
Real{Time Deques, Multihead Turing Machines,and Purely Functional Programming�Tyng{Ruey Chuang and Benjamin GoldbergDepartment of Computer ScienceCourant Institute of Mathematical SciencesNew York University251 Mercer Street, New York, NY 10012, USAchuang@cs.nyu.edu, goldberg@cs.nyu.eduAbstractWe answer the following question: Can a deque (double{ended queue) be implemented in a purely functional lan-guage such that each push or pop operation on either end ofa queue is accomplished in O(1) time in the worst case? Theanswer is yes, thus solving a problem posted by Gajewskaand Tarjan [14] and by Ponder, McGeer, and Ng [25], andre�ning results of Sarnak [26] and Hoogerwoord [18].We term such a deque real{time, since its constant worst-case behavior might be useful in real time programs (assum-ing real{time garbage collection [3], etc.) Furthermore, weshow that no restriction of the functional language is neces-sary, and that push and pop operations on previous versionsof a deque can also be achieved in constant time.We present a purely functional implementation of real{time deques and its complexity analysis. We then show thatthe implementation has some interesting implications, andcan be used to give a real{time simulation of a multiheadTuring machine in a purely functional language.1 Introduction and SurveyIn a functional program, if an aggregate data structure isupdated then both the original version and the updatedversion of the aggregate must be preserved, preferably ata small cost, to maintain referential transparency. It is gen-erally regarded as too expensive to make a complete copyof the aggregate that di�ers from the original only in theupdated position. There have been various approaches tosolve the aggregate update problem. If compile{time pro-gram analysis or run{time tests can determine that the orig-inal version of an aggregate will not be referenced follow-ing an update, then the update can be performed in place[6, 7, 19, 23, 28, 29].A functional language can also provide language prim-itives for writing single{threaded programs such that theycan easily be recognized and implemented by the compiler.A program is single{threaded if all operations on aggregates�Appeared in Conference on Functional Programming Languagesand Computer Architecture, pages 289{298. Copenhagen, Denmark,June 1993. ACM Press.

only refer to their newest versions. Thus, all update op-erations in a single{threaded program can be performed inplace because previous versions of aggregates will never beneeded and can be safely overwritten [2, 16, 24, 31, 32].Another general approach is to design e�cient algorithmsto make aggregate data structures fully persistent (i.e., pure-ly functional), such that after a sequence of updates thenewest version and all previous versions of the aggregateare still accessible [1, 4, 5, 10, 11, 17, 21, 22, 26, 27].General techniques for making aggregate data structuresfully persistent are described by Driscoll, Sarnak, Sleator,and Tarjan [11]. However, the techniques often rely on side{e�ects to achieve good time and space performance. It is notclear how they can be implemented in a purely functionallanguage without losing their e�ciency. For an advocateof functional programming, the challenge is to demonstratethat certain aggregates can be implemented e�ciently inpurely functional languages.When discussing and comparing e�cient implementa-tions of fully persistent aggregate data structures, it is help-ful that we ask the following questions regarding the imple-mentations:� Is the implementation a purely functional one? Or,must it use side{e�ects and be implemented in a side{e�ecting language?� Is the stated cost of each aggregate operation a worst{case cost or an amortized one?� Is the implementation good for multi{threaded appli-cations? Or is it only suitable for single{threaded ap-plications?While a worst{case analysis measures the cost of an opera-tion in an isolated context, an amortized analysis measuresthe cost of an operation averaged over a worst{case sequenceof operations [30]. Amortized analysis should not be con-fused with average{case analysis, which is often based onsome probabilistic assumptions. An implementation is saidto be real{time if each operation costs only constant over-head in the worst case.Notice that a purely functional implementation of an ag-gregate data structure automatically makes it fully persis-tent because no side{e�ect is used in the implementationand previous versions of an aggregate are always accessi-ble. The problem is that the implementation may be ine�-cient, even under the assumption that it will only be used for

single{threaded applications. Also, an implementation (ei-ther in purely functional or side{e�ecting languages) withgood amortized performance does not necessarily mean itis good for multi{threaded applications, because the amor-tized cost may be measured over a single{threaded sequenceof operations.Hood and Melville [17] show that a FIFO queue can beimplemented in pure Lisp (where no side{e�ect is allowed)such that, in the worst case, push or pop operations on thequeue cost only O(1) time and consume O(1) space. This isan interesting result for several reasons. First of all, the O(1)complexity applies not only to the newest version of a queue,but to previous versions as well. This makes their implemen-tation suitable for multi{threaded applications. Secondly, ithad not previously been shown, even for languages allow-ing side-e�ects, how a fully persistent real{time queue couldbe implemented. For example, suppose that the queue isimplemented in a side{e�ecting language as a single{linkedlist with access pointers to both ends and the standard tech-nique of [11] is used to make the single{linked list fully per-sistent. Each of the pop or push operations to any versionof a queue will need O(1) amortized time and space.We extend in this paper the result of Hood and Melvillesuch that using a purely functional language, each of thepush or pop operations on either end of any version of adeque costs only O(1) time in the worst case. E�cient im-plementation of deques in a purely functional language wasconsidered both by Gajewska and Tarjan [14] and by Pon-der, McGeer, and Ng [25], but without giving a solution.Our results show that it can be done.The techniques we use are not new. We will use twostacks to represent a deque, with each stack top correspond-ing to one of the two open ends of the deque. The two stacksare balanced at all time in that the bigger stack is never morethan three times the size of the smaller stack. A pop opera-tion on a non{empty deque is performed directly on one ofthe stacks. The challenge is to make the design as simple aspossible | such that a purely functional implementation be-comes straightforward | and to get its complexity analysisright. The two{stacks representation is used by Gries [15,pages 250{251] to design purely functional queues with con-stant amortized cost per operation. Hoogerwoord [18] showsthat the representation can be extended to purely functionaldeques with constant amortized cost per operation. How-ever, these two designs are not suitable for multi{threadedapplications because the constant cost for each operation isamortized along a single thread of operations. Hood andMelville [17] show that, by incrementally copying elementsfrom one stack to another, real{time queues can be imple-mented in a purely functional way. A design for fully persis-tent deques with constant worst{case time per operation isdescribed in Sarnak's Ph.D. thesis [26]. However, his designis not purely functional because side{e�ects are used in theimplementation. His method, and the associated complexityanalysis, is also more complicated than ours. Nevertheless,the basic idea is similar in his and our design: a deque isrepresented as two stacks and they are kept balanced byincrementally moving elements between them.In section 2, we outline Hood and Melville's purely func-tion method for real{time FIFO queues. We then describe insection 3 a purely functional implementation of deques withgood amortized performance. This design is also describedby both Sarnak and Hoogerwoord. Our purely functionalimplementation of deques with real{time performance is pre-sented in section 4. Section 5 describes its implications in

