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Abstract. We revisit the main techniques of program transformation
which are used in partial evaluation, mixed computation, supercompi-
lation, generalized partial computation, rule-based program derivation,
program specialization, compiling control, and the like. We present a
methodology which underlines these techniques as a ‘common pattern of
reasoning’ and explains the various correspondences which can be estab-
lished among them. This methodology consists of three steps: i) symbolic
computation, ii) search for regularities, and iii) program extraction. We
also discuss some control issues which occur when performing these steps.

1 Introduction

During the past years researchers working in various areas of program trans-
formation, such as partial evaluation, mixed computation, supercompilation,
generalized partial computation, rule-based program derivation, program spe-
cialization, and compiling control, have been using very similar techniques for
the development and derivation of programs.

Unfortunately, that similarity has not always been given enough attention
because of some lack of interaction among the various groups of researchers in-
volved in these areas. This was motivated by the fact that the objectives of these
groups were somewhat different, as for instance, program derivation, compiler
generation, and program optimization. Another reason for the lack of interac-
tion was the fact that the programming languages used, whether imperative,
functional, or logic, often made a significant difference in the way the various
techniques were actually implemented and applied.

In recent years comparisons have been made and correspondences have been
established among the different techniques in some particular cases [25, 44, 48].
For some time already, the scientific community has been aware that many such
correspondences exist in general, and they are based on the fact that those
techniques all share the same underlining methodology which we want to describe
in this paper. This general methodology shows that correspondence results may
have somewhat complex formalizations, but they are not accidental.

We know from various papers, conferences, and discussions with people work-
ing in the area of program transformation that the methodology we will describe
here is indeed ‘common knowledge’. Thus, the aim of this work is mainly to clar-
ify some issues related to this common knowledge and, as a side-effect, to indicate



why the correspondence results do hold and also to present the main features of a
general framework where different transformation techniques could be combined
together.

2 A Preliminary Example

In this section we revisit a familiar example of program derivation using a
functional language based on first-order recursive equations and the unfold/fold
transformation system with rules and strategies [10, 40]. This revisitation allows
us to present in a concrete case the three steps of the general methodology for
program transformation we want to introduce, namely, i) symbolic computation,
ii) search for regularities, and iii) program extraction. Various instances of this
methodology were developed in the seventies independently by many people in
several research fields such as partial evaluation, mixed computation, unfold/fold
transformation, and supercompilation.

Suppose we are given the following initial program for computing the Fi-
bonacci function:

1. fib(0) = 1
2. fib(1) = 1
3. fib(n +2) = fib(n + 1) + fib(n) for n >0

The computation of fib(k) for any natural number k& > 0, requires an expo-
nential number of sums. We want to derive a more efficient program so that the
number of the required sums is at most linear for all k¥ > 0. This universal quan-
tification of the variable k over the set of natural numbers, motivates the first
step of the general methodology which consists in considering a single symbolic
computation depending on k (or possibly a finite set of symbolic computations)
instead of the infinite set of concrete computations, one for each value of k.

Various models of symbolic computations have been proposed in the litera-
ture within various program transformation systems. We will consider here the
m-dag model [3] which given a recursive program, uses a directed acyclic graph
to represent the father-son relationship among the function calls evoked by the
given program.

Thus, in our case, starting from the root-node fib(k) we generate, using Equa-
tion 3, the two son nodes fib(k—1) and fib(k—2). The arguments k—1 and k—2
are computed by matching in the algebra of integers. Thus, for instance, fib(k)
which matches the left-hand-side fib(n+2) of Equation 3 for n = k—2 evokes the
two recursive calls fib(k—1) and fib(k—2), corresponding to fib(n+1) and fib(n),
respectively, in the right-hand-side of that equation. From the node fib(k—1)
we then generate the son nodes fib(k—2) and fib(k —3), and we identify the
two distinct nodes for fib(k—2). We then continue the node generation and the
node identification process in a breadth-first manner. Obviously, this process is
potentially infinite in the sense that from fib(k) we can generate the son node
fib(k—1) for any i > 0.

3



cut co cut ¢ cut c2

fib(k) . ifib(k—1) . fib(k—2) L ifib(k—3) .

Fig. 1. An initial portion of the m-dag for the fib function with the first three cuts of
a progressive sequence of cuts.

In Figure 1 we have represented an initial portion of the m-dag for the fib
function. In constructing this m-dag it is assumed that the argument of every call
of the function fib is greater than 1, and thus, Equation 3 is used for generating
two new nodes from any given node.

Now the general methodology we want to present, requires in its second step,
the search for a suitable regularity valid in the whole m-dag, and fortunately, as
we will see, there is no need for the complete representation of the infinite m-dag.

In our case, a suitable regularity is the existence of a ‘progressive sequence
of cuts’ [38]. Informally, this means that in the m-dag with initial node fib(k)
there is a sequence (cg,¢1,...) of sets of nodes with the following properties: i)
all sets, also called cuts, have equal cardinality, say C, ii) after removing a set of
that sequence the resulting m-dag has two disconnected parts (this is why each
set of the sequence is called a cut), iii) for any two successive cuts, say ¢; and
Cit1, we have that: ¢; # ¢;41, Vn € ¢;41 Im € ¢; such that if n # m then m > n,
and Vm € ¢; An € ¢4 such that if n # m then m > n, where > denotes the
transitive closure of the father-son relationship among nodes, iv) there are 1+ C
functions, say pg,p1,--.,pc, which all have arity C' and are defined in terms of
basic functions only, such that: (a) fib(k) can be computed from the C' function
calls in the cut ¢y using pg, and (b) Vi > 0,Vj, with 1<j<C, the j-th function
call in the cut ¢; can be computed from the function calls in the cut ¢;4; using
pj, and v) for every value of k, with £ > 0, in the sequence of cuts there exists a
cut whose function calls, instantiated to that value of &k, can be computed using
basic functions only, without requiring the computation of the son calls.

A progressive sequence of cuts in the m-dag with initial node fib(k) is: 0 =
({fib(k—1), fib(k—2)}, {fib(k—2), fib(k—=3)},...).

A different progressive sequence whose cuts have cardinality three, is:
({fiblk—1), fib(k—2). fib(k—4)}, {fib(k—5), fib(k—6), fib(k—8)},...).

Then the third step of the general methodology is the exztraction of the
new program from the symbolic computation and the discovered regularity. In
our case, given the progressive sequence of cuts o, we apply the tupling strat-
egy [10, 38] and we introduce the function t(n) = (fib(n + 1), fib(n)) which for
any sequence of values of the variable n, gives us the corresponding sequence of
values of the function calls in the cuts of o. Using the unfold/fold technique [10]
we then get the following program:



1. fib(0) = 1

2. fib(1) = 1

4. fib(n + 2) = u+ v where (u,v) =t(n) forn >0
5.4(0) = (1,1

6. t(n + 1) = (u + v,u) where (u,v) =t(n) forn >0

As expected, this program uses only O(n) sums to compute the value of fib(n).
The reader should notice that Equations 5 and 6 are obtained in the unfold /fold
technique by looking for the explicit recursive definition of the new tuple function
t(n). In particular, Equation 6 is derived as follows:

t(n+1) = (fib(n+2), fib(n+1)) = {unfolding} =
= (fib(n+1) + fib(n), fib(n+1)) = {where-abstraction and tupling} =
= (u+wv,u) where (u,v) = (fib(n+1), fib(n)) = {folding} =
= (u+wv,u) where (u,v) = t(n)

The where-abstraction step avoids the double evaluation of fib(n+1) while com-
puting ¢t(n+1), and the last folding step avoids the double evaluations of the fib
calls ‘at every level of recursion’, thus, it makes the efficiency gains of the where-
abstraction step computationally significant. This is why in the unfold/fold tech-
nique one looks for final folding steps to be made at the end of the derivation.
The same occurs, for instance, in the supercompilation technique where one looks
for ‘self-sufficient models’ of the computation [52].

