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it seems clear that tan�� 00 ��� = �tan� 00 tan���(1.4)should hold. It is possible to de�ne analytic functions of matrices by splittingmatrices into blocks this way, but this paper provides a more elegant de�nitionthat generalizes to operators on in�nite-dimensional spaces.A simple question helps to illustrate the value of the concept of analyticfunctions of matrices. We know how to square a matrix; it is natural to askwhether we can we solve the equation X2 = A. Solving equations entails con-structing inverses of functions, so solving the equation X2 = A would meanconstructing an inverse to the squaring function on matrices, i.e., a square rootfunction on the set of matrices.Another application of the notion of functions of matrices is constructingsolutions to ordinary di�erential equations. For example, if eAt is de�ned appro-priately, it should be a solution to the system (d=dt)X(t) = AX(t). More generalsystems such as (d=dt)X(t) = A(t)X(t) and (d=dt)X(t) = AX(t) �X(t)B canbe studied.The prerequisites for this paper are minimal: simple linear algebra (thede�nitions of trace, determinant, eigenvalue and eigenvector, and Cramer's rule)and the basics of complex analysis (analytic and meromorphic functions, powerseries, and Cauchy's integral formula). Starred sections are not necessary for themain development of the material and may require more prerequisites. Thereare a number of exercises which are straightforward, and some problems whichare more di�cult and may be open-ended. Starred exercises and problems useresults from starred sections.1.1 PhilosophyBefore we study the mathematics in detail, let us �rst consider some \philosoph-ical" notions, meaning principles which reect certain values. These principlesreect the kind of mathematics we wish to do, and provide us with motivationby framing problems in a certain way. It is quite possible to use a di�erentset of principles, perhaps even the exact opposites of the ones discussed below,and arrive at a di�erent kind of mathematics; the Kronecker product studied inSection 7.1 is an example of mathematics motivated by the opposite of Princi-ple 1.6.Personally, I value the following principles more than their opposites, butwe should not try to make an ideology out of any of them; in the end, we wantto solve hard problems by whatever means possible.Principle 1.5. It is generally best to express results in explicit form, usingexact formulas if possible.Exact formulas allow us to express our results simply, to check our calcu-lations and results easily, and to make approximations if necessary. If we are3



going to calculate exactly, though, we will often �nd that the list of operatorsavailable is not large enough. For example, polynomial equations cannot besolved in general by the standard algebraic operations alone, but can be solvedin closed form using theta functions [9]. We will often �nd that in�nite processesare useful additions to our available operators.Principle 1.6. Use in�nite processes such as limits, derivatives, in�nite seriesand integrals.The original meaning of the word analysis is \working backwards" or \un-doing," in other words the opposite of proof. For many years (until Weierstra�'de�nition of limit), in�nite methods could not be used in rigorous proofs butwere valuable techniques for solving problems in terms of exact formulas; in-�nite methods thus became associated with the word \analysis." Analyticalmethods can be useful even when they are not legitimate proofs if they giveexplicit formulas which can be veri�ed by other means.It is possible to solve most of the problems discussed in this paper withoutthe use of in�nite processes, and those solutions lead to other interesting results.However, in�nite processes allow us to generalize results to more complicatedsituations.Principle 1.7. There's more than one way to do it.Solving problems in several di�erent ways may enhance our understanding;one method may generalize better than others in certain situations; and theinterplay between methods is often fruitful.1.2 An Illustrative ProblemAn illustration of the point of view outlined in Section 1.1 is provided by thesolution to the following problem [6, page 58].Problem 1.8. Suppose two square matrices A and B are given with the prop-erty that I � AB is invertible. Show that I �BA is also invertible.Solution. Explicitly write(I �AB)�1 = I +AB +ABAB + ABABAB + � � �(1.9) (I �BA)�1 = I +BA +BABA + BABABA + � � � :(1.10)These expansions are not necessarily correct, but we will try to �nd an exactformula for (I � BA)�1 which we can directly verify later.Expressing (1.10) in terms of (1.9),(I �BA)�1 = I +B(I + AB +ABAB + � � � )A(1.11) (I �BA)�1 = I +B(I � AB)�1A(1.12)which gives the desired explicit expression for (I � BA)�1.Exercise 1.13. Show that formula 1.12 does in fact work (in any ring withunit). 4



2 Matrices of FunctionsLet us begin our study of functions of matrices by switching some terms aroundand �rst studying matrices of functions, an easier topic which will be usefullater. We write a matrix of functions of a real or complex variable in the formM (t) = (Mij(t)).2.1 Limit Processes for Matrices of FunctionsThe limit, derivative, integral and contour integral of matrices of functions arede�ned element-wise: limt!aM (t) = �limt!aMij(t)�(2.1) ddtM (t) = � ddtMij(t)�(2.2) Z ba M (t) dt =  Z ba Mij(t) dt!(2.3) I M (z) dz = �I Mij(z) dz� :(2.4)It is easy to verify the product rule for derivatives:ddt (A(t)B(t)) = � ddtA(t)�B(t) + A(t)� ddtB(t)� :(2.5)The rule for derivatives of inverses A�1(t) = (A(t))�1 follows from (2.5):ddtA�1(t) = �A�1(t)� ddtA(t)�A�1(t):(2.6)Let f(t) be a scalar function. The following chain rule is an immediate conse-quence of the de�nition of derivative:ddtA(f(t)) = dAdt (f(t))dfdt ;(2.7)more complicated variations on the chain rule will be possible when analyticfunctions of matrices are de�ned.The trace is a linear function on matrices, so it behaves in a simple way withrespect to derivatives and integrals:tr ddtA(t) = ddt trA(t)(2.8) tr Z ba A(t) dt = Z ba trA(t) dt(2.9) tr I A(z) dz = I trA(z) dz:(2.10) 5