purely functional list processing. It also shows how to sim-ulate in real{time, in a purely functional language, a mul-tihead Turing machine by using multiple real{time deques.Section 6 contains some remarks on real{time processing ina purely functional setting. Section 7 discusses related workand future work.In this paper, we will use the notation P = (p1; p2; : : : ; pm)to describe a sequence P of m elements p1; p2; : : : ; pm. Theconcatenation of sequences P and Q is denoted by PQ. Thenotation P / describes a stack consisting of the sequence P ,with p1 at the top of the stack and pm at the bottom. Sim-ilarly, P . is also a stack consisting of the sequence P , butwith pm at the top of the stack and p1 at the bottom. Adeque consisting of the sequence P is denoted by P �. Noticethat (p1; p2; : : : ; pm)/ = (pm; pm�1; : : : ; p1).. The size of asequence P is denoted by jP j. Similarly, jP /j; jP .j, and jP �jare respectively the sizes of stacks P /; P ., and deque P �.2 Functional Queues with Good Real{Time Perfor-manceHood and Melville [17] describe a pure LISP implementationof FIFO queues with good amortized performance. Theythen modify it to get an implementation, also in pure LISP,with good real{time (i.e. worst{case) performance. Theiridea is to represent a queue by two disjoint stacks, wherethe input stack I. is used to receive the sequence of ele-ments being pushed and the output stack O/ is used to storethe sequence of elements to be popped. We will denote thecon�guration of a queue as hO/; I.i. The sequence OI rep-resents the entire sequence of elements of the queue. Whenthe output stack becomes empty and a pop operation is ex-ecuted, the sequence of elements in the input stack are alltransferred to the output stack by reversing the sequence inthe input stack to form a new output stack. The input stackis then replaced by an empty stack. That is, the con�gura-tion of the queue is transformed from h()/; I.i into hI/; ().i.The transfer takes time linear to size of the input stack andcan be implemented in a purely functional way.Starting from an empty queue (with both the input andoutput stacks empty), a single{threaded sequence of s queueoperations will transfer at most s elements from the inputstack to the output stack. This is based on the observa-tion that an element will be transferred at most once fromthe input stack to the output stack after it is pushed ontothe queue. Since there are at most s push operations in asequence of s queue operations, the total cost of transfer isbounded by s. This results in O(s)=s = O(1) amortized costper queue operation for the transfer, in addition to the O(1)actual cost per queue operation for implementing the pushand pop operations on the input and out stacks respectively.However, the above implementation has two drawbacks.It is not real{time, and, more severely, does not suit multi{threaded applications, where pop or push operations maybe performed not only on the newest version of a queue,but on previous versions as well. For example, let queueP = h()/; (p1; p2; : : : ; pm).i be a queue formed by a sequenceof m push operations. A single pop operation on P will takeO(m) time to get element p1 and form a new queue Q =h(p2; p3; : : : ; pm)/; ().i. Suppose that the next operation inthe sequence is again a pop operation on P rather than onthe newer version, Q. Then O(m) time has to be spent againto get element p1 and to form a queue identical to Q. Notethat in general we have no way to tell whether or not two2

pop operations will be performed on the same queue.Hood and Melville improve the above naive implementa-tion by a simple idea, that the transfer of elements from theinput stack to the output stack need not be carried out allat once when the output stack becomes empty. The transferof elements can be carried out incrementally over a sequenceof queue operations whenever a substantial number of ele-ments have been accumulated in the input stack, even whenthe output stack is not empty.Suppose that a queue has the con�guration hO/; I.i andis to be transformed into the con�guration h(OI)/; ().i. Sup-pose also that the transfer of elements from the input stackI. to the output stack O/ is initiated only when the invariantjO/j � jI.j is violated. At the beginning of the transfer, wecan assume jO/j = n and jI.j = n+ 1 for some n � 0. Thenew output stack (OI)/ can be constructed in three stages:reverse stack I. creating a stack I/, reverse stack O/ creat-ing a stack O., and then pop all the elements from stack O.and push them onto stack I/ one by one. The whole processwill take 3n+ 4 steps of time, where each step either movesthe topmost element from one stack to another, or is a test(at the bottom of the recursion) to see if a stack is empty.Because the original output stack O/ will become empty af-ter n pop operations, we must accomplish the 3n+ 4 stepsin n regular queue operations. We then allocate 4 steps tothe pop or push operation that initiates the transfer, andallocate 3 steps to each of the n queue operations that fol-lows. Since each queue operation performs at most 4 extrasteps to aid the construction of the new output stack, eachqueue operation takes O(1) time and O(1) space.In the actual implementation, a normal queue is repre-sented by two stacks, one for pop operations and one forpush operations. However, an in{transition queue is repre-sented by the old output stack (for pop operations), a newinput stack (for receiving elements from push operations),and additional intermediate stacks for incremental construc-tion of the new output stack. Once the new output stack iscompletely rebuilt, it is paired with the new input stack torepresent a normal queue. The old output stack and thoseintermediate stacks are discarded. A normal queue entersthe in{transition mode whenever its output stack becomessmaller than its input stack.There are some remaining details in Hood and Melville'salgorithm, though. In the construction of a new outputstack, we need not copy all the elements in the originaloutput stack O/ because some of elements may have beenpopped during the course of the transfer. A counter is usedto insure that we will not over{copy. Also, it can be shownthat the queue is never empty during its transfer of elements,and after the transfer of elements, the invariant jO/j � jI.jstill holds for the new input stack I. and the new outputstack O/.3 Functional Deques with Good Amortized Perfor-manceA deque is a linear bu�er where push and pop operationscan be performed on either end of the bu�er. We can modifythe naive implementation of FIFO queues described in theabove section to get a purely functional implementation ofdeque with good amortized performance. Similar schemesare also described by Sarnak [26] and Hoogerwoord [18].A pair of stacks, hL/;R.i, is used to represent a deque,similar to that for a queue. The di�erence is that pop or