In the following sections we illustrate in some detail the general method-
ology for program transformation we have seen in action in this preliminary
example. We also indicate the way in which various techniques for program
transformation proposed in the literature fit into this general methodology. In
Section 3 we consider the symbolic computation model called the symbolic trace
tree used in compiling control, and we briefly compare it with the models used
in other program transformation systems. In Section 4 we illustrate the idea of
finding suitable regularities in the symbolic computations, and in particular, we
consider the case of partial evaluation in logic programming. In Section 5 we
address the problem of extracting new programs from symbolic computations.
Since the application of the general methodology is highly nondeterministic and
may also lead to infinite constructions, we need some techniques for its control.
Those techniques are analyzed in Section 6. In Sections 7 we relate the general
methodology to program specialization, deforestation, and finite differencing,
and finally, in Section 8 we briefly present some correspondences among various
program transformation techniques.

3 Symbolic Computation Models

A method for transforming a given initial program into a new program which
behaves efficiently for every input value, is to look for suitable properties which
hold for every computation performed by the initial program. These proper-
ties can often be discovered by applying the general technique, called abstract



interpretation [13], by which we represent a possibly infinite set of concrete com-
putations, one for every input value, by a single symbolic computation, and then
by reasoning on that symbolic computation.

Various models of symbolic computations have been proposed in the litera-
ture, and we briefly discuss them at the end of this section. Now we consider
in some detail a particular symbolic computation model, called symbolic trace
tree, which has its relevance in the transformation technique for logic programs
called compiling control [7].

The Symbolic Trace Tree for Compiling Control

A logic program can be viewed as the union of some ‘logic definitions’ (that is,
the axioms of a theory) and a ‘control strategy’ (that is, a theorem prover) [29].
The efficiency of a logic program very often depends on the control strategy.
Thus, in order to achieve high performances, the programmer, instead of relying
on the evaluation strategy provided by the system, may define his own control
strategy. This can be done, for instance, via modes or delay declarations [33]
based on the instantiation patterns of the goals during execution. However, one
may avoid the difficulty of dealing with those declarations at run-time by using
the compiling control technique as we now indicate.

Let Siere be the familiar Prolog control strategy, which selects the literals in
the goal at hand in a sequential order from left to right. Given a logic program
P, and an efficient control strategy Seg for P, we want to derive a new program
P; such that, for a given class of goals, P; with control strategy Seg and P with
control strategy Spery have equivalent computational behaviour. According to the
general methodology we have presented in Section 2, compiling control works in
three steps as follows.

1. Starting from a symbolic input goal, in the first step compiling control gen-
erates a symbolic trace tree using the control strategy Seg. The symbolic
trace tree represents the class of concrete computations, each of which cor-
responds to a concrete goal in the class of goals represented by the symbolic
input goal.

2. We then look for a finite description of the symbolic trace tree which is
potentially infinite. This is done by identifying similar nodes and thus, gen-
erating a finite graph, possibly cyclic, called symbolic trace graph. The notion
of similarity may vary according to the particular instances of the compiling
control technique one uses.

3. In the final third step a new program P; is extracted from the symbolic trace

graph. By construction, the behaviour of P, with the control strategy Siest
is equivalent to that of P, with control strategy Seg.
This equivalence establishes the correctness of the transformation and it is
based on the relationship between the concrete and the symbolic computa-
tions which is formalized, as we will see in the example below, by using the
abstract interpretation technique.



Ideas related to compiling control have also been investigated in the area
of functional programming within the so called filter promotion strategy [4,
14], whereby function evaluations can be anticipated for avoiding unnecessary
computations and improving program behaviour.

In the following example we will see in action the compiling control technique.
The final program can also be derived by using unfold/fold program transfor-
mations as shown in [50].

Ezample 1. [Common Subsequences] Let us consider the following logic program
Csub, which generates all common subsequences X of not necessarily consecutive
elements of two sequences Y and Z. Sequences are represented as lists.

1. csub(X,Y, Z) < subseq(X,Y), subseq(X, Z)
subseq([ ], X) +

3

2.
3. subseq([A|X], [A]Y]) < subseq(X,Y)
4.

3

subseq(X, [B|Y]) < subseq(X,Y)

Let us consider the set I of input goals of the form csub(z,y,z), where x is
a free variable and y and z are ground lists. For these goals the control strategy
Sleft 18, in general, inefficient because it first evaluates subseq(z,y) and generates
a binding, say z, for z and then it tests whether or not subseq(z, z) holds.

The following producer-consumer coroutining strategy, called Sp., allows for
a more efficient execution of the above program. This strategy assumes that an
atomic goal A is said to be a consumer (of bindings) iff all its arguments are
instances of the arguments of every clause head which is unifiable with A itself,
and otherwise the atom A is said to be a producer (of bindings). The strategy
Spc can be defined as follows: in the goal at hand Sy, chooses for execution the
leftmost consumer, if any, and otherwise it chooses the leftmost producer.

In order to represent a set of concrete goals as a single symbolic goal, we
consider the set G of all ground terms and the set F' of all free variables. These
two sets, together with the empty set of terms and the set of all (ground and non-
ground) terms, form the domain of an abstract interpretation which is a lattice.
(The reader unfamiliar with abstract interpretations in logic programming may
refer to [2, 6, 32].)

A finite portion of the symbolic trace tree for a goal in I, generated by
using the program Csub and the control strategy Sy, is depicted in Figure 2
(where for the time being, the upgoing arrows are to be ignored). The root is
labeled by the symbolic input goal csub(X*, Y% Z%), meaning that in every
concrete computation the input goal is of the form csub(X,Y,Z) where X is
a free variable and Y and Z are bound to ground terms. In the goals labeling
the non-root nodes of that tree, a variable with superscript F' means that in
every concrete computation that variable is bound to a (possibly different) free
variable, whereas a variable with superscript G means that in every concrete
computation that variable is bound to a ground term.

In the node M we have unfolded the atom subseq(X ', Y “) because it unifies
either with clause 2 (if Y¢ = []) or with clauses 3 and 4 (if Y is a non-empty
ground list). In both cases subseq(X",Y%) is a producer, and for the same



reasons, also subseq(X ", Z%) is a producer. In the node N we have unfolded the
atom subseq([AY|X 1], Z%) because it is a consumer and subseq(X 17,V 1) is
a producer.

esub(XT, Y9, 29

> M : subseq(X" YY), subseq( X", Z2%) -—-

X/1] AT/
Y/[A]Y1]
subseq([ ], Z) A subseq(XF,Y19), subseq(XT, Z9)
B|Z1
/\ “ N : subseq(X1",Y19), subseq([A"|X1"], Z2¢) <——
subseq([ ], Z219)
Z[[A]121] Z/[B|Z1]

subseq(X17,Y19), subseq(X17, Z19) subseq(X1F,Y19), subseq([AT | X17], Z19)

Fig. 2. An initial portion of the symbolic trace tree for Csub. The atoms selected for
unfolding by the strategy Spc are underlined. Upgoing arrows relate symbolic goals
which are variants of each other. These arrows do not denote arcs of the tree.

The goal labeling any non-root node of the symbolic trace tree is obtained
from the goal of the corresponding father node according to the following un-
folding process: i) we select an atom of the goal in the father node following the
strategy Spc, ii) we unify the selected atom with the heads of all clauses in Csub,
iii) we replace the selected atom by the bodies of the unifying clauses, whereby
getting the son nodes, and iv) we apply to the son nodes the bindings computed
by unification. In the symbolic trace tree the arc from a father node to a son
node is labeled by the bindings for the variables of the father node that are
computed during the corresponding unfolding step by the unification process.