However, the determinant does not behave so nicely:(2.11) ddt det0BBB@a11 a12 � � � a1na21 a22 � � � a2n... ... . . . ...an1 an2 � � � ann1CCCA = det0BBB@a011 a012 � � � a01na21 a22 � � � a2n... ... . . . ...an1 an2 � � � ann1CCCA ++ det0BBB@a11 a12 � � � a1na021 a022 � � � a02n... ... . . . ...an1 an2 � � � ann1CCCA+ � � �+ det0BBB@a11 a12 � � � a1na21 a22 � � � a2n... ... . . . ...a0n1 a0n2 � � � a0nn1CCCA(with a similar decomposition by columns).Exercise 2.12. Prove (2.11) by expanding the determinant and using the prod-uct rule for derivatives.Problem 2.13. Find an expression for (dk=dtk) detA(t).2.2 The Determinant of a Sum�The determinant of a sum and determinant of an integral have rather compli-cated formulas.Exercise 2.14. Show thatdet(A +B) = 2n�1Xk=0 det (bi(k)Aij + (1� bi(k))Bij)(2.15)where bi(k) = the ith digit in the binary expansion of k(2.16)i.e., the determinant of a sum of two matrices is equal to the sum of determi-nants the 2n matrices formed by picking some rows from the �rst matrix andthe remaining rows from the second.Hint. Write out the determinant in summation notation, expand each of theproducts obtained into sums of 2n terms, switch the order of summation, andrecombine.Exercise 2.17. Find the determinant of the sum of m matrices.Exercise 2.18. Show that the result of Exercise 2.14 can be obtained from theblock matrix identity�A IB �I�� I OB I� = �A +B IO �I�(2.19)and the Laplace expansion of the determinant in minors of order n in the �rstn columns. 6



Problem 2.20. Modify the method of Exercise 2.18 to work for the sum of mmatrices to obtain the result of Exercise 2.17.Hint. First assume that m = 2l and apply (2.19) l times, starting at the largest\scale" and working down. Evaluate the determinant of the leftmost factor ina similar manner, starting with minors of the largest scale.Problem 2.21. Can the Kronecker product (Section 7.1) be used to �nd thedeterminant of a sum of matrices?The determinant of an integral is like the determinant of a sum.Problem 2.22. Use Exercise 2.17 to �nd a formula for the determinant of anintegral.However, there is an easier way to compute determinants of integrals:det Z A(t) dt = det0BBB@R A11(t1) dt1 R A12(t1) dt1 � � � R A1n(t1) dt1R A21(t2) dt2 R A22(t2) dt2 � � � R A2n(t2) dt2... ... . . . ...R An1(tn) dtn R An2(tn) dtn � � � R Ann(tn) dtn1CCCA(2.23) = � � �(2.24) = Z � � �Z det0BBB@A11(t1) A12(t1) � � � A1n(t1)A21(t2) A22(t2) � � � A2n(t2)... ... . . . ...An1(tn) An2(tn) � � � Ann(tn)1CCCA dt1 � � �dtn:(2.25)Note the similarity between (2.25) and (2.11).Exercise 2.26. Provide the details for the missing step at line (2.24).Exercise 2.27. Obtain (2.11) from (2.25).Hint. Write (2.25) using de�nite integrals and then di�erentiate.The multiple integral may be di�cult to work with, so here are some sug-gestions for simplifying it.Problem 2.28. Is there an interpretation of (2.25) in terms of the Jacobian ofa change of variables?Problem 2.29. Can the integral over the cube in (2.25) be turned into an in-tegral over a tetrahedron? 7



2.3 The Resolvent and Characteristic PolynomialIf z is a scalar and A 2Mn(C ), the matrix zI �A is often written z � A. Theset of z such that z � A is invertible is called the resolvent set �(A) of A; thecomplement of the resolvent set is called the spectrum �(A) of A. The functionRz : �(A)!Mn(C ) given by Rz = (z �A)�1 is called the resolvent of A.Exercise 2.30. Use Cramer's rule to show that Rz is an analytic function ofz in the resolvent set. Recall that by Cramer's ruleA�1 = cl(A)detA(2.31)where cl(A) is the classical adjoint of A; cl(A) = CT where C is the matrix ofcofactors Cij = (�1)i+j det ~Aij(2.32)where ~Aij is the matrix obtained by removing the ith row and jth column fromA. Note that cl(A) is a matrix of polynomials in the entries of A.The function det(z � A) is a monic polynomial of degree n, known as thecharacteristic polynomial of the matrix A. The roots of cA(z) (counted withmultiplicity) are called the eigenvalues of A. Note that the set of eigenvalues isexactly the spectrum of A. The following notation will be used throughout: j isan index over the � distinct eigenvalues �j of a matrix counted with multiplicitymj . When the range of summation is clear from the context it will be omitted.For example,Pjmj�j =P�j=1mj�j is the sum of the eigenvalues of A countedwith multiplicity.Lemma 2.33 (Resolvent Identity). For any z; � 2 �(A),Rz �R� = (� � z)RzR� :(2.34)Proof. Note that(z � A)(� �A) = z� � (z + �)A+ A2 = �z � (� + z)A +A2 = (� � A)(z � A)(2.35)for any z; � 2 C , so (z �A)�1 and (� � A)�1 commute for any z; � 2 �(A):(2.36) (z � A)�1(� � A)�1 = ((� �A)(z � A))�1 == ((z � A)(� �A))�1 = (� � A)�1(z � A)�1:It follows thatRz � R� = (z � A)�1 � (� �A)�1(2.37) = (� � A)(� �A)�1(z � A)�1 � (z � A)(z � A)�1(� � A)�1(2.38) = ((� � A)� (z � A))(z �A)�1(� �A)�1:(2.39) 8



2.4 Trace and DeterminantWriting the characteristic polynomial in the formcA(z) = zn � cn�1zn�1 + � � �+ (�1)n�1c1z + (�1)nc0;(2.40)it is easy to see that c0 = detA; expanding the determinant det(z � A) inthe �rst row, it is clear that the coe�cient of zn�1 in cA(z) is the same asthe coe�cient of zn�1 in (z � A11) � � � (z � Ann), from which it follows thatcn�1 =Pni=1Aii = trA.Exercise 2.41. Show that trA =Pj mj�j .Problem 2.42. Use Problem 2.13 to compute the derivative (dn�1=dzn�1)cA(z)to show cn�1 = trA.Suppose A is invertible. Since det(A�1) det(A) = det(A�1A) = det I = 1,det(A�1) = (detA)�1 = c�10 . Thus the characteristic polynomial of the inverseof the invertible matrix A iscA�1 (z) = det(z �A�1)(2.43) = det(�zA�1) det(�z�1A) det(z �A�1)(2.44) = (�z)nc�10 det(z�1 �A)(2.45) = (�z)nc�10 cA(z�1)(2.46) = zn � c1c0 zn�1 + � � �+ (�1)n�1 cn�1c0 z + (�1)n 1c0 ;(2.47)from which it follows that trA�1 = c1=c0 = Pj mj=�j . Finally, note that theeigenvalues of z�A are z��j with multiplicitymj , so the trace of the resolventis given by tr(z �A)�1 =Xj mjz � �j :(2.48)3 Polynomial Functions of MatricesPolynomials are a simple prototype for the analytic functions which we wish tostudy. We want functions of matrices to behave sensibly with respect to addi-tion, multiplication and composition of polynomials as in (1.1){(1.3); combinedwith the assumptions that constant polynomials go over to the correspondingconstant matrix function, and the identity function goes over to the identityfunction on matrices, polynomial functions of matrices are completely deter-mined. 9