push operations can be performed on stack L/ or stack R..We call L/ the the left{hand{side (lhs) stack and R. theright{hand{side (rhs) stack, instead of using the terms out-put stack and input stack previously used. Push and popoperations on the left side of the deque are performed onthe lhs stack, and operations on the right side of the dequeare performed on the rhs stack. The problem is that an lhspop operation may be executed while the lhs stack is emptyand the rhs stack contains some elements, and vice versa.We solve this problem by transferring the bottom half ofthe rhs stack to the empty lhs stack, with the bottommostelements of the rhs stack becoming the topmost elements inthe lhs stack after the transfer. That is, for an lhs pop opera-tion on queue h()/;R.i, we �rst transform the con�gurationof the queue from h()/;R.i to hR1/;R2.i, where R = R1R2and jR1j = d jRj=2 e. Then we perform an lhs pop operationon hR1/;R2.i. A symmetrical treatment also applies to anrhs pop operation when the rhs stack is empty but the lhsstack is not.Does the above strategy provide a good implementation?If a sequence of deque operations is single{threaded andstarts with an empty deque, then, by a simple credit{debitargument [30], it can be shown that each operation takesO(1) amortized time and space. For the argument, we asso-ciate with a deque an imaginary \bank account" of units oftime, whose balance re
ects exactly the di�erence betweenthe sizes of the two stacks in the the deque. That is, thebalance will be j jL/j� jR.j j for a con�guration of hL/;R.i.We also allocate two units of time for each deque operation,which will be the amortized cost of the operation.A pop or push operation will change the di�erence be-tween the sizes of the two stacks by one if it does not initiatethe transfer process. For such an operation, one unit of timeis used to pop/push an element from/to its correspondingstack, and the other unit of amortized time is deposited intothe bank account if the pop or push operation increases thesize di�erence. If the size di�erence is decreased by the pushor pop operation, then one unit of time is withdrawn fromthe account and is discarded along with the other unit oftime allocated for the deque operation. By doing so, wemake sure that the bank account is consistent with the dif-ference between the sizes of the two stacks.On the other hand, an lhs pop operation on the dequeh()/;R.i will have to transfer the bottom half of the rhsstack R. to the empty lhs stack, before the pop operationcan be performed. The transfer will require jR.j units oftime, which are withdrawn from the bank account. Thebank account will have contained exactly jR.j units beforethe transfer. After the transfer, the di�erence of the stacksizes is at most one (with the size of the lhs stack larger thanor equal to the size of the rhs stack) and the bank accounthas a balance of zero. The lhs pop operation then proceedsas if the transfer had never happened. Inconsistency occursafter the transfer process if the stack size di�erence is onebut the bank account balance is zero. In such a case, thelhs pop operation will decrease the size di�erence by one.However, it will not withdraw and discard one credit fromthe bank account this time, as would be required in the usualsituations. That is, the bank account balance again re
ectsexactly the di�erence between the stack sizes after the lhspop operation. A symmetrical analysis also applies to thecase of rhs pop operations.We conclude that O(1) amortized time su�ces for eachdeque operation in a single{threaded sequenced of opera-tions. However, this implementation su�ers the same draw-3

backs of the naive amortized implementation for FIFO queuesin section 2. It is not real{time and does not suit multi{threaded applications. We will address these problems inthe next section.4 Functional Deques with Good Real{Time Perfor-manceFor an implementation of deques to be real{time and func-tional, the implementation must insure that each of the pushor pop operations on either end of a deque is completed inO(1) time in the worst case, and that the push or pop oper-ation returns a new version of the deque without destroyingthe old version. This section describes such an implementa-tion written in a purely functional language.As in section 3, an lhs stack and an rhs stack togetherare used to represent a deque. The lhs pop or push oper-ations are performed on the lhs stack, and the rhs pop orpush operations are performed on the rhs stack. Problemsarise when a pop operation encounters an empty stack. Ourstrategy is to make sure that such problems never arise. Toable to do so, we maintain the following invariant betweenthe two stacks: jBj � jSj � 1; and 3jSj � jBj (1)where B is the bigger stack of two stacks and S is the smallerstack. That is, each of the two stacks has at least one ele-ment, and the size of the bigger stack is never larger thanthree times the size of the smaller stack.The above invariant can be violated in two ways. The�rst is if one of the stacks becomes empty due to a popoperation. However, if the invariant has been maintainedall along, we know that the other stack has at most threeelements. Thus the deque as a whole has at most three ele-ments. At that point, the usual representation of the dequeis replaced by a list of its elements. This list will containat most three elements, and all push and pop operations af-terward will be handled in an ad hoc way by looking at thehead and tail of the list. If the size of the list grows to fourby subsequent push operations, we then break the list intoequally sized lhs and rhs stacks and usual representation issubsequently used. It is clear that each of the above ad hoctreatments consumes only a constant amount of time andspace.The other case in which the invariant can be violated isby a pop operation on the smaller stack, or by a push oper-ation on the bigger stack, such that the size of the resultingbigger stack is larger than three times the size of the result-ing smaller stack. Let S be the smaller stack, and B be thebigger stack, after the violating pop or push operation. If theinvariant has been maintained all along and jSj = m, thenjBj = 3m+ k, where m � 1 and k is either 1; 2, or 3. With-out loss of generality, we assume that the resulting dequehas the con�guration hS;Bi, with S = (p1; p2; : : : ; pm)/ andB = (q1; q2; : : : ; q3m+k)., where k may be 1; 2, or 3. We thentransfer the bottommost m+ 1 elements of stack B to thebottom of stack S such that, after the transfer, we have twonew stacks, newS = (p1; p2; : : : ; pm; q1; q2; : : : ; qm+1)/ andnewB = (qm+2; qm+3; : : : ; q3m+k)., as the representation ofthe deque. It is clear that that transfer needs at most O(m)time and space. We then distribute the transfer processevenly over the next m deque operations. Because each ofthe following m deque operations need only O(m)=m = O(1)

