. This is a re�ningmorphism from ��(S) to �(S 0) where S 0 is a completion of S. By the results of chapter 4,this morphism allows us to prove that for a class of pure type systems, strong normalisationis preserved by the extension.It is still an open problem whether extending an arbitrary pure type system withde�nitions preserves strong normalisation or not.De�nitions with parameters. In [LSZ96], we consider de�nitions with parameters likein the systems of the AUTOMATH family [NGdV94]. We write x(y1 ::B1; : : : ; yn:Bn) = a :A to denote that x is an abbreviation for a and the variables y1; : : : yn may occur free ina. Then x(b1; : : : bn) reduces to a[y1 := b1; : : : yn := bn]. We are presently investigating thepure type systems extended with this kind of de�nitions.



Chapter 12Type Inference for De�nitions12.1 IntroductionIn this chapter we write a partial function that infers the type of a term in a singly sortedpure type system with de�nitions.As we said in chapter 10, the type can be easily inferred if the last rule to be appliedis determined by the shape of the term and the context. In other words, we have to de�nea set of typing rules that are syntax directed in order to write a function that infers thetype. We present a syntax directed set of rules for singly sorted pure type systems withde�nitions similar to the one presented in chapter 10.This chapter is organised as follows. In section 12.2 we modify the �-start and the�-weakening rules in the de�nition of pure type systems with de�nitions. In section 12.3,we de�ne a syntax directed set of rules for singly sorted pure type systems with de�nitions.In section 12.4, we de�ne a function that infers the type for a term in a singly sorted puretype system with de�nitions.12.2 The �-start and �-weakening rulesIn this section, we change the rules of pure type systems with de�nitions. These new rulesde�ne the same typing relation as before.We split the the �-start rule into two rules, �-start1 and �-start2. The �-start rule isequivalent to these two rules. Similarly, we split the �-weakening rule into two rules, the�-weakening1 and �-weakening2 rules.We give an intuitive explanation of why the split rules are equivalent to the originalone. The �-start rule has the premise � �̀ a : A. We know that � �̀ A : s or A = s bycorrectness of types. We could add the super
uous condition `� �̀ A : s or A = s' to the�-start rule. This condition is an `or' and hence we can split the rule in two as follows.171



172 CHAPTER 12. TYPE INFERENCE FOR DEFINITIONS(��start1) � `�0 a : A � `�0 A : s�; x=a:A `�0 x : A x is �-fresh(��start2) � `�0 a : s s is a topsort�; x=a:s `�0 x : s x is �-freshNext we de�ne the notion of a pure type systems with de�nitions whose �-start and�-weakening rules are split.De�nition 12.2.1.The functor ��0 : Spec ! Carst�! is de�ned as ��0(S) = (T�; C�;!��;`�0) for S 2Spec. The sets T� and C� and the relation !�� are as in de�nition 11.2.18. The typingrelation `�0 is de�ned as the smallest relation closed under the same rules as in de�nition11.2.18 except for the �-start and �-weakening rules.(��start1) � `�0 a : A � `�0 A : s�; x=a:A `�0 x : A x is �-fresh(��start2) � `�0 a : s s is a topsort�; x=a:s `�0 x : s x is �-fresh(��weakening1) � `�0 b : B � `�0 a : A � `�0 A : s�; x=a:A `�0 b : B x is �-fresh(��weakening2) � `�0 b : B � `�0 a : s s is a topsort�; x=a:s `�0 b : B x is �-freshIn the following theorem we prove that the typing rules of de�nitions 11.2.18 and 12.2.1generate the same typing relation.Theorem 12.2.2. � `�0 a : A if and only if � �̀ a : A.From now on, we consider the rules for pure type systems with de�nitions as presentedin this section.12.3 Syntax Directed Rules for De�nitionsIn this section we de�ne a syntax directed set of rules for any singly sorted pure type systemwith de�nitions. As for pure type systems, the main features are that the weakening rule isrestricted to variables and constants and the conversion rule has been removed. Moreoverin the abstraction rule the �-condition is checked in a weaker system. The weaker systemis the pure type system with de�nitions and without the �-condition.Now we remove the �-condition from the rules for pure type system with de�nitions. Inthe introduction rule, the premise that the type (x=a:A in B) of a de�nition is well-typed,is replaced by the condition `B is not a sort'.