3.1 Cauchy's Integral FormulaRecall that we can get powers of a complex variable by Cauchy's integral formula�k = 12�i I zk(z � �)�1 dz(3.1)where  is a circle in the complex plane winding once around �. Cauchy'sintegral formula can be veri�ed easily in this case by expanding (z � �)�1 inpowers of z and examining the coe�cient of z�1 (i.e., the residue of zk(z��)�1).This gives an alternative way of getting powers of matrices: we can get thewhole list of powers of the matrix A by the following formula:(z �A)�1 = z�1�I � Az ��1 = z�1�I + Az + A2z2 + � � ��(3.2)where z is large enough so that the series converges.Exercise 3.3. Show that kAk = n sup jAijj de�nes a norm on Mn(C ) with theproperty that kABk � kAk kBk.Exercise 3.4. Show that jzj > kAk implies that (3.2) converges.Exercise 3.5. Show that a circle centered at the origin of radius r > kAkencloses the spectrum of A.Just as in the ordinary theory of functions of a complex variable, if we wantto pick out the power Ak of A, we multiply the above series by zk and integrateover a large enough circle. Of course, now that we have an integral expressionwe may vary the contour; the only requirement is the topological condition thatthe contour must wind once about the spectrum of A. This gives the followingtheorem:Theorem 3.6. For any matrix A and any nonnegative integer k,Ak = 12�i I zk(z � A)�1 dz(3.7)where  is a contour winding once around the spectrum of A.3.2 Applications of Cauchy's Integral FormulaTheorem 3.6 can be used to prove a simple result: if a matrix has only 0 as aneigenvalue, it is nilpotent. To be precise,Proposition 3.8. If a matrix N 2 Mn(C ) has only 0 as an eigenvalue, thenNn = O. 10



Proof. Let  be the circle of radius r centered at the origin. ThenNn = 12�i I zn(z �N )�1 dz(3.9) = 12�i Z 2�0 rnein�(rei� �N )�1irei� d�(3.10) = rn+12� Z 2�0 ei(n+1)�(rei� � N )�1 d�:(3.11)However, each of the entries of the matrix in the integrand is bounded above innorm by some constant multiple of r�n as r! 0 (by Cramer's rule), so Nn ! Oas r ! 0. But Nn is independent of r, so Nn = O.Theorem 3.6 can also be used to compute the trace of Ak.Proposition 3.12. Let A have the eigenvalues �j with multiplicities mj . Thenfor any positive integer k, trAk =Xj mj�kj :(3.13)Proof. Since the trace of a matrix is linear,trAk = tr 12�i I zk(z �A)�1 dz(3.14) = 12�i I zk tr(z �A)�1 dz(3.15) = 12�i I zkXj mjz � �j dz(3.16)by (2.48); the result follows by Cauchy's integral formula.Clearly Theorem 3.6 behaves properly under addition and scalar multiplica-tion, so we haveTheorem 3.17. For any matrix A and any polynomial p,p(A) = 12�i I p(z)(z � A)�1 dz(3.18)where  is a contour winding once around the spectrum of A.The following generalization of Proposition 3.8 is an application of Theo-rem 3.17:Theorem 3.19 (Cayley-Hamilton). A matrix satis�es its own characteristicequation, i.e., cA(A) = O. 11



Proof. Let cA(z) = det(z � A) be the characteristic polynomial of the matrixA. Recall that the inverse of a matrix is given by Cramer's rule:M�1 = cl(M )detM(3.20)where cl(M ) is the classical adjoint of M (see Exercise 2.30). In the special caseM = z �A we have det(z �A) = cA(z) and the classical adjoint is a matrix ofpolynomials, so cA(A) = 12�i I cA(z)(z � A)�1 dz(3.21) = 12�i I cA(z) cl(A)cA(z) dz(3.22)which vanishes since the integrand is (or rather, can be extended to) an analyticfunction on C .Exercise 3.23. Show that Proposition 3.8 is a consequence of Theorem 3.19.Linear operators in in�nite-dimensional spaces may have one-sided inversesbut not two-sided inverses. The Cayley-Hamilton theorem shows that thatcannot happen in �nite-dimensional spaces.Theorem 3.24. If detA = 0 then A has no inverse; if detA 6= 0 then A has atwo-sided inverse.Proof. If AB = I or BA = I then detA detB = 1 which implies that detA 6= 0.On the other hand, if detA 6= 0 thencA(z) = zn � cn�1zn�1 + � � �+ (�1)n�1c1z + (�1)nc0(3.25)with c0 6= 0, and by the Cayley-Hamilton theorem1(�1)n+1c0 �An�1 � cn�1An�2 + � � �+ (�1)n�1c1�(3.26)is the required two-sided inverse.Any polynomial in a matrix can be reduced to a polynomial of degree atmost n � 1 by successive application of the Cayley-Hamilton theorem. Thesame result follows from \wrapping" polynomial division in the appropriateintegral expression.Theorem 3.27. Given a matrix A 2Mn(C ), any polynomial p(A) in A is equalto a polynomial r(A) in A of degree at most n� 1.12



Proof. Apply polynomial division (the Euclidean algorithm) to obtain p(z) =cA(z)q(z)+r(z) where the quotient q(z) is a polynomial and the remainder r(z)is a polynomial of degree at most n� 1. Thenp(A) = 12�i I p(z)(z �A)�1 dz(3.28) = 12�i I(cA(z)q(z) + r(z))(z �A)�1 dz(3.29) = r(A):(3.30)Exercise 3.31. What does Theorem 3.27 say when n = 1?Exercise 3.32. Compute r(u)(�j) in terms of p(u)(�j), u = 0; : : : ;mj � 1.Hint. Use the following generalization of Cauchy's integral formula:f (u)(�) = u!2�i I f(z)(z � �)u+1 dz(3.33)where  is a contour winding once around �.Problem 3.34. User Exercise 3.32 to obtain explicit formulas for r(z) andr(A).Hint. First consider the case in which all the roots of cA(z) are distinct.The idea of Theorem 3.27, that polynomial identities can be multiplied byan appropriate factor and integrated over an appropriate contour to turn theminto matrix identities, has many more applications in this paper.3.3 The Minimal Polynomial�The fact that cA(A) = O implies that there exists a monic (i.e., with leadingcoe�cient 1) polynomialmA(z) of least degree such that mA(A) = O.Exercise 3.35. Show that mA is unique.Exercise 3.36. Show that mA(z) divides cA(z); more generally, show that p(A) =O implies mAjp.Exercise 3.37. Show that the characteristic polynomial cA(z) can be replacedby the minimal polynomial mA(z) in the proof of Theorem 3.27.13



