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Abstract. We revisit the main techniques of program transformationwhich are used in partial evaluation, mixed computation, supercompi-lation, generalized partial computation, rule-based program derivation,program specialization, compiling control, and the like. We present amethodology which underlines these techniques as a `common pattern ofreasoning' and explains the various correspondences which can be estab-lished among them. This methodology consists of three steps: i) symboliccomputation, ii) search for regularities, and iii) program extraction. Wealso discuss some control issues which occur when performing these steps.1 IntroductionDuring the past years researchers working in various areas of program trans-formation, such as partial evaluation, mixed computation, supercompilation,generalized partial computation, rule-based program derivation, program spe-cialization, and compiling control, have been using very similar techniques forthe development and derivation of programs.Unfortunately, that similarity has not always been given enough attentionbecause of some lack of interaction among the various groups of researchers in-volved in these areas. This was motivated by the fact that the objectives of thesegroups were somewhat di�erent, as for instance, program derivation, compilergeneration, and program optimization. Another reason for the lack of interac-tion was the fact that the programming languages used, whether imperative,functional, or logic, often made a signi�cant di�erence in the way the varioustechniques were actually implemented and applied.In recent years comparisons have been made and correspondences have beenestablished among the di�erent techniques in some particular cases [25, 44, 48].For some time already, the scienti�c community has been aware that many suchcorrespondences exist in general, and they are based on the fact that thosetechniques all share the same underlining methodology which we want to describein this paper. This general methodology shows that correspondence results mayhave somewhat complex formalizations, but they are not accidental.We know from various papers, conferences, and discussions with people work-ing in the area of program transformation that the methodology we will describehere is indeed `common knowledge'. Thus, the aim of this work is mainly to clar-ify some issues related to this common knowledge and, as a side-e�ect, to indicate



why the correspondence results do hold and also to present the main features of ageneral framework where di�erent transformation techniques could be combinedtogether.2 A Preliminary ExampleIn this section we revisit a familiar example of program derivation using afunctional language based on �rst-order recursive equations and the unfold/foldtransformation system with rules and strategies [10, 40]. This revisitation allowsus to present in a concrete case the three steps of the general methodology forprogram transformation we want to introduce, namely, i) symbolic computation,ii) search for regularities, and iii) program extraction. Various instances of thismethodology were developed in the seventies independently by many people inseveral research �elds such as partial evaluation, mixed computation, unfold/foldtransformation, and supercompilation.Suppose we are given the following initial program for computing the Fi-bonacci function:1. �b(0) = 12. �b(1) = 13. �b(n+ 2) = �b(n+ 1) + �b(n) for n � 0The computation of �b(k) for any natural number k � 0, requires an expo-nential number of sums. We want to derive a more e�cient program so that thenumber of the required sums is at most linear for all k � 0. This universal quan-ti�cation of the variable k over the set of natural numbers, motivates the �rststep of the general methodology which consists in considering a single symboliccomputation depending on k (or possibly a �nite set of symbolic computations),instead of the in�nite set of concrete computations, one for each value of k.Various models of symbolic computations have been proposed in the litera-ture within various program transformation systems. We will consider here them-dag model [3] which given a recursive program, uses a directed acyclic graphto represent the father-son relationship among the function calls evoked by thegiven program.Thus, in our case, starting from the root-node �b(k) we generate, using Equa-tion 3, the two son nodes �b(k�1) and �b(k�2). The arguments k�1 and k�2are computed by matching in the algebra of integers. Thus, for instance, �b(k)which matches the left-hand-side �b(n+2) of Equation 3 for n = k�2 evokes thetwo recursive calls �b(k�1) and �b(k�2), corresponding to �b(n+1) and �b(n),respectively, in the right-hand-side of that equation. From the node �b(k�1)we then generate the son nodes �b(k�2) and �b(k�3), and we identify thetwo distinct nodes for �b(k�2). We then continue the node generation and thenode identi�cation process in a breadth-�rst manner. Obviously, this process ispotentially in�nite in the sense that from �b(k) we can generate the son node�b(k�i) for any i � 0.
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Fig. 1. An initial portion of the m-dag for the �b function with the �rst three cuts ofa progressive sequence of cuts.In Figure 1 we have represented an initial portion of the m-dag for the �bfunction. In constructing this m-dag it is assumed that the argument of every callof the function �b is greater than 1, and thus, Equation 3 is used for generatingtwo new nodes from any given node.Now the general methodology we want to present, requires in its second step,the search for a suitable regularity valid in the whole m-dag, and fortunately, aswe will see, there is no need for the complete representation of the in�nite m-dag.In our case, a suitable regularity is the existence of a `progressive sequenceof cuts' [38]. Informally, this means that in the m-dag with initial node �b(k)there is a sequence hc0; c1; : : :i of sets of nodes with the following properties: i)all sets, also called cuts, have equal cardinality, say C, ii) after removing a set ofthat sequence the resulting m-dag has two disconnected parts (this is why eachset of the sequence is called a cut), iii) for any two successive cuts, say ci andci+1, we have that: ci 6= ci+1, 8n 2 ci+1 9m 2 ci such that if n 6= m then m > n,and 8m 2 ci 9n 2 ci+1 such that if n 6= m then m > n, where > denotes thetransitive closure of the father-son relationship among nodes, iv) there are 1+Cfunctions, say p0; p1; : : : ; pC ; which all have arity C and are de�ned in terms ofbasic functions only, such that: (a) �b(k) can be computed from the C functioncalls in the cut c0 using p0, and (b) 8i � 0;8j, with 1�j�C, the j-th functioncall in the cut ci can be computed from the function calls in the cut ci+1 usingpj , and v) for every value of k, with k � 0, in the sequence of cuts there exists acut whose function calls, instantiated to that value of k, can be computed usingbasic functions only, without requiring the computation of the son calls.A progressive sequence of cuts in the m-dag with initial node �b(k) is: � =hf�b(k�1);�b(k�2)g; f�b(k�2);�b(k�3)g; : : :i.A di�erent progressive sequence whose cuts have cardinality three, is:hf�b(k�1);�b(k�2);�b(k�4)g; f�b(k�5);�b(k�6);�b(k�8)g; : : :i.Then the third step of the general methodology is the extraction of thenew program from the symbolic computation and the discovered regularity. Inour case, given the progressive sequence of cuts �, we apply the tupling strat-egy [10, 38] and we introduce the function t(n) = h�b(n + 1);�b(n)i which forany sequence of values of the variable n, gives us the corresponding sequence ofvalues of the function calls in the cuts of �. Using the unfold/fold technique [10]we then get the following program:



1. �b(0) = 12. �b(1) = 14. �b(n+ 2) = u+ v where hu; vi = t(n) for n � 05. t(0) = h1; 1i6. t(n+ 1) = hu+ v; ui where hu; vi = t(n) for n � 0As expected, this program uses only O(n) sums to compute the value of �b(n).The reader should notice that Equations 5 and 6 are obtained in the unfold/foldtechnique by looking for the explicit recursive de�nition of the new tuple functiont(n). In particular, Equation 6 is derived as follows:t(n+1) = h�b(n+2);�b(n+1)i = funfoldingg == h�b(n+1) + �b(n);�b(n+1)i = fwhere-abstraction and tuplingg == hu+v; ui where hu; vi = h�b(n+1);�b(n)i = ffoldingg == hu+v; ui where hu; vi = t(n)The where-abstraction step avoids the double evaluation of �b(n+1) while com-puting t(n+1), and the last folding step avoids the double evaluations of the �bcalls `at every level of recursion', thus, it makes the e�ciency gains of the where-abstraction step computationally signi�cant. This is why in the unfold/fold tech-nique one looks for �nal folding steps to be made at the end of the derivation.The same occurs, for instance, in the supercompilation technique where one looksfor `self-su�cient models' of the computation [52].In the following sections we illustrate in some detail the general method-ology for program transformation we have seen in action in this preliminaryexample. We also indicate the way in which various techniques for programtransformation proposed in the literature �t into this general methodology. InSection 3 we consider the symbolic computation model called the symbolic tracetree used in compiling control, and we brie
y compare it with the models usedin other program transformation systems. In Section 4 we illustrate the idea of�nding suitable regularities in the symbolic computations, and in particular, weconsider the case of partial evaluation in logic programming. In Section 5 weaddress the problem of extracting new programs from symbolic computations.Since the application of the general methodology is highly nondeterministic andmay also lead to in�nite constructions, we need some techniques for its control.Those techniques are analyzed in Section 6. In Sections 7 we relate the generalmethodology to program specialization, deforestation, and �nite di�erencing,and �nally, in Section 8 we brie
y present some correspondences among variousprogram transformation techniques.3 Symbolic Computation ModelsA method for transforming a given initial program into a new program whichbehaves e�ciently for every input value, is to look for suitable properties whichhold for every computation performed by the initial program. These proper-ties can often be discovered by applying the general technique, called abstract



