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Chapter 1

Introduction

In this thesis we consider typed and untyped lambda calculi. In this introduction, firstly,
we give an informal explanation of the untyped lambda calculus, of the concept of type
and an overview of the lambda calculi with types. Finally, we summarise the contents of
this thesis.

1.1 Lambda Calculus

The lambda calculus is a formal system based on a function notation invented by A. Church
[Chu4l]. It captures the most basic aspects of the manners in which operators are combined
to form other operators.

We give some motivations for the syntax of the A-calculus. In mathematics, a function

2

that given x produces z* is written as follows.

fia 2?

This notation is not adequate when higher-order functions are involved (functions which
admit other functions as arguments). Church used a notation involving the special symbol
A to construct functions in a systematic way. In Church’s notation the example above is
written as Az.z%

The A-terms are formed with two constructors, namely the application () and the
abstraction \. We write (f a) to express that a function f is applied to the argument
a. Let b(x) be an expression containing x. A function that assigns the value b(a) to the
argument « is denoted by (Ax. b(x)). This justifies the definition of a relation on the set
of A-terms called 3-reduction.

((Ax. b(x)) a) =5 b(a) [-reduction

In the example, we have that ((Az.z?) 3) S-reduces to 3. We usually omit a pair of
parenthesis when this does not cause confusion, for example we write (Az.z?) 3 for the
term above.
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The equivalence relation generated by the f-reduction is called F-conversion and is
denoted by «»3 and the transitive closure of — 5 is denoted by —» 5.

An important property of S-reduction is confluence. Since a term may contain several
subterms of the form (Ax. b(x)) a (called redexes), the f-reduction is not functional. This
is not an obstacle for the theory of the lambda calculus due to the fact that it has the
property of confluence. Confluence means that it we have the solid arrows of the diagram
then we also have the dotted ones.

b
N
bl.. ..bz

A term that can not be reduced any further is said to be a normal form (or to be in
normal form). For example (Ax.z) y —3 y and y is in normal form.

An important property of A-terms is normalisation. Normalisation and termination
are synonymous. In A-calculus, termination of the reduction is not guaranteed, e.g.
Q = (Aa.(z 2)) (Aa.(z x)) reduces to itself. A term is said to be weakly normalising
(or normalising) if there is a reduction sequence that ends in a normal form. For example,
the term (Azx.x) y is weakly normalising. There may be A-terms that are normalising but
they have some reduction sequence that is not finite, e.g. the term (Ax.y)Q reduces to y if
we contract the leftmost redex and to itself if we contract 2. A term is said to be strongly
normalising if any reduction sequence starting from the term terminates. Clearly, (Az.y)$
is weakly normalising but not strongly normalising.

The trace of a redex can be followed by marking the corresponding abstraction. In
the term (Az.(x x)) ((Az.z) y), we have marked the second redex that we want to trace.
When this term is reduced to ((Az.x) y)((Az.x) y), two redexes are created which are called
residuals of the initial marked redex. The f-reduction restricted to the marked redexes is
called 3-reduction. Developments are reduction sequences where only residuals of redexes
that are present in the initial term are contracted. In other words, a development is a
(B-rewrite sequence. For example, a development is the rewrite sequence

(Az.(z ) (Av.z) y) —p ((Av.2)y) (Ae.z) y)

—5 ¥ ((Az.2) y)

—5 (YY)

An important classical result in the lambda calculus is that all developments are finite
(finiteness of developments) [Bar85]. To prove that the developments are finite is to prove
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that the S-reduction, the 3-reduction restricted to the marked redexes, is strongly normal-
ising.

Even though the confluence property of the lambda calculus guarantees that the system
is ‘functional’, it is important from the practical point of view to find adequate reduction
strategies, i.e. functions that determine ‘a way of reducing’. A strategy is called nor-
malising if it finds the normal form of a weakly normalising A-term. For example, the
strategy that reduces only the leftmost redex of a A-term is normalising. The importance
of the existence of normalising strategies is that it implies the decidability of 3-conversion
restricted to the weakly normalising terms. In order to check if two weakly normalising
terms are convertible, we compute their normal forms by applying the normalising strategy
and we check whether the two normal forms are syntactically equal. Due to the fact that
there exists a normalising strategy for the lambda calculus, #-conversion restricted to the
B-weakly normalising A-terms is decidable.

We also consider perpetual strategies, i.e. strategies that preserve the property of non-
termination. In the term (Az.y)€Q, a perpetual strategy has to reduce £ and not the leftmost
redex. To have a perpetual strategy is important because a term is strongly normalising if
and only if the perpetual strategy yields a finite reduction sequence.

In this thesis, we present new proofs of finiteness of developments and superdevelop-
ments (a generalisation of developments) and of the fact that some strategies are perpetual.

1.2 Lambda Calculi with Types

Types were introduced for the first time in the combinatory logic (a variant of the lambda
calculus) in [Cur34] and in the lambda calculus itself in [Chu40]. Nowadays types are used
for many purposes as will be explained later. In order to give a first insight of the notion
of type, we give one simple motivation related to set theory. The A-terms do not represent
the mathematical set-theoretic notion of function, with domain and range as part of the
definition of the function. However, they can be modified to fit this notion by adding the
notion of type.

We want to say that in the term Ax.z?, the variable z ranges over the set of natural
numbers. This could be expressed by considering a special symbol Nat which could be
interpreted in set theory as the set of natural numbers. The A-term is now written as
Az : Nat.2?. We read x : Nat as z has type Nat and the intended meaning of z : Nat is
that the variable x ranges over the set of natural numbers.

We need another symbol — to express that this is a function from the natural numbers
into the natural numbers.

Az : Nat.z? : Nat — Nat

This is read as follows: the term Az : Nat.z? has type Nat — Nat and its intended
meaning is that Az : Nat.z? is a function from the set of natural numbers into itself.

The types Nat and Nat — Nat should be syntactic expressions defined in a formal
language with the notion of set as a possible interpretation for them. The lambda calculus
with this kind of types is called simply typed lambda calculus (or A_.).
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The two original papers by Curry and Church introduced two different families of
lambda calculi with types. In the systems a la Church, the variable of the abstraction
contains the information of its type like in the example Az : Nat.z?. The terms of these
systems usually have the property of uniqueness of types since the types of the variables
determine the type of the whole term.

In the systems a la Curry, the types for the variables of the abstractions are not declared
and the types assigned to the A-terms are not unique. The term Azx.r may have the type
Nat — Nat but also may have the type a — « for an arbitrary type a.

Types may become more complex if we want to enrich the expressiveness of our lan-
guage. The identity function Ax:Nat.z is ‘the same function’ as Az:Bool.x except for the
type. The language of types may be extended to express that the identity function may
be applied to any type. The language of terms is extended with a new abstraction A and
a quantifier on types V. The identity is written as

Aoz, x

The type of the identity is
Va.(aa — «)

The fact that Aa.Az:a. @ has type Ya.(a — «) means that for any type «, the function
Az:a. x has type (o« — «) The abstraction A and the quantifier V are applied to type
variables, i.e. a variable that can be substituted by types. In this example, the type
variable v can be substituted by types like Nat and Bool.

(Aa.Az:a. )Nat —p5 Aa:Nat.x

A function constructed with A is called polymorphic, i.e. the argument of the function is
a type. For example, (Aa.A2:a. @) is the polymorphic identity.

The extension of the simply typed lambda calculus with polymorphism is called poly-
morphic typed lambda caleuls (F or A2 or second order typed lambda calculus) and it was
introduced independently by [Gir72] and [ReyT74].

Implementations of Lambda calculi

The A-calculus is the foundation of functional programming languages. The A-calculus
itself could be considered as an abstract programming language. It contains the concept of
computation in full generality and strength but in a pure form with a very simple syntax.
The first typed programming languages developed to avoid typing errors at compile-time,
were ALGOL-60 and PASCAL where variables have to be declared in the programs (typ-
ing a la Church). More sophisticated typed languages appeared later, like ML [HMMS6],
Miranda [Tur85] and Haskell [HW88]. The last mentioned languages are functional pro-
gramming languages based on fragments of F' a la Curry. In this approach, types are
introduced in the programming language to ensure correctness of programs. Types are a
way of classifying the objects to use them in a correct way. Hence the type of a program
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gives a partial specification of the program. Terms are viewed as programs and types as
specifications for the programs. Another approach to the notion of type is the so-called
propositions-as-types interpretation [Bru70] [How80]. A type is viewed as a proposition and
a term as its proof. The first systems of proof checking (type checking) based on this inter-
pretation of propositions-as-types and proofs-as-terms were the systems of AUTOMATH
[INGdV94]. Modern systems that also provide computer-assistance for the construction of
proofs are Coq [Dow91], Lego [LP92], Constructor [HA91], Nuprl [Con86] and Alf [Mag94].
Coq is based on the calculus of constructions [CH88] extended with inductive definitions
[CP90]. Lego is a proof assistant for the extended calculus of constructions [Luo90] with
inductive types. Constructor is a partly automated proof assistant for pure type systems.
The first version of Alf [ACN90] is based on Martin-Lof’s type theory [NPS90] and the
actual version [Mag94] is based on the monomorphic type theory with explicit substitution

[Tas93].

1.2.1 Pure Type Systems

In this thesis we work with pure type systems. They provide a framework to describe a large
class of type systems a la Church in a uniform way. They were introduced independently
by S. Berardi [Ber88] (see also [Ber90]) and J. Terlouw [Ter89]. Many systems can be
described in this way, for instance the simply and the polymorphic typed lambda calculus,
the systems of the AUTOMATH family [NGdV94], the Calculus of Constructions (and all
the systems of the A-cube [Bar92]) and the inconsistent system A+ [Gir72].

They are called ‘pure’ because there is only one type constructor and only one reduction
rule, namely the type constructor II and the -reduction.

If Aisa type and B(x) is a family of types indexed over A then Ilz:A. B(z) is also a
type. The term Axz:A. b(x) has type Ilz: A. B(x) if for every a of type A, the term b(«a)
has type B(a).

In case the expression B(x) does not depend on x, [la:A. B is equivalent to the ordinary
function type A — B.

In pure type systems we have only one rule for all possible ‘functions types’. The
typing rule for a product depends on some parameters. By instantiating the parameters,
we obtain different product rules that allow to have different kinds of functions. For
example the abstractions A and A of the polymorphic typed lambda calculus are replaced
by the unique abstraction A of pure type systems and the type constructors — and V
are replaced by the unique type constructor II. Since we have the same symbol for the
abstraction of type variables and of term variables, we have to distinguish them in other
way. When we write « : *, we mean that « is a type variable. The polymorphic identity is
written in a pure type system style using the abstraction A instead of A and writing « : *
for a.

Aok A\rio.x

The type of the polymorphic identity is written using the product Il instead of the quantifier



6 CHAPTER 1. INTRODUCTION

YV and writing « : * for a.

Hea. (Hz:a.q)

One instantiation of the product rule allows to type the product (Ilz:a.cr) that corresponds
to @ — «a in the polymorphic typed lambda calculus. Another instantiation of the same
rule allows to type Ha : *.(Ilx : a.cr) that corresponds to Ya.(aw — «) in the polymorphic
typed lambda calculus.

1.2.2 Definitions

Any programming language provides a mechanism to introduce definitions, i.e. an abbrevi-
ation or name for a larger term that can be used several times in a program. Definitions are
usually considered in a meta-level and not as part of the language of the lambda calculus.

In the systems of the AUTOMATH family [NGdV94] definitions are considered as part
of the formal language. The meta-theory of these systems is treated in detail in [Daa80].
Howewer, some of the proofs apply only to the particular type system that they consider
and do not extend to other type systems.

We consider it important to include definitions in the syntax of the lambda calculus
and to study the properties that are preserved by the extension. This study can be done
in a very general manner if we use the framework of pure type systems.

We suppose that we have a context or environment where we can introduce definitions.
The definitions of the context are called global definitions and they can be used anywhere
in the program or term. A global definition is written as x=a:A. This means that the
name x is an abbreviation for the term @ whose type is A. There are definitions that have
a restricted scope and they are called local definitions. A local definition is written as
x=a:A wn b. This means that x is an abbreviation for the term a whose type is A but it
can be used only inside the term b. In our opinion it is important for practical use to have
both ways of introducing definitions: global and local.

The intended meaning of a definition x=a:A is that the definiendum = can be unfolded
by the definiens a in its scope, either globally or locally. The unfolding of a definition is
not the substitution of all the occurrences of the definition at once like for the f-reduction.
Instead one occurrence of the definition is unfolded at a time. The reduction that performs
the unfolding of definitions is called é-reduction.

The equality * = a can be used not only in the evaluation of a term but also in the
typing of a term. We can use the fact that the definiendum and the definiens are equal in
order to type terms that could not be typed otherwise. Suppose that the definition x=a:*
is a type and x occurs in another type B of the expression b, the typing of b may depend
on the fact that we can use that x is equal to a.

A definition x=a:A in b has a similar behaviour as (Ax:A. b)a. However the two facts
mentioned above suggest that they are in fact different, both from the point of view of the
evaluation and the typing.

We give an example in A2 that shows the importance and usage of definitions in the



1.2. LAMBDA CALCULI WITH TYPES 7

evaluation and in the typing. First we introduce the global definition ‘Bool’ as follows.
Bool=1la:*.a— a— «a:*

The elements of Bool are true and false and they are given by the following global

definitions.
true = JAaxx. Az:a. A\y:a. 2 : Bool

false = Aaxx. Az:a. A\y:a. 3y : Bool

Observe that in a definition we can make use of the definitions introduced previously, in
the definitions of true and false, we make use of Bool that was defined before.
The if-then-else is also introduced as a global definition.

if-then-else = Aa:x. Ab:Bool. Az:a. Ay:a. (b o y)

: (Hax. Bool — a — a — «)

The function that yields the negation of a boolean is abbreviated by the global definition
not.
not = A\b : Bool. (if-then-else Bool b false true): Bool — Bool

The term (not true) evaluates to false and the term (not false) evaluates to true.

In the evaluation of (not true) it is convenient to unfold one occurrence of true and
to leave the other without being unfolded. In the following Fé-rewrite sequence, we first
unfold the definition of not, then we perform one 3-reduction step, we unfold the definition
of if-then-else and perform some (G-reduction steps.

(not true) —s
((A\b : Bool. if-then-else Bool b false true) true) — 5
(if-then-else Bool true false true) —s
((Aazx. Ab:Bool. Az:a. Ay:a. (b oz y)) Bool true false true) —»4
(true Bool false true)

In order to get the result, the first occurrence of true in (true Bool false true) should
be unfolded but the second occurrence need not be unfolded. This shows the convenience
of unfolding one occurrence of the definition at a time.

The terms defined above are all typable because we can use the fact that the definien-
dum and the definiens are equal.

For example, true would not have type Bool if we were not allowed to use the fact
that the defiendum Bool is equal to its definiens lHa : *.(a — a — «). The type of true
is [la:k.ac — o — «a and by using the fact that Bool is equal to [la : .0 — a — «, we
deduce that true has type Bool.

The if-then-else would not be typable at all if we could not use the fact that the
definiendum Bool is equal to its definiens [la:*.( — o — «). In the definition of if-
then-else, the type of the argument b is Bool. Since b is the operator of an application,
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the type of b should be a function type and the symbol Bool is far from being a function
type unless we can unfold its definition.

The typing rules for pure type systems are extended to include definitions. The rules
have to be extended in such a way that the fact that the definiendum and the definiens
are equal can be used in type derivation. This is achieved by adding the é-conversion rule.
In this thesis we study the behaviour of the é-reduction and the combination of the 6 with
the #-reduction in pure type systems with definitions. The extension is done in such a way
that almost all the properties that are valid for a pure type system are also valid for its
extension with definitions.

1.2.3 Normalisation

We are interested in the property of normalisation in type systems. If all the terms that
are typable in the type system are (strongly) normalising then the system itself is said to
be (strongly) normalising .

Normalisation is important due to the fact that if the type system is normalising the
conversion when restricted to the typable terms is decidable. If we want to check if two
typable terms are convertible, we apply a reduction strategy to find their normal forms and
check if the normal forms are syntactically equal. The operation that computes the normal
form can be exponential (or even worse!) and so in practical situations it is advisable to
find a good strategy for computing a common-reduct of two terms (not necessarily the
normal form) in a reasonable time.

Strong normalisation is also important. The normalising strategies in lambda calculus,
e.g. the leftmost reduction, are not always efficient. They may even take longer paths
to the normal forms than other strategies. We would like to have the freedom to choose
the strategy to compute the normal form (or some partial value). In this case, to ensure
termination we have to prove that any strategy is normalising, i.e. strong normalisation.

Examples of pure type systems that are strongly normalising are the simply typed
lambda calculus [Tai67] [Tro73], the systems of the AUTOMATH family [NGdV94], the
polymorphic typed lambda calculus [Gir72], the Calculus of Constructions [GN91] (and all
the systems of the A-cube) and the ‘pure’ part of the extended calculus of constructions
[Luo90]. However the pure type systems that are inconsistent like Ax are not weakly
normalising [Gir72]. We do not know any pure type system that is weakly normalising but
not strongly normalising.

In this thesis we consider two extensions of pure type systems (one that is obtained
by weakening the abstraction rule and the other by adding definitions) and prove that
normalisation is preserved by these extensions. We also prove that the é-reduction, the
unfolding of definitions, is strongly normalising.

1.2.4 Type Inference

Look at the following problems related to type systems.
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1. Type checking. Given a and b, does a have type b7
2. Type inference. Given a, does a have any type?

3. Inhabitation. Given b, is b the type of some term?

They are important in the implementations of functional programming languages, proof
checkers and proof assistants.

Type inference for systems a la Curry is not always decidable, not even for normalis-
ing ones. For example, type inference for the simply typed lambda calculus is decidable
[Cur69] [Mil78] but for Aw (or Fw) is undecidable [Urz93b]. An incomplete overview of
the decidability of type inference in the systems a la Curry can be found in a table on
page 183 in [Bar92]. This table can be filled in completely by now: type checking and
inference in A2 (or F') have been proved undecidable in [Wel94] and the inhabitation of
AN has been proved undecidable in [Urz93a]. Type inference for ML [DM82] is decidable
because polymorphism can be used only in a weaker form (the universal quantifiers can
occur only in the outermost position of a type).

For systems a la Church, in all known cases the problems of type checking and type
inference are equivalent. Moreover decidability of type inference is very closely related to
normalisation. Decidability of type inference for normalising pure type systems whose set
of sorts is finite is proved in [BJ93] and decidability for normalising pure type systems
whose specification is recursive and singly sorted (also semi-full) is proved in [Pol96]. Un-
decidability of type inference for inconsistent impredicative pure type systems is proved in
[CH94] generalising the result in [MR86].

The problem of inhabitation in systems a la Church presents the same complications
as for systems a la Curry. For the inconsistent systems, inhabitation is trivial since all the
types have at least one inhabitant. In the systems of the A-cube, inhabitation is decidable
only for the simply typed lambda calculus(A_) and for Aw. For the rest of the systems in
the A-cube inhabitation is undecidable [Spr95].

In this thesis, we give solutions for the problem of type inference in pure type systems
(also with definitions). We present a type inference procedure (it is not an algorithm, i.e.
a program that always terminates) for pure type systems. It can be applied to any singly
sorted pure type system (systems with the uniqueness of types property), including the
non-normalising ones. In order to prove that it behaves correctly (it terminates and yields
the type of a term if the term is typable and it may not terminate otherwise), we use the
results proved in this same thesis concerning normalisation.

1.3 Summary of the Contents of this Thesis

This thesis is divided into three parts: 1) an abstract presentation of rewriting and typing,
2) lambda calculus and 3) pure type systems with definitions.
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An abstract presentation of rewriting and typing

In this part, the concepts of computation and typing are formalised in an abstract way as
binary relations on an arbitrary set. The word abstract is due to the fact that we do not
fix a set of terms or expressions, instead we take an arbitrary set. In this way, we give a
common framework for the systems presented in the rest of the thesis. We believe that
this abstract presentation gives uniformity and clarity to the exposition.

In chapter 2, we start by recalling the notion of abstract rewriting systems. The
rewrite relation intends to model the concept of computation. This setting has been used
to capture some properties of the concept of computation like confluence and normalisation
in an abstract way.

In chapter 3, with the intention to clarify the basic abstract properties of confluence
and normalisation we compare abstract rewriting systems with topological structures and
find the relationship of the mentioned properties with well known topological concepts.

In chapter 4, as one of the main purposes of the thesis is to study the behaviour of
confluence and normalisation under different kinds of extensions of pure type systems, we
introduce the notion of abstract rewriting systems with typing which intends to model the
interaction between the concepts of computation and typing.

Chapters 2 and 4 are partly joined work with Femke van Raamsdonk. We were both
interested in an abstract notion for type systems in order to have a common framework
for pure type systems and for higher order rewriting systems. For the use of these abstract
notions in the context of higher order rewriting systems, we refer to [Raa96].

Chapter 3 is based on a paper with Walter Ferrer [FS93].

Lambda Calculus

In this part, we give some new characterisations of the set of weakly and strongly normal-
ising A-terms focusing on expansion rather than reduction. These characterisations of the
set of strongly normalising A-terms permit us to give new and simple proofs of classical
results about A-calculus. In most cases the new proofs are essentially simpler than the
already existing ones and help us to understand not only the mechanics of the proofs of
the results but also the reasons for their validity.

In chapter 5. we give new characterisations of the set of weakly and strongly normal-
ising A-terms.

In chapter 6, we define two perpetual strategies Gy, and G, similar to Fy;, [BK82] and
F.. [BBKV76]. In order to prove that a strategy F' is perpetual, we prove that if F'(M)
is strongly normalising then so is M and we use one of the characterisations of the set of
strongly normalising A-terms given before. We also prove that the strategies Gy and Fyy
are maximal, i.e. the length of the GGy, and Fpi-reduction sequences are maximal.

In chapter 7, we give two proofs of finiteness of developments and superdevelopments.
We define the f-reduction as the f-reduction restricted to marked redexes. In order to prove
finiteness of developments we have to prove that the B-reduction is strongly normalising.
In the first proof we define by induction a set that coincides with the set of 3-strongly
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normalising terms, then we prove that this set is equal to the set of A-terms. In other
words, we prove that all the A-terms are f-strongly normalising. In the second proof we
write a function from the set of A-terms to the set of strongly normalising A-terms that
preserves the reduction.

In chapter 8, we prove strong normalisation for the simply typed lambda calculus.
We use again the new characterisation of the strongly normalising A-terms.

This part is based on a paper with Femke van Raamsdonk [RS95].

Pure Type Systems with Definitions

In this part, we study the meta-theory of pure type systems with definitions in detail. We
also give semi-algorithms of type inference for singly sorted pure type systems with and
without definitions. A semi-algorithm of type inference is a program that terminates and
infers the type if the term is typable, otherwise it may not terminate.

In chapter 9 we recall the notion of pure type systems. First we look at the the notion
of specification (the parameters of the typing rules for pure type systems.) We define
the notion of morphism between specifications. Then we recall the typing rules for pure
type systems. Pure type systems are obtained from the typing rules by instantianting the
specification. We give some examples of specifications, and show which lambda calculi
with types correspond to the typing rules of pure type systems instantiated with these
specifications.

In chapter 10 we define a function that infers the type for singly sorted pure type
systems (systems with the uniqueness of types property). We weaken the rules of pure
type systems by removing a premise from the abstraction rule. This premise, called the
-condition, states that (Ilz:A. B) should be well-typed in order to be able to give the type
(Ilz:A. B) to the abstraction Az:A. b. We study the metatheory of the pure type systems
without the 1l-condition. We prove that if a singly sorted pure type system is normalising
then so is the corresponding pure type system without the Il-condition. Using this result
we define a set of rules for pure type systems that are syntax directed, i.e. the last rule
in a type derivation is determined by the shape of the term and the context. We prove
the equivalence between the syntax directed set of rules and the original ones. Finally, we
define a function that infers the type in a singly sorted pure type system based on this
syntax directed set of rules. This chapter is based on the paper [Sev96].

In chapter 11, we study the metatheory for pure type systems extended with defini-
tions. We prove properties like confluence and subject reduction for the combination of
the 3 and o-reduction. We prove strong normalisation for the é-reduction and define a
perpetual and maximal strategy for the é-reduction similar to Fy; for f-reduction. Also,
we prove that weak normalisation is preserved by the extension, i.e. if a pure type system is
weakly normalising then so is its extension with definitions. Moreover, we prove for certain
pure type systems, including the Calculus of Constructions, that strong normalisation is
preserved by the extension. This chapter is based on a paper with Erik Poll [SP93, SP94].

In chapter 12, we define a function that infers the type of a term in a singly sorted
pure type system with definitions. Similarly to pure type systems, we define a set of rules
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for pure type systems with definitions that is syntax directed and prove the equivalence
between the syntax directed set of rules and the original ones. We define a function that
infers the type in a singly sorted pure type system with definitions based on this syntax

directed set of rules.
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An Abstract Presentation of
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Chapter 2

Abstract Rewriting Systems

2.1 Introduction

The concept of computation can be modelled in an abstract way as a binary relation on
a set. This relation is called the rewrite relation, usually denoted by —. A pair consisting
of a set and a binary relation is called an abstract rewriting system. We are interested,
for example, in computing the value of an element. A computation is represented by a
sequence of elements ag — a1 — ay ... — a, whose last element a, represents the value of
the computation. Several properties can be studied in this abstract setting, like confluence,
weak and strong normalisation. A final value of a computation can be represented by an
element that cannot be reduced any further and is called normal form. If all the elements
have a normal form then the system is said to be weakly normalising. The intuitive meaning
of confluence is that any procedure that computes the value of an element yields the same
result, the intuitive meaning of strong normalisation is that any procedure is finite.

This setting allows us to give criteria to prove properties like confluence, weak and
strong normalisation in a very general way.

We summarise the contents of the sections of this chapter. In section 2.2, we recall the
basic concepts concerning abstract rewriting systems. In section 2.3 we define the notions
of morphism between abstract rewriting systems and of rewrite sequences. In section 2.4
we recall the concepts of confluence, weak and strong normalisation. We also give some
general criteria to prove confluence, weak and strong normalisation.

2.2 Abstract Rewriting Systems

In this section we recall the definition of abstract rewriting system. The abstract notion of
rewrite relation was first formalised by Newman (see [New42]) under the name of ‘move’
or indexed 1-complex. They are also called abstract reduction systems in [Klo80]. We call
them abstract rewriting systems as in [O0s94].

15
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Definition 2.2.1. An abstract rewriting system is a structure (A, —) where A is a set of
objects and — is a subset of A x A called a rewrite relation (or reduction).

Definition 2.2.2. We say that (a,b) €— is a rewrite step in the abstract rewriting system
(A, —). We write a — b instead of (a,b) €—.

The reflexive closure of — is denoted by —=. The transitive closure of — is denoted
by —*. The transitive-reflexive closure of — is written as —». The inverse relation of —
is denoted as «. The equivalence relation generated by — is written as «» and called
conversion.

Example 2.2.3.

1. For each n € IN we define the abstract rewriting system,

T,=({i|0<i<n},{(i,i+1)|0<i<(n—1)})

Diagrammatically,
Il 0 — 1
I, 0—-1—2
I, 0—-1—=2—...—>n

2. T=(IN,{(s,i4+ 1) | + > 0}). Diagrammatically,

0—-1—2— ...

2.3 Morphisms

In this section we introduce the notion of morphism for abstract rewriting systems (see
also [Raa96]). We think that the concept of morphism is the natural one. It allows us to
express several concepts like the notions of rewrite sequence and extension as morphismes.

A morphism should preserve the structure. For abstract rewriting systems a morphism
is a function between sets that preserves the rewrite relation —. These are the morphisms
associated to the category of abstract rewriting systems. In case the function preserves
other relations like —%, —», we call it refining and implementing morphism respectively.
Morphisms that preserve conversion «— are defined later.

Definition 2.3.1. Let (A, —.) (B, —3) be two abstract rewriting systems. A morphism
from (A, —,) to (B,—p) is a function f : A — B such that for all a,a’ € A if a« —,

then f(a) —5 f(da').
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The category whose objects are the abstract rewriting systems and the morphisms are
as defined above is denoted as Ars.

We define different kinds of morphisms between abstract rewriting systems depending
on the relation they preserve.

Definition 2.3.2. Let (A, —,) and (B, —3) be two abstract rewriting systems.

A refining morphism from (A, —,) to (B, —g3) is a function f : A — B such that for all
a,a’ € Aif a —, a' then f(a) —>E fla).

An implementing morphism from (A, —,) to (B,—p) is a function f : A — B such that
for all a,a’ € Aif a —, @ then f(a) —4 f(d).

A forgetting morphism from (A, —,) to (B, —g) is a function f: A — B such that for all
a,a’ € Aif a —, d then f(a) = f(a’). By =, we mean equality between elements in a set.

Definition 2.3.3. Let (A, —,) and (B, —3) be two abstract rewriting systems.

We say that (B, —3) is an extension of (A, —,) if A C B and the inclusion mapping is a
morphism from (A4, —,) to (B, —3).

We say that (B, —g) is a conservative extension of (A, —,) if (B, —p) is an extension of
(A, —,) and for all a,a’ € A, if ¢« —4 o' then a —, d'.

We say that (B, —g) is a strong conservative extension of (A, —,) if (B, —g3) is a conser-

vative extension of (A, —,) and A is closed under —g, i.e. if @ € A and ¢ —3 @ then
a € A.

A finite computation is represented by a finite rewrite sequence of elements ag — a; —
as — ...a, in an abstract rewriting system. We will formally define a finite rewrite
sequence in an abstract rewriting system (A, —) as a morphism from Z,, to (A, —).

A computation can also be infinite and it is represented by an infinite rewrite sequence
ag — a; — .... We will formally define an infinite rewrite sequence in an abstract rewriting
system (A, —) as a morphism from 7 to (A, —).

Definition 2.3.4. Let (A, —) be an abstract rewriting system, a € A and n € IN.

A rewrite sequence of length n starting at a is a triple (a,n, o) such that o is a morphism
from Z,, to (A, —) and o(0) = a. In a diagram:

0O —- 1 —-= 2 ... = n
o0) — o(l) = o(2) ... = o(n)
We denote a rewrite sequence (a,n,0) as o : 0(0) — o(l) — ... = o(n) or o : 0(0) —

a(n).
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A rewrite sequence of infinite length starting at a is a pair (a, o) such that o is a morphism
from 7 to (A,—) and ¢(0) = a. In a diagram:

0O - 1 —= 2
o(0) — o(l) = a(2)
We denote an infinite rewrite sequence (a,0) as o : 0(0) — o(1) — ...

The length of o is denoted by ||o||. We have that ||o|| is either a natural number or co.

The domain of o is denoted by dom(o).

Note that a morphism f : A — B from (A, —,) to (B,—3) ‘preserves rewrite se-
quences’. If (a,n, o) is a finite rewrite sequence in (A, —,) then (f(a),n, foo) is a rewrite
sequence in (B, —3). If (a,0) is an infinite rewrite sequence in (A, —,) then (f(a), foo)
is an infinite rewrite sequence.

In the following definition, we introduce the notion of lifting which will be used to define
the notion of development in chapter 7.

Definition 2.3.5. Let f: A — B be a morphism from the abstract rewriting system
(A, —,) to (B, —3). A rewrite sequence o in (A, —,) is an f-lifting of a rewrite sequence
pif foo=p.

The notion of lifting for rewrite sequence has been defined in [RS95] in the context of
indexed abstract rewriting systems. Note that this is the categorical notion of lifting for
morphisms.

Definition 2.3.6. A rewrite sequence o : a — b is maximal if for all p : @ — b we have
lofl = el

2.4 Properties of Abstract Rewriting Systems

In this section we define the basic properties of confluence, weak and strong normalisation
in an abstract rewriting system.

An element that cannot be reduced any further is called normal form and it can be
viewed as the final value of the computation. If all the elements have a computation that
ends in a normal form then the system is said to be weakly normalising. Other important
properties of abstract rewriting systems are confluence and strong normalisation.

Definition 2.4.1. Let (A, —) be an abstract rewriting system and a € A.

We say that @ is confluent if for all b,¢ € A such that @ — b and a —» ¢, there exists an
element d such that 6 — d and ¢ — d.

We say that a is a normal form (or —-normal form) if there is no b such that a — b.
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We say that a has a normal form (or has a —-normal form) if there exists a normal form
b such that a — b.

We say that a is weakly normalising (or —-weakly normalising) if a has a normal form.

We say that a is strongly normalising (or —-strongly normalising) if there is no infinite
rewrite sequence starting at a.

The notions of confluence, weak and strong normalisation can be extended to abstract
rewriting systems.

Definition 2.4.2. Let (A, —) be an abstract rewriting system.

We say that (A, —) or — is confluent if for all ¢ € A, a is confluent.

We say that (A, —) or — is weakly normalising if for all @ € A, a is —-weakly normalising.
We say that (A, —) or — is strongly normalising if for all @ € A, a is —-strongly normal-

ising.

In the following we define the simple and transitive reductions graphs of an element
which represent the set of values of all the computations starting from this element. We
also define the simple and transitive expansion graphs of an element which represent the
set of inputs whose computation yields the element.

Definition 2.4.3. Let (A, —) be an abstract rewriting system and a € A. We define the
following subsets of A.

a)G_(a)={be A|la—bland G_.(a) ={b€ A| a— b}. We call them the simple and

the transitive reduction graphs of a.

b)E (a)={beA|b—a}and E_.(a)={b€ A|b— a}. We call them the simple and

the transitive expansion graphs of a.
Note that £_(a) = G_(a) and that £_.(a) = G_(a).
Definition 2.4.4. Let (A,—,) and (B, —p3) be two abstract rewriting systems. The
union of (A, —,) and (B, —3) is defined by (AU B, —, U —3). We write —,5 instead of
—q U —3.
2.5 Strategies

In this section, we define the notion of strategy. A strategy is a procedure that determines
the way we reduce an element.

Definition 2.5.1.
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1. A strategy for the rewrite relation — is a mapping f : A — A such that for alla € A
a— f(a).

2. A one-step strategy for the rewrite relation — is a mapping f: A — A such that for
all @ € A not in normal form, we have that ¢ — f(a).

In chapter 6, we need to consider strategies that yield a set of reducts instead of only
one. For that reason, we introduce the following definition.

Definition 2.5.2.

1. A non-deterministic strategy for the rewrite relation — is a mapping F : A — P(A)
such that for all « € A, b € F(a) we have that a — b.

2. A non-deterministic one-step strategy for the rewrite relation — is a mapping F' :
A — P(A) such that for all @ € A not in normal form, we have that F(a) # 0 and
for all b € F(a), a — b.

For example, the function defined by F(a) = {a} for all « € A is a (trivial) non-
deterministic strategy.

Let f be a one-step strategy. We define an f-rewrite sequence starting from a. Intu-
itively, an f-rewrite sequence is a sequence of the form

a— f(a) — f*a) — ...
possibly ending in the normal form of a.

Definition 2.5.3. Let F' be a (non-deterministic) one-step strategy for —. We say that
a rewrite sequence o is an F-rewrite sequence if for all n € dom(c) such that n > 0,

o(n) € F(o(n—1)).

Definition 2.5.4. A (non-deterministic) one-step strategy F' is mazimal if all the F-
rewrite sequence starting are maximal.

Definition 2.5.5. A non-deterministic strategy F' : A — P(A) is called normalising if
for all @ € A such that a is weakly normalising, there exists an F-rewrite sequence from «
to a normal form.

The importance of the existence of normalising strategies in weakly normalising abstract
rewriting systems is that the decidability of the equality on normal forms implies the
decidability of the conversion. In order to check if two elements are convertible, we compute
their normal forms by applying the normalising strategy and we check that the two normal
forms are equal.

Definition 2.5.6. A non-deterministic strategy F': A — P(A) is called perpetual if for
all @ € A such that a is not strongly normalising we have that all the elements in F'(a) are
not strongly normalising.



2.6. CRITERIA 21

For a perpetual strategy F', if a is not strongly normalising then all the F-rewrite
sequences starting at a are infinite.

Definition 2.5.7. A non-deterministic strategy F' : A — P(A) is called confluent if for
all a,b € A such that a «» b implies that the F-rewrite sequences starting at ¢ and b
intersect.

If (A, —) is confluent then the simple graph G_. is a confluent strategy.

Definition 2.5.8. A common-reduct strategy is a function F : A x A — P(A) if for all
a,b € A such that a «» b then for all ¢ € F(a,b) we have that « — ¢ and b — c.

The importance of the existence of a common-reduct strategy F'is that we can check
if two elements are convertible in a confluent abstract rewriting system. In order to check
if two elements a and b are convertible, we check if F'(a,b) is not the empty set.

In the next lemma we prove that confluent strategies are particular cases of common-
reduct strategies. This is evident since a confluent strategy has only one argument and a
common-reduct strategy has two.

Lemma 2.5.9. If F': A — P(A) is a confluent strategy then G : A x A — P(A)
defined by G/(a,b) = F"(a) N F"(b) where n,m are the least natural numbers such that
F™(a)n F™(b) # 0 is a common-reduct strategy.

An example of a common-reduct strategy is F': A x A — P(A) defined from the simple
graph G_. by F(a,b) = G" (a) N G"(b) where n,m are the least natural numbers such that
G (a) NG (b) # 0.

More examples of common-reduct strategies are given in chapters 10 and 12.

2.6 Criteria

In this section we give some criteria to prove confluence and normalisation that will be
used in the following chapters of this thesis. They are expressed in terms of the notion of
morphism. We study the manner in which the properties of confluence, weak and strong
normalisation are transported from one abstract rewriting system (A, —,) to the abstract
rewriting system (B, —3) depending on the class of morphism we can find from (A, —,)
to (B, —3).

Forgetting morphisms give rise to a criterion for confluence provided they are strategies.
This criterion is used in chapter 11 in the proof of confluence for the é-reduction.

Lemma 2.6.1. (Confluence Criterion) Let (A, —,) be an abstract rewriting system.
If there is a forgetting morphism f : A — A which is a strategy for —,, then — is
confluent.

Proof: The proof is illustrated by the following diagram.
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Implementing morphisms give rise to a criteria for confluence provided they are strate-
gies. This criterion is used in chapter 11 in the proof of confluence for the gé-reduction.

Lemma 2.6.2. (Confluence Criteria) Let (A, —,) and (B, —4) be abstract rewriting
systems and suppose that there are implementing morphisms f: A — Band ¢g: B — A
such that fog: B — B is a strategy for —3. If —, is confluent then so is — 4.

Proof: Suppose that b —45 by and b —»3 by. Since ¢ is an implementing morphism from
(B,—3) to (A, —,) we have that g(b) —, g(b1) and ¢g(b) —, g(bs). Since — is confluent
we have that there exists a € A such that:

/(b)\
g(b1) {l,(bz)

Since f o g is a strategy for —4 and f is an implementing morphism from (A, —,) to
(B, —3) we have the following picture:
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a

Strategies from one abstract rewriting system to a conservative extension give rise to a
weak normalisation criterion.

Lemma 2.6.3. (Weak Normalisation Criterion) Let (B, —g3) be a strong conservative
extension of the abstract rewriting system (A, —,). Suppose there exists a strategy f :
B — B for —4 such that f(B) C A. If —, is weakly normalising then so is — 4.

Proof: Suppose b € B. Then b —4 f(b) and f(b) € A. Since —, is weakly normalising
there exists an —,-normal form ¢ € A of f(b). Since —,C—4 we have that f(b) —4 c.

Since (B, —3) is a strong conservative extension of (A, —,) and ¢ € A is an —,-normal
form, we have that ¢ is an —g-normal form. Suppose towards a contradiction that ¢ is not
an —g-normal form. Then there exists d such that ¢ —z d. Since A is closed under — g,
we have that d € A. Since —3 N(A X A) C—, we have that ¢ —, d. This contradicts the
fact that ¢ is an —,-normal form. O

For proving preservation of weak normalisation from one abstract rewriting system
(A, —,) to another abstract rewriting system (B, —,), the requirement that (B, —,) is a
strong conservative extension of (A, —,) can be weakened. Assume we can split the rewrite
relation —, into two relations —5 and —s. We require that only (B,—g3) is a strong
conservative extension of (A,—,). In this case we need —s to be weakly normalising.
This criterion is used in chapter 4 to prove a criterion that is applied in chapter 11 in the
proof of weak normalisation for pure type systems with definitions.

Lemma 2.6.4. (Weak Normalisation Criterion) Let (B, —g3) be a strong conservative
extension of the abstract rewriting system (A, —,) and let (B, —5) be an abstract rewriting
system. Suppose the following conditions are verified.

a) The relation — is weakly normalising.
b) For all b € B such that b is a é-normal form, we have that b € A.

¢) If @ is in é-normal form and @ —, @' then @’ is in é-normal form.
If —, is weakly normalising then so is —gs.

Proof: Suppose b € B. By a) there exists d such that d is the é-normal form of b. Then
b —»s d. It follows from b) that d € A. Since — is weakly normalising there exists ¢ an
—4-normal form of d. Since —,C—4 we have that d —4 c. Since (B, —p) is a strong
conservative extension of (A, —,), ¢ is in —g-normal form. By ¢) we also have that ¢ is in
—gs-normal form. O

Refining morphisms give rise to a criterion for strong normalisation since they map
infinite rewrite sequences into infinite rewrite sequences. This criterion is used in chapter
7 in the second proof of finiteness of developments and superdevelopments.



24 CHAPTER 2. ABSTRACT REWRITING SYSTEMS

Lemma 2.6.5. (Strong Normalisation Criterion) Let (A, —,), (B,—3) be two
abstract rewriting systems and suppose there is a refining morphism f: B — A.
If —, is strongly normalising then so is —g.

In order to prove the preservation of strong normalisation from one abstract rewriting
system (A, —,) to another abstract rewriting system (B, —,), in the case it is not possible
to find a refining morphism from (B, —,) to (A, —,), a method is to split the reduction —,
into two reductions — 4 and —5 and find a refining morphism from (B, —3) to (A, —,).
In the case that —; is strongly normalising, we have a strong normalisation criterion. This
criterion is used to prove the criterion of chapter 4 that is used in the proof of strong
normalisation for pure type systems with definitions in chapter 11.