12.3. SYNTAX DIRECTED RULES FOR DEFINITIONS 173De�nition 12.3.1.The functor ��! : Spec ! Carst�! is de�ned as ��!(S) = (T�; C�;!��;`�!) for S 2Spec. The sets T� and C� and the relation !�� are as in de�nition 11.2.18. The typingrelation `�! is de�ned as the smallest relation closed under the same rules as in de�nition12.2.1 except for the following ones.(abstraction) �; x : A `�! b : B� `�! (�x:A: b) : (�x:A: B)(��introduction) �; x=a:A `�! b : B� `�! (x=a:A in b) : (x=a:A in B) B is not a sortDe�nition 12.3.2. (Pure type systems with de�nitions and without the �-condition) A pure type system with de�nitions and without the �-condition is an elementof the set ��!(Spec) = f��!(S) j S 2 Specg:Note that ��!(S) is an extension of ��(S) and �!(S). Diagramatically,�(S) � �!(S)\ \��(S) � ��!(S)We de�ne the syntax directed set of rules for the pure type systems with de�nitionsand without the �-condition.First we de�ne the weak head ��-reduction.De�nition 12.3.3. The weak head ��-reduction is de�ned by the following rules:�; x=a:A;�0 ` x!wh�� a � ` (x=a:A in b)!wh�� b[x := a]� ` (�x:A: b)a!wh�� b[x := a] � ` F !wh�� F 0(F a)!wh�� (F 0 a)De�nition 12.3.4.The functor ��!sd : Spec ! Carst�! is de�ned as ��!sd (S) = (T�; C�;!��;`�!sd ) for S 2Spec. The sets T� and C� and the relation !�� are as in de�nition 11.2.18. The typingrelation `�!sd is de�ned as the smallest relation closed under the following rules.(axiom) � `�!sd s : s0 for (s; s0) 2 A



174 CHAPTER 12. TYPE INFERENCE FOR DEFINITIONS(start) � `�!sd A :!!�� s�; x : A `�!sd x : A where x is �-fresh(weakening) � `�!sd b : B � `�!sd A :!!�� s�; x : A `�!sd b : B x is �-fresh and b 2 C [ V(formation) � `�!sd A :!!�� s1 �; x : A `�!sd B :!!�� s2� `�!sd (�x:A:B) : s3 for (s1; s2; s3) 2 R(abstraction) �; x : A `�!sd b : B� `�!sd (�x:A: b) : (�x:A: B)(application) � `�!sd b :!!wh�� (�x:A: B) � `�!sd a : A0� `�!sd (b a) : B[x := a] A $!�� A0(��start1) � `�!sd a : A0 � `�!sd A :!!�� s�; x=a:A `�!sd x : A0 x is �-fresh and A $!�� A0(��start2) � `�!sd a :!!�� s�; x=a:s `�!sd x : s s is a topsort and x is �-fresh(��weakening1) � `�!sd b : B � `�!sd a : A0 � `�!sd A :!!�� s�; x=a:A `�!sd b : B x is �-fresh, b 2 C [ V andA $!�� A0(��weakening2) � `�!sd b : B � `�!sd a :!!�� s�; x=a:s `�!sd b : B s is a topsort, b 2 C [ Vand x is �-fresh(��formation) �; x=a:A `�!sd B : s� `�!sd (x=a:A in B) : s(��introduction) �; x=a:A `�!sd b : B� `�!sd (x=a:A in b) : (x=a:A in B) B is not a sortwhere s 2 S.Note that these systems verify only very weak subject reduction (see de�nition 4.3.1).Lemma 12.3.5. If � `�!sd a : A then j�j `!sd jaj� : jAj�.This is proved by induction on the derivation of � `�!sd a : A.Theorem 12.3.6. (Completeness) If � `�! a : A then � `�!sd a : A0 with A $!�� A0.This is proved by induction on the derivation of � `�!sd a : A.Next we de�ne a syntax directed set of rules for any singly sorted pure type system withde�nitions. These rules are exactly the ones in de�nition 12.3.4 except for the abstractionrule that contains the �-condition.De�nition 12.3.7.The functor ��sd : Spec ! Carst�! is de�ned as ��sd(S) = (T�; C�;!��;`sd) for S 2Spec. The sets T� and C� and the relation !�� are as in de�nition 11.2.18. The typing



