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Abstract

In this chapter we describe a stock market simulation in which stock
market participants use genetic algorithms to gradually improve their
trading strategies over time. A variety of experiments show that, un-
der certain conditions, some market participants can make consistent
profits over an extended period of time, a finding that might explain
the success of some real-world money managers.

These experiments suggest a four parameter model of market par-
ticipants. FEach participant can be described along four dimensions:
information set, constraint set, algorithm set, and model set. The in-
formation set captures what data the participant has access to (e.g.,
the participant has access to all historical price data). The constraint
set describes under what restrictions the participant operates (e.g.,
the participant can borrow money at 1% above the prime rate). The
algorithm set indicates what programs the participant can use (e.g.,
the participant is restricted to hill-climbing optimization algorithms).
The model set specifies the language which the participant employs to
describe its findings (e.g., the participant uses stochastic differential
equations). This four parameter model explains the relative strengths
and weaknesses of market participants. After describing the market
participant model, we briefly turn to a critique of neural networks,
which are the most widely used artificial intelligence tools for financial
time series analysis.

We have applied some of the insights that we have gained from
doing this and related research to our own trading accounts. We par-
ticipated in the 1993 U.S. Investing Championships (options division)
and finished with a 43.9% return over a period of four months. To
leverage this success we have formed a money management firm, called
Redfire Capital Management Group, that employs evolutionary algo-
rithms to create fully automated trading strategies for bond, currency,
and equity markets. Redfire Capital Management Group launched the
first hedge fund that exclusively employs genetic algorithms to create
computerized trading strategies on April 3, 1995.
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1 Motivation

At the turn of the century, Texas wildcatters would decide were to dig for
oil by taking a pinch of sand from the ground and tasting it. Their methods
were uninformed by any understanding of the causal processes that led to
the formation of cil deposits. Everett Lee De Golyer, known as the Father of
American Geophysics, was the first to introduce scientific methods into the
oil discovery field on a wide scale. As a result, he became a multimillionaire
in an age in which a million dollars was still a lot of money.

The money management industry today is similar to the oil industry at
the turn of the century. Virtually all of the trillions of dollars invested in
today’s financial markets are managed by seat of the pants methods that are
similar to digging for oil by tasting sand. However, in recent years a growing
number of individuals and companies have dedicated themselves to applying
the methods of science and engineering to the stock market. Those who have
been successful in doing so have made fortunes and there are many more
fortunes to be made.

In this chapter, we take another step in this direction by applying our
understanding of genetic algorithms to the market. This chapter describes
a simulation of a market in which individuals evolve trading strategies and
compete against each other to maximize profits.

2 Justification

Why simulate instead of studying real markets? Simulations have several
advantages over direct observation:

e The parameters of the simulation can be endlessly modified in order to
provide greater understanding.

e Simulations are typically much faster than real markets, therefore many
more experiments can be done.

e The investigator has very fine-grained control over the simulation.
However, there are some disadvantages associated with simulations:

e Care must be taken when carrying over the results of a simulation to
real markets. They may not apply because all models make assump-
tions about real markets which may be incorrect.

e A simulation necessarily involves abstraction, and this abstraction may
leave out some of the most important elements of the market. Of course,
this would not occur intentionally but given the complex and little
understood structure of the markets it may happen unintentionally.



o A trader who makes a million dollars in a simulation has not made a
million dollars!

The simulation described here does not capture all of the subtleties and
nuances of the market. Its implementation contains many simplifications and
assumptions. Nevertheless, 1t gives insight into how some market participants
may be able to consistently uncover profit-making opportunities.

This chapter begins by discussing the details of this simulation and three
experiments with the simulation are described and analyzed. Based on the
data from these experiments, we suggest a four parameter model of partic-
ipants that we have found helpful in characterizing what are the relative
advantages and disadvantages of a market participant. The chapter con-
cludes with a brief criticism of the standard application of neural networks
to financial time series analysis.

3 Simulation details
Our market simulation consists of a series of days. A day contains four steps:

1. Each participant computes a fair price for a security. In our simulation,
there is only one security in the entire market and each participant is
forced to submit a bid during each day.