Lemma 2.6.6. (Strong Normalisation Criterion) Let (A, —,), (B, —3s) be abstract
rewriting systems. Suppose there is a mapping f : B — A such that:

a) fis an implementing morphism from (B, —5) to (A, —,).
b) f is a refining morphism from (B, —3) to (A, —.).
If —, and —5 are strongly normalising then — g5 is strongly normalising.

Proof: Suppose towards a contradiction that —gs is not strongly normalising, i.e. there
is an infinite — gg-rewrite sequence starting at b € B.

Observe that the number of [-rewrite steps in this sequence is infinite, i.e. Vn €
IN dm > n : b, —p byy1. Otherwise it would follow that there is ng € IN such that
Ym > ng by, —s byt1. Hence the sequence b, 11 —s byo42 —5 ... would be infinite. As —;
is strongly normalising, this can not happen. Hence the number of -rewrite steps in the
sequence b —gs by —gs by... 1s infinite. Then this sequence is of the form

b H>(5 bnl _>ﬁ an H>(5 bng _>ﬁ bn4 H>(5 bn5 _>ﬁ bng H>(5 ot
By hypothesis a) and b) there is an infinite a-rewrite sequence starting at f(b):
Fb) =a fbny) =7 f(bay) =a f(bna) =7 f(bay) —a f(bns) =7 flbae) —a -

which contradicts the assumption that —, is strongly normalising. O

2.7 Conclusions and Related Work

In this chapter, we have presented the notion of abstract rewriting system in a categorical
way, by introducing different types of morphisms and we have proved some general lemmas
concerning confluence and normalisation.

In the literature abstract rewriting systems are not usually presented in a categorical
manner. We have introduced the notion of morphism and considered the category of
abstract rewriting systems. In our opinion, the categorical presentation is more elegant. For
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example the notion of rewrite sequence can be defined economically in terms of morphisms.
The application of a function to a rewrite sequence is the composition of two morphismes.
The notion of lifting of a development coincides in this way with the categorical notion of
lifting.

We have introduced the general notion of common-reduct strategy in order to use it later
in the definitions of the type inference semi-algorithms. A common-reduct strategy can be
used to check conversion in confluent abstract rewriting systems, if ' is a common-reduct
strategy, the terms a and b are convertible if and only if F'(a,b) # 0.

The Church-Rosser strategy presented in [Bar85] is a particular case of a common-
reduct strategy for g-reduction. The main difference between a common-reduct strategy
and a Church-Rosser strategy is that the former depends on two arguments and the latter
on one. The normalising strategies are important for checking conversion but they ensure
termination only on the set of weakly normalising elements.

The way in which conversion is checked in [Coq91] supposes implicitly the existence
of a common-reduct strategy. In [Coq91], an algorithm for checking conversion is defined.
For that purpose a computable binary relation is defined which is equivalent to the g7-
reduction. This relation depending on two arguments can be considered as a common-
reduct strategy. We define this strategy for § in chapter 10 and a similar one for 46 in
chapter 12. Also in these chapters we give more examples of common-reduct strategies for
3 and Bo-reduction.

The criteria to prove confluence, weak and strong normalisation have been obtained
generalising the original proofs done for pure type systems with definitions (see [SP94]).
Many other criteria came up as generalisations of existing proofs (see [New42], [Klo90],
[00s94] and [GLM92]). The proofs of [SP94] are rewritten as applications of the new
criteria in chapter 11. Moreover these criteria will also be applied to other particular
cases.
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Chapter 3

Topology

3.1 Introduction

In this chapter we dress many of the basic properties of abstract rewriting systems in
a topological costume. It will not be formally used later and the readers who are not
interested can skip it.

We define a topology (A, 7_.) associated to an abstract rewriting system (A, —). The
closed sets of this topology are those subsets of A that are closed under the rewrite relation
— and the open sets are those subsets of A that are closed under the inverse relation «.
The closure operator applied to an element ¢ € A is the transitive reduction graph of the
element, G_.(a). This is the smallest closed set that contains a. In the context of preorders,
the topology associated to a preorder is called the Alexandroff topology. This topology is
very special in the sense that the open sets are closed under arbitrary intersections (not
only finite ones) and there is another operator besides the closure that yields the expansions
of a set.

We give some topological characterisations of confluence. An abstract rewriting system
(A, —) is confluent if and only if the topology associated to (A, —) verifies that the in-
tersection of any pair of closed sets that are subsets of G_,(a) is non-empty or in informal
language if the closed subsets of G_.(a) are ‘large’. Moreover, we prove that an abstract
rewriting system (A, —) is confluent if and only if the two operators in the topology asso-
ciated to (A, —) verify a subcommutation condition.

We also give characterisations of normal forms and the properties of weak and strong
normalisation for what we call irreflexive abstract rewriting systems.

A normal form in an irreflexive abstract rewriting system is a closed point in the
topology associated to the abstract rewriting system.

An irreflexive abstract rewriting system is weakly normalising if and only if all the
closed sets of the associated topology contain a closed point. Another characterisation
states that an irreflexive abstract rewriting system is weakly normalising if and only if A
is the result of applying the expansion operator to the set of closed points.

An irreflexive abstract rewriting system is strongly normalising if and only if the fol-
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lowing two conditions are verified:
1. The family of principal closed open sets is noetherian.

2. The closure of two points is the same if and only if they are the same point.

This chapter is organised as follows. In section 3.2 we define the topology associated to
an abstract rewriting system and the abstract rewriting system associated to a topology.
In section 3.3, we show that there is an equivalence between the preorders and symmetric
topological spaces. In section 3.4, we give topological characterisations of confluence, weak
and strong normalisation.

3.2 Topology

In this section we associate a topology 7_. to an abstract rewriting system (A, —). The
closed sets of this topology are the subsets of A that are closed under the rewrite relation
—. The closure operator is the extension of the transitive graph of an element of A to
subsets of A. Conversely, we associate an abstract rewriting system to a topology. The
rewrite relation is defined as follows: an element a rewrites to b if b is in the closure of the
element a. This rewrite relation is reflexive and transitive.

We recall the definition and the basic properties of closure operators on a set (see

[Kel55)).

Definition 3.2.1. A map C:P(A) — P(A) is called a closure operatorif it verifies:
L. §c =0,
2. X C X,
3. X¢ = (X9,
4. (X1 UX2)" = XU X,© for all X, Xy, X, C A

Definition 3.2.2. IfC: P(A) — P(A)is a closure operator then F = {X C A | X = X}
and T ={X C A| A— X € F} form the family of closed and open sets of a topology in A.

We associate a topology 7_. to an abstract rewriting system (A, —). The closed sets
of this topology are the subsets of A that are closed under the rewrite relation —. The
closure operator is the extension of the transitive graph of an element of A to subsets of

A.

Definition 3.2.3. Let (A, —) be an abstract rewriting system. We define a mapping
C:P(A) = P(A) defined for X CAby C(X)={be A|dz e X x— b}.
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For each subset X of A, C(X) is the set of all the elements in A that are obtained by
rewriting some element in X. It is easy to prove that this mapping is a closure operator.

Lemma 3.2.4. Let (A, —) be an abstract rewriting system. The operator C:P(A) —
P(A) is a closure operator.

We denote by F 4 (or F_.) and T4 (or 7_.) the family of closed and open sets with respect
to the topology associated to an abstract rewriting system. This topology is sometimes
called the Alexandroff topology associated to —. It has been considered especially in the
case in which — is a preorder on A, see [GLSH92].

In the case that X = {a} we write C(a) instead of C({a}). The closure of a point is the
transitive reduction graph of the point and it is a closed set. In other words, it « € A then
Cla)={x € A|a— x} = G_.(a). Observe also that C(X) = U,cx Cla) = U,ex G—(a).
Note also that ¢« — b < b € C(a) & C(b) C C(a).

Also the transitive expansion graph of a point is an open set. In other words, £_.(a) =
{z € A |z — a} is an open set. It is the smallest set that is open and contains the element
a. Note also that b — a < b€ E_.(a) & E_.(b) C E_.(a).

In the following lemma, we prove that the closed sets are invariant under the rewrite
relation and the open sets are invariant under the inverse relation.

Lemma 3.2.5.

1. A subset X C A is closed if and only if it is invariant under the rewrite relation —.
In other words X is closed if and only if # € X, — y implies y € X for all z,y € A.

2. A subset X C A is open if and only if it is invariant under the rewrite relation «.
In other words X is open if and only if € X,y — « implies y € X for all z,y € A.

3. A subset of A is 7_, open if and only if it is 7_ closed, i.e. 7, = F_ and F_ =7_.

Definition 3.2.6.

The family of all sets of the form C(a) with @ € A is called the family of principal closed
sets and is denoted as P_, C F_,.

The family of all sets of the form £_,(a) with a € A is called the family of principal open
sets and 1s denoted as O_, C 7T_,.

Note that the family of open sets O_ is a basis for the topology 7_..
We associate to each abstract rewriting system (A, —) the topological space (A, 7_

)
by means of a functor. It is easy to prove that if f: A — B is a morphism from (A, —,)
to (B, —3) then f is a continuous function from (A, 7_. ) into (B, 7).

]

Definition 3.2.7. The functor H : Ars — Top is defined as follows:
H(A,—) = (A, 7_) for (A, —) an abstract rewriting system,
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H(g) = g for g a morphism between abstract rewriting systems.

We associate an abstract rewriting system to a topology. The rewrite relation is defined
as follows: an element a rewrites to 6 if b is in the closure of the element a.

Definition 3.2.8. Let (A,7) be a topological space whose closure operator is ©. We
define a binary relation —7 on A as follows.

Cl—>7'bifb€ac.

This binary relation is the rewrite relation associated to 7. The abstract rewriting
system associated to 7 is (A, —7).
Note that —7 is reflexive and transitive.

We associate to each topological space (A,7) an abstract rewriting system (A, —7) by
means of a functor. It is easy to prove that if f is a continuous function from (A, 7) into
(B,T') then f: A — B is a morphism from (A, —7) to (B, —7/).

Definition 3.2.9. The functor G : Top — Ars is defined as follows:
G(A,T)=(A,—7) for (A,T) a topological space,
G(f)=ffor f: A— B a continuous function of topological spaces.

3.3 Equivalence

The abstract rewriting systems whose rewrite relation verifies reflexivity and transitivity are
called preorders and the topological spaces whose open sets are closed under intersections
are called symmetric topological spaces. In this section, we prove that there is an equivalence
between the preorders and the symmetric topological spaces.

We can associate the reflexive-transitive closure of an abstract rewriting system by
means of a functor.

Definition 3.3.1. The functor transitive closure for abstract rewriting systems is denoted

as 7C : Ars — Ars and defined as follows:
TC(A,—) = (A, —») for (A, —) an abstract rewriting system,
TC(f) = f for f a morphism between abstract rewriting systems.

Lemma 3.3.2. The functor 7C verifies that 7C* = 7C.
We define the notion of symmetric topological space.

Definition 3.3.3. Let (A,7) be a topology on A. We say that (A,7) is a symmetric
topology if the family of open sets is closed by intersections.
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Definition 3.3.4. Let (A, 7) be a topological space and 7y C 7 be an arbitrary subfamily
of T and call Oy the set O = Nper, O. We define the symmetric topology associated to
7T (denoted as 7,) as the topology whose basis is the set {Og, | 7o € 7 }.

Note that 7, O 7. The construction above can be expressed as a functor.

Definition 3.3.5. Define a functor R from the category of topological spaces into itself,
R : Top — Top, as follows:

R(A,T)=(A,T,) for (A, T) a topological space,
R(f) = f for f a continuous function.

Lemma 3.3.6. The functor R verifies that R? = R.

The symmetric topology is very special in the sense that there is another operator that
yields the smallest open set that contains a given element. This set is just the transitive
expansion graph £ (a).

Lemma 3.3.7. The following statements are equivalent.
a) 7 is a symmetric topology.

b) 7 is a topology and there exists another topology 7’ in A | such that if F’ denotes
the family of closed sets of 7', then 7/ = 7.

¢) 7 is a topology and the following condition is verified.

(M) For all a € A, there exists a unique set S(a) that is the smallest open set that
contains the point a, i.e. S(a) C X for all X € 7 such that ¢ € X.

Proof: To prove a) = ¢) we take a symmetric topology (A, 7 ) and observe that it verifies

(M) because ﬂ{UlaneT} U is the smallest open set containing a.

Conversely, a topology (A, 7) that verifies (M) is a symmetric topology. Suppose that
7o CT and X = Nper, U # 0. Take a € X then for any U € 7y, S(a) € U and then
S(a) C X. So that X = U,cx S(a) is an open set. O

Lemma 3.3.8. Suppose that 7 is a topology on the set A and 7, the associated symmetric
topology. For every point a € A we have that Cr(a) = Cz,(a).

Lemma 3.3.9. Let 7 be a symmetric topology on the set A.

a) For any X C A there exists an open set S(X) that is the smallest open subset of A
that contains X. Moreover S(X) = U,cx S(a).

b) Let a,b € A. We have that b € «® < a € S(b) & S(a) C S(b).

c¢) The family of open sets S(a) with @ € A form a basis for the topology 7.
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Note that if (A, —) is an abstract rewriting system, the topology 7_, is a symmetric
topology.

In the following theorem we prove that there is an equivalence between the preorders
and the symmetric topologies.

Theorem 3.3.10. Let Preord be the subcategory of Ars consisting of the preorders
and Tops the subcategory of Top consisting of the topological spaces whose topology is a
symmetric topology. Let H,G,7C and R be the functors defined before.

a) The composition G o H satisfies G o H = 7C.
b) The composition H o G satisfies Ho G = R.

¢) The functors H and G are inverses of each other when respectively restricted to Preord
and Tops.

d) The functor ‘H : Preord — Tops is an equivalence of categories. Its inverse is the
functor G : Tops — Preord.

Proof: Parts a) and b) are easy to prove. Part c) follows immediately from parts a), b)
and the fact that R and 7C are projection functors onto Tops and Preord respectively.
Part d) follows immediately from the previous parts. O

3.4 Topological Characterisations

In this section, we give topological characterisations of confluence, weak and strong nor-
malisation.

In the following theorem, we give some topological characterisations of confluence. An
abstract rewriting system (A, —) is confluent if and only if in the topology associated to
(A, —), the intersection of any pair of closed subsets of G_.(a) is non-empty. Moreover, we
prove that an abstract rewriting system (A, —) is confluent if and only if the two operators
in the topology associated to (A, —) verify some subcommutation condition.

Theorem 3.4.1. (Topological Characterisation of Confluence)
The following statements are equivalent.

1. The abstract rewriting system (A, —) is confluent.

2. For all @ in A and for every pair C' and D of non empty 7_, closed subsets of C(a),
cnD#£0.

3. For all X C A, C(S(X)) C S(C(X)).

Proof:
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(1 & 2). Suppose (A, —) is confluent and C' and D are as above. Take ¢ € C' and d € D.
As ¢, d € C(a) we have that d «— a — ¢. Then there exists an © € A such that d — = «— c.
Asd e D ,C(d) C D and as d — x, € C(d) € D. Similarly, + € C(¢) C C. Hence
reCnD.

Conversely, suppose that we have a,d, ¢ € A such that d «— a — ¢. Then C(d) C C(a)
and C(c¢) € C(a). By hypothesis, there exists an element © € C(d) N C(¢). That means
that d — = «— ¢ and hence that (A, —) is confluent.

(1 & 3). Observe that
CSX)={z:y,y >z & y—>a & z€ X}

S(CX))={u:Tv,u—>v & 2 v & € X}

Next we give a topological characterisation of normal forms. The closed points in the
topology associated to the abstract rewriting systems are either elements that rewrite to
itself or normal forms.

First we recall the notion of loop and irreflexive abstract rewriting systems.

Definition 3.4.2. Let (A, —) be an abstract rewriting system.

_|_

We say that a rewrite sequence starting at a is a loop if it is of the form ¢ —7 a.

We say that a one-step loop is a loop of length 1.

For example, in the A-calculus < A, — 3> one-step loops are of the form C[Q] — C[Q]
with @ = (Az.x ) (Aa.x 2).

Definition 3.4.3. We say that an abstract rewriting system is irreflexive if there is not
any one-step loop.

We define the notion of terminal loops as loops that cannot rewrite to anything else
than itself.

Definition 3.4.4. A terminal loop is a loop a —T a such that there is no b # a with
a —» b.

Note that the only terminal loops are loops of one step.

Definition 3.4.5. An abstract rewriting system (A, —) is weakly irreflexive if there is
not any terminal loop.
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For example, the pure type systems defined in chapter 9 are weakly irreflexive. There
are no terminal loops.

In order to give a topological characterisation of normal forms we require that the
abstract rewriting system should be weakly irreflexive. In this case the normal forms are
exactly the closed points in the topology associated to the abstract rewriting system.

In the following lemma, we give a topological characterisation of normal forms for
weakly irreflexive abstract rewriting systems: an element of a weakly reflexive abstract
rewriting system is a normal form if it is a closed point in the associated topology.

Lemma 3.4.6. (Topological characterisation of normal forms)
Let (A, —) be a weakly irreflexive abstract rewriting system. An element ¢ € A is a
normal form iff {a} is a 7_ closed set.

In the following theorem, we give some topological characterisations of weak normali-
sation for weakly irreflexive abstract rewriting systems.

The first characterisation says that an abstract rewriting system is weakly normalising
if and only if every closed set has a closed point.

Note that the weakly normalising elements are the expansion of some normal form.
This give us the other characterisation: (A, —) is weakly normalising if A can be obtained
by applying the operator S to the set of closed points.

Theorem 3.4.7. (Topological characterisations of weak normalisation)
Let (A, —) be a weakly irreflexive abstract rewriting system. The following statements
are equivalent.

1. (A, —) is weakly normalising.

2. Every non empty closed subset of A with respect to the topology associated to (A, —)
has a closed point.

3. If X is the set of closed points of A then A = S(X).

Proof:

(1 & 2). Suppose (A, —) is weakly normalising. Take C' # () a closed subset of A. Take
¢ € C and consider a € A such that « is the normal form of ¢. Hence a € C because C
is closed and «a is a closed point because of lemma 3.4.6. Conversely, suppose that every
non empty closed set has a closed point. Then for any b € A the closed set C(b) contains
a closed point ¢. Then b — ¢ and ¢ is in normal form.

(1 & 3). Easy. O

To characterise strong normalisation we need the concept of noetherian family of sub-
sets.
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Definition 3.4.8. Let A be an arbitrary set and S a family of subsets of A, i.e. § C P(A).
We say that & is noetherian if and only if all decreasing subfamilies of S stabilize, i.e. for
an arbitrary family {S; : 7 € IN} C § such that 54 25, 2532..25,2..=dneN
such that S, = S,41 = ...

Theorem 3.4.9. (Topological characterisation of strong normalisation)
Let (A, —) be a weakly irreflexive abstract rewriting system.
(A, —) is strongly normalising if and only if the following two conditions are verified:

1. The family P_ C F_. of principal closed sets of A is noetherian.
2. Cla) =C(b) & a=0b.
Proof: Suppose — is strongly normalising. We prove the two conditions:
1. Suppose that we have a decreasing family of sets in P_,, i.e. a family of the form:
C(a1) 2 Cl(az) 2... 2C(ayn) 2 Clans1) 2 ...

This family produces a sequence of reductions ay — a3 —» ...a, —» a,11.... There
exists m € IN such that a,, = a¢pmy1 = .... Then C(a,,) = C(ap41) = ... and hence
the family stabilizes.

2. If C(a) = C(b) with a # b, we would have a reduction of infinite length ¢ —* b —*

a—"1b....

Conversely, any reduction a; — a3 — ...a, — @uy1 ... produces a family of principal
closed sets, C(a1) 2 C(az) 2 ... 2 C(a,) 2 C(an41) 2 . ... By the noetherian hypothesis
we conclude that there exists an m € IN such that C(a,,) = C(ay41) = .... Hence by
hypothesis 2 we conclude that a,, = @41 = .... O

3.5 Conclusions and Related Work

The topology associated to an abstract rewriting system is the well-known Alexandroff
topology that has been considered mainly for preorders. The comparison between ab-
stract rewriting systems and topological structures has the novelty of finding topological
characterisations for confluence and normalisation.

We see that in these topological characterisations of confluence, weak and strong nor-
malisation expansion is as important as reduction. Expansion has also played a role in the
characterisation of the set of strongly normalising A-terms in chapter 5.

This chapter is logically independent of the rest of the thesis. Although we did not
apply these results later, we think that it is relevant because to illuminate the same object
with light from different angles can be sometimes very productive.

This topology does not look at the structure of the term (neither does the notion of
abstract rewriting system) but only at the reduction graph of the term. In earlier work,
other topologies associated to a reduction relation have been considered. In all these cases

the topology depends on the structure of the terms (see [Bar85], [KKSdV91] and [KKS95]).
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Chapter 4

Abstract Typing Systems

4.1 Introduction

In computer science the notions of computation and typing are basic, and play an essential
role in the theory and its applications. In chapter 2 we have formalised the notion of
computation in an abstract way as a binary relation on a set.

The concept of typing can be modelled also as a binary relation. In this case the
relation is called the typing relation (usually denoted by : ). An element a is typable if
there exists b such that a : b and it is inhabited if there exists b such that b : «.

In the case that the binary relation represents the rewrite relation, we are interested in
looking at properties associated to its transitive closure like confluence and normalisation.
In the case of a binary relation that represents the typing relation, we are interested in
other kinds of properties like for example uniqueness of types. A typing relation does not
have much use by itself and we believe it makes sense in an abstract setting only when
considered together with a rewrite relation.

We consider a triple (A, —,: ) consisting of a set and two binary relations, one repre-
senting the rewrite relation and the other representing the typing relation. There should
be some interaction between these two relations. Now we discuss the kind of interaction
we consider interesting.

We use the typing relation in order to restrict the domain of the rewrite relation to the
set of elements that are typable or inhabited. This is useful when the abstract rewriting
system does not verify weak or strong normalisation.

We want the set of typable elements together with the rewrite relation to be a subsystem
of the original. This is verified when the set of typable elements and the set of inhabited
elements are closed under the rewrite relation. These properties are called subject reduction
and type reduction respectively.

Hence, we need that the rewrite and typing relations verify the subject and the type
reduction properties. We say that the triple (A, —,: ) is an abstract rewriting system with
typing if it verifies the subject and the type reduction properties.

We want that the abstract rewriting system obtained by restricting the domain A to

37
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the set of typable or inhabited elements verifies weak and strong normalisation. In this
chapter we prove these properties for abstract rewriting systems with typing under certain
hypothesis.

Finally, we introduce an abstract notion of environment (also called context). The typ-
ing relation and the rewrite relation may depend on environments. We consider indexed
families of abstract rewriting systems with typing where the indices represent the envi-
ronments. These families are called environmental abstract rewriting systems with typing.

We summarise the contents of the sections of this chapter. In section 4.2, we introduce
the notions of abstract typing system and of type. In section 4.3, we introduce the abstract
concepts of subject reduction and type reduction. Also we define the notions of abstract
rewriting system with typing. We define the properties of uniqueness of types and of weak
and strong normalisation. Also we give some general criteria to prove these properties. In
section 4.4, we introduce the notion of environment. We add this feature to all the abstract
structures defined in the previous section. In section 4.5, we introduce a general notion of
semantics.

4.2 Abstract Typing Systems

In this section, we introduce the notion of abstract typing systems (see also [Raa96]) to
formalise the notion of typing. As we said before a typing relation is formalised in an
abstract way as a binary relation.

Definition 4.2.1. An abstract typing system is a pair (A, : ) consisting of a set A and a
relation : C A x A called typing relation.

Definition 4.2.2. Let (A, :) be an abstract typing system.

We say that a has type b it a : b.

We say that a is a term (or typable) if there exists b such that a : b.
We say that b is a type (or inhabited) if there exists a such that a : b.
We say that a is a toptype if a is a type that is not typable.

Definition 4.2.3. We define a morphism from (A,:,) to (B,:3) as a function f: A — B
such that if a :, @' then f(a):5 f(d) for all a,a’ € A.

The category whose objects are the abstract typing systems and whose morphisms are
the ones defined above is denoted by Ats.

Definition 4.2.4. We say that (B, :5) is an extension of (A,:,) if A C B and the inclusion
mapping is a morphism from (A4, :,) to (B, :3).

Definition 4.2.5. We say that an extension (B,:5) of (A,:,) is conservative if a :5 o
implies a :,, @' for all a,a’ € A.
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4.3 Abstract Rewriting Systems with Typing

In this section, we consider triples (A, —,: ) consisting of a set A and two binary relations,
one representing the rewrite relation and the other representing the typing relation. There
should be some interaction between these two relations. We will require that the rewrite
relation and the typing relation commute in different ways.

Definition 4.3.1. (Commutation of the rewrite and the typing relations)
Let (A, —,:) be a set A and two binary relations — and : on the set A.

1. Reducing the term. If a has type b then we can rewrite the subject a to ¢’ and
a’ should have a type b related to b. According to the relation between b and ', we
classify the way in which these two relations interact as follows.

(a) We say that (A, —, : ) satisfies very weak subject reduction if for all a, b, ¢’ such
that @ : b and @ — a’, there exists &' such that a’ : b’ and b «» ¥'.

(b) We say that (A, —, : ) satisfies weak subject reduction if for all a, b, a’ such that
a:band a — d, there exists & such that ¢’ : & and b — ¥'.

a

b
v
Db

Cl/

(c) We say that (A, —, : ) satisfies subject reduction if for all a, b, a’ such that a : b
and a — a' we have that o’ : b.

a b
Lo
a b

Note that (A, —, : ) satisfies (weak) subject reduction if and only if (A, —, @)
satisfies (weak) subject reduction.

2. Reducing the type. If ¢ has type b then we can rewrite the type b to ¥ and ¥’
should have an inhabitant ¢’ related to a. According to the relation between a and
a', we classify the way in which these two relations interact as weak type reduction
and type reduction.

(a) We say that (A, —, : ) satisfies weak type reduction if for all a,b, b’ such that
a:band b — b, there exists a’ such that o' : ¥’ and a — «’.



40 CHAPTER 4. ABSTRACT TYPING SYSTEMS

a b
/b
a b

(b) We say that (A, —, : ) satisfies type reduction if for all a,b,t such that a : b
and b — b we have that a : 0.

a b
|| L
a Y

Note that (A, —, : ) satisfies (weak) type reduction if and only if (A, —», : ) satisfies
(weak) type reduction.

3. Expanding. If ¢ has type b then we can expand a or b. We introduce the notions
of subject expansion and type expansion.

(a) We say that (A, —, : ) satisfies subject expansion if for all a, b, a’ such that a : b,
a’ is typable and ¢’ — a we have that « : b.

(b) We say that (A, —, : ) satisfies type expansion if for all a, b,t’ such that a : b, ¥/
is typable and & — b we have that a : §'.

An abstract rewriting system with (very, weak) typing consists of a set, two binary
relations which satisfy some commutation requirements.

Definition 4.3.2.

We say that (A, —, : ) is an abstract rewriting system with very weak typing if (A, —, @)
satisfies very weak subject reduction.

We say that (A, —, : ) is an abstract rewriting system with weak typingif (A, —, : ) satisfies
weak subject and weak type reduction.

We say that (A, —, : ) is an abstract rewriting system with typing if (A, —, : ) satisfies
subject and type reduction.

A morphism between abstract rewriting systems with typing is a function between sets
that preserves the rewrite and the typing relations.

Definition 4.3.3. We define a morphism from (A, —,, :n ) to (B, —p, :5 ) as a function
f A — B such that f is a morphism in Ars from (A, —,) to (B, —4) and a morphism
in Ats from (A, :, ) to (B, 5 ).
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The category whose objects are the abstract rewriting systems with (weak) typing and
whose morphisms are the ones defined above is denoted by (Arst,) Arst.

In a similar way as above, we can define the notions of refining, implementing and
forgetting morphism.

If (A, —, :) is an abstract rewriting system with (weak) typing then the set A; = {a |
a is typable or a is inhabited} is closed under the rewrite relation — and the pair (A;, —)
is an abstract rewriting system.

Definition 4.3.4. Let (A,—, : ) be an abstract rewriting system with (weak) typing.
We define the restriction of (A, —) by (A, : ) as the abstract rewriting system (A;, —).

The most commonly used abstract rewriting systems do not satisfy the necessary prop-
erties of weak or strong normalisation. Abstract rewriting systems are combined with
abstract typing systems in order to restrict the original system (A, —) to (A;, —) to have
these properties. Intuitively, an abstract rewriting system with (weak) typing (A, —,:)
verifies some property if the restriction of (A, —) by (A, : ) verifies this property.

Definition 4.3.5. Let (A, —,:) be an abstract rewriting system with (weak) typing. We
say that (A, —,:) is (weakly) strongly normalising if the restriction of (A, —) by (A4, : ) is
(weakly) strongly normalising.

The restriction of an abstract rewriting system by an abstract typing system defined
above can be expressed by means of a functor.

Definition 4.3.6. We define a functor £ : Arst, — Ars as follows.
LA, —, ) = (A,—) for (A, —, )€ Arst,,

where A; = {a | a is typable or « is inhabited}. This functor is defined for morphisms in
the obvious way.

Lemma 4.3.7. A (refining, implementing, forgetting) morphism from (A, —,, :n ) to
(B,—3, 5 ) is a (refining, implementing, forgetting) morphism from L(A, —,, :» ) to
,C(B, —>g, 25 )

Notice that, a morphism from L(A, —, o) to L(B, —4, :5) is a function that preserves
the rewrite relation on a restricted domain. This function may not preserve the rewrite
relation on the whole set and hence it may not be a morphism between abstract rewriting
systems with typing.

The criteria for weak and strong normalisation given for abstract rewriting systems
can be adapted to abstract rewriting system with (weak) typing. The weak normalisation
criteria are used in the proof of weak normalisation for pure type systems with definitions
of chapter 11. The second strong normalisation criterion is used in the proof of strong
normalisation for pure type systems with definitions in chapter 11.
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Lemma 4.3.8. (Weak Normalisation Criterion) Let (A, —,,:,) and (B, —g,:5)
be abstract rewriting systems with (weak) typing. Suppose the following conditions are
verified.

a) (B, —p) is a strong conservative extension of (A, —,).

b) There exists a function f : B — A that is a strategy for —45 and a morphism from

(B,:3) to (A, ).
If (A, —4,:0) is weakly normalising then so is (B, —g, :5).

Lemma 4.3.9. (Weak Normalisation Criterion) Let (A, —,,:) and (B, —g3s,:5)
be abstract rewriting systems with (weak) typing. Suppose the following conditions are
verified.

a) (B, —p) is a strong conservative extension of (A, —,).

b) If @ is in é-normal form and ¢ —, @’ then @’ is in é-normal form.

c¢) The relation —; is weakly normalising.

d) The é-normal form is a morphism nfs : B — A from (B, :5) to (A, ).

If (A, —4,:0) is weakly normalising then so is (B, —gs,:5).

Lemma 4.3.10. (Strong Normalisation Criterion) Let (A, —,,:), (B, —3,:5) be
two abstract rewriting systems with typing and suppose there is a refining morphism
f: B — A between them. If (A, —,,:,) is strongly normalising then so is (B, —g,:3).

Lemma4.3.11. (Strong Normalisation Criterion) Let (A, —,, :, ) to (B, —gs, 15 )
be abstract rewriting systems with (weak) typing. Suppose there is a mapping f: B — A
such that:

a) fis an implementing morphism from (B, —s, 5 ) to (A, —4, W ).

b) fis a refining morphism from (B, —g, 5 ) to (A, —a, 0 )-

c) (B, —s, :p ) is strongly normalising.

If (A, —4, 1o ) is strongly normalising then so is (B, —gas, 15 ).

Proof: This follows from lemma 2.6.6. We consider the abstract rewriting systems:

L(A,—a, 0 ), L(B,—p, 5 ) and L(B,—s, 15 ). O

We define uniqueness of types property (up to conversion).
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Definition 4.3.12. Let (A, —, : ) be an abstract rewriting system with (weak) typing.
We say that (A, —, : ) verifies uniqueness of types if for all a such that ¢ : b and a : ¥/, we
have that b «» ¥'.

We give a criterion to prove that the uniqueness of types property is preserved from
one system to its extension. This criterion is used to prove uniqueness of types for singly
sorted pure type systems with definitions in chapter 11.

Lemma 4.3.13. (Uniqueness of Types Criterion) Let (B, —j3) be an extension of
(A, —,). Suppose there is a mapping f : B — A that is a strategy for — 5 and a morphism
from (B,:5) to (A,:). If (A, —4,:4) verifies uniqueness of types so does (B, —g3, 5 ).

Proof: Let b € B be such that b :3 ¢ and b :5 ¢/. Since f is a morphism, we have
that f(b) :o f(c) and f(b) :» f(¢). By uniqueness of types for (A,:,) we have that
fle) «», f(c). Since —,C— 4, we have that f(c) «»5 f(¢'). Since f is a strategy we have
that ¢ «»5 . O

4.4 Environments

Both the rewrite relation and the typing relation may depend on environments (also called
contexts). The typing relation for pure type systems defined in chapter 9 and the reduction
of global definitions defined in chapter 11 are examples of this dependency. In order to
have an abstract picture of that situation for the reduction of global definitions we con-
sider indexed families of abstract rewriting systems and for pure type systems we consider
indexed families of abstract rewriting systems with typing where the indices represent the
environments.

Definition 4.4.1. Let A and C be sets. We say that the triple (A, C,—) is an environ-
mental abstract rewriting system if — is a function from C to P(A x A).

We write — instead of — (7).

Note that (A, —r) is an abstract rewriting system for ? € C.

The elements of C' might be called pseudoenvironments (or pseudocontexts). The defi-
nition of environment appears later.

Definition 4.4.2. Let (A, C,—) be as above.
A rewrite step in 7 is a —p-rewriting step. We write 7 F @ — b instead of a —r b.
A rewrite sequence in 7 is defined as a —p-rewriting sequence. We write 7 F a; — ay —

as ... 1instead of @1 —r ay —1 as. ...

Definition 4.4.3. Let (A, C, —,) and (A, C, —3) be two environmental abstract rewriting
systems. The union of —, and —g in 7 is defined as the union of —,, and —gz.. We
write 7 = a —,5 b instead of a — .5, b.
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We define the notion of morphism for environmental abstract rewriting systems. A
morphism is a pair of functions, one of the functions transforms the environments (or
indices) and the other transforms the elements.

Definition 4.4.4. Let (A,C,—,) and (B, D, —3) as above. We say that the pair (f,g)
with f:C — D and g : C x A — B is a morphism from (A, C,—,) to (B, D, —g) if for
all a,be Aand ? € C,if 7 Fa —, bthen f(7)F ¢g(?,a) —5g(7,b).

In a similar way, we can define the notions of refining, implementing and forgetting
morphism.

Definition 4.4.5. Let (A,C,—) as above. We say that f: C x A — A is a strategy if
TFa— f(7,a) forall 7 € C and a € A. (Sometimes we write fr(a) instead of f(?7,a)).

Intuitively, an element a of A verifies a property in 7 if a verifies this property in the
abstract rewriting system (A, —r). Moreover, an environmental abstract rewriting system
(A, C,—) verifies a property if (A, —r) verifies this property for all 7 € C.

Definition 4.4.6. Let (A,C,—) as above and 7 € C.

We say that a is (weakly) strongly normalising in 7 if a is (weakly) strongly normalising
in the abstract rewriting system (A, —r).

We say that (A,C,—) is (weakly) strongly normalising if (A, —rp ) is (weakly) strongly
normalising for all 7 € C.

We say that (A, C,—) is confluent if (A, —r ) is confluent for all 7 € C.

Definition 4.4.7. Let A and C be sets. We say that the triple (A, C, : ) is an environ-
mental abstract typing system if : is a function from C to P(A x A).

Note that (A, :p ) is an abstract typing system for 7 € C.

Definition 4.4.8. Let (A,C, :) be as above and 7 € C. We say that a has type b in ?
ifa:rb We write? F a: binstead of a :1 b.

Definition 4.4.9. We say that ? € C is an environment (or a context) if there are a and

b such that 7 F a : b.

Definition 4.4.10. Let (A,C, : ) as above and 7 € C.

We say that a is a term (or typable) in 7 if a is a term in the abstract typing system
(A, :r ). We denote that a is not typable in 7 by 7 F/ a: —.

We say that a is a term (or typable) if there exists ? such that a is a term in 7.

We say that a is a type (or inhabited) in 7 if a is a type in the abstract typing system
(A7 ‘T )
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We say that a is a type (or inhabited) if there exists 7 such that a is a type in 7.

We say that a is a toptype in 7 if a is a toptype in the abstract typing system (A, :r ).
We say that a is a toptype if there exists 7 such that a is a toptype in 7.

Definition 4.4.11. We say that the quadruple (A, C, —, : ) is an environmental abstract

rewriting system with (very weak , weak) typing if — and : are functions from C' to P(Ax A)
and forall 7 € C, (A, —r,:r) is an abstract rewriting system with (very weak, weak) typing.

Most of the examples of environmental abstract rewriting systems have a rewrite rela-
tion — that does not depend on the set C'. In these cases, « — @' can be considered as an
abbreviation of 7 Fa — d’, for all 7 € C.

An environmental abstract rewriting system with (weak) typing (A, C, —, : ) verifies a
property if (A, —p, :r ) verifies this property for all 7 € C.

Definition 4.4.12. Let (A,C,—, : ) as above and 7 € C.

We say that (A,C,—, @) is (weakly ) strongly normalising if (A, —r, ) is (weakly)
strongly normalising for all 7 € C.

We say that (A, C,—, : ) verifies uniqueness of typesif (A, —r, v ) verifies uniqueness of
types for all 7 € C'.

Definition 4.4.13. Let A= (A,C,—,, n ) and B = (B,D,—4, :5 ) as above.
We say that B is an extension of A if the following conditions are verified.

1. ACB.
2. C CD.
3. TFa—,d then? Fa—gd forall a,a’ € Aand 7 € C.

4.7k a:yd then? Fa:ga foralla,a’ € Aand 7 € C.

We define the notion of morphism for environmental abstract rewriting systems with
typing as a pair of functions. One of the functions transforms the contexts and the other
transforms the elements. These functions preserve the rewrite relation and the typing
relation. Note that they also preserve rewrite sequences.

Definition 4.4.14. Let A= (A,C,—,, o ) and B = (B, D, —4, :5 ) as above.
We say that (f,g) is a morphism from Ato Bif f:C — D, g:C x A — B and the

following conditions are verified.
L. If? Fa—,bthen f(7)F g(?,a) =5 9(7,0).
2. TFa:ybthen f(7)Fg(7,a):59(7,0b).
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If the rewrite relation — 3 in the definition above does not depend on D then the first
clause is replaced by the following one: if 7 - a —, b then ¢(7,a) —5 g(7,b).

We denote the category whose objects are the environmental abstract rewriting systems
with typing as Carst, the category whose objects are the environmental abstract rewriting
systems with weak typing as Carst,, and the category whose objects are the environmental
abstract rewriting with very weak typing as Carst,,) (in all these cases, the morphisms
are the ones considered above).

In a similar way, we can define the notions of implementing, refining and forgetting
morphisms for environmental abstract rewriting systems with (weak) typing.

4.5 Semantics

The notion of interpretation can be formalised in an abstract way by means of a morphism
that preserves the conversion relation. The codomain of the interpretation can be seen
as the semantics of the respective domain. For all the categories defined in the previous
sections, we define the notions of interpretation and semantics. This section has been
introduced to state and prove formally the corollary 11.4.16.

Definition 4.5.1. Let (A, —,) (B, —3) be two abstract rewriting systems.

We define an interpretation (or a converting morphism) from (A, —,) to (B, —3) as a
function f : A — B such that if a «», o then f(a) «»5 f(d') for all a,a’ € A. If there
exists an interpretation from (A, —,) to (B, —3), we say that (B, —g) is a semantics for

(4, =a).

Definition 4.5.2. We define an interpretation (or converting morphism) from (A, =4, o )
to (B,—g, :p ) as a function f : A — B such that f is an interpretation in Ars from
(A, —,) to (B,—3) and a morphism in Ats from (A, :, ) to (B, :5 ). If there exists an
interpretation from (A, —,, :n ) to (B, —g, 5 ), we say that (B, —g3, :5 ) is a semantics

for (A, —4, o).

Definition 4.5.3. Let A = (A,C,—,, :» ) and B = (B, D, —4, :3 ) be environmental
abstract rewriting systems with typing.

We say that (f,g¢) is an interpretation (or converting morphism) from A to B if f :
C—D,g:CxA— B and the following conditions are verified.

I. If? Fa—,bthen f(7)F g(7,a) «»s g(?,b).
2. TFa:ybthen f(7)Fg(7,a):59(7,0b).

If there exists an interpretation from (A,C,—,, :n ) to (B, D,—gs, 3 ), we say that
(B,D,—3, :5 ) is a semantics for (A, C, —4, 1o ).

In the following, we define the notion of weak converting morphism as a pair of functions.
The function that transforms contexts depends on the context and on the element.
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Definition 4.5.4. Let A= (A,C,—,, :n ) and B=(B,D,—4, 3 ) as above.

We say that f: C x A — D x B is a weak converting morphism from A to B if the
following conditions are verified for all a,b € A and 7 € C. Suppose f(7,a) = (A, ¢) and
F(7,6) = (A, d).

1. If 7 F a «», bthen Al c«»pgd
2.7 Fa:, bthen Al cipd.

This special kind of morphisms is used in chapter 10. Note that the contexts A and
A’ have no relationship and the first clause cannot be replaced by ‘7 F a —, b then
AF c«»gd.

A weak converting morphism from A to B could be seen as a weak interpretation from

A to B.

4.6 Conclusions and Related Work

In this chapter, we have introduced the notions of abstract typing system and abstract
rewriting system with typing. The concepts will not surprise the specialists in the subject,
firstly because they are extremely natural and secondly because even though they appear
as ‘new’, they were already ‘there’ in a sort of ghostly manner. All these definitions and
properties are used in the rest of the thesis.

