
A Model of Stock MarketParticipantsMichael de la Maza and Deniz YuretNuminous Noetics GroupArti�cial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridge, MA 02139mdlm@ai.mit.edu, deniz@ai.mit.eduAbstractIn this chapter we describe a stock market simulation in which stockmarket participants use genetic algorithms to gradually improve theirtrading strategies over time. A variety of experiments show that, un-der certain conditions, some market participants can make consistentpro�ts over an extended period of time, a �nding that might explainthe success of some real-world money managers.These experiments suggest a four parameter model of market par-ticipants. Each participant can be described along four dimensions:information set, constraint set, algorithm set, and model set. The in-formation set captures what data the participant has access to (e.g.,the participant has access to all historical price data). The constraintset describes under what restrictions the participant operates (e.g.,the participant can borrow money at 1% above the prime rate). Thealgorithm set indicates what programs the participant can use (e.g.,the participant is restricted to hill-climbing optimization algorithms).The model set speci�es the language which the participant employs todescribe its �ndings (e.g., the participant uses stochastic di�erentialequations). This four parameter model explains the relative strengthsand weaknesses of market participants. After describing the marketparticipant model, we briey turn to a critique of neural networks,which are the most widely used arti�cial intelligence tools for �nancialtime series analysis.We have applied some of the insights that we have gained fromdoing this and related research to our own trading accounts. We par-ticipated in the 1993 U.S. Investing Championships (options division)and �nished with a 43.9% return over a period of four months. Toleverage this success we have formed a money management �rm, calledRed�re Capital Management Group, that employs evolutionary algo-rithms to create fully automated trading strategies for bond, currency,and equity markets. Red�re Capital Management Group launched the�rst hedge fund that exclusively employs genetic algorithms to createcomputerized trading strategies on April 3, 1995.Keywords: Simulation, genetic algorithm, futures markets



1 MotivationAt the turn of the century, Texas wildcatters would decide were to dig foroil by taking a pinch of sand from the ground and tasting it. Their methodswere uninformed by any understanding of the causal processes that led tothe formation of oil deposits. Everett Lee De Golyer, known as the Father ofAmerican Geophysics, was the �rst to introduce scienti�c methods into theoil discovery �eld on a wide scale. As a result, he became a multimillionairein an age in which a million dollars was still a lot of money.The money management industry today is similar to the oil industry atthe turn of the century. Virtually all of the trillions of dollars invested intoday's �nancial markets are managed by seat of the pants methods that aresimilar to digging for oil by tasting sand. However, in recent years a growingnumber of individuals and companies have dedicated themselves to applyingthe methods of science and engineering to the stock market. Those who havebeen successful in doing so have made fortunes and there are many morefortunes to be made.In this chapter, we take another step in this direction by applying ourunderstanding of genetic algorithms to the market. This chapter describesa simulation of a market in which individuals evolve trading strategies andcompete against each other to maximize pro�ts.2 Justi�cationWhy simulate instead of studying real markets? Simulations have severaladvantages over direct observation:� The parameters of the simulation can be endlessly modi�ed in order toprovide greater understanding.� Simulations are typically much faster than real markets, therefore manymore experiments can be done.� The investigator has very �ne-grained control over the simulation.However, there are some disadvantages associated with simulations:� Care must be taken when carrying over the results of a simulation toreal markets. They may not apply because all models make assump-tions about real markets which may be incorrect.� A simulation necessarily involves abstraction, and this abstraction mayleave out some of the most important elements of the market. Of course,this would not occur intentionally but given the complex and littleunderstood structure of the markets it may happen unintentionally.