interpretation [13], by which we represent a possibly in�nite set of concrete com-putations, one for every input value, by a single symbolic computation, and thenby reasoning on that symbolic computation.Various models of symbolic computations have been proposed in the litera-ture, and we brie
y discuss them at the end of this section. Now we considerin some detail a particular symbolic computation model, called symbolic tracetree, which has its relevance in the transformation technique for logic programscalled compiling control [7].The Symbolic Trace Tree for Compiling ControlA logic program can be viewed as the union of some `logic de�nitions' (that is,the axioms of a theory) and a `control strategy' (that is, a theorem prover) [29].The e�ciency of a logic program very often depends on the control strategy.Thus, in order to achieve high performances, the programmer, instead of relyingon the evaluation strategy provided by the system, may de�ne his own controlstrategy. This can be done, for instance, via modes or delay declarations [33]based on the instantiation patterns of the goals during execution. However, onemay avoid the di�culty of dealing with those declarations at run-time by usingthe compiling control technique as we now indicate.Let Sleft be the familiar Prolog control strategy, which selects the literals inthe goal at hand in a sequential order from left to right. Given a logic programP1 and an e�cient control strategy Se� for P1, we want to derive a new programP2 such that, for a given class of goals, P1 with control strategy Se� and P2 withcontrol strategy Sleft have equivalent computational behaviour. According to thegeneral methodology we have presented in Section 2, compiling control works inthree steps as follows.1. Starting from a symbolic input goal, in the �rst step compiling control gen-erates a symbolic trace tree using the control strategy Se� . The symbolictrace tree represents the class of concrete computations, each of which cor-responds to a concrete goal in the class of goals represented by the symbolicinput goal.2. We then look for a �nite description of the symbolic trace tree which ispotentially in�nite. This is done by identifying similar nodes and thus, gen-erating a �nite graph, possibly cyclic, called symbolic trace graph. The notionof similarity may vary according to the particular instances of the compilingcontrol technique one uses.3. In the �nal third step a new program P2 is extracted from the symbolic tracegraph. By construction, the behaviour of P2 with the control strategy Sleftis equivalent to that of P1 with control strategy Se� .This equivalence establishes the correctness of the transformation and it isbased on the relationship between the concrete and the symbolic computa-tions which is formalized, as we will see in the example below, by using theabstract interpretation technique.



Ideas related to compiling control have also been investigated in the areaof functional programming within the so called �lter promotion strategy [4,14], whereby function evaluations can be anticipated for avoiding unnecessarycomputations and improving program behaviour.In the following example we will see in action the compiling control technique.The �nal program can also be derived by using unfold/fold program transfor-mations as shown in [50].Example 1. [Common Subsequences ] Let us consider the following logic programCsub, which generates all common subsequencesX of not necessarily consecutiveelements of two sequences Y and Z. Sequences are represented as lists.1. csub(X;Y; Z) subseq(X;Y ); subseq(X;Z)2. subseq([ ]; X) 3. subseq([AjX ]; [AjY ]) subseq(X;Y )4. subseq(X; [BjY ]) subseq(X;Y )Let us consider the set I of input goals of the form csub(x; y; z), where x isa free variable and y and z are ground lists. For these goals the control strategySleft is, in general, ine�cient because it �rst evaluates subseq(x; y) and generatesa binding, say �x, for x and then it tests whether or not subseq(�x; z) holds.The following producer-consumer coroutining strategy, called Spc, allows fora more e�cient execution of the above program. This strategy assumes that anatomic goal A is said to be a consumer (of bindings) i� all its arguments areinstances of the arguments of every clause head which is uni�able with A itself,and otherwise the atom A is said to be a producer (of bindings). The strategySpc can be de�ned as follows: in the goal at hand Spc chooses for execution theleftmost consumer, if any, and otherwise it chooses the leftmost producer.In order to represent a set of concrete goals as a single symbolic goal, weconsider the set G of all ground terms and the set F of all free variables. Thesetwo sets, together with the empty set of terms and the set of all (ground and non-ground) terms, form the domain of an abstract interpretation which is a lattice.(The reader unfamiliar with abstract interpretations in logic programming mayrefer to [2, 6, 32].)A �nite portion of the symbolic trace tree for a goal in I , generated byusing the program Csub and the control strategy Spc, is depicted in Figure 2(where for the time being, the upgoing arrows are to be ignored). The root islabeled by the symbolic input goal csub(XF ; Y G; ZG), meaning that in everyconcrete computation the input goal is of the form csub(X;Y; Z) where X isa free variable and Y and Z are bound to ground terms. In the goals labelingthe non-root nodes of that tree, a variable with superscript F means that inevery concrete computation that variable is bound to a (possibly di�erent) freevariable, whereas a variable with superscript G means that in every concretecomputation that variable is bound to a ground term.In the node M we have unfolded the atom subseq(XF ; Y G) because it uni�eseither with clause 2 (if Y G = [ ]) or with clauses 3 and 4 (if Y G is a non-emptyground list). In both cases subseq(XF ; Y G) is a producer, and for the same



reasons, also subseq(XF ; ZG) is a producer. In the node N we have unfolded theatom subseq([AF jX1F ]; ZG) because it is a consumer and subseq(X1F ; Y 1G) isa producer.
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������������+ subseq(X1F ; Y 1G); subseq([AF jX1F ]; Z1G)subseq(X1F ; Y 1G); subseq(X1F ; Z1G)Fig. 2. An initial portion of the symbolic trace tree for Csub. The atoms selected forunfolding by the strategy Spc are underlined. Upgoing arrows relate symbolic goalswhich are variants of each other. These arrows do not denote arcs of the tree.The goal labeling any non-root node of the symbolic trace tree is obtainedfrom the goal of the corresponding father node according to the following un-folding process: i) we select an atom of the goal in the father node following thestrategy Spc, ii) we unify the selected atom with the heads of all clauses in Csub,iii) we replace the selected atom by the bodies of the unifying clauses, wherebygetting the son nodes, and iv) we apply to the son nodes the bindings computedby uni�cation. In the symbolic trace tree the arc from a father node to a sonnode is labeled by the bindings for the variables of the father node that arecomputed during the corresponding unfolding step by the uni�cation process.The variable superscripts in any son node are obtained from the superscriptsin the corresponding father node by taking into account that: i) the uni�cationof a ground term with a term containing variables binds all variables to groundterms, and ii) the uni�cation of a variable with a term containing variables doesnot bind any variable in that term. We leave to the reader the task of formalizingthe process of computing the variable superscripts. This can be done by usingthe notion of abstract uni�cation, that is, uni�cation among terms in the domain