2. An equilibrium price, which balances the buyers and sellers, 1s com-
puted from the fair prices submitted by each participant. The equilib-
rium price 1s the median of the fair prices.

3. Participants whose fair prices are above the equilibrium price buy at
the equilibrium price, and participants whose fair prices are below the
equilibrium price sell at the equilibrium price. Thus, for every security
that is sold, a security is bought and so one participant’s gain is another
participant’s loss. No transaction fees are charged. All traders buy or
sell a single contract. They may not vary the trade size.

4. Participants improve their bidding strategies by using a genetic algo-
rithm.

Each individual has a wisible strategy which it uses to compute the fair
price. In addition, each individual has a set of invisible strategies that cannot
be directly perceived by other market participants. The visible strategy is
the strategy that performed the best during the last day and it 1s updated
every day.

The strategies that individuals can learn are very simple. They consist of
a quadruple < a, b, ¢, d > of four real numbers and the fair price is computed
by the formula:



flabye,dy=axe+bxy+exz+d

where z is the ten day moving average of the equilibrium prices; y is the
last equilibrium price; and z is 1 if the last change in equilibrium prices is
positive, -1 i1f it is negative, and 0 otherwise.

Suppose, for example, that the visible strategy of a market participant is
< 1,2, 3,4 > and that the ten day moving average is 12, the last equilibrium
price 18 11, and the last change in equilibrium prices is negative. Then, the
fair price compute by this strategy 1s: 1% 12+ 2+ 114+ 3% —-14+4 = 35.

If there are four participants which submit fair prices of 33, 34, 35, and
36 then the equilibrium price is 34.5. The two participants who submitted
fair prices below 34.5 sell the security at 34.5 and the two participants that
submitted fair prices above 34.5 buy the security at 34.5.

The participants are forced to liquidate their holdings at the equilibrium
price of the next round. So, if the equilibrium price is above 34.5, then the
two participants who purchased the security at 34.5 will make money and
the two participants who sold the security will lose money. On the other
hand, if the equilibrium price is below 34.5 the two participants who sold the
security at 34.5 will make money and the two participants who purchased
the security will lose money.

The strategies maintained by each participant are modified and improved
by a genetic algorithm [Hol75, Gol89] with traditional mutation and crossover
operators. The mutation operator adds a number uniformly distributed be-
tween -.1 and .1 to a coefficient and the crossover operator is traditional single
point crossover. The best strategies are selected and copied using standard
proportional selection with a constant offset that ensures that all fitness val-
ues are positive [Mic92]. The fitness values are calculated by subtracting the
fair value computed by a strategy from the spot price on the next day.

4 Experiments

This section describes three experiments that we have done to explore various
facets of our simulation. In all of the experiments, there are four participants
who trade.

4.1 Effect of noise

Some market pundits say that the market makes many unexplainable moves
that will eventually wipe out all strategies. Separating the signal from this
noise is thought to be one of the hardest problems facing all traders.

Can market participants still uncover good market strategies in the face
of noise? That i1s the question that this experiment is designed to test. In
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Figure 1: Equilibrium price as a function of time. The ten day moving
average, the last equilibrium price, and the sign of the last change are all
random numbers between -5 and 5.

this experiment, the ten day moving average, the last equilibrium price, and
the sign of the last change are all replaced with random numbers between
-5 and 5 and the equilibrium price is set to 1. Thus, the optimal strategy is
<0, 0, 0, 1>, which reflects the decision to ignore the three noisy variables.
We chose to add the noise directly to the input variables instead of to the
output to make the simulation conceptually clearer.

A ten day moving average of the equilibrium prices is shown in Figure 1.
As you can see, the equilibrium price slowly but surely moves towards 1,
indicating that the participants are able, over time, to ignore the noise in the
information provided to them.

4.2 Forced liquidations

This experiment tests what effect forced liquidations have on profits. Market
participants must sometimes liquidate their holdings for a variety of reasons
— they get hit with lawsuits, they want to send their children to college, or
they have substantial losses in real estate.