� A trader who makes a million dollars in a simulation has not made amillion dollars!The simulation described here does not capture all of the subtleties andnuances of the market. Its implementation contains many simpli�cations andassumptions. Nevertheless, it gives insight into how some market participantsmay be able to consistently uncover pro�t-making opportunities.This chapter begins by discussing the details of this simulation and threeexperiments with the simulation are described and analyzed. Based on thedata from these experiments, we suggest a four parameter model of partic-ipants that we have found helpful in characterizing what are the relativeadvantages and disadvantages of a market participant. The chapter con-cludes with a brief criticism of the standard application of neural networksto �nancial time series analysis.3 Simulation detailsOur market simulation consists of a series of days. A day contains four steps:1. Each participant computes a fair price for a security. In our simulation,there is only one security in the entire market and each participant isforced to submit a bid during each day.2. An equilibrium price, which balances the buyers and sellers, is com-puted from the fair prices submitted by each participant. The equilib-rium price is the median of the fair prices.3. Participants whose fair prices are above the equilibrium price buy atthe equilibrium price, and participants whose fair prices are below theequilibrium price sell at the equilibrium price. Thus, for every securitythat is sold, a security is bought and so one participant's gain is anotherparticipant's loss. No transaction fees are charged. All traders buy orsell a single contract. They may not vary the trade size.4. Participants improve their bidding strategies by using a genetic algo-rithm.Each individual has a visible strategy which it uses to compute the fairprice. In addition, each individual has a set of invisible strategies that cannotbe directly perceived by other market participants. The visible strategy isthe strategy that performed the best during the last day and it is updatedevery day.The strategies that individuals can learn are very simple. They consist ofa quadruple < a, b, c, d > of four real numbers and the fair price is computedby the formula:



f(a; b; c; d) = a � x+ b � y + c � z + dwhere x is the ten day moving average of the equilibrium prices; y is thelast equilibrium price; and z is 1 if the last change in equilibrium prices ispositive, -1 if it is negative, and 0 otherwise.Suppose, for example, that the visible strategy of a market participant is< 1, 2, 3, 4 > and that the ten day moving average is 12, the last equilibriumprice is 11, and the last change in equilibrium prices is negative. Then, thefair price compute by this strategy is: 1 � 12 + 2 � 11 + 3 � �1 + 4 = 35.If there are four participants which submit fair prices of 33, 34, 35, and36 then the equilibrium price is 34.5. The two participants who submittedfair prices below 34.5 sell the security at 34.5 and the two participants thatsubmitted fair prices above 34.5 buy the security at 34.5.The participants are forced to liquidate their holdings at the equilibriumprice of the next round. So, if the equilibrium price is above 34.5, then thetwo participants who purchased the security at 34.5 will make money andthe two participants who sold the security will lose money. On the otherhand, if the equilibrium price is below 34.5 the two participants who sold thesecurity at 34.5 will make money and the two participants who purchasedthe security will lose money.The strategies maintained by each participant are modi�ed and improvedby a genetic algorithm [Hol75, Gol89] with traditional mutation and crossoveroperators. The mutation operator adds a number uniformly distributed be-tween -.1 and .1 to a coe�cient and the crossover operator is traditional singlepoint crossover. The best strategies are selected and copied using standardproportional selection with a constant o�set that ensures that all �tness val-ues are positive [Mic92]. The �tness values are calculated by subtracting thefair value computed by a strategy from the spot price on the next day.4 ExperimentsThis section describes three experiments that we have done to explore variousfacets of our simulation. In all of the experiments, there are four participantswho trade.4.1 E�ect of noiseSome market pundits say that the market makes many unexplainable movesthat will eventually wipe out all strategies. Separating the signal from thisnoise is thought to be one of the hardest problems facing all traders.Can market participants still uncover good market strategies in the faceof noise? That is the question that this experiment is designed to test. In
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Figure 1: Equilibrium price as a function of time. The ten day movingaverage, the last equilibrium price, and the sign of the last change are allrandom numbers between -5 and 5.this experiment, the ten day moving average, the last equilibrium price, andthe sign of the last change are all replaced with random numbers between-5 and 5 and the equilibrium price is set to 1. Thus, the optimal strategy is<0, 0, 0, 1>, which reects the decision to ignore the three noisy variables.We chose to add the noise directly to the input variables instead of to theoutput to make the simulation conceptually clearer.A ten day moving average of the equilibrium prices is shown in Figure 1.As you can see, the equilibrium price slowly but surely moves towards 1,indicating that the participants are able, over time, to ignore the noise in theinformation provided to them.4.2 Forced liquidationsThis experiment tests what e�ect forced liquidations have on pro�ts. Marketparticipants must sometimes liquidate their holdings for a variety of reasons{ they get hit with lawsuits, they want to send their children to college, orthey have substantial losses in real estate.In this experiment, a participant, with probability .2, is forced to reporta fair price that is one half of the fair price computed by its visible strategy.This gives market participants who do not have to liquidate their holdingsthe opportunity to make substantial pro�ts. Figure 2 shows how the pro�tof the most pro�table participant changes over time. Initially, the pro�t risesand then drops sharply, but it never reaches zero as the participants who donot have to liquidate take advantage of those who do.In contrast, Figure 3 shows the pro�t in an experiment in which partici-pants are not forced to liquidate. In this case, the pro�t quickly approacheszero as the participants lock in on optimal trading strategies.