The variable superscripts in any son node are obtained from the superscripts
in the corresponding father node by taking into account that: i) the unification
of a ground term with a term containing variables binds all variables to ground
terms, and ii) the unification of a variable with a term containing variables does
not bind any variable in that term. We leave to the reader the task of formalizing
the process of computing the variable superscripts. This can be done by using
the notion of abstract unification, that is, unification among terms in the domain



of the abstract interpretation [2, 6, 32].

Now, as in the second step of the general methodology, compiling control
searches for regularities in the symbolic trace tree with the aim of deriving a
finite representation of that tree. In our case this finite representation can be
obtained by identifying goals which are variants of each other and have the
same superscripts. By doing so we get the finite cyclic graph, called symbolic
trace graph, depicted in Figure 2 where nodes related by upgoing arrows are to
be identified.

The theory of abstract interpretation can be used for proving various cor-
rectness properties of the symbolic trace graph and in particular, the fact that
it indeed represents the set of all concrete computations generated by the given
set of input goals, in the sense that every concrete computation follows a se-
quence of arcs in that graph and at each computation step the concrete goals
are instances of the symbolic goals in the corresponding nodes and they agree
with the superscripts.

As we will discuss in the next section, this finite representation property
has a fundamental importance and it allows us to perform the third step of the
general methodology, that is, the derivation of a new program from the initial
one.

Finiteness of the symbolic trace graphs is related to analogous properties
which are required in other transformation techniques, such as self-sufficiency
of the graphs of states and transitions in supercompilation [52], foldability of
the unfolding trees in unfold/fold program transformation [43], and closedness
in partial deduction [31].

The extraction of the derived program is performed as we now indicate (see
also Figure 3).

newl(...)

Fig. 3. The symbolic trace graph derived from the symbolic trace tree of Figure 2 after
the introduction of the new predicate names: newl, new2, new3d, and new4.

We introduce new predicate names, say newl, new2,.. ., one for each set of



non-empty variant goals, and for each arc U b5V of the symbolic trace tree,
with V' # 0O, we introduce the new clause newh(U)# « newk(V), where the
predicate names occurring in U and V are to be considered as function names,
because they now occur in argument positions. For the arc subseq([], Z) — O
we introduce the new clause new3(subseq([ ], Z)) +.

Thus, we get the following new program:

newl(csub(X,Y, 7)) « new2(subseq(X,Y), subseq(X, 7))
new2(subseq([ 1,Y), subseq([ ], Z)) < new3(subseq([ ], Z))
new?2(subseq([A| X 1], [A|Y'1]), subseq([A|X1], Z)) «
newd(subseq(X1,Y1), subseq([A| X 1], Z))
new?2(subseq(X, [B|Y'1]), subseq(X, Z)) «
new?2(subseq(X, Y1), subseq(X, 7))
new3(subseq([ ], Z)) +
new3(subseq([ ], [B|Z1])) + new3(subseq([ ], Z1))
newd(subseq(X1,Y1), subseq([A|X1],[A|Z1])
new2(subseq
newd(subseq(X1,Y1), subseq([A|X1],[B|Z1])
newd(subseq

e

X1,Y1), subseq(X1,Z1))

F

X1,Y1), subseq([A|X1], Z1))

For goals of the form newl(csub(X,Y, Z)), this program computes the same
answers as the ones computed by Csub for goals of the form csub(X,Y, Z) where
X is a free variable and Y and Z and ground terms. The derived program,
however, is more efficient than the initial one because it is more deterministic.

In order to avoid the presence of nested terms, intermediate predicates, and
subsumed clauses, we then perform some final simple transformations which are
similar to ‘post-unfolding’ in the supercompilation technique. Thus, we get the
following program [50]:

new5([,Y, Z) <

new5([A|X] [A]Y], Z) + newb(A, X,Y, Z)
newb(X,[B|Y], Z) + new5(X,Y, Z)
newb(A, X,Y,[A|Z]) + new5(X,Y, Z)
new6(A, X,Y, [B|Z]) < new6(A, X,Y, Z)

where the predicates new5 and new6 correspond in Figure 2 (and 3) to node M
and N, respectively. O

Other Symbolic Computation Models

Now we would like to consider some other symbolic computation models which
have been proposed in the literature both for functional and logic languages.
They differ for the information which is recorded during the symbolic compu-
tation steps. However, all of them use a basic operation similar to unfolding,
which may be viewed as an abstraction of a computation step. The specific form
of this basic operation varies in accordance with the language and the semantics
considered.



Burstall and Darlington [10] have the ezecution tree model which is used
to discover the new function definitions, the so called eureka definitions, to be
introduced during the derivation of new programs via folding/unfolding trans-
formations. The execution tree may be viewed as an abstraction of the concrete
computation and consists of a tree of recursive calls constructed by unfolding a
symbolic input term. The m-dags of recursive calls [3, 38], which have been pre-
sented in our preliminary example, are further developments of this approach.
A symbolic computation model based on unfolding, the so called unfolding tree,
that is, a tree of clauses obtained by unfolding, has been proposed for logic
programming in [43, 41].

In Turchin’s supercompilation technique [52], the symbolic computation pro-
cess is performed by driving, which is analogous to unfolding. The driving process
generates a tree of configurations, or a graph if we identify nodes with similar
configurations. This graph is called graph of states and transitions. A similar
model is the partial process tree used in the positive supercompilation tech-
nique [47, 48]. There is, however, a difference between unfolding a la Burstall
and Darlington and driving a la Turchin: by unfolding we replace an expression
which matches the left-hand side of an equation by the corresponding instance
of the right-hand side, whereas by driving a sort of unification process, rather
than matching, takes place. This makes driving very similar to the unfolding
mechanism we have seen in action in the compiling control example above. A
formal correspondence between driving and unfolding in logic programming can

be found in [25].

More similarities between supercompilation and other techniques used for
transforming logic programs are based on the idea of performing symbolic com-
putations by meta-programs or, in Turchin’s terminology, metasystem transi-
tions [24, 54]. For instance, the transformation technique presented by Gallagher
in [20] works by specializing a meta-interpreter, that is, a logic program which
works as an interpreter for logic programs, w.r.t. a particular input program.
Also the symbolic trace tree for compiling control may be generated using a
meta-interpreter.

More complex operations may be performed during symbolic computation.
For instance, in supercompilation one is allowed to use any ‘clever trick’ [52,
page 293], in GPC-trees [19] one may use theorem provers to partially evalu-
ate conditionals, and when constructing unfolding trees of logic programs one
may perform, together with unfolding and folding steps, also goal replacement
steps [41]. By these goal replacement steps we replace old goals by new equivalent

goals using lemmas whose proofs are done off-line.

A special model of symbolic computation is the SLDNF-tree which is the
basis for the partial evaluation technique in logic programming [31]. In this model
the symbolic computation coincides with the concrete one (which can also be
represented as an SLDNF-tree), because in logic programming one is allowed to
run programs with input goals which contain free variables. Further refinements
of partial evaluation, such as the techniques based on characteristic trees [22, 30)
use notions which are abstractions of SLDNF-trees.
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4 Searching for Regularities in Symbolic Computations

In this section we consider the problem of searching for regularities in a symbolic
computation model of the program at hand. These regularities may be used for
extracting a new program.