extra cost to rebuild the new stacks, each of of deque opera-tions takes only constant time and consumes only constantspace.We now describe the details. The construction of thenew stacks newS and newB can be accomplished by thefollowing procedures:a. Pop and reverse the topmost 2m + k � 1 elements ofstack B into an auxiliary stack auxB such that B =(q1; q2; : : : ; qm+1). and auxB = (qm+2; qm+3; : : : ; q3m+k)/.b. Reverse stack S into an auxiliary stack auxS such thatauxS = (p1; p2; : : : ; pm)..c. Reverse stack auxB into a new stack newB such thatnewB = (qm+2; qm+3; : : : ; q3m+k)..d. Reverse stack B into a new stack newS such thatnewS = (q1; q2; : : : ; qm+1)/.e. Reverse stack auxS onto stack newS such that newS =(p1; p2; : : : ; pm; q1; q2; : : : ; qm+1)/.At the end of the transfer, stacks newS and newB will re-place the roles of stack S and B, respectively, in the repre-sentation of the deque. Note that procedures a and b abovecan be carried out concurrently, which takes no more than2m+ 3 steps. A step costs two units of time and space bymoving one element from B to auxB and moving one ele-ment from S to auxS. Similarly, procedure c can be carriedout concurrently with d and e, taking a total of at most2m + 3 steps. In total, 4m + 6 steps are su�cient to com-plete the transfer process. Since the transfer process willbe distributed evenly over the next m deque operations, weallocate 6 steps to the deque operation that violates the in-variant, and 4 steps to each of the m deque operations thatfollow.During the course of the transfer, pop operations canbe performed by the user on the original stacks S and B.Therefore, we must take care not to copy those discardedelements back onto the new stack newS and newB from theauxiliary stacks auxS and auxB. A counter is used to keeptrack of the number of remaining elements in the originalstack. Push operations during the course of transfer alsocause problems. The elements pushed to stack S, for exam-ple, must be kept in a separate place extraS, to be annexedwith newS at the end of the transfer process to becomethe real new stack S. We cannot simply append newS toextraS for this will ruin the real{time performance at thevery last step. Instead, we use the pair hExtraS;newSi asthe representation of the stack S when the transfer processis completed. This complicates pop and push operations onstacks. Pop and push operations on stack S have to ex-amine ExtraS �rst to see if it is empty. If it is not empty,then the pop or push operation is performed on it, otherwisethe operation is performed on newS. But, in exchange, wemaintain real{time performance. This implies that, in thenormal representation of a deque as an lhs stack and an rhsstack, each of the two stacks is in fact a pair of lists in ourimplementation.To summarize, we now describe below the high{level im-plementation of the deque operations. Only the lhs opera-tions are described; the rhs cases are symmetrical to the lhscases.� pushlhs (e, dq): Depending on the representation ofdq, perform one of the following actions,4

{ dq is a list of (less than 4) elements =) \Cons edq". If the resulting list has 4 elements, then splitit in half into an lhs stack and an rhs stack.{ dq is a pair of stacks, but is not currently trans-ferring elements between the two stacks =) Pushe into the lhs stack. If the resulting lhs stack isthree times larger than the rhs stack, then initiatethe transfer process.{ dq is a pair of stacks, and is transferring elementsbetween them =) Push e into the lhs extra list,then perform 4 incremental steps of the transferprocess. If the transfer process is now complete,then pair{up the extra list with the new list toform a new stack, both for the lhs and the rhs.� poplhs (dq): Depending on the representation of dq,perform one of the following actions,{ dq is a list of (less than 4) elements =) Returnthe \car" and \cdr" of the list.{ dq is a pair of stacks, but is not currently trans-ferring elements between the two stacks =) Popthe lhs stack. If it results in an empty lhs stack,then the deque is now represented as a list of theelements in the rhs stack. If the rhs stack is threetimes larger than the resulting lhs stack, then ini-tiate the transfer process.{ dq is a pair of stacks, and is transferring elementsbetween them =) Pop the lhs extra list if it is notempty, otherwise pop the old lhs stack. Perform4 incremental steps of the transfer process. If thetransfer process is now complete, then pair{up theextra list with the new list to form a new stack,both for the lhs and the rhs.� new: Return an empty list.� empty dq: Return true if dq is an empty list, otherwise,return false.The actual code, written in the purely functional subset ofSML (of New Jersey), along with some annotations, is in-cluded in Appendix A.Before we conclude this section, it remains to be shownthat the invariant (1) is maintained after the transfer pro-cess. Suppose for the moment that the m deque operationsthat carry out the entire transfer process do not interferewith the rebuilding of the two new stacks. In such a case,the resulting deque will have one stack of size 2m+1 and theother stack of size 2m + k � 1 in its representation, wherek may be 1; 2; or 3. The sizes of the two stacks will be-come most unbalanced if the m deque operations that carryout the transfer process all happen to be pop operationsaimed at the smaller of the above two stacks. This occurswhen k = 1 and the stack of size 2m + k � 1 are poppedm times. The resulting smaller stack will have m elements,and the resulting bigger stack will have size 2m+ 1. Since3 �m � 2m + 1 for all m � 1, the invariant (1) has beenmaintained.5 ApplicationsBeing able to add real{time deques to a purely functionallanguage can lead to some interesting results. We show inthis section two applications. The �rst is some implications