12.3. SYNTAX DIRECTED RULES FOR DEFINITIONS 175relation �̀sd is the smallest relation closed under the same rules as in de�nition 12.3.4except that the abstraction rule is replaced by the following ones.(abstraction) �; x : A �̀sd b : B � `�!sd (�x:A: B) :!!�� s� �̀sd (�x:A: b) : (�x:A: B)where s 2 S.The relations between the systems with a syntax directed set of rules are shown in thefollowing diagram. �sd(S) � �!sd(S)\ \��sd(S) � ��!sd (S)Note that these systems verify only very weak subject reduction (see de�nition 4.3.1).Lemma 12.3.8. If � �̀ A :!!�� s then � �̀ A : s.Theorem 12.3.9. (Soundness) Let S be a singly sorted speci�cation.If � �̀sd a : A then � �̀ a : A.Proof: This is proved by induction on the derivation of � �̀sd a : A. Suppose that the lastrule in this derivation is the abstraction rule.(abstraction) �; x : A �̀sd b : B � `�!sd (�x:A: B) :!! s� �̀sd (�x:A: b) : (�x:A: B)By induction hypothesis we have that �; x:A �̀ b : B.We have that � `�!sd (�x:A: B) :!! s. By lemma 12.3.5, j�j `!sd j�x:A: Bj� :!! s. Bysoundness for �!sd(S), we have that j�j `! j�x:A: Bj� :!! s. Hence j�j `! j�x:A: Bj� : s.By generation lemma, j�; x:Aj `! jBj� : s2, j�j `! jAj : s1 and (s1; s2; s) 2 R.By correctness of types we have that either �; x:A �̀ B : s0 or B = s0 is a topsort. Thesecond possibility is impossible. Hence �; x:A �̀ B : s0. We have that s0 = s2 because thespeci�cation is singly sorted.By correctness of contexts � �̀ A : s00. Since the speci�cation is singly sorted we havethat s00 = s1.This is a derivation of � �̀ (�x:A: b) : (�x:A: B).�; x : A �̀ b : B � �̀ A : s1 �; x:A �̀ B : s2� �̀ (�x:A: B) : s� �̀ (�x:A: b) : (�x:A: B)2



176 CHAPTER 12. TYPE INFERENCE FOR DEFINITIONSTheorem 12.3.10. (Completeness) Let S be a singly sorted speci�cation.If � �̀ a : A then there exists A0 such that � �̀sd a : A0 and A $!� A0.Proof: We prove only the case of the abstraction rule.(abstraction) �; x : A �̀ b : B � �̀ (�x:A: B) : s� �̀ (�x:A: b) : (�x:A: B)By induction hypothesis we have that �; x:A �̀sd b : B 0 for someB 0 such that B  $!�� B0.By theorem 12.3.9 we have that �; x:A �̀ b : B 0.If � �̀ (�x:A: B) : s then there exists s1 and s2 such that (s1; s2; s) 2 R, � �̀ A : s1and �; x:A �̀ B : s2. By correctness and unicity of types we have that �; x:A �̀ B0 : s2.Hence � �̀ (�x:A: B 0) : s. By theorem 12.3.6 we have that � `�!sd (�x:A: B 0) : D andD  $!�� s. 212.4 Type Inference for De�nitionsIn this section we write a semi-algorithm of type inference for all the class of singly sortedpure type systems with de�nitions.As for pure type systems, we cannot expect to �nd a terminating algorithm for theclass of singly sorted pure type systems since typability for some non-normalising puretype systems with de�nitions is not decidable (see corollary 11.4.14). Hence we de�nea type inference semi-algorithm for all the class of singly sorted pure type systems withde�nitions, including the non-normalising ones.In order to de�ne such a semi-algorithm, we use the syntax directed set of rules pre-sented in section 12.3. Although those rules are syntax directed when the speci�cationis singly sorted, they are not yet deterministic. We have to solve the side conditions asin chapter 10. In this case we have to perform ��-weak head reduction and check ��-conversion.First we write a function that computes the weak head ��-normal form if it exists.De�nition 12.4.1. A function whnf �� : C� � T� ! T� is de�ned as follows.whnf��(�; a) = a if a is in weak head normal form in �whnf��(�; (x d1 : : : dn)) = whnf ��(�; ad1 : : : dn) if x=a:A 2 �whnf��(�; (x=a:A in b) d1 : : : dn) = whnf ��(�; b[x := a]d1 : : : dn)whnf��(�; (�x:A: b)a d1 : : : dn) = whnf ��(�; b[x := a]d1 : : : dn)Lemma 12.4.2. Let a 2 T be weak head normalising. Then whnf ��(a) is the weak head��-normal form of a.