4 Entire Functions of MatricesSuppose f(z) = a0 + a1z + a2z2 + � � � is a function with a power series whichconverges everywhere in the plane (i.e., f is an entire function). Recall ourmatrix norm kAk = n sup jAijj. Then kAkk � kAkk, k = 0; 1; 2; : : : , so thein�nite series f(A) converges absolutely by the Weierstra� M -test.Let  be a circle centered at the origin of radius r > kAk (which thereforeencloses the spectrum of A. Then by Theorem 3.6,akAk = 12�i I akzk(z �A)�1 dz:(4.1)It follows that f(A) = 12�i I f(z)(z � A)�1 dz:(4.2)Of course, now that we know the particular contour integral given aboveconverges, we can modify the contour, just as we did in Theorem 3.6:Theorem 4.3. For any matrix A and any entire function f , the series f(A) =P1k=0 akAk converges and is equal tof(A) = 12�i I f(z)(z �A)�1 dz(4.4)where  is a contour winding once around the spectrum of A.4.1 Constant Coe�cient Di�erential EquationsThe contour integral in (4.4) is an integral over a compact set, so limit processesmay be passed under the integral sign. This permits us to take certain limits,derivatives and integrals of entire functions of matrices.Exercise 4.5. Evaluate limt!0(sin tA)=(tA).Exercise 4.6. Evaluate R t0 cosh(sA) ds.One important application of the above idea is the solution of systems ofconstant coe�cient di�erential equationsddtX(t) = AX(t); X(0) = I:(4.7)Again, we re-use our knowledge of the behaviour of scalar functions to solve thematrix di�erential equation (4.7). In particular, we can map the propertyddtezt = zezt(4.8) 14



of the exponential function to a property of functions of matrices by wrappingthe identity (4.8) in the appropriate contour integral: di�erentiating the formulaeAt = 12�i I ezt(z �A)�1 dz(4.9)under the integral sign, it follows thatddteAt = AeAt;(4.10)so eAt is the (unique) function satisfying the system (4.7).Exercise 4.11. Solve the systemddtX(t) = AX(t); X(0) = B:(4.12)Problem 4.13. Use (2.6) to �ndddt 12�i I ez(z � At)�1 dz:(4.14)Is there a version of (3.33) that would help evaluate (4.14)?An important consequence of (4.10) is the following identity.Theorem 4.15. For any matrix A,det eA = etrA:(4.16)Proof. To di�erentiate a row of eAt we multiply eAt on the left by a row of A.Therefore by (2.11),(4.17) ddt det eAt = det0BBBBB@A11 A12 � � � A1n0 1 � � � 00 0 � � � 0... ... . . . ...0 0 � � � 1 1CCCCCA eAt ++det0BBBBB@ 1 0 � � � 0A21 A22 � � � A2n0 0 � � � 0... ... . . . ...0 0 � � � 1 1CCCCCA eAt + � � �+ det0BBBBB@ 1 0 � � � 00 1 � � � 00 0 � � � 0... ... . . . ...An1 An2 � � � Ann1CCCCCA eAt:Each of the determinants of the matrices containing Aij 's may be evaluated byexpanding in the column containing Aii to obtain Aii. It follows that x(t) =det eAt is a solution to the scalar ordinary di�erential equation (d=dt)x(t) =(trA)x(t), so det eAt = ketrAt. Setting t = 0 gives k = 1. Setting t = 1 givesthe result. 15



Theorem 4.15 is a special case of Jacobi's Identity.Exercise 4.18 (Jacobi's Identity). If X(t) is the (unique) solution to thesystem of linear di�erential equationsddtX(t) = A(t)X(t); X(0) = I(4.19)for t 2 [0; t0] then detX(t) = eR t0 trA(s) ds(4.20)for t 2 [0; t0).It follows from Theorem 4.15 that eA is nonsingular for any matrix A. How-ever, the inverse can be constructed explicitly using the following theorem.Theorem 4.21. For entire functions f and g, (f + g)(M ) = f(M ) + g(M ),(fg)(M ) = f(M )g(M ) and (f � g)(M ) = f(g(M )).Proof. These identities hold for power series.Thus identities which hold for entire functions can be turned into matrixidentities using the above theorem. Let f(z) = ez, g(z) = e�z. Since 1 =f(z)g(z), it follows that I = f(A)g(A), so (eA)�1 = e�A.Exercise 4.22. Show that the identity sin2(A) + cos2(A) = I holds for anymatrix A.Exercise 4.23. Show that the identity eiA = cosA+i sinA holds for any matrixA. Note that identities for functions in two or more variables may not hold formatrices. For example, eAeB , eA+B and eBeA are all di�erent whenA = �0 10 0� ; B = �0 01 0� :(4.24)Exercise 4.25. Using power series, show that eAeB = eA+B = eBeA holds forcommuting matrices A;B.Problem 4.26. Is it possible to �nd an integral representation for entire func-tions of commuting matrices in two or more variables?4.2 InterpolationRecall that for any polynomial p, p(A) = r(A) for some polynomial r of degreen � 1. It seems likely that a similar theorem may hold for entire functions,but the �rst argument used to prove Theorem 3.27, that of reducing the degreeof a polynomial function by repeatedly applying the Cayley-Hamilton theorem,cannot be used. Fortunately, entire functions may be divided by polynomials.Dividing f by cA gives the following result.16



Theorem 4.27 (Function Division). Any entire function f may be writtenf(z) = cA(z)q(z) + r(z)(4.28)where q(z) is an entire function,r(z) = �Xj=1 "mj�1Xu=0 1u!�(u)j (�j)(z � �j)u# �Yk=1k 6=j(z � �k)mk ;(4.29) �j(z) = f(z)(z � �j)mjcA(z) ;(4.30)and �j are the � distinct roots of cA(z) with multiplicities mj .Proof. By Exercise 4.32 it is su�cient to show that the meromorphic functionsqj(z) = f(z) � r(z)(z � �j)mj(4.31)are actually entire on C . By Exercise 4.36, the �rst mj � 1 coe�cients of thepower series expansion of f(z)�r(z) in (z��j ) vanish and the result follows.Exercise 4.32. Suppose thatg(z)(z � �1)m1 ; : : : ; g(z)(z � ��)m�(4.33)are entire functions (�1; : : : ; �� all distinct). Show thatg(z)(z � �1)m1 � � � (z � ��)m�(4.34)is entire.Hint. Use the partial fractions decomposition of1(z � �1)m1 � � � (z � ��)m� :(4.35)Exercise 4.36 (Lagrange-Hermite Interpolation). Show that the remain-der r(z) given by (4.29) satis�es the Lagrange-Hermite interpolation conditionr(u)(�j) = f (u)(�j) for u = 0; : : : ;mj � 1, j = 1; : : : ; �.(4.37)Exercise 4.38. Show that r(z) is the unique polynomial of degree n� 1 or lesswhich satis�es (4.28) under the condition that q(z) is entire.17