in purely functional list processing. The other is a real{time simulation of a multihead Turing machine in a purelyfunctional language.5.1 Purely Functional List ProcessingHere is a quiz: How much time will it take to reverse a listof n elements in a (sequential) purely functional language?A conventional method will take O(n) time. But a list canbe implemented, in a purely functional way, as a real{timedeque without losing its functionality or its constant timeperformance. Furthermore, we can reverse a deque in con-stant time because of its symmetric nature. It turns out thata list of an arbitrary number of elements can be reversed inconstant worst{case time if it is implemented as a real{timedeque and an additional orientation tag is attached to thedeque.This gives us a new way to concatenate two lists. Theusual method will take O(jXj) time to concatenate a list Yto the rear of a list X. However, if lists X and Y are imple-mented as real{time deques with the lhs of the deque as thefront of the list and the rhs as the rear, then their concatena-tion can be implemented in the following way: If jY j < jXj,then pop elements from the lhs of Y and push them to therhs of X; otherwise, pop elements from the rhs of X andpush them to the lhs of Y . This takes O(min(jXj; jY j))worst{case time, which is better than the usual O(jXj) time.5.2 Real{Time Simulation of a Multihead TuringMachine in a Purely Functional LanguageA multihead Turing machine is a Turing machine with asingle two{way linear tape and multiple read/write headsupon the tape. In one move the multihead Turing machine,depending on the symbols scanned by the heads and thestate of the �nite control, changes its state and either printsa symbol on the cell scanned by one head or moves one headleft or right one cell. Let Q be the �nite set of states in themachine, � be the �nite set of tape symbols, and K be the�nite set of heads fh1; h2; : : : ; hkg. The next move function� is a mapping from Q��k to Q�K�(�[fL;Rg), where Land R will move the head left and right one cell respectively.Notice that the machine can move or write using only one ofits heads at a time. The machine starts with an initial stateand an initial sequence of symbols on the tape. It proceedsaccording to the next move function, and halts if it reachesa �nal state. The resulting sequence of symbols on the tapeis the output of the machine.We are interested in multihead Turing machines becausethey provide a model for limited random access memory. Ak{head Turing machine can be viewed as a linear memorymachine with multiple program counters. These programcounters di�er from the program counter in a usual ran-dom access machine in that they cannot be arbitrarily resetto point to any memory locations. Only increment, decre-ment, read, and write instructions are available to manipu-late these program counters. To compensate the loss of thearbitrary jump instruction, k program counters are madeavailable such that the machine can memorize k di�erentlocations in the memory. It would be interesting to see howwell the purely functional model (which assumes non{linearmemory and admits no side{e�ects) can simulate this lim-ited model of random access memory (which assumes linearmemory and admits side{e�ects).5

We now describe how to simulate in real{time a multi-head Turing machine in a purely functional language. Thecontents of the tape and the positions of the heads can beimplemented by a sequence of deques with each deque repre-senting a segment of the tape delimited by its two surround-ing heads. Let the entire contents of the tape be described bya sequence of symbols S = (s0; s2; : : : ; sn) with the k headslocated at symbol sli ; 1 � i � k. Without loss of generality,we assume that 0 � li � li+1 � n for all 1 � i � k� 1.Recall that S� denotes the deque containing exactly the ele-ments of sequence S, with elements s0 and sn at the two endsof the deque. The tape, along with the head positions, canbe represented by a sequence of deques (D0;D1; : : : ;Dk),where D0 = (s0; s1; : : : sl1�1)�, Di = (sli ; sli+1; : : : sli+1�1)�for 1 � i � k�1, and Dk = (slk ; slk+1; : : : sn)�. Because sev-eral heads may be positioned over the same cell on the tape,some of the deques may be empty. Also, head hi, the ithhead in K, need not be positioned over symbol sli . Rather,there is a permutation function f over f1; 2; : : : kg such thathead hi will position at symbol slf(i) . It is clear that ev-ery move of a multihead Turing machine (printing a symbolunder a head, moving a head left or right one cell), can beaccomplished in real{time by performing the operations atthe corresponding deques.Given the next move function � from Q��k to Q�K�(� [fL;Rg) and the representation of the tape describedabove, we can implement in a purely functional way a nextmove function � from Q�Tape to Q�Tape such that eachfunction application of � costs O(k) time and space. Tapeis the data type that describes exactly the current tape con-�guration of the machine, including the the contents of thetape, the positions of the heads, and the permutation func-tion f . The permutation function f is needed because iftwo heads cross each other on the tape, their ordering onthe tape will change and the permutation function f mustbe changed accordingly. This results in a real{time simula-tion in a purely functional language of a multihead Turingmachine, where each move of the machine is accomplishedin O(k) time and space. Note that the complexity of thesimulation, O(k) per move, depends only on k, the num-ber of heads, not on n, the number of symbols on the tape.Also note that every con�guration of the execution historyof a multihead Turing machine is equally accessible in ourreal{time simulation. This means that our real{time sim-ulation can be multi{threaded, which is very useful if wewant to simulate a nondeterministic multihead Turing ma-chine where there may be several eligible next moves at anygiven machine con�guration.6 RemarksThroughout our discussion in this paper, we implicitly as-sume that the purely functional language used to implementthe deques is a strict language rather than non{strict lan-guage in which the evaluation of function arguments are de-layed until needed. A strict language is required because theincremental nature of the algorithm requires that elementsbe transferred between stacks well in advance of the use ofthose elements. A non{strict language would delay mostof the transfer steps when a deque operation occurs. How-ever, a subsequent deque operation (such as a popping anelement and performing a strict operation on the element)would cause many of the delayed transfer steps to execute.Naturally, this would destroy the real{time nature of the