We think it is necessary to have a formal basis for type systems in the same fashion
as the notion of abstract rewriting systems is a formal basis for the lambda calculus. For
example, the whole section 4.5 was introduced in order to be able to formally describe a
property for models of pure type systems with definitions. Intuitively, the interpretation
of a pure type system with definitions is obtained by computing first the é-normal form
and then applying the interpretation of the original system without definitions. In [Pol94],
this result is stated in an informal way. Since we introduce the general setting of abstract
typing systems, we can say formally what an interpretation is and the considered property
can be formalised adequately.

Abstract formalisations of the notion of logic can be found in [Bar74], [Mes89], [HST89],
[Avr92] and [Acz95]. These formalisations are aimed to model different aspects of logic.
For example, the notion of a proof is modelled in [Mes89] but the rewrite relation between
proofs is not considered important. The notion of abstract rewriting systems with typing
intends to capture the notions of terms (proofs), types (propositions) and the reduction
of terms (the simplification of proofs). Hence our formalisation is aimed to model the
interaction between the typing relation and the rewriting relation. This is because we are
interested in properties of the typing systems like weak and strong normalisation.

We think that it could be possible to define the abstract notion of derivation and relate
it with the abstract logics defined in [Avr92] and [Acz95]. In that case we should introduce
an abstract notion of typing rules and of typing relation generated by these rules. Also we
should probably add more structure to the notion of environment.
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Chapter 5

Strongly Normalising A-terms

5.1 Introduction

In this chapter we give some characterisations of the set of f-strongly normalising -
terms. We use these characterisations (see chapters 6-8) to give new proofs of some results
concerning normalisation in A-calculus.

This chapter is organised as follows. In section 5.2 we define the set of A-terms and the
B-reduction. In section 5.3, first we define a set SN by induction that reflects the intuition
of what should be the set of strongly normalising terms. Then we define another set SN
that is equal to SA”. Finally we prove that SN is the set of 8-strongly normalising terms.

5.2 Lambda Calculus

In this section we recall the definition of the untyped lambda calculus with #-reduction.
The set of variables is denoted by V = {v,v’,v”, ...} and arbitrary variables in V are
denoted by x,y,z,....

Definition 5.2.1. The set A of A-terms is defined as the smallest set satisfying the
following clauses.

1.V CA,
2. if M € A then \u.M € A,
3. if M € Aand N € A then (M N) € A.

Definition 5.2.2. The mapping F'V : A C P(V) is defined as follows.

FV(z) = {a}
FV(QAa.M) = FV(M)—{z}
FV(MN) = FV(M)UFV(N)

51
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A variable x is said to occur free in M if x € FV(M).
Definition 5.2.3. The mapping BV : A C P(V) is defined as follows.
BV(z) = 0
BV(Az.M) = BV(M)uU{x}
BV(MN) = BV(M)UBV(N)
A variable z is said to occur bound in M if x € BV(M).
We define substitution as in [CF58].

Definition 5.2.4. The result of the substitution of N for = in M is defined as follows.

zlr:=N] = N
ylr := N] = if o #y
(PQYx = N] = (Ple = NIQlr = N])
(Ae.P)[x:=N] = (A P)
(My.P)lx:=N] = (Az.Ply:=z][x:=N]) ify#a,ye€ FV(N)and z is fresh
(My.P)[x:=N] = (Ay.Plz:= N]) otherwise

Definition 5.2.5. A change of a bound variable in the term M is the replacement of a
subterm (Az.N) by (Ay.N[x :=y]) where y & FV(N).

The relation of a-conversion between A-terms is defined as follows.

Definition 5.2.6. The term M is a-convertible to N if N is the result of applying to M
a series of changes of bound variables or vice versa.

Convention 5.2.7. Two terms are identified if they are a-convertible.

We define now the notion of context in the lambda calculus as a term with holes in it.
Definition 5.2.8. We define the set P by induction as follows.

1. x € P,

2. []eP,
3. if C1[ ] € P and Cs[ | € P then (C1[ ] Ca]]) € P,

A context is an element of P and is denoted by C[]. If C[] € P and M € A then C[M]
denotes the result of placing M in the holes of C|].
The essential feature of a context [ ] is that a free variable in M may become bound

in C[M].

Definition 5.2.9. The F-reduction (or S-rewrite relation) is defined as follows.
Cl(Ax.M)N] —35 C[M[x := N]]

where C'[ | € P has only one occurrence of [ |.

We use the usual abbreviations: I = Az.ax, K = (Ax.Ay.x), w = Az.(2x) and Q = (ww).
There are terms in the A-calculus that are not strongly normalising like Q2 and (K [ Q).



5.3. THE SET SN 33

5.3 The set SN/

In this section we give two definitions by induction of the set of strongly normalising
A-terms. These definitions use 3-expansion.

An easy observation is that the set that contains all normal forms and that is closed
under expansion is exactly the set of all weakly normalising terms. So we have the following
definition.

Definition 5.3.1. The set W is the smallest set of A-terms satisfying the following:
1. all normal forms are in W,

2. if C[P[z := Q]] € W, then C[(Ax.P)Q] € W.

The first naive attempt to obtain the set of all strongly normalising terms, is to add
the requirement that the argument of the redex introduced by the expansion is strongly
normalising. The set & is the smallest set that satisfies

1. all normal forms are in S,
2. if C[Plz:=Q]] € S and @ € S, then C[(Ax.P)Q] € S.

However, it is easy to see that there are terms that are not strongly normalising that belong
to §. For example, take w = Ay.(yy) and the rewrite sequence

Ae.(Ay.z)(za))w —p (Az.z)w

_>ﬁ w

The last term in the sequence, w, is in normal form then w € §. If we go backwards in the
sequence we get that (Ax.z)w € § and also (Ax.(Ay.z)(zz))w € S. But this term is not
strongly normalising because

Az.(Ay.2)(zz))w —5 (Ay.2)(ww)

—5 (ww)

The problem is that expansions cannot be allowed to take place just everywhere. The
expansion as in the second clause of the definition of & above will be required to create a
spine redex, i.e. a head redex or if there is no head redex an outermost redex.

Definition 5.3.2. The set O of contexts with a hole at a spine position is defined as the
minimal set that satisfies

1.ifCl]€ O thena My ...C[]... M, € O,
2. if C[] € O then X\a.C[] € O,
3. [|P... P, €O.
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The redex in C{(Ax.M)N] is called a spine redex if C[ ] € O [BKKS8T].

Definition 5.3.3. The set SN is defined as the smallest set that satisfies
1. all normal forms are in SN,

2. it O[Plx:=Q]] € SN, Q € SN and O[] € O, then C[(Az.P)Q] € SN

In order to obtain another definition of the set of strongly normalising A-terms, observe
that the set of normal forms can be defined by induction in the following way.

Definition 5.3.4. The set N F is the smallest set of A-terms satisfying the following:
1. if  is a variable and M,,..., M, € N'F for some n > 0, then 2 M, ... M, ¢ N F,
2. if M € NF then \e.M € N F,

We define the set SN as follows.

Definition 5.3.5. The set SN is the smallest set of A-terms satisfying the following:
1. if x is a variable and M,,..., M, € SN for some n > 0, then z M, ... M, € SN,
2. if M € SN then \e.M € SN,
3. it Mz := N]P,...P, € SN and N € SN, then (A\e. MNP, ... P, € SN.

In the following theorem, we prove that the set SA” characterises the set of strongly
normalising terms.

Theorem 5.3.6. (Characterisation of the strongly normalising A-terms)
M is strongly normalising if and only if M € SN

Proof:

=. Let M be a strongly normalising term. The proof proceeds by induction on the pair
(maxred(M ), M), lexicographically ordered by the usual ordering on IN and the subterm
ordering. Here we denote by maxred(M) the length of a maximal rewrite sequence from
M to normal form.
The base case is trivial since it is easy to see that all normal forms are in SN.
Suppose the maximal reduction of M to normal form takes k& + 1 steps. Let M =
Axy .. Ax, . PQy ... Q. There are two cases.

Case 1. P = y. Then the normal form of M is of the form Azy ... Ax,.yQ} ... Q" with
Q; —»5 Q! for : = 1,...,m. By induction hypothesis, Q; € SN,...,Q,, € SN. By the
first and second clause of the definition of SN, we have M = Azy ... Ax,,.yQ1...Q,, € SN.
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Case 2. P =M\y.Fy. Wehave M = Ay ... da,.(Ay. Po)Q1Qs . .. Qny — Ay ... Aay. Poly :=
Q1]Q3 ... Q... By induction hypothesis, Azy ... A\x,. Poly := Q1]Q2...Q, € SN. Also by
induction hypothesis, @1 € SA. By the last clause of the definition of SN, we have
M= Xzy.. A2, (Ay.Po)Qy ... Q. € SN

<. Suppose M € SN. We prove by induction on the derivation of M € SN that M is
strongly normalising.

1.0 M = aM,...M, with My,..., M, € SN, then the statement follows easily by
induction hypothesis.

2. If M = Xa.My with My € SN, then by induction hypothesis My is strongly normal-
ising. Then also M = Az.Mj is strongly normalising.

3. Let M = (Aa.Mo)M M ... M, with My[z := M|M;...M, € SN and M, € SN.
Consider an arbitrary rewrite sequence p: M = Fy —3 P, —3 P, —4 ... starting in
M. There are two possibilities: in p either the head redex of M is contracted or the
head redex of M is not contracted.

In the first case, there is an ¢ such that P, = M{[z := M{|M}... M/, with My —»4
M, ..., M, —5 M. Then P, is a result of rewriting the term My[x := MMy ... M,.
The latter is by induction hypothesis strongly normalising. Hence P; is strongly
normalising so p is finite.

In the second case, all terms in p are of the form (Ax.M)M{M, ... M! with My —»4
Mg, ..., M, —z M. By induction hypothesis, the term My[z := M;|My... M, is
strongly normalising. Therefore My, M, ..., M, are strongly normalising. Moreover,
we have by induction hypothesis that Mj is strongly normalising. Hence all the terms
in the rewrite sequence are strongly normalising and hence p is finite.

a

Theorem 5.3.7. SN’ = SN.

Proof: SN’ C SN is proved by induction on SA”. For SA* C SN, we prove that the set
of strongly normalising A-terms is a subset of SA” by induction on (maxred(M), M). O

5.4 Conclusions and Related work

We have defined the sets SA” and SN’ and proved that they are equal to the set of 3-
strongly normalising A-terms. In the chapters 6-8, we use the set SA to give new proofs
of classical results in lambda calculus. The use of SN to prove normalisation properties is
very convenient because its definition is by induction and furthermore it recalls the notion
of saturated set.

A saturated set is a subset X of the set of strongly normalising A-terms that satisfies
the following properties.
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1. if = is a variable and My, ..., M, are strongly normalising terms then the term

My ... M, € X,

2. if Mz := N]P;... P, € X and N is strongly normalising then the term
(Ae.M)NP,...P, € X.

The first and second clauses in the definition of SA are also conditions in the definition
of a saturated set. In the definition of SA/, we have an additional clause for abstractions,
and in the definition of saturated set it is necessary to add the requirement that the set
should be a subset of the set of strongly normalising terms.

Our definition of SN first appeared in [RS95] and more or less simultaneously a similar
definition appeared in [Loa95].



Chapter 6

Perpetual Strategies

6.1 Introduction

In this chapter we define two strategies Gy, and G, similar to Fy; [BK82] and Fl
[BBKV76]. These strategies are perpetual, which means that they yield an infinite rewrite
sequence whenever possible. We prove that G, and G, are perpetual by using the char-
acterisation of the set of strongly normalising terms. As a consequence, we deduce that
Fy and F, are perpetual.

This chapter is organised as follows. In section 6.2 we prove that the strategies Gy
and Fyj are perpetual. Then we prove that the strategies GG, and F., are perpetual. For
the strategies (o, and F,, we prove in section 6.4 that they are not only perpetual but
also maximal. That is, they yield the longest possible reduction to normal form whenever
the initial term is strongly normalising, and an infinite rewrite sequence otherwise. This is
done by computing the length of the rewrite sequence to the normal form.

6.2 The Strategies [}, and Gy

First we consider the strategy Fj as introduced in [BK82].

Definition 6.2.1. Suppose that M € A is not in normal form.
Let M = C[(Az.P)Q] where (Ax.P)Q is the leftmost redex of M.

B C[P[z := Q]] if () is strongly normalising
Fun(ClQeP)Q)) = { Cl(Ax.P)Fp(Q)] otherwise

We define the strategy Gy as a variant of Fy;. We reduce any spine redex instead of
just the leftmost redex. This yields a non-deterministic strategy.
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Definition 6.2.2. We define G, : A — P(A) as follows.
Gu(zMy ... M,) = UZH{(zMy...N;... M,)|N; € Gy(M;)}

Giyx (M. M) = {(Ae.N)|N € Gu(M)}

{M[z:= N|P,...P,} if NV is strongly normalising

Go(Ae. MNP, ... P,) = { {Qz.M)YQPy ... P,|Q € Gy(N)} otherwise

Theorem 6.2.3. Gy is a perpetual strategy.

Proof: We prove that if Gy (M) C SN then M € SA by induction on the structure of
M.

1. Suppose that the term is (M ... M,). Since Gyr(zM; ... M,) C SN, we have that
Gye(M;) C SN for all i = 1...n. By induction hypothesis we have that M; € SN.
Hence (zM; ... M,) € SN.

2. Suppose that the term is (Az.M). Since Gy(Az. M) C SN, we have that Gy (M) C
SN. Moreover, by induction hypothesis M € SA. Therefore (Az.M) € SN.

3. Suppose that the term is (Ax. M)N Py ... P,. We have two cases:

(a) If N is strongly normalising then N € SN. Since M|z := N|P,... P, € SN we
have that (Az. M)NP; ... P,.

(b) If N is not strongly normalising then there exists non-strongly normalising term

The strategy Fpp is contained in Gyg.
Lemma 6.2.4. Let M € A not in normal form. Then Fy(M) € Gp.(M).
Theorem 6.2.5. [} is a perpetual strategy.

This follows from lemma 6.2.4 and theorem 6.2.3.

6.3 The Strategies F,, and G

We now consider the strategy F., that is defined in [BBKV76]. This strategy does not
check whether the argument of the leftmost redex is strongly normalising or not. Instead,
it is checked whether the leftmost redex is an [-redex. If it is, it is contracted. If it is not,
contracting it could imply loosing the possibility of having an infinite reduction sequence.
Therefore, in that case, the leftmost redex is only contracted if the argument is a normal
form. If the argument is not a normal form, the strategy is applied to the argument.
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Definition 6.3.1. Suppose that M € A is not in normal form.
Let M = C[(Az.P)Q] where (Ax.P)Q is the leftmost redex of M.

ClP[x = Q]] ifze FV(P)or Qe NF
Foo(Cl(A2.P)Q]) - = { Cl(Ax.P)F(Q)] otherwise

The merit of F, is that it is decidable.
We define the strategy G, as a variant of F,,. We do not only reduce the leftmost
redex but also any spine redex. This yields a non-deterministic strategy.

Definition 6.3.2. We define G/, : A — P(A) as follows.
Goo(zM; ... M,) = UZH{(zMy ... N;... M,)|N; € G (M)}
Goo(Az. M) = {(Az.N)|N € Goo(M)}

{Ml[z:= N|P,...P,} ifzec FVPor Qe NF
{QAe. M)QP, ... P,|Q € Goo(N)} otherwise

Goo((Ae.M)NP,...P,) = {
Theorem 6.3.3. G, is a perpetual strategy.
We prove that if G..(M) C SN then M € SN by induction on the structure of M.
Lemma 6.3.4. Let M € A not in normal form. Then F (M) € Go(M).

As an immediate consequence of the previous lemma we have that F, is perpetual.

Theorem 6.3.5. [ is a perpetual strategy.

6.4 Maximal Strategies

In this section we prove that the strategies F., and G, are mazimal, which means that
they compute for each term M the longest possible rewrite sequence. In particular, a
maximal strategy is perpetual. The converse is not necessarily true, as witnessed by the

strategy Fpy defined in [BK82].

Example 6.4.1. The Fy;-rewrite sequence starting at (Az.z)(I71) has length 1.
(Ae.z)(I]) —p 2

However the length of the maximal rewrite sequence is 2.

(Az.z)(II) —5 (Az.z)l

_>ﬁ zZ
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Our proof that (G, is a maximal strategy makes use of the characterisation of strongly
normalising terms. We define a mapping h that computes the length of a G -rewrite
sequence of a term. Then it is proved that the mapping h computes the length of a
maximal rewrite sequence to normal form.

We define a map h : A — INU {oco} that computes for each term the length of its
F-rewrite sequence.

Definition 6.4.2.
1. The map h : SN — IN is defined by induction on the definition of SN .
0 ifn=0
PaMy Ma) = 9SS p) e #0
=1
h(Ax.M) = h(M)

(M[z:= N|P,...P,)+1 ifze FV(M)

h
MAeMONPy - Pr) - = {h(MPl...Pn)—l—h(N)—l—l if 2 ¢ FV(M)

2. We extend b : SN — IN to h: A — INU {co} by defining h(M) = oo if M & SN.

We prove that the map h has the following two properties:
e it computes the length of all the G/ -rewrite sequences of a term M,
e it computes the length of a maximal rewrite sequence starting in M.

From these we conclude that (G, and F, are maximal strategies.
First we prove the following lemma.

Lemma 6.4.3. Let M € SN.
1. It M € NF then h(M) = 0.

2. f M ¢ NF then h(M) = h(N)+ 1 for all N € G.(M).

Proof:
1. Trivial.

2. Suppose that M is not in normal form. We prove that h(M) = A(N) + 1 for all
N € G..(M) by induction on M € SN.

We consider these two cases:
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(a) The term M is of the form yQ ... Q.
By induction hypothesis we have h(Q;) = h(N;) + 1 for all N; € G (Q).
Take ¢ and N; € (o (Q;). Hence we have

W) = ih@’“)
= h(Q)+ D> h(Qk)

=

= h(N;)+1+> h(Q)
k#i

= h(yQi...Ni...Q,) +1

(b) The term M is (A\y.Py)Q1 ... Q.. Two cases are distinguished.

We have that h(M) = h(Foly :== Q1] Q2...Qm) + 1.
. y & FV(Fy). Again two cases are distinguished.

A. If ()7 is not in normal form then

Goo(M) ={(Ay.Po)N Q2...Qun|N € G (Q1)}
By induction hypothesis, h(Q1) = h(N)+1 for all N € (oo (Q1). Hence

we have
(M) = h(Fo Qz...Qu)+ Q1) +1

h(Po Qz.. . Qu)+h(N)+1+1

B. If )1 is in normal form then

= (P Q2...Qm)+ h(Q1) +1

a

Theorem 6.4.4. The map h: A — INU {oo} computes the length of all the G, -rewrite
sequence of a term M.

Proof: If M € SN then a G, -rewrite sequence is of the form
M —s My —p5 ... =5 M, with M in normal form.

It follows by induction on n that h(M) = n using lemma 6.4.3.
If M & SN then a G -rewrite sequence of M is infinite and indeed k(M) = co. O
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Now we prove that A : A — INU{oo} computes the length of a maximal rewrite sequence
starting at M. Here maxred(M ) denotes the length of a maximal rewrite sequence starting

in M.
Theorem 6.4.5. Let M € A. We have
h(M) = maxred(M)

Proof: If M ¢ SN, then h(M) = oo so it is clear that the statement holds.

Suppose that M € SA is not in normal form. We will prove that the length of an
arbitrary reduction to normal form is less than or equal to h(M). The proof proceeds by
induction on the number of steps in the derivation of M € SN. The term M is of the
form Axq...2,.PQq...Q,, where P can be either a variable y or an abstraction Ay.F,. We
consider these two cases:

1. P = y. An arbitrary reduction from M to normal form can be transformed into a
reduction sequence of the same length such that:

ey AT,y Qe Qe 5 Axy . Ay nf(Q1)Q2 ... Qe
—»g Cee
Here nf(M) denotes the normal form of M.

The number of steps of this sequence is ny + ... + n,,. By induction hypothesis, we

have h(Q;) > n; for ¢ =1,...,m. Hence we have
hM) = > h(Qi)
i=1

> > n

=1

2. P = \y.Py. Two cases are distinguished.

(a) y € FV(P). An arbitrary reduction sequence from M to normal form is of the
form

S5 Ary. Az, (A P)QIQL ... QL
—p5 Az Aw, Py = Q1]Q5 ... QL
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It can be transformed into a rewrite sequence of the form

M = Ary.. v, Ay Po)@Q1Qy. .. Qn
—5 Axr.Ax, Poly = Q1]Qs ... Qn
Ls Awy. A Py = 0Q0Q,...Q
s nf(M)

with k& > p. By induction hypothesis, h(Foly := Q1]Q2...Qm) > k + [. Hence

WPy = QuQs . Q) + 1
k+1+4+1
p+Il+1

h(M)

(AVARRYS

(b) y & Pyo. An arbitrary reduction sequence from M to normal form can be trans-
formed into a reduction sequence of the same length of the form:

5, nf(M)

By induction hypothesis we have that A(Q1) > p and
h(PoQsz ... Q) > 1. Hence

(M) = h(FPoQz...Qm)+ h(Q1) +1
> l+p+1

a

Theorem 6.4.6. (Maximal Strategy) The strategy (7, is maximal.

Proof:

1. By theorem 6.4.4 we have that h(M) is the length of all the (/o -rewrite sequences
of M.

2. By theorem 6.4.5 we have that h(M) = maxred(M) is the maximum length of all
reductions sequences starting at M.

Hence the strategy G, is maximal. O

As a consequence of the previous theorem we have that the strategy F., is also maximal.
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6.5 Conclusions and Related Work

In this chapter the strategies Gy and G, are defined which are similar to £}, [BK82] and
F.. [BBKVT76]. Instead of looking at the leftmost redex, the new strategies look at the
spine redexes. As a consequence, these strategies are non-deterministic.

The original proofs of the facts that Fpp and F, are perpetual proceed by a case analysis
[Bar85]. In order to prove that a strategy F'is perpetual it is proved that F'(M) admits an
infinite rewrite sequence if M does so. In order to prove that the strategies Gy and G, are
perpetual, we use the set SA'. In order to prove that a strategy G is perpetual, we prove
that G(M) C SN = M € SN. The deterministic strategies Fy; and F,, are particular
cases of (i and G, and so they are perpetual. Proving G(M) C SN = M € SN and
using the definition of SA” make our proofs more perspicuous.

The fact that F, is a maximal strategy has been proved by Régnier [Reg94] using a
relation that permits the permutation of redexes. Much more in the spirit of the present
work is a paper by Sgrensen ([Sor94]), who gives a proof that is very similar to ours. His
work was developed independently and simultaneously. In our case we have proved that
(., 1s maximal. Since F, is a particular case of G, we deduce that £, is also maximal.



Chapter 7

Developments and
Superdevelopments

7.1 Introduction

In this chapter we give two new and short proofs of the fact that in A-calculus all -
developments terminate. In order to prove that all g-developments are finite it is sufficient
to prove that the 3 is strongly normalising. For the first proof we define a set that charac-
terises the S-strongly normalising terms. Then we prove that any term belongs to this set.
As a consequence of this we have that all the terms are f-strongly normalising. For the
second proof we define a mapping from the underlined A-terms to the set SA'. We prove
that this is a morphism between abstract rewriting systems.

Applying similar methods, we give two new and short proofs of the fact that in A-

calculus all f-superdevelopments terminate.

This chapter is organised as follows. In section 7.2 we recall the definition of develop-
ment. In section 7.3 we give a short and simple proof of finiteness of developments. In
section 7.4 we give another proof of finiteness of developments that makes direct use of
the set SA/. In section 7.5 we recall the definition of superdevelopments. In section 7.6
we prove that all superdevelopments are finite. In section 7.7 another proof of finiteness
of superdevelopments that makes direct use of the set SA” and similar to the one in 7.4.

7.2 Developments

We shortly recall some definitions, for a complete formal treatment see [Bar85]. A devel-
opment is a rewrite sequence in which only descendants of redexes that are present in the
initial term may be contracted.

Usually, #-developments are defined via a set of underlined A-terms and an underlined
F-reduction rule.

65
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Definition 7.2.1. The set of underlined A-terms A is defined by induction as follows.

1. = € A for every variable z,

2. it M € A, then Aa. M € A,

3.if M € Aand N € A, then MN € A,

4. if M € A and N € A, then (Ax.M)N € A.

The notion of context C'[ | with holes is defined similar to definition 5.2.8.
The B-reduction is defined as follows.

Cl(Az.M)N] —5 C[M[z := NI

where C'[ | is a context with only one occurrence of [ |.
Note that A is closed under F-reduction.

We define a mapping e that erases underlinings.

Definition 7.2.2. The mapping e : A — A is defined as follows.

e()\x(.ef(\js i ix.e(M)
e(MN) = e(M)e(N)
e((Ae. M)N) = (Az.e(M))e(N)

Lemma 7.2.3. The mapping e is a morphism from (A, —>E) to (A, —p).

Definition 7.2.4. A rewrite sequence o : M —5 N in A is a development if there is a
rewrite sequence p in A that is an e-lifting of o. Diagrammatically,

J G (Av _>ﬁ)

(A, —5)
The abstract rewriting system J can be either Z,, for some n or 7 (see example 2.2.3).
Example 7.2.5. The following -rewrite sequence is a development.
Ar(x x) Ax.(x x) =g Ae.(x ) Az x)
The e-lifting of this development is the following 3-rewrite sequence.
Av.(x ) Ax.(x x) —g Ax.(x x) Ax.(z x)

The term Az.(x @) Az.(x ) is in B-normal form.
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We write a function that computes the 3-normal form.
Definition 7.2.6. The mapping nfg : A — A is defined as follows.

nfg(z) = =«

nfg()\x.M) = )\x.nfﬁ(M)

HfE(MN) = Hfﬁ(M)Hfﬁ(N)

nfs((Az. M)N) = nfg(M)[z 1= nfs(N)]

Note that nfg(M) does not contain A’s so it is in B-normal form.

Lemma 7.2.7.
1. M —g nfg(M).
2. M —>£N then nfg(M) = nfg(N).

So we have that nfz(M) is the -normal form of M and is unique. The functions e and

nfs are used in [Bar92] to prove confluence for 3-reduction.
In the following sections, we prove that 3 is strongly normalising.

7.3 First Proof of Finiteness of Developments

We give a new and short proof of finiteness of developments by considering another induec-
tive definition D of the set of all underlined A-terms. Like in the definition of the set SN,
we make use of the expansion. We prove that all the terms in D are $-strongly normalising.
Finally, we prove that D = A.

Definition 7.3.1. The set D is the smallest set of A-terms satisfying
1. = € D for all variables z,
2. it M € D, then Ae.M € D,
3.t M € Dand N € D, then MN € D.
4. if M[z := N] € D and N € D, then (Ax.M)N € D.

The proof of the following lemma is immediate.

Lemma 7.3.2. If P in PQ is not of the form Az./%, then all S-reducts of P(Q) are of the
form P'Q" with P —5 P’ and Q —»5 Q'
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Theorem 7.3.3. If M € D, then all 3-rewrite sequences starting in M are finite.

Proof: The proof proceeds by induction on the derivation of M € D.

1.
2.

a

If M is a variable then it is trivial.

Let M = Az.P with P € D. By induction hypothesis, we have that P is strongly
B-normalising. So M is strongly 3-normalising.

Let M = P@Q with P € D and ) € D. Note that P is not of the form Az.F. By
lemma 7.3.2, every (-reduct of M is of the form P'Q" with P —3 P" and () —5 Q'
By induction hypothesis there are no infinite S-rewrite sequences starting in P or in
Q. Therefore M is strongly S-normalising.

Let M = (Az.P)Q with P[z := Q] € D and () € D. Consider an arbitrary J-rewrite
sequence p: M = My —»3 My —»3 My —»5 ... There are two possibilities: in p the
head redex of M is contracted or the head redex of M is not contracted.

In the first case there is an ¢ such that M; = P'[x := @'], with P —3 P’ and
Q —»5 Q'. The term M; is a result of rewriting P[x := Q], and the latter is by
induction hypothesis strongly B-normalising. Hence p is finite.

In the second case all terms in p are of the form (Az.P")Q’ with P —4; P’ and
Q) —s Q. By induction hypothesis, Plx := Q] is strongly é—normalisin_g, which
yields that P is strongly B-normalising, and moreover () is strongly S-normalising.
Hence all terms in p are strongly normalising so p is finite. B

Lemma 7.3.4. If M € D and N € D then M[x := N] € D.

This lemma is proved by induction on M € D.

Lemma 7.3.5. If M[z:= N] € A then M € A.

Theorem 7.3.6. A=1D.

Proof:
C. Let M € A. We prove by induction on M that M € D. We prove the case that

M = (Ax.P)Q. By induction hypothesis, P € D and Q € D. By lemma 7.3.4 we
have that P[z := @] € D and by the definition of D we have that (Az.P)Q € D.

D. Let M € D. By induction on the derivation of M &€ D we prove that M € A. We

a

prove the case that M = (Az.P)Q. By induction hypothesis, Plx := Q] € A and
@ € A. By lemma 7.3.5, P € A. Hence (Ax.P)Q € A.

Corollary 7.3.7. (Finiteness of Developments)
All f-developments are finite.



7.4. SECOND PROOF OF FINITENESS OF DEVELOPMENTS 69

7.4 Second Proof of Finiteness of Developments

It is possible to prove in a different way, also using the set SN, that all developments are
finite. We define a morphism

(A, —p) — (SN, —p)

Let Abs denote a distinguished variable.

Definition 7.4.1. We define [ : A — SN as follows.

) = @

IAx.M) = Absiz.l(M)
I(MN) = I(M)I(N)

N) = (Azd(M))I(N)
Lemma 7.4.2. [(M[x:= N]) =1(M)[z :=I(N)].
Theorem 7.4.3.

1. if M € A then I(M) € SN,

2. if M € Aand M —5 N, then I(M) —5 I(N).

Corollary 7.4.4. The mapping I is a morphism from (A, —3) into (SN, —p).

Theorem 7.4.5. The rewrite relation 3 is strongly normalising.
Proof: This follows from lemma 2.6.5 and corollary 7.4.4. O

Corollary 7.4.6. (Finiteness of Developments)
All f-developments are finite.

7.5 Superdevelopments

In [Raa93], superdevelopments were introduced and proved to be finite. Superdevelopments
form an extension of the notion of development. In a superdevelopment not only redexes
that descend from the initial term may be contracted, but also some redexes that are
created during reduction.

There are three ways of creating new redexes (see [LevT78]):

L. (Az Ay.M)N)P —5 (\y.M[z := N])P

2. (Az.2)(Ay.M)N —5 (A\y.M)N
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3. (Ax.ClaM])(My.N) —5 C'[(Ay.N)M'] where C’ and M’ are obtained from C' and M
by replacing all free occurrences of @ by (Ay.N).

The first two kinds of created redexes are ‘innocent’ and they may be contracted in
a superdevelopment. The result that all superdevelopments are finite shows that infinite
B-reduction sequences are due to the presence of the third type of redexes.

In the following two sections we give two new proofs of the fact that in A-calculus all
F-superdevelopments terminate.

First we shortly repeat the definition of a superdevelopment. The definition makes use
of a set of labelled A-terms and a notion of labelled g-reduction. Since application nodes
will be labelled, we write them explicitly.

Definition 7.5.1. The set AY of labelled A-terms is defined by induction as follows.
1. & € AY for every variable z,
2. if M € AY and : € IN, then A\;z.M € Ay,

3. if M, N € AY and X C IN, then @*(M, N) € A¥.
Sometimes we write 7 instead of {¢} for ¢ € IN.

The notion of context C'[ | with holes is defined similar to definition 5.2.8.
On the set AY, the B-reduction is defined as follows.

Cl@*(\az.M,N)] = C[M[z:= N]] ifie X

where C'[ | has only one occurrence of [ ].
We define a mapping from A; to A that erases the labels.

Definition 7.5.2. The mapping ¢ : AY — A is defined by induction on the definition of
A; as follows.
eglz) =
e(Aix. M) = dx.e(M)
a(@X(M,N)) = a(M)e(N)
The proof of the following lemma is straightforward.

Lemma 7.5.3. The mapping e is a morphism from (AY, —4,) to (A, —p).

The fi-reduction is not strongly normalising on the set Ay since any 3-rewrite sequence
can be lifted in a fi-rewrite sequence. This is illustrated by the following example.
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Example 7.5.4. Let w = \j2.Q'(z, 2).
o) gy @)
The term @'(w,w) is not f-strongly normalising.
We restrict the set Ay to a set A; of well-labelled terms.

Definition 7.5.5.

1. A term M € A;is said to be well-labelled if the label X of an application node never
contains the label 7 of a A outside the scope of the application node. The set of
well-labelled A-terms is denoted by A;.

2. A term M € Ay is initially labelled if 1t is well-labelled and all A’s have a different
label.

The set A; of well-labelled terms is closed under f-reduction.
Lemma 7.5.6. (f;-closure) If M € A; and M —5, N then N € A,
This is proved by induction on M € AY.

Definition 7.5.7. A rewrite sequence o : M —»5 N in A is a superdevelopment if there is
a rewrite sequence p in A; that starts in an initially labelled term and that is an ei-lifting
of . Diagrammatically,

J G (Alv _>ﬁl)

(Av _W)
The abstract rewriting system 7 is either Z,, or 7 (see example 2.2.3 and definition 2.3.4).

Example 7.5.8. The following -rewrite sequence is a superdevelopment.

AeAy.xy)(Az.2)u —5 (Ay.(Az.2)y)u
—5 (Az.z)u

An ei-lifting for this g-rewrite sequence is, for example, the following f;-rewrite sequence.

Q@Y (A2 Ay @3 (2, y), \gz.2),u) —p @Ay @3 (N\gz.2,y),u)
@3(A\gz.2,u)

B

In the first step, the variable x is replaced by A z.z. This corresponds to the third way of
creating a redex and so @3(A\4z.z,7) is not a [j-redex.
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We define a function that computes the f-normal form of a term.

Definition 7.5.9. The function nfg : Ay — A; is defined by induction on the definition
of A; as follows.

nfsl(e) = @

Hfﬁl()\ZJ}M) = )\Zwﬂfgl(M)

Mylz := nf5,(N)] if nfp (M) = XNa.Myand i € X
nf (% (M, N)) =

@X(nf s (M),nfs(N)) otherwise
Lemma 7.5.10. If @X(M, N) € A; then nf 5 (M[z := N]) = nf 5,(M)[x := nf5,(N)].

Lemma 7.5.11. Let M € A,.
L. M —p5 nfg (M) and nf g (M) is in f-normal form.

2. f M —p5 M’ then nf g (M) = nf g, (M").

So we have nf g, (M) is the f-normal form of M and it is unique. As a consequence of
this we have that 3; is confluent.
In the following sections, we prove that [; is strongly normalising.

7.6 First Proof of Finiteness of Superdevelopments

We give a new proof of the fact that all superdevelopments are finite. It is similar to the
proof of finite developments in section 7.3. We define a set SD of underlined A-terms by
induction. In this case we make use of the expansion looking at the cases 1) and 2) of
creating new redexes. We prove that the terms in SD are -strongly normalising. Finally,
we write a morphism B

(A1, =) = (8D, —p)
Definition 7.6.1. The set SD is defined by induction as follows.
1. x € 8D for all variables z,
2. if M € 8§D, then \x.M € 8D,
3. it M € SD and N € 8D, then MN € SD,
4. if Mz := N])Py... P, € SD and N € 8§D, then (QAa. M)NP, ... P, € SD,
5. if Ay MYNPy...P, € 8D, then (Az.x)Ay. MNP, ... P, € SD.
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The notion of context C'[ | with holes is defined similar to definition 5.2.8.
The 3-rewrite relation is defined as follows.

Cl(Az.M)N] —5 C[M[z := NI
where C'[ ] has only one occurrence of [ ].
Lemma 7.6.2. If M, N € SD then Mz := N] € SD.
Lemma 7.6.3. (8-Closure) Let M € SD. If M —5 M’ then M’ € SD.

Lemma 7.6.4. Let M = PQ with P € SD and Q € SD. If M —»5 M', then M’ = P'Q)’
with P —»5 P"and QQ —5 Q.

Theorem 7.6.5. If M € SD, then all 3-rewrite sequences starting at M are finite.

Proof: The proof proceeds by induction on the derivation of M € SD.
1. If M is a variable then it is trivial.

2. Let M = Az.P with P € §D. By induction hypothesis, we have that P is strongly
B-normalising. So M is strongly 3-normalising.

3. Let M = P@Q with P € 8D and () € §D. By induction hypothesis P and () are
B-strongly normalising. It follows from lemma 7.6.4 that any 3-sequence starting at

M is finite.

4. Let M = (Aa.P)QNy ... N, with Plz := Q]N;... N, € §D. Consider an arbitrary
B-rewrite sequence p : M = M, —» g M, —» g M, 5 There are two possibilities:
in p the head redex of M is contracted or the head redex of M is not contracted.

In the first case, there is an ¢ such that M; = P'[z := Q'|N]... N, with P —g P’
Q _»EQ/’NI _»EN{”NH —»EN;L

The term M; is obtained by rewriting Pz := Q]N; ... N, and the latter term is by
induction hypothesis strongly 3-normalising. Hence p is finite.

In the second case, all terms in p are of the form (Ax.P")Q'N;...N} with P —
—5 P',Q —5 Q' Ny =5 N{,...,N, —3 N/. Since Plz := Q]N;...N, and Q are
by induction hypothesis strongly é—norrﬁalising, we have that P,Q), Ny,..., N, are
strongly B-normalising. So all terms in p are strongly S-normalising and hence p is
finite.

5. Let M = (Ax.2)(Ay.N)PNy... N, with (Ay.N)PN;...N, € SD. Consider an ar-
bitrary S-rewrite sequence p : M = My —3 My —5 My —»5 .... There are two
possibilities: in p the head redex of M is contracted or the head redex of M is not
contracted.
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In the first case, there is an 7 such that M; = (Ay.N')P'N;... N} with N —»4
N',P —5 P' Ny —5 N|,...,N, —»5 N!. The term M; is obtained by rewriting
the term (Ay.N)PN; ... N, and the latter term is by induction hypothesis strongly
B-normalising. So M; is strongly $-normalising and hence p is finite.

In the second case, all terms in p are of the form (Az.x)(Ay.N')P'N;...N! with
N _»EN/’P _»EP/’NI _»EN{”NH —»EN;L

By induction hypothesis, (Ay.N)PN; ... N, is strongly S-normalising.

Hence N, P, Ny, ..., N, are all strongly #-normalising. This yields that p is finite.

We define a set A” of ‘liberal’ underlined A-terms.

Definition 7.6.6. The set A” is the smallest set satisfying the following.

1.
2.
3.
4.

x € AY for every variable x,

if M € A¥, then \e.M € A”,

it M € A” then (Ax.M) € A,

if M eA” and N € A, then MN € A”.

We define a mapping (—)* : SD — A that underlines one special A of a term. If
M — 5 Az .My then the value M* is obtained from M by underlining the A that descends
to the head lambda in Aa. M.

Definition 7.6.7. We define (—)* : SD — A” by induction on the length of the maximal
(B-rewrite sequence to normal form.

A M) = daM

(M. MNP, ... P = (Ae.MON'PI... P if (M[z:=N]Pi...P,)" =
M'[x:= N'|P]... P!

M = M otherwise

Lemma 7.6.8. If M, N € SD then M*N € &D.

Proof: Let M € SD. Then M is either of the form (2U;...U,), or (Aa.P)Uy...U,
or (Az.P)QUy...U,. We proceed by induction on the length of the maximal f-rewrite
sequence to normal form.

1.

Let M = (Az.P). Then (Ax.P)* = Az.P. By lemma 7.6.2, we have that Plz := N] €
SD. Hence (Ax.P)*N € SD.
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2. Let M =zU;...U,. Then M* = M and MN € S§D.
3. Let M = (Ax.P)QUy ... U,. Then M* =M and MN € SD.
(A

4. Let M = (Ax.P)QU; ... U,. By induction hypothesis, we have that
(Ple:=QJU;...U,)*N € SD. Hence M*N € SD.

O
Lemma 7.6.9. Let M € SD. If M # (¢Ny...N,,) then (M[z := P])* = M*[x := P].

The proof proceeds by induction on the length of a maximal S-rewrite sequence to
normal form.

Definition 7.6.10. The mapping u: A; — A% is defined as follows.
u(z) =

u(hie. M) = Az.u(M)

u(M)* u(N) if nf 5,(M) = N\ja. My and ¢ € X
u(@X(M,N)) = {

u(M) u(N) otherwise
Theorem 7.6.11. Let M € A;. Then u(M) € SD.

The previous theorem is proved by induction on M € A; and using lemma 7.6.8.

Lemma 7.6.12. Let M € A If u(M) = (#Ny...N,) then nfz (M) is of the form
(xPr...P,) for some terms Py, ..., P,.

This lemma is proved by induction on M € A,;.
Lemma 7.6.13. Let @X(M,N) € A;. Then u(Mlz := N]) = u(M)[z := u(N)].

Proof: The proof proceeds by induction on M € A;. We prove only the case of the
application M = @X(P, Q) with nf(P) = M\;z.Py and 7 € X.
It follows from lemma 7.5.10 and the fact that the terms are well-labelled that

nf g, (P) = MNa.Fy if and only if nf 5, ( Ple := N]) = \a. Polx := nf 5, (N)].
Therefore
u(@¥(P,Q))[x = u(N)] = u(P)" u(Q)]

x:=N by definition 7.6.10
= u(Plz:= N])* u(Q[x := N]) by lemmas 7.6.9 and 7.6.12
u(Q@X(P,Q)[x := N] by definition 7.6.10
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Theorem 7.6.14. Let M € Aj. If M —5 N in A; then u(M) —5 u(N) in SD.
This theorem is proved by using lemma 7.6.13.