Exercise 4.39. If f is a polynomial, show that Theorem 4.27 gives an explicitformula for the partial fractions decomposition of f(z)=cA(z).Using Theorem 4.27, it is possible to show that for any entire function f andany matrix A, f(A) = r(A) for some polynomial r(z). To be precise,Theorem 4.40 (Buchheim's Formula). Let f be an entire function and letA be a matrix. Thenf(A) = �Xj=1 "mj�1Xu=0 1u!�(u)j (�j)(A� �j)u# �Yk=1k 6=j(A � �k)mk(4.41)where �j(z) = f(z)(z � �j)mjcA(z)(4.42)and �j are the � distinct roots of cA(z) with multiplicities mj .Proof. f(A) = 12�i I f(z)(z � A)�1 dz(4.43) = 12�i I (cA(z)q(z) + r(z))(z � A)�1 dz(4.44) = cA(A)q(A) + r(A) = r(A):(4.45)Theorem 4.40 gives an explicit formula even when f is a polynomial; comparewith the Euclidean algorithm for polynomial division used in Theorem 3.27.Exercise� 4.46. Show that the appropriate modi�cation of Theorem 4.40 holdswhen cA(z) is replaced by any polynomial m(z) for which m(A) = O.Problem� 4.47. Are there versions of Theorems 4.27 and 4.40 in which cA(z)is replaced by an entire function m(z) for which m(A) = O?Hint. See [2, page 339] for a discussion.5 Analytic Functions of MatricesThe results of Section 4 can be generalized to analytic functions de�ned a disk(and therefore given by power series) and for matrices with eigenvalues in thedisk. Greater care has to be taken to show that the matrix power series converge,but otherwise the theory is identical to that of Section 4. However, the powerseries approach fails for functions such as tan�� 00 ���. On the other hand,given the success of the contour integral approach so far, the following de�nitionseems to be appropriate. 18



De�nition 5.1. Let f be an analytic function de�ned on the domain 
 � C .Let A 2 Mn(C ) be a matrix with spectrum contained in 
. Let  be a contourin 
 winding once the spectrum of A. Then f(A) is de�ned by the formulaf(A) = 12�i I f(z)(z � A)�1 dz:(5.2)The function f : Mn(C ) ! Mn(C ) given by (5.2) is called the primarymatrix function f(A) corresponding to the stem function f(t).Since (z �A)�1 is a matrix of functions analytic outside of the spectrum ofA, the integral in (5.2) converges and is well-de�ned by Cauchy's theorem. Byprevious results, f(A) agrees with the old notion of f(A) when f is a polynomialor entire function (or when the spectrum of A is contained within the radius ofconvergence of a power series expansion for f).5.1 Basic TheoremsWe should check that this notion of function satis�es the identities which weexpect.Theorem 5.3. Let f; g be two analytic functions de�ned on the domain 
 � C ,and let A be a matrix with spectrum contained in 
. Thenf(A) + g(A) = (f + g)(A);(5.4) f(A)g(A) = (fg)(A):(5.5)Proof. Linearity is obvious. The product formula follows from the resolventidentity (Lemma 2.33): Let G and G0 be simply connected open sets satisfying�(A) � G, �G � G0, �G0 � 
, and let  = @G, 0 = @G0 oriented counterclockwise.Note that  and 0 each wind once about �(A). Thenf(A)g(A) = 12�i I f(z)(z �A)�1 dz 12�i I0 g(�)(� � A)�1 d�(5.6) = 12�i I0 12�i I f(z)g(�)(z � A)�1(� � A)�1 dz d�(5.7) = 12�i I0 12�i I f(z)g(�)(� � z)�1 �(z � A)�1 � (� �A)�1� dz d�:(5.8)However Z f(z)g(�)(� � z)�1(� �A)�1 dz = 0(5.9)because the integrand is an analytic function of z in G0 (� 2 0 lies outside of19



G0). Thereforef(A)g(A) = 12�i I0 12�i I f(z)g(�)(� � z)�1(z � A)�1 dz d�(5.10) = 12�i I f(z)(z �A)�1 12�i I0 g(�)(� � z)�1 d� dz(5.11) = 12�i I f(z)(z �A)�1g(z) dz(5.12) = (fg)(A):(5.13)Example 5.14. Given a nonsingular matrix A, it is possible to make a branchcut in the complex plane from 0 to 1 which does not intersect the spectrum ofA. Let  be a contour in the cut plane winding once around each eigenvalue ofA. Then A�1 = 12�i I z�1(z � A)�1 dz(5.15)is the inverse of A.Exercise 5.16. Show that the integral in (5.15) vanishes when  is a counter-clockwise oriented circle centered at the origin of large enough radius.Exercise 5.17. Show that when A is invertibleA�1 = limr!0 12�i I(r) z�1(z �A)�1 dz(5.18)where (r) is a clockwise oriented circle of radius r centered at the origin. Whathappens when A is not invertible?Exercise 5.19. Show that Buchheim's Formula (Theorem 4.40) continues tohold for arbitrary analytic functions f .Problem 5.20. Show that Buchheim's formula allows us extend the de�nitionof f(A) to functions which are only n times continuously di�erentiable, notnecessarily analytic.The theorem for compositions of functions remains to be proven. First, wemust investigate the behaviour of the spectrum of a matrix under an analyticmap.Lemma 5.21. If �j 2 �(A) then g(�j) 2 �(g(A)).Proof. Using function division,g(�j) � g(A) = 12�i I (g(�j)� g(z))(z � A)�1 dz(5.22) = 12�i I (�j � z)q(z)(z � A)�1 dz(5.23) = (�j � A)q(A);(5.24) 20