algorithm.Are the data structures described in this paper still at-tractive if implemented in a non{strict language or imple-mented within a system that does not provide real{timegarbage collection? Even though the resulting program willnot have real{time properties, it is still important to havee�cient implementations of aggregate data structures, suchas deques, which are suitable for multi{threaded applica-tions. Using a non{strict functional language, the perfor-mance of the deques described in section 4 will degrade toO(1) amortized time, instead of O(1) real{time, per dequeoperation in a multi{threaded program. This is better thanthe naive implementation of deques described in section 3,which achieves O(1) amortized complexity only in single{threaded programs.7 Related Work and Future WorkA real{time simulation of a multihead Turing machine in apurely functional language does not come as a big surprise.Fischer, Meyer, and Rosenberg [13] and Leong and Seiferas[20] has shown that a multihead Turing machine can be sim-ulated in real{time by a multitape Turing machine with onlyone head per tape. A single tape, single head Turing ma-chine can be simulated in real{time in a purely functionallanguage, by two stacks and a �nite control. Thus, it isclear that a multihead Turing machine can be simulated inreal{time in a purely functional language. Nevertheless, thesimulations of [13] and [20] are complicated, and their result-ing simulations of a multihead Turing machine in a purelyfunctional language will probably not be as simple as ours.Furthermore, our objective is to demonstrate that purelyfunctional languages can be used to implement non{trivialaggregate data structures, such as deques and multiheadTuring machines, e�ciently and straightforwardly, which isdi�erent from the objectives of [13] and [20].In our purely functional implementation of real{time de-ques, two techniques are used: a deque is represented as twobalanced stacks, and incremental method is used to bal-ance the two stacks. Incremental methods have been usedin many contexts to improve algorithms of amortized per-formance to worst{case performance. Baker's algorithm forreal{time garbage collection is a good example [3]. Bakertook a copying garbage collection algorithm which had O(1)amortized cost per storage allocation (this cost includes thehigh cost of the stop{and{copy collection) and modi�ed itto be O(1) worst{case cost.Both Sarnak [26] and Hoogerwoord [18] use two stacks torepresent a deque. Sarnak's design of fully persistent real{time deques is not purely functional because side{e�ectsare used. His scheme is also more complicated than ours.Hoogerwoord's design is purely functional, but not real{time, and is not suitable for multi{threaded applications.While not aware of the above two works, we start with theresult of Hood and Melville [17] on purely functional real{time queues, and extend it to purely functional real{timedeques. The underlying idea, that a deque is represented astwo balanced stacks, is the same.An open problem is whether deque concatenation canalso be implemented in real{time in a purely functionalway, in addition to the real{time pop and push operations.Buchsbaum and Tarjan [9] recently show that deques canbe made con
uently persistent (i.e., concatenateable) withconstant cost for each concatenation and push operation,6

but at the cost of O(log� n) for each pop operation, where nis the deque size.1 All costs are amortized. This improves aprevious result of Driscoll, Sleator, and Tarjan [12]. Usingour purely functional implementation of real{time deques,their implementation can be made purely functional, withamortized complexity improved to worst{case complexity foreach operation [8]. It would be interesting to see if a purelyfunctional implementation of deques exists such that eachconcatenation, pop, and push operation costs only constantworst{case time.8 AcknowledgmentsWe would like to thank Adam Buchsbaum for pointing tous the deque results in Sarnak's Ph.D. thesis, which we werenot aware of, after reading a draft of this paper. We alsothank him and the referees for their comments.This research has been supported, in part, by the Na-tional Science Foundation (#CCR{8909634) and DARPA(DARPA/ONR #N00014{92{J1719). The �rst author isalso supported in part by a Dean's dissertation fellowshipfrom the Graduate School of Arts and Science, New YorkUniversity, during the 1992{93 academic year.A SML code with AnnotationsThe SML signatures for the stack and deque structures aredescribed in Figure 1. An implementation of the stack struc-ture is described in Figure 2, where each operation, includ-ing pack and unpack, costs O(1) time. An implementationof real{time deques is described in two parts. Figure 3 de-scribes the local declarations of the deque functor. It in-cludes the de�nition of states according to the transfer pro-cedures described in section 4, and the functions to manipu-late them. The actual implementations of deque operationsare given in Figure 4.References[1] Annika Aasa, S�oren Holmstr�om, and Christina Nils-son. An e�ciency comparison of some representationsof purely functional arrays. BIT, 28(3):490{503, 1988.[2] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali.I{structures: Data structure for parallel computing.ACM Transactions on Programming Languages andSystems, 11(4):598{632, October 1989.[3] Henry G. Baker, Jr. List processing in real time on a se-rial computer. Communications of the ACM, 21(4):280{294, April 1978.[4] Henry G. Baker, Jr. Shallow binding in Lisp 1.5. Com-munications of the ACM, 21(7):565{569, July 1978.[5] Henry G. Baker. Shallow binding makes functional ar-rays fast. SIGPLAN Notices, 26(8):145{147, August1991.1The function log� is de�ned for every integer n � 0 such thatn log� n = 0 if n = 0;log� n = 1 + log�dlogne otherwise:Intuitively, log� n is the number of repeated logarithm operations totake n to 0. For example, log� 1 = 1; log� 2 = 2, and log� 2222 = 5.