Theorem 7.6.15. The mapping u is a morphism from (A;, —p,) to (8D, —).
The proof follows from theorems 7.6.11 and 7.6.15.

Corollary 7.6.16. (Finiteness of Superdeveloments)
All superdevelopments are finite.

7.7 Second Proof of Finiteness of Superdevelopments

Another proof of the fact that all superdevelopments are finite can be given in a way similar
to the one in section 7.4. We define a morphism

(At =) == (SN, =)
Let App denote a distinguished variable.
Definition 7.7.1. The mapping j: A; — SN is defined as follows.
Wz) = @
J(Ae. M) = Az (M)
J(M)(N) if nfp (M) =XNa.Mandi e X

QX (M, N)) = {
Appj(M)j(N) otherwise

Lemma 7.7.2. Let M € A;, j(M) € SN and N € SN. Then j(M)[z := N] € SN.
Proof: The proof proceeds by induction on the derivation of j(M) € SN.

1. Suppose (M) = yP,...P, with P, € SN for i = 1,...,n. If n > 0 then y = App.
By induction hypothesis, j(P)[z := N] € SN for ¢« = 1,...,n. Hence j(M)[z :=
N] e SN.

2. Suppose }(M) = Ay.P with P € SN. Using induction hypothesis we obtain that
J(M)[z:= N] € SN.

3. Suppose j(M) = (Ay.P)Q1Q2...Q, with Ply := Q1]Q2...Q, € SN and @, € SN.
By induction hypothesis, we have (Ply := Q1]Q2...Q,)[z := N] € SN and
@Q1[z := N] € SN. This yields j(M)[z := N] € SN.
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O

Lemma 7.7.3. Let M € A;, j(M) € SN and N € SN. Then j(M)N € SN.

Proof: The proof proceeds by induction on the derivation of j(M) € SN.

1. Suppose j(M) =aPy...P, with P, € SN fori=1,...,n. Then j(M)N € SN.

2. Suppose jJ(M) = Az.P with P € SN. Then M = \x.M, and j(My) = P. By the
previous lemma we have Pz := N] € SA. Hence j(M)N € SN.

3. Suppose j(M) = (Az.P)Q1Qs ... Q, with Plz := Q1]Q2...Q, € SN and @, € SN.
By induction hypothesis, we have Pz := Q1]Q,...Q,N € SN. Moreover Q; € SN,
hence j(M)N € SN.

O
Lemma 7.7.4. Let @X(M,N) € A;. Then j(M)[z :=3(N)] = j(M|[z := N)).
This lemma is proved by induction on M € A,;.

Theorem 7.7.5. Let M € A;.
1. (M) € SN.

2. f M —5 Nin A; then j(M) —53(N) in SN.

Proof: The proof of the first part proceeds by induction on M € A; and makes use of the
lemmas 7.7.2 and 7.7.3. The second part uses lemma 7.7.4. O

Corollary 7.7.6. The mapping j is a morphism from (A;, —3,) to (SN, —3).
Theorem 7.7.7. —yg, is strongly normalising.
This theorem follows from lemma 2.6.5 and corollary 7.7.6.

Corollary 7.7.8. (Finiteness of Superdeveloments)
All superdevelopments are finite.
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7.8 Conclusions and Related Work

The result that all #-developments are finite is a classical result in A-calculus and var-
ious proofs already exist. Church and Rosser proved finiteness of developments for the
Al-calculus with S-reduction in [CR36]. The first proof for the full A-calculus is given by
Schroer in [Sch65]. Other proofs have been given in [Hyl73] and [Bar85]. In [Klo80], finite-
ness of developments is proved from strong normalisation for a -reduction with ‘memory’
[Ned73] (see also section 11.5). There is a short and elegant proof by de Vrijer [Vri85],
in which an exact bound for the length of a development is computed. For proving that
the bound is an exact bound, he makes in fact use of the strategy F.,. Another proof
can be found in [Par90] (see also [Kri93]) that uses strong normalisation of the simply
typed lambda calculus with intersection types. In this proof a morphism from the set of
underlined lambda terms to the simply typed lambda calculus with intersection types is
defined similar to our morphism used in the second proof of finiteness of developments
(see definition 7.4.1). A similar proof using strong normalisation of simply typed lambda
calculus appears in [Ghi94]. In [Mel96] an axiomatic and general proof of finiteness of
developments is given.

In [Raa93] the proof that the superdevelopments are finite uses the method of mini-
malisation.

Superdevelopments are related to the so-called ‘generalised -reduction’. The gener-
alised f-reduction first appers in [Ned73] (see also [KN95]) as a natural generalisation of
the f-reduction in the item notation. A f-redex in item notation is a é-item (an applica-
tion) followed by a A-item (an abstraction) like if they were a pair () of parentheses. The
notion of F-redex is generalised to include more complicated structures of parentheses like
(()). For example, a generalised -rewrite step (or f,-rewrite step) in our notation is the
following:

(Az Ay MNP —p, (Ae. My := P])N

If we underline the f,-redexes, we get the underlined j-redexes of a superdevelopment.
An way of labelling alternative to the one presented in [Raa93] (see definition 7.5.5) is to
represent the term in item notation and to mark all the 6 and A-items that match as if
they were parentheses.



Chapter 8

Simply Typed Lambda Calculus

8.1 Introduction

In this section we give a new proof of the fact that the simply typed A-calculus is 3-strongly
normalising. In the proof we make use of the characterisation of the strongly normalising
A-terms.

This chapter is organised as follows. In section 8.2 we recall the definition of the simply
typed lambda calculus a la Church. In section 8.3, we give a new proof of the fact that the
simply typed lambda calculus is strongly normalising.

8.2 Simply Typed A-calculus
In this section we shortly recall the definition of simply typed A-calculus.
Definition 8.2.1. The set T'ype is defined as follows.

1. 0 € T'ype,

2. if 7 € Type and o € Type then (1 — o) € Type.

Types are written as 7,0,.... We write 74 — 73 — 73 instead of (1; — (12 — 73)).

Note that a type 7 is always of the form r — ... — 7, — 0.

We assume that we have an infinite number of variables, V., = {v7,v'7...} for each
T € Type.

The set V' of variables is U, erype Vr-
A variable that ranges on V; is denoted by z,y,.... lf # € V; and y € V, with 7 £ o
then x # y.

Definition 8.2.2. We define the family {A;};crype of subsets of A as follows.
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1. V, CA,,
2. if M eA.—,and N € A, then (M N) € A,,
3.1t M € A, and « € V, then \a.M € A._,.

Definition 8.2.3. The simply typed lambda calculus A7 (or A_.) is the abstract rewriting
system with typing defined by

(Av—>ﬁv {(MvT) | M e AT})
Substitution and f-reduction are defined as in chapter 5.

Lemma 8.2.4. (Substitution Lemma)
Let e € V.. f M € A, and N € A, then M[x := N] € A,.

Definition 8.2.5. If A C A, and B C A,, we define
A—=B={MeA,_,|YNeA: MN € B}

Note that if A C A’ then A - BC A — Bandthatif BC B'then A - BC A — B
Lemma 8.2.6. A._,=A, — A,.
Proof: If M € A,_, and N € A, then MN € A,. Conversely, if M € A, — A,, then
(Mx) € A, for @ € V,.. Therefore M € A,_,. O
8.3 Strong Normalisation
In this section we prove that the simply typed A-calculus is 8-strongly normalising.
Definition 8.3.1. The set SA(7) is defined as follows.

SN(t)=A.NSN

Theorem 8.3.2. SN (7 — o) D SN (1) — SN (o).

Proof: Let M € SN(7) — SN (o). We have that M € SN, because MN € SN (o). If
(Mx) € A, for @ € V, then M € A._,. O

The converse inclusion is not so easy to prove. First we need the following lemma.

Lemma 8.3.3. Let N € SN(m) — ... = SN (7,) = SN(0).
If Pe SN(o)and z € V. . _o then Plz := N] € SN(o).

Proof: The proof proceeds by induction on the derivation of P € SN.
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1. Suppose P = yP;... P, with P,..., P, € SN. By induction hypothesis, we have
Plz:=N]e SN fori=1,..., k. We write P* for P;[x := N]fori=1,.... k.

If y # x, then P[z := N] € SN follows from the fact that P € SN fori=1,..., k.
Using lemma 8.2.4, we obtain Pz := N] € SN (o).

If y = z, then we have to prove that NP;...Pf € SN (o). By the induction
hypothesis and lemma 8.2.4, we have that P* € SN (r;) fori = 1,..., k. Furthermore,
NeSN(rn)— ... > SN(r,) = SN(0) CSN(r) — ... = SN(7) = SN (o), by
theorem 8.3.2. Hence we have Plx := N| = NP} ... Pf € SN (o).

2. Suppose P = \y.Py with P, € SA. By induction hypothesis, we have Pz := N] €
SN. Therefore Plz := N| = (Az.P)[x := N] € SN (o).

3. Suppose P = (Ay.Po)P Py ... Py with Pyly := Pi|Py... P, € SN and P, € SN. By
induction hypothesis, we have (Pyly := Pi|Py... P)[z := N|] € SN and Pz :=
N] € SN. Hence Pz := N] = ((Ay.Po)PiPs ... Py)[x := N] € SN (o).

Now we can prove the following theorem.
Theorem 8.3.4. SN (7 — o) C SN (1) — SN (o).

Proof: Let M € SN (1 — o). We prove that for all N € SN(7), we have MN € SN (o).
Let N € SN(7). Note that MN € A,. Tt remains to prove that MN € SN. This is

proven by induction on 7 and for each 7 by induction on the derivation of M € SN.

7 is 0. The proof of this part proceeds by induction on the derivation of M € SN.

1. Suppose M = zMi... M, with My,...,M; € SN. We have N € SN because
N € SN(7). This yields MN = aM, ... MyN € SN.

2. Suppose M = Azx.P with P € SN. We have that 2 € V, and P € A,, so actually
P € SN(c). For proving (Az.P)N € SN, we need to prove Pz := N] € SN. This

follows from an application of lemma 8.3.3.

3. Suppose M = (Az.Mo)Mi My ... My with Moz := Mi|M,... M, € SN and M, €
SN. By induction hypothesis of the induction on the derivation of M &€ SN, we
have My[z := MM, ... M;,N € SN. Moreover M; € SN.

This yields (Az.Mo) MM, ... MiN € SN.
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7 is a composed type. The proof of this part proceeds as well by induction on the
derivation of M € SN.

1. Suppose M = xM; ... M, with M,;,..., M, € SN. Since N € SN, we have that
MN € SN.

2. Suppose M = Az.P with P € SN. For proving (Ax.P)N € SN, we need to prove
that Pz := N] € SN. We have 1 = 74 — ... — 7, — 0. By the induction
hypothesis of the induction on 7, we have N € SN (7)) — ... = SN (7,) — SN(0).
Lemma 8.3.3 yields that P[z := N] € SN.

3. Suppose M = (Az.Mo)Mi My ... My with Moz := Mi|M,... M, € SN and M, €
SN. By induction hypothesis of the induction on the derivation of M &€ SN, we
have My[x := MM, ... M;, N € SN. Moreover M; € SN. This yields MN € SN.

a
Corollary 8.3.5. SN (7 — o) =8N (7) — SN (o).

Theorem 8.3.6. (Strong Normalisation for A_)
For all 7 € Type, it M € A, then M € SN (7).

Proof: The proof proceeds by induction on the derivation of M € A..

1. Suppose x € A, then z € SN (7).

2. Suppose M = dx.P € A,_, with x € V, and P € A,. By induction hypothesis, we
have P € SN (¢’). This yields (Az.P) € SN (o — o).

3. Suppose M = PQ) € A,. Then P € A,_. and () € A,. By induction hypothesis,
PeSN(oc—7)and Q € SN (o).
By the previous theorem we have SN (0 — 7) = SN (o) — SN (7).
Therefore PQ) € SN (7).

8.4 Conclusions and Related Work

An interesting proof of the normalisation of the simply typed lambda calculus is the one
given by Tait in [Tai67]. Tait defined the class of computable terms (or reducible terms).
Using Tait’s method one can also prove strong normalisation for the simply typed lambda
calculus and some of its extensions, like Godel’s T [Tro73]. Girard [Gir72] introduced the
concept of candidate of reducibility to generalise Tait’s method to include polymorphism
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(for the systems F' to ). For an explanation of the method and applications to prove
confluence see [Gal90].

The conditions in the definition of candidate of reducibility in [Gir72] were modified in
[Tai75] and [Mit86] and a new definition was introduced: a saturated set. The definitions
of the set SN and of saturated sets are very similar (see chapter 5).

Our proof differs from the proof by Tait in the fact that in his method an interpretation
for types is used. A type 7 is interpreted as a set of A-terms and denoted by [7]. Then,
the interpretation of a type 7 — o is defined to be [7] — [o]. So [r — o] =[] — [o] by
definition. In our proof the equality SN (7 — o) = SN (7) — SN () needs to be proved.
On the other hand, in Tait’s method one has to prove that [7] — [o] is a subset of the set
of strongly normalising terms. In our proof, the set SN (7 — &) is a subset of the set of
strongly normalising terms by definition.

In [Vri87] strong normalisation for the simply typed lambda calculus is proved by giving
a function that computes the length of the maximal rewrite sequence and by implictly
following the strategy F., of maximal length. In our proof we make use of the set SN
which also implicitly uses this strategy.

It seems that the method used here cannot be extended to Godel’ s T nor to the
combinatory version of A_.. Our method does not extend because it fails in theorem 8.3.4
which is proved by induction on the structure of the type. The type of the newly created
redexes may be more complex and thus it is not possible to apply the induction hypothesis.
This seems related to the proof of normalisation for the simply typed lambda calculus by
Turing [Gan80]. In our opinion, this method, being too simple, will not be easily extensible.

It is possible to express the proof of strong normalisation of the simply typed lambda
calculus in Peano Arithmetic (PA). On the other hand, strong normalisation for Godel’s
T cannot be proved in PA and the system F' cannot be proved in PA,.

A topic for further investigation is to implement our proof in a proof checker like Coq,

Lego or Alf.
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Chapter 9

Pure Type Systems

9.1 Introduction

Pure type systems provide a way to describe a large class of type systems a la Church in a
uniform way. They were introduced independently by S. Berardi [Ber88] (see also [Ber90])
and J. Terlouw [Ter89]. Important pure type systems are the systems of the A-cube [Bar92].
They are called ‘pure’ because there is only one type constructor and only one reduction
rule, namely the type constructor II and the -reduction.

This chapter is organised as follows. In section 9.2 we recall the notion of specification
and of morphism between specifications. In section 9.3 we recall the definition of pure type
systems.

9.2 Specifications

In this section we define the notion of specification. The specifications are ‘the parameters’
in the definition of pure type systems.

Definition 9.2.1. A specification is a triple S = (S, A, R) such that
1. S is a set of symbols called sorts,
2. A C 8§ x S called set of axioms,

3. R €85 xS xS called set of rules.

Sorts are denoted by s,s',...,51,82,....

The set of axioms and the set of rules are used in the typing rules of pure type systems
(see section 9.3). The set A determines the axioms and the set R determines all ‘the
functions’” we can form in the system.
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Example 9.2.2. We give two examples of specifications. These specifications will make
sense in section 9.3 after introducing the typing relation.

1. The specification PRED is defined as follows.

S {*5,*p,>|<f,D5,Dp}
PRED | A {(+°,0°), (»»,07)}
R {(#P #P P), (%5, #P P), (x°, 0P OF), (>|<f7 * >|<f)7 (%, >|<f7 >|<f)}

The sort #P is for propositions, the sort ** is for sets and *7 is for first order functions
between the sets in *°. The rule (+2,*” +7) allows the formation of implication
between propositions, the rule (**, % +7) allows quantification over sets, the rule
(x*,0°,0P) allows the formation of first order predicates, the rule (+/,+* /) allows
the formation of function spaces between the basic set ** and the rule (x*,+/ */)
allows the formation of curried functions of several arguments in the basic set.

2. The specification P is defined as follows.

S {+ 0}
roA {(,0)}
R

{(k, %, %), (%,0,0)}

The sort # is used for types and the sort O is used for kinds. The rule (%, *, *) allows
the formation of types and (*,0,0) allows the formation of kinds.

Definition 9.2.3. We define a morphism from the specification S = (S, A, R) to S’ =
(S, A", R') as a function f:S — S’ that satisfies the following conditions.

L. If (sy,82) € A then (f(s1), f(s2)) € A
2. If (51, 82,53) € R then (f(s1), f(s2), f(s3)) € R'.

We denote the category whose objects are the specifications and morphisms the ones
defined above by Spec.
Several examples of morphisms between specifications are given in [Geu93] and [Bar92].

Example 9.2.4. An important example of morphism between specifications is the fol-
lowing one used for the propositions-as-types interpretation.
We define p : {**, 7, %/, 0° 0P} — {x, 0} as follows.

p(x’) = x p(0°) = O
p(+!) =« p(0F) = O
p(+f) =

It is easy to see that p is a morphism from PRED to P.
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Definition 9.2.5. Let S = (S, A, R) be a specification. A sort s in S is called a topsort
if there is no sg € S such that (s, sg) € A.

Definition 9.2.6. Let S = (S, A, R) be a specification. The specification S is called
singly sorted if

L. (s1,82),(51,53) € A implies 53 = s3
2' (817 S2, 83)7 (817 S2, 84) € R lmphes 83 = S4.

Definition 9.2.7. Let S = (S, A, R) be a specification.
The specification S = (S, A, R) is called full if R = {(s1, 2, $2) | 81,52 € S}.

The specification S = (S, A, R) is called semi-full if for all (s1,$2,83) € R and s, € S
there exists sj € S such that (s1,s},s5) € R.

Definition 9.2.8. Let S = (S, A, R) be a specification.

The specification S is called logical if it verifies the following conditions.
1. The set S contains two distinguished sorts * and O.
2. The set A contains the axiom (*,0).
3. The set R contains the rule (*,*, *).
4. There is no sort s such that (s,*) € A.

The specification S is called non-dependent if it is logical and the only rules concerning
are of the form (s,*,*) for some sort s.

The specification S is called impredicative if it is logical and (O, *, %) € R.

9.3 Pure Type Systems

We present the notion of pure type systems in a slightly different way than usual. We first
define a functor A from the category of specifications to the category of abstract rewriting
systems with typing. We think that the presentation of pure type systems is more neat in
this way.

A pure type system is a value A(S) of A given by a 4-tuple:

1. a set T of pseudoterms,
2. a set C of pseudocontexts,
3. a reduction relation on pseudoterms, called f-reduction,

4. a typing relation denoted by f-.
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First we define the components of this 4-tuple. Pseudoterms are expressions formed
with a constructor A for the abstractions, the brackets () for the application and the
constructor II for the product (function space).

Definition 9.3.1. The set 75 (or 7 for short) of pseudoterms is defined as follows.
T:=V | S| (TT)| W\WT.7T)| IIV:T.T)
where V' is a set of variables and S is the set of sorts.

Variables will be denoted as z,y,z,...,a,3,7.... Pseudoterms will be denoted as
a,bye,d,..., A, B,C,.... The usual parenthesis conventions for abstraction, application
and product will be used (see [Bar92]).

Definition 9.3.2. The mapping F'V : 7 — P(V) is defined as follows.

FVi(z) = A{z}
FV(e) = 0
FV(ab) = FV( U FV(b)
FV(QAx:A. a) = FV(A)U(FV(a) - {x})
FV(x:A. a) = FV(A)U(FV(a)—{x})

We say that « is free in a if © € FV(a).

Definition 9.3.3. The mapping BV : T — P(V) is defined as follows.

BV(z) = 0
BV(c) = 0
BV(ab) = BV(a)U BV(b)
BV(Ax:A. a) = BV(A)U(BV(a)U{a})
BV(Ilz:A. a) = BV(A)U(BV(a)U{z})

We say that « is bound in a if + € BV (a).

Definition 9.3.4. The result of substituting d for (the free occurrences of) x in e is
denoted as e[x := d] and is defined as follows.

8
|
=y

o ] =s
zle:=d =d
yle:=d] =y ifw#y
(Ae:A. a)[x:=d] = (Aa:A. a)
My:A. o)z :=d] = (A\y:Ale :=d]. a[x :=d]) ife#yandy¢ FV(d)
(My:A. o)z :=d] = A=Az :=d]. aly :=z][x:=d]) fx#y,y € FV(d) and z is fresh
(¢ b)x:=d = (alx:=d] bz :=d]
(Ila:A. a)[z :=d] = (Hx:A. a)
(Ily:A. a)[x:=d] = (ly:Alx:=d]. a]z := d)) ife#yandy¢ FV(d)
(Ily:A. a)[x:=d] = z:Alx:=d]. aly :=z][z:=d]) ifx#y, y € FV(d) and z is fresh
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The set of pseudoterms with holes in it is defined by the following grammar.
Definition 9.3.5. The set H is defined as follows.
He=[]|VI] S| (HH)| AVH. H)| (IV:H. H)
where V' is the set of variables and S is the set of sorts.

An element in H is denoted by C].

Pseudocontexts are lists of pairs consisting of one variable and one pseudoterm. The
pseudocontexts are used in the definition of the typing relation in order to assign types to
the variables.

Definition 9.3.6. The set Cs (or C for short) of pseudocontexts is defined as follows.
Cu=e¢ | <C VT >

Pseudocontexts will be denoted as 7,7, ..., A, A/, .. ..

The expression 7, x:A stands for < 7, 2:4 >.

Next we define a mapping Dom that gives the set of variables declared in a pseudocon-
text.

Definition 9.3.7. The mapping Dom : C — P(V) is defined as follows.

Dom(e) = 0
Dom(?,2:A) = Dom(?)U{z}

Definition 9.3.8. The result of substituting d for (the free occurrences of) a variable
in 7 such that @ € Dom(?) is denoted as ? [z := d] and is defined as follows.

] =c¢

| =<?x:=d,y:Alx:=d] >

e :=d
<t yA>[r:=d

Definition 9.3.9. Let d € 7. A change of a bound variable in the term d is the
replacement of a subterm (Ax:A. b) or (Ila:A. b) by (Ay:A. b[z :=y]) or (Ily:A. b[a :=y]),
respectively, where y ¢ FV(b).

Definition 9.3.10. The pseudoterm b is a-convertible to &' if b is the result of applying
to b a series of changes of variables or vice versa.

Convention 9.3.11. Two terms are identified if they are a-convertible.
Definition 9.3.12. The #-reduction is defined by the following rule:
Cl(Az:A. b)a] —5 Clblx := da]]

where C[ | € H has only one occurrence of [ |.
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Definition 9.3.13. The typing relation kg (or F for short) is the smallest relation on
C x T x T closed under the following rules.

(axiom) ek 5118, for (s1,89) € A
2 .
(start) 5 :1; |_A[L|1_ ';' T where z is 7 -fresh
2 . 2 .
(weakening) : be _BA |_ b'_' % 5 where z is 7 -fresh
2 . 2 . .
(formation) rhA:s Yo AR Bis for (s1,82,93) € R

T F (Ma:A.B) : 55
T, AFb: B 7T F(Hx:A. B) s

(abstraction) 7F (A\:A. b) : (Il A. B)
(application) ~ ———oUlwA B) TFRa:d

P (b a): Blz:=d]
(conversion) 7Hb:B B :s Be«»ws B

TEb: B

where s ranges over sorts, i.e. s € S.

Explanation of the typing rules. Variables are typable by means of the start rule,
abstractions by means of the abstraction rule, applications by means of the application
rule and the product by means of the formation rule.

The start and the weakening rules allows to enlarge the context. They ensure that all
the components of a pseudocontext are typable. Besides they do not allow the repetition
of variables in the context since a variable is added to the context only if it is fresh. One
consequence of this is that we cannot have two nested abstractions with the same bound
variable.

Note that the typing rules have two ‘parameters’. One parameter is the set A in the
first rule which determines the set of axioms we have in the system and the other is the
set R in the formation rule which determines the products and hence the abstractions we
can form in the system. When we fix the triple (S, A, R), we obtain a particular typing
system.

The conversion rule ensures that types are ‘closed under reduction and expansion’.

Definition 9.3.14. The functor A : Spec — Carst is defined as follows.
AS) =(7,C,—p,F) S € Spec

ACS) :(flva) f:S— S'e Spec
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The functions fo and fl are the extension of f to the set of pseudoterms and pseudocontexts
respectively.

s) = f(s)

p
=
o
o~
~
Il
p
3
S
—_
o
~—
>
—_
o~
~

There are several things that we need to verify. Amongst the properties of pure type
systems below, we list subject and type reduction. This means that (7,C, —g,F) € Carst.
Moreover the function A(f) is a morphism in Carst since it preserves the rewrite and the
typing relations.

Definition 9.3.15. (Pure Type Systems)
o A pure type system (PTS) is an element of A(Spec) = {A(S) | S € Spec}.

o A singly sorted pure type systemis an element of {A(5) | S € Spec & S is singly sorted}.

For example, A(PRED) and A(P) are pure type systems and A(p) is a morphism from
AMPRED) to A(P).

The A-cube consists of eight systems [Bar92] defined by the same set of sorts and the
same set of axioms. They differ in the set of rules R.

Definition 9.3.16. Let Sy = {*,0} and Ag = {(*,0)}.
We will write So @ Sy for {(s1,32,83) | 52 =33 & 31,82,383 € So}.
The A-cube is a mapping from P(Sy @ Sy) into Carst defined as follows.

System R
A (+, %)
A2 (%) (00, %)
AP (*, %) (x,0)
AP2 1 (x,%) (B,%) (x,0)
Aw | (%) (0,0)
Aw (%) (00, %) (8,0)
APw | (%, %) (+,0) (0,0
APw = AC | (#,%) (O,%) (+,0) (5,0)
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The systems of the A-cube correspond to some known systems with some variations:
A_ is the simply typed lambda calculus [Chu40], A2 is the second order typed lambda
calculus [Gir72] and [Rey74], AP is AUT-QE and LF [Bru70] and [RHP87]. The system
Aw is POLYREC and Aw is Fw [Gir72]. The last element in the table, AC, corresponds to
the Calculus of Constructions.

All the systems in the A-cube have only one topsort, namely O.

Definition 9.1. The system of higher order logic can be described by the following
specification (see [Geu93]).

S {x,0,A}
HOL | A {(%,0),(0,A)}
R {(+,%),(8,%),(0,0)}

There is only one topsort in A(HOL) and that is A.

Definition 9.2. The Calculus of Constructions extended with an infinite type hierarchy
can be described by the following specification.

S N
C.o | A {(nn+1)|neN)

R {(m,0,0) | m € N}U
{(m,n,r)| m,n € N & mazx(m,n) <r}

The system AC,, extended with strong ¥-types and cumulativity is the system ECC (see
[Luo89]). We can see that A\C, is an extension of A\C' and of A\(HOL) writing * instead of
0, O instead of 1 and A instead of 3.
Note that there is no topsort in AC.

Definition 9.3.17. Let S be a logical specification. The pure type system A(S) is said
to be inconsistent if for all A, there exists a such that a has type A in the context A : .

For example, an inconsistent pure type system is Ax determined by the specification
(S, A, R) where S = {x}, A = {(*,*%)} and R = {(*,%)} (see [Gir72] and [Bar92]).
Properties of Pure Type Systems

The advantage of pure type systems is that we can do the metatheory of several type
systems at the same time. There are several properties that can be proved for all these
systems.
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Theorem 9.3.18.
1. (7T,—»p) is confluent

2. Correctness of types, i.e. if 7 = d : D then there exists a sort s such that 7 = D : s
or D=storall? €eC,d, D eT.

3. Subject reduction, i.e. if 7 Fd: D. and d —g d then ? = d": D forall d,d',D € T
and 7 €C.

4. Type reduction, i.e. it 7 Fd: D and D —5 D' then? Fd: D' foralld, D, D" € T
and 7 €C.

5. Strengthening, ie. if 7q,2:A, 72 F b: Band & ¢ FV(75)U FV(b)U FV(B) then
?1,?2 Fb:B.

6. Let S be a singly sorted specification. Then A(.S) verifies uniqueness of types.

7. Let S be a logical specification. If A(.S) is inconsistent then A(S) is not normalising.

The proofs of these properties can be found in [GN91] and [Bar92] except for strength-
ening that is proved in [BJ93].

Theorem 9.3. (Strong Normalisation)
1. The system AC, is f-strongly normalising.
2. The systems of the A-cube are #-strongly normalising.

3. The system A(HOL) is 3-strongly normalising.

Proof: The system ECC is strongly normalising (see [Luo89]) and contains AC., the
systems of the A\-cube and A(HOL). O

There are pure type systems that are not normalising, e.g. the system Ax which is
inconsistent (see theorem 9.3.18 part 7).

Theorem 9.3.19. (Decidability of Type Inference and Type Checking)
Let S=(S,A,R).

1. If S is finite then type inference and type checking in A(.S) are decidable.

2. Suppose that S is singly sorted or semi-full and that the sets S, A and R are
recursive. Then type inference and type checking in A(.S) are decidable.

The proof of the first part can be found in [BJ93] and the second one in [BJMP93] and
[Pol96].
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Theorem 9.3.20. (Undecidability of Type Inference and Type Checking)
Let S = (S, A, R) be a singly sorted, non-dependent and impredicative specification.
If A(S) is inconsistent then type inference and type checking in A(S) are undecidable.

This is proved in [CH94] as a generalisation of the result of [MRS6].
The problem of inhabitation in A_ and in Aw are decidable but in the rest of the systems
of the cube is undecidable [Spr95]. For the inconsistent systems, inhabitation is trivial.

9.4 Conclusions and Related Work

As we said before, pure type systems were introduced independently by S. Berardi [Ber88]
and J. Terlouw [Ter89]. In the typing rules for pure type systems, the axiom depends on
the set A and the product rule depends on the set R. In other words, we have a family of
axioms and product rules depending on A4 and R. The typing rules are parametric and the
parameters are the specifications, i.e. triples of the form (S, A, R). The dependency on the
specification is expressed with the notation A(S) for the pure type system corresponding
to the specification S = (S, A, R). We made a ‘slight change’ in the definition of pure
type systems. We have written the functor A : Spec — Carst instead of ‘giving a set of
values A(.S)". We could think that now we have given ‘a house’ (or perhaps ‘a type’) for A
to live in and this house is the category of functors from Spec to Carst.

Extensions of pure type systems are also defined as functors from the category of
specifications Spec into the category of environmental abstract rewriting systems with
typing Carst. The category CarstSPe® of functors from Spec to Carst is an adequate
‘place” to put the pure type systems and all their extensions. Comparison of pure type
systems and their extensions is made via morphisms in the category of functors from Spec
to Carst, i.e. via natural transformations.



Chapter 10

Type Inference for Pure Type
Systems

10.1 Introduction

In this chapter we define a partial function that infers the type of a term in a singly sorted
pure type system. If the term has type in a singly sorted pure type system then this
function terminates and yields the type of the term (up to -conversion). This function
can be constructed if we have a set of typing rules that is syntax directed. A set of
rules is called syntax directed if the last rule in the derivation of a term is determined
by the structure of the term and of the context. The rules of pure type systems are not
syntax directed since the weakening and the conversion rules can be applied at any point
in the derivation. In order to make this set of rules syntax directed, we should remove
the non-structural rules (like the weakening and the conversion ones) and keep only the
structural rules (the ones for term constructors). The system obtained by eliminating the
non-structural rules should be equivalent to the original one. The proof of the equivalence
(soundness and completeness) between the original rules and the corresponding syntax
directed ones is problematic for some pure type systems (see [BJMP93] and also [Pol93a]).
Here we present a syntax directed set of rules for singly sorted pure type systems similar
to the one presented in [BJMP93]. As in [BJMP93], we use an auxiliary system to check
for the Il-condition, i.e. the premise that the product (Ilz:A. B) should be well-typed in
the abstraction rule. The auxiliary system we use to define the syntax directed set of rules
is the corresponding pure type system without the II-condition. The convenience of this
system is that it permits us to prove soundness and completeness of the original rules for
pure type systems with respect to the syntax directed ones.

This chapter is organised as follows. In section 10.2, we define a functor A* from
the category of specifications to the category of contextual abstract rewriting systems with
weak typing. We define the class of pure type systems without the II-condition as the image
of A, A pure type system without the Il-condition can be considered as an extension of

97
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the corresponding system with the Il-condition. The new terms of the extension are the
abstractions (Ax:A. b) whose type (Ila:A. B) is not typable and applications of the form
(F a) whose operator F' has a type that is not typable. Hence we are led to consider types
that are not typable. We call them toptypes. In section 10.3, we prove the basic properties
of pure type systems without the Il-condition, e.g. weak subject reduction theorem. In
section 10.4, we analyse the shape of a toptype. We give a characterisation of the set of
toptypes and prove weak type reduction. In the case of singly sorted specifications we give
another characterisation of the set of toptypes and prove that it is closed under substitution
and [J-reduction. In section 10.5, we consider those [J-redexes whose abstraction has a
type that is not typable and we call them illegal redexes. We introduce a mapping ¢ that
contracts all the illegal redexes of a term. Using ¢ we prove that weak normalisation is
preserved by the extension from A(.S) to A“(.9) in the case that S is singly sorted. Moreover
@ can be used to define a morphism from A“(.5) to A(.5) for each singly sorted specification
S. In section 10.6, we define the notion of 3,-reduction as the contraction of the illegal
redexes. We prove that all the terms typable in a singly sorted pure type system are f3,-
strongly normalising. In section 10.7, we define a syntax directed set of rules for singly
sorted pure type systems. In section 10.8, we define a partial function type that computes
the type of a term in a singly sorted pure type system based upon the syntax directed set
of rules defined in the previous section.

10.2 Pure Type Systems without the II-condition

In this section we define the notion of pure type systems without the II-condition. For pure
type systems the type of an abstraction (Az:A. b) is a dependent product (Ila:A. B) and
the abstraction rule has the premise that the product (Ilz:A. B) should be well-typed. This
premise is called the II-condition. The problem with the II-condition is that sometimes it
is not well-adapted to induction. The idea is to remove this condition in order to define a
syntax directed set of rules and prove the equivalence of the original rules with the syntax
directed ones.

Definition 10.2.1. The [I-condition is the premise 7 F (Ilz:A. B) : s of the abstraction
rule in a pure type system.

Definition 10.2.2. We define a functor \¥ : Spec — Carst,, such that for S € Spec we
have that

N(S) = (T,C,—p, ).

We define the components of this 4-tuple as follows. The sets 7, C and the relation
— g are defined as in definition 9.3.14.

The typing relation F¥ (or F%) is the smallest relation defined by the same rules as in
definition 9.3.14 except for the abstraction rule that is replaced by the following one.

T,e AFY LB
T FY (Az:Alb) : (Ila:A. B)

(abstraction)
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The functor A\¥ : Spec — Carst,, is defined for morphisms in the obvious way.

There are two things that remain to be verified, i.e. A“(S5) € Carst, and A“(f) €
Carst,. For A\¥(S5) € Carst,, we have to prove that a pure type system without the
II-condition verifies weak subject and weak type reduction. This will be proved in the next
sections. For \“(f) € Carst,,, we have to prove that \“(f) preserves the rewrite and the
typing relation. This is very easy to prove.

Definition 10.2.3. (Pure Type Systems without the Il-condition)

A pure type system without the Il-condition is an element of the set
A¥(Spec) = {X“(S5) | S € Spec}.
A singly sorted pure type system without the Il-condition is an element of the set
{A(S) | S € Spec & S is singly sorted}.

Note that if a term is typable in A(S) then it is typable in A¥(S). Therefore A“(5) is
an extension of A(9).

The converse is not true. There may be terms typable in A“(S) which are not typable
in A(S). For example, the type (A — O) is not typable in the context A : % either in
A(C) or in A¥(C'). However in AY(C') we can derive that the term Aax:A.(x — %) has type
(A — O) in the context A : *.

10.3 Basic Properties

In this section we prove the generation lemma, the thinning lemma and the weak subject
reduction theorem for pure type systems without the Il-condition. Since correctness of
types does not hold, we prove some weaker lemmas that we call correctness of contexts
and correctness of types for variables. Finally we prove uniqueness of types for singly
sorted specifications.

Lemma 10.3.1. (Generation Lemma)
L. If 7 ¥ s : D then there exists s’ such that (s,s’) € A and D «»p s
2. If? F¥ 2 ¢ D then there are s, band B such that 7 F* B:s, 2 : B €7 and B «»g D.

3. f 7 ¥ (Ila: A.B) : D then there is a rule (sq,$2,33) € R such that 7 F“ A : sy,
T AFY B sy and D «»g s3.

4. 7 ¥ (Aax: Ao b) : D then there are s and B such that ?7,2: A F“ b : B and
D «»g (llx:A. B).

5. If 7 H¥ (b a): D then there are A, B such that ? - b: (Ila:A. B), 7 F“ a : A and
D «»g Blx := a].
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All parts of the generation lemma are proved by induction on the derivation of a term.

Lemma 10.3.2. (Correctness of Contexts) If 7, 2:A,7'F* b: B then there exists an
s such that 7 F¥ A : s.

This lemma is proved by induction on the derivation of 7, x:A,7' F¥ b : B.

Lemma 10.3.3.  (Correctness of Types for Variables) If 7 F“ z : A then there
exists s such that 7 F A : s.

This lemma is proved by induction on the derivation of 7 F* & : A.

Lemma10.3.4. Let? F¥ (Ax:A. b) : D. Then there exists a Bsuchthat 7,2 : AFYb: B.
Moreover either D = (Ilz:A. B)or 7 F D : s and D «»3 (Ila:A. B) for some sort s.

This lemma is proved by induction on the derivation of 7 F* (Az:A. b) : D.
Lemma 10.3.5. If ? F* A:sand 7 - a: Athen 7 - A: s for some sort s'.

Proof: By the lemma of correctness of types for pure type systems, we have that 7 F A : s”
or A = s" for some s”. In case A = s”, we have that (s”,s) is an axiom. O

Lemma 10.3.6. (Thinning Lemma) Let 7' - b: B.

H7FYa:Aand ? C 7' then 7' F¥ a : A.
This lemma is proved by induction on the derivation of 7 F¥ a : A.

Lemma 10.3.7. (Substitution Lemma) If 7 F* ¢ : A and ?,2:A,7' F¥ b : B then
7, [x = a]l FY b[a :=a] : Blz :=al.

This lemma is proved by induction on the derivation of 7, z:A, 7" F“ b: B.

Lemma 10.3.8. (Correctness of Domains) If 7 F¥ [ : [lz:A. B then ? F¥ A : s for
some sort s.

This lemma is proved by induction on the derivation of 7 F* £ : Ilx:A. B.

Theorem 10.3.9. (Weak Subject Reduction Theorem)
Let 7 F¥ e E.

a) If e —4 €’ then there exists £’ such that £ —5 E  and 7 F¥ ¢’ : F'.
b) If 7 =57 then 7/ ¥ e: E.

Proof: The two statements are proved by simultaneous induction on the derivation of
7 F¥ e: E. We only consider the statement a) for the case of the application rule.
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THEY D (A B) THYa: A
THFY (b a): Blx:=d]

(application)

There are several cases when we reduce the application (b a).

1. Suppose (b a) —4 (V' a) with b —5 ¥. By induction we have that ? F¢ &' : (Ilz:
A'. B') for A —5 A" and B —3 B’. By lemma 10.3.8 we have that 7 F A’ : s for
some sort s. Therefore we can apply the conversion rule and we obtain ? F* a : A"
Then we apply the application rule and we have a derivation of 7 F (b a): B'[x :=
al.

2. Suppose (b a) —4 (b d') with ¢ —3 @’. By induction we have that 7 F“ o’ : A’ for
A —5 A’. By lemma 10.3.8 we have that 7 ¥ A : s. Therefore we can apply the
conversion rule and we have that 7 ¥ a’ : A. Then we apply the application rule
and we obtain a derivation of 7 =¥ (b d') : B[z := d].

3. Suppose (A\x:A’. d)a —4 d[x := a]. By lemma 10.3.4 we have that 7,2:A" F“ d : B’

Moreover by lemma 10.3.4 we know there are two possibilities, either (llz:A. B) =
(Ila: A, B') or (Ila:A. B) «»p (Ha:A'. B') and 7 ¥ (Ila:A. B) : s.

(a) Suppose (Ilz:A. B) = (Hx: A’. B’). Hence A = A" and B = B’. By the
substitution lemma we have that 7 F* d[z := a] : B[z := «].

(b) Suppose (Ilz:A. B) «»g (Ila:A’. B') and 7 F¥ (llx:A. B) : s for some s. By
lemma 10.3.8 we have that ? F“ A’ : s’ for some s’. Therefore we can apply
the conversion rule and we have that 7 F“ a : A’. By the substitution lemma
we have that ? F* d[x := a] : B'[x := a]. Since ? F* (Ilx:A. B) : s, it follows
from the generation lemma that 7, 2: A F¥ B : sy for some sort s;. By the
substitution lemma we have that ? +¥ B[z := a] : s5 and by conversion rule we

have that ? F* d[z := a] : B[z := a].
The rest of the cases are easy to prove. O

The next example shows that subject reduction does not hold for pure type systems
without the II-condition. If 7 F e : I/ and e —4 €’ then €’ may not have type E. This
happens when the type F is not typable and hence we cannot apply conversion rule.

Example 10.3.10. Let 7 =<~ : % >.

e = (QAasAziax)((Aas*.a)y)
—5  (Aask Aaia*)y = ¢

/

In A\¥(C'), we have that 7 F¥ e: (Aa:x.a)y — O and ? F¥ ¢/ : v — O but not 7 F¥ €' : (Aa:
*.a)y — O (the latter can be proved by some meta-theoretical reasoning).

Theorem 10.3.11. (Uniqueness of Types) Let S be a singly sorted specification. If
TFYa:Aand 7 F¥ a: B then A «»4 B.

This theorem is proved by induction on the derivation of 7 ¥ a : A.
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10.4 Description of Toptypes

Toptypes are types that are not typable. In this section we study the form of a toptype
for pure type systems without the Il-condition and prove weak type reduction. Also we
prove for singly sorted specifications that the set of toptypes is closed under f-reduction
and under substitution.