12.4. TYPE INFERENCE FOR DEFINITIONS 177This lemma is proved by induction on the number of steps of the leftmost reduction tothe normal form.In order to check conversion in the semi-algorithm we de�ne a common-reduct strategyfor ��-reduction. We de�ne two common-reduct strategies for ��-reduction.First we de�ne the strategy Fn�� similar to Fn.De�nition 12.4.3. We de�ne Fn�� : C� � T� � T� ! P(T�) as follows.Fn��(�; d; d) = fdg if d = d0Fn��(�; (�x:A: b); (�x:A0: b0)) = f(�x:A00: b00) j A00 2 Fn��(�; A;A0) &b00 2 Fn��(�; b; b0)gFn��(�; (�x:A: B); (�x:A0: B 0)) = f(�x:A00: B 00) j A00 2 Fn��(�; A;A0) &B00 2 Fn��(�; B;B 0)gFn��(�; (x a1 : : : an); (x a01 : : : a0n)) = f((x a001 : : : a00n) j a00i 2 Fn��(�; ai; a0i)gif x 62 Def(�)Fn��(�; d; d0) = Fn��(whnf��(d);whnf ��(d0))if d or d0 are not in weak head normal formFn��(d; d0) = ; otherwiseThe next lemma says that the function Fn�� is a common-reduct strategy only fornormalising pseudoterms.Lemma 12.4.4. Let a and b be ��-weakly normalising. Then1. Fn��(a; b) terminates.2. For all c 2 Fn��(a; b), we have that a!!�� c and b!!�� c.3. a $!�� b if and only if Fn��(a; b) 6= ;.We de�ne a common-reduct strategy F++�� similar to the strategy F++. This strategyterminates if the terms are convertible, even if they are not normalising.De�nition 12.4.5. We de�ne F++�� : C� � T� � T� ! P(T�) as follows.



178 CHAPTER 12. TYPE INFERENCE FOR DEFINITIONSF++�� (�; a; b) = If a = b thenj fagelsej If a or b are in weak head ��-normal form in � thenj L(�;whnf ��(�; a);whnf ��(�; b))elsej H++�� (�; fag; fbg)endendWe de�ne the function L : C� � T� � T� ! P(T�) as follows.L(�; (�x:A1: b1); (�x:A2: b2)) = f(�x:A3: b3) j A3 2 F++�� (�; A1; A2) &b3 2 F++�� (�; b1; b2)gL(�; (�x:A1: b1); (�x:A2: b2)) = f(�x:A3: b3) j A3 2 F++�� (�; A1; A2) &b3 2 F++�� (�; b1; b2)gL(�; (x a1 : : : an); (x b1 : : : bn)) = f((x c1 : : : cn) j 8 i = 1; n ci 2 F++�� (�; ai; bi)gL(�; a; b) = ; otherwiseThe function H++�� : C� �P(T�)�P(T�)! P(T�) is always applied to a context � andsubsets X and Y of T� that verify the following preconditions.1. X and Y are the n and m-bounded reduction graphs of a and b in �.X = G<n!��(�; a) = fd j � ` a!!�� d in less than n stepsgY = G<m!�� (�; b) = fd j � ` b!!�� d in less than m stepsg2. The intersection of X and Y is empty.3. 0 � n�m � 1.4. X and Y do not contain any weak head ��-normal form in �.If the bounded graphs X contains a weak head normal form, we choose a b of Y andreduce it to weak head normal form.