In this experiment, a participant, with probability .2, is forced to report
a fair price that is one half of the fair price computed by its visible strategy.
This gives market participants who do not have to liquidate their holdings
the opportunity to make substantial profits. Figure 2 shows how the profit
of the most profitable participant changes over time. Initially, the profit rises
and then drops sharply, but it never reaches zero as the participants who do
not have to liquidate take advantage of those who do.

In contrast, Figure 3 shows the profit in an experiment in which partici-
pants are not forced to liquidate. In this case, the profit quickly approaches
zero as the participants lock in on optimal trading strategies.
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Figure 2: Profit of most profitable individual as a function of time. This
data is averaged over ten runs of the simulation. Because participants are
forced to liquidate their holdings with some probability, the profit does not

approach 0.
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Figure 3: Profit of most profitable individual as a function of time. This data
is averaged over ten runs of the simulation. The profit approaches 0 because
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Figure 4: Profit of most profitable individual as a function of time. This
data is averaged over ten runs of the simulation. Profit quickly approaches
0 because the participants are sharing their visible strategies.

4.3 Sharing strategies

In our final experiment we studied what happens to profitability when the
market participants share their visible strategies. After each day each par-
ticipant’s visible strategy 1s added to the list of strategies of all of the other
participants. As shown in Figure 4 the profitability of the most profitable
experiment drops sharply. This figure should be compared to Figure 3 which
shows the profitability of the most profitable participant when no sharing
occurs.

This experiment helps to explain why most of the results published in
the field of stock market analysis are negative. Sharing profitable strategies
really does reduce profitability for everyone.

5 Understanding market participants

As a result of these experiments we have arrived at a four parameter model
of market participants. Each market participant can be characterized along
these four dimensions:

e Constraint set. Is the participant beholden to shareholders or investors?
Do profits have to be reported on a monthly, quarterly, or yearly basis?
At what rate can the participant borrow capital? What securities and
markets can the participant trade?

e Information set. Does the participant have access to end of day data,
minute data, or tic data? Is information about order flow available?
Does the participant have access to floor traders or market makers?
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100



e Algorithm set. Does the participant use pencil and paper to explore
the space of trading strategies? Backpropagation? Genetic algorithms?
Dynamic hill climbing?

e Model set. Is the participant restricted to linear models? Can if-then
rules, previous market scenarios, and stochastic differential equations
all be employed to represent market knowledge?

At our own money management firm, Redfire Capital Management Group,
we only trade markets in which we have a considerable advantage along two
or more of these four dimensions.

6 Two shortcomings of neural networks

Neural networks are the most widely used artificial intelligence method for
financial time series analysis and thus they are the main competitors to the
form of research explored in the previous sections of this chapter. In this
section we describe two shortcomings of the standard neural network appli-
cation. First, backpropagation search takes place in sum of squared errors
space instead of risk-adjusted return space. Second, the standard neural net-
work has difficulty ignoring noise and focusing in on discoverable regularities.

6.1 Sum of squared errors vs. risk-adjusted return

My financial success stands in stark contrast with my ability to
forecast events.

- George Soros[Sor94, page 301]

We present two trading strategies which have the property that one is
superior when sum of squared errors is the utility measure but is inferior
when risk-adjusted return, as defined by the Sharpe ratio, is the utility mea-
sure. Because what matters to investment managers and their clients is risk-
adjusted return, this suggests that the standard neural network application,
which minimizes the sum of squared errors, should be retooled.

Consider the time series: 10,20,30,60,10,20,30,10. This can be thought of
as the price of a security on consecutive days. If the neural network is asked
to predict the next element in this series given the three previous elements
then there are a total of four unique input sequences and five input/output
pairs, as shown in Table 1. This table shows two strategies, strategy A
and strategy B, which produce the same output for three of the four input
sequences, but differ on the only sequence which is not followed by a unique
element (the first and last rows in Table 1). Strategy A is the optimal sum of
squared errors strategy but strategy B has a better Sharpe ratio, as shown in
Table 2. This comparison assumes that the strategy buys when the predicted