so det(g(�j) � g(A)) = det(�j � A) det q(A) = 0:(5.25)Lemma 5.21 shows that g(�(A)) � �(g(A)) but does not provide informationon the multiplicities of the eigenvalues; in fact, multiplicities are preserved, butthe proof of that fact will be postponed to Theorem 5.55.Problem 5.26. Can you show that the reverse inclusion �(g(A)) � g(�(A))holds?Theorem 5.27. Let g be an analytic function de�ned on the domain 
 � C ,and let f be an analytic function de�ned on the domain 
0 � C . Suppose that�(A) � 
, �(g(A)) � 
0. Thenf(g(A)) = (f � g)(A):(5.28)Proof. The proof of this theorem is similar to the proof of the product theorem.Let G2 be a simply connected open set satisfying �(g(A)) � G2 and �G2 � 
,and let 2 = @G2 oriented counterclockwise. Let 1 be a chain consisting ofsmall circles around each point of �(A); by Lemma 5.21, g(1) � G2 when thecircles are small enough. Thenf(g(A)) = 12�i I2 f(z)(z � g(A))�1 dz(5.29) = 12�i I2 f(z) 12�i I1 (z � g(�))�1(� � A)�1 d� dz(5.30) = 12�i I1 12�i I2 f(z)(z � g(�))�1 dz (� � A)�1 d�(5.31) = 12�i I1 f(g(�))(� �A)�1 d�(5.32) = (f � g)(A):(5.33)5.2 Inverse FunctionsSolving equations amounts to constructing inverse functions which can now bedone with the help of Theorem 5.27.The square root problem may now be solved, at least partially. Given a non-singular matrix A, make a branch cut from 0 to 1 which avoids the spectrumof A, then de�ne a square root function on the cut plane. Let  be a contourin the cut plane winding once around the spectrum of A. ThenX = 12�i I pz (z � A)�1 dz(5.34) 21



is a solution to the equation X2 = A.Singular matrices may or may not have square roots. For example, �1 00 0�has a square root, while �0 10 0� does not.Exercise 5.35. Verify that �0 10 0� does not have a square root by explicitcalculation.An exact criterion for the existence of square roots using more delicate analysisis given in [4, pages 471{472].A matrix generally has more square roots than those given by Theorem 5.27.Exercise 5.36. Use Buchheim's formula (Theorem 4.40) to show that the ma-trix �1 00 �1� is a square root of the identity matrix which cannot be a primarymatrix function of the identity matrix.Problem 5.37 (Putnam 1996-B-4). Prove or disprove: there is a matrix Asuch that sinA = �1 19960 1 �.Solution. The matrix A has eigenvalue 1 which is also a branch point of thefunction arcsin so we cannot just take the inverse function. However, we dohave function identities available. Suppose there is such a matrix A. Thensin2A+cos2A = I so cos2A = �0 �39920 0 �. But that is impossible (otherwise�0 10 0� would have a square root). So there is no such matrix A.It is now also possible to solve the matrix equation eX = A. By Theo-rem 4.15, eX is always nonsingular so eX = A may have a solution only if A isnonsingular. On the other hand, if A is nonsingular, a branch cut from 0 to 1may be made which avoids the spectrum of A; a logarithm can then be de�nedon the cut plane, and logA satis�es elogA = A by Theorem 5.27.Theorem 5.38. If A is nonsingular,detA = etr logA(5.39)where logA is any logarithm of A, i.e., any solution to eX = A.Problem 5.40. Is it possible to writelog detA = tr logA?(5.41) 22



5.3 Frobenius CovariantsSuppose the matrix A has eigenvalues �j , j = 1; : : : ; �. Let 
j be small opendisks centered at �j satisfying 
j \
k = ; if j 6= k. Let j be a contour in 
jwinding once around �j. Let 
 = 
1 [ � � � [
�,  = 1 + � � �+ �.Consider the function 1j(z) = (1 if z 2 
j0 if z 62 
j :(5.42)Then 1j is an analytic function in 
, so Aj = 1j(A) is well-de�ned. The matricesAj are called the Frobenius covariants of A [4, page 403] [8, page 494].Exercise 5.43. Show that(i) A1 + � � �+ A� = I,(ii) AjAk = 0 if j 6= k, and(iii) A2j = Aj ;therefore Aj are disjoint projections.Exercise 5.44. Show that Aj are polynomials in A.Exercise 5.45 (Schwerdtfeger's Formula). Show thatf(A) = �Xj=1Aj mj�1Xk=0 1k!f (k)(�j)(A � �j)k:(5.46)Hint. Note that f(A) = f j
(A) where f j
 is the restriction of f to 
. Prove atheorem like Theorem 4.27 for f j
 = 11f j
 + � � �+ 1�f j
.5.4 Images of Eigenvalues under Analytic FunctionsLemma 5.21 gives a \lower bound" on the spectrum of a function of a ma-trix. The goal of this section is to obtain precise information on �(f(A)) bycalculating the characteristic polynomial of f(A).Let us begin by studying the behaviour of the trace under analytic functionsof matrices. The trace is linear so it behaves well.Theorem 5.47. tr f(A) =Xj mjf(�j ):(5.48)Proof. Using the linearity of the trace,tr f(A) = tr 12�i I f(z)(z � A)�1 dz(5.49) = 12�i I f(z) tr(z � A)�1 dz:(5.50) 23



By (2.48), tr f(A) = 12�i I f(z)Xj mjz � �j dz =Xj mjf(�j ):(5.51)It is much more di�cult to handle determinants directly. Indirectly, Theo-rem 5.38 shows that det(� � f(A)) = etr log(��f(A))(5.52)for � 2 C � �(f(A)). (The choice of log depends on �, but the right hand sideof (5.52) is independent of the choice of log because of the exponential.) ByTheorem 5.47, tr log(� � f(A)) =Xj mj log(� � f(�j )):(5.53)Exponentiating,det(�� f(A)) = ePj mj log(��f(�j )) =Yj (� � f(�j ))mj(5.54)for � 2 C � �(f(A)). Since the equality between the above two polynomialsholds everywhere in C except for a �nite set of points, it holds everywhere in Cwhich proves the following theorem.Theorem 5.55. If the eigenvalues of A are �j with multiplicity mj , the eigen-values of f(A) are f(�j ) with multiplicity mj ; in other words, the characteristicpolynomial of f(A) is (�� f(�1))m1 � � � (� � f(��))m� .The minimal polynomial may change in a much more complicated way, aswe will see in Problem 6.11.6 Functions of Matrices and Jordan CanonicalForm�There is an easier way to obtain Theorem 5.55 and some of the other resultsgiven above. We begin by studying the e�ect of a change of basis on a matrixfunction. It is clear that p(B�1AB) = B�1p(A)B for polynomial and entirefunctions p(z). The same result holds for primary matrix functions in general.Theorem 6.1. For any matrices A and B, if f(AB) is de�ned, then so isf(BA) and Bf(AB) = f(BA)B:(6.2) 24