Recall that A is a toptype in 7 if there exists a such that 7 F“ a: Aand 7 I/ A: —
and that A is a toptype if there are @ and 7 such that 7 F¥ a : A and 7 P/ A : — (see
definitions 4.2.2 and 4.4.10).

Note that for pure type systems the only toptypes are the topsorts that are inhabited.

Next we give examples of toptypes in pure types systems without the Il-condition.

Example 10.4.1.
a) In \¥(C') we can derive
ArxFE A (x — ) 1 (A — 0O)
We have that (A — O) is a toptype.

b) In A\¥, we can derive
F Aasx dziacx) @ Moo — o

We have that Illa:x.ac — « is a toptype.

Definition 10.4.2. We say that the product Iz:A. B can be formed in the context 7 if
there exists an s such that 7 F« (Ilx:A. B) : s.

Note that the product Ilx:A. B cannot be formed in the context 7 if for all s1, s5 such
that 7 F“ A: sy and 7,2:A F* B : s we have that there is no sort s with (sy, s2,5) € R.

We define the set M of ‘potencial’ toptypes in 7. The set Mp is not exactly the set
of toptypes. If an element is in the set Mr then it is not typable in 7. However it may or
may not be inhabited.

Definition 10.4.3. Let 7 € C. We define the set M as the smallest subset of 7T
satisfying the following clauses.

1. if 5 is a topsort then s € Mr,

2. if 7, 2:AFY B: s for some s and the product (Ilz:A. B) cannot be formed in ? then
(Ila:A. B) € Mr.

3. if B € Mrp a4 then (Ila:A. B) € M.
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Definition 10.4.4. Let 7 € 7. A mapping depthy : Mpr — IN is defined as follows.
depthr(s) = 0 if s is a topsort
depthp(Ila:A. B) = 1 if 7, 2:AFY B : s for some s
and (Ila:A. B) cannot be formed in ?
depthp(Ilz:A. B) = depthy .4(B)+1 otherwise
We extend the mapping depth to pseudoterms as follows.

depthp(A)=0for Ae T — Mp and 7 €C.

Next we prove that a pseudoterm in the set Mr is a sequence of products whose ‘heart’
is either a topsort or it is a product that cannot be formed.

Lemma 10.4.5. Let 7 € C and A € T. The following two statements are equivalent:

1. A€ Mp, n = depthp(A),

2. there are Ay, ..., A,, B such that A = Illa:Ay ... 1llx,:A,.B where

either n > 0 and B is a topsort sg

or n>1and 7, x1:A1,...,2,:A, F¥ B : s for some sort s and
(Ilz,:A,. B) cannot be formed in 7, x1:Aq,. .., o1 An_1.

Proof:

(1 = 2). This is proved by induction on A € Mr.

1. Suppose that the pseudoterm is a topsort s. Take n = 0 and the second statement

holds.

2. Suppose that the pseudoterm is (Ilx: A. B) with ?,2: A F¥ B : s for some s. We
know that the product llx:A. B cannot be formed in 7,2:A. Take n = 1 and the
second statement holds.

3. Suppose that the pseudoterm is (Ila:A. B) with B € Mr 4. By induction we have
that B = xq: A ... lx,:A,,.B" where

either n >0 and B’ is a topsort sg
or n>1and 7, 2:A, 21: A, ..., 2,.:A, F¥ B’ : s for some sort s and
(Ilz,:A,. B') cannot be formed in 7, a1 A, 21: A1, .., 2011 A1,

Therefore the second statement holds for (Ilz:A. B).
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(2= 1). There are two cases:

1. Suppose n > 0 and B is a topsort sg. We apply once the first clause and then n

times the third clause.

2. Suppose that 7, 21:Ay,...,2,: A, F¥ B : s for some sort s and the product (Ilz,:

A,. B) cannot be formed in the context 7, x1:Aq,. .., p_1:An_1.

We apply once the second clause and then n times the third clause.

Next we prove that the pseudoterms in the set Mr are not typable in the context 7.

Lemma 10.4.6. If A € Mp then 7 /¥ A: —.

Proof: This is proved by induction on A € M.

1. Suppose that the pseudoterm is a topsort s. Suppose towards a contradiction that

a

7 F¥ s : D for some D. Using the generation lemma we deduce that there is a sort
s’ such that (s,s’) € A. This is a contradiction. Hence ? /s : —.

Suppose that the pseudoterm is (Ilz: A. B) and that there are A and s such that
7T,0:AFY B s. Also, we know that the product Ilz: A. B cannot be formed in
7, 1A

Suppose towards a contradiction that ? +* (Ila: A. B) : D for some D. By the

generation lemma, there are sorts sy, s9, s3 such that 7 F¥ A: sy, 7, 2:AF B : s and
(81, 82,83) € R. This is a contradiction.

Suppose that the pseudoterm is (Ila:A. B) with B € My 4. By induction we have
that 7, A/ B —.

Suppose towards a contradiction that ? ¥ (Ila: A. B) : D for some D. By the
generation lemma there is a sort sy such that 7,2:AF B : s5. This is a contradiction.

Lemma 10.4.7. Let 7 F¥ a : A. If there is no sort s such that 7 F* Bla := «a] : s then
there is no sort s such that 7 F¢ (Ila:A. B) : s.

Proof: Suppose 7 ¥ (Ilaz:A. B) : s'. By the generation lemma we have that 7,2: A F¢
B : s. By the substitution lemma we have that ? - Blz :=a]:s. O

Next we prove that a type in 7 that does not have a sort as type is in the set M.

Lemma 10.4.8. Suppose that 7 F a : A.
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If there is no sort s such that 7 - A : s then A € M.

Proof: This lemma is proved by induction on the derivation of 7 F* a : A. We will prove
the cases of the abstraction and the application.

TeDEFY e B
TEY (Ae:D.e) s (Ila:D. E) -

e (abstraction)

1. Suppose that 7, 2:D F* E : s. The product (Ila:D. E) cannot be formed in ?.
Hence (lx:D. E) € Mr.

2. Suppose that there is no sort s such that 7, z:D ¥ FE : s. By induction
FE € My ,.p. Hence (Ilz:D. E) € Mr.

tHf:(Ila:D. E) ?TFd:D

THE(f d): Elx =] '
If there is no s such that 7 F“ E[x :=d] : s then by lemma 10.4.7 there is no s such
that 7 F (Ila:D. E) : s.
By induction we have that (Ilz: D. F) € Mp. By lemma 10.4.5 we have that
E = 1a: Ay e, A, . H where either H is a topsort sg or 7, a:D,x1: A1, ..., 2,:
A, F¥ H : s for some sort s.
Then Elx :=d] = Hay: Aq[z :=d] ... Nz, A,z := d].H[z := d] where H[z := d] is
either a topsort sg or 7, a:A [z :=d|, ... 2, Az = d] FY H[x :=d] : s.

e (application)

1. Suppose that H[z := d] is a topsort so. By lemma 10.4.5 we have that
Elz :=d] € Mr.
2. Suppose that 7, x:Aq[z :=d], ..., v Apfe :=d] F¥ Hlz :=d] : s. There should
be a natural number & with 1 < k& <n and a sort s’ such that
a) ToapAgfe i=d] . oapAgle = d) FY (Maggr:Aggr - oAy B[z i=d] 2 8
and
b) the product (Hag: Ay ... 1Lz, A,. B)[x := d] cannot be formed in the context
ToapArfe i=d] . apo Apq [ = d].
Therefore by lemma 10.4.5 we have that E[x := d] € Mr.
The rest of the cases are easy to prove. O
The next theorem says that a type is not typable in a context 7 if and only if it is in
the set Mrp. Hence, A is a toptype in 7 if and only if A is a type in 7 and it is in the set
Mr.

Theorem 10.4.9. (Description of Toptypes) Let ? ¥ a : A. The following statements
are equivalent:
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1.7 A —,
2. There is no sort s such that 7 - A : s,

3. Ae Mr.

Proof: The proof of (1 = 2) is trivial. The implication (2 = 3) is lemma 10.4.8. The
implication (3 = 1) is lemma 10.4.6. O

Lemma 10.4.10. Let ? ¥ e : E and 7 /¥ E : — be such that depth(F) = n and
FE = (Ilzy: Ay .. . Ha,: A, B). Then there exists ¢ = (Aaq:Aqr... Az, A, b) such that
e —»geand? FYe .

Proof: This is proved by induction on the derivation of 7 - a : A. Only one case is
considered.
THEY b (A B) THYa: A
THFY (b a): Blx:=d] '

By induction hypothesis we have that b —»5 ¥/, 0’ = (Az:A. Az Ay ... Aw: Ay, d) and
T EY Y (Ila:A. B) for some Ay,... A, and d.

Note that depth(Blz := a]) = n < m = depth(Ilaz:A. B).

Therefore (b a) —»5 d and d = (Ax1:A1[x 1= a]... Az Ayfe = a]. d[x := a]). By the

substitution lemma we have that 7 - d : Blz :=a]. O

Theorem 10.4.11. (Weak Type Reduction Theorem)
If 7 F“e: F and £ —3 F' then there exists €’ such that e —g ¢’ and 7 F €’ : .

Proof: There are two possibilities, either E’ is a toptype or not.

1. Suppose E’is not a toptype. By theorem 10.4.9, 7 F¥ E’: s. Applying the conversion
rule, we have that 7 Fe: I,

2. Suppose E'is a toptype. Then F is a toptype and £ = (llx1: Ay .. . 1la,:A,. B) with
n = depth(F).
By lemma 10.4.10 there exists ¢’ such that e —5 ¢ = (Axy:Ay... a1 A, b) and
TFY e . Hence 7, a1:Ay ... 2A, FY b: B.
(a) If A; —3 Al then by the weak subject reduction theorem 7,xy: Ay...2;:
Al A Y b B

(b) If B —3 B’ then by lemma 10.4.5 and the weak subject reduction theorem we
have that 7, x:Ay ..., A, F¥ B : s.

Applying the conversion rule we have that 7, x1:Ay,... ¢ A, F2 b B,
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For singly sorted specifications, we give another characterisation of the set of toptypes.
Using this characterisation we prove that for singly sorted specifications, the toptypes are
closed under -reduction and substitution.

Next we define the set N1 similar to the set Mp. The elements in Nt are not typable
and they may or may not be inhabited.

Definition 10.4.12. We define the set AT as the smallest subset of 7 satisfying the
following clauses.

1. if s is a topsort then s € AT,

2. if there are sorts sy, sy such that 7 ¥ A : sy, that 7, 2:A ¥ B : 55 and there is no s3
such that (s, s2,s3) € R then (Ilz:A. B) € AT.

3. if B € Nr .a then (Ilz:A. B) € AT

Note that definitions 10.4.3 and 10.4.12 differ only in the second clause. For the case of
singly sorted specifications, to require that the product (Ilz:A. B) cannot be formed in 7 is
equivalent to require that there are sorts sy, sy such that 7 F* A : sy, that 7, x:A FY B : s
and there is no sort s3 such that (sq, s2,53) € R.

Note that the inclusion M C AT holds for any specification. If the specification is not
singly sorted, AT may have more elements than Mr.

Example 10.4.13. Let S = (S, A, R) be the non-singly sorted specification such that
S ={0,1}, A = {(0,1),(0,2)} and R = {(2,2,2)}. We have that (0 — 0) € N but

In the following lemma, we prove that M = AT for singly sorted specifications.
Lemma 10.4.14. Let S be a singly sorted specification. Then Mp = A

Proof: [Mr C Nr]. We proceed by induction on the definition of D € Mrp. Only one case
is considered. Suppose that the pseudoterm D is (Ilx:A. B), there are A and s, such that
7,0:AFY B sy and the product (Ila:A. B) cannot be formed in 7, 2:A. By lemma 10.3.2
we have that there is some sy such that 7 F“ A : s;. There is no s such that (s1, s2,5) € R.
Therefore (ITx:A. B) € Nt.

[Nt € Mr]. We proceed by induction on the definition of D € Np. Only one case is
considered. Suppose that the pseudoterm D is (Ilz:A. B) and that there are sorts sy, sy
such that 7 F“ A : 51, 7, 2:AFY B : sy and there is no sort ss such that (sq, s9,53) € R.

Suppose towards a contradiction that (Ilz:A. B) can be formed in 7. Then there are
sorts s}, s, such that 7 F* A : s8], 7, 2:A F B : s}. By uniqueness of types we have that
s1 = s7 and s = s. This is a contradiction. O

As a consequence of the previous lemma, the set AT has the same properties as the set
Mr if the specification is singly sorted.
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Lemma 10.4.15. Let S be a singly sorted specification.
If Ae Npthen 7 /% A —.

Proof: This follows from lemmas 10.4.6 and 10.4.14. O

The next theorem states that a type is in N if and only if this type is not typable.
Hence A is a toptype in 7 if and only if A is a type and it is in the set Af.

Theorem 10.4.16. Let S be a singly sorted specification and 7 F¥ a : A.
The following statements are equivalent:

.7 A —.
2. Ae Nr.
Proof: This follows from theorem 10.4.9 and lemma 10.4.14. O
In the following lemma we prove that the set AT is closed under 3-reduction.

Lemma 10.4.17. If D € Nr and D —»3 D’ then D' € NT.

Proof: The following two statements are proved by induction on the definition of D € Af-.
a) if D —5 D' then D' € N,
b) if 7 —5 7’ then D € A
We only prove statement a).
1. Suppose the pseudoterm D is a topsort s. Note that s is in #-normal form.

2. Suppose that the pseudoterm D is (Ilx: A. B) and that there are sorts sy, s such
that 7 F¥ A: sy, 7, 2:AF B : 55 and there is no sort s3 such that (s1,s2,3) € R.

If A —p5 A then it follows from weak subject reduction theorem that 7 ¥ A’ : sy
and 7,2:A F¥ B : sy. Hence (Ila:A'. B) € AT.

Similarly if B —5 B’ we have that (Ilz:A. B’) € Nt.

3. Suppose that the pseudoterm D is (Ilz:A. B) with B € Np 4.

If A —s A’ then it follows from induction that B € Nt 4. Therefore (Ilz:A". B) €
Nt.

Similarly if B —5 B’ we have that (Ilz:A. B’) € Nt.

As a consequence of the previous lemma, we have that the set of toptypes is closed
under -reduction.
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Theorem 10.4.18. (-closure of toptypes) Let S be a singly sorted specification.
If Ais a toptype and A —»5 A’ then A’ is a toptype.

Proof: If A is a toptype then there are 7 and a such that 7 k¥ a: A and 7 ¥ A: —.

By theorem 10.4.16 we have that A € Ar. By lemma 10.4.17 we have that A’ € AT,
By lemma 10.4.15 we have that 7 I/ A’ : —. By the weak type reduction theorem we have
that there exists a’ such that ? Fa’: A’. Hence A’ is a toptype. O

Corollary 10.4.19. Let S be a singly sorted specification and 7 - b: B.
If there exists a sort s such that 7 ¥ B’ : s and B’ «»3 B then 7 ¥ B : s.

Proof: By Church-Rosser theorem, there exists a common reduct Dy of B and B’. By
weak subject reduction theorem we have that 7 =¥ Dy : s. By theorem 10.4.18 we have
that ? F“ B : s’ for some s'. By weak subject reduction ? ¥ Dq : s’ and by uniqueness
of types we have that s = ¢'. O

In the following, we prove that the set of toptypes is closed under substitution.
Lemma 10.4.20. Let S be a singly sorted specification. Let 7 = d : D.
If £e NF,@/:D,F’ then E[y = d] € NF,F’[y::d]-

Proof: This is proved by induction on E € N prs. Only one case is considered.
Suppose that F is (Ila:A. B) and that there are sorts sy, sy such that 7, y:D, 7" F“ A : s
and ?7,y:D, 7" x:AF B sy. Moreover there is no sort ss such that (sq,s2,s3) € R.
Substitution lemma yields 7,?" F¥ Ay :=d] : sy and 7,7'[y :=d],v:Aly :=d] - Bly :=
d] : s5. Hence (Ha:A. B)ly :=d] € Npiy=q. O

Theorem 10.4.21. (Substitution on Toptypes) Let S be a singly sorted specification.
Suppose that 7,y:D,?7"Fe: E and that 7 - d : D.

?2,y:D,7# E:— then 7,7 [y:=d /™ Ely:=d]: —.

Proof: By theorem 10.4.16 we have that £ € AT ,pr.. By lemma 10.4.20 we have that
Ely := d] € Nrpjy=q. By lemma 10.4.15 we have that ?,?'[y := d] /¥ Ely :=d] : —. O

Corollary 10.4.22. Let S be a singly sorted specification. Let 7 F“ F': (llx: A. B),
THFY Ble:=a]:sand 7 F¥ a: A. Then 7, 2:AFY B : s.

The next example shows that when the specification is not singly sorted, a toptype may
become typable after substitution.

Example 10.4.23. The following specification is not singly sorted:

S 0.1,2
S1A 0:1,0:2,1:2
R (2,2)

Given the context < x:1 >, the term (v — ) is a toptype. Substituting « by 0 we
obtain (0 — 0) which has type 2.
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10.5 Normalisation for J-reduction

In this section we define the notion of illegal redex and a function ¢ : C x T — 7 that
contracts the illegal redexes of a term (we write pr(a) instead of (7, a)). We prove that ¢r
is a strategy for the f-reduction. Moreover we prove that for singly sorted specifications,
if a term b is typable in A“(5) then ¢p(b) does not contain illegal redexes. For each singly
sorted specification, we define a converting morphism from A“(.S) to A(5). Finally we prove
that weak normalisation of A(S) implies weak normalisation of A*(9) if S is singly sorted.

Definition 10.5.1. Let S be a singly sorted specification.

We say that an abstraction Az:A.bis illegal in the context 7 if there exists D such that
THEY A Ab: D and 7T Y D

An abstraction is legal if it is typable in 7 and it is not illegal in 7.

We say that (Ax:A.b)a is an illegal f-redex in 7 if the abstraction Aax:A.b is illegal in the
context 7.

Lemma 10.5.2. Let S be a singly sorted specification. An abstraction Az:A.b is legal in
the context 7 if and only if there exists D such that 7 F“ Aa:A.b: D and 7 F¥ D : s.

Proof:
(=) Obvious.

(<) Since 7 F¥ Ax:A.b: D, the abstraction Az:A.bis typable in 7. Suppose there exists
D' such that 7 F¥ Axz:A.b : D'. By the uniqueness of types theorem we have that
D" «»3 D. Corollary 10.4.19 yields 7 F* D' : s

We define the mapping ¢ that contracts the illegal redexes of a term.

Definition 10.5.3. We define ¢ : C x 7 — 7 as follows.

priz) = @
pris) = s
o[z := or(b)] if pr(a) = Ax:A.ap is an illegal abstraction in 7
pr(ab) = {
(a) c,op b)) otherwise

er(Ae:A. a) = (Azvipr(A). erzala))
er(llz:A. B) = (Hz:pr(A). orea(B))

Sometimes we write ¢(a) instead of pr(a).
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Definition 10.5.4. We define ¢ : C — C as follows.

ple) = e
p(?,:A) = @(?),z0r(A)

The following lemma states that or is the identity on A(S).

Lemma 10.5.5. Let S be a singly sorted specification. If 7 - a : A then p(7) =7,
er(a) = a and pr(A) = A.

The following lemma states that r is a strategy for g-reduction.
Lemma 10.5.6. For all 7, a — 5 ¢r(a).

Lemma 10.5.7. Let S be a singly sorted specification. If 7, 2:A,7" F¥ b : B and
T FYa: Athen orpar(b)[z = ¢r(a)] = orr(ble = a]).

Proof: We prove the case of the application.

aoly := @(b)] if p(F) = Ay:A.ag is illegal
P(F70) - { (c,ogéF) :oo((b))) otférw)ise ’ :

o B arly = @(blx := a])] if o(Fle:=a]) = y:A'aq
P(F ) = al) = { (p(F[x := a]) ¢(b[x :=a])) otherwise
(be ind]tiction we have that o(F)[x := ¢(a)] = ¢(Flz := a]) and ¢(b)[z = ¢(a)] =
v No‘t; tha‘t Fand ¢(F) are typable in 7, 2:A, 7" and ¢(F')[x := p(a)] is typable in 7,7,
There are several cases:

1. Suppose @(F) = Ay:E. ag is an illegal abstraction.
Therefore 7,2: A7 F¥ Ay: F.ag : D and 7, 2: A7 B D : — for some D. It
follows from the weak subject reduction theorem that 7 F“ ¢(a): A" with A —5 A’
Since 7 F“ A : s we have that 7 F @(a) : A. It follows from lemma 10.3.7 that
7,V e = pa)] FY o(F)[x = ¢(a)] : Dz := p(a)]. By theorem 10.4.21, we have
that 7,7'[x := @(a)] ¥ D[z := ¢(a)] : —. Therefore p(F)[z := ¢(a)] is an illegal
abstraction too.

Moreover we have that

o(Flri=a)) = @(F)e:=p(a)]
— \yE[r = p(a)].agle = pa)

We conclude that o(F b)[z := ¢(a)] = @((F b)[x := a]) as follows.
P(F 0)[z:=(a)] = aoly :=p(b)][z := ¢(a)]
= aolr := p(a)]ly := @ (b)[x := p(a)]]
o(Flx :=a] blz := a])
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2. Suppose ¢(F') is not an illegal abstraction.

(a) Suppose that ¢(F') is not an abstraction. If o(F)[z := p(a)] = ¢(F|z = a])
were an abstraction we would have that o(F) = x and ¢(a) = Ay:E. ag. We
have that 7 F* @(a) : A and 7 F* A : s. By lemma 10.5.2 we have that
e(F)[x := ¢(a)] is a legal abstraction. Hence the value of the application can
be computed as follows.

P b)[z = pla)] = = ()]
] p(b)[x

: ) (bl =
= @(Flz:=a] bz := a))

= p(a)])
al)

I
©6 %
=53

?
ﬁ
x

Hence o(F b)[x := ¢(a)] = o((F b)[x := a]).

(b) Suppose that ¢(F') is an abstraction but legal. By lemma 10.5.2 we have
that o(Flx := a]) is a legal abstraction. The equality (F b)[x := p(a)] =
©((F b)[x := a]) is proved as in case a).

The rest of the cases are easy to prove. O

The next example shows that if the specification is not singly sorted o (b[x := a]) may
not be syntactically equal to p(b)[x := ¢(a)].

Example 10.5.8. The following specification is not singly sorted:

S 0.1,2
S1A 0:1,0:2,1:2
R (2,2)

We take <7 =ax:1,z: 2> and b = (Ay:x.y)z. Note that b contains illegal abstractions
but b[z := 0] does not. Hence @(b[x := 0]) # ¢(b)[x := ¢(0)].

In the following theorem, we prove that if b is typable in A*(S) then ¢(b) does not
contain illegal redexes when S is a singly sorted specification. The value (b) is of the
form Axq: Ay, .. Ax, Ayl b with b typable in A(S) and the abstractions whose bound

variables are xq,...,x, are illegal.

Theorem 10.5.9. (Preservation of the typing relation)

Let S be a singly sorted specification.
If?Fa: A n=depth(A) and A =Ila:A; .. . llz,:A,. B then

o(T, 21 Ar . agAn) Eod o B) with o(a) = Aapp(Ar) .. Axie(Ay).d

Proof: This property is proved by induction on the derivation of 7 ¥ a : A. We consider
the cases of the abstraction, the application and the conversion rule.
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T,e AFY LB
T FY (Aa:ALb) : (Tla:A. B) -

There are two possibilities, either (Ila:A. B) is a toptype or not.

e (abstraction)

1. Suppose 7 ¥ (llx:A. B): s. By the generation lemma we have that 7, 2:A F*
B sy, T FY A:sy and (s1,2,8) € R.
By induction we have that (7,2 : A) F ¢(b) : o(B).
Using weak subject reduction theorem we deduce that ¢(7,2:A) F“ o(B) : 2.
By lemma 10.3.5 we have that (7,2 : A) F @(B) : s5 for some sort s.
Besides we have that ¢(?) F @(A) : s] for some sort s].

Since the specification is singly sorted, we have that s; = s{ and s, = s, and
we know that (s1,s2,s) € R.
We obtain the following derivation:

‘ ‘ (M Fe(A) st o, 2:A)F o(B) : s9
P(1,2:A) Fp(b) : o(B) - ch,o(?) + c,o(?[:z;:A. B): f

e(T)F e(Aa:A. b) s p(lla:A. B)

2. Suppose 7 ¥ (Ilx:A. B) : —. There are two possibilities, either B is a toptype
or not.

(a) Suppose 7,2:AFY B:s. By induction we have that:
p(7, 2 A) ¥ p(b) s o(B)
where p(Ax:A. b) = Az:p(A). ©(b)
(b) Suppose 7, x:A ¥ B: —. It follows from induction that

o(T A a1 Aot A BV (B
where B = Ilx:A; ... Hz,:A,. B,
o(b) = Azip(Ar) ..  Axip(An).Y

THEY D (A B) THYa: A
THY (b a): Blx:=d] '

There are two possibilities: either B[z := a] is a toptype in 7 or not.

e (application)

1. Suppose ? ¥ Blx :=a] : s.
(a) Suppose 7 F¢ (Ila:A. B) : s'. By induction we have that
o) F () : o(lla:A. B)
By the generation lemma we have that 7 ¥ A : s;. By induction we have

that ©(7) F ¢(a) : o(A).
Using the weak subject reduction theorem, we deduce that ? F (b) : D
and 7 F¥ D : 5. Hence ¢(b) is not an illegal abstraction in 7 and ¢(b a) =

(p(b) (a)).

Hence we have the following derivation:
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p(7) F o) s p(ll:A. B) (7)) F ¢(a) : o(A)
P(T)Felb a):e(B)le:= ¢l(a)]
By lemma 10.5.7 we have that o(B)[x := ¢(a)] = p(Blx :=a])

(b) Suppose 7 B (Ila:A. B) : —
By lemma 10.3.8 we have that 7 ¥ A : s;. By induction we have that
A7) F g(a)  p(A).
By corollary 10.4.22 we have that 7, x:A F¥ B : s5,. By induction we have
that (7, 2:A) F 0 p(B) with ¢(b) = Aa:p(A).b.
We have that 7 F¥ Az:p(A).0" : (Ha:p(A). p(B)). By theorem 10.4.18 we
have that 7 F (Hx:¢(A). p(B)) : —. Therefore p(b) = Ax:p(A).b is an
illegal abstraction in the context 7.
Since p(b) = Ax: A"V is an illegal abstraction, we have that (b a) = b[z :=
p(a)].

By the substitution lemma,

p(7) b= gla)]: p(B)[e = ¢(a)]

By lemma 10.5.7, we have that ¢(B)[z := ¢(a)] = ¢(Blz := a]).

2. Suppose 7 ¥ Blx:=a] : —.

It follows from lemma 10.4.7 that ? £ (llx:A. B) : —

By lemma 10.3.8 we have that 7 F“ A : s;. By induction we have that ¢(7) F
o(a) : p(A) and that o(?7,2: A, 21: A1, ..., 200 AL) BV 2 o(By) with o(b) = Aa:
©(A). Ax:p(Ay) . Aaip(A,).0 and B = lag: Ay . e, A, Bo.

Weak subject reduction theorem yields 7 ¥ ¢(b) : (Hx: A’”. B'). By theo-

rem 10.4.18 we have that 7 B (Ila: A’. B") : —. Therefore ¢(b) is an illegal
abstraction and then the value of ¢(b a) is computed as follows.
olb @) = Aeyg(An)[e = ()] A Az = p(@)].H]z 1= ()]

By the substitution lemma we have that b’[ = p(a)] has type ¢(Bo)[x := p(a)]
).

in the context o(7), zr:p(Ar)[e := @(a)], ..., wnip(An) e := p(a)]
By lemma 10.5.7 we have that: o(Bo)[x := c,o( )] = ¢(Bolx := al).

0
By theorem 10.4.21, we have that n = depthp(B[z := a]) = depthy ,.4(B).

TFYb:B THFYA:s Be«»g A
THEY b A

By corollary 10.4.19, we have that ? F“ B : s’. By induction we have that ¢(?) F

c@(B) and ¢(?7) F ©(A) : s. After applying the conversion rule, we obtain

P(7)F @(b) s p(A).

The rest of the cases are easy to prove. O
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Definition 10.5.10. Let S a singly sorted specification. We define ¢4 :C x7 —C x T
as follows.

(<e(?),x1:Ar . cx Ay >,0) if 7 FYa: A for some A, n = depth(A) and
ola) = oAy a AL b

0%(?,a) = (<@(?),x1:Ar .. xn: Ay >,0) if @ is a toptype in 7, n = depth(a) and
ola) =la: Ay . aniAn. b

(7,a) otherwise
Sometimes we write ¢ instead of @°.

Corollary 10.5.11. (Converting morphism from A“(S) to A(9))

Let S be a singly sorted specification. There is a weak converting morphism from A“(.5)

to A(9).

Proof: By the previous theorem we have that p% preserves the typing relation. Since ¢ is
a strategy, p¥ preserves conversion. Hence ¢% is a weak converting morphism from A“(.S)

to A(S). O

Note that the previous theorem in fact shows that ¢* is a natural transformation from A*
to A when these are considered as functors from the category of singly sorted specifications
into a category analogous to Carst, where morphisms only preserve [3-conversion.

Corollary 10.5.12. (Weak Normalisation) Let S be a singly sorted specification.
If A(S) is weakly normalising then so is A“(5).

10.6 Weak and Strong Normalisation for (5,-reduction

The mapping ¢ contracts the illegal redexes in a given order. Now we contract the illegal
redexes in any order by means of a reduction called 3,-reduction. In this section we define
the notion of B,-reduction and prove that for singly sorted specifications if 7 ¥ a : A then
a is (,-strongly normalising.

Definition 10.6.1. We define the illegal 3-reduction in 7 (or f,-reduction) by the fol-
lowing rules:
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T F (Az:A. b)a —p, blr = d] if (Az:A. b)a is an illegal redex in 7.

AR b —p O TEA - A
7 F (Aa:A b) —p (Aa:ALY) 7 F (Ax:AL b) —p, (A AL b)
AR b —p O TEA—g A
T F (Ha:A. b)) —p, (Ha:AL V) 7 F (Ha:Al b) —p, (I1a:A”. b)
TEbL—p Y T Fa—pg d
TE(ba)—ps (b a) TF(ba)—p (bd)

In the following lemma, we prove that ¢ is a strategy for f3,-reduction.

Lemma 10.6.2. Let S be a singly sorted specification. If 7 = a : A then 7 F a —p,
wr(a).

In the following lemma, we prove that ¢ is a forgetting morphism.

Lemma 10.6.3. Let S be a singly sorted specification. If 7 F* ¢ : A and 7 Fa —g b
then ¢r(a) = ¢r(b).

Proof: We prove only one case. Suppose that 7 = (Aa:A. b)a —4, b[x := a] and (Aa:A. b)a
is an illegal redex in 7. Note that ¢(Ax:A. b) is illegal. We have that

(0)]z := p(a)]

e((Az:A. bla) = (b)]x:=
Lp(b[:z; = a]) by lemma 10.5.7.

a

Theorem 10.6.4. (Weak Normalisation for §,-reduction)
Let S be a singly sorted specification. If 7 =% b : B then b is f,-weakly normalising.

Proof: Suppose ? F* a : A. By lemma 10.6.2, 7 = a —»4, ¢r(a). By theorem 10.5.9, we
have that pr(a) does not contain illegal redexes and hence it is in §,-normal form in 7. By
lemma 10.6.3 the normal form is unique. O

For singly sorted specifications, the illegal abstractions of a term b constitute an initial
labelling for a superdevelopment (see chapter 7).
We write a morphism,

A (S) 5 (A1, =)

The function L puts labells in the illegal abstractions of a pseudoterm.
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Definition 10.6.5. We define the mapping L : C x T — A; as follows (we write L(b)
instead of L(7,0)).

Liz) = =
@0 Aoz A L(b), L(A))  if Az:A. b is illegal in ?,
L(Az:A. b) = take some ¢ and z fresh
@{0}()\02.)\0:1;.L(b), L(A))  otherwise
@{i}(L(b),L(a)) if nf s (L(b)) = Aix. bp and 7 >0
L(ba) =
@"(L(b), L(a)) otherwise

In the case of the abstraction, the function L puts a fresh label (greater than 0) to
an illegal abstraction and the label 0 to a legal one. The terms in A; are untyped so the
declaration z:A of an abstraction Az:A. b1in 7 is encoded as a J;-redex whose argument is
the type A.

In the case of the application, the function L puts the label ¢+ > 0 to the application
whose operator reduces to A\;x. by, an abstraction that corresponds to an illegal abstraction.

All the illegal abstractions should have different labels. In the case of the abstraction,
we assume that all the labels of the illegal abstractions in L(b) and in L(A) are different.
Similarly, in the case of the the application, we assume that all the labels of the illegal
abstractions in L(b) and in L(a) are different.

Lemma 10.6.6. Let S be a singly sorted specification. If 7 - b : B then L(b) € A;.

Lemma 10.6.7. Let S be a singly sorted specification and 7, 2:A ¥ b: Band 7 ¥ a : A.
Suppose that all the abstractions in L(b) and in L(a) have different labels except for 0.

Theorem 10.6.8. Let S be a singly sorted specification. If 7 k¥ b: B and 7 b —g ¥
then L(b) —% L(¥').

Corollary 10.6.9. Let S be a singly sorted specification. Then L is a morphism from
A“(S) equipped with ,-reduction to (A;, —g,).

As a consequence, a (3,-rewrite sequence can be mapped into a superdevelopment and
so it is strongly normalising.

Corollary 10.6.10. (Strong Normalisation for j,-reduction)
Let S be a singly sorted specification. If 7 = b : B then b is f,-strongly normalising.
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10.7 Syntax Directed Rules

In this section we define a syntax directed set of rules for any singly sorted pure type
system. This system will be used in the following section to define a function that infers
the type.

When we try to infer the type of a term, we construct the derivation tree bottom-up,
from the conclusion to the premises. This tree is constructed by means of an analysis of
the term and of the context. According to the structure of the term we try to deduce
which rule may fit as the last rule in the derivation tree. For a term like an abstraction,
the last rule in the derivation tree should be the abstraction rule. However the weakening
and the conversion rules of a pure type system can always be applied at any point in the
derivation. This means that in the case of the abstraction, the last rule in the derivation
tree might be either the abstraction, or the weakening or the conversion rules. The last
rule is not determined by the shape of the term. If the term constructor together with
the context determine the last rule to be applied then we can build the derivation tree
of the term. A set of rules is called syntax directed if it has this property: the last rule
in the derivation of the type of a term is determined by the structure of the term and of
the context. The rules for pure type systems are not syntax directed since the last rule
in the derivation can be the conversion or the weakening rules besides the corresponding
structural rule. In order to make these sets of rules syntax directed, we should remove
the non-structural rules (like the weakening and the conversion ones) and keep only the
structural rules (the ones for term constructors). The system obtained by eliminating the
non-structural rules should be equivalent to the original one. Therefore, the weakening
rule is not removed but restricted to variables or constants and eventhough the conversion
rule is removed, reduction or conversion is needed in the premises of almost all the rules.
The equivalence (soundness and completeness) between the syntax directed set of rules
and the original one for pure type systems is not easy to be proved. In order to be able
to prove soundness and completeness we do not check the IlI-condition in the same system
but in a weaker one. The weaker system is the pure type system without the II-condition.

First we define the weak head F-reduction.

Definition 10.7.1. The weak head §-reduction is defined by the following rules:
(Aa:A. b)a —>7§h bla := d]

F_>7buh F/
(F a) —>7§h (F' a)

Note that this reduction is not closed under the compatibility rules, i.e. it is not true
that Cla] —4" C[b] if a —§" b.
We define a sytem A%, (.5) whose rules are syntax directed and is proved to be ‘equivalent’

to A¥(S). We denote that 7 = A: C and €' — B by 7 = A :— B for an arbitrary typing

relation F and a rewrite relation —.
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Definition 10.7.2.

The functor A%, : Spec — Carst,,, is defined as \(5) = (7,C, —3,F%,) for S € Spec.
The sets 7 and C and the relation —4 are as in definition 9.3.14. The typing relation %,
is defined as the smallest relation closed under the following rules.

(axiom) cFY e s for (¢,5) € A
2 Lw .
(start) FaAips where z is 7-fresh

Txt ARG e A

(weakening) e where  is ?-fresh and b€ C UV
(formation) —— 1 e (gggif 1;1) ;Ping IO for (61,80, 85) € R
(abstraction) ? I—‘;’;(Axxfﬁ ;)Wd Z()ﬁf:A. B)
(application) Cb ?_:%;: ((;IZ)A;?E :? Cll_]:}d a: A Aw«ng A
where s € 8.

Since the conversion rule is removed, reduction or conversion is needed in the premises
of almost all the rules. In the start, the weakening and the product rules, the types are
reduced to some sort. In the application rule, the type of F'is reduced to (Ila:A. B) and
the type A’ of a should be convertible to A.

Note that these rules are syntax directed if the specification is singly sorted. If the
specification is not singly sorted, given a context 7 and a term b, the type of b may not be
unique and the last rule to be applied in the derivation of the type of 6 is not determined
by the shape of b and 7.

Note that these systems verify only very weak subject reduction (see definition 4.3.1).

We prove that the system A%, (.5) is ‘equivalent’ to A“(.S) (soundness and completeness).

Lemma 10.7.3. If 7 F¥ A: D and D —p s then 7 ¥ A :s.

Proof: Suppose that 7 F“ D : s’ for some s’. By the weak subject reduction theorem,
7 s: " and applying the conversion rule, we obtain 7 F A : s.
If D is a toptype, we have that D = s. O

Theorem 10.7.4. (Soundness)
If?F a:Athen? F¥ a: A.

Proof: The proof proceeds by induction on the derivation of 7 ¥, a : A. Only two cases
are considered.
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TR A—gsy Tt ARY, B g sy
7R (IMaAB) :oss

By induction hypothesis and lemma 10.7.3, we have 7 F¥ A :s; and 7,2 : AF¥ B :

39. Hence 7 F¥ (Ila:A.B) : ss.

e (product) for (s1,89,83) € R.

P by (A B) 7Ry a: A
TFY (b a): Blr:=d

By induction hypothesis, we have that 7 ¥ b : D and D —»gh (Ilz: A. B). Also

7 ¥ a: A'. There are two cases.

e (application) with A «»j5 A’

1. Suppose that 7 F“ D : s for some s. By weak subject reduction, we have that
7 FY (Hx:A. B) : s. Generation lemma yields 7 +“ A : &' for some s’. Hence

THFYa:Aandso? F¥ (b a): Blx:=al.

2. Suppose that D is a toptype in 7. By the description of toptypes theorem, we
have that D € M and so D = Ilx:A”. B” for some A” and B”. The weak head
normal form of D is D itself, so A = A" and B" = B.

The proof of completeness is straightforward.

Theorem 10.7.5. (Completeness)
If 7 = a: A then there exists A’ such that 7 F*, a : A" and A «»z A'.

Next we define a system A;4(.S) whose rules are syntax directed. We prove that if S is
singly sorted then A (.5) is ‘equivalent’ to A(S). The systems A;4(.S) and A%, (.S) differ only
in the abstraction rule. The abstraction rule in A%,(S) does not contain the Il-condition
and the one in A (.5) does. The II-condition of Az(S) is not checked in the same system
Asa(S) but in A% (S5). The idea is to use an auxiliary system to check for the IlI-condition
[BJMP93] so that we can prove the ‘equivalence’ between Ay (S) and A(S). In our case,
the auxiliary system is the corresponding pure type system without the Il-condition.

Definition 10.7.6.

The functor Ay : Spec — Carst,,, is defined by A;4(S) = (7,C, —4,Fsq) for S € Spec.
The sets 7 and C and the relation —4 are as in definition 9.3.14. The typing relation 4
is the smallest relation closed under the same rules as in definition 10.7.2 except that the
abstraction rule is replaced by the following one.

T, Abgb: B T FY (Ila:A. B) i—p5 s
7 Fsa (AL D) (AL B)

(abstraction)

where s € S.
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Observe that in the abstraction rule we have the requirement that (Ilz:A. B) should
be typable in A¥,(.9).

Note that these systems verify only very weak subject reduction (see definition 4.3.1).

Theorem 10.7.7. (Soundness) Let S be a singly sorted specification.
f?7F,;a: Athen? Fa: A.

Proof: We prove only the case of the abstraction rule.

T, Ak b: B T FY (Al B) :—» s
7 Fsa (A2:AL D) (1AL B)

(abstraction)

By induction hypothesis we have that 7, 2:A F b : B. By lemma 10.5.5, we have that
(1) =7, 0(A) = A, ¢(b) = b and ¢(B) = B. By theorem 10.7.4 and lemma 10.7.3 we
have that ? = (Ila:A. B) : s. By theorem 10.5.9 we have that 7 F (Ilz:A. B) :s. O

Theorem 10.7.8. (Completeness) If 7 F a : A then there exists A’ such that
T hga:A and A «»pg A

Proof: We prove only the case of the abstraction rule.

T, AFb: B T F (Ila:A. B) s
T F (Ax:ALb) (I A. B)

(abstraction)

By induction hypothesis we have that 7, 2:A Fs4 b: B’ for some B’ such that B «»3 B'.
By the previous theorem (soundness) we have that 7, 2:AF b: B’
If 7 F (Ha:A. B) : s then there exists s; and s such that (sy,s2,8) € R, 7 F A: sy and

7, 2:AF B :sy. By correctness and unicity of types we have that 7, x:A + B’ : s,. Hence
7 F (Mz:A. B') : s. By theorem 10.7.5 we have that ? =, (Ilz:A. B"): D and D —»3 s. O

10.8 Type Inference

In this section we define a semi-algorithm of type inference for the class of singly sorted
pure type systems. A semi-algorithm of type inference is a partial function or program that
terminates and yields the type of a term if the term is typable and it may not terminate
otherwise.