of the abstract interpretation [2, 6, 32].Now, as in the second step of the general methodology, compiling controlsearches for regularities in the symbolic trace tree with the aim of deriving a�nite representation of that tree. In our case this �nite representation can beobtained by identifying goals which are variants of each other and have thesame superscripts. By doing so we get the �nite cyclic graph, called symbolictrace graph, depicted in Figure 2 where nodes related by upgoing arrows are tobe identi�ed.The theory of abstract interpretation can be used for proving various cor-rectness properties of the symbolic trace graph and in particular, the fact thatit indeed represents the set of all concrete computations generated by the givenset of input goals, in the sense that every concrete computation follows a se-quence of arcs in that graph and at each computation step the concrete goalsare instances of the symbolic goals in the corresponding nodes and they agreewith the superscripts.As we will discuss in the next section, this �nite representation propertyhas a fundamental importance and it allows us to perform the third step of thegeneral methodology, that is, the derivation of a new program from the initialone.Finiteness of the symbolic trace graphs is related to analogous propertieswhich are required in other transformation techniques, such as self-su�ciencyof the graphs of states and transitions in supercompilation [52], foldability ofthe unfolding trees in unfold/fold program transformation [43], and closednessin partial deduction [31].The extraction of the derived program is performed as we now indicate (seealso Figure 3). new1(: : :)M : new2(: : :)new3(: : :) N : new4(: : :)??������) �PPPPPP
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Fig. 3. The symbolic trace graph derived from the symbolic trace tree of Figure 2 afterthe introduction of the new predicate names: new1, new2, new3, and new4.We introduce new predicate names, say new1;new2; : : :, one for each set of



non-empty variant goals, and for each arc U �! V of the symbolic trace tree,with V 6= 2, we introduce the new clause newh(U)�  newk(V ), where thepredicate names occurring in U and V are to be considered as function names,because they now occur in argument positions. For the arc subseq([ ]; Z) ! 2we introduce the new clause new3(subseq([ ]; Z)) .Thus, we get the following new program:new1(csub(X;Y; Z)) new2(subseq(X;Y ); subseq(X;Z))new2(subseq([ ]; Y ); subseq([ ]; Z)) new3(subseq([ ]; Z))new2(subseq([AjX1]; [AjY 1]); subseq([AjX1]; Z)) new4(subseq(X1; Y 1); subseq([AjX1]; Z))new2(subseq(X; [BjY 1]); subseq(X;Z)) new2(subseq(X;Y 1); subseq(X;Z))new3(subseq([ ]; Z)) new3(subseq([ ]; [BjZ1])) new3(subseq([ ]; Z1))new4(subseq(X1; Y 1); subseq([AjX1]; [AjZ1])) new2(subseq(X1; Y 1); subseq(X1; Z1))new4(subseq(X1; Y 1); subseq([AjX1]; [BjZ1])) new4(subseq(X1; Y 1); subseq([AjX1]; Z1))For goals of the form new1(csub(X;Y; Z)), this program computes the sameanswers as the ones computed by Csub for goals of the form csub(X;Y; Z) whereX is a free variable and Y and Z and ground terms. The derived program,however, is more e�cient than the initial one because it is more deterministic.In order to avoid the presence of nested terms, intermediate predicates, andsubsumed clauses, we then perform some �nal simple transformations which aresimilar to `post-unfolding' in the supercompilation technique. Thus, we get thefollowing program [50]:new5([ ]; Y; Z) new5([AjX ]; [AjY ]; Z) new6(A;X; Y; Z)new5(X; [BjY ]; Z) new5(X;Y; Z)new6(A;X; Y; [AjZ]) new5(X;Y; Z)new6(A;X; Y; [BjZ]) new6(A;X; Y; Z)where the predicates new5 and new6 correspond in Figure 2 (and 3) to node Mand N , respectively. 2Other Symbolic Computation ModelsNow we would like to consider some other symbolic computation models whichhave been proposed in the literature both for functional and logic languages.They di�er for the information which is recorded during the symbolic compu-tation steps. However, all of them use a basic operation similar to unfolding,which may be viewed as an abstraction of a computation step. The speci�c formof this basic operation varies in accordance with the language and the semanticsconsidered.



Burstall and Darlington [10] have the execution tree model which is usedto discover the new function de�nitions, the so called eureka de�nitions, to beintroduced during the derivation of new programs via folding/unfolding trans-formations. The execution tree may be viewed as an abstraction of the concretecomputation and consists of a tree of recursive calls constructed by unfolding asymbolic input term. The m-dags of recursive calls [3, 38], which have been pre-sented in our preliminary example, are further developments of this approach.A symbolic computation model based on unfolding, the so called unfolding tree,that is, a tree of clauses obtained by unfolding, has been proposed for logicprogramming in [43, 41].In Turchin's supercompilation technique [52], the symbolic computation pro-cess is performed by driving, which is analogous to unfolding. The driving processgenerates a tree of con�gurations, or a graph if we identify nodes with similarcon�gurations. This graph is called graph of states and transitions. A similarmodel is the partial process tree used in the positive supercompilation tech-nique [47, 48]. There is, however, a di�erence between unfolding �a la Burstalland Darlington and driving �a la Turchin: by unfolding we replace an expressionwhich matches the left-hand side of an equation by the corresponding instanceof the right-hand side, whereas by driving a sort of uni�cation process, ratherthan matching, takes place. This makes driving very similar to the unfoldingmechanism we have seen in action in the compiling control example above. Aformal correspondence between driving and unfolding in logic programming canbe found in [25].More similarities between supercompilation and other techniques used fortransforming logic programs are based on the idea of performing symbolic com-putations by meta-programs or, in Turchin's terminology, metasystem transi-tions [24, 54]. For instance, the transformation technique presented by Gallagherin [20] works by specializing a meta-interpreter, that is, a logic program whichworks as an interpreter for logic programs, w.r.t. a particular input program.Also the symbolic trace tree for compiling control may be generated using ameta-interpreter.More complex operations may be performed during symbolic computation.For instance, in supercompilation one is allowed to use any `clever trick' [52,page 293], in GPC-trees [19] one may use theorem provers to partially evalu-ate conditionals, and when constructing unfolding trees of logic programs onemay perform, together with unfolding and folding steps, also goal replacementsteps [41]. By these goal replacement steps we replace old goals by new equivalentgoals using lemmas whose proofs are done o�-line.A special model of symbolic computation is the SLDNF-tree which is thebasis for the partial evaluation technique in logic programming [31]. In this modelthe symbolic computation coincides with the concrete one (which can also berepresented as an SLDNF-tree), because in logic programming one is allowed torun programs with input goals which contain free variables. Further re�nementsof partial evaluation, such as the techniques based on characteristic trees [22, 30],use notions which are abstractions of SLDNF-trees.