12.4. TYPE INFERENCE FOR DEFINITIONS 179H++�� (�;X; Y ) = If G!�� (�;X) \ Y 6= ; thenj G!�� (�;X) \ Yelsej If 9a, a 2 G!�� (�;X) in weak head ��-normal form thenj Choose b 2 Y , L(�; a;whnf��(�; b))elsej H++�� (�; Y;X [ G!��(�;X))endendIn the following lemma we prove that the function F++�� is a common-reduct strategy.Lemma 12.4.6.1. If � ` a $!�� b then F++�� (�; a; b) terminates and yields a non-empty set that veri�esthat for all c 2 F++�� (�; a; b) we have that a!!�� c and b!!�� c.2. If F++�� (�; a; b) 6= ; then � ` a $!�� b.Semi-algorithm of type inference. We de�ne a function type� that computes thetype of a term (up to ��-conversion) in a singly sorted pure type system with de�nitions.If a is typable in � in a singly sorted pure type system with de�nitions then type�(�; a)terminates and yields the type of a in � (up to ��-conversion), i.e. if � �̀ a : A thentype�(�; a) $!�� A. If the term a is not typable in � then type�(�; a) either yields ? orit does not terminate.This function is obtained from the syntax directed set of rules de�ned in section 12.3for pure type systems with de�nitions. For each rule, we write a case of `pattern matching'.The conditions that appear in these rules that are of the form `� �̀ A :!!�� s' arereplaced by `whnf ��(type�(�; A)) = s'.The condition `� �̀ b :!!�� (�x:A: B)' is replaced by`whnf��(type�(�; b)) = (�x:A: B)'.The other condition `A $!�� A0' is replaced by F++�� (A;A0) 6= ;.The condition `� `�! (�x:A: B) :!!�� s' is replaced by`whnf��(type�!(�; (�x:A: B))) = s'.We need to de�ne an auxiliary function type�! to compute the type in a pure type systemwithout the �-condition.The function type�! : C� � T� ! T�? is de�ned as type� except that we remove thecondition whnf��(�; type�!(�;�x:A: B)) = s 2 S that corresponds to the �-condition.



180 CHAPTER 12. TYPE INFERENCE FOR DEFINITIONSDe�nition 12.4.7. The function type�S : C� � T� ! T�? (or just type�) is de�ned asfollows.type�(�; s) = s0 if (s; s0) 2 Atype�(< �; x : A >;x) = A if whnf ��(�; type�(�; A)) = s 2 Sand x is �-freshtype�(< �; x : A >; b) = type�(�; b) if b 2 C [ V , x is �-fresh, b 6= x andwhnf��(�; type�(�; A)) = s 2 Stype�(�; (�x:A:B)) = s3 if whnf��(�; type�(�; A)) = s1,whnf��(�; type�(< �; x : A >;B)) = s2,and (s1; s2; s3) 2 Rtype�(�; (�x:A: b)) = (�x:A: B) if type�(< �; x : A >; b) = B andwhnf��(�; type�!(�;�x:A: B)) = s 2 Stype�(�; (b a)) = B[x := a] if whnf ��(�; type�(�; b)) = (�x:A: B),type�(�; a) = A0 and F++�� (�; A;A0) 6= ;type�(< �; x=a:A >;x) = A0 if x is �-fresh and whnf ��(�; type�(�; A)) = s,type�(�; a) = A0 and F++�� (�; A;A0) 6= ;type�(< �; x=a:s >; x) = s if s is a topsort, x is �-fresh andwhnf��(�; type�(�; a)) = stype�(< �; x=a:A >; b) = B if b 2 C [ V , x is �-fresh, b 6= xtype�(�; b) = B, type�(�; a) = A0,whnf��(�; type�(�; A)) = s andF++�� (�; A;A0) 6= ;type�(< �; x=a:s >; b) = B if b 2 C [ V , s is a topsort, x is �-fresh,type�(�; b) = B andwhnf��(�; type�(�; a)) = stype�(�; (x=a:A in B)) = s if type�(< �; x=a:A >;B) = stype�(�; (x=a:A in b)) = (x=a:A in B) if type�(< �; x=a:A >; b) = B andB is not a sorttype�(�; a) = ? otherwise



12.5. CONCLUSIONS AND RELATED WORK 181Theorem 12.4.8. (Correctness of `type�') Let S = (S;A;R) be singly sorted suchthat the sets S, A and R are recursively enumerable.1. If � �̀ a : A then type�(�; a) terminates and type�(�; a) $!�� A.2. If type�(�; a) terminates and yields A then � �̀ a : A.Like for pure type systems without de�nitions, type checking for pure type systems withde�nitions can be solved from type inference (see de�nition 10.8.15). A function check�is de�ned that checks if a term has a given type in a singly sorted pure type system withde�nitions.De�nition 12.4.9. We de�ne the function check� : C� � T� � T� ! Bool as follows.check�(�; a;A) = 8>>><>>>: true if whnf ��(type�(�; A)) = s 2 S,type�(�; a) 6= ? andF++�� (type�(�; a); A) 6= ;false otherwiseTheorem 12.4.10. (Decidability of Type Inference and Type Checking)Let S = (S;A;R) be singly sorted such that the sets S, A and R are recursive.If ��(S) is ��-weakly normalising then type inference and type checking in ��(S) aredecidable.Proof: Since the sets of the speci�cation are recursive, we have that type�! always termi-nates and so do type� and check�. Therefore type inference and type checking for ��(S)are decidable. 2Theorem 12.4.11. (Decidability of Inhabitation)Let S = (S;A;R) be singly sorted such that the sets S, A and R are recursive.Suppose that �(S) is �-weakly normalising.If the problem of inhabitation is decidable in �(S) then it is decidable in ��(S).Proof: If �(S) is �-normalising then ��(S) is ��-normalising. Let � 2 C� and A 2 T�. Bytheorem 12.4.10, we have that it is decidable whether � �̀ A : s or not. In case � �̀ A : s,we �nd a such that j�j ` a : jAj�. By applying the conversion rule and lemma 11.4.18, weobtain � �̀ a : A. If jAj� has no inhabitant then A cannot have any inhabitant. 2As a consequence of this, we have that the problems of inhabitation in ��! and in ��!are decidable.