Proof. First, note that the spectra ofAB andBA are the same by (1.12). (Whathappens when 0 2 �(AB)?) Then a simple calculation gives(6.3) Bf(AB) = 12�i I f(z)B(z �AB)�1 dz == 12�i I f(z)(z � BA)�1B dz = f(BA)B:If B is invertible then setting A = CB�1 givesTheorem 6.4. If B is invertible and f(C) exists, then f(BCB�1) exists andf(C) = B�1f(BCB�1)B:(6.5)Thus we may obtain f(C) knowing the Jordan canonical form of C and thefollowing theorems on the e�ect of f on Jordan blocks.Theorem 6.6.f(Jk(�)) = 0BBBBB@f(�) f 0(�) f 00(�)=2 � � � f (k�1)(�)=(k � 1)!0 f(�) f 0(�) � � � f (k�2)(�)=(k � 2)!0 0 f(�) � � � f (k�3)(�)=(k � 3)!... ... ... . . . ...0 0 0 � � � f(�) 1CCCCCA :(6.7)Proof. This is an easy calculation using the inverse of a Jordan block andCauchy's integral formula.Theorem 6.8.f(J1(�1)� � � � � Jn(�n)) = f(J1(�1)) � � � � � f(Jn(�n)):(6.9)Exercise 6.10. Use Schwerdtfeger's formula (Exercise 5.45) to obtain Theo-rems 6.6 and 6.8.Theorem 6.6 is sometimes taken to be the de�nition of the primary matrixfunction; it holds for functions f which are n times continuously di�erentiable,not just for analytic functions. Little is gained by de�ning the primary matrixfunction in this way, however, since Buchheim's formula gives the same extensionof the de�nition.What we do gain by this method is that we may easily obtain Theorem 5.55,the result on transformation of the characteristic polynomial, using the Jordanblock method. We can also see what may happen to the minimal polynomial:a Jordan block may \split" if derivatives of f vanish at an eigenvalue.Problem 6.11. Investigate the possible Jordan block structures of f(Jk(�)) andconsequently the possible minimal polynomials of f(Jk(�)) for various f .25



Problem 6.12. Find an exact criterion for the existence of square roots of amatrix.The product and composition theorems applied to Jordan blocks may alsoyield useful identities for functions and their derivatives:Exercise 6.13. Use the product formula (5.5) and appropriate Jordan blocksto prove Leibniz' formula for the kth derivative of the product of two functions,k = 0; 1; : : :: dkdzk (fg)(z) = kXj=0Cjkf (j)(z)g(k�j)(z):(6.14)Exercise 6.15. Use the composition formula (5.28) and appropriate Jordanblocks to prove Faa di Bruno's rule for the kth derivative of the composition oftwo functions, k = 1; 2; : : : :dkdzk (f � g)(z) = kXm=1 f (m)(g(z)) XI(m;k) m!�1! � � ��k! kYu=1 �g(u)(z)u! ��u(6.16)where I(m; k) = f�1; � � � ; �k : �1 + � � �+ �k = m;�1 + 2�2 + � � �+ k�k = kg:(6.17)See [4, page 421] for more information on Faa di Bruno's rule.Problem 6.18. Extend the results of Exercises 6.13 and 6.15 to several func-tions of several variables. In particular, �nd a formula for multiple partialderivatives of the composition of two functions of several variables. See [1, page23] for another approach.The Jordan block method gives a clear picture of the behaviour of primarymatrix functions. The main drawback of the Jordan block method is that itdoes not generalize well to operators on in�nite dimensional spaces. There isalso the �sthetic di�culty that it is not expressed in terms of a single formulawhich applies to any matrix; rather, it depends on Jordan canonical form whichis given in terms of an algorithm rather than a formula.Problem 6.19. Is there a formula for Jordan canonical form? Note that sucha formula could not be continuous: consider the matrices �0 00 0� and �0 �0 0�.See [8, pages 20{21] for an interesting proof of Jordan canonical form.7 The Equation AX �XB = CThe equation AX � XB = C is not of the form f(X) = A of the equationswe have considered so far, so some new methods are required to solve it. The26



equation is linear in X, but is surprisingly di�cult to solve. For the moment,assume that A;B;C;X 2Mn(C ).One clever approach is to write the equation as a block matrix equation:� I XO I ��A OO B�� I �XO I � = �A CO B� :(7.1)Since �I �XO I � = �I XO I ��1 ;(7.2)equation (7.1) shows that a necessary condition for the solvability ofAX�XB =C is that the two matrices �A OO B� and �A CO B� are similar. In fact, thatcondition is su�cient as well [4, page 279{281], but no constructive proof ofthat fact is known. Two constructive approaches to solving the equation areoutlined below.7.1 The Kronecker ProductNote that the equation AX � XB = C is linear in the elements of X, so wecan write it as an ordinary linear system of equations in the vector vec(X) =(x11; x21; � � � ; xnn)T .Exercise 7.3. Show that the equation AXB = C on X is equivalent to theblock matrix equation0BBB@b11A b21A � � � bn1Ab12A b22A � � � bn2A... ... . . . ...b1nA b2nA � � � bnnA1CCCA vec(X) = vec(C):(7.4)The matrix A 
B = 0BBB@a11B a12B � � � a1nBa21B a22B � � � a2nB... ... . . . ...an1B an2B � � � annB1CCCA(7.5)is called the Kronecker product of A and B. Thus the matrix equation AXB =C is equivalent to the matrix equation (BT 
A) vec(X) = vec(C).Exercise 7.6. Show that if � is an eigenvalue of A and � is an eigenvalue ofB, then �� is an eigenvalue of BT 
 A.Hint. Given an eigenvector a of A and an eigenvector b of BT , construct an\eigenmatrix" X of the operator AXB.27