We cannot expect to find a terminating algorithm for the class of singly sorted pure type
systems since typability (and also conversion) for some non-normalising pure type systems
is not decidable (see theorem 9.3.20). Hence we define a type inference semi-algorithm, for
the class of singly sorted pure type systems, including the non-normalising ones.

In order to define such a semi-algorithm, we use the syntax directed set of rules pre-
sented in section 10.7. Although those rules are syntax directed when the specification
is singly sorted, they are not yet deterministic. There are several conditions, called side
conditions, that should be solved. For these conditions we have to verify if some element
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belongs to some of the sets in a specification, or we have to perform f-reduction or check
if two types are #-convertible.

If the sets S, A and R of the specification are not recursively enumerable (recursive)
then the conditions s € S, (s1,$2) € A and (s1, 82, 53) € R are not semi-decidable (decid-
able). In order to have a semi-algorithm we have to assume that these sets are recursively
enumerable.

There are several ways of F-reducing or checking -conversion. We should specify in
which way we reduce and how we check if two types are convertible. We write semi-
algorithms or partial functions to compute the weak head normal form and to check for
(#-conversion. The first one computes the weak head normal form if it exists and it may
not terminate otherwise. The second one is a common-reduct strategy. The termination
of the semi-algorithm of type inference depends on the termination of these two functions.
Therefore, in order to reduce the cases of non-termination of the type inference semi-
algorithm, it is sufficient to reduce the cases of non-termination in the semi-algorithm that
computes the weak head normal form and in the common-reduct strategy.

Reducing to a sort or to a product. In the cases of the start, weakening and product
rules the types are reduced to a sort. In case the term is typable, we know that the weak
head normal form exists and it is a sort. In the application rule, the type of the operator
is a product (Ila:A. B) also a weak head normal form.

A weak head normal form can be either an abstraction (Ax:A. b), or a product (Ix:
A. B), or an application (b ay ...a,) where b is a sort or a variable or a product.

Now we write a function that computes the weak head f-normal form if it exists.

Definition 10.8.1. A function whnf : 7 — 7 is defined as follows .

whnf(a) = aif aisin weak head normal form

whnf((Ax:A. b)a dy ...d,) = whnf(blx:=da]d;...d,)

This function is a semi-algorithm, i.e. it may not terminate only in case the term is
not weak head normalising.

Lemma 10.8.2. Let a € 7 be weak head normalising. Then whnf(a) is the weak head
normal form of a.

This lemma is proved by induction on the number of steps of the leftmost reduction to
normal form.

Checking f-conversion. In the application rule we have to check if two types are f3-
convertible. It would be sufficient to find a computable common-reduct strategy F' :
T x T — P(7T) and then check if F'(a,b) # 0.

The strategy presented in [Coq91] (see also [Mag94]) reduces as less as possible by
performing weak head reduction. The idea is to compute the weak head normal forms of
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the terms and compare their heads. In spite of being efficient, it gives a set of common-
reducts only if both terms are normalising. It might happen that a «»4 b and F*(a,b)
does not terminate if @ or b are not normalising.

Definition 10.8.3. We define F* : 7 x 7 — P(7T) as follows.
F*(d,d') = {d}itd=4d
Fr((Ax:A. b)), A AL V) = {(QaA V) | A" e FM(AAY) & V' e F*(b,V)}
F((Ha:A. B), (lla:A”. B')) = {(Ile:A”. B") | A" e F*(A,A") & B” € F*(B,B')}
F*((x ay ...a,),(za) ...d)) = {((za] ...d") | a! € F*(a;,a})}

F*(d,d'") = F"(whnf(d),whnf(d"))

if d or d' are not in weak head normal form
Fr(d,d) = 0 otherwise

The next lemma says that the function F" is a common-reduct strategy only for nor-
malising pseudoterms, i.e. for all a,b € T that are normalising, for all ¢ € F*(a, b) we have
that @ —5 c and b —4 c.

Lemma 10.8.4. Let a and b be weakly normalising. Then

1. F*(a,b) terminates.
2. For all ¢ € F(a,b), we have that ¢ —»5 ¢ and b —»4 c.

3. a «»g bif and only if F*(a,b) # 0.

All the parts of the previous lemma are proved by induction on (1(a)+41(b),n(a)+n(b))
where 1 computes the number of steps of the leftmost reduction to normal form and n
computes the number of symbols.

This strategy may not terminate when one of the terms is not weakly normalising. For
example, suppose that @ = (Ax:A. @ x)(Ax:A. x x). Then F*(b,Q) does not terminate for
any be 7.

This common-reduct strategy is not satisfactory because we do not want to restrict our
type inference procedure to normalising pure type systems.

Now we define three common-reduct strategies that work also for non-normalising pseu-
doterms and hence for non-normalising pure type systems. The three compute the bounded
graphs of the terms (see also section 2.5) step by step. We compare these three strategies
according to their order and the number of cases they do not terminate. The third strategy
is the best one for having a best order and least cases of non-termination.
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The first strategy is called F and it always computes the bounded reduction graphs of
the terms step by step. In each step, we have to check only if the ‘new part’ of the graph
has a common element with the other set. This strategy terminates and gives at least one
common reduct if both terms are #-convertible and it may not terminate otherwise.

Definition 10.8.5. We define ¥ : 7 x T — P(7T) as follows.

F(a,b) =
If a = b then
| {a}

else

| H({a}, {b})

end

Next we define the function H : P(7) x P(7T) — P(T). We suppose that it is always
applied to subsets X, Y of 7 that verify the following preconditions.

1. X and Y are the n and m-bounded reduction graphs of ¢ and b, i.e. they are of the
form

G="(a)={d | a —»p d in less than n steps}
and
G="(b) ={d | a —»4 d in less than m steps}
2. The intersection of X and Y is empty.

3.0<n—m<1.

We only have to check if g_>/3 (X)) has elementsin common with Y. If it does, g_>/3 (X)ny
are the common-reducts we are looking for.

H(X,Y) =
If g_%(X)OY#@ then
| Q_W(X) ny
else
| H(Y.X UG, (X))
end

Note that Y takes the role of X in the else-part.
In the following lemma we prove that the function F is a common-reduct strategy.

Lemma 10.8.6.

1. If @ «»3 b then F(a,b) terminates and yields a non-empty set that verifies that for
all ¢ € F(a,b) we have that « —»5 ¢ and b —4 c.
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2. If F(a,b) # 0 then a «»g b.

Proof:

1. If @ «» 3 bthen there exists m and n such that 0 < m—n <1 and gff;(a) mgfg(b) +*
0. Hence F(a,b) terminates and yields a non-empty set of common-reducts.

2. Suppose F(a,b) # (). Note that F(a,b) yields a set of common reducts for a and b.
Hence a «—»4 b.

This strategy presents some drawbacks, the order and the cases of non-termination.
Firstly, its order is clearly exponential since we compute the bounded reduction graphs
of the terms. Secondly, this function does not terminate in cases the terms are not con-
vertible but normalising. For example, the terms (K x Q) and y are not convertible and
F((K = Q),y) does not terminate.

The next two common-reduct strategies we present try to improve these two features,
order and cases of non-termination, by avoiding the computation of the bounded graphs
and by reducing the cases of non-termination.

A first improvement in this direction can be done if we use a normalising strategy. In
the case we find a normal form in one of the bounded graphs, we stop computing them.
Supposing the terms were convertible and one of them normalising then the other term
should also be normalising. Here we could apply a normalising strategy to the second term.
We first write a function nf that finds the normal form (if it exists) by reducing the spine
redexes (see [BKKS87]).

Definition 10.8.7. A function nf : 7 — 7 is defined as follows.
nf(Az:A. b) = (Axnf(A). nf(h))
nf([le:A. B) = (Ila:nf(A). nf(B))
nf(z ay ...a,) = (2 nf(ar)...nf(a,))
nf((Ax:A. b) ay ...a,) = nf(blx:=a]...a,)
nf((Hx:A. B) a1 ...a,) = (Ila:nf(A). nf(B))nf(a,)...nf(a,)
The function nf reduce all the spine redexes at the same time. It is a semi-algorithm,
i.e. it computes the normal form if the term is weakly normalising and it may not terminate

otherwise.

Lemma 10.8.8. Let a € 7 be weakly normalising. Then nf(a) is the normal form of «.
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The second common-reduct strategy is called F* and applies the function nf to one of
the terms when it finds that the other is weakly normalising.

Definition 10.8.9. We define F* : 7 x 7 — P(7T) as follows.
Ft(a,b) =
If a = b then
| {a}

else
If @ or b are in normal form then
If  nf(a) =nf(b) then
| {nf(a)}
| else
| 0
end
else
| H*({a}, {b})
end
end

Next we define the function H : P(7) x P(T) — P(T). We suppose that it is always
applied to subsets X, Y of 7 that verify the following preconditions.

1. X and Y are the n and m-bounded reduction graphs of a and b.
2. The intersection of X and Y is empty.

3.0<n—m<1.

4. X and Y do not contain any normal form.

If we find that G_.(X) contains a normal form then we do not go on computing the
bounded graph. We choose one element of ¥ and reduce it to normal form.
HY(X,Y) =
If g_%(X)OY%@ then
| g, (X)nY
else
If there exists a € g_>/3 (X)) in normal form then

If  for somebe Y, nf(b) =a then
| e}

| else
| 0
end
else
| H"’(Y,XUQ_%(X))
end

end
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In the following lemma we prove that F* is a common-reduct strategy. The proof is
similar to the one of lemma 10.8.6.

Lemma 10.8.10.

l. If a «»5 b then F*(a,b) terminates and yields a non-empty set that verifies that for
all ¢ € F*(a,b) we have that « —»3 ¢ and b —»5 c.

2. T F*(a,b) # ) then a «»z b.

In a sense the strategy FT is ‘worse’ than F since in F* the operation nf that computes
the normal form can consume a great amount of time and space. One can also argue that
FT is ‘better’ than F for having a better order and less cases of non-termination.

On one hand, in some cases the order of F* is less than the order of F. The function F
always computes the bounded graph of the terms in a silly way. While F* stops computing
the bounded reduction graph if one of the terms is weakly normalising. On the other hand,
there are cases in which F does not terminate while F* does. If the terms are not convertible
and normalising then F*(a,b) terminates and yields the empty set. However F does not
terminate in some of these cases, like we have shown before.

We define a third common-reduct strategy that uses weak head reduction. This strategy
is the best amongst the ones we presented for having the best order and least cases of non-
termination.

Definition 10.8.11. We define F*+ :7 x 7T — P(7) as follows.

Ftt(a,b) =
If a = b then
| {a}

else
If a or b are in weak head normal form then
| L(whnf(a), whnf(b))
| else
| H**({a}, {6})
end
end

Note that whnf(a) and whnf(b) may not terminate. If they both terminate, the
function L is applied only to weak head normal forms. We define the function L : 7 x 7 —
P(T) as follows. In case both terms are weak head normal forms and their heads are equal,
we try to find a common-reduct for their subterms. In any other case, this function yields
the empty set.
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L((Az:Ay by), (Az:Ag. by)) = {(AwiAs. by) | Az € FYH(Ay, A) & by € FHH(by,by)}
L((Ia:Ay. by), (a:Ay. by)) = {(Ila:As. bs) | As € FYH(Ay, Ay) & bs € FH(by, by)}
L((zar...an),(xb...b)) = {((xer...en)| Vi=1,nc €Fr(a,b)}

L(a,b) = (0  otherwise

The function H** : P(T) x P(7T) — P(T) is always applied to subsets X and Y of T

that verify the following preconditions.
1. X and Y are the n and m-bounded reduction graphs of a and b.
2. The intersection of X and Y is empty.
3.0<n—m<1.
4. X and Y do not contain any weak head normal form.

It the bounded graphs X contains a weak head normal form, we choose a b of ¥ and
reduce it to weak head normal form.

HH(X,Y) =

If g_%(X)OY#@ then

| g, (X)nYy

else
If there exists a € g_>/3 (X) in weak head normal form then
| Choose b € Y, L(a, whnf(b))

| else
| HS(Y, X UG (X))
end

end

In the following lemma we prove that the function F** is a common-reduct strategy.

Lemma 10.8.12.

1. If @ «»3 b then F™*(a,b) terminates and yields a non-empty set that verifies that
for all ¢ € F**(a,b) we have that « —»3 ¢ and b —5 c.

2. It F**(a,b) # 0 then a «»4 b.
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The proof of lemma is similar to the proof of lemma 10.8.6.

The strategy F** is better than F* (and better than F) again for having a better
order and less cases of non-termination. On one hand, in some cases the order of F** is
less than the order of F. The function F** avoids constructing the bounded graphs in
more cases than F*. This is very important since the bounded graphs grow exponentially.
It we find that one of the terms is weak head normalising, we try to reduce the other to
weak head normal form. On the other hand, the function F** terminates in cases that F*
does not. More precisely, the strategy Ft*+ terminates and yields the empty set when the
terms are not normalising but they are both weak head normalising and their heads are
different. The strategy F* does not terminate in some of these cases like in for example
Ft((Az:A. Q), (Hz:B. x)). Many of these cases can appear when we have recursion.

In table 10.1, we compare the strategies defined before by answering the question: does
the strategy terminate?.

Reduction behaviour of the terms a and b F» F Ft Ft+
a < b a,bare WN Yes Yes Yes Yes
Otherwise May not Yes Yes Yes
) a,bare WN Yes May not Yes Yes
Otherwise . N T L Tend <. . n <.
Otherwise a, b are WN with # heads es ay not ay not es
Otherwise May not | May not | May Not | May Not

Table 10.1: Termination of the Strategies

Semi-algorithm of type inference. Now we define a function type that computes the
type of a term (up to f-conversion) in a singly sorted pure type system. If a is typable in
7 in a singly sorted pure type system then type(?,a) terminates and yields the type of a
in 7 (up to B-conversion), i.e. if 7 F a: A then type(?,a) «»5 A. If the term « is not
typable in 7 then type(7,a) either yields — or it does not terminate.

This function is obtained from the syntax directed set of rules defined in section 10.7 for
pure type systems. For each rule, we write a case of ‘pattern matching’. The first case in
this definition is for the axiom rule. The following three cases correspond to the start , the
weakening and the product rules. The conditions that appear in these rules that are of the
form ‘7 B A :—»4 s’ are replaced by ‘whnf(type(?,A)) = s’. The fifth case corresponds
to the abstraction rule. Here we need to define an auxiliary function type“ to compute
the type in a pure type system without the II-condition. The condition that appears in
this rule, ‘7 F¥ (Ila:A. B) :—»3 s’ is replaced by ‘whnf(type*(?, (llz:A. B))) = s’. The
last case corresponds to the application rule. The condition ‘7 F b :—»4 (Ilz:A. B)’ that
appears in this rule is replaced by ‘whnf(type(?,56)) = (llz:A. B)’. The other condition
in this same rule ‘A «»5 A" is replaced by Ft*(A, A") £ 0.

Definition 10.8.13.
follows.

The function types : C x 7 — 7T_ (or just type) is defined as
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type(e, s) = 4 if (s,s") € A

type(<?,2:A>z) = A if whnf(type(?,A4))=s€ S
and z is 7-fresh

type(< ?,2: A>b) = type(?,b) ifbe CUV,b+#x xis ?-fresh and
whnf(type(?,4))=s€ S

type(?, (llz:A.B)) = §3 if whnf(type(?,A)) = s,
whnf(type(< 7,2 : A >, B)) = so,
and (s1,s2,93) € R

type(?, (Az:A. b)) = (Ha:A. B) iftype(<?,2:A>b)= B and
whnf(type*(?,llz:A. B))=s€ S

type(?,(b a)) = Blr:=a] if whnf(type(?,0)) = (llx:A. B),
type(?,a) = A" and F*H (A, A") £ 0

type(?,a) = — otherwise

The function typeé : C x T — 7_ is defined exactly like type except for the case
that corresponds to the abstraction rule. In that case, the condition whnf(type“ (7, Ila:
A. B)) = s € S is removed. The function type” computes the type of a term in a pure
type system without the II-condition.

The first part of the following theorem says that if the term has a type in a singly
sorted pure type system then this is computed by type (up to S-conversion). The second
part says that the value type(?,a) # — is the type of @ in 7 in a singly sorted pure type
system.

Theorem 10.8.14. (Correctness of ‘type’) Let S = (S, A, R) be singly sorted such
that the sets S, A and R are recursively enumerable.

1. If 7 Fa: A then type(?,a) terminates and type(?,a) «»5 A.
2. If type(?,a) terminates and yields A then ? Fa: A.

Three functions are used in the definition of type: type“, whnf and F**. The function
type“ computes the type of a term in a pure type system without the II-condition. The
other two functions are used to solve the side-conditions, whnf computes the weak head
normal form of a term and the other F** is a common-reduct strategy.

The termination of type“ and type depend on the termination of whnf and F**. If
whnf or F** do not terminate then neither do type and type®.

Type checking can be solved from type inference. Using the function type that infers
the type of a term, we write another function check that checks if a term has certain type.
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Definition 10.8.15. We define the function check : C x T x T — Bool as follows.

true if whnf(type(?,A4))=s¢€ S,
_ type(?,a) # — and
checkfoed) = PH* (type(7 ), 4) # 0

false otherwise

We have the following conclusion which has been proved before in [BJMP93] and [Pol96]
(see theorem 9.3.19).

Theorem 10.8.16. (Decidability of Type Inference and Type Checking)
Let S = (S, A, R) be singly sorted such that the sets S, A and R are recursive.

If A(S) is f-weakly normalising then type inference and type checking in A(S) are
decidable.

Proof: Suppose that A(S) is normalising. Then whnf and F** are applied to normalising
terms and hence they terminate. Since the sets of the specification are recursive, we have
that type“ terminates and so do type and check. Therefore type inference and type
checking for A(S) are decidable. O

10.9 Conclusions and Related Work

Type Inference semi-algorithm. In order to solve the type inference problem for pure
type systems we have first considered a syntax directed set of rules and then we have written
a function that infers the type based on this syntax directed set of rules. In table 10.2 we
illustrate our methods.

[I-condition | Original Type system with syntax | Type inference
type system | directed rules semi-algorithm
included A(S) Asa(S) type
removed A¥(S) A2(9) type”

Table 10.2: Type Inference Semi-algorithm

In the first column of the table we indicate if the II-condition is included or removed,
in the second one we give the names of the original type systems (with and without the II-
condition), in the third one we give the corresponding type systems with a syntax directed
set of rules and finally the functions that infer the type in the original systems.

The definitions of type and type" are based on the systems that appear next to them
in the preceding column.

The Il-condition of A(S) is checked in the same system, whereas the one of Az(S) is
checked in A¥,(S). Therefore in the definition of type, the Il-condition is checked using
the function type* and not type. In other words, we have to use type“ to define type.

The II-condition of A;4(.5) is checked in A¥,(S) that is weaker than A(S).



132 CHAPTER 10. TYPE INFERENCE FOR PURE TYPE SYSTEMS

We have proved that if S is a singly sorted specification then Ay(S5) is ‘equivalent’ to
A(S) by using the relations shown in the diagram below. (see theorems 10.7.7 and 10.7.8).

AS) = AalS)
14 N N
“(8) = AulS)

Related work. Several syntax directed sets of rules for pure type systems are studied in
[BJMP93]. Our definition of a syntax directed set of rules follows the idea in [BJMP93] of
using an auxiliary system to check for the IlI-condition. In that paper, the auxiliary system
is much weaker than A(S5). In our case, the auxiliary system is A“(5), which is very close
to A(S). Moreover, A\¥(S) preserves some properties of A(.5) like normalisation.

In [Pol93a] a syntax directed set of rules for bijective pure type systems is presented.
The class of bijective pure type systems includes all systems of the A-cube and is a proper
subclass of the class we study here, the class of singly sorted pure type systems. The
class of bijective pure type systems does not include any of the systems of the family of
AUTOMATH as described on page 216 and 217 in [Bar85].

Decidability of type checking for normalising pure type systems whose set of sorts is
finite is proved in [BJ93]. In that paper, a type inference algorithm is defined that computes
the normal form in all the rules. A discussion on the side-conditions can be found in [Pol96].
In this paper, decidability of type inference is proved for normalising pure type systems
that are either singly sorted or semi-full under the assumption that the sets forming the
specification are recursive. In theorem 10.8.16, we have given a new proof of the same
result for the singly sorted but not for the semi-full pure type systems.

Concerning the problem with a-conversion, we define substitution for the set of pseu-
doterms as in [CF58]. Using this definition of substitution the variable convention in
[Bar85] is not necessary. The typing rules for pure type systems do not allow to type
terms unless their nested variables are all different. In the start and the weakening rules
a variable is added to the context only if it is 7-fresh. The term (Ax:A. Ax:B. ) is not
typable because the second occurrence of z is not < A : %, x:A >-fresh. It is necessary to
perform a-conversion to ensure subject reduction. In fact subject reduction holds up to a-
conversion (see [Pol93b]). In the context A : *, the term (A\y:(A — A). Aa:A. y)(Ae:B. )
is typable in a pure type system. This term reduces to (Az:A. Ax:B. ) which is not
typable. Subject reduction holds if we identify (Ax:A. Aa:B. x) with (Az:A. Aa:B. )

A solution to the implementation of a-conversion appeared in [Bru72]. Here, reference
numbers to the positions of the abstractions are used instead of name variables. Another
solution can be found in [Coq96]. In this case, a semantical argument is used to prove the
correctness of the type checking algorithm.

For pure type systems, the problem of unification does not arise when inferring the
type. In typing a la Curry, since the types of the variables are unknown, we have to solve
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the unification problem when checking and inferring the type. If we are checking whether
an application (f «) has a type B we do not know the type of the argument a. We could
infer a type for a and a type for f. The terms f and ¢ may have several types but we could
infer the principal type, i.e. a type from which all others can be obtained by substitution.
When we have inferred the principal types of f and @, we need to find a unifier for the
type of f and a type whose domain is the type of a. The unification and type inference
problems for normalising systems a la Curry are not always decidable.
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Chapter 11

Pure Type Systems with Definitions

11.1 Introduction

A pure type system does not provide the possibility to introduce a definition, i.e. an
abbreviation (name) for a larger term which can be used several times in a program or
proof. A definition mechanism is essential for practical use, and indeed implementations
of pure type systems such as Coq [Dow91], Lego [LLP92] or Constructor [HA91] do provide
such a facility, even though the formal definition of the systems they implement do not.
In this chapter, we extend the pure type system to include (non-recursive) definitions.

The extension of a pure type system with definitions looks very harmless and this
may not seem a topic worthy of investigation. However the local definitions complicate
matters and it is an open problem whether extending an arbitrary pure type system with
definitions preserves strong normalisation or not. Worse still, proving strong normalisation
for particular pure type systems extended with definitions is already a problem. The strong
normalisation proofs for particular type systems given in [Coq85], [Luo89], [GN91], [Bar92]
cannot be extended in any obvious way.

In this chapter, we show how strong normalisation of a pure type system extended with
definitions follows from strong normalisation of another (larger) pure type system. This
enables us to prove that for all strongly normalising pure type systems that we know the
extensions with definitions are also strongly normalising.

In the systems of the AUTOMATH family [NGdV94] definitions are considered as part
of the formal language. The meta-theory of these systems -including strong normalisation
- is treated in detail in [Daa80]. However, the proofs of strong normalisation apply only to
the particular type system that they consider and do not extend to other type systems.

This chapter is organised as follows. In section 11.2 we define the pseudoterms and
the pseudocontexts extended with definitions, the é-reduction and the typing rules for
definitions. In section 11.3 we prove properties for all pseudoterms like confluence for [36-
reduction and strong normalisation for é-reduction. In section 11.4 we prove properties
for typable terms. We prove that weak normalisation is preserved by the extension. This

135



136 CHAPTER 11. PURE TYPE SYSTEMS WITH DEFINITIONS

property is easy to prove. We first unfold all the definitions and then we perform f-
reduction. The unfolding of definitions may be inefficient and we want to perform other
strategies for #6. Hence we prove that strong normalisation is preserved by the extension
for a class of pure type systems.

11.2 Pure Type Systems with Definitions

We define a functor A® from the category of specifications to the category of environmental
abstract rewriting systems with typing similar to A\. A pure type systems with definitions
is a value \°(S) for S € Spec of \® given by a 4-tuple:

1. a set 75 of pseudoterms
2. a set Cs of pseudocontexts,

3. two reduction relations on pseudoterms and pseudocontexts: one reduction is the
fB-reduction and the other relation is called é-reduction,

4. a typing relation denoted by .

11.2.1 Pseudoterms

Definitions will be of the form z=a:A. A definition x=a:A introduces = as an abbreviation
of the term a of type A.

Definitions are allowed both in pseudocontexts, e.g. 7, x=a:A, and in pseudoterms,
e.g. r=a:A in b. Definitions in pseudocontexts are called global definitions and definitions
in pseudoterms are called local definitions.

Next we extend the set of pseudoterms to include local definitions, expressions of the
form (z=a:A in b).

Definition 11.2.1. Let S = (S, A, R) be a specification. The set Ts of pseudoterms is
given by

Ts == V| S| (T Ts)| AWVTs. T) | (IIV:Ts. Ty) | (V=T5:T5 in Ty)
where V is the set of variables and S is the set of sorts.

Definition 11.2.2. The mapping F'V : 75 — P(V) is defined as in definition 9.3.2 by
adding the following case.

FV(z=a:Ainb) = FV(A)UFV(a)U(FV(b)—{x})

We say that « is free in a if © € FV(a).
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Definition 11.2.3. The mapping BV : 7; — P(V) is defined as in definition 9.3.3 by
adding the following case.

BV(z=a:Ainb) = BV(A)U BV(a)U (BV(b)U{x})
We say that « is bound in a if + € BV (a).

Definition 11.2.4. The result of substituting d for (the free occurrences of) x in e is
denoted as e[z := d] and defined as in definition 9.3.4 by adding the following cases.

(r=a:Ain b)[x :=d] = (r=a:Ainb)
(y=a:A in b)[z :=d] = (y=a[zx:= d:Alx :=d] in blz :=d]) ife £y andy¢g FV(d)
(y=a:A in b)[x :=d] = (z=ae:=d:Ale:=d]inbly:=z][x:=d]) ifx#y, ye FV(d)

and z is fresh
The set of pseudoterms with holes in it is defined as follows.
Definition 11.2.5. Let S = (S, A, R) be a specification. The set H; is given by
Hs == []| V]| S| (Hs Hs) | (AV:Hs. Hs) | (IIV:Hs. Hs) | (V=Hs:Hs in Hs)
where V' is the set of variables and S is the set of sorts.

An element in H; is denoted by C] ].
Next we extend the set of pseudocontexts to include global definitions, expressions of
the form 7, x=a:A,7".

Definition 11.2.6. Let S be a specification. The set Cs of pseudocontexts is given by
i)e €Cs
) <?,0:A>€Csif? €Cs, 2 € V,A €T and x is 7-fresh
i) < ?,xa=a:A >€Csif? €Cs, v € VaeTs, Ac T xis ?-fresh and = ¢
FV(a)UFV(A)
Note that the set of pseudocontexts is not given by
Csu=c| Cs,V:T5| Cs,V="T5:Ts .

We have additional requirements for the well-formation of the pseudocontext 7, x=a: A.
We require that = should be 7-fresh in order to avoid capture of bound variables in the
definition of é-reduction given below. Moreover we require that @ € FV(a)U FV(A) in
order that definitions are not recursive.

The expression 7, r=a:A stands for the pseudocontext < 7, x=a:A >.

Next we define a mapping Dom that gives the set of variables declared in a pseudocon-
text.
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Definition 11.2.7. The mapping Dom : Cs — P(V) is defined as definition 9.3.7 by
adding the case for definitions.

Dom(?,2=a:A) = Dom(?)U{x}

Next we define a mapping Def that gives the set of variables declared as definitions in
a pseudocontext.

Definition 11.2.8. The mapping Def : Cs — P(V) is defined as follows.

Def(e) = 0
Def(?,2:A) = Def(?7)
Def(?,2=a:A) = Def(?)U{x}

Definition 11.2.9. The result of substituting d for (the free occurrences of) a variable x
in 7 such that @ € Dom(?) is denoted as 7 [x := d] and is defined as in definition 9.3.8 by
adding the following case for definitions.

< tyy=aA>[v:=d =<?z:=d],y=a[z = d:Alz :=d] >

Definition 11.2.10. Let d € 75. A change of a bound variable in the term d is the
replacement of a subterm (z=a:A in b), (Az:A. b) or (Ilx:A. b) by (y=a:A in bla = y]),
(My:A. blz :=y]) or (Ily:A. b[x := y]), respectively, where y ¢ F'V(b).

Definition 11.2.11. The pseudoterm b is a-convertible to &' if &/ is the result of applying
to b a series of changes of variables or vice versa.

Convention 11.2.12. Two terms are identified if they are a-convertible.

11.2.2 Reductions
In this section we define the 3 and the é-reduction. The #-reduction is defined as usual.

Definition 11.2.13. The 3-reduction is written as ¢ —4 @’ and is defined by the following
rule.

Cl(Az:A. b)a] —5 Clblx := da]]

where C[ | € Hs has only one occurrence of [ ].

The intended meaning of a definition (x=a: A in b) is that the definiendum x can
be substituted by the definiens a in the expression b. A definition (x=a:A in b) can be
considered as having a similar behaviour to (Ax:A. b)a, i.e. the substitution of the variable
x by a in the expression b. In the f-reduction where (Ax:A. b)a reduces to b[x := a], the
operation b[x := a] is the substitution of all the occurrences of x by @ in the expression
b. In contrast to f-reduction, the expression (x=a:A in b) reduces to the expression
(r=a:A in V') where V/ is obtained from b by unfolding one occurrence of @ by a. This
is clearly illustrated in the example we presented in section 1.2.2. In order to perform the
unfolding of a definition, we introduce a new relation called é-reduction.



11.2. PURE TYPE SYSTEMS WITH DEFINITIONS 139

Definition 11.2.14. We define the é-reduction (or —5) as the smallest relation on
Cs x Ts x Ts closed under the following rules (we write 7 F d —s d' instead of (?,d,d’) €—5):

T a=a:A TR —sa
T F(z=a:Ain b) —5 b if v ¢ FV(b)
Toa=a:Alb—s b
7 F(z=a:Ain b) —s (x=a:A in )

Tha—sd THA = A
7 F(z=a:Ain b) —s (x=ad":A in b) 7 F (z=a:Ain b) —s (v=a:A" in b)
Tha—sd TEb =5
T F(ab)—s(db) TE(ab)—s(al)

T Al a —sd THA = A

7 F (Ax:Al a) —5 (A:AL ) T F (Ax:A. a) —s (A AL a)
T Al a —sd THA = A

7 F (Ilz:A. a) —5 (ITa:A. o) 7 F (Ilz:A. a) —5 (Ha: A a)

When 7 is the empty pseudocontext, a —;s a’ is written instead of ? F a — d'.

Unfolding of definitions. The first rule allows to unfold definitions. The definiens «
reduces to its definiendum a. This rule together with the compatibility rules perform the
unfolding of global definitions. In a pseudocontext 7, x=a:A,?’ a term d is é-reduced to a
term d’ if d' is obtained replacing one occurrence of x by @ in d.

The third rule allows to unfold local definitions. We consider a local definition as if it
were global. The declaration x=a: A passes from the pseudoterm to the pseudocontext.
Besides, we keep the bound variable x in (z=a:A in b) until we unfold all the occurrences
of z in b.

After unfolding all the occurrences of x in b, we can remove the definition r=a:A from
the term. The second rule allows to remove definitions when the variable x does not occur
in b.

Reductions depending on pseudocontexts. The é-reduction is an example of a
rewrite relation depending on a pseudocontext. We have that (7s,Cs, —5) and (75, Cs, — 55)

are environmental abstract rewriting systems. If R € {—»s, «»s, — s, « 55} a pseudocon-
text has to be specified, i.e. 7 Fa R bfor a,b € Tg and 7 € Cs.

Renaming of variables.  The variables introduced as definitions are bound variables.
Therefore a-conversion is necessary when rewriting terms. For example,

r=y: At (y=zwn x)

o (y'=zwin x)
—s (y'=zwn y)
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The variable y occurs in the term (y=z:u in ) and in the pseudocontext x=y:A.

From now on, we assume that all the bound variables of the term and all the declared
variables of the pseudocontext are different.

We extend the definition of é-reduction to pseudocontexts.

Definition 11.2.15. We define the é-reduction on pseudocontexts (or —4) as the smallest
relation on Cs x Cs closed under the following rules:

?l_E—>5 El
. ! . ! !
Tyl —s Ty B
?l_E—>5 El
Toy=e:lD,? —s T y=e:E' 7!
T he—se
Ty=e:l, 7 —5 7, y=e"E. 7’

We extend the definition of f-reduction to pseudocontexts.

Definition 11.2.16. We define the 3-reduction on pseudocontexts (or —3) as the smallest
relation on Cs x Cs closed under the following rules:

?l_E—>g El
Tyl =g Ty R
?l_E—>g El
Ty=el, 7 =57 y=e: k7’
ThFe—ge
Ty=el,? =57 y=e"E,7’

11.2.3 Types

We define the typing relation F° which allows to type definitions.

Definition 11.2.17. The typing relation Fs (or F for short) is the smallest relation on
C x T x T closed under the following rules and the rules of definition 9.3.14 (we write
? H b: Binstead of (7,b, B) € F) :

2 LS .
(6 — start) 5 :1;‘—C|L_'Aal—‘5f11; 7 where x is 7 -fresh

THb:B THa:A
_ ) 15 7 -
(6—weakening) T e AP b B where z is 7 -fresh

7, 0=a:AF B:s
7 (r=a:Ain B): s
. . T,a=a:AFb:B ?F (z=a:Ain B):s
(é—introduction) 7 (r=a:Ain b) : (x=a:Ain B)

5 . ?HbL:B THB:s ?7FB«»s B
(6—conversion) T

(6—formation)
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where s ranges over sorts, i.e. s € S.

Definition 11.2.18. The functor A\’ : Spec — Carst is defined for S € Spec as follows.

)‘6(5) = (7:57657 7355 l_é)'

The functor A’ : Spec — Carst is defined for f € Spec as the extension of f to the
set of pseudoterms and pseudocontexts.

We have to verify that A°(S) € Carst and that \°(f) € Carst. For A°(S) € Carst, we
have to prove the subject and type reduction properties. which are proved in the following
sections. For the second one, we have to verify that A°(f) preserves the rewrite and the
typing relations. This is very easy to prove.

Definition 11.2.19.

A pure type system with definitions (DPTS) is defined as an element of
A(Spec) = {\°(5) | S € Spec}
A singly sorted pure type system with definitions is defined as an element of

{X(S) | S € Spec & S is singly sorted }
Observe that the system A°(S) is an extension of A(S).

Explanation of the typing rules. The é-start and 6-weakening rules allow the typing
of global definitions. We cannot add x=a:A to the context 7 unless the term « has type
A in 7. These rules ensure the correctness of what we abbreviate. Moreover they do not
allow to abbreviate topsorts. For example in the systems of the A-cube it is not possible
to abbreviate O.

The 6-formation and d-introduction rules allow the typing of local definitions. These
rules are similar to the abstraction and the II-formation rules. They differ in the fact that
the é-formation rule is not restricted by a set R of rules like the II-formation rule.

We could have removed the §-formation rule and the condition ‘? F (z=a:A in B) : s’
of the é-introduction rule. In that case correctness of types and subject reduction would
hold in a weaker form. The weaker form of correctness of types is stated as follows: if
? H a: A then either A —»g5 S or 7 H A:Band B —» 35 5. The weaker form of subject
reduction is stated as follows: if 2 ¥ a: A and « —»gs @' then there exists A’ such that
?H a A and A —» 55 A’ (see also definition 4.3.1).

The 6-conversion rule plays an important role in typing definitions. This rule allows to
use the fact that the definiens x and the definiendum a are (6-)equal for typing a term.
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Definition vs abstraction and application. A definition (z=a:A in b) is not another
way of writing (Az:A. b)a. There are important differences between (x=a: A in b) and
(Ax: A. b)a, both regarding their reduction behaviour and their typing. One reason for
considering (r=a:A in b) and not (Aax:A. b)a is that in some cases it is convenient to have
the freedom of substituting only in some of the occurrences of an expression in a given
formula.

Another reason for considering (x=a:A in b) and not (Az:A. b)a is that the first may
be typable when the second is not. There are two situations where this happens:

1. The fact that x is an abbreviation for a can be used to type b. This is shown in the
following example.

Example 11.2.20. The term Aa:*. (X =a:*x m Ay: X. Afra — a. fy) is
typable in the system A2 extended with definitions. But it is not possible to type
the corresponding term expressed with an application and an abstraction in A2. As
a matter of fact, the following term is not typable in any system of the A-cube.

Aask. (AX s Ay X, Afia — a. fy)a

In this term the application fy is not well-typed because the type X of the argument
y does not match the type @ — « of the function f. In the first term this application
is well-typed because we know that X is an abbreviation of . Note that here we
apply the é-conversion rule.

2. The abstraction (Az:A. b) may not be allowed in a given type system.

Example 11.2.21. The term (X=a — a:xin A\y: X. Af: X — X. fy) is typable
in the system A_ extended with definitions. The corresponding term expressed with
an application and an abstraction, i.e. (AX:*. A\y:X. Af: X — X. fy)a — «, is not
typable in A_, because in A_ abstractions over type variables are not allowed.

Properties of pure type systems with definitions. In the following sections we will
prove these properties:

e Confluence for —4 and for —gs.
e Strong normalisation for —y.

o (7;,Cs,—ps,1°) verifies subject reduction, i.e. if 7 = b —4s b and 7 F° b : B then
7H VB,

o (7;5,Cs,—p5,1°) verifies type reduction, i.e. if 7 = B —gs B and ? F b : B then
7H b B
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e Uniqueness of types for singly sorted specifications, i.e. if ? ¥ d: D and ? H d: D’
then 7 b D «»gs D' with S a singly sorted specification.

o Conservativity, i.e. for A€ 7,7 €¢CJa?Fa:Aiff Ja ? F a: A

e Strengthening, i.e. if 71,2:A4,7, F b: Band z € FV(?,) U FV(b) U FV(B) then
?1,?2 |_6 b:B.

o If a pure type system is fé-weakly normalising then the corresponding pure type
system with definitions is #é-weakly normalising.

o An extension of a pure type system is Fé-strongly normalising if a ‘slightly’ larger pure
type system is f-strongly normalising. In particular, the Calculus of Constructions
extended with definitions is $6-strongly normalising.

11.3 Properties of Pseudoterms

In this section, we prove properties of § and é-reductions for all pseudoterms. Amongst
these properties, we will prove confluence for 6 and for 36. Besides we will prove weak and
strong normalisation for é-reduction.

11.3.1 Basic Properties

In the following lemma we show that a é-reduction step remains invariant if we enlarge the
context. The proof is done by induction on the definition of —5.

Lemma 11.3.1. Let < 7,,75,73 >€ Cs be such that 7,75 F b —s . Then
?1,?2,?3 F b—>5 b/.

Both implications from left to right of the following lemma are a particular case of
lemma 11.3.1. Both implications from right to left allow to make the context shorter. The
first part states that declarations of the form z:A can always be removed from the context.
The second part states that declarations of the form z=a: A can be removed from the
context only if # ¢ F'V(b). This allows to remove global definitions as the second rule in
the definition of é-reduction does for local definitions. Both parts are proved by induction
on the definition of # and 6.

Lemma 11.3.2.

1. Let < 7,2:A,7" >€ Cs and b € Ts.
7,7 b —ps bif and only if 7,20 A7 b —ps O

2. Let <7, 2=a:A,?" >€ Cs and b € 75 be such that « ¢ FV(b).
1,7 b —ps b if and only if 7, x=a:A, 7" F b —ps V.
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In the following lemma we show that the compatibility rule for (x=a:A in b) when we
reduce inside b is a derivable rule.

Lemma 11.3.3. The following rule is derivable from the ones in the definition of —5.

TEb—s b
7 F(z=a:Ain b) —s (x=a:A in )

Proof: By lemma 11.3.1, it follows that 7,2 =a: A F b —s . By definition of —y, it
follows that ? F (z=a:A in b) —s (x=a:Ain V). O

We will prove that a definition (z=a:A in b) has the same behaviour as (Az:A. b)a in
the sense that the definition (x=a:A in b) é-reduces in several steps to b[x := a]. Then the

unfolding of definitions that is achieved via the é-reduction corresponds to the operation
of substitution [z := a]. The proof is done by induction on the structure of b.

Theorem 11.3.4. Let 7 =< 71, 2=a:A,75 >. Then
T Fb—»s bla = al.
Corollary 11.3.5. 7  (z=a:A in b) =} b[x := a].
Proof: By theorem 11.3.4, it follows that 7, a=a:A = b —» b[x := a]. Then

7 (r=a:Ainb) —»s (v=a:Ain bz := )

—s  bla:=d]
Note that « ¢ FV(b[z :=«a]). O
The following lemma is proved by induction on the structure of a.

Lemma 11.3.6. (Substitution Lemma) Suppose = # y and « ¢ F'V(d). Then

The following lemma shows that 3 is substitutive. It is proved by induction on the
generation of —g.

Lemma 11.3.7. (Substitutivity for 3) If a« —3 o’ then a[x := b] —4 a'[x :=b].

The following example shows that ¢ is not substitutive for those variables which are
definitions.
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Example 11.3.8. Let 7 be the context < A : *,id=(Ay:A. y):(Ily:A. A) >.
7 Fid —s (A\y:A. y)
But it is not true that 7 F id[id := b] —s (A\y:A. y)[id := b] for all b € Ts. In this case the

variable ¢d is a definition, this means that it can be substituted only by the definiendum
(Ay:A. y).
Lemma 11.3.9. If ? o=a:A, 7" F b —ps b then 7,7 [2 :=a| F blx := a] —»ps V[2 := a.

In the following lemma we reduce inside the pseudoterm a of b[z := a]. This lemma
holds for any variable x, including those which are definitions. It is proved by induction
on the structure of b.