4 Searching for Regularities in Symbolic ComputationsIn this section we consider the problem of searching for regularities in a symboliccomputation model of the program at hand. These regularities may be used forextracting a new program.It is hard to devise a general notion of regularity which ensures that the de-rived programs are in all cases more e�cient than the initial ones. Thus, di�erentnotions of regularity have been considered in the various program transformationtechniques. Those notions, however, are not unrelated, and indeed most of themrefer to similarity relations which hold between nodes of symbolic computationmodels. In particular, let us consider again the compiling control example of theprevious section. In that example we have seen that an e�cient program whichembodies an enhanced control strategy, can be extracted from the symbolic tracetree when each leaf goal is a variant of an ancestor goal and the correspondingrenaming substitution preserves the instantiation of the variables (that is, thesuperscripts G and F ). This correspondence between nodes of the symbolic tracetree is the similarity used in compiling control.In other symbolic computation models one may �nd other similarity relations(not necessarily symmetric) which formalize the fact that a con�guration (or aset of con�gurations) of the symbolic computation can be expressed in terms ofa previously generated con�guration (or set of con�gurations). For instance, inthe case of the m-dag model described in the Fibonacci example, a cut may beconsidered to be similar to the next cut in a progressive sequence [38], becausewe can get the function calls in a cut from those of the next cut by substitutingan expression for a variable (in our case, k�1 for k).Since we should be able to derive a new program from the symbolic computa-tion of a given initial program, it is important that we �nd a �nite representationof the potentially in�nite symbolic computation, because as we will see in thenext section, the structure of the derived program is closely related to that of thesymbolic computation. This explains why several notions of regularity requirethat one should �nd a �nite set of con�gurations such that every con�gurationin the symbolic computation is similar to a con�guration in that set.Now we look at the partial evaluation technique in logic programming andwe indicate the particular notions of similarity and regularity which are usedthere. We will then mention how these concepts are used in other transformationtechniques.Regularities in Partial Evaluation of Logic ProgramsPartial evaluation is a well-known program transformation technique which al-lows us to derive a new program from an old one when part of the input data isknown before evaluation. The reader may refer to [12, 21, 26] for introductionsand surveys on this topic.In the case of logic programming, where partial evaluation is also calledpartial deduction, it is usually assumed that we are given an initial program Pand a set A of possibly non-ground atoms, and by partial deduction of P w.r.t.



A, we want to derive a new program P 0 such that P and P 0 compute the sameanswers for every input goal which is an instance of an atom in A.One of the most popular techniques for partial deduction has been for-malized by Lloyd and Shepherdson [31]. In that technique the program P 0 isobtained by collecting together the clauses, called resultants, which are con-structed as follows: for each element Ai of A, i) we �rst construct a �nite por-tion, containing more than one node, of an SLDNF-tree, say Ti, for the pro-gram P and the atom Ai, then ii) we consider the non-failing branches of Tiand the goals at their leaves, say Bi1; : : : ; Bir , and the computed substitutionsalong these branches, say �i1; : : : ; �ir, and �nally, iii) we construct the clauses:Ai�i1  Bi1; : : : ; Ai�ir  Bir .The SLDNF-trees constructed for partial deduction can be viewed as sym-bolic computations starting from the atoms in A and representing all SLDNF-trees starting from atoms which are instances of the atoms in A.If we now assume that: i) every atom in P 0 is an instance of an atom inA, that is, P 0 is A-closed, and ii) no two atoms in A have a common instance,that is, A is an independent set of atoms, then P 0 is a correct partial deductionof P w.r.t. A, in the sense that for every input goal G which is an instance ofan atom in A, we have that P [ f Gg has a computed answer substitution� i� P 0 [ f Gg has the computed answer substitution �, and P [ f Gg�nitely fails i� P 0 [ f Gg �nitely fails [31]. The following example shows thatpartial deduction can be viewed as a particular case of our general programtransformation methodology made out of three steps.Example 2. [Partial Deduction of a Parser ] Let us consider the following Parseprogram, adapted from [49, page 381], for parsing words of context free lan-guages.parse(Grammar ; [Symb]; [SymbjX ]nX) terminal(Symb)parse(Grammar ; [Symb];Word )  nonterminal(Symb);member(Symb ! Symbs ;Grammar );parse(Grammar ;Symbs ;Word)parse(Grammar ; [Symb1;Symb2jSymbs ];WordX nX) parse(Grammar ; [Symb1];WordX nY );parse(Grammar ; [Symb2jSymbs ]; Y nX)terminal(0) terminal(1) nonterminal(s) nonterminal(u) The �rst argument of parse is a grammar represented as a list of productionsof the form Symb ! Symbs , where Symb is a nonterminal symbol and Symbs is asequence of terminal or nonterminal symbols. The second argument of parse is alist representing the sentential form at hand. The third argument is the wordWto parse which is represented as a di�erence-list, that is, XnY is the di�erencelist representing W i� W concatenated with Y is X . This representation allowsfor an e�cient word decomposition, which is needed in the third clause of parse.



Suppose that we want to specialize our parser w.r.t. the grammarfs! 0 u; u! 1; u! 0 u u; u! 1 sgwhere s is the start symbol. In other words, we want to partially evaluate Parsew.r.t. the input goal parse(�; [s]; Xn[ ]) where � is the term [s! [0; u]; u! [1];u ! [0; u; u]; u ! [1; s]] representing the given grammar. To this aim, weconsider the following independent set A of two atoms:A = fparse(�; [s]; XnY ); parse(�; [u]; XnY )gwhich will allow us to partially evaluate the given program w.r.t. the input goalparse(�; [s]; Xn[ ]) because this goal is an instance of the atom parse(�; [s]; XnY )in that set [31].We then construct the two �nite initial portions T1 and T2 of SLDNF-trees(in this case no negation as failure steps are needed, because the program ispositive) depicted in Figure 4. In this �gure: i) an arc stands for one or moreSLDNF-resolution steps, ii) underlined atoms are the ones which are unfolded,iii) when not indicated the substitution corresponding to a successful arc is theidentity substitution, iv) � denotes failure, v) 2 denotes success, and vi) upgoingarrows relate leaf goals to root goals of which they are instances (these arrowsare not arcs of the SLDNF-trees).T1 :parse(�; [s]; XnY )parse(�; [0;u]; XnY )parse(�; [u]; ZnY );parse(�; [0]; XnZ)parse(�; [u]; ZnY )X=[0jZ]
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T2 :parse(�; [u]; XnY )parse(�; [1]; XnY ) parse(�; [1;s]; XnY )parse(�; [0;u;u]; XnY )parse(�; [u;u]; ZnY );parse(�; [0]; XnZ) parse(�; [s]; ZnY );parse(�; [1]; XnZ)parse(�; [u;u]; ZnY ) parse(�; [s]; ZnY )parse(�; [u]; ZnV );parse(�; [u]; V nY )
X=[1jY ]
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Fig. 4. Two �nite portions T1 and T2 of SLDNF-trees for the Parse program.The resultants of the non-failing branches of these two SLDNF-trees are thefollowing clauses:parse(�; [s]; [0jZ]nY ) parse(�; [u]; ZnY )parse(�; [u]; [1jY ]nY ) 



parse(�; [u]; [0jZ]nY ) parse(�; [u]; ZnV ); parse(�; [u]; V nY )parse(�; [u]; [1jZ]nY ) parse(�; [s]; ZnY )These resultants form an A-closed set of clauses and therefore they constitutea correct partial deduction of Parse w.r.t. A.Similarly to the compiling control example, the above programmay be furtherimproved by introducing, using the renaming transformation [21], new predicatenames corresponding to the di�erent instances of the predicate parse . By doingso (and also by renaming some variables), we get the following �nal programPdParse:pd parse(X) parse s(X; [ ])parse s([0jX ]; Y ) parse u(X;Y )parse u([1jX ]; X) parse u([0jX ]; Y ) parse u(X;Z); parse u(Z; Y )parse u([1jX ]; Y ) parse s(X;Y )The correctness results for partial deduction can easily be extended to thecase where we consider the above renaming transformation. In this example wehave that, for every term w, Parse [ f parse(�; [s]; wn[ ])g has a computedanswer substitution � i� PdParse [ f pd parse(w)g has the computed answersubstitution �, and Parse [ f parse(�; [s]; wn[ ])g �nitely fails i� PdParse[f pd parse(w)g �nitely fails. 2One may notice that the A-closedness property of the program derived bypartial deduction from a program P w.r.t. A, is equivalent to the followingproperty of the set of SLDNF-trees constructed for the partial deduction of Pw.r.t. A: each atom occurring in a non-failing leaf of an SLDNF-tree in this setof trees is an instance of an atom occurring in a root (not necessarily within thesame tree). If a set of SLDNF-trees enjoys this property we will say that it isclosed (see Figure 4 for an example where this property holds).The notion of a closed set of SLDNF-trees nicely illustrates the idea of regu-larity of a symbolic computation. Indeed, that notion is based on the similarityrelation whereby a leaf node is similar to a set of root nodes i� every atom inthe goal of that leaf is an instance of the atom in a root of the given set. We alsohave that a closed SLDNF-tree T , that is, a closed set of SLDNF-trees with onetree only, represents an in�nite SLDNF-tree where all goals may be expressedin terms (more precisely, are conjunctions of instances) of the �nite set of goalsoccurring in T . Moreover, given a closed set of SLDNF-trees we may derive aprogram which is equivalent to, and hopefully more e�cient than the initialprogram, by extracting clauses from their non-failing root-to-leaf paths.Other Notions of RegularityWe have mentioned at the beginning of this section the notions of regularityused in compiling control and in some unfold/fold techniques for functional pro-grams. Now we will brie
y discuss some other forms of regularities in symboliccomputation models.