It is hard to devise a general notion of regularity which ensures that the de-
rived programs are in all cases more efficient than the initial ones. Thus, different
notions of regularity have been considered in the various program transformation
techniques. Those notions, however, are not unrelated, and indeed most of them
refer to similarity relations which hold between nodes of symbolic computation
models. In particular, let us consider again the compiling control example of the
previous section. In that example we have seen that an efficient program which
embodies an enhanced control strategy, can be extracted from the symbolic trace
tree when each leaf goal is a variant of an ancestor goal and the corresponding
renaming substitution preserves the instantiation of the variables (that is, the
superscripts G and F). This correspondence between nodes of the symbolic trace
tree is the similarity used in compiling control.

In other symbolic computation models one may find other similarity relations
(not necessarily symmetric) which formalize the fact that a configuration (or a
set of configurations) of the symbolic computation can be expressed in terms of
a previously generated configuration (or set of configurations). For instance, in
the case of the m-dag model described in the Fibonacci example, a cut may be
considered to be similar to the next cut in a progressive sequence [38], because
we can get the function calls in a cut from those of the next cut by substituting
an expression for a variable (in our case, k—1 for k).

Since we should be able to derive a new program from the symbolic computa-
tion of a given initial program, it is important that we find a finite representation
of the potentially infinite symbolic computation, because as we will see in the
next section, the structure of the derived program is closely related to that of the
symbolic computation. This explains why several notions of regularity require
that one should find a finite set of configurations such that every configuration
in the symbolic computation is similar to a configuration in that set.

Now we look at the partial evaluation technique in logic programming and
we indicate the particular notions of similarity and regularity which are used
there. We will then mention how these concepts are used in other transformation
techniques.

Regularities in Partial Evaluation of Logic Programs

Partial evaluation is a well-known program transformation technique which al-
lows us to derive a new program from an old one when part of the input data is
known before evaluation. The reader may refer to [12, 21, 26] for introductions
and surveys on this topic.

In the case of logic programming, where partial evaluation is also called
partial deduction, it is usually assumed that we are given an initial program P
and a set A of possibly non-ground atoms, and by partial deduction of P w.r.t.



A, we want to derive a new program P’ such that P and P’ compute the same
answers for every input goal which is an instance of an atom in A.

One of the most popular techniques for partial deduction has been for-
malized by Lloyd and Shepherdson [31]. In that technique the program P’ is
obtained by collecting together the clauses, called resultants, which are con-
structed as follows: for each element A; of A, i) we first construct a finite por-
tion, containing more than one node, of an SLDNF-tree, say T;, for the pro-
gram P and the atom A;, then ii) we consider the non-failing branches of T;
and the goals at their leaves, say B, ..., B;», and the computed substitutions
along these branches, say 6;1,...,0;, and finally, iii) we construct the clauses:
Aigil — Bil; ey AZGW — Bir-

The SLDNF-trees constructed for partial deduction can be viewed as sym-
bolic computations starting from the atoms in A and representing all SLDNF-
trees starting from atoms which are instances of the atoms in A.

If we now assume that: i) every atom in P’ is an instance of an atom in
A, that is, P' is A-closed, and ii) no two atoms in A have a common instance,
that is, A is an independent set of atoms, then P’ is a correct partial deduction
of P w.r.t. A, in the sense that for every input goal G which is an instance of
an atom in A, we have that P U {+ G} has a computed answer substitution
6 iff P' U {«~ G} has the computed answer substitution #, and P U {«+ G}
finitely fails iff P’ U {<- G} finitely fails [31]. The following example shows that
partial deduction can be viewed as a particular case of our general program
transformation methodology made out of three steps.

Ezample 2. [Partial Deduction of a Parser] Let us consider the following Parse
program, adapted from [49, page 381], for parsing words of context free lan-
guages.

parse( Grammar, [Symb], [Symb| X\ X) < terminal(Symb)
parse( Grammar,[Symb], Word) < nonterminal(Symb),
member (Symb — Symbs, Grammar),
parse( Grammar, Symbs, Word)
parse(Grammar, [Symb1l, Symb2|Symbs|, Word X\ X) <
parse( Grammar, [Symbl], WordX\Y'),
parse( Grammar, [Symb2|Symbs], Y\ X)
terminal (0)
terminal(1) +
nonterminal(s) <+

nonterminal (u) <

The first argument of parse is a grammar represented as a list of productions
of the form Symb — Symbs, where Symb is a nonterminal symbol and Symbs is a
sequence of terminal or nonterminal symbols. The second argument of parse is a
list representing the sentential form at hand. The third argument is the word W
to parse which is represented as a difference-list, that is, X\Y is the difference
list representing W iff W concatenated with Y is X. This representation allows
for an efficient word decomposition, which is needed in the third clause of parse.



Suppose that we want to specialize our parser w.r.t. the grammar
{s=>0u, u—1 u—=0uu, u—1s}

where s is the start symbol. In other words, we want to partially evaluate Parse
w.r.t. the input goal parse(I,[s], X'\[]) where I" is the term [s — [0, u], u — [1],
u — [0,u,u], u — [1,s]] representing the given grammar. To this aim, we
consider the following independent set A of two atoms:
= {parse(I,[s], X\Y), parse(l[u], X\Y)}

which will allow us to partially evaluate the given program w.r.t. the input goal
parse(I, [s], X\[]) because this goal is an instance of the atom parse(I, [s], X\Y)
in that set [31].

We then construct the two finite initial portions 77 and 75 of SLDNF-trees
(in this case no negation as failure steps are needed, because the program is
positive) depicted in Figure 4. In this figure: i) an arc stands for one or more
SLDNF-resolution steps, ii) underlined atoms are the ones which are unfolded,
iii) when not indicated the substitution corresponding to a successful arc is the
identity substitution, iv) x denotes failure, v) O denotes success, and vi) upgoing
arrows relate leaf goals to root goals of which they are instances (these arrows
are not arcs of the SLDNF-trees).

T1: T2
— parse ([, [s], X\Y') —— parse(l, [u], X\Y) g———"—-
P (7’ [0.u], XV) parse(I,[1], X\Y') parse(I,[1,s], X\Y)
X/[1[Y] b‘ parse(L, [0,u,u], X\Y)
parse(L, [u], Z\Y), )
parse (I, [0], X\Z) parse(I, [uu], Z\Y),  parse(I[s], Z\Y),
O~ parse(I, [0], X\Z) parse(I, [1], X\Z)
x/0i2] \ X017} [ \
% parse(I, [u,u], Z\Y') X712 x

parse (I, [u], Z\Y') V
parse(L, [s], Z\Y)
parse(I, [u], Z\V'),

parse(I, [u], V\Y)

Fig. 4. Two finite portions 77 and 7% of SLDNF-trees for the Parse program.

The resultants of the non-failing branches of these two SLDNF-trees are the
following clauses:

parse(I, [s],[0|Z1\Y) < parse(I,[u], Z\Y)
parse(L, [u], [IIY\Y) <



parse(L, [u],[0|Z1\Y) < parse(L,[u], Z\V), parse (I, [u], V\Y)

3

parse(L, [u], [1|Z1\Y) < parse(L,[s], Z\Y)

3 3

These resultants form an A-closed set of clauses and therefore they constitute
a correct partial deduction of Parse w.r.t. A.

Similarly to the compiling control example, the above program may be further
improved by introducing, using the renaming transformation [21], new predicate
names corresponding to the different instances of the predicate parse. By doing
so (and also by renaming some variables), we get the following final program
PdParse:

pd_parse(X) « parse_s(X,[])

parse_s([0|X],Y) < parse_u(X,Y)
parse_u([1|X], X) «

parse_u([0|X],Y) < parse_u(X, Z), parse_u(Z,Y")
parse_u([1|X],Y) < parse_s(X,Y)

The correctness results for partial deduction can easily be extended to the
case where we consider the above renaming transformation. In this example we
have that, for every term w, Parse U {< parse(I,[s],w\[])} has a computed
answer substitution 6 iff PdParse U {« pd_parse(w)} has the computed answer
substitution 6, and Parse U {« parse(I,[s],w\[])} finitely fails iff PdParseU
{+ pd_parse(w)} finitely fails. O

One may notice that the A-closedness property of the program derived by
partial deduction from a program P w.r.t. A, is equivalent to the following
property of the set of SLDNF-trees constructed for the partial deduction of P
w.r.t. A: each atom occurring in a non-failing leaf of an SLDNF-tree in this set
of trees is an instance of an atom occurring in a root (not necessarily within the
same tree). If a set of SLDNF-trees enjoys this property we will say that it is
closed (see Figure 4 for an example where this property holds).