Sequence Next element Strategy A Strategy B

(input) (output) Prediction Profit Prediction Profit
10,20,30 60 35 30 30 0
20,30,60 10 10 50 10 50
30,60,10 20 20 10 20 10
60,10,20 30 30 10 30 10
10,20,30 10 35 -20 30 0

Table 1: The five sequences in the time series 10,20,30,60,10,20,30,10. The
neural network is asked to predict the next element in the sequence given the
previous three elements. Strategy A is the prediction made by the strategy
which minimizes the sum of squared errors. Strategy B is a strategy which
has a higher sum of squared errors, but a lower Sharpe ratio, than strategy
A, as shown in Table 2.

sum of squared errors  p o Sharpe ratio (£)
Strategy A 1250 16 23.324 0.686
Strategy B 1300 14 18.547 0.755

Table 2: Comparison of strategy A and strategy B. Strategy A has a lower
sum of squared errors, but strategy B has a better Sharpe ratio (the risk-free
rate is assumed to be 0%).



value of the next element is greater than the last element of the sequence, sells
when the predicted value of the next element is less than the last element
of the sequence, and does not trade when these two values are the same.
A constant amount is traded each time and the market is assumed to be
frictionless.

A skeptic would argue that the flaw in this example is that a forecasting
strategy should not be confused with a trading strategy. Such a skeptic would
say that once the neural network has been trained to be a good forecasting
strategy then some sort of post-processor should be added to the output to
turn it into a good trading strategy. This appears to be a somewhat circuitous
approach: Why search in the wrong space (sum of squared errors) and then
repair, when the search can be done in the space of interest (risk-adjusted
return)?

6.2 The importance of knowing what you don’t know

The standard application of neural networks forces a prediction to be made
for every input sequence. Because of this, the neural network must distribute
its representational capacity across the entire time series, instead of being
able to focus in on regions which have discoverable regularity. As a result,
the neural network 1s sometimes incapable of uncovering simple regularities
because its representational capacity is inappropriately employed.

This point is illustrated by the function shown in Figure 5(A) which
has three segments: the first (points 0 to 49) and third (points 100 to 149)
segments were generated by randomly choosing numbers between 0.25 and
0.75 and the second segment (points 50 to 99) is the line y = /100 — .25. A
wide variety of neural networks with varying numbers of hidden units (0, 2,
5, 10, 20, and 50), different learning rates (.01, .001, and .0001), and different
inertia parameters (0, .1, .2, .3, .4, .5, .6,.7, .8, and .9) were trained to predict
the value of point n given points n—>5 through n—1. The predictions made by
one representative neural network are shown in Figure 5(B). The predictions
made by the same neural network when trained only on the second segment
of the function shown in Figure 5(A) are shown in Figure 5(C).

A comparison of these two graphs shows that the prediction of the middle
segment is much more accurate in Figure 5(C) than in Figure 5(B). Why?
Because part of the neural network’s representational capacity has been spent
trying to model the first and third segments, even though these segments do
not have discoverable regularity. Importantly, the function in Figure 5(A)
is extremely simple. The regularities in real financial time series are signifi-
cantly more subtle and the ability to distinguish between the knowable and
unknowable becomes significantly more important.

The underlying problem on which this example stands is the requirement
that the standard neural network make a prediction at every data point:
“don’t know” is not an option. However, not only does the capability to
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Figure 5: (A) Target function. The neural network is asked to predict the
value of point n and is given as input the value of points n — 5 through n —1.
The first 50 points are random numbers between 0.25 and 0.75 as are the last
50 points. The middle 50 points satisfy the linear equation y = «/100 — .25.
(B) Output of a neural network with five hidden units trained on the target
function. The inertia parameter was set to 0.9 and the learning rate was set
to .001. The neural network was trained for one million epochs. This output
graph is representative of the performance of many neural networks that we
tested on this function. (C) Output of a neural network with five hidden
units trained on the middle 50 points of the target function. The inertia
parameter was set to 0.9 and the learning rate was set to .001. The network
was trained for one million epochs. Compare to the middle 50 points in (B).
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say “don’t know” free up representational capacity, but, as in the case of
Figure 5(A) over the interval [0,49] and [100,149], it is sometimes the best
possible model of the data given the representational capacity of the neural
network. Many statistical methods, such as linear and multiple regression,
share this shortcoming with the standard neural network application. As a
result, these methods are, in effect, unable to say what human traders often
do: “Current market conditions are beyond my comprehension, therefore 1
am not going to try to understand them.” For the graph shown in Figure 5(A)
this is the appropriate response for the first and third segments.