One of the earliest transformation techniques which uses concepts analogousto `similarity' and `regularity', is Turchin's supercompilation. As already men-tioned in Section 1, the symbolic computation model for supercompilation is thedirected graph of states and transitions constructed by driving and generalizationsteps (In Section 6 we will give more details on the generalization operation). Inthis directed graph a con�guration Cj is similar to a previously generated oneCi i� Cj is a specialization of Ci, that is, the set of concrete computation statesrepresented by Cj is a subset of that of Ci. The notion of regularity correspondsto that of self-su�ciency: a �nite graph of states and transitions is said to beself-su�cient when every con�guration is either passive (that is, an expressionmade out of basic operators) or similar to a previously generated one.Related concepts of similarity and regularity are also present in various ver-sions of the supercompilation technique, such as positive supercompilation [48].Also in the unfold/fold technique for the transformation of logic programs,we encounter a similarity notion and a regularity notion. They are related to theconstruction of unfolding trees [43] which are used for guiding the application ofthe unfold/fold rules. The similarity notion is the foldability of a clause and wesay that a clause is foldable when its body (except for some basic predicates) isan instance of the body of an ancestor clause in the tree. The regularity notion isthe foldability of the unfolding tree and we say that an unfolding tree is foldablewhen it has a �nite upper portion whose leaves are foldable clauses or clauseswhose bodies either are made out of basic predicates or contain failures. Thereader will realize the very close relationship between the notions of foldableunfolding trees and closed SLDNF-trees we have presented above.In the generalized partial computation technique the similarity notion be-tween nodes in a GPC-tree is determined by the absence of the so called P-redexes [19]. In particular, in a GPC-tree a node N is similar to an ancestornode M if i) �x:f(x) is the function computed at node M with domain domM ,ii) �x:A[f(B[x])] is the function computed at node N where A[: : :] and B[: : :]are suitable contexts and B[x] ranges over domN , and iii) domM � domN . Theregularity notion of a GPC-tree is, as usual, based on the fact that every leafnode is either a basic value or similar to an ancestor node. We cannot go intomore details here. However, we want to stress that, in sharp contrast to super-compilation, in generalized partial computation one performs an unfolding stepwhen a node represents a subset of the set of the concrete computation statesrepresented by a previously generated node. The underlying assumption is thatwith more information on the input data one may get more specialized andhopefully, more e�cient programs. We will return on this issue of specializationversus generalization in Section 6.5 Program ExtractionIn this section we consider the third step of the general methodology, that is, theprocess of extracting a new program from the symbolic computation of the giveninitial program and also the suitable regularities which have been discovered.



We have already remarked that it is important that the regularities are `suit-able', that is, they indeed allow for program extraction. We are not interestedhere in the formalization of this suitability notion. It will be enough to considerthe particular case, which is the most frequent in practice, where the symboliccomputation is described by means of a directed graph whose arcs correspondto concrete computation steps. There are basically two approaches to programextraction in this case: either the direct extraction or the extraction via trans-formation rules.An example of the �rst approach can be taken from partial deduction, wherethere is a simple way of deriving the clauses of the �nal program directly fromthe closed set of SLDNF-trees which have been constructed by applying, forinstance, the procedure described in [21]. Indeed, every path from the root to anon-failing leaf in those trees, generates a clause of the program to be extracted.Also in generalized partial computation we directly extract programs from thecorresponding GPC-trees by looking at their paths, but we may also allow forthe use of some recursion removal techniques [19].An example of program extraction via transformation rules may be givenusing the transformation of the Fibonacci program presented in Section 2. Westart from the known regularity, that is, the existence of a progressive sequence ofcuts, and we perform the extraction by exploiting the properties of that sequenceas follows: i) we �rst introduce by the de�nition rule the new function t(n) whichtuples together the function calls in a generic cut, ii) we apply the unfolding ruleand the where-abstraction rule to express the initial function call in terms ofthe calls in the �rst cut whereby extracting Equation 4, that is, �b(n + 2) =u + v where hu; vi = t(n), iii) by applying the unfolding rule we compute thevalue of the function calls in the cut for which there is no need to compute thecalls of their son nodes whereby extracting Equation 5, that is, t(0) = h1; 1i,and �nally, iv) we apply the unfolding, where-abstraction, and folding rules tocompute the values of the function calls in a cut from those in the next cutwhereby extracting Equation 6, that is, t(n+1) = hu+v; ui where hu; vi = t(n).This program extraction shows that for the �b function the existence of aprogressive sequence of cuts is a suitable regularity, and indeed the various prop-erties of that sequence suggest the actions to be performed during the extractionitself.For the extraction of the new program of the �b function we can also usethe direct approach, but it is necessary to construct a symbolic computationmodel which is more informative than the one based on the m-dags used inSection 2. This more informative model is based on the construction of a setof trees which can be obtained by an extension of the positive supercompila-tion technique described in [47]. The extension is motivated by the fact that inpositive supercompilation it is not possible to directly exploit the interactionsamong di�erent function calls because they belong to di�erent branches of theprocess trees. We will not give here the formal rules for the construction of thismore informative model of computation. It will be enough to say that we followclosely the positive supercompilation and partial deduction techniques. There



are, however, some di�erences. In particular, the di�erences w.r.t. positive su-percompilation include the rules that: i) when folding can be performed we donot expand the process tree and we initialize a new tree, instead, and ii) whenconstructing trees we perform together with unfolding and lemma applicationsteps, also where-abstraction steps and tupling steps. Tupling consists in theintroduction of new functions de�ned in terms of tuples of some old functions.These tuples of functions are those which allow us to take advantage of theinteraction among di�erent function calls. Di�erences w.r.t. partial deductioninclude: i) a new notion of the similarity relation among nodes: a node N1 withlabel expr1 is similar to a node N2 with label C[expr 2] i� the expressions expr1and expr 2 are variants of each other, and C[: : :] is a context made out of basicfunctions only, and ii) a new notion of closedness: a set of trees is said to beclosed i� every leaf of every tree has a similar root (according to the new notionwe have now introduced).A possible criterium for terminating the construction of a tree is as follows:a node of a tree is a leaf if either i) it cannot be subject to any unfolding or ii)it is similar to a root or iii) it has been produced by a tupling step. In this lastcase we initialize a new tree whose root is the tuple which has been introducedby the tupling step.T1 :�b(k)k=0 k=1 k=n+21 1 �b(n+1) + �b(n) n=0 n=j+1����	 @@@@R? ?where-abstractionand tuplingu+v wherehu; vi = h�b(n+1); �b(n)i
h1; �b(0)i h�b(j+1) + �b(j); �b(j+1)ih1; 1i