The notion of a closed set of SLDNF-trees nicely illustrates the idea of regu-
larity of a symbolic computation. Indeed, that notion is based on the similarity
relation whereby a leaf node is similar to a set of root nodes iff every atom in
the goal of that leaf is an instance of the atom in a root of the given set. We also
have that a closed SLDNF-tree T', that is, a closed set of SLDNF-trees with one
tree only, represents an infinite SLDNF-tree where all goals may be expressed
in terms (more precisely, are conjunctions of instances) of the finite set of goals
occurring in 7T'. Moreover, given a closed set of SLDNF-trees we may derive a
program which is equivalent to, and hopefully more efficient than the initial
program, by extracting clauses from their non-failing root-to-leaf paths.

Other Notions of Regularity

We have mentioned at the beginning of this section the notions of regularity
used in compiling control and in some unfold/fold techniques for functional pro-
grams. Now we will briefly discuss some other forms of regularities in symbolic
computation models.



One of the earliest transformation techniques which uses concepts analogous
to ‘similarity’ and ‘regularity’, is Turchin’s supercompilation. As already men-
tioned in Section 1, the symbolic computation model for supercompilation is the
directed graph of states and transitions constructed by driving and generalization
steps (In Section 6 we will give more details on the generalization operation). In
this directed graph a configuration Cj is similar to a previously generated one
C; iff C; is a specialization of C;, that is, the set of concrete computation states
represented by C; is a subset of that of C;. The notion of regularity corresponds
to that of self-sufficiency: a finite graph of states and transitions is said to be
self-sufficient when every configuration is either passive (that is, an expression
made out of basic operators) or similar to a previously generated one.

Related concepts of similarity and regularity are also present in various ver-
sions of the supercompilation technique, such as positive supercompilation [48].

Also in the unfold/fold technique for the transformation of logic programs,
we encounter a similarity notion and a regularity notion. They are related to the
construction of unfolding trees [43] which are used for guiding the application of
the unfold/fold rules. The similarity notion is the foldability of a clause and we
say that a clause is foldable when its body (except for some basic predicates) is
an instance of the body of an ancestor clause in the tree. The regularity notion is
the foldability of the unfolding tree and we say that an unfolding tree is foldable
when it has a finite upper portion whose leaves are foldable clauses or clauses
whose bodies either are made out of basic predicates or contain failures. The
reader will realize the very close relationship between the notions of foldable
unfolding trees and closed SLDNF-trees we have presented above.

In the generalized partial computation technique the similarity notion be-
tween nodes in a GPC-tree is determined by the absence of the so called P-
redexes [19]. In particular, in a GPC-tree a node N is similar to an ancestor
node M if i) Az.f(x) is the function computed at node M with domain dom y,
ii) Az. A[f(B]z])] is the function computed at node N where A[...] and BJ...]
are suitable contexts and B[z] ranges over domy, and iii) domp C domy. The
regularity notion of a GPC-tree is, as usual, based on the fact that every leaf
node is either a basic value or similar to an ancestor node. We cannot go into
more details here. However, we want to stress that, in sharp contrast to super-
compilation, in generalized partial computation one performs an unfolding step
when a node represents a subset of the set of the concrete computation states
represented by a previously generated node. The underlying assumption is that
with more information on the input data one may get more specialized and
hopefully, more efficient programs. We will return on this issue of specialization
versus generalization in Section 6.

5 Program Extraction

In this section we consider the third step of the general methodology, that is, the
process of extracting a new program from the symbolic computation of the given
initial program and also the suitable regularities which have been discovered.



We have already remarked that it is important that the regularities are ‘suit-
able’, that is, they indeed allow for program extraction. We are not interested
here in the formalization of this suitability notion. It will be enough to consider
the particular case, which is the most frequent in practice, where the symbolic
computation is described by means of a directed graph whose arcs correspond
to concrete computation steps. There are basically two approaches to program
extraction in this case: either the direct extraction or the extraction via trans-
formation rules.

An example of the first approach can be taken from partial deduction, where
there is a simple way of deriving the clauses of the final program directly from
the closed set of SLDNF-trees which have been constructed by applying, for
instance, the procedure described in [21]. Indeed, every path from the root to a
non-failing leaf in those trees, generates a clause of the program to be extracted.
Also in generalized partial computation we directly extract programs from the
corresponding GPC-trees by looking at their paths, but we may also allow for
the use of some recursion removal techniques [19].

An example of program extraction via transformation rules may be given
using the transformation of the Fibonacci program presented in Section 2. We
start from the known regularity, that is, the existence of a progressive sequence of
cuts, and we perform the extraction by exploiting the properties of that sequence
as follows: i) we first introduce by the definition rule the new function #(n) which
tuples together the function calls in a generic cut, ii) we apply the unfolding rule
and the where-abstraction rule to express the initial function call in terms of
the calls in the first cut whereby extracting Equation 4, that is, fib(n + 2) =
u + v where (u,v) = t(n), iii) by applying the unfolding rule we compute the
value of the function calls in the cut for which there is no need to compute the
calls of their son nodes whereby extracting Equation 5, that is, ¢(0) = (1, 1),
and finally, iv) we apply the unfolding, where-abstraction, and folding rules to
compute the values of the function calls in a cut from those in the next cut
whereby extracting Equation 6, that is, ¢(n+ 1) = (u+ v, u) where (u,v) = t(n).

This program extraction shows that for the fib function the existence of a
progressive sequence of cuts is a suitable regularity, and indeed the various prop-
erties of that sequence suggest the actions to be performed during the extraction
itself.

For the extraction of the new program of the fib function we can also use
the direct approach, but it is necessary to construct a symbolic computation
model which is more informative than the one based on the m-dags used in
Section 2. This more informative model is based on the construction of a set
of trees which can be obtained by an extension of the positive supercompila-
tion technique described in [47]. The extension is motivated by the fact that in
positive supercompilation it is not possible to directly exploit the interactions
among different function calls because they belong to different branches of the
process trees. We will not give here the formal rules for the construction of this
more informative model of computation. It will be enough to say that we follow
closely the positive supercompilation and partial deduction techniques. There



are, however, some differences. In particular, the differences w.r.t. positive su-
percompilation include the rules that: i) when folding can be performed we do
not expand the process tree and we initialize a new tree, instead, and ii) when
constructing trees we perform together with unfolding and lemma application
steps, also where-abstraction steps and tupling steps. Tupling consists in the
introduction of new functions defined in terms of tuples of some old functions.
These tuples of functions are those which allow us to take advantage of the
interaction among different function calls. Differences w.r.t. partial deduction
include: i) a new notion of the similarity relation among nodes: a node N; with
label ezpr, is similar to a node Ny with label Clezpr,] iff the expressions expr,
and expr, are variants of each other, and C1.. ] is a context made out of basic
functions only, and ii) a new notion of closedness: a set of trees is said to be
closed iff every leaf of every tree has a similar root (according to the new notion
we have now introduced).