[6] Adrienne Gael Bloss. Path Analysis and the Optimiza-tion of Non{Strict Functional Languages. PhD thesis,Department of Computer Science, Yale University, May1989. Also appears as report YALEU/DCS/RR{704.[7] Adrienne Bloss. Update analysis and the e�cient imple-mentation of functional aggregates. In Functional Pro-gramming Languages and Computer Architecture, pages26{38. ACM/Addison{Wesley, September 1989. Impe-rial College, London, UK.[8] Adam L. Buchsbaum. Private communication, 1993.[9] Adam L. Buchsbaum and Robert E. Tarjan. Con
u-ently persistent deques via data structural bootstrap-ping. In Proceedings of the Fourth Annual ACM{SIAM Symposium on Discrete Algorithms, pages 155{164. Austin, Texas, USA, January 1993.[10] Tyng{Ruey Chuang. Fully persistent arrays for e�cientincremental updates and voluminous reads. In BerndKrieg{Br�uckner, editor, 4th European Symposium onProgramming, pages 110{129. Rennes, France, Febru-ary 1992. Lecture Notes in Computer Science, Volume582, Springer{Verlag.[11] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, andRobert E. Tarjan. Making data structures persistent.Journal of Computer and System Sciences, 38(1):86{124, February 1989.[12] James R. Driscoll, Daniel D. K. Sleator, and Robert E.Tarjan. Fully persistent lists with catenation. In Pro-ceedings of the Second Annual ACM{SIAM Symposiumon Discrete Algorithms, pages 89{99, January 1991.San Francisco, California, USA.[13] P. C. Fischer, A. R. Meyer, and A. L. Rosenberg. Real{time simulation of multihead tape units. Journal of theAssociation for Computing Machinery, 19(4):590{607,October 1972.[14] Hania Gajewska and Robert E. Tarjan. Deques withheap order. Information Processing Letters, 22(4):197{200, April 1986.[15] David Gries. The Science of Programming. Texts andMonographs in Computer Science. Springer{Verlag,1981.[16] Juan C. Guzm�an and Paul Hudak. Single{threadedpolymorphic lambda calculus. In Proceedings of 5th An-nual IEEE Symposium on Logic in Computer Science,pages 333{343. IEEE, June 1990.[17] Robert Hood and Robert Melville. Real{time queueoperations in pure Lisp. Information Processing Letters,13(2):50{53, 1981.[18] Rob R. Hoogerwoord. A symmetric set of e�cientlist operations. Journal of Functional Programming,2(4):505{513, October 1992.[19] Paul Hudak and Adrienne Bloss. The aggregate up-date problem in functional programming systems. In12th Annual ACM Symposium on Principles of Pro-gramming Languages, pages 300{314. ACM, January1985. New Orleans, Louisiana, USA.7

[20] Benton L. Leong and Joel I. Seiferas. New real{timesimulations of multihead tape units. Journal of theAssociation for Computing Machinery, 28(1):166{180,January 1981.[21] Eugene W. Myers. An applicative random{access stack.Information Processing Letters, 17(5):241{248, Decem-ber 1983.[22] Eugene W. Myers. E�cient applicative data types.In 11th Annual ACM Symposium on Principles ofProgramming Languages, pages 66{75. ACM, January1984. Salt Lake City, Utah, USA.[23] Martin Odersky. How to make destructive updatesless destructive. In 18th Annual ACM Symposium onPrinciples of Programming Languages, pages 25{36. Or-lando, Florida, USA, ACM, January 1991.[24] Simon L Peyton Jones and Philip Wadler. Impera-tive functional programming. In 20th Annual ACMSIGPLAN{SIGACT Symposium on Principles of Pro-gramming Languages, pages 71{84. Charleston, SouthCarolina, USA, ACM, January 1993.[25] Carl G. Ponder, Patrick C. McGeer, and Antony P.{C.Ng. Are applicative languages ine�cient? SIGPLANNotices, 23(6):135{139, June 1988.[26] Neil Sarnak. Persistent Data Structures. PhD thesis,Department of Computer Science, New York Univer-sity, 1986.[27] Berry Schoenmakers. Data Structures and Amor-tized Complexity in a Functional Setting. PhD thesis,Department of Mathematics and Computing Science,Eindhoven University of Technology, September 1992.[28] J. T. Schwartz. Optimization of very high level lan-guages | i. value transmission and its corollaries. Com-puter Languages, 1(2):161{194, June 1975.[29] J. T. Schwartz. Optimization of very high levellanguages | ii. deducing relationships of inclusionand membership. Computer Languages, 1(3):197{218,September 1975.[30] Robert Endre Tarjan. Amortized computational com-plexity. SIAM Journal on Algebraic and Discrete Meth-ods, 6(2):306{318, April 1985.[31] Philip Wadler. Comprehending monads. In Proceedingsof the 1990 ACM Conference on Lisp and FunctionalProgramming, pages 61{78. Nice, France, ACM, June1990.[32] Philip Wadler. Is there a use for linear logic? In Pro-ceedings of the Symposium on Partial Evaluation andand Semantics{Based Program Manipulation, pages255{273. New Haven, Connecticut, USA, ACM, June1991. The proceeding appears as SIGPLAN Notices,26(9), September 1991.

signature STACK =sig exception Emptytype 'a Stackval new : 'a Stackval empty : 'a Stack -> boolval push : 'a -> 'a Stack -> 'a Stackval pop : 'a Stack -> 'a * 'a Stackval pack : 'a list -> 'a list -> 'a Stackval unpack : 'a Stack -> 'a list * 'a listendsignature DEQUE =sig exception Emptydatatype Side = LHS | RHStype 'a Dequeval new : 'a Dequeval empty : 'a Deque -> boolval push : Side -> 'a -> 'a Deque -> 'a Dequeval pop : Side -> 'a Deque -> 'a * 'a Dequeval length : 'a Deque -> intendFigure 1: The signatures of the stack and deque struc-tures in SML.Note. The objective is to implement each of their op-erations in constant time and constant space. Note thatwe will implement a stack by a pair of lists, by using thepack and unpack functions. The reason for this is statedin section 4.functor Stack () : STACK =structexception Emptytype 'a Stack = 'a list * 'a listval new = ([], [])fun empty ([], []) = true| empty _ = falsefun push e (x, y) = (e::x, y)fun pop (x::xs, ys) = (x, (xs, ys))| pop ([], y::ys) = (y, (ys, []))| pop ([], []) = raise Emptyfun pack x y = (x, y)fun unpack pair = pairend Figure 2: SML code for stacks.8