T2 :h�b(n+1); �b(n)i����	 @@@@R? ?hu+v; ui wherehu; vi = h�b(j+1); �b(j)i
- �

where-abstractionand tupling
Fig. 5. Two trees which represent a symbolic computation of the �b function. Under-lined expressions are the unfolded ones. Leaves are related to their similar roots byupgoing arrows. Those arcs are not arcs of the trees.In Figure 5 we have depicted a set of trees which represent the symboliccomputation of the �b function from which we can get the new program for�b by direct extraction. Given the trees of Figure 5 the extraction of the newprogram is performed as follows. Analogously to what we have seen in the pre-vious section for partial deduction, we �rst give a new name to the new rootswe have introduced (h�b(n+1);�b(n)i only in our case). This operation in theunfold/fold technique corresponds to the de�nition of `eureka predicates' [10],



and in the partial deduction technique corresponds to renaming [21]. We thenperform some folding steps corresponding to the nodes which have similar roots,and we �nally extract an equation for each root-to-leaf path in the trees obtainedafter folding, by taking into account also the substitutions along the paths.6 Control IssuesThe various steps of the general methodology for program transformation andin particular, the symbolic computation process must be controlled in some wayif one wants to derive very e�cient programs. Now we brie
y consider thesecontrol issues which can be classi�ed into two di�erent categories: local andglobal control issues.6.1 Local Control IssuesWhen the symbolic computation is performed via unfolding steps (or driving),we may get into non-deterministic situations, whereby the symbolic computationsteps may allow for more than one successor expression (or con�guration). Forinstance, during the symbolic execution of a logic program often we may choosein more than one way the atom to unfold, and analogously, during the symbolicexecution of a functional program often there is a choice of the expression to beevaluated in the following execution step. Di�erent choices may drastically a�ectthe following step of the general methodology, that is, the search for suitableregularities. These choices may be subject to constraints, like for instance, thefact that the symbolic computation should preserve the semantics of the concretecomputations it represents. For example, in functional programs if we considerthe call-by-value semantics, the innermost function calls should be evaluatedbefore the outermost ones.Many techniques for controlling unfolding and driving have been proposed inthe various models of symbolic computations (see for instance, [11, 43, 55] andthe preceding compiling control example). In particular, several authors havestudied the problem of when to stop unfolding, and for instance, one may decideto do so when unfolding is no longer deterministic [21] or when the expression inthe node at hand can be `embedded' in the expression in one of its ancestors [47].A general technique for ensuring the termination of the unfolding process isdescribed in [8].During the construction of a symbolic computation model, in order to deriveprograms with high performances it is often important, in practice, to performlemma application steps, that is, to substitute subexpressions by equivalent newsubexpressions. The reader familiar with program derivation techniques knowsthat these lemma applications, also called law applications in functional pro-gramming or goal replacements in logic programming, may allow for a great im-provement of program performances which is otherwise impossible (see [26, 56]for some upper bounds on the program speedups which can be obtained withoutthe use of lemmas). Typical lemmas one wishes to apply are: associativity of



concatenation, existence of a neutral element for plus and times, etc. Actually,these lemmas should preserve equivalence of the whole expressions where thesubstitutions take place, and therefore, they should determine congruences, notsimply equivalences.The control issue related to these lemma applications concerns the problemthat while generating the symbolic computation model, one has to decide whichlemma should be applied and where it should be applied. This is an importantissue which does not have a general solution, because unfortunately, there is notheory by which in all cases we may guide the search and the application oflemmas so that a suitable regularity will eventually be discovered.The ability to perform lemma application steps makes program transforma-tion very closely related to theorem proving, and indeed some people have lookedat techniques which allow for an easy integration of the two areas, by for in-stance, making derivations and proofs in the same transformational style. Amongother techniques we want to mention the unfold/fold proof method, which can beused both for program transformation �a la Burstall-Darlington and for equiva-lence proofs. This unfold/fold method can be traced back to Scott (see [10]) andKott [28] in the case of functional programs, and in the case of logic programsit has been recently presented in [45]. Also Turchin in [52, page 293] explicitlyrefers to the interaction of theorem proving and program transformation. He ad-vocates the use of theorem provers for the discovery of `clever properties' whenderiving new con�gurations from old con�gurations, and he shows how one can,in principle, use supercompilation for proving theorems (see also [51]). In [19] theinteraction between theorem proving and program derivation is used for gener-alized partial computation which is an enhanced partial evaluation technique.Local control issues also include the decision of when and where to apply thecomposition strategy and the tupling strategy during program transformation(although for some aspects one may also consider that these strategies do referto global control issues). We consider the composition strategy in the next sec-tion when presenting the deforestation technique, while we have already seen thetupling strategy in action in the �b example in the previous section. The com-position strategy may generate e�cient programs because it may avoid the con-struction of unnecessary intermediate data structures, while the tupling strategymay avoid repeated subcomputations because it groups together function callswhich share the same variables.6.2 Global Control IssuesIn this category of control issues we consider those which are related to the prob-lem of generating a �nite symbolic computation model with suitable regularities.We �rst consider the generalization issue, whereby instead of generating thecomputation model for the function (or predicate) at hand, we generate themodel for a generalization of that function (or predicate). The advantage of thistechnique is that, for the notions of similarity one uses in practice, the general-ized function generates con�gurations which are similar to already constructed



ones more often than the non generalized function. Thus, it may be the casethat functions with in�nite computation models have generalizations with �nitemodels. This situation is analogous to the one often encountered in theoremproving, whereby if a given lemma cannot be proved by induction, one may lookfor a suitable generalization with the hope of successfully performing an induc-tive proof of the generalized lemma. Indeed, the new variables introduced bygeneralization may allow new matches among expressions, and thus, one mayperform the proof of the generalized lemma by applying the stronger inductivehypothesis. An application of the generalization technique occurred, in partic-ular, in the partial deduction of the Parse program (see Section 4), where theatom parse(�; [s]; Xn[ ]) has been generalized to parse(�; [s]; XnY ).In program transformation, generalization is often motivated by the needfor folding [14], that is, the need of considering an expression as an instanceof another. Thus, generalization is realized by promoting some subexpressionsto variables, and usually one considers the most speci�c common generaliza-tion of the two expressions at hand. Sometimes, however, one has to allow forhigher order generalizations (also called lambda abstractions [42]), by which anexpression, say C[e], is replaced by the function application (�x:C[x])e wherethe subexpression e has been promoted to the bound variable x. Here is a simpleexample of program derivation using higher order generalization.Example 3. [Palindrome] The following program tests whether or not a given listl is a palindrome:1. palin(l) = eqlist(l; rev(l))2. eqlist([ ]; l) = null(l)3. eqlist(a : l1; l) = (a = hd(l)) and eqlist(l1; tl(l))4. rev([ ]) = [ ]5. rev(a : l) = rev(l) :: [a]where : and :: stand for the operators cons and append, respectively, null(l) =true i� l = [ ], and hd and tl are the head and tail selectors. This program visitsthe given list twice, a �rst time for its reversal (using rev) and a second time fortesting equality (using eqlist). We look for an improved program which does notmake these two visits. By unfolding we get:6. palin([ ]) = true7. palin(a : l) = (a = hd(rev (a : l))) and eqlist(l; tl(rev (a : l)))When trying to fold the r.h.s. of Equation 7 using Equation 1 we have amismatch between the two expressions eqlist(l; rev(l)) and eqlist(l; tl(rev(a : l))).We apply higher order generalization to Equation 7 and we have:8. palin(a : l) = eqlist(a : l; rev(a : l)) = fhigher order generalizationg == (�x: eqlist(a : l; x)) rev (a : l)where the mismatching subexpression has been promoted to the bound variablex. Now, both �x: eqlist(a : l; x) and rev (a : l) visit the same data structure a : l.We perform a tupling step as suggested by the tupling strategy, and we de�ne:



9. Q(l) = h�x: eqlist(l; x); rev (l)iwhose recursive equations are as follows:10. Q([ ]) = h�x: eqlist([ ]; x); rev([ ])i = funfoldingg = h�x:null(x); [ ]i11. Q(a : l) = h�x: eqlist(a : l; x); rev (a : l)i = funfoldingg == h�x: (a = hd(x)) and eqlist(l; tl(x)); rev (l) :: [a])i = ffoldingg == h�x: (a = hd(x)) and u(tl(x)); v :: [a])i where hu; vi = Q(l)Now we can fold Equation 1 using Equation 9 and we get:12. palin(l) = u(v) where hu; vi = Q(l)The �nal program made out of Equations 12, 10, and 11, visits the input listonly once in the sense that Q(a : l) is de�ned in terms of Q(l) only. 2However, there may be some drawbacks in applying generalization steps andone should use generalization with parsimony. Indeed, when an expression is gen-eralized to a variable, we loose information about the structure of the generalizedexpression and that loss may prevent some further improvements. Consider, forinstance, Equation 7 of Example 3. The most speci�c common generalization ofthe two mismatching expressions in Equation 7 and Equation 1 which did notallow us to perform a folding step, leads to the introduction of the new functiond de�ned as follows: d(l1; l2) = eqlist(l1; l2). But, unfortunately, in this de�ni-tion we have now lost the important information that the second argument ofd is the reversal of the �rst argument, while we will use the function d only forarguments satisfying this constraint. Obviously, for computing the function d wecannot hope for a better program than the one provided by Equations 2 and 3,and thus, by using d there is no hope of deriving an e�cient program for palin.This example also shows the superiority of the higher order generalization overthe familiar generalization from expressions to variables. Indeed, as the readermay verify, if one introduces the function90. Q0(l; x) = heqlist(l; x); rev (l)ithen the �nal program one derives, visits the input list twice in the call-by-valuemode of evaluation.Other generalizations may require some form of `re
ection' on the symboliccomputation constructed so far. For instance, in the supercompilation approachduring the construction of the symbolic computation model, the generalizationsteps can be suggested by an analysis of the part of the computation model al-ready constructed. This analysis makes use of so called walk grammars andmeta-transition systems to reason about computation histories in a given model [54].The analysis may be used, in particular, for avoiding the risk of generalizing`too early' (see, for instance, [53]). Related works are the ones concerned withprogram improvement based on the analysis of computation histories for whichthe reader may refer to [1] where a recursion removal technique is described.Among other forms of re
ection on symbolic computations, let us now men-tion the one related to the introduction of new operators. This technique consistsin the promotion of a sequence of computations to an independent procedure.



For instance, as shown in the following example, a sequence of additions can bepromoted to a single multiplication.Example 4. [Introducing New Operators ] Let us consider the Fibonacci programof Section 2 and let us consider the transformation tree model [25]. From Equa-tion 3 we get:7. �b(k) = �b(k�1) + �b(k�2) = funfoldingg == �b(k�2) + �b(k�3) + �b(k�2) = fintroducing multiplicationg == 2 �b(k�2) + �b(k�3) = funfoldingg == 3 �b(k�3) + 2 �b(k�4) = : : :Let us now assume that we have discovered the following regularity valid for anyn; k � 0:8. �b(k + n+ 2) = �b(n+ 1) �b(k + 1) + �b(n) �b(k)This regularity comes from the observation, which may be hard to make ina mechanical way, that when constructing the transformation tree for �b(k),the multiplicative constants in the two summands are values of the �b functionitself (see also [39]). By the unfold/fold technique we are now able to derive theprogram made out of the following equations, together with Equations 1 and2 [39]:9. �b(2k + 2) = �b(k + 1)2 + �b(k)210. �b(2k + 3) = �b(k + 1) �b(k + 2) + �b(k) �b(k + 1) = funfoldingg == �b(k + 1) (�b(k + 1) + �b(k)) + �b(k) �b(k + 1)and they hold for any k � 0. Now we may discover one more regularity, namely,the fact that in the m-dag of this last program there is a progressive sequenceof cuts, each of them being made out of two consecutive calls of �b. Thus, weapply the tupling strategy and we introduce the following function, de�ned forany k � 0:11. p(k) = h�b(k + 1);�b(k)iBy applying the unfold/fold technique we can then derive the explicit de�-nition of the function p(k) and the following �nal program:1. �b(0) = 12. �b(1) = 112. �b(k + 2) = a+ b where ha; bi = p(k)13. p(0) = h1; 1i14. p(1) = h2; 1i15. p(2k + 2) = ha2 + 2ab; a2 + b2i where ha; bi = p(k)16. p(2k + 3) = ha2 + (a+ b)2; a2 + 2abi where ha; bi = p(k)where Equations 12, 15, and 16 hold for any k � 0. This program is very e�-cient and takes only O(log(n)) arithmetic operations for computing �b(n) (seealso [39]). 2



In the partial evaluation �eld, researchers have studied a method for improv-ing program e�ciency which we may classify under the global control issues.This method, called polyvariant specialization [9], specializes programs, insteadof generalizing them. Indeed, it allows for the generation of various di�erent ver-sions of the same program with the objective of achieving higher performances.The improvement of performances comes from the fact that having more infor-mation about the inputs to the program (or function call) one can make somemore simpli�cations at compile time. This method can be viewed as the oppositeto generalization, by which one constructs a general program to compute severaldistinct, but similar functions. Unfortunately, there is no general theory whichfor any given program tells us when it is better to specialize or to generalize.There is an inherent limitation in looking for an optimal strategy of whenand where to perform specialization and/or generalization steps. Indeed, onecannot hope to construct a universal technique for �nding a suitable regularitywhenever there is one, which allows us to improve any given program, becausethe equivalence of two functions can be expressed as a regularity of their symboliccomputation models, and yet equivalence of functions is undecidable. However,in practice, regularities which are useful for program transformation, are oftendecidable properties, and they can also be found by means of e�cient algorithms.7 Relating the Three Step Program TransformationMethodology to Program Specialization, Deforestation,and Finite Di�erencingThe three steps of the general program transformation methodology we havepresented in the previous sections do not always refer to a de�nite sequence ofactions performed when applying a particular program transformation technique.For supercompilation, unfold/fold transformation, generalized partial computa-tion, compiling control, and partial deduction, one may easily identify thosethree steps of the methododlogy. However, for some other techniques, like par-tial evaluation of functional and imperative programs, program specialization,mixed-computation [15], or deforestation [55], it is not always easy to do thesame. Nevertheless, we think that the concepts of symbolic computation, searchfor regularities, and extraction of �nal programs, are to some extent present inthose techniques as well.To see this, we would like to report the following phrases taken from [26,pages 68{69]:\Our main thesis is that program specialization can be done in three steps.1. Given the value of part of the program's input, obtain a description of allcomputational states reachable when running the program on all possibleinput values.2. Rede�ne the program's control by incorporating parts of the data state intothe control state, yielding perhaps several specialized versions of each of theprogram's control points (0, 1, or more; hence the term polyvariant special-ization).