A possible criterium for terminating the construction of a tree is as follows:
a node of a tree is a leaf if either i) it cannot be subject to any unfolding or ii)
it is similar to a root or iii) it has been produced by a tupling step. In this last
case we initialize a new tree whose root is the tuple which has been introduced
by the tupling step.

T1: T2 :
fib(k) — (fib(n+1), fib(n)) 4———
k/0 /k/1 k/n+2 n/0 n/j+1
1 1 fib(n+1) + fib(n) (LfiB(O)) (fib(j+1) + fib(5), fib(j+1))
where-abstraction where-abstraction
and tupling and tupling
u+v where _ 1,1) (u+v,u) where |
(u,v) = (fib(n+1), fib(n)) (u,v) = (fib(j+1), fib(4))

Fig. 5. Two trees which represent a symbolic computation of the fib function. Under-
lined expressions are the unfolded ones. Leaves are related to their similar roots by
upgoing arrows. Those arcs are not arcs of the trees.

In Figure 5 we have depicted a set of trees which represent the symbolic
computation of the fib function from which we can get the new program for
fib by direct extraction. Given the trees of Figure 5 the extraction of the new
program is performed as follows. Analogously to what we have seen in the pre-
vious section for partial deduction, we first give a new name to the new roots
we have introduced ({fib(n+1), fib(n)) only in our case). This operation in the
unfold/fold technique corresponds to the definition of ‘eureka predicates’ [10],



and in the partial deduction technique corresponds to renaming [21]. We then
perform some folding steps corresponding to the nodes which have similar roots,
and we finally extract an equation for each root-to-leaf path in the trees obtained
after folding, by taking into account also the substitutions along the paths.

6 Control Issues

The various steps of the general methodology for program transformation and
in particular, the symbolic computation process must be controlled in some way
if one wants to derive very efficient programs. Now we briefly consider these
control issues which can be classified into two different categories: local and
global control issues.

6.1 Local Control Issues

When the symbolic computation is performed via unfolding steps (or driving),
we may get into non-deterministic situations, whereby the symbolic computation
steps may allow for more than one successor expression (or configuration). For
instance, during the symbolic execution of a logic program often we may choose
in more than one way the atom to unfold, and analogously, during the symbolic
execution of a functional program often there is a choice of the expression to be
evaluated in the following execution step. Different choices may drastically affect
the following step of the general methodology, that is, the search for suitable
regularities. These choices may be subject to constraints, like for instance, the
fact that the symbolic computation should preserve the semantics of the concrete
computations it represents. For example, in functional programs if we consider
the call-by-value semantics, the innermost function calls should be evaluated
before the outermost ones.

Many techniques for controlling unfolding and driving have been proposed in
the various models of symbolic computations (see for instance, [11, 43, 55] and
the preceding compiling control example). In particular, several authors have
studied the problem of when to stop unfolding, and for instance, one may decide
to do so when unfolding is no longer deterministic [21] or when the expression in
the node at hand can be ‘embedded’ in the expression in one of its ancestors [47].
A general technique for ensuring the termination of the unfolding process is
described in [8].

During the construction of a symbolic computation model, in order to derive
programs with high performances it is often important, in practice, to perform
lemma application steps, that is, to substitute subexpressions by equivalent new
subexpressions. The reader familiar with program derivation techniques knows
that these lemma applications, also called law applications in functional pro-
gramming or goal replacements in logic programming, may allow for a great im-
provement of program performances which is otherwise impossible (see [26, 56]
for some upper bounds on the program speedups which can be obtained without
the use of lemmas). Typical lemmas one wishes to apply are: associativity of



concatenation, existence of a neutral element for plus and times, etc. Actually,
these lemmas should preserve equivalence of the whole expressions where the
substitutions take place, and therefore, they should determine congruences, not
simply equivalences.

The control issue related to these lemma applications concerns the problem
that while generating the symbolic computation model, one has to decide which
lemma should be applied and where it should be applied. This is an important
issue which does not have a general solution, because unfortunately, there is no
theory by which in all cases we may guide the search and the application of
lemmas so that a suitable regularity will eventually be discovered.

The ability to perform lemma application steps makes program transforma-
tion very closely related to theorem proving, and indeed some people have looked
at techniques which allow for an easy integration of the two areas, by for in-
stance, making derivations and proofs in the same transformational style. Among
other techniques we want to mention the unfold/fold proof method, which can be
used both for program transformation & la Burstall-Darlington and for equiva-
lence proofs. This unfold/fold method can be traced back to Scott (see [10]) and
Kott [28] in the case of functional programs, and in the case of logic programs
it has been recently presented in [45]. Also Turchin in [52, page 293] explicitly
refers to the interaction of theorem proving and program transformation. He ad-
vocates the use of theorem provers for the discovery of ‘clever properties’ when
deriving new configurations from old configurations, and he shows how one can,
in principle, use supercompilation for proving theorems (see also [51]). In [19] the
interaction between theorem proving and program derivation is used for gener-
alized partial computation which is an enhanced partial evaluation technique.

Local control issues also include the decision of when and where to apply the
composition strategy and the tupling strategy during program transformation
(although for some aspects one may also consider that these strategies do refer
to global control issues). We consider the composition strategy in the next sec-
tion when presenting the deforestation technique, while we have already seen the
tupling strategy in action in the fib example in the previous section. The com-
position strategy may generate efficient programs because it may avoid the con-
struction of unnecessary intermediate data structures, while the tupling strategy
may avoid repeated subcomputations because it groups together function calls
which share the same variables.

6.2 Global Control Issues

In this category of control issues we consider those which are related to the prob-
lem of generating a finite symbolic computation model with suitable regularities.

We first consider the generalization issue, whereby instead of generating the
computation model for the function (or predicate) at hand, we generate the
model for a generalization of that function (or predicate). The advantage of this
technique is that, for the notions of similarity one uses in practice, the general-
ized function generates configurations which are similar to already constructed



ones more often than the non generalized function. Thus, it may be the case
that functions with infinite computation models have generalizations with finite
models. This situation is analogous to the one often encountered in theorem
proving, whereby if a given lemma cannot be proved by induction, one may look
for a suitable generalization with the hope of successfully performing an induc-
tive proof of the generalized lemma. Indeed, the new variables introduced by
generalization may allow new matches among expressions, and thus, one may
perform the proof of the generalized lemma by applying the stronger inductive
hypothesis. An application of the generalization technique occurred, in partic-
ular, in the partial deduction of the Parse program (see Section 4), where the
atom parse(I, [s], X\[]) has been generalized to parse(I,[s], X\Y).

In program transformation, generalization is often motivated by the need
for folding [14], that is, the need of considering an expression as an instance
of another. Thus, generalization is realized by promoting some subexpressions
to variables, and usually one considers the most specific common generaliza-
tion of the two expressions at hand. Sometimes, however, one has to allow for
higher order generalizations (also called lambda abstractions [42]), by which an
expression, say Cle], is replaced by the function application (Az.C[z])e where
the subexpression e has been promoted to the bound variable z. Here is a simple
example of program derivation using higher order generalization.