182 CHAPTER 12. TYPE INFERENCE FOR DEFINITIONS�-condition Originaltype system Type systemwith syntaxdirected rules Type inferencesemi-algorithmincluded ��(S) ��sd(S) type�removed ��!(S) ��!sd (S) type�!Table 12.1: Type Inference Semi-algorithm12.5 Conclusions and Related WorkType Inference Semi-algorithm. In order to solve the type inference problem for puretype systems with de�nitions we have �rst considered a syntax directed set of rules andthen we have written a function that infers the type based on this syntax directed set ofrules. Table 12.1 illustrates our methods.In the �rst column of the table we indicate if the �-condition is included or removed,in the second one the original type systems with de�nitions (with and without the �-condition), in the third one, the corresponding type systems with a syntax directed set ofrules and �nally the functions that infer the type in the original systems.The de�nitions of type� and type�! are based on the system that appear next to themin their preceding columns.The �-condition of ��(S) is checked in the same system, whereas the one of ��sd(S) ischecked in ��!sd (S). Therefore in the de�nition of type�, the condition that corresponds tothe �-condition is checked using the function type�! and not type�. In other words, wehave to use type�! to de�ne type�.The �-condition of ��sd(S) is checked in ��!sd (S) that is weaker than ��sd(S).We have proved that if S is a singly sorted speci�cation then ��sd(S) is `equivalent' toand ��(S) by using the relation shown in the diagram (see theorems 12.3.9 and 12.3.10).��(S) � ��!(S) � ��!sd (S)j j? ?j j�(S) � �!(S) �= �!sd(S)Decidability. Table 12.2 summarises some results concerning decidability discussed inthis chapter. In the �rst column, we write the conditions that a pure type system withde�nitions should verify. In the second and third columns, we say whether type inferenceand type checking are decidable or undecidable.We deduce from the table that the problems of type inference and type checking in thesystems of the ��-cube (the �-cube extended with de�nitions) are decidable.For the systems of the cube, the problem of inhabitation is decidable in �(S) if and onlyif it is decidable in ��(S). The problems of inhabitation in ��! and in ��! are decidableand in the rest of the systems of the cube extended with de�nitions it is undecidable.



12.5. CONCLUSIONS AND RELATED WORK 183Pure type systems Type inference Type checkingwith de�nitionsS = (S;A;R) singly sortedS, A and R recursive decidable decidable�(S) is �-normalisingS is singly sorted, impredicativeand non-dependent��(S) is inconsistent undecidable undecidableTable 12.2: Decidability of type inference and type checkingIn our opinion, the algorithm for normalising pure type systems whose set of sortsis �nite de�ned in [BJ93] and the syntax directed sets of rules de�ned in [BJMP93] andin [Pol93a] can be adapted to include de�nitions by using the function j j to prove theequivalence between the syntax directed set of rules and the original system.
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Chapter 13ConclusionsIn this chapter we discuss the results of this thesis. We mark what we believe are themain contributions to the �eld, give a global overview and show the interconnections ofthe subjects.The discussion is divided in the same parts as the thesis: 1) an abstract presentationof rewriting and typing, 2) lambda calculus and 3) pure type systems with de�nitions.13.1 Abstract Presentation of Rewriting and TypingIn this part, the concepts of computation and typing have been formalised in an abstractway, as binary relations on a set.The chapters 2 and 4 on abstract rewriting and typing systems give uniformity andclarity to the exposition of these subjects.The main concepts are de�ned only once in this abstract setting. It is clear that thisavoids repetitions and provides us with a common de�nition that covers all the particularcases. Moreover it enables us to state properties in a very general way. All these de�nitionsand properties are used in the chapters that follow.13.2 Lambda CalculusWe have given a characterisation of the set of strongly normalising �-terms that permitsus to give new and simple proofs of classical results about �-calculus.All the proofs of this part follow a common line since they all use the de�nition of theset SN . Even though we did not prove any new result, the methods for proving them arenew.In most cases the new proofs are essentially simpler than already existing ones andthey help us to understand not only the mechanics of the proofs of the results but also thereasons for their validity. 185