6.3 Possible solutions

Our view is that the shortcomings discussed above are potential showstoppers
which demand the full attention of those who are interested in applications of
neural networks to financial time series analysis. In this section we speculate
on ways of overcoming these limitations.

One way to address both problems is to change the search algorithm from
backpropagation to simulated annealing [KGV83, Ing93], genetic algorithms
[Hol75, Gol89], standard gradient descent, or any one of the many optimiza-
tion methods which allow search over arbitrary utility functions. Adopting
this solution would allow the direct implementation of risk-adjusted return
as the utility function and the neural network would no longer be forced to
make a prediction for every input. Under this scheme, the representation (or
model) would still be sums of nested sigmoidal functions.

Finessing the data so that minimizing the sum of squared errors is equiv-
alent to maximizing risk-adjusted return is another way to address the first
shortcoming. Success in finding such a transformation would probably be
helpful in finding solutions to other problems not associated with financial
time series analysis.

A possible solution to the second problem has been explored by Jordan
and Jacobs [JJ93]. They suggest creating a hierarchical mixture of neural
networks so that each neural network can become an expert at identifying
the regularities in one component of the data.

7 Related work

Nottola, Leroy, and Davalo [NLD92] describe an artificial market system
in which agents (called participants in this paper) learn rules that predict
movements in price. Much of their paper describes different approaches to
modeling markets, but they do discuss one experiment which compares the
performance of agents with different learning strategies and they conclude
that adaptive agents out-perform non-adapting ones.

LeBaron [LeB94] has developed a stock market simulation in which par-
ticipants learn strategies using a genetic algorithm, as they do in this paper.



The strategies of his market participants are encoded as bitstrings in which
each bit corresponds to a boolean variable that is precomputed. His system
features a mechanism for easily changing the risk aversion of individual par-
ticipants. LeBaron notes [Fre93] that even if there are regularities in real
market data that can be exploited, the data might contain so much noise
that the regularities are barely perceptible.

There is substantial evidence that the currency futures market is not effi-
cient [Tho86, Cav87, Gla87, HKY90]. As empirical evidents mounts against
the view that markets are efficient, theoreticians will be forced to provide al-
ternative explanations of the market’s behavior. One of the most likely candi-
dates for this is Simon’s bounded rationality theory [Sim57, Sim82]. Sargent
[Sar93, page 4] explores markets in which the participants have bounded ra-
tionality and writes that “the bounded rationality program wants to make
the agents in our models more like the econometricians who estimate and use
them.”

We have not compared our genetic algorithm approach to neural network
approaches because neural network training time is prohibitive.

8 Conclusion

We plan to extend the simulation described in this chapter in at least two
ways. First, the algorithm and model sets of all of the participants in these
experiments are the same — only the constraint sets and information sets
change. For example, in one experiment the constraint set of participants
includes forced liquidations while in other two experiments it does not. Like-
wise, in one experiment the participants have access to uncorrupted moving
average information while in the other two they do not.

In the future we will pit participants with different algorithm sets and
model sets against each other. Second, this simulation contains only one
security and all of the participants are required to purchase or sell a secu-
rity during every round. OQur future market simulations will have multiple
securities and the participants will have the option of not trading.

We have applied some of the insights that we have gained from doing this
and related research to our own trading accounts. We participated in the
1993 U.S. Investing Championships (options division) and finished fifth with
a 43.9% return over a period of four months. To leverage this success we
have formed a money management firm, called Redfire Capital Management
Group, that employs artificial intelligence methods, including simulations
similar to the ones described here, to create fully automated trading strategies
for interest rate, currency, and equity markets. We trust that other market
aficionados will find these simulations equally helpful.
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