Ezample 8. [Palindrome] The following program tests whether or not a given list
[ is a palindrome:

1. palin(l) = eqlist(l, rev(l))

2. eqlist([ ],1) = null(l)

3. eqglist(a:ly,1) = (a= hd(l)) and eglist(ly, #l(1))
s ren(]) =]

5. rev(a:l) = rev(l) :: [a]

where : and :: stand for the operators cons and append, respectively, null(l) =
true iff | =[], and hd and ¢l are the head and tail selectors. This program visits
the given list twice, a first time for its reversal (using rev) and a second time for
testing equality (using eqlist). We look for an improved program which does not
make these two visits. By unfolding we get:

6. palin([ ]) = true
7. palin(a:l) = (a = hd(rev(a:l))) and eqlist(l, tl(rev(a:l)))

When trying to fold the r.h.s. of Equation 7 using Equation 1 we have a
mismatch between the two expressions eqlist(l, rev(l)) and eqlist(l, tl(rev(a:1))).
We apply higher order generalization to Equation 7 and we have:

8. palin(a:1) = eqlist(a:l, rev(a:1)) = {higher order generalization} =
= (Az. eglist(a:l, z)) rev(a:l)
where the mismatching subexpression has been promoted to the bound variable

x. Now, both A\z. eglist(a:1,z) and rev(a:l) visit the same data structure a: .
We perform a tupling step as suggested by the tupling strategy, and we define:



9.Q() = (Az.eqlist(l,x), rev(l))

whose recursive equations are as follows:

10. Q([]) = (Az. eqlist(] |, z), rev([ ])) = {unfolding} = (Az. null(x),[ ])

11. Q(a:l) = (Az. eqlist(a:l,x), rev(a:l)) = {unfolding} =
= (A\z.(a = hd(z)) and eqlist(l, tl(x)), rev(l) :: [a])) = {folding} =
= (Az.(a = hd(z)) and u(tl(x)),v :: [a])) where (u,v) = Q(l)

Now we can fold Equation 1 using Equation 9 and we get:
12. palin(l) = u(v) where (u,v) = Q(l)

The final program made out of Equations 12, 10, and 11, visits the input list
only once in the sense that Q(a:l) is defined in terms of Q(I) only. O

However, there may be some drawbacks in applying generalization steps and
one should use generalization with parsimony. Indeed, when an expression is gen-
eralized to a variable, we loose information about the structure of the generalized
expression and that loss may prevent some further improvements. Consider, for
instance, Equation 7 of Example 3. The most specific common generalization of
the two mismatching expressions in Equation 7 and Equation 1 which did not
allow us to perform a folding step, leads to the introduction of the new function
d defined as follows: d(l1,1l2) = eqlist(l1,l2). But, unfortunately, in this defini-
tion we have now lost the important information that the second argument of
d is the reversal of the first argument, while we will use the function d only for
arguments satisfying this constraint. Obviously, for computing the function d we
cannot hope for a better program than the one provided by Equations 2 and 3,
and thus, by using d there is no hope of deriving an efficient program for palin.
This example also shows the superiority of the higher order generalization over
the familiar generalization from expressions to variables. Indeed, as the reader
may verify, if one introduces the function

9.Q'(l,x) = (eqlist(l,z), rev(l))

then the final program one derives, visits the input list twice in the call-by-value
mode of evaluation.

Other generalizations may require some form of ‘reflection’ on the symbolic
computation constructed so far. For instance, in the supercompilation approach
during the construction of the symbolic computation model, the generalization
steps can be suggested by an analysis of the part of the computation model al-
ready constructed. This analysis makes use of so called walk grammars and meta-
transition systems to reason about computation histories in a given model [54].
The analysis may be used, in particular, for avoiding the risk of generalizing
‘too early’ (see, for instance, [53]). Related works are the ones concerned with
program improvement based on the analysis of computation histories for which
the reader may refer to [1] where a recursion removal technique is described.

Among other forms of reflection on symbolic computations, let us now men-
tion the one related to the introduction of new operators. This technique consists
in the promotion of a sequence of computations to an independent procedure.



For instance, as shown in the following example, a sequence of additions can be
promoted to a single multiplication.

Ezample 4. [Introducing New Operators] Let us consider the Fibonacci program
of Section 2 and let us consider the transformation tree model [25]. From Equa-
tion 3 we get:

7. fib(k) = fib(k—1) + fib(k—2) = {unfolding} =
= fib(k—2) + fib(k—3) + fib(k—2) = {introducing multiplication} =
= 2 fib(k—2) + fib(k—3) = {unfolding} =
=3 fib(k—3)+2 fib(k—4)=...

Let us now assume that we have discovered the following regularity valid for any
n, k> 0:

8. fib(k +n +2) = fib(n + 1) fib(k + 1) + fib(n) fib(k)

This regularity comes from the observation, which may be hard to make in
a mechanical way, that when constructing the transformation tree for fib(k),
the multiplicative constants in the two summands are values of the fib function
itself (see also [39]). By the unfold/fold technique we are now able to derive the
program made out of the following equations, together with Equations 1 and
2 [39]:

9. fib(2k +2) = fib(k + 1)% + fib(k)?
10. fib(2k + 3) = fib(k + 1) fib(k +2) + fib(k) fib(k + 1) = {unfolding} =
= fib(k+1) (fib(k + 1) + fib(k)) + fib(k) fib(k + 1)

and they hold for any £ > 0. Now we may discover one more regularity, namely,
the fact that in the m-dag of this last program there is a progressive sequence
of cuts, each of them being made out of two consecutive calls of fib. Thus, we
apply the tupling strategy and we introduce the following function, defined for
any k > 0:

11. p(k) = (fib(k + 1), fib(k))

By applying the unfold/fold technique we can then derive the explicit defi-
nition of the function p(k) and the following final program:

) = (a® + 2ab,a® + b*) where (a,b) = p(k)
) = {a® + (a + b)%,a% + 2ab) where (a,b) = p(k)
where Equations 12, 15, and 16 hold for any k£ > 0. This program is very effi-

cient and takes only O(log(n)) arithmetic operations for computing fib(n) (see
also [39]). m|



In the partial evaluation field, researchers have studied a method for improv-
ing program efficiency which we may classify under the global control issues.
This method, called polyvariant specialization [9], specializes programs, instead
of generalizing them. Indeed, it allows for the generation of various different ver-
sions of the same program with the objective of achieving higher performances.
The improvement of performances comes from the fact that having more infor-
mation about the inputs to the program (or function call) one can make some
more simplifications at compile time. This method can be viewed as the opposite
to generalization, by which one constructs a general program to compute several
distinct, but similar functions. Unfortunately, there is no general theory which
for any given program tells us when it is better to specialize or to generalize.

There is an inherent limitation in looking for an optimal strategy of when
and where to perform specialization and/or generalization steps. Indeed, one
cannot hope to construct a universal technique for finding a suitable regularity
whenever there is one, which allows us to improve any given program, because
the equivalence of two functions can be expressed as a regularity of their symbolic
computation models, and yet equivalence of functions is undecidable. However,
in practice, regularities which are useful for program transformation, are often
decidable properties, and they can also be found by means of efficient algorithms.

7 Relating the Three Step Program Transformation
Methodology to Program Specialization, Deforestation,
and Finite Differencing

The three steps of the general program transformation methodology we have
presented in the previous sections do not always refer to a definite sequence of
actions performed when applying a particular program transformation technique.
For supercompilation, unfold/fold transformation, generalized partial computa-
tion, compiling control, and partial deduction, one may easily identify those
three steps of the methododlogy. However, for some other techniques, like par-
tial evaluation of functional and imperative programs, program specialization,
mixed-computation [15], or deforestation [55], it is not always easy to do the
same. Nevertheless, we think that the concepts of symbolic computation, search
for regularities, and extraction of final programs, are to some extent present in
those techniques as well.

To see this, we would like to report the following phrases taken from [26
pages 68 69]:

“Our main thesis is that program specialization can be done in three steps.

1. Given the value of part of the program’s input, obtain a description of all
computational states reachable when running the program on all possible
input values.

2. Redefine the program’s control by incorporating parts of the data state into
the control state, yielding perhaps several specialized versions of each of the
program’s control points (0, 1, or more; hence the term polyvariant special-
ization).

3



3. The resulting program usually contains many trivial transitions. Optimize
it by traditional techniques, yielding the specialized (or residual) program.”