3. The resulting program usually contains many trivial transitions. Optimizeit by traditional techniques, yielding the specialized (or residual) program."This description of the three steps which underline most program specializa-tion techniques, including partial evaluation and mixed computation, matchesquite closely the three steps of the methodology we have presented in this paper.The �rst step of the program specialization methodology corresponds to our�rst two steps, that is, the generation of a symbolic computation process andthe search for regularities of this symbolic computation. More precisely, as wehave shown in Section 3, symbolic computation can be used to `obtain the de-scription of all computational states reachable when running the program on allpossible input values'. By �nding suitable regularities we may make sure thatthis description is �nite.In practice, however, many specialization techniques use symbolic computa-tion models based on abstract interpretation which, unlike the models consid-ered in this paper, cannot always be described in terms of an unfolding process.Among these abstract interpretation-based techniques we would like to mentionthe techniques for binding time analysis [27, 34] and the regular approximationtechniques for approximating the least Herbrand model of a logic program [23].The second and third steps of the program specialization methodology cor-respond to what we have called here `extraction of the new program'. In thispaper we have only pointed out the derivation techniques which substantiallychange the program's control and we have not given much attention to variouspost-processing techniques (see, for instance, the renaming techniques in thecompiling control example and in the partial deduction example presented inthe previous sections). These post-processing techniques can be considered to bepart of Step 3 of program specialization.The reader may notice that program specialization is a particular instanceof the general program methodology we presented in this paper, because it isidempotent [54], in the sense that when specializing a program which has beenalready specialized, we get the same program we derived after the �rst special-ization. Other transformation methods, such as supercompilation and rule-basedprogram transformation are not idempotent. This fact can be illustrated by Ex-ample 4 where after deriving the program made out of Equations 1, 2, 9, and 10,by discovering a new regularity we were able to derive a new and more e�cientprogram.Some elements of the general methodology based on symbolic computation,search for regularities, and extraction of �nal programs are also present in thedeforestation technique.Deforestation is designed to eliminate intermediate data structures from func-tional programs by introducing new function de�nitions which are equivalent tothe composition of already available functions. In this sense deforestation can beviewed as an instance of the composition strategy (also called fusion) introducedin the �eld of unfold/fold transformation [10, 18] and it is also closely related toScherlis' internal specialization [46] and supercompilation [48].



Deforestation works via generating, by an unfolding process, from an ini-tial term containing nested function calls other (possibly in�nitely many) terms.Although deforestation does not explicitly construct any symbolic computationmodel, the unfolding steps it requires can be viewed as a symbolic computa-tion. The idea of �nding regularities by identifying similar con�gurations is alsopresent. In particular, the deforestation algorithm terminates only if a �nitenumber of terms modulo variants, is generated during unfolding. If this is thecase then it is possible to avoid intermediate data structures by introducing a�nite number of new function de�nitions which correspond to (a subset of) theterms generated by unfolding.Finally, among other techniques for program derivation we want to consideralso �nite di�erencing [35, 36]. The revisitation of this technique as an instanceof our general methodology is not very straightforward. However, the three stepsof �nite di�erencing, which are:\i) syntactic recognition of computational bottlenecks appearing within aprogram P , ii) choosing invariants whose maintenance inside P allows thesebottlenecks to be removed, and iii) scheduling how collections of invariantscan be maintained in P" [35, page 40]correspond, respectively, to: i) the symbolic computation model which allowsfor the detection of the bottlenecks, ii) the search for regularities which arethe invariants to be maintained, and iii) the program extraction by which newsequences of operations are generated with the objective of maintaining thoseinvariants. The reader may �nd more information about �nite di�erencing in thecited papers.8 Correspondences Among Some ProgramTransformation TechniquesWe will not present in details the formal relationships and correspondencesamong the many program transformation techniques mentioned in this paper,because as we already said, these correspondences can be considered as `com-mon knowledge' of the people working in the �eld. Let us simply mention amongsome other similar results, the following ones: i) the unfold/fold view of themixed computation technique described in [16], ii) the equivalence of driving insupercompilation and partial deduction shown in [25] for a particular class ofprograms, and iii) the straightforward way of using the unfold/fold transforma-tion technique to simulate partial deduction [44]. We now present this simulationin a simple example.Example 5. Suppose we want to partially evaluate the following program:p([ ]; Y ) p([H jT ]; Y ) q(T; Y )q(T; Y ) Y = b



q(T; Y ) p(T; Y )with respect to the set fp(X; a)g. We follow the partial deduction technique asproposed in [31] and we get the initial portion of the SLDNF-tree T1 depictedin Figure 6. By considering the non-failing branches of that tree and taking thecorresponding resultants, we get the program P1:p([ ]; a) p([H jT ]; a) p(T; a)which is a correct partial deduction because the requirements for independenceand closedness are satis�ed. Indeed, i) independence is a trivial consequence ofthe fact that in the set fp(X; a)g there is one atom only, and ii) closedness is aconsequence of the fact that the atoms p([ ]; a); p([H jT ]; a); and p(T; a) are allinstances of p(X; a).T1 :p(X; a)���+ QQQsq(T; a)p(T; a)a=b? ���+ QQQs
T2 :new(X) p(X; a)X=[ ] X=[HjT ] new([HjT ]) q(T; a)new([ ]) new([HjT ]) a=b new([HjT ]]) p(T; a)���+ QQQs���+ QQQs?� true

� �
Fig. 6. An SLDNF-tree for partial deduction (T1) and the corresponding unfolding tree(T2). Underlined goals are the unfolded ones. Upgoing arrows relate similar nodes.Using the unfold/fold method we �rst introduce a clause whose body is madeout of the goal p(X; a) and whose head has a fresh predicate symbol, say newp.The arguments of the head are the variables occurring in the body. Thus, weintroduce the clause:newp(X) p(X; a)Then, by using the unfold/fold method, we derive a program which can beused for evaluating queries of the form:  newp(X), instead of  p(X; a). Thederivation process takes the form of the unfolding tree T2 depicted in Figure 6.From that tree we can extract the following program P2 by performing, as wehave indicated in Section 5, a �nal folding step (whereby the body p(T; a) isreplaced by newp(T )):newp([ ]) newp([H jT ]) newp(T )which has performances similar (actually, higher, because newp has one argumentonly) to those of P1. 2



The reader should notice the perfect correspondence between partial deduc-tion and the unfold/fold technique we have now illustrated. In particular, wewant to stress that the condition which allowed us to perform the �nal foldingstep during program extraction, that is, the fact that p(T; a) is an instance of thebody of the clause newp(X)  p(X; a), is exactly the same condition, that is,closedness, which ensures the correctness of the partial deduction process [31].9 ConclusionsWe have presented a general methodology for the derivation of programs whichunderlines some familiar program transformation techniques like, for instance,partial evaluation, supercompilation, rule-based program derivation, programspecialization, and compiling control. This methodology can often be mecha-nized, although the extent to which this mechanization is possible, very muchdepends on the technique under consideration.This methodology is made out of three steps. They are: i) the construction ofthe symbolic computation model, ii) the search for regularities in that model, andiii) the extraction of the new program. Through the presentation of these stepsand some examples, we have illustrated in an informal way the correspondencesamong the above-mentioned program transformation techniques. They are allbased on the construction of some sort of �nite directed graphs whose arcsrepresent either the steps of the computations or the similarity relations amongcomputation states (or con�gurations). We have also brie
y considered the socalled control issue. It is related to the problem of guiding the actions to beperformed during the three steps of the methodology, and in particular we havelooked at various forms of the generalization strategy.In this paper we have stressed the similarities among the various techniquesfor program transformation. There are, however, also many di�erences amongthem. They are due, besides other reasons, to the di�erent languages and the dif-ferent semantics which are considered, and to the degree of automation which isrequired for their implementation. For instance, in the case of partial evaluationone strives for a completely automated process, whereas in supercompilation andrule-based program derivation, one also allows for interactive theorem provingcapabilities.AcknowledgementsWe have pro�ted from many conversations with several people over the pastyears. In particular, we would like to mention R. S. Bird, M. Bruynooghe, R.M. Burstall, W.-N. Chin, J. Darlington, D. De Schreye, A. P. Ershov, M. S.Feather, Y. Futamura, J. Gallagher, R. Gl�uck, N. D. Jones, T. Mogensen, B.M�oller, H. Partsch, R. Paige, P. Pepper, W. L. Scherlis, V. Turchin, P. Wadler,and our colleagues of the IFIP W.G. 2.1, the Italian Progetto Finalizzato SistemiInformatici e Calcolo Parallelo, and Compulog II Esprit Project. We thank S.Renault and M. H. S�rensen for comments on a draft of this paper.
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