186 CHAPTER 13. CONCLUSIONS13.3 Pure Type Systems with De�nitionsIn this part we have studied the meta-theory of pure type systems with de�nitions. Also wehave written semi-algorithms of type inference for pure type systems with (and without)de�nitions.Pure Type Systems. We have presented the de�nition of pure type systems in a slightlydi�erent way (see chapter 9) from the usual one. The typing rules for pure type systemsare parametric in the speci�cations. Pure type systems are written as a functor � that,given a speci�cation S, produces a particular pure type system �(S). The codomain of thisfunctor is the category of environmental abstract rewriting systems with typing de�ned inchapter 4.De�nitions. We have considered de�nitions as part of the formal language, the languageof pure type systems. In our opinion, this extension has been done in a neat and generalway (for pure type systems). The inclusion of de�nitions in the formal language and itsstudy have not been considered before except for the systems of the AUTOMATH family[NGdV94], that can be seen as particular pure type systems.13.3.1 NormalisationThe two extension of pure type systems, without the �-condition and with de�nitionshave similar properties that are compared in table 13.1. WN is an abbreviation for weaknormalisation and SN is an abbreviation for strong normalisation. In the �rst column, wewrite the properties of a pure type system without the �-condition and in the second one,the properties of a pure type system with de�nitions.We have written two functions ' and j j, one is a weak converting morphism from �!(S)to �(S) and the other is an implementing morphism from ��(S) to �(S). Diagramatically,�!(S)@@@R' �(S)����j j��(S)The function ' computes the illegal �-normal form of a term and j j computes the �-normalform of a term.In the case of pure type systems without the �-condition, an illegal �-rewrite sequenceis a superdevelopment. Since all superdevelopments are �nite, we have that the illegal�-reduction is strongly normalising. In the case of pure type systems with de�nitions



13.3. PURE TYPE SYSTEMS WITH DEFINITIONS 187�!(S) ��(S)' computes the normal form of j j computes the normal form ofthe illegal �-reduction the �-reduction' is a weak converting morphism j j is an implementing morphism(S is singly sorted)An illegal �-rewrite sequence A developmentis a superdevelopment is a �-rewrite sequenceThe illegal �-reduction is SN The �-reduction is SNWN(�(S)) implies WN(�!(S)) WN(�(S)) implies WN ( ��(S) )(S is singly sorted)SN(�(S 0)) implies SN( �!(S)) SN(�(S 0)) implies SN(��(S))(S0 is a completion of S) (S 0 is a completion of S)Table 13.1: �!(S) vs. ��(S)a �-rewrite sequence is a development. A de�nition x= a :A in b is like a marked re-dex (�x:A: b)a. However a �-rewrite sequence is not a particular case of a developmentand we cannot deduce strong normalisation of the �-reduction from �niteness of develop-ments. Instead we deduce �niteness of developments from the strong normalisation of the�-reduction.In both extensions we have that weak normalisation is preserved by the extension. Forpure type systems without the �-condition, we used ' to prove that weak normalisationis preserved by the extension and for de�nitions, we used the mapping j j.In both cases we have that strong normalisation of the extension follows from thestrong normalisation of another (larger) pure type system. In order to prove that strongnormalisation is preserved by the extension with de�nitions, we have written a re�niningmorphism f g from ��(S) to �(S 0), S 0 being a completion of S. The identity is a morphismfrom �!(S) to �(S 0) and it can be used to prove that if �(S 0) is strongly normalising thenso is �!(S) (this proof has not been included in this thesis). In the following diagram, weshow how these morphisms are related.