This description of the three steps which underline most program specializa-
tion techniques, including partial evaluation and mixed computation, matches
quite closely the three steps of the methodology we have presented in this paper.

The first step of the program specialization methodology corresponds to our
first two steps, that is, the generation of a symbolic computation process and
the search for regularities of this symbolic computation. More precisely, as we
have shown in Section 3, symbolic computation can be used to ‘obtain the de-
scription of all computational states reachable when running the program on all
possible input values’. By finding suitable regularities we may make sure that
this description is finite.

In practice, however, many specialization techniques use symbolic computa-
tion models based on abstract interpretation which, unlike the models consid-
ered in this paper, cannot always be described in terms of an unfolding process.
Among these abstract interpretation-based techniques we would like to mention
the techniques for binding time analysis 27, 34] and the regular approzimation
techniques for approximating the least Herbrand model of a logic program [23].

The second and third steps of the program specialization methodology cor-
respond to what we have called here ‘extraction of the new program’. In this
paper we have only pointed out the derivation techniques which substantially
change the program’s control and we have not given much attention to various
post-processing techniques (see, for instance, the renaming techniques in the
compiling control example and in the partial deduction example presented in
the previous sections). These post-processing techniques can be considered to be
part of Step 3 of program specialization.

The reader may notice that program specialization is a particular instance
of the general program methodology we presented in this paper, because it is
idempotent [54], in the sense that when specializing a program which has been
already specialized, we get the same program we derived after the first special-
ization. Other transformation methods, such as supercompilation and rule-based
program transformation are not idempotent. This fact can be illustrated by Ex-
ample 4 where after deriving the program made out of Equations 1, 2, 9, and 10,
by discovering a new regularity we were able to derive a new and more efficient
program.

Some elements of the general methodology based on symbolic computation,
search for regularities, and extraction of final programs are also present in the
deforestation technique.

Deforestation is designed to eliminate intermediate data structures from func-
tional programs by introducing new function definitions which are equivalent to
the composition of already available functions. In this sense deforestation can be
viewed as an instance of the composition strategy (also called fusion) introduced
in the field of unfold/fold transformation [10, 18] and it is also closely related to
Scherlis’ internal specialization [46] and supercompilation [48].



Deforestation works via generating, by an unfolding process, from an ini-
tial term containing nested function calls other (possibly infinitely many) terms.
Although deforestation does not explicitly construct any symbolic computation
model, the unfolding steps it requires can be viewed as a symbolic computa-
tion. The idea of finding regularities by identifying similar configurations is also
present. In particular, the deforestation algorithm terminates only if a finite
number of terms modulo variants, is generated during unfolding. If this is the
case then it is possible to avoid intermediate data structures by introducing a
finite number of new function definitions which correspond to (a subset of) the
terms generated by unfolding.

Finally, among other techniques for program derivation we want to consider
also finite differencing [35, 36]. The revisitation of this technique as an instance
of our general methodology is not very straightforward. However, the three steps
of finite differencing, which are:

“i) syntactic recognition of computational bottlenecks appearing within a
program P, ii) choosing invariants whose maintenance inside P allows these
bottlenecks to be removed, and iii) scheduling how collections of invariants

can be maintained in P” [35, page 40]

correspond, respectively, to: i) the symbolic computation model which allows
for the detection of the bottlenecks, ii) the search for regularities which are
the invariants to be maintained, and iii) the program extraction by which new
sequences of operations are generated with the objective of maintaining those
invariants. The reader may find more information about finite differencing in the
cited papers.

8 Correspondences Among Some Program
Transformation Techniques

We will not present in details the formal relationships and correspondences
among the many program transformation techniques mentioned in this paper,
because as we already said, these correspondences can be considered as ‘com-
mon knowledge’ of the people working in the field. Let us simply mention among
some other similar results, the following ones: i) the unfold/fold view of the
mixed computation technique described in [16], ii) the equivalence of driving in
supercompilation and partial deduction shown in [25] for a particular class of
programs, and iii) the straightforward way of using the unfold/fold transforma-
tion technique to simulate partial deduction [44]. We now present this simulation
in a simple example.

Ezample 5. Suppose we want to partially evaluate the following program:

p([1.Y) «
p([H|T]Y) « q(T.Y)
T, Y)Y =b



o(T,Y) < p(T,Y)

with respect to the set {p(X,a)}. We follow the partial deduction technique as
proposed in [31] and we get the initial portion of the SLDNF-tree T'1 depicted
in Figure 6. By considering the non-failing branches of that tree and taking the
corresponding resultants, we get the program P1:

p([],a) «

p([H|T],a) < p(T,a)
which is a correct partial deduction because the requirements for independence
and closedness are satisfied. Indeed, i) independence is a trivial consequence of
the fact that in the set {p(X,a)} there is one atom only, and ii) closedness is a
consequence of the fact that the atoms p([ ],a), p([H|T],a), and p(T,a) are all
instances of p(X, a).

T1: T2:
p(X.a) new(X) < p(X,a)
X/[]N/[HIT]
o o(T,a) new([]) ¢ mew((H[T]) < o a)

N N

a=b  p(T,a) new([H|T)) < a=b new((H|T]) < p(T, a)

L L

X true

Fig. 6. An SLDNF-tree for partial deduction (7'1) and the corresponding unfolding tree
(T'2). Underlined goals are the unfolded ones. Upgoing arrows relate similar nodes.

Using the unfold/fold method we first introduce a clause whose body is made
out of the goal p(X,a) and whose head has a fresh predicate symbol, say newp.
The arguments of the head are the variables occurring in the body. Thus, we
introduce the clause:

newp(X) < p(X,a)

Then, by using the unfold/fold method, we derive a program which can be
used for evaluating queries of the form: < newp(X), instead of < p(X,a). The
derivation process takes the form of the unfolding tree 7'2 depicted in Figure 6.
From that tree we can extract the following program P2 by performing, as we
have indicated in Section 5, a final folding step (whereby the body p(T,a) is
replaced by newp(T)):

newp([])
newp ([H|T) < newp(T)

which has performances similar (actually, higher, because newp has one argument
only) to those of P1. |



The reader should notice the perfect correspondence between partial deduc-
tion and the unfold/fold technique we have now illustrated. In particular, we
want to stress that the condition which allowed us to perform the final folding
step during program extraction, that is, the fact that p(T', a) is an instance of the
body of the clause newp(X) + p(X,a), is exactly the same condition, that is,

closedness, which ensures the correctness of the partial deduction process [31].

9 Conclusions

We have presented a general methodology for the derivation of programs which
underlines some familiar program transformation techniques like, for instance,
partial evaluation, supercompilation, rule-based program derivation, program
specialization, and compiling control. This methodology can often be mecha-
nized, although the extent to which this mechanization is possible, very much
depends on the technique under consideration.

This methodology is made out of three steps. They are: i) the construction of
the symbolic computation model, ii) the search for regularities in that model, and
iii) the extraction of the new program. Through the presentation of these steps
and some examples, we have illustrated in an informal way the correspondences
among the above-mentioned program transformation techniques. They are all
based on the construction of some sort of finite directed graphs whose arcs
represent either the steps of the computations or the similarity relations among
computation states (or configurations). We have also briefly considered the so
called control issue. It is related to the problem of guiding the actions to be
performed during the three steps of the methodology, and in particular we have
looked at various forms of the generalization strategy.

In this paper we have stressed the similarities among the various techniques
for program transformation. There are, however, also many differences among
them. They are due, besides other reasons, to the different languages and the dif-
ferent semantics which are considered, and to the degree of automation which is
required for their implementation. For instance, in the case of partial evaluation
one strives for a completely automated process, whereas in supercompilation and
rule-based program derivation, one also allows for interactive theorem proving
capabilities.
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