Exercise 7.7. An algebraic number is a solution to a polynomial with integercoe�cients; an algebraic integer is a solution to a monic polynomial with integercoe�cients. Use the Kronecker product to show that the product of two algebraicintegers is an algebraic integer, and that the product of two algebraic numbersis an algebraic number.The equation AX �XB = C is equivalent to the equation(I 
 A� BT 
 I) vec(X) = vec(C):(7.8)Exercise 7.9. Show that if � is an eigenvalue of A and � is an eigenvalue ofB, then �� � is an eigenvalue of (I 
A �BT 
 I).Exercise 7.10. Show that the sum of two algebraic numbers is an algebraicnumber, and the sum of two algebraic integers is an algebraic integer.Exercise 7.11. Show that the spectrum of (I 
 A �BT 
 I) is exactly the setf�� � : � 2 �(A); � 2 �(B)g.Exercise 7.12. Use Exercise 7.11 to determine a necessary and su�cient con-dition on A;B for AX �XB = C to have exactly one solution for any C.The Kronecker product is a powerful way of solving linear matrix equations,but as with the Jordan canonical form formulation of matrix functions, it doesnot generalize well to operators on in�nite dimensional spaces.7.2 An Analytic SolutionAs we did with nonlinear matrix equations, we may use analytic concepts toattempt to solve AX � XB = C. Suppose that X is a solution, and that A isinvertible. Then \solving" for X,X = A�1C +A�1XB(7.13) = A�1C +A�2CB + A�2XB2(7.14) = A�1C +A�2CB + A�3CB2 + � � �(7.15)In order for the series (7.15) to converge, we should assume that all the eigen-values of A lie outside a circle of radius r centered at the origin, while all theeigenvalues of B lie inside the same circle. In this case, the series converges toa solution of the equation.The above restriction on the eigenvalues of A and B is too strong; ourexperience with entire functions shows that it can be weakened by replacing thesum with a contour integral. Contour integrals pick out the coe�cient of order�1 from series, which just happens to be what we get if we divide A and B byz (and multiply by z�2):X = 12�i I 1Xj=0 z�1�Az ��1�j Cz�1�Bz �j dz(7.16) 28



where  is the circle of radius r centered at the origin oriented counterclockwise.Now we can add any other powers of z to the integrand without changing theintegral, so we may write(7.17) X = 12�i I 1Xj=0A�1 � zA�j C 1Xk=0 z�1�Bz �k dz == � 12�i I(z � A)�1C(z �B)�1 dzwhich is the expression for X given in [5, Appendix A]. This allows us to changethe shape of the contour as long as we preserve its essential topological features,i.e., that the spectrum of B is entirely within the contour while the spectrumof A is entirely outside the contour. This requires that the spectra of A and Bare disjoint, which is exactly the condition derived in Exercise 7.12.Proposition 7.18. Suppose the spectra of A and B are disjoint. Let  be acontour winding around each element of the spectrum of B once but not windingaround any element of the spectrum of A. ThenX = � 12�i I(z �A)�1C(z � B)�1 dz(7.19)is the unique solution to the equation AX �XB = C.Proof. X is a solution:AX �XB = � 12�i I(z �A)�1(AC � CB)(z �B)�1 dz(7.20) = 12�i I(z �A)�1(zC � AC +CB � Cz)(z � B)�1 dz(7.21) = 12�i I �C(z � B)�1 � (z � A)�1C� dz(7.22) = CI �OC = C(7.23)because the contour encloses all of the eigenvalues of B but none of the eigen-values of A.To prove uniqueness, note that the integral (7.19) gives a linear operatorC ! X between two vector spaces Mn(C ) of equal dimension; the operator isonto since X = � 12�i I(z � A)�1(AX �XB)(z � B)�1 dz;(7.24)so it must be 1{1. In other words, suppose that AX1�X1B = C = AX2�X2B;29



then X1 = � 12�i I(z �A)�1(AX1 �X1B)(z �B)�1 dz(7.25) = � 12�i I(z �A)�1(AX2 �X2B)(z �B)�1 dz(7.26) = X2:(7.27)The integral operator given by (7.19) may be regarded as the inverse of theoperator AX �XB.Exercise 7.28. Show thatX = 12�i I(z �A)�1C(z � B)�1 dz(7.29)is another representation of the solution, where the contour winds once aroundeach eigenvalue of A but not around any eigenvalue of B.Exercise 7.30. Show that the above constructions work when A 2 Mm(C ),B 2Mn(C ), C;X 2Mm�n(C ).Exercise 7.31. Show that if B = AT , C = �CT and the spectra of A and Bare disjoint, then X = XT .Exercise 7.32. Show that if B = A�, C = �C� and the spectra of A and Bare disjoint, then X = X�.Exercise 7.33. Show that if A;B;C are all real and the spectra of A and Bare disjoint, then X is also real.7.3 Constant Coe�cient Di�erential Equations RevisitedJust as we studied variations on the matrix equation AX = B, we can studyvariations on the constant coe�cient matrix di�erential equation (d=dt)X(t) =AX(t).Exercise 7.34. Use products of exponentials to solve the systemddtX(t) = AX(t) �X(t)B; X(0) = C:(7.35)Exercise 7.36. Calculate the integralZ 10 X(t) dt(7.37)assuming that it exists. Under what conditions does it exist?Exercise 7.38. Find a series solution to the systemddtX(t) = AX(t)B; X(0) = C(7.39)Exercise 7.40. Solve (7.39) using the Kronecker product.Problem 7.41. Can you �nd an integral representation for the solution of (7.39)?30



8 ConclusionThe overall goal of the theory of primary matrix functions is to enable us to\re-use" our knowledge of analytic functions (as solutions to algebraic and di�er-ential equations) in the context of matrices. We have succeeded to a large extentby using analytic methods, speci�cally contour integrals which have turned outto be more versatile than series. (See [3] for another situation in which contourintegrals give better results than series.)On the other hand, we did not obtain every result we asked for, particularlyin degenerate cases: we did not get all the square roots of matrices which havesquare roots, we did not get perfect criteria about which matrices have a squareroots and we did not get solutions to AX �XB = C in the degenerate case inwhich the spectra of A and B overlap.This dichotomy of good results in typical cases and poor (or no) results indegenerate cases may be a consequence of our use of in�nite processes: strongconditions are required if we are to make use of in�nite series and integrals, butwhen they work, they work well.In any case, even though the results we obtain are partial, the techniques wehave developed are beautiful and powerful additions to our collection of toolsfor solving problems.References[1] Ralph Abraham and Jerrold E. Marsden. Foundations of Mechanics.Addison-Wesley, New York, second edition, 1978.[2] Egbert Brieskorn and Horst Kn�orrer. Plane Algebraic Curves. Birkh�auser,Basel, 1986. Translated from the German by John Stillwell.[3] A. Erd�elyi. Hypergeometric functions of two variables. Acta Mathematica,83:131{164, 1950.[4] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cam-bridge University Press, Cambridge, 1991.[5] V. Ivrii. Microlocal Analysis and Precise Spectral Asymptotics. Springer,New York, 1998.[6] Louis H. Kau�man. On Knots. Number 115 in Annals of MathematicsStudies. Princeton University Press, Princeton, New Jersey, 1987.[7] David Mumford. Tata Lectures on Theta II. Birkh�auser, 1984.[8] Michael E. Taylor. Partial Di�erential Equations: Basic Theory. Springer,New York, 1996.[9] Hiroshi Umemura. Resolution of Algebraic Equations by Theta Constants,pages 3.261{3.270. In [7], 1984. 31