Lemma 11.3.10. If 7 F a —ps ¢’ then 7 F b[a := a] — 35 blx := .
Lemma 11.3.11. If ? Fa —pgs ¢ and 7, v=a:A,?" = b —45 b then 7, 2=a"A, 7" F b —ps
b.

The previous lemma is proved by induction on the definition of 7, x=a:A, 7' F b —;s ',

11.3.2 Confluence for (5, 6 and Fé-reductions

The proof of confluence for f-reduction is very easy. It follows from the fact that the
combinatorial reduction system < 75, — 3> is orthogonal(see [Kl1090]).

Theorem 11.3.12. (Confluence for j-reduction) Let a, a1, az € Ts such that a —5 a4
and @ —» 3 ay. Then there exists a pseudoterm a3 such that a3 —» 5 as and a; — 5 as.

We prove confluence for 6 and Fé-reductions using the criteria proved in chapter 4.
The idea of the proof of confluence for é-reduction is as follows. We define a ‘projection
mapping’, | — |- : Cs x Ty — 7. The ‘projection’ |a|r is a pseudoterm that is obtained from
a by unfolding all the definitions occurring in 7 and in a. First we prove that this mapping
is a strategy for é-reduction. Then we prove that this mapping is a forgetting morphism
from (7s,Cs, —s) to (T, —p3). Finally, the proof of confluence for gé-reduction follows from
the previous considerations and the fact that the projection mapping is an implementing
morphism from (75, —3) to (7, —p3).

Next we define the mapping | — |_.

Definition 11.3.13. The mapping | — |- : Cs x Ty — T is defined as follows.

{ lalp, if? =71, 2=a:A,7,

il x otherwise
slr = s
a blr = alr|b|r

|Az:A. alr = (Ax:|Alr. |a|rza)
Hz:A. Blr = (Ia:|Alr. |Blrza)

|le=a:Ain blr = |blr[z :=|a|r] where x is 7-fresh.
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The value |d|r is obtained from d by unfolding all the global and local definitions. The
unfolding of global definitions is performed in the first line |z|r = |a|r,. The unfolding of
local definitions is performed in the last line |z=a:A in b|r = |b|r[z := |a]r].

Note that |d|r does not contain either local or global definitions, i.e. |d|r € 7 and
Def(?7) N FV(|d|lr) = 0. Conversely, if d € T is such that Def(?) N FV(d) = § then
|d|r = d. This means that for those pseudoterms which contain neither global nor local
definitions, the mapping | — |_ is the identity. Hence | — |- is a ‘projection’ from 75 and Cs
to 7. Later, we will prove that |d|r is the é-normal form of the pseudoterm d.

The function F'V : Ty — P(V) is extended to Cs x Ts. We say that F'Vr(b) is the set of

free variables of b with respect to 7.
Definition 11.3.14. The mapping F'V : Cs x Ts — P(V) is defined as follows.

FV.(b) = FV(b)
FVoar(d) = FV(A)U(FV(b) —{x})
F‘/x:a:A,F(b) = FVF(A) U FV(CL) U (FVF(Z)) - {l’})

Lemma 11.3.15.
l. If « ¢ FV(b) and x is ?-fresh then « & FV(|b|p).
2. Let < 71,723,753 >€ Cs and b € T5 be such that (F'Vr, (b)) N Def(?72) = 0. Then

6|, 1y, =01, 1, -
3. Let < 7q,2=a:A, 79 >€ Cs and a € Ts. Then |a|r, ymaar, = |a|r,.
Proof:
1. It is proved by induction on the number of symbols occurring in 7 and b.

2. It is proved by induction on the structure of b.

3. None of the variables in Def(z=a:A,?73) can occur in a. Hence the result follows

immediately from the previous part.

The following lemma states that | — |- preserves substitution. Also it shows that | —|_
yields the same value for global and local definitions and this value is given by substitution.
It is proved by induction on the structure of b.

Lemma 11.3.16. Let < ?7,2=a:A >€ Cs and b € 7. Then
|b|F [l’ = |a|F] = |b[$ = Cl”r - |b|F,x:a:A

The following lemma states that a pseudoterm reduces to its projection.



11.3. PROPERTIES OF PSEUDOTERMS 147

Lemma 11.3.17. The ‘projection mapping’ is a strategy for é-reduction. In other words,

T Fd—»s|d|p for all d € Ts, 7 € Cs.

Proof: It is proved by induction on the number of symbols occurring in 7 and in d. Only
two cases are considered.

e Assume d = x. There are two possibilities, either @ € Def(?) or not.

If # € Def(?7) then 7 =< 74, 2=b0:B,75 >.

Thx —s b
—»s |blr, by induction hypothesis and lemma 11.3.1
= el

If « ¢ Def(?) then ? o —s 2 = |2|p.

e Assume d = (x=a:A in b). By induction hypothesis, it follows that ? F a —»5 |a|r,
T F A —s |Alr and that 7 F b —»; |b|p.

T F (e=a:Ainb) —»s (x=|a|r:|Alrin |blr) by definition of 6 and lemma 11.3.3
—»s |b|r[z := |a]|r] by corollary 11.3.5
= |e=a:Ain blp

The rest of the cases are easy to prove. O

The following lemma states that the projections of two pseudoterms that are in —4 are
equal.

Lemma 11.3.18. The projection mapping is a forgetting morphism from (75, Cs, —s) to
(T,—p),1e. if 7 ¢ —5d then |c|p = |d|p for all ¢,d € Ts and 7 € Cs.

Proof: It is proved by induction on the structure of ¢. Only some cases are considered.
e Suppose that ¢ = x. This means that 7 =71, 2=a:A,75 and 7 F z —; a.

|zl = alr,
= J|a|lr by lemma 11.3.15

e Suppose that ¢is (z=a:A in b) and ? F (x=a:A in b) —;s b with = ¢ FV(b).

|blrfa := |alr]
= |blr by lemma 11.3.15 part 1

|e=a:A in b|p

The rest of the cases are easy to prove. O
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Theorem 11.3.19. (Confluence for é-reduction) If ? - a —»s5 ay and ? F a —»;5 ay
then there exists a5 such that 7 - a; —»s a5 and 7 F ay —5 as.

Proof: By theorem 11.3.17, the projection mapping is a strategy for é-reduction. Moreover
it follows from lemma 11.3.18 that this mapping is a forgetting morphism. By lemma 2.6.1,
—¢ 1s confluent. O

The following lemma states that the projection preserves -reduction.

Lemma 11.3.20. Let ? € Cs. The projection mapping |—|r is an implementing morphism
from (75, —p) to (T,—p), i.e. if a —5 a’ then |a|r —4 |d|r, for all a,a’ € Ts.

Proof: It is proved by induction on the structure of a. Only the case a = (Aa:B. b)d and
(Ax:B. b)d —4 b[x := d] is considered.

lalr = |(Ax:B. b)d|r
= (Az[Blr. |blr)|d]r
=5 |blr[z == [d]r]
= |blz :=d]|r by lemma 11.3.16

The rest of the cases are easy to prove. O

Theorem 11.3.21. (Confluence for fé-reduction) If 7 = a —»ps band 7 F a —»ps ¢
then there exists d € 75 such that 7 b —gsd and 7 F ¢ — 35 d.

Proof: We apply lemma 2.6.2 to the abstract rewriting system (7, —3) and the environ-
mental abstract rewriting system (7s,Cs, —p3s). We fix a pseudocontext, say ? € Cs and
we consider the gé-reduction in 7 (we write — g5 instead of —gs. ).

e The inclusion mapping is an implementing morphism from (7, —3) to (75, —ss)-

e By lemma 11.3.17, we have that the projection mapping | — |1 is a strategy for ¢ and
hence for #é-reduction.

e Bylemmas11.3.18 and 11.3.20, the projection mapping is an implementing morphism
from (75, —ps) to (T, —3).

Since (7, —p) is confluent so is (75,Cs, —p5). O
Note that if the contexts 7 and 7’ are different then |a|r may be different from |a|r.
Lemma 11.3.22. If 7 —»3; 7' then |a|r «»4 |a|r.

This is proved by induction on the length of @ and 7.
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11.3.3 Weak and Strong Normalisation for —;

In this section an illustrative and intuitive proof of weak normalisation for é-reduction
is presented. In order to prove strong normalisation for —»s, the well-known method of
defining a function w_(—) : Cs x 75 — IN which decreases with é-reduction is used. This
function computes the length of a maximal é-rewrite sequence from a term to the é-normal
form.

Note that a pseudoterm can be in é-normal form but not in #-normal form, for example
Ay y)(Ay: A y).

According to the following theorem, a pseudoterm a is in é-normal form in a context
7 if and only if a does not contain either global or local definitions. The pseudoterms
that do not contain local definitions are in 7. The pseudoterms that do not contain
global definitions are those pseudoterms whose free variables are not included in the set of
definitions of the context. The proof follows easily by induction on the structure of a.

Theorem 11.3.23. lLet a € T;.

a is in 6-normal form in 7 if and only if @ € 7 and F'V(a)N Def(?7) = 0.

The projection |a|r does not contain either global or local definitions. Therefore |a|r is
in 6-normal form. Since é-reduction is confluent we have that the é-normal form is unique.
As a consequence of this we have the result that follows.

Corollary 11.3.24. (Weak Normalisation for é-reduction)
The pseudoterm |a|r is the é-normal form of @ in ?.

Note that by corollary 11.3.24 the é-normal form for an arbitrary pseudoterm exists,
but it is not guaranteed that all 6-paths starting at the pseudoterm are finite.

Next we define a function w_(—) : Cs x Ty — IN that decreases with é-reduction. We
use this function in order to prove strong normalisation for 6. We also prove that wr(b)
computes the length of a maximal é-rewrite sequences starting at b.

Definition 11.3.25. If ? € Cs and b € Ty, wr(b) is defined by induction on the number
of symbols in 7 and in b as follows.

Wy e=a:AT,(7) = wr(a) +1
wr(x) 0 if = ¢ Def(7)
wr(s) = 0
wr(z=a:Amb) = wr(a)+ wr(A) + wrpmaa(b) + 1
wr(a b) = wr(a)+ wr(b)
wr(lla:A. @) = wrpala) + wp(A)
)

= wrgala)+ wp(A)
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Lemma 11.3.26. If FV(b) N Def(72) = @ then WF17F27F3(Z)):WF17F3(Z)).

The previous lemma is proved by induction on the number of symbolsin < 71,745,753 >
and in b.

Lemma 11.3.27. WFl,x:a:A,FQ(b) Z WF17F2(Z)).

The previous lemma is proved by induction on the number of symbols in 71, z=a:A, 7,
and in b.

Lemma 11.3.28. If ? - d —; d' then wr(d) > wr(d').

Proof: The following two properties are proved simultaneously by induction on the number
of symbols in 7 and in d.

1. If 7 Fd —s d then wr(d) > wr(d).
2. If 7 —5 7' then wr(d) > wpi(d).

We only consider the proof of the first property for the case that d = z. We have that
=7, r=a:A,7,and 7 F a2 —; a.

WI e=a:4,T (l’)

wr, (@) + 1

wry (a)

wr(a) by lemma 11.3.26

wr(x)

v I

As an immediate consequence of lemma 11.3.28, we have the result that follows.

Theorem 11.3.29. (Strong Normalisation for ¢)
The reduction ¢ is strongly normalising.

Finiteness of developments can be deduced from strong normalisation of é-reduction.
This is our third proof of finiteness of developments (see chapter 7).

We write a function that maps a marked redex (Ax:A. b)a into a definition x=a:A in b.
This function maps one step of 3-rewrite step into one or more steps of é-reduction.

We suppose that the terms in A are typed.

Definition 11.3.30. The mapping T : A — 75 is defined as follows.

T(x) = =«
T(Ax:Ab) = da:T(A). T(b)
Y(ba) = T(b) T(a)
T((Ax:Ab)a) = (2=Y(a):T(A). T(b))
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The last clause maps a marked redex (Ax:A.b)a into a definition x=a:A in b.
Lemma 11.3.31. Y(b[z :=a]) = T (b)[z := Y(a)]

This function is a refining morphism, i.e. it maps one step of f-reduction to one or
more steps of d-reduction.

Lemma 11.8.32. If a —4 b then Y(a) —F Y(b).

This lemma is proved by induction on the structure of a. In the case of a marked redex,
(Ax:A.b)a, we use corollary 11.3.5 and the previous lemma.

Theorem 11.3.33. (Finiteness of Developments)
The f-reduction is strongly normalising.

Proof: By the criterion on strong normalisation 2.6.5, we have that the J-reduction is

strongly normalising. O

Note that wr(a) is an upper bound for the number of reductions steps in a é-reduction
sequence starting at a in 7, i.e. for all n, ay,...,a,,

Hf?hFa= a1 —sdy —>§ ... —7§ Up_1 —§ Ay then WF(G) Z n.

We will show that wr(a) is the length of a maximal é-rewrite sequence from a to its ¢-
normal form. In order to show that wr(a) is a maximum we will build a é-reduction
sequence of this length. We will define a strategy F(fo : Cs x Ts — T5 for d-reduction such
that the F° -reduction sequence of a has length wr(a).

The é-reduction unfolds only one occurrence of a variable at a time. We need to give
an order to these occurrences in order to define a strategy of reduction. We choose to
unfold them from left to right. We will define e[z" := d] as the substitution of the leftmost
occurrence of the variable x for d in the expression e.

Definition 11.3.34. Let @ € FV(e). The result of substituting d for the leftmost
occurrence of z in e is denoted as e[z® := d] and is defined as follows.

S0 = d] = {d ifo=y

y otherwise

(a[z®:=d] b) ifz € FV(a)
(a b[z°:=d]) otherwise

J:Ainb ifx e FV(a)
dlinb ifx ¢ FV(a) and x € FV(A)
y=a:Ain blz:=d] ifz ¢ FV(a)U FV(A)

‘ o B (Ily:A[z° :=d]. B) itz € FV(A)
(Ily:A. B)[2":=d] = (HZ;A, Blz":=d]) otherwise
. a) ifxe FV(A)

(AL a)f2?:=d] = (Ay:A. a[:;:: d]) otherwise

S
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The strategy we define for é-reduction is similar to the perpetual strategy F., on A-
terms and for fF-reduction(see section 6). The leftmost é-redex of a pseudoterm could
be either a global or a local definition. If the leftmost redex is a variable z such that
r=a:A 1s in the context then the strategy gives the pseudoterm obtained by unfolding this
occurrence of = by its definiendum a. If the leftmost redex is a definition (x=a:A in b),
we check whether the variable x occurs as a free variable in b or not. If it does, then the
strategy yields the pseudoterm obtained by unfolding the leftmost occurrence of x in b. If
the variable = does not occur as a free variable in b then we do not remove the definition.
We will apply the strategy first to the definiendum « and then to the type A. Only in the
case that both @ and A are in é-normal form we remove the definition.

Definition 11.3.35. The mapping F(fo : Cs x Ts — T is defined as follows (we write
F? (b) instead of I (7,b)).

5 B a 7?7 =71 x=a:A, 7,
Ff@) N { x otherwise
F? (s) = s
v=a:A in b[2° :=a] if x € FV(b)
z=F? (a):Ain b if ¢ FV(b) and
a is not in é-normal form in 7
F? (z=a:Ainb) = r=a:F° (A)in b if « ¢ FV(b), ais in é-normal form in 7
and A is not in é-normal form in ?
b if ¢ FV(b) and
a and A are in é-normal form in 7
Fé (a b) B (F% (a) b) if a is not in é-normal form in ?
oo\ @ N (a F2 (b)) otherwise
5 ‘ B (Mx:F% (A). B) if Ais not in é-normal form in ?
Foo(llz:A. B) = { (Hz:A. F°(B)) otherwise
5 B (Az:F% (A). @) if A is not in é-normal form in ?
Foe(Dw:A. a) N { (Az:A. F? (a)) otherwise

The following two lemmas are proved by induction on the structure of the term.
Lemma 11.3.36. Let x € F'V(b). Then wr, yaar,(b) = wr, smaar,(b[2? := a]) + 1.
Lemma 11.3.37.

1. If bis in é-normal form in ? then F% (b) = b.
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2. If b is not in §-normal form in ? then ? F b —s F2 (b) and wr(b) = wr(F2 (b)) + 1

The next theorem states that the IS -reduction sequence of a has length wr(a). The
proof follows immediately from the previous lemma.

Theorem 11.3.38. Let n = wp(a). Then
T s () —s o (B2 @) =5 (F)"(@) = Jalr.

As a corollary we have that wp(a) is the length of a maximal é-rewriting sequence
starting at @ and that the strategy F'2 is maximal. Here maxred(a) denotes the length of
the maximal o-rewrite sequence starting at a.

Corollary 11.3.39. (Maximal Strategy for ¢)
wr(a) = maxred(a) and F° is maximal.

Proof: By theorem 11.3.28, wr(a) is an upper bound for the number of reductions steps
in a 6-reduction sequence starting at a in 7, i.e. for all n, aq,...,a,,

Hf?hFa= a1 —sdy —>§ ... —7§ Up_1 —§ Ay then WF(G) Z n.

By the previous theorem, there is a §-rewrite sequence of length wr(a) that is the I -
rewrite sequence. Hence wr(a) is the length of the maximal §-rewrite sequence and F? is
a maximal strategy. O

11.4 Properties of Well-Typed Terms

The properties in this section are proved for all terms typable in a pure type system with
definitions, i.e. for pseudoterms a such that 3A4,7[? F a: A]. Amongst these properties,
we will prove that A(S) is weakly normalising if and only if A°(S) is weakly normalising.
Also we will prove strong normalisation of fé-reduction for a class of pure type systems
with definitions.

11.4.1 Basic Properties

In the following lemma we will show that the structure of the term gives an idea of the shape
of its type and its derivation. For example, the type of an abstraction will be a product
(up to Bé-conversion) and the last part of the derivation consists of the application of the
abstraction rule and then 0 or more applications of the 3 or the é-conversion rules.

The different cases of next lemma are all proved by induction on the derivation.

Lemma 11.4.1. (Generation Lemma)

1. Tt 7 I s: D then there exists a sort s’ such that ? b D «»gs s" and (s,s') € A.
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If 7 H 2 : D then there exists s such that 7 = B «»gs D, either 7 F° B : s and
r:Be?or?Hb:Bandx=b:B &7 for some b.

If 7 ¥ (Ilz:A.B) : D then there are sorts such that (sq,s,s3) € R, that 7 F A : sy,
that 7, 2:AF B:syand 7 - D 4> g5 S3.

.7 F (Az:A.b) : D then there are s and B such that 7 F° (Ilz: A. B) : s, that

7,2 AP b:Band ? F D «»gs (A, B).

If 72 F (b a): D then there are A and B such that ? F b: (Ilz:A. B),? P a: A
and ? F D «»ps B[z = al.

If 7 H (r=a:A in b) : D then there exists B such that either 7, 2=a:AF b: B,
?H (z=a:Ain B):sand ? b D «»ps (x=a:Ain B)or ?T,x=a:AF b: s and
?l_DHﬁ(gS

Observe that in 6, the type of a term (z=a:A in b) can be a sort s or an expression of

the form (x=a:A in B).

Lemma 11.4.2. (Correctness of Types) If 7 I A : B then there exists s such that
either B=sor? F B:s.

The previous lemma is proved by induction on the derivation of 7 F A : B.

Lemma 11.4.3. If ? F° b : (Ilz: A.B) then there are sorts (sq,sy,s3) € R such that
7H Arsyand 7,0 AF B s,

Proof: It follows from lemma 11.4.2 that ? ° (Ilz:A.B) : 5. By the generation lemma part
3, it follows that there are sorts (s1, $2,83) € R such that ? HF A:s;and 7, 2:AF B:s,.

a

Recall that ? is a context if there are b and B such that ? F b : B.

Lemma 11.4.4. (Correctness of Contexts)

1. If 7,2:A,7' is a context then there exists a sort s such that 7 F A : s.

2. If 7, 2=a:A, 7" is a context then ? I a : A.

Both parts of the previous lemma are proved by induction on the derivation.

Lemma 11.4.5. (Thinning Lemma) Let 7’ be a context.

f?Ha:Aand? C?' then ?'F a: A.

The previous lemma is proved by induction on the derivation of 7 I a : A.
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Lemma 11.4.6. If? P a: Aand 7,2:A,7'F b: B then 7, 2=a:A, 7" F b: B.
The previous lemma is proved by induction on the derivation of 7, 2:4,7" F b: B.

Example 11.4.7. It is not true that if 7, 2=a:A, 7" F b: B then 7,2:A,7' F b: B.

For instance, we can derive aw, X=aw*,y:X, f:i(a — a) F (f y): .

But there is no term B such that a=, X:x,y:X, f:(a — o) F° (f y): B. This example
is similar to example 11.2.20.

Lemma 11.4.8. (Substitution Lemma)
L If 7, 2=a:A,?" F b: B then 7,7'[x := a] F b[x := a] : Blz := q]

2. f 7 H a:Aand 7,2:A, 7' b: Bthen 7,7[z := a] I bz := a] : Bz := a.

Proof: The first part is proved by induction on the derivation of 7, x=a:A,?' F b : B.
The second part follows by lemma 11.4.6 and the previous part. O

Theorem 11.4.9. (Subject Reduction Theorem)

If?|—5d:Dand?I—d—>55d’then?|—5d’:D.

Proof: The following properties are proved simultaneously by induction on the derivation

of 7 Hd:D.

1. If?l—d—>55d’and?I—‘Sd:Dthen?l—‘Sd’:D

2. If?—>55?’and?|—5d:Dthen?’|—5d:D

We only give the proof for some cases of the first property. Suppose that the last rule
in the derivation of ? F° d: D is:

TH b (A, B) ?THa: A
?H (b a): Blx:=d

e (application)

Only one case is considered.

Assume b = (Ax:Ay. by) and 7 F (Aa:Aq. by)a —5 bz := a]. Generation lemma part
4 and confluence for 36, yield A «»gs A; and by also using the conversion rule we
have 7,2 : Ay F° by : B. By generation lemma part 3, it follows that ? F A; : s and
by using the conversion rule we have that ? F a : A;. By substitution lemma 11.4.8
part 2, it follows that ? F o[z := a] : Blz := a].
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T,a=a:AFb:B ?F (z=a:Ain B):s
? F (r=a:Ain b) : (v=a:A in B)

e (6 -introduction)

Only one case is considered.

Assume ? F (z=a:A in b) —4 b under the hypothesis = ¢ F'V(b).

By lemma 11.4.4, it follows that 7 F° @ : A. By the substitution lemma 11.4.8 part 1,
it follows that ? ° b[x := a] : B[z := a]. Since x ¢ F'V(b), the equality b[z :=a] = b
holds.

By corollary 11.3.5, it follows that 7 F (z=a:A in B) «»s B[z := a.

By conversion rule, ? F b: (z=a:A in B).
The rest of the cases are easy to prove. O

Theorem 11.4.10. (Type Reduction Theorem)

If?kédlDaHd?FD—)ﬁgD/theﬂ?|_6d§D/.

The previous theorem is proved using correctness of types lemma and subject reduction

theorem.
We extend the mapping | — |- to contexts.
Definition 11.4.11. The mapping | — | : Cs — C is defined as follows.
le| = ¢
|? ) J}A| = |? |7 x:|A|F
|7, e=a:A] = |?]

Note that if 7 € C then |7| = 7. This means that for contexts that do not contain
definitions the mapping | — | is the identity. This mapping | — | is the projection from Cs
to C.

In the following theorem we prove that the range of | — | restricted to the set of typable

terms in A%(S) is the set of typable terms in A(S).
Theorem 11.4.12. If? F a: A then |?| F |a|r : |Alr.

Proof: Suppose that the last rule in the derivation of ? F a : A is:

THa: A
Ta=a:AF A
By induction |?| F |a|r : |A|r. By definition 11.3.13 we have that |2|r =44 = |a|r. By
lemma 11.3.15 part 2, it follows that |A|r =4 = |A|r. Hence |7, 2=a:A| F |2|r s=pa :
|A|F,1’:a:A-

where x is 7 -fresh.

e (6- start)
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T.a=a:AF b:B 7 (z=a:Ain B):s
7 (r=a:A in b) : (v=a:A in B)

e (4-introduction)

By induction, |7, 2=a:A| F |b|rs=aa : |B|rs=aa. By lemma 11.3.16 and definition
11.3.13 we have that

blrw=a:a = |blr[z = [a]r]
= |z=a:Ain blp

|Blre=aa = |Blr[r = |a|r]
= |z=a:Ain Blr.

Hence |7 | F |z=a:A in b|p : |[x=a:A in B|r.
The rest of the cases are easy to prove. O

The first part of the next corollary states that a term is typable in A(.S) iff it is typable
in A%(S). The second part states that a type is inhabited in A(S) if and only if it is
inhabited in A%(S). If we interpret types as propositions and terms as proofs, this means
that a proposition is provable in A(S) iff it is provable in A?(S).

Corollary 11.4.13. (Conservativity) Let « € 7 and ? € C. Then
.34 ?Fa:Aiff3A 7 H a: A
2. Let Ac7T. Then? Fa:Aiff 7 a: A

3. JA 7 F A:aiff JA 7T H A a
As a consequence of conservativity, we have the following result.

Corollary 11.4.14. (Undecidability)
Let S = (S, A, R) be a specification. The problems of type inference, type checking
and inhabitation are undecidable in A?(S) if they are undecidable in A(.S).

Therefore, type inference and type checking is undecidable in inconsistent pure type sys-
tem with definitions whose specification is impredicative and non-dependent (see theorem
9.3.20). The problem of inhabitation in the systems of the A\*-cube (the A-cube extended
with definitions) except for A°, and A\°w is undecidable.

Theorem 11.4.15. (Implementing morphism from A\°(5) to A(S)) The pair (||, |-|_)
of projections mappings is an implementing morphism from A*(.S) to A(S).

Proof: By theorem 11.4.12, the pair (||, ||_) preserves the typing from A°(S) to A(S). It
follows from lemmas 11.3.18 and 11.3.20 that (|-|,|-|_) is an implementing morphism from

M(S) to A(S). D
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We write | | instead of (|-, |-|_).

Note that the previous theorem in fact shows that there is a natural transformation
from A° to A when these are considered as functores from the category of specifications
into a category analogous to Carst where morphisms are the implementing morphisms.

Corollary 11.4.16. (Semantics) A semantics for A(S) is a semantics for A?(.5).

Proof: Suppose there is an intepretation f from A(S) to some environmental abstract
rewriting system with typing A. The proof is shown in the following diagram.

A8y hoasy) L4

We apply the uniqueness of types criteria of chapter 4 to prove the following theorem.

Theorem 11.4.17. (Uniqueness of Types)
Let S be a singly sorted specification. Then \(S) verifies uniqueness of types.

Proof: By lemma 11.3.17, we know that | | is a strategy for é-reduction. Moreover
by lemma 11.4.12, this mapping preserves the typing. Since S is singly sorted, we have
that A(S) verifies uniqueness of types. It follows from lemma 4.3.13 that if A(S) verifies
uniqueness of types so does A\°(S). O

11.4.2 Strengthening

In this section we will prove strengthening. This is a property we expect to hold: if in a
derivation a variable x occurs only in the declaration x:A in the context then we should be
able to construct a derivation omitting this variable from the context. When the variable
has been declared as a definition x =a: A in the context, this property is an immediate
consequence of the substitution lemma. We need to prove it for the case of variables which
are not definitions.

In order to prove strengthening, we use the corresponding result for pure type systems

(see [BJ93]).
Lemma 11.4.18. Let 7’ be a context. If 7/ —» 455 7 and 7 H oa: Athen 2/ H a: A.

Proof: By induction on the number of steps in the derivation of 7 F a : A. Only some

cases are considered.

TH Ars; T, AP B,
7 H (Ile:A.B) : s

By induction we have that 7’ F A : s;. Therefore ?/, 2:A4 is a context. By induction

we have that 7/, 2 : AF B :s,. Hence

VH Arsy Vai AP B:s,
7' (Ma:A.B) : s

e (formation) for (s1,89,5) € R.
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7, e=a:AF B s
7 (z=a:Ain B):s '

e (6 - formation)

There exists a derivation of 7 F « : A that has less number of steps than this
derivation of 7, 2=a:A F° B : s. By induction we have that ?’ F° a : A. Hence
7/ x=a:A is a context. By induction we have that ?/, 2=a:AF B : s.

?FébB ?|_6B/380 ?FBHﬁ(gB/
T b B

By induction we have that 7’ F b : B and that 7’ F° B’ : s55. By lemma 11.3.22 we
have that 7' F B «»gs B'.

e (conversion)

The rest of the cases are easy to prove. O

Lemma 11.4.19. If?,,2:D,7, F e: E and z ¢ FV(?,) U F'V(e) then there exists £’
such that 71,7, F B —»ps B and 71,7, F e: B

Proof: By induction on the number of steps in the derivation of 7, 2:D,7, F e : E. Only
some cases are considered.

e (abstraction) Suppose that the last rule in the derivation is the abstraction:

7,2:D, 79,2 i A b B 7y,2:D, 7, F (Ila:A. B) @ s
71,2:D,79 F (Ax:AL b) : (e A, B)

By induction, there exists B’ such that 71,7, F B —»3s B’ and that:
70,70, 0: A P b B (i)
By generation lemma there exist s; and sy such that (s1,s2,5) € R.

7,22D,7, FOAs (ii)
71,2:D, 75, A F Bsy (iii)

There exists a derivation of 71,2:D,75 F A : 51 that has less number of steps than
the derivation of 7, 2:D,75 F (Ilz:A. B) : s. It follows by induction that

?1,?2 |_6 A:Sl (IV)
We can not apply the induction hypothesis to (iii) because the variable z may occur
in B.
Since the mapping | - |_ preserves the typing, in particular for (iii) we have that:

|?17Z§D,?2,$3A| F |B|F1,ZZD,F2,JJZA L S82

Note that |B|r1,z;D,r2,x:A = |B|F1,F2-
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It follows from subject reduction theorem for pure type systems that

|?1,Z§D,?2,$§A| F |B/|F17F2,x:A 282

The variable z does not occur in |B’|r, r, 4. By strengthening for pure type systems,
171,72, 2:A] F |B'|r,r, ¢ s2 (v)
By lemma 11.4.18,
70,7, AR |B'|r,.r, & 2 (vi)
This is a derivation of 71,75 F (Az:A. b) : (Hz:A. |B'|r, 1, ):
11,79 F B «»ss |B'|r,r, (1) (Vi) (iv) (vi)

70,72, AF b |B'|r, .y 74,72 (Ila:A. |B|ryry) & s
70,7, F (A:AL b) - (AL | B, 1)

7, 2:D, 79, 2=a:AF b B 7,,2:D, 75 F (v=a:Ain B) : s
71,2:D,75 F° (x=a:Ain b) : (x=a:A in B) '

By induction, there exists B’ such that 71,79, 2=a:AF B —3s B’ and that:

(6 -introduction)

70,0, 0=a:A b B (i)
We can not apply the induction hypothesis to 71,2:D,7; ' (z=a:A in B) : s
because the variable z may occur in B.

We apply correctness of types to (i) and we have that either 71,75, 2=a:AF B’ : &'
or B' =4

1. Suppose 7,7y, 2=a:AF B’ :s'. This is a derivation of 7,7, F (v=a:A in b) :
(r=a:Ain B') with 71,7, 0=a:AF B —gs B’

20, x=a:AF B

2 9 — § 1. 1, -2, 4=0a

oty e=a A b B 7,7, F (z=a:Ain B') : &
7,7 F (z=a:Ain b) : (v=a:A in B’)

Note that this case is not difficult like the case of the abstraction rule. The proof
of the case for the abstraction rule is complicated because the 1I-formation rule

has more restrictions than the é-formation rule.

2. Suppose B’ = s'. By generation lemma 7, z:D,7,, 2=a:AF B :s. By subject
reduction theorem we have that 7,,2:D,7,, 2=a:A F B’ :s. Then (s/,s) is an
axiom. Since 71,75 is a context we have that

70,70, AR 5 s (ii)
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This is a derivation of 71,75 F (z=a:A in b) : (v=a:A in s').

. 5 .
2,07 _'Al_éb‘ / ?17?271':@.14'_ s s
L1, i, X=a: .S 5 5 5 _ )
-1,-2" (l’:a:AlnS):s

7,79 (z=a:Ain b) : (v=a:A in s

The rest of the cases are easy to prove. O
Strengthening for arbitrary specifications follows immediately from the previous lemma.

Theorem 11.4.20. (Strengthening for arbitrary specifications)
If?7,,2:A, 7, b:Band z ¢ FV(?,)U FV(b)U FV(B) then 7,,7, F b: B.

11.4.3 Weak and Strong Normalisation for Fé-reduction

In this section we prove that if A\(.S) is weakly normalising so is A°(.S). Also we prove that a
pure type system with definitions A\?(S) is 3é-strongly normalising if a slightly larger pure
type system A(S’) is -strongly normalising. The idea of the proof of strong normalisation
is as follows.

e We define a mapping {_}_: TsxCs — 7T similar to the projection | - |_. The value {a}r
is a term that is obtained from a by unfolding all the global and local definitions.
However {_}_ differs from | — |- in the value given to (z=a:A in b). Instead of
removing the local definition it is translated to a F-redex, i.e. an application and an
abstraction.

e This function {_}_ maps an infinite 56 reduction sequence to an infinite 4 reduction
sequence.

e The function {_}_ maps terms that are typable in a DPTS A\*(S) to terms that are
typable in a PTS slightly larger than A(S).

Theorem 11.4.21. (Weak Normalisation for 36)
Let S be a specification.

M(S) is B-weakly normalising if and only if A*(S) is 3é-weakly normalising.

Proof: By theorem 11.3.23, the mapping | | computes the é-normal form. By 11.4.15 this
mapping is an implementing morphism from \?(S) to A(S). It follows from lemma 4.3.9
that if A(S) is f-weakly normalising then A\?(S) is B6-weakly normalising. O

The function | _ |_ is not a refining morphism. It may not map infinite S-reduction
sequences to infinite J-reduction sequences as the following example shows.
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Example 11.4.22. Suppose there is an infinite J-reduction sequence starting at a and
hence at (x=a:A in b). If + ¢ FV(b) and bis a 36 normal form then there is no J-reduction
sequence starting at | =a:A in b|.= b.

The mapping | _ |_ erases the term a which could contain an infinite reduction sequence.
We define a new function {_}_ that is a refining morphism.

Definition 11.4.23. The mapping {_}_: Cs x Ts — 7T is defined as follows.

{er = { ia}Fl ft;ler_wzslé e
{slr = =
{abtr = {a}r{blr
{Ae:A. byr = Ae{A}r. {b}rsa
{Ha:A. b}r = Ia:{A}r. {b}rsa
{z=a:A in b} (Ae{A}r. {b}ra=aa){a}r

Like | _ |_, the value {a}r is the unfolding of all the definitions occurring in the context ?
and in the term a. Global definitions are unfolded in the first line {«}r = {a}r,. Local
definitions are unfolded in the last line since {b}r y=q.a = {b}r[z := {a}r]. However {_}_
differs from | — |- in the value given to (x=a: A in b). Instead of removing the local
definition, it is translated to a (-redex. The bound variable x of the local definition is
transformed into the bound variable of an abstraction. The abbreviation a is transformed
into the argument of an application.

Example 11.4.24. Recall that in example 11.2.20 we show that (Ax:A. b)a may not be
typable when (xr=a:A in b) is. Let e = da:x. (x=a:% i Ay:x. Af:a — a. fy) be the
term used in example 11.2.20. The corresponding term expressed as an application and an
abstraction is not typable in any system of the A-cube. But

{e}r = dasx. (Axx. Ay, Af:a — a. fy)a

is typable in A2. This is because the definition of = is unfolded by a and then x does not
occur in the expression Ay:a. Af:a — a. fy.

The mapping {_}_ is extended to contexts.
Definition 11.4.25. The mapping {—} : Cs — C is defined as follows.
{g =

{T,a: A} = {7}, z:{A}r
{1 e=a:A} = {7}, 2:{A}r
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Similar properties proved for the projection | _ |_hold for the function {_} _.
Lemma 11.4.26.
L. If « is 7-fresh and @ ¢ FV(b) then « & FV({b}r).
2. Let < 71,723,753 >€ Cs and b € T5 be such that (F'Vr, (b)) N Def(?72) = 0. Then
{b}r, ror, = {b}r, s

3. Let < 7q,y=a:A,73 >€ Cs. Then {a}r, y=a:ar, = {a}r,.
The following lemma is proved by induction on the structure of the term b.
Lemma 11.4.27. {b}r[x :={a}r] = {blz:=d]}r = {b}ri=ea

Lemma 11.4.28. The mapping {_} is an implementing morphism from (7Zs,Cs, —s) to
(T,—p). More precisely, if 7 F ¢ —;s d then {c}r —7F {d}r for all ¢,d € Ty and 7 € Cs.

Proof: This is proved by induction on the structure of ¢. Only some cases are considered.
e Suppose ¢ = z. This means that 7 =7, 2 =d: D,75 and 7 F z —; d.

{z}r)e=anr, = {d}r,
= {d}r,s=a:pr, by lemma 11.4.26 part 3

e Suppose ¢ = (z=a:Ain b) and ? F (r=a:A in b) —4 b with « & FV(b).

{r=a:Ain b} = (Ae:{A}r. {b}ro=aa){alr
=5 {bre=aalr = {a}r]
= {b}ra—aa by lemma 11.4.26

= {bjr

The rest of the cases are easy to prove. O

By the following lemma, {_}_ maps an infinite é-reduction sequence to an infinite
#-reduction sequence.

Lemma 11.4.29. The mapping {_} is a refining morphism from (75, —3) to (7, —5), i.e.
if ¢ =4 d then {c}r —F {d}r.

Proof:This is proved by induction on the structure of ¢. Only the case ¢ = (Ax: A. b)a
with (Az:A. b)a —5 b[x := a] is considered.

{c}r = {Az:A. bjr{a}r
= Qz{A}r. {b}r){a}r
—s {b}r[r = {ajr]
= {blx :=d]}r by lemma 11.4.27
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Definition 11.4.30. The specification S = (S, A, R) is called quasi-full if for all s,
89 € S there exists s3 € S such that (s1,s9,3) € R.

Note that if a specification is full then it is quasi-full. But the converse is not true.

Definition 11.4.31. Let S = (S, A, R) and 5" = (S’, A", R') be such that
|.SCS, ACA and RCR
2. 5" is quasi-full

3. for all s € S there is a sort s’ € S’ such that (s:s’) € A’ (i.e. the sorts of S are not
topsorts in S").

Then the specification S is called a completion of S.

Example 11.4.32. The specification C, is a completion of €', HOL and itself.

This definition is necessary in order to prove that {_}_ maps terms that are typable in a
pure type system with definitions A\°(.S) to terms that are typable in a slightly larger pure
type system AS” with S” a completion of S.

Remember that {_} _ translates a local definition to a A-abstraction with an argument:

{r=a:Awn bl = Aa{A}r. {b}rs=aa){a}r

Condition 2 is necessary to ensure that all these A-abstractions introduced by {_}_ are
allowed in S’. The typing of the abstraction is restricted by the set R of rules whereas
the typing of (x=a: A in b) is not. Let e = (x=a:* in Ay:a. Af:a2 — x. fy) be
the term in the example 11.2.21. This term is typable in the system A’ but the term
{e}e = Aax. Ay Afra — a. fy)a is not typable in A_..

Condition 3 is necessary because we can not type these abstractions introduced by {_}_ if
A is a topsort. For example the term (z = x : O in x) is typable in A*C but

{r=%:04na}, = (Ae:0O. %)%
is not typable in AC.

The next lemma is proved by induction on the derivation.

Lemma11.4.33. Let S = (S, A, R). If s occurs eitherin Aorinaorin? and ? g a: A
then s € S.

The next lemma states that a AS” type that is in the range of {_}_ cannot be one of
the topsorts of AS".

Lemma 11.4.34. Let S = (S, A, R) and S’ = (S, A", R') be such that S’ is a completion
of S. Then If AFg a: Aand Ay {alr: {A}r then A, {A}r:s.
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Proof: Assume A F, {a}r: {A}r. By correctness of types A Hy, {A}r : s or {Alr = s.
Suppose {A}r = s. Since A Fy a : A and by lemma 11.4.33 we have that s € S. By the
condition (3) of the definition of completion, there is a sort s’ € S’ such that (s,s’) € A’
and hence A Fy, s5: 8, i.e. A, {Alp:s'. O

The next theorem states that {_}_maps terms that are typable in A°(S) to terms that are
typable in the pure type system AS” with S’ a completion of S.

Theorem 11.4.35. Let S = (S, A, R) and 5’ = (S’, A", R’) be such that 5" is a
completion of S. Then ? Hga: A = {7} Hy {alr: {A}r.

Proof: By induction on the derivation of ? F5 a : A. Only some cases are considered.

?Hsa: A
Tx=a: APz A
By induction {?} F, {a}r : {A}r. By definition we have that {z}r y=4.a = {a}r. By
lemma 11.4.26 part 2 we have that {A}r ;=04 = {A}r.

It follows from lemma 11.4.34 that {?} I, {A}r : s. By weakening rule, we have
that {7}, 2 : {A}r Fo {o}rpmaa : {Adr
THsb:B T Hsa: A

T.x=a:AF5b: B
By induction, {? } Fy {b}r: {B}rand {7} Fs {a}r : {A}r. Then by lemma 11.4.34,
we have that {?} s {A}r :s. By weakening rule we have that {?},z : {A}r F,
{o}r: {B}r.
We have that @ ¢ FV(b) and « ¢ FV(B). By lemma 11.4.26, we have that
{b}F,x:a:A = {b}r and that {B}F,x:a:A = {B}F

7, 0=a:AFs B:s
? H (r=a:Ain B) : s

o (6-start)

o (6-weakening)

e (4-formation)
By induction
{? R J}:G:A} |_6 / {B}F,x:a:A : S8 (1)

The derivation of 7, z=a:A Fy B : s contains a (shorter) derivation of ? Fy a : A, so
also by induction

7}y o H{ayr: {A}r (i)
By lemma 11.4.34 it follows from (i) and (ii) that there are s;, sy € S’ such that

{7, v=a:A} Fg 5159 (iii)
{7} Fe {Ahros (iv)
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The following is a derivation of {7} Fs, {r=a:A in Blr : s.
(ifi) (iv)
T (e AT o) s P e
Ty Al {Blracan) : (Mo {Alr. s) ()0
(VS O {Alr. {Blra—aa){alr : slz i= {a}r] PP

and (Ax{A}r. {B}rs=aa){a}r = {z=a:A in B}r.