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30 40 50 60 70 80 90 100Figure 4: Pro�t of most pro�table individual as a function of time. Thisdata is averaged over ten runs of the simulation. Pro�t quickly approaches0 because the participants are sharing their visible strategies.4.3 Sharing strategiesIn our �nal experiment we studied what happens to pro�tability when themarket participants share their visible strategies. After each day each par-ticipant's visible strategy is added to the list of strategies of all of the otherparticipants. As shown in Figure 4 the pro�tability of the most pro�tableexperiment drops sharply. This �gure should be compared to Figure 3 whichshows the pro�tability of the most pro�table participant when no sharingoccurs.This experiment helps to explain why most of the results published inthe �eld of stock market analysis are negative. Sharing pro�table strategiesreally does reduce pro�tability for everyone.5 Understanding market participantsAs a result of these experiments we have arrived at a four parameter modelof market participants. Each market participant can be characterized alongthese four dimensions:� Constraint set. Is the participant beholden to shareholders or investors?Do pro�ts have to be reported on a monthly, quarterly, or yearly basis?At what rate can the participant borrow capital? What securities andmarkets can the participant trade?� Information set. Does the participant have access to end of day data,minute data, or tic data? Is information about order ow available?Does the participant have access to oor traders or market makers?



� Algorithm set. Does the participant use pencil and paper to explorethe space of trading strategies? Backpropagation? Genetic algorithms?Dynamic hill climbing?� Model set. Is the participant restricted to linear models? Can if-thenrules, previous market scenarios, and stochastic di�erential equationsall be employed to represent market knowledge?At our ownmoneymanagement �rm, Red�re CapitalManagement Group,we only trade markets in which we have a considerable advantage along twoor more of these four dimensions.6 Two shortcomings of neural networksNeural networks are the most widely used arti�cial intelligence method for�nancial time series analysis and thus they are the main competitors to theform of research explored in the previous sections of this chapter. In thissection we describe two shortcomings of the standard neural network appli-cation. First, backpropagation search takes place in sum of squared errorsspace instead of risk-adjusted return space. Second, the standard neural net-work has di�culty ignoring noise and focusing in on discoverable regularities.6.1 Sum of squared errors vs. risk-adjusted returnMy �nancial success stands in stark contrast with my ability toforecast events. - George Soros[Sor94, page 301]We present two trading strategies which have the property that one issuperior when sum of squared errors is the utility measure but is inferiorwhen risk-adjusted return, as de�ned by the Sharpe ratio, is the utility mea-sure. Because what matters to investment managers and their clients is risk-adjusted return, this suggests that the standard neural network application,which minimizes the sum of squared errors, should be retooled.Consider the time series: 10,20,30,60,10,20,30,10. This can be thought ofas the price of a security on consecutive days. If the neural network is askedto predict the next element in this series given the three previous elementsthen there are a total of four unique input sequences and �ve input/outputpairs, as shown in Table 1. This table shows two strategies, strategy Aand strategy B, which produce the same output for three of the four inputsequences, but di�er on the only sequence which is not followed by a uniqueelement (the �rst and last rows in Table 1). Strategy A is the optimal sum ofsquared errors strategy but strategy B has a better Sharpe ratio, as shown inTable 2. This comparison assumes that the strategy buys when the predicted



Sequence Next element Strategy A Strategy B(input) (output) Prediction Pro�t Prediction Pro�t10,20,30 60 35 30 30 020,30,60 10 10 50 10 5030,60,10 20 20 10 20 1060,10,20 30 30 10 30 1010,20,30 10 35 -20 30 0Table 1: The �ve sequences in the time series 10,20,30,60,10,20,30,10. Theneural network is asked to predict the next element in the sequence given theprevious three elements. Strategy A is the prediction made by the strategywhich minimizes the sum of squared errors. Strategy B is a strategy whichhas a higher sum of squared errors, but a lower Sharpe ratio, than strategyA, as shown in Table 2.