188 CHAPTER 13. CONCLUSIONS�!(S)@@@Ridf g6 �(S 0) � �(S)����f g��(S)Strong normalisation is the most important property we have proved for de�nitions.The ��-strong normalisation of �(S) follows from the �-strong normalisation of �(S 0) withS0 a completion of S. This enables us to prove that for all pure type systems that areknown to be �-strongly normalising, their extensions with de�nitions are also ��-stronglynormalising.Systems that are ��-strongly normalising are, for example, the calculus of constructionsextended with de�nitions and the system of higher order logic extended with de�nitions.The question `Given an arbitrary pure type system, is its extension with de�nitionsstrongly normalising?' remains open.13.3.2 Type InferenceIn order to solve the type inference problem for pure type systems with (and without)de�nitions we have �rst considered a syntax directed set of rules and then we have writtena function that infers the type.Syntax directed sets of rules. The de�nitions of the semi-algorithms of type inferenceare based upon the de�nitions of a syntax directed set of rules.Table 13.2 illustrates the type systems we considered.Original System Syntax-directed SystemPTS �(S) �sd(S)PTS without �-condition �!(S) �!sd(S)PTS with de�nitions ��(S) ��sd(S)PTS with defs. without �-cond. ��!(S) ��!sd (S)Table 13.2: Type Systems ConsideredIn the �rst column of table 13.2 we �nd the original systems whose rules are not syntaxdirected. In the second column, we �nd the equivalent systems whose rules are syntaxdirected. Two systems that appear on the same line are equivalent.In the second and fourth lines, the systems do not contain the �-condition. The systemsof the �rst and third line do contain the �-condition. The �-condition of the systems �(S)and ��(S) is checked inside the system, whereas the �-condition of �sd(S) and ��sd(S) is



13.3. PURE TYPE SYSTEMS WITH DEFINITIONS 189checked outside them. The auxiliary systems used to check the �-condition of �sd(S) and��sd(S) appear on the line below in the table 13.2.The following diagram shows some relations between these type systems. We supposethat S is a singly sorted speci�cation.��sd(S) �= ��(S) � ��!(S) � ��!sd (S)j j? ?j j�sd(S) �= �(S)� �? '� �!(S) �= �!sd(S)In order to prove the equivalences ��(S) �= ��sd(S) and �(S) �= �sd(S), we have used theother relations that are depicted in the diagram (see theorems 10.7.7, 10.7.8, 12.3.9 and12.3.10).Semi-algorithms. In chapter 10.2 we have de�ned the semi-algorithm `type' of typeinference for singly sorted pure type systems and in chapter 12 the other semi-algorithm`type�' of type inference for singly sorted pure type systems with de�nitions. These semi-algorithms terminate if the term is typable and otherwise they may not terminate.The semi-algorithm type is based on the system �sd(S) and type� is based on ��sd(S).In order to de�ne both semi-algorithms we have followed the same method. The methodconsists of considering the corresponding type system without the �-condition to check forthe �-condition.13.3.3 Normalisation versus Type InferenceThe normalisation property and the type inference problem are related in two places: inthe proof of the correctness of the semi-algorithms of type inference and in the results ondecidability of type inference and type checking for pure type systems with and withoutde�nitions.The proof of correctness. We have proved the correctness of the type inference semi-algorithms for singly sorted pure type systems with and without de�nitions. The correct-ness of the semi-algorithms is proved using the equivalence between the syntax directedsets of rules and the original systems.The proof of the equivalence between the syntax directed sets of rules and the originalones, use the relations shown in the diagram above. The morphisms that appear in thisdiagram are j j and ' which compute the �-normal form and the illegal �-normal form,respectively.



190 CHAPTER 13. CONCLUSIONSDecidability of Type Inference, Type Checking Let S = (S;A;R) be singly sortedsuch that the sets S, A and R are recursive. If �(S) is �-weakly normalising then thefollowing statements on decidability hold.� Type inference and type checking in �(S) are decidable (see theorems 9.3.19 and10.8.16).� Type inference and type checking in ��(S) are decidable (see theorem 12.4.10).Undecidability of Type Inference, Type Checking and Inhabitation. Let S be asingly sorted, impredicative and non-dependent speci�cation. If �(S) is inconsistent thenthe following statements hold.� Type inference and type checking in �(S) are undecidable (see theorem 9.3.20).� Type inference and type checking in ��(S) are undecidable (see theorem 11.4.14).Hence, for the systems of the �-cube extended with de�nitions, we have that typeinference and type checking are decidable.
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