Toa=a:AH5 b B 7 Hy (z=a:Ain B) s
? s (r=a:A in b) : (z=a:A in B)

e (4-introduction)

By induction
{? 5 l’:Cl:A} |_6 ' {b}F,x:a:A : {B}F,x:a:A (1)
{7} H., {z=a:A in B}r:s (ii)

The derivation of 7, x=a:A FHy b: B contains a (shorter) derivation of 7 Fy a : A, so
also by the induction

7}y o H{ayr: {A}r (iii)
By lemma 11.4.34 it follows from (i) and (iii) that there are s, sy € S’ such that
{? R J}:G:A} |_§g/ {B}F,x:a:A L S2 (IV)
{7} Fy {Alr:s (v)
Then
(iv) (v) (prod)

{7} H., (IMa:{A}r. {B}re=aa): 3 (1) (abs)
{7} o Az{A}r. {bramaa) s (Maz:{A}r. {B}ro=aa) (iii) (app)
{7} Fy Qa{Adr. {Blra=aa){a}r : {Blro=aalz = {a}r] b
{r=a:A in b}y = Ae{A}r. {b}rs=a:a){a}r and
{r=a:Ain B}y = (Ax{A}r. {Blrao=aa){a}r
«»p {Blre=aalr = {alr] (vi)

so using the conversion rule

{2} Hy {a=a:Ain bl : { Bt pmaalz := {a}r] (i) (vi)
{7} Fo {z=a:A in b}r : {x=a:A in B}r

(8 — conv)

THsb:B TH B s TFBe«s; B

7H.b: B
It follows from induction that {? } Fs {b}r : {B}rand {7} Fs {B'}r : 5. By lemma 11.4.28
it follows from ? F B «»s B’ that { B}r «»s {B’}r. Then using the 3-conversion rule

{7} Fs {0}r - {B'}r.

e (4-conversion)
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The rest of the cases are easy to prove. O

Theorem 11.4.36. (Implementing morphism from )\ (S) to A\(5))
Let 5" be a completion of S. The pair ({-},{-}_) is an implementing morphism from
M(S) to A(S").

Proof: By theorem 11.4.35, the pair ({_}, {_}_) preserves the typing from A\°(S) to A(S").
It follows from lemmas 11.4.28 and 11.4.29 that this pair is an implementing morphism

from A(S") to A(S). O
We write { } instead of ({_},{-}_).

Theorem 11.4.37. (Strong Normalisation for 36)
Let S =(S,A,R) and 5’ = (S’, A", R') be such that 5" is a completion of S.
If A(S") is B-strongly normalising, then A°(S) is 3&-strongly normalising.

Proof: By theorem 11.3.29, the é-reduction is strongly normalising. It follows from lemma
11.4.29 and theorem 11.4.35 that { } is a refining morphism from A\°(S5’) with only j3-
reduction to A(S). Moreover it follows from lemma 11.4.28 and theorem 11.4.35 that { } is
an implementing morphism from A°(S’) with only é-reduction to A(S). By lemma 4.3.11,
if A\(S') is F-strongly normalising, then \%(S) is 3é-strongly normalising. O

Corollary 11.4.38. The following systems are strongly normalising:
1. The system A(C,.) extended with definitions, i.e. A°(C..).

2. The calculus of constructions extended with definitions, i.e. A°C.

3. The system of higher order logic extended with definitions, i.e. A(HOL) is strongly
normalising.

Proof: The system A(C) is strongly normalising. This specification C\, is a completion

of itself. Hence it follows from the previous theorem that A°(C..) is strongly normalising.
Since A°(C..) contains \’C" and A*( HOL), the parts 2 and 3 follow from part 1. O

Theorem 11.4.37 is somewhat unsatisfactory. It would be nicer to prove a stronger
property, namely that \°(S) is 3é-strongly normalising if A(S) is S-strongly normalising.
On the other hand, we do not know any strongly normalising pure type system AS for which
theorem 11.4.37 cannot be used to prove strong normalisation of \°(5). In particular, all
strongly normalising pure type systems given in [Bar92] have a completion that is A(C).

11.5 Conclusions and Related Work

In this chapter we have considered definitions as part of the formal language. In our
opinion, this extension has been done in a neat and general way (for pure type systems).
The inclusion of definitions in the formal language and its study have not been considered

before except for the systems of the AUTOMATH family [NGdV94].
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Definitions vs local g-reduction. In the systems of the AUTOMATH family, defini-
tions are written as fJ-redexes [Ned73] [Daa80]. A reduction called local 3-reduction to
unfold one occurrence of a variable at a time is introduced in [Ned92]. In some later
versions of AUTOMATH, definitions are connected with local g-reduction. We prefer, as
in the original AUTOMATH systems, to have a special constructor for definition and a
reduction for the unfolding of definitions to make a clear distinction between definitions
and [-redexes.

Global and Local Definitions. Our extension provides global and local definitions, i.e.
definitions in the context and in the term. Coq [Dow91] provides only global definitions.
In our opinion, it is important to have local definitions as well as global ones for practical
use. The study of the meta-theory is rather simple if we have only global definitions and
in this case, it is easy to prove that strong normalisation is preserved by the extension.

Definitions vs Abstraction and Application: the third proof of finiteness of
developments. As we said before, a definition and a -redex are very similar. Intuitively,
we know that a g-redex (Ax:A. b)a is 'like’ a definition x=a:A in b. However the é-reduction
is finer than the S-reduction since one step of B-reduction corresponds to several steps of
o-reduction.

The relation between definitions and -redexes is formalised by the morphism Y. This
morphism maps a marked redex (Az:A. b)a into a definition x=a: A in b. Moreover this
function maps one step of S-reduction into one or more steps of é-reduction, i.e. it is a
refining morphism.

A development is then mapped into a é-rewrite sequence via the morphism Y. Since ¢
is strongly normalising, we conclude that all the developments are finite. This is our third
proof of finiteness of developments (see chapter 7) and it is similar to the proof of the same
result in [K1o80] using 3-reduction with memory.

The length of a development is always smaller than the length of the corresponding
o-rewrite sequence. This can also be formalised. The function w_(—) used to prove strong
normalisation of 6 computes the length of a maximal é-rewrite sequence to the normal form.
In [Vri85], a mapping h is defined that computes the length of a maximal development, i.e.
the length of a maximal S-rewrite sequence. The mapping w_(—) composed with T is an
upper bound for the number of steps in a development. It is easy to verify that wy(Y(a)) is
greater than h(a). It is clear that the difference between wy(Y(a)) and h(a) is the number
of extra-steps needed in the é-rewrite sequence.

Definitions vs Explicit Substitution. There is a common reason to introduce defini-
tions x=a:A in b and explicit sustitution is b{x := a}: to delay the global substitution of
x for @ in b and perform the substitution for one occurrence of the variable = at a time
because the substitution for all the occurrences at once may not be desirable.

The substitution is said to be explicit if it is not a meta-operation on terms but part of
the formal language with a special constructor b{z := a} and a special rewrite relation 3,
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to define ‘the substitution behaviour’ [ACCLI1] [KN93] [BG96] [Tas93].

The §,-reduction and the é-reduction are very similar, they both unfold one occurrence
of a variable at a time. They differ in the way they perform this unfolding.

In a f,-rewrite step, the explicit substitution ‘{x := a}’ is pushed inside the structure
of the term b until a variable is found. For example in the case of the application

(b c){x :=a} —p, (b{x :=a} c{z:=a})
In a é-rewrite step, the definition x=a:A is always kept outside the term b (in a context).

In the moment of unfolding the variable, the explicit susbtitution ‘{z := a}’ is inside
the term and the unfolding is performed as follows.

w{x:=a} —p, a

In the moment of unfolding the variable, the definition x=a:A is taken from the context
7, x=a:A, 7" and the unfolding is performed as follows.

T or=a:A?7 Fr —sa

The length of a é-rewrite sequence depends on the number of occurrences of the variable
x in the term b. The f,-reduction needs more steps than the é-reduction to perform the
unfolding of one occurrence of a variable. The extra-steps that 3, needs depend on the
structure of the term b. We do not see any reason to have these extra-steps if we just want
to perform the unfolding of one occurrence at a time. Definitions achieve this purpose
very well besides having all the good properties. On the other hand, it is not clear how to
define a type system for explicit substitutions [Blo97] that verifies all the good properties
like subject reduction.

The main difference, however, between definitions and explicit substitution is that the
explicit substitution is defined together with a rule that creates a 8,-redex from a J-redex.

(Az:A. b)a — g b{x :=a}.

The crucial problem for explicit substitution is called preservation of strong normalisation
and is the following.

If a term b is -strongly normalising, is the term b also (3,3.-strongly normalising?.

So fy-reduction is in fact a refinement of F-reduction whereas é-reduction is not. One
still has to consider the combination of the ¢ with the g-reduction. The problem analogous
to this for definitions is the following: if b € 7T; is B-strongly normalising then b is 3¢-
strongly normalising. This is not true since there may be pseudoterms that are -strongly
normalising but not Fé-strongly normalising. For example,

w= A z 2):B in (ww) —s (Av:A. z 2)(Az:A. x x)

The pseudoterm w = (Ax:A. @ 2):B in (ww) is in S-normal form but it is not Fé-strongly
normalising. Therefore in the case of definitions, we need to restrict the set of terms by
using types. The problem for definitions is then the following.

If a pure type system A(S) is f-strongly normalising, is its extension with definitions
M (S) Bé-strongly normalising?.
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Normalisation for 6. In order to prove that weak and strong normalisation are pre-
served by the extension we have written two morphisms that are illustrated in the following
diagram.

()
N
A(S) ALS")

The first one is | | and computes the é-normal form of a term. This is an implementing
morphism from a pure type system with definitions to the corresponding pure type system
without definitions. By the results of chapter 4, this morphism allows us to prove that
weak normalisation is preserved by the extension.

The second one is { } and transforms a é-redex into a f-redex. This is a refining
morphism from A(S) to A(S") where S’ is a completion of S. By the results of chapter 4,
this morphism allows us to prove that for a class of pure type systems, strong normalisation
is preserved by the extension.

It is still an open problem whether extending an arbitrary pure type system with
definitions preserves strong normalisation or not.

Definitions with parameters. In [L.S796], we consider definitions with parameters like
in the systems of the AUTOMATH family [NGdV94]. We write 2(y1 :B1,...,yn:Bn) = a:
A to denote that = is an abbreviation for ¢ and the variables yq, ...y, may occur free in
a. Then x(by,...b,) reduces to alyy := by, ...y, := b,]. We are presently investigating the
pure type systems extended with this kind of definitions.



Chapter 12

Type Inference for Definitions

12.1 Introduction

In this chapter we write a partial function that infers the type of a term in a singly sorted
pure type system with definitions.

As we said in chapter 10, the type can be easily inferred if the last rule to be applied
is determined by the shape of the term and the context. In other words, we have to define
a set of typing rules that are syntax directed in order to write a function that infers the
type. We present a syntax directed set of rules for singly sorted pure type systems with
definitions similar to the one presented in chapter 10.

This chapter is organised as follows. In section 12.2 we modify the é-start and the
o-weakening rules in the definition of pure type systems with definitions. In section 12.3,
we define a syntax directed set of rules for singly sorted pure type systems with definitions.
In section 12.4, we define a function that infers the type for a term in a singly sorted pure
type system with definitions.

12.2 The ¢-start and 6-weakening rules

In this section, we change the rules of pure type systems with definitions. These new rules
define the same typing relation as before.

We split the the 6-start rule into two rules, o-start; and é-starty. The o-start rule is
equivalent to these two rules. Similarly, we split the 6-weakening rule into two rules, the
o-weakening, and é-weakenings rules.

We give an intuitive explanation of why the split rules are equivalent to the original
one. The é-start rule has the premise ? F a : A. We know that 7 ¥ A:so0or A = s by
correctness of types. We could add the superfluous condition ‘? H A : s or A = 5" to the
o-start rule. This condition is an ‘or’ and hence we can split the rule in two as follows.

171
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TH a: A THEY A
Ta=a:AF 2 A

(6—starty) x is 7-fresh

?H"a:s sis a topsort

(6—starty) x is 7-fresh

Ta=as Y x s
Next we define the notion of a pure type systems with definitions whose é-start and
o-weakening rules are split.

Definition 12.2.1.

The functor \* : Spec — Carst,,, is defined as \*'(S) = (T5,Cs, —gs, ) for S €
Spec. The sets 75 and Cs and the relation —pgs are as in definition 11.2.18. The typing
relation F is defined as the smallest relation closed under the same rules as in definition
11.2.18 except for the é-start and é-weakening rules.

TH a: A THEY A
?a=a:AF 2 A

?H"a:s sisa topsort

(6—starty) x is 7-fresh

(6—starty) x is 7-fresh

Ta=asF x s
P B TH A A TEY Ans
7, 0=a:AF" b: B
THEYb:B ?TFYa:s sisa topsort
?.0=a:st+" b: B

(6—weakening;) x is 7-fresh

(6—weakenings) x is 7-fresh
In the following theorem we prove that the typing rules of definitions 11.2.18 and 12.2.1
generate the same typing relation.

Theorem 12.2.2. ? F" ¢ : Aif and only if 7 ¥ « : A.

From now on, we consider the rules for pure type systems with definitions as presented
in this section.

12.3 Syntax Directed Rules for Definitions

In this section we define a syntax directed set of rules for any singly sorted pure type system
with definitions. As for pure type systems, the main features are that the weakening rule is
restricted to variables and constants and the conversion rule has been removed. Moreover
in the abstraction rule the II-condition is checked in a weaker system. The weaker system
is the pure type system with definitions and without the Il-condition.

Now we remove the II-condition from the rules for pure type system with definitions. In
the introduction rule, the premise that the type (x=a:A in B) of a definition is well-typed,
is replaced by the condition ‘B is not a sort’.
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Definition 12.3.1.

The functor A\* : Spec — Carst,,, is defined as \**(S) = (75,Cs, —ps, %) for S €
Spec. The sets 75 and Cs and the relation —pgs are as in definition 11.2.18. The typing
relation ¢ is defined as the smallest relation closed under the same rules as in definition
12.2.1 except for the following ones.

7,2 AR b B
? v (Aa:A. b) : (LA, B)
7, x=a:AF%b: B
? v (r=a:Ain b): (z=a:A in B)

(abstraction)

B is not a sort

(6—introduction)

Definition 12.3.2. (Pure type systems with definitions and without the II-
condition) A pure type system with definitions and without the 1l-condition is an element
of the set

A*(Spec) = {A*(9) | S € Spec}.

Note that A\%“(S) is an extension of A*(.S) and A¥(S). Diagramatically,

A(S) C A“(S)
N N
M(S) C (8

We define the syntax directed set of rules for the pure type systems with definitions
and without the II-condition.
First we define the weak head {é-reduction.

Definition 12.3.3. The weak head fé-reduction is defined by the following rules:
T a=a:A, T —>7§£L a ?F(z=a:Ain b) =%} bz = a]

F—%”gb F’
(F a) —>7§§L (F" a)

T F (Ax:Al b)a —>%U£L bla := d] T F

Definition 12.3.4.

The functor %% : Spec — Carst,,, is defined as A\2%(S) = (75,Cs, —ps,-2%) for S €
Spec. The sets 75 and Cs and the relation —pgs are as in definition 11.2.18. The typing
relation % is defined as the smallest relation closed under the following rules.

(axiom) cFv st s for (s,s') € A
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T A g s

(start) T AFS A
, PG bD:B T Aips s
(weakening) T2 AF% b B
. THY A sy Tox i AR B i—sgs sg
(formation) ? H (Tl A B) : s3
(abstraction) Laidbgb: B
? l—i‘j (Aa:A. b) : (Hx:A. B)
o I :—»%L (Mx:A. B) 7 F%a: A
(application) 7% (b a): Blr = d|
PG a A TR A s s
(6—starty) T, x=a:A l—i‘j z: A
? Y s gs s
(6—start,) 7, x=a:s F0Y x s

?l—i‘jb:B ?l—i‘ja:A’ ?l—i‘;l’A:—»ggs

(6—weakening;)

T a=a:AFY b: B
? l—i‘jb:B ? l—i‘ja:—»ﬁgs
7, x=a:s F% b: B

(6—weakenings)

7, 0=a:AFY B s
? % (z=a:Ain B) : s
7, x=a:AFY b B
? % (z=a:Ain b) : (r=a:A in B)

(6—formation)

(6—introduction)

where s € S.

where x is 7 -fresh
zis ?-fresh and be CUV

for (s1,82,93) € R

A P36 A/
x is 7-fresh and A «»gs A’

s is a topsort and x is 7-fresh

xis ?-fresh, b € CUV and
A P36 A/

s 1is a topsort, b e CUV

and z is 7-fresh

B is not a sort

Note that these systems verify only very weak subject reduction (see definition 4.3.1).

Lemma 12.3.5. If? F%% a : A then |?| F, |a|r : |Ar.

This is proved by induction on the derivation of 7 F%% @ : A.

Theorem 12.3.6. (Completeness) If 7 % a: A then ? F5% a : A’ with A «»g5 A

This is proved by induction on the derivation of 7 %% a : A.

Next we define a syntax directed set of rules for any singly sorted pure type system with
definitions. These rules are exactly the ones in definition 12.3.4 except for the abstraction

rule that contains the Il-condition.

Definition 12.3.7.

The functor A%, : Spec — Carst,,, is defined as \,(S) = (75,Cs, —ps,sa) for S €
Spec. The sets 75 and Cs and the relation —pgs are as in definition 11.2.18. The typing
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relation FH, is the smallest relation closed under the same rules as in definition 12.3.4
except that the abstraction rule is replaced by the following ones.

T,x AE, b B 7 FY (Tla:A. B) i—»ps s
7, (A\:A. b) : (Ilz:A. B)

(abstraction)

where s € S.

The relations between the systems with a syntax directed set of rules are shown in the
following diagram.

Asa(5) C A%(S)
N N
Aoal(S) C A ()
Note that these systems verify only very weak subject reduction (see definition 4.3.1).
Lemma 12.3.8. If? F° A:—»g5 s then 7 F A:s.

Theorem 12.3.9. (Soundness) Let S be a singly sorted specification.
If?H,a: Athen? F a: A

Proof: This is proved by induction on the derivation of ? F, a : A. Suppose that the last
rule in this derivation is the abstraction rule.

T.x AE, b B 7 FY (Tla:A. B) =—» s
7 H, (A b) : (Tx:A. B)

(abstraction)

By induction hypothesis we have that 7, 2:AF b: B.

We have that 7 F%% (Ilz:A. B) :— s. By lemma 12.3.5, |?| %, |llz:A. B :— s. By
soundness for A¥,(9), we have that |7| F* |[lz:A. B|r :— s. Hence |7| F¥ |lla:A. Blr : s.
By generation lemma, |7, 2:A| F* | Bl @ s2, |7] FY |A| : sy and (s1, s2,8) € R.

By correctness of types we have that either 7, 2:AF B : s or B = s is a topsort. The
second possibility is impossible. Hence 7, 2:A F B : s'. We have that s’ = s, because the
specification is singly sorted.

By correctness of contexts ? F A : s”. Since the specification is singly sorted we have
that s = sq.

This is a derivation of ? (Aa:A. b) : (LA B).

?H A:s; T A B:s

. 51 . 1 ) 2

tei A b B ?l_S(HJ}:A.B)is
7 (A b) : (ITazA. B)
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Theorem 12.3.10. (Completeness) Let S be a singly sorted specification.
If 7 F a: A then there exists A’ such that 7 F, a: A’ and A «»5 A

Proof: We prove only the case of the abstraction rule.

7.2 AP b B 7 H (x:A. B):s
7 (Aw:ALb) (LA B)

(abstraction)

By induction hypothesis we have that 7, 2:A , b : B’ for some B’ such that B «»ss B’
By theorem 12.3.9 we have that 7, z:AF b: B’

If 7 F° (Ilz:A. B) : s then there exists s; and s; such that (s1,s9,5) € R, 7 F A: s
and 7,2:A F B :s,. By correctness and unicity of types we have that 7,2:4 F B’ : s,.
Hence ? H (Ilz:A. B’) : s. By theorem 12.3.6 we have that ? +% (Ilz: A. B') : D and
D «*gs S. O

12.4 Type Inference for Definitions

In this section we write a semi-algorithm of type inference for all the class of singly sorted
pure type systems with definitions.

As for pure type systems, we cannot expect to find a terminating algorithm for the
class of singly sorted pure type systems since typability for some non-normalising pure
type systems with definitions is not decidable (see corollary 11.4.14). Hence we define
a type inference semi-algorithm for all the class of singly sorted pure type systems with
definitions, including the non-normalising ones.

In order to define such a semi-algorithm, we use the syntax directed set of rules pre-
sented in section 12.3. Although those rules are syntax directed when the specification
is singly sorted, they are not yet deterministic. We have to solve the side conditions as
in chapter 10. In this case we have to perform [Fé-weak head reduction and check [36-
conversion.

First we write a function that computes the weak head #é-normal form if it exists.

Definition 12.4.1. A function whnfgs : Cs x 75 — 75 is defined as follows.
whnfss(?7,a) = a if aisin weak head normal form in 7
whnfss (7, (e dy ...d,)) = whnfgs(?,ady...d,) ifa=a:Ae?
whnf (7, (e=a:Ain b) &y ...d,) = whnfss(?,b[x :=a]d;...d,)
whnf (7, (Av:A. bla dy ...d,) = whnfss(?,b[x :=a]d;...d,)

Lemma 12.4.2. Let a € T be weak head normalising. Then whnfs(a) is the weak head
Bo-normal form of a.
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This lemma is proved by induction on the number of steps of the leftmost reduction to
the normal form.

In order to check conversion in the semi-algorithm we define a common-reduct strategy
for fo-reduction. We define two common-reduct strategies for fé-reduction.
First we define the strategy Fj; similar to F*.

Definition 12.4.3. We define Fj; : Cs x 75 x Ty — P(75) as follows.
Fi(7.d,d) = {d}ild=d

FU(7, (AzA. b), QAL V) = {(A:A”. 1) | A" € F3(7, A, 4) &
b€ Fu(7,b,0)}

F2,(7, (Il A. B), (A, BY)) = {(Ia:A”. B")| A" € Fi(7, A, A') &
B" € F%(?, B, B')}

Fgé(?,(:p ap ...an),(xay ...a))) = {((xaf ...ad))|al € FE(S(?,ai,a;)}

if © & Def(7)

Fgé(? 5 d, d/) = Fgé(whnf@g(d), Whnfgg(d/))

if d or d’ are not in weak head normal form

Fis(d,d) = 0 otherwise

The next lemma says that the function Fj; is a common-reduct strategy only for
normalising pseudoterms.

Lemma 12.4.4. Let a and b be Jé-weakly normalising. Then

1. F§s(a,b) terminates.
2. For all ¢ € Fj;(a,b), we have that a —» g5 ¢ and b —»p; c.

3. a «»ps bif and only if Fj(a,b) # 0.

We define a common-reduct strategy FE;’ similar to the strategy F**. This strategy
terminates if the terms are convertible, even if they are not normalising.

Definition 12.4.5. We define FE;’ :Cs x Ts x Ts — P(Ts) as follows.
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FE;’(? a,b) =

Y Y

If a = b then

| e}
else
It a or b are in weak head gé-normal form in 7  then
| L(?,Whnfgg(?,a),Whnf@g(?,b))
| else
| HE(? {a}, {0})
end
end

We define the function L : Cs x Ts x Ts — P(7Ts) as follows.

L(?,()\J?Al bl),()\l’:AQ. bg)) == {()\J?Ag bg) | Ag - FE;—(?,Al,AQ) &
by € FEF(7,b1,05)}

L(? 5 (HJ/’Al bl), (HJ/’AQ bg)) == {(HQ?Ag bg) | Ag - FE;—(?,Al,AQ) &
bs € B (7, by, by)}

L7, (xay...an),(x by...0,)) = {((xer...cn)| Vi=1ln ¢ € FE;'(?,ai,bi)}
L(?7,a,b) = 0 otherwise

The function HE;' :Cs x P(Ts) x P(Ts) — P(Ts) is always applied to a context 7 and
subsets X and Y of 75 that verify the following preconditions.

1. X and Y are the n and m-bounded reduction graphs of @ and bin 7.
X =G (7,a) ={d|? Fa —»gsdin less than n steps}

— g6

Y = gffgé(?, )={d|?F b—gsdin less than m steps}
2. The intersection of X and Y is empty.

3.0<n—m<1.

4. X and Y do not contain any weak head #é-normal form in 7.

It the bounded graphs X contains a weak head normal form, we choose a b of ¥ and
reduce it to weak head normal form.
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HE;'(?,X,Y) =
If gﬂ%(?,X)mY;é@ then
| Grxny

else
If Jda, a € G_.,,(7,X) in weak head 36-normal form then
| Choose b € Y, L(?7,a,whnfss(7,0))
| else
| HE;—(?7Y7XUQ_>/35(?7X))
end
end

In the following lemma we prove that the function FE;’ is a common-reduct strategy.
Lemma 12.4.6.

1. If 7 F a «»gs b then FE;'(? ,a,b) terminates and yields a non-empty set that verifies
that for all ¢ € FE;'(? ,a,b) we have that @ —»gs ¢ and b —» g5 c.

2. IfFE;’(?,a,b)%Q)then? Fa «»ps b

Semi-algorithm of type inference. We define a function type® that computes the
type of a term (up to fé-conversion) in a singly sorted pure type system with definitions.
If a is typable in ? in a singly sorted pure type system with definitions then type’(?,a)
terminates and yields the type of @ in ? (up to Bé-conversion), i.e. if 7 + a : A then
type’(?,a) «»ps A. If the term a is not typable in 7 then type’(?,a) either yields — or
it does not terminate.

This function is obtained from the syntax directed set of rules defined in section 12.3
for pure type systems with definitions. For each rule, we write a case of ‘pattern matching’.

The conditions that appear in these rules that are of the form ‘7 F A :—»35 5" are
replaced by ‘whnf zs(type’(?, A)) = s.

The condition ‘? F b:—»gs (Ilz:A. B) is replaced by

‘whnfz5(type’(?,0)) = (Ilz:A. B)'.

The other condition ‘A «»gs A" is replaced by FE;’(A, A" £ 0.
The condition ‘? F* (Tlz:A. B) :—»gs s’ is replaced by

‘whnf s5(type® (7, (Ilz:A. B))) = s’

We need to define an auxiliary function type®” to compute the type in a pure type system
without the II-condition.

The function type® : Cs x Ty — Ts_ is defined as type’® except that we remove the
condition whnfzs5(?, type®(?,llz:A. B)) = s € S that corresponds to the II-condition.
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Definition 12.4.7. The function type$ : Cs x Ts — T;_ (or just type’) is defined as

follows.
type’(c, )

type’(< 7,2: A > x)

type’(< 7,2 : A >,b)

type’(?, (Ilx:A.B))

type’(?, (\x:A. b))

type’(?,(b a))

type’(< 7, 2=a:A >, x)

type’(< 7, z=a:s >, )

type’(< 7, z=a:A >, b)

type’(< 7, z=a:s >,b)

type’(?, (v=a:A in B))

type’(?, (v=a:A in b))

type’(?,a)

type’(?,b)

53

(r=a:Ain B)

if (s,s') € A

if whnfs(?7,type’(?,A))=s¢€ S
and z is 7-fresh

itbe CUV, xis 7-fresh, b # x and
whnf (7, type’(?7,4)) =s € S

if whnfs5(7,type’(?,A)) = s,
whnfss(7, type’(< 7,2 : A > B)) = so,
and (s1,89,53) € R

if type’(< 7,2 : A>,b) =B and
whnf (7, type®™ (7, lla:A. B)) =s¢€ S

if whnfss(?,type’(?,b)) = (Ilz:A. B),
type®(?,a) = A" and Ff (7,4, A") £ 0)

if 2 is ?-fresh and whnfz5(?,type’(?, A)) = s,
type®(?,a) = A" and F (7,4, A") #0

if s is a topsort, x is 7-fresh and
whnfss(7, type’(?,a)) = s

itbe CUV, xis 7-fresh, b # «
type’(?,b) = B, type®(?,a) = A’,
whnf5(7, type’(?7,A)) = s and
Fif(?,AA) £

ifbe CUV, sis a topsort, x is 7 -fresh,
type’(?,b) = B and

whnf5(7, type’(?,a)) = s

if type’(< 7, 2=a:A >, B) = s

if type’(< 7, r=a:A >,b) = B and
B is not a sort

otherwise
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Theorem 12.4.8. (Correctness of ‘type’’) Let S = (S, A, R) be singly sorted such
that the sets S, A and R are recursively enumerable.

1. If? F* a: A then type®(?,a) terminates and type®(?,a) «»gs A.

2. If type®(?,a) terminates and yields A then ? F a : A.

Like for pure type systems without definitions, type checking for pure type systems with
definitions can be solved from type inference (see definition 10.8.15). A function check’
is defined that checks if a term has a given type in a singly sorted pure type system with
definitions.

Definition 12.4.9. We define the function check® : G5 x T; x Tz — Bool as follows.

true  if whnfgs(type®(?,A)) =s¢€ S,
type’(?,a) # — and
heck’(?,a,A) = ’
checlc (.4 P (type'(2.). ) 0

false otherwise

Theorem 12.4.10. (Decidability of Type Inference and Type Checking)
Let S = (S, A, R) be singly sorted such that the sets S, A and R are recursive.

If \*(S) is Bé6-weakly normalising then type inference and type checking in \°(.S) are
decidable.

Proof: Since the sets of the specification are recursive, we have that type’™ always termi-
nates and so do type’ and check’. Therefore type inference and type checking for M (S)
are decidable. O

Theorem 12.4.11. (Decidability of Inhabitation)
Let S = (S, A, R) be singly sorted such that the sets S, A and R are recursive.

Suppose that A(.5) is G-weakly normalising.
If the problem of inhabitation is decidable in A(S) then it is decidable in A°(S).

Proof: If A\(S) is S-normalising then A\*(S) is Bé-normalising. Let ? € Cs and A € T5. By
theorem 12.4.10, we have that it is decidable whether ? F A : s or not. In case 7 F A : s,
we find « such that |7|F a: |A|r. By applying the conversion rule and lemma 11.4.18, we
obtain 7 F a : A. If |A|r has no inhabitant then A cannot have any inhabitant. O

As a consequence of this, we have that the problems of inhabitation in A%, and in Aw
are decidable.
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[I-condition | Original Type system with syntax | Type inference
type system | directed rules semi-algorithm
included A (S) A2, (9) type’
removed A (S) A9 (S) type™

Table 12.1: Type Inference Semi-algorithm

12.5 Conclusions and Related Work

Type Inference Semi-algorithm. In order to solve the type inference problem for pure
type systems with definitions we have first considered a syntax directed set of rules and
then we have written a function that infers the type based on this syntax directed set of
rules. Table 12.1 illustrates our methods.

In the first column of the table we indicate if the II-condition is included or removed,
in the second one the original type systems with definitions (with and without the II-
condition), in the third one, the corresponding type systems with a syntax directed set of
rules and finally the functions that infer the type in the original systems.

The definitions of type® and type’® are based on the system that appear next to them
in their preceding columns.

The I-condition of A°(S) is checked in the same system, whereas the one of \%,(.5) is
checked in \5%(S). Therefore in the definition of type’, the condition that corresponds to
the Il-condition is checked using the function type®™ and not type’. In other words, we
have to use type®” to define type®.

The M-condition of \%,(.S) is checked in A%%(S) that is weaker than A%,(S).

We have proved that if S is a singly sorted specification then A,(S) is ‘equivalent’ to
and \°(S) by using the relation shown in the diagram (see theorems 12.3.9 and 12.3.10).

M(S) C N¥(S) C AM(S)

L L

AS) () Asa(S)

12

Decidability. Table 12.2 summarises some results concerning decidability discussed in
this chapter. In the first column, we write the conditions that a pure type system with
definitions should verify. In the second and third columns, we say whether type inference
and type checking are decidable or undecidable.

We deduce from the table that the problems of type inference and type checking in the
systems of the A’-cube (the A-cube extended with definitions) are decidable.

For the systems of the cube, the problem of inhabitation is decidable in A(.S) if and only
if it is decidable in A°(S). The problems of inhabitation in A\’ and in Mw are decidable
and in the rest of the systems of the cube extended with definitions it is undecidable.



12.5. CONCLUSIONS AND RELATED WORK

Pure type systems
with definitions

Type inference

Type checking

S = (S, A, R) singly sorted

S, A and R recursive decidable decidable
A(S) is p-normalising
S is singly sorted, impredicative
and non-dependent
A(S) is inconsistent undecidable undecidable

Table 12.2: Decidability of type inference and type checking
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In our opinion, the algorithm for normalising pure type systems whose set of sorts
is finite defined in [BJ93] and the syntax directed sets of rules defined in [BJMP93] and
in [Pol93a] can be adapted to include definitions by using the function | | to prove the
equivalence between the syntax directed set of rules and the original system.
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Chapter 13

Conclusions

In this chapter we discuss the results of this thesis. We mark what we believe are the
main contributions to the field, give a global overview and show the interconnections of
the subjects.

The discussion is divided in the same parts as the thesis: 1) an abstract presentation
of rewriting and typing, 2) lambda calculus and 3) pure type systems with definitions.

13.1 Abstract Presentation of Rewriting and Typing

In this part, the concepts of computation and typing have been formalised in an abstract
way, as binary relations on a set.

The chapters 2 and 4 on abstract rewriting and typing systems give uniformity and
clarity to the exposition of these subjects.

The main concepts are defined only once in this abstract setting. It is clear that this
avoids repetitions and provides us with a common definition that covers all the particular
cases. Moreover it enables us to state properties in a very general way. All these definitions
and properties are used in the chapters that follow.

13.2 Lambda Calculus

We have given a characterisation of the set of strongly normalising A-terms that permits
us to give new and simple proofs of classical results about A-calculus.

All the proofs of this part follow a common line since they all use the definition of the
set SN. Even though we did not prove any new result, the methods for proving them are
new.

In most cases the new proofs are essentially simpler than already existing ones and
they help us to understand not only the mechanics of the proofs of the results but also the
reasons for their validity.

185
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13.3 Pure Type Systems with Definitions

In this part we have studied the meta-theory of pure type systems with definitions. Also we
have written semi-algorithms of type inference for pure type systems with (and without)
definitions.

Pure Type Systems. We have presented the definition of pure type systems in a slightly
different way (see chapter 9) from the usual one. The typing rules for pure type systems
are parametric in the specifications. Pure type systems are written as a functor A that,
given a specification 5, produces a particular pure type system A(S). The codomain of this
functor is the category of environmental abstract rewriting systems with typing defined in
chapter 4.

Definitions. We have considered definitions as part of the formal language, the language
of pure type systems. In our opinion, this extension has been done in a neat and general
way (for pure type systems). The inclusion of definitions in the formal language and its
study have not been considered before except for the systems of the AUTOMATH family
[NGAV94], that can be seen as particular pure type systems.

13.3.1 Normalisation

The two extension of pure type systems, without the IlI-condition and with definitions
have similar properties that are compared in table 13.1. WN is an abbreviation for weak
normalisation and SN is an abbreviation for strong normalisation. In the first column, we
write the properties of a pure type system without the II-condition and in the second one,
the properties of a pure type system with definitions.

We have written two functions ¢ and | |, one is a weak converting morphism from A“(.5)
to A(S) and the other is an implementing morphism from A\?(S) to A(S). Diagramatically,

N,
A

A(
A°(S)

>

(5)

The function ¢ computes the illegal f-normal form of a term and | | computes the §-normal
form of a term.

In the case of pure type systems without the II-condition, an illegal F-rewrite sequence
is a superdevelopment. Since all superdevelopments are finite, we have that the illegal
fB-reduction is strongly normalising. In the case of pure type systems with definitions
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A“(S)

A°(S)

@ computes the normal form of
the illegal f-reduction

| | computes the normal form of
the é-reduction

@ is a weak converting morphism
(S is singly sorted)

| | is an implementing morphism

An illegal g-rewrite sequence
is a superdevelopment

A development
is a ¢-rewrite sequence

The illegal B-reduction is SN

The é-reduction is SN

WN(A(S)) implies WN(A“(.9))
(S is singly sorted)

WN(A(S)) implies WN ( A%(S) )

SN(A(S")) implies SN( A¥(5))
(5" is a completion of 9)

SN(A(S")) implies SN(A(S))
(5" is a completion of 9)

187

Table 13.1: A“(S) vs. )\5(5)

a o-rewrite sequence is a development. A definition x =a: A in b is like a marked re-
dex (Az:A. b)a. However a é-rewrite sequence is not a particular case of a development
and we cannot deduce strong normalisation of the é-reduction from finiteness of develop-
ments. Instead we deduce finiteness of developments from the strong normalisation of the
o-reduction.

In both extensions we have that weak normalisation is preserved by the extension. For
pure type systems without the II-condition, we used ¢ to prove that weak normalisation
is preserved by the extension and for definitions, we used the mapping | |.

In both cases we have that strong normalisation of the extension follows from the
strong normalisation of another (larger) pure type system. In order to prove that strong
normalisation is preserved by the extension with definitions, we have written a refinining
morphism { } from A?(S) to A(S”), S’ being a completion of S. The identity is a morphism
from A“(S) to A(S") and it can be used to prove that if A(S’) is strongly normalising then
so is A¥(.9) (this proof has not been included in this thesis). In the following diagram, we
show how these morphisms are related.
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5)

N

A(
{} A(S") D A(S)
A (

A

5)

Strong normalisation is the most important property we have proved for definitions.
The 3é-strong normalisation of A(S) follows from the f-strong normalisation of A(S") with
S a completion of S. This enables us to prove that for all pure type systems that are
known to be f-strongly normalising, their extensions with definitions are also 36-strongly
normalising.

Systems that are Fé-strongly normalising are, for example, the calculus of constructions
extended with definitions and the system of higher order logic extended with definitions.

The question ‘Given an arbitrary pure type system, is its extension with definitions
strongly normalising?’ remains open.

13.3.2 Type Inference

In order to solve the type inference problem for pure type systems with (and without)
definitions we have first considered a syntax directed set of rules and then we have written
a function that infers the type.

Syntax directed sets of rules. The definitions of the semi-algorithms of type inference
are based upon the definitions of a syntax directed set of rules.
Table 13.2 illustrates the type systems we considered.

Original System Syntax-directed System

PTS A(S) Asa(5)

PTS without II-condition A“(S) A4 (S)
PTS with definitions )\5(5) )‘id(s)

PTS with defs. without Il-cond. )\5‘”(5) )‘i?l}(s)

Table 13.2: Type Systems Considered

In the first column of table 13.2 we find the original systems whose rules are not syntax
directed. In the second column, we find the equivalent systems whose rules are syntax
directed. Two systems that appear on the same line are equivalent.

In the second and fourth lines, the systems do not contain the II-condition. The systems
of the first and third line do contain the II-condition. The II-condition of the systems A(.S)
and A*(S) is checked inside the system, whereas the Il-condition of A,(S) and A\é,(S) is
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checked outside them. The auxiliary systems used to check the II-condition of Az (S) and
A8,(S) appear on the line below in the table 13.2.

The following diagram shows some relations between these type systems. We suppose
that S is a singly sorted specification.

ML(S) = M(S) C A(S) o A(S)
|| ||

Asa(S) = A(S) C A“(S) = “.(9)

In order to prove the equivalences A°(S) = \8,(S) and A(S) = A\,4(S), we have used the
other relations that are depicted in the diagram (see theorems 10.7.7, 10.7.8, 12.3.9 and
12.3.10).

Semi-algorithms. In chapter 10.2 we have defined the semi-algorithm ‘type’ of type
inference for singly sorted pure type systems and in chapter 12 the other semi-algorithm
‘type’’ of type inference for singly sorted pure type systems with definitions. These semi-
algorithms terminate if the term is typable and otherwise they may not terminate.

The semi-algorithm type is based on the system A;4(S) and type® is based on A\%,(.5).
In order to define both semi-algorithms we have followed the same method. The method
consists of considering the corresponding type system without the II-condition to check for
the II-condition.

13.3.3 Normalisation versus Type Inference

The normalisation property and the type inference problem are related in two places: in
the proot of the correctness of the semi-algorithms of type inference and in the results on
decidability of type inference and type checking for pure type systems with and without
definitions.

The proof of correctness. We have proved the correctness of the type inference semi-
algorithms for singly sorted pure type systems with and without definitions. The correct-
ness of the semi-algorithms is proved using the equivalence between the syntax directed
sets of rules and the original systems.

The proof of the equivalence between the syntax directed sets of rules and the original
ones, use the relations shown in the diagram above. The morphisms that appear in this
diagram are | | and ¢ which compute the é-normal form and the illegal #-normal form,
respectively.
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Decidability of Type Inference, Type Checking Let S = (S, A, R) be singly sorted
such that the sets S, A and R are recursive. If A(.S) is f-weakly normalising then the
following statements on decidability hold.

e Type inference and type checking in A(S) are decidable (see theorems 9.3.19 and
10.8.16).

e Type inference and type checking in A°(S) are decidable (see theorem 12.4.10).

Undecidability of Type Inference, Type Checking and Inhabitation. Let S be a
singly sorted, impredicative and non-dependent specification. If A(.S) is inconsistent then
the following statements hold.

e Type inference and type checking in A(S) are undecidable (see theorem 9.3.20).

e Type inference and type checking in A*(.S) are undecidable (see theorem 11.4.14).

Hence, for the systems of the A-cube extended with definitions, we have that type
inference and type checking are decidable.
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