sum of squared errors � � Sharpe ratio (�� )Strategy A 1250 16 23.324 0.686Strategy B 1300 14 18.547 0.755Table 2: Comparison of strategy A and strategy B. Strategy A has a lowersum of squared errors, but strategy B has a better Sharpe ratio (the risk-freerate is assumed to be 0%).



value of the next element is greater than the last element of the sequence, sellswhen the predicted value of the next element is less than the last elementof the sequence, and does not trade when these two values are the same.A constant amount is traded each time and the market is assumed to befrictionless.A skeptic would argue that the aw in this example is that a forecastingstrategy should not be confused with a trading strategy. Such a skeptic wouldsay that once the neural network has been trained to be a good forecastingstrategy then some sort of post-processor should be added to the output toturn it into a good trading strategy. This appears to be a somewhat circuitousapproach: Why search in the wrong space (sum of squared errors) and thenrepair, when the search can be done in the space of interest (risk-adjustedreturn)?6.2 The importance of knowing what you don't knowThe standard application of neural networks forces a prediction to be madefor every input sequence. Because of this, the neural network must distributeits representational capacity across the entire time series, instead of beingable to focus in on regions which have discoverable regularity. As a result,the neural network is sometimes incapable of uncovering simple regularitiesbecause its representational capacity is inappropriately employed.This point is illustrated by the function shown in Figure 5(A) whichhas three segments: the �rst (points 0 to 49) and third (points 100 to 149)segments were generated by randomly choosing numbers between 0.25 and0.75 and the second segment (points 50 to 99) is the line y = x=100� :25. Awide variety of neural networks with varying numbers of hidden units (0, 2,5, 10, 20, and 50), di�erent learning rates (.01, .001, and .0001), and di�erentinertia parameters (0, .1, .2, .3, .4, .5, .6, .7, .8, and .9) were trained to predictthe value of point n given points n�5 through n�1. The predictions made byone representative neural network are shown in Figure 5(B). The predictionsmade by the same neural network when trained only on the second segmentof the function shown in Figure 5(A) are shown in Figure 5(C).A comparison of these two graphs shows that the prediction of the middlesegment is much more accurate in Figure 5(C) than in Figure 5(B). Why?Because part of the neural network's representational capacity has been spenttrying to model the �rst and third segments, even though these segments donot have discoverable regularity. Importantly, the function in Figure 5(A)is extremely simple. The regularities in real �nancial time series are signi�-cantly more subtle and the ability to distinguish between the knowable andunknowable becomes signi�cantly more important.The underlying problem on which this example stands is the requirementthat the standard neural network make a prediction at every data point:\don't know" is not an option. However, not only does the capability to
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say \don't know" free up representational capacity, but, as in the case ofFigure 5(A) over the interval [0,49] and [100,149], it is sometimes the bestpossible model of the data given the representational capacity of the neuralnetwork. Many statistical methods, such as linear and multiple regression,share this shortcoming with the standard neural network application. As aresult, these methods are, in e�ect, unable to say what human traders oftendo: \Current market conditions are beyond my comprehension, therefore Iamnot going to try to understand them." For the graph shown in Figure 5(A)this is the appropriate response for the �rst and third segments.6.3 Possible solutionsOur view is that the shortcomings discussed above are potential showstopperswhich demand the full attention of those who are interested in applications ofneural networks to �nancial time series analysis. In this section we speculateon ways of overcoming these limitations.One way to address both problems is to change the search algorithm frombackpropagation to simulated annealing [KGV83, Ing93], genetic algorithms[Hol75, Gol89], standard gradient descent, or any one of the many optimiza-tion methods which allow search over arbitrary utility functions. Adoptingthis solution would allow the direct implementation of risk-adjusted returnas the utility function and the neural network would no longer be forced tomake a prediction for every input. Under this scheme, the representation (ormodel) would still be sums of nested sigmoidal functions.Finessing the data so that minimizing the sum of squared errors is equiv-alent to maximizing risk-adjusted return is another way to address the �rstshortcoming. Success in �nding such a transformation would probably behelpful in �nding solutions to other problems not associated with �nancialtime series analysis.A possible solution to the second problem has been explored by Jordanand Jacobs [JJ93]. They suggest creating a hierarchical mixture of neuralnetworks so that each neural network can become an expert at identifyingthe regularities in one component of the data.7 Related workNottola, Leroy, and Davalo [NLD92] describe an arti�cial market systemin which agents (called participants in this paper) learn rules that predictmovements in price. Much of their paper describes di�erent approaches tomodeling markets, but they do discuss one experiment which compares theperformance of agents with di�erent learning strategies and they concludethat adaptive agents out-perform non-adapting ones.LeBaron [LeB94] has developed a stock market simulation in which par-ticipants learn strategies using a genetic algorithm, as they do in this paper.



The strategies of his market participants are encoded as bitstrings in whicheach bit corresponds to a boolean variable that is precomputed. His systemfeatures a mechanism for easily changing the risk aversion of individual par-ticipants. LeBaron notes [Fre93] that even if there are regularities in realmarket data that can be exploited, the data might contain so much noisethat the regularities are barely perceptible.There is substantial evidence that the currency futures market is not e�-cient [Tho86, Cav87, Gla87, HKY90]. As empirical evidents mounts againstthe view that markets are e�cient, theoreticians will be forced to provide al-ternative explanations of the market's behavior. One of the most likely candi-dates for this is Simon's bounded rationality theory [Sim57, Sim82]. Sargent[Sar93, page 4] explores markets in which the participants have bounded ra-tionality and writes that \the bounded rationality program wants to makethe agents in our models more like the econometricians who estimate and usethem."We have not compared our genetic algorithm approach to neural networkapproaches because neural network training time is prohibitive.8 ConclusionWe plan to extend the simulation described in this chapter in at least twoways. First, the algorithm and model sets of all of the participants in theseexperiments are the same { only the constraint sets and information setschange. For example, in one experiment the constraint set of participantsincludes forced liquidations while in other two experiments it does not. Like-wise, in one experiment the participants have access to uncorrupted movingaverage information while in the other two they do not.In the future we will pit participants with di�erent algorithm sets andmodel sets against each other. Second, this simulation contains only onesecurity and all of the participants are required to purchase or sell a secu-rity during every round. Our future market simulations will have multiplesecurities and the participants will have the option of not trading.We have applied some of the insights that we have gained from doing thisand related research to our own trading accounts. We participated in the1993 U.S. Investing Championships (options division) and �nished �fth witha 43.9% return over a period of four months. To leverage this success wehave formed a money management �rm, called Red�re Capital ManagementGroup, that employs arti�cial intelligence methods, including simulationssimilar to the ones described here, to create fully automated trading strategiesfor interest rate, currency, and equity markets. We trust that other marketa�cionados will �nd these simulations equally helpful.
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