functor Deque (stack : STACK) : DEQUE =structlocalopen stacktype 'a Current = 'a list * int * 'a Stack * intdatatype 'a State = NORM of 'a Stack * int| RevB of 'a Current * 'a Stack * 'a list * int| RevS1 of 'a Current * 'a Stack * 'a list| RevS2 of 'a Current * 'a list * 'a Stack * 'a list * int| COPY of 'a Current * 'a list * 'a list * intfun head stack = let val (element, _) = pop stack in element endfun tail stack = let val (_, stack) = pop stack in stack endfun put e (extra, added, old, remained) = (e::extra, added+1, old, remained)fun get ([], added, old, remained) = (head old, ([], added, tail old, remained-1))| get (e::es, added, old, remained) = (e, (es, added-1, old, remained))fun top current = let val (element, _) = get current in element endfun bot current = let val (_, current) = get current in current endfun normalize (state as COPY ((extra, added, _, remained), _, new, moved)) =if moved = remainedthen NORM (pack extra new, added + moved)else state| normalize state = statefun tick state =case state ofNORM _ => state| RevB (current, Big, auxB, count) =>RevB (current, tail Big, (head Big)::auxB, count-1)| RevS1 (current, Small, auxS) =>if empty Smallthen stateelse RevS1 (current, tail Small, (head Small)::auxS)| RevS2 (current, auxS, Big, newS, count) =>if empty Bigthen normalize (COPY (current, auxS, newS, count))else RevS2 (current, auxS, tail Big, (head Big)::newS, count+1)| COPY (current as (_, _, _, remained), aux, new, moved) =>if moved < remainedthen normalize (COPY (current, tl aux, (hd aux)::new, moved+1))else normalize statefun ticks (RevB (currentB, Big, auxB, 0), RevS1 (currentS, _, auxS)) =(normalize (COPY (currentB, auxB, [], 0)), RevS2 (currentS, auxS, Big, [], 0))| ticks (RevS1 (currentS, _, auxS), RevB (currentB, Big, auxB, 0)) =(RevS2 (currentS, auxS, Big, [], 0), normalize (COPY (currentB, auxB, [], 0)))| ticks (lhs, rhs) = (tick lhs, tick rhs)fun steps 0 pair = pair| steps n pair = steps (n - 1) (ticks pair)in Figure 3: SML code for real{time deques, Part 1.Note. Datatype Current is used to hold the \current" stack when elements are being transferred between the twostacks of a deque. It has four �elds: the list of newly pushed elements and its count, and the old stack and its remainingcount. Datatype State has �ve states whose functions are described in section 4. They are NORM (when no element isbeing transferred), RevB (for performing procedure a), RevS1 (for procedure b), RevS2 (for procedure d), and COPY (forprocedure c or e). Functions put and get perform push and pop operations, respectively, on datatype Current. Statetransitions are carried out by function tick, which is called by ticks, which is again called by steps.9

exception Emptydatatype Side = LHS | RHSdatatype 'a Deque = LIST of 'a list| PAIR of 'a State * 'a Stateval new = LIST []fun empty (LIST []) = true| empty _ = falsefun swap (LIST l) = LIST (rev l)| swap (PAIR (lhs, rhs)) = PAIR (rhs, lhs)fun pop' (NORM (a, b)) = (head a, NORM (tail a, b-1))| pop' (RevB (a, b, c, d)) = (top a, RevB (bot a, b, c, d))| pop' (RevS1 (a, b, c)) = (top a, RevS1 (bot a, b, c))| pop' (RevS2 (a, b, c, d, e)) = (top a, RevS2 (bot a, b, c, d, e))| pop' (COPY (a, b, c, d)) = (top a, COPY (bot a, b, c, d))fun pop _ (LIST []) = raise Empty| pop LHS (LIST l) = (hd l, LIST (tl l))| pop LHS (PAIR (NORM (L, l), rhs as NORM (R, r))) =let val (h, L) = stack.pop L inif 3*(l-1) >= rthen (h, PAIR (NORM (L, l-1), rhs))else if l >= 2then (h, PAIR (steps 6 (RevS1 (([], 0, L, 2*l-1), L, []),RevB (([], 0, R, r-l), R, [], r-l))))else (h, LIST (rev ((op @) (unpack R)))) end| pop LHS (PAIR (L, R)) = let val (e, L) = pop' L in (e, PAIR (steps 4 (L, R))) end| pop RHS deque = let val (e, deque) = pop LHS (swap deque) in (e, swap deque) endfun push' z (NORM (a, b)) = NORM (push z a, b+1)| push' z (RevB (a, b, c, d)) = RevB (put z a, b, c, d)| push' z (RevS1 (a, b, c)) = RevS1 (put z a, b, c)| push' z (RevS2 (a, b, c, d, e)) = RevS2 (put z a, b, c, d, e)| push' z (COPY (a, b, c, d)) = COPY (put z a, b, c, d)fun push LHS e (LIST l) =if length l <= 2then LIST (e::l)else PAIR (NORM (pack [e, hd l] [], 2),NORM (pack [hd (tl (tl l)), hd (tl l)] [], 2))| push LHS e (PAIR (NORM (L, l), rhs as NORM (R, r))) =let val L = stack.push e L inif 3*r >= l+1then PAIR (NORM (L, l+1), rhs)else PAIR (steps 6 (RevB (([], 0, L, l-r), L, [], l-r),RevS1 (([], 0, R, 2*r+1), R, []))) end| push LHS e (PAIR (L, R)) = PAIR (steps 4 (push' e L, R))| push RHS e deque = swap (push LHS e (swap deque))fun length' (NORM (_, l)) = l| length' (RevB ((_, a, _, r), _, _, _)) = a + r| length' (RevS1 ((_, a, _, r), _, _)) = a + r| length' (RevS2 ((_, a, _, r), _, _, _, _)) = a + r| length' (COPY ((_, a, _, r), _, _, _)) = a + rfun length (LIST l) = List.length l| length (PAIR (L, R)) = length' L + length' Rendend Figure 4: SML code for real{time deques, Part 2.Note. A Deque datatype is either a list of (less than 4) elements, or a pair of states representing the lhs and rhs stacks.Function swap exchanges the two sides of a deque. As described in section 4, functions pop and push will initiate thetransfer of elements between the two stacks of a deque i� the resulting bigger stack is more than three times the size ofthe resulting smaller stack. 10

