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Abstract

Ruby is a relational language for describing hardware circuits. In the past, pro-
gramming tools existed which only catered for the execution of functional Ruby
expressions rather than the complete set of relational ones. In this paper, we de-
velop an implementation of Ruby in AProlog a higher-order logic programming
language—allowing the execution of arbitrary, relational Ruby programs.

1 Introduction

Programming problems can be tackled by specifying a program’s behaviour in an ab-
stract mathematical specification and then, through the application of some appropriate
calculus, converting this into an efficient and implementable program. Until recently, the
art of deriving computer programs from specification has been performed equationally in
a functional calculus [Bir87]. However, it has become evident that a relational calculus
affords us a greater degree of expression and flexibility in both specification and proof
since a relational calculus naturally captures the notions of non-determinism along with
function converses.

Ruby is one such relational language developed by Jones and Sheeran [Jon90, JS90] to
describe the behaviour of hardware circuits. However, existing Ruby programming tools
only provide for the execution of functional Ruby expressions [LP95, Hut93, Hut92]. In
this paper, a purely relational implementation of Ruby is developed in AProlog [LHRB94,
NMS88] a higher-order logic programming language allowing the execution of abstract
Ruby circuit specifications. The implementation is purely relational since expressions
have a well-defined converse.

The remainder of the paper is organised into four sections. In Section 2, we introduce
the Ruby relational language. In Section 3, an implementation of Ruby is developed in
AProlog. An example of using the Ruby implementation is presented in Section 4 and we
draw several conclusions in Section 5.
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2 Ruby

Ruby is a relational language developed by Jones and Sheeran [Jon90, JS90] for describing
hardware circuits. The behaviour of a circuit is specified by a relational program which can
then be transformed into an equivalent program amenable to implementation in hardware.
A circuit in Ruby is represented as a binary relation between simple data values. Recall
that a binary relation R : A — B, of type A to B, is a subset of the cartesian product (A4 x
B) of sets A and B. We write a R b to denote that (a,b) € R.

The data values on which these circuits operate consist solely of integers, and both
tuples and lists of integers. A tuple is represented in Ruby by the notation (a, b) whose
type is (A x B) for any types A and B, and a list is represented by [ag, a1, ..., a,] for
each element g; having type A and the type of the list is list A. The empty list is denoted
by ‘[]’. It is worth mentioning that, in this paper, tuples are considered distinct from
lists, i.e., a tuple and a list of length two are treated differently. Other descriptions of
Ruby [JS91a, Jon90] tend to blur the distinction between tuples and lists, allowing them
to be dealt with interchangeably. As a consequence, however, automatic type deduction
becomes greatly complicated, so hampering the implementation of Ruby in a strongly
typed language, like AProlog.

A relation in Ruby can be given pictorially, corresponding directly to its interpretation
as a circuit. For example, the circuit associated with the relation R : A — B can be
represented as the single node

_R_

The convention regarding data flow in such a circuit is that domain values “enter” at the
left and top sides of the node and range values “exit” at the bottom and right sides. In
addition, multiple wires to and from a node are read from bottom to top. Therefore, a
relation (a, b) S (¢, d) : (Ax B) — (C x D)—taking tuples to tuples—may be represented
by the circuit
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Ruby expressions are composed hierarchically from primitive relations and higher-
order functions. The most fundamental of these are sequential composition, parallel
composition, and converse. The sequential composition of two relations R : A — B
and S : B — C, written as R; S : A — C, is given by

R:A—-B,S:B—-C = R;S:A—C,
a(R;S)c = Fb.aRbBADSc.
The first line in this expression denotes the type information of the function in a similar

style to that adopted by Jones and Sheeran [JS91b]. The sequential composition of two
circuits look like this:



The parallel composition of two relations R and S, written as [R, S], is expressed by
R:A—-B,S:C—-D = [R,S]:(AxC)—(BxD,),
(a,c¢)[R,S](b,d) = aRbAcSd.

The parallel composition of two circuits simply places them over one another in the
following way:

Every relation R has a well-defined converse R™!, given straightforwardly by
R:A—-B = R':B— A,
bR'a = aRD.

Converse reverses composition in that (R ; S)fl = §!': R ! and is also an involution
since (R™1)"' = R.

Several primitive relations are used to construct and deconstruct the data values of a
circuit. For tuples, we have the relations

aidb = a=0>,

(a,b) swap (¢,d) = a=dANb=c,
(a,b) outl ¢ = a=c,
(a,b) outr ¢ = b=c,
a fork (b,c) = a=bAa=c,

((a,b),c)lsh (d, (e, f)) a=dNb=eNc=f,
(a,(b,c))rsh ((d,e),f) = a=dANb=eNc=Ff.

Of these relations, only id, outl, and outr are essentially primitive in the presence of
relational intersection. The intersection of two relations R and S, written as R N S, is
defined by

R:A—-B,S:A—-B = RNS:A—B,
a(RNS)b = aRbAaSD.

The primitive Ruby relations for lists are

(as, bs) app cs = as 4 bs = cs,
(a,as) apl bs = [a] + as = bs,
(as,a) apr bs = as + [a] = bs,

a wrap bs = [a] = bs,
anull bs = bs=1[],
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(a,(b,e)) R S ((¢,f), 9) ((a,e),f) RT S (c,(d, h))

Figure 1: The circuits corresponding to beside and below.

where ‘4’ denotes list concatenation. These primitive relations provide us with the
bare bones of the Ruby language. The real expressive power is obtained by building
higher-order functions taking relations to relations from these combining forms. Two
commonly used higher-order functions are simple shorthands, given by

fst R = [R,id],
snd R = [id, R].
Since Ruby is a language for designing circuits, a plethora of functions exist for com-

bining circuit elements. For two circuits, denoted respectively by the relations R and S,
the function ‘>’ (pronounced ‘beside’) joins R and S together in the following fashion:

R:(Ax B)— (CxD)
S:(DxE)— (Fx Q)
R+ S = vrsh;fstR;lsh;sndS ;rsh.

= R+ S:(Ax(BxE))—((CxF)xa),

The beauty of Ruby is exemplified when we define the dual of existing functions in terms
of themselves, providing a convenient way to produce new circuits. We can obtain the
dual of any higher-order function by first taking the converse of all its arguments and
then taking the converse of the entire expression. For example, we can manufacture the
function ‘]’ (pronounced ‘below’) in terms of its dual function beside by

R:(Ax B)— (C x D)
S:(EXF)—>(B><H)}
R1S = (R'w 5"

R1S:((AXE)x F)— (Cx (D x H)),

Both beside and below, interpreted as circuits, are shown in Figure 1.
Using beside, we can create a new function row which forms a linear array, cascading
the circuit R a number of times, defined by

R:(AxB)—= (CxA) = rowR:(Axlist B)— (list C x A),
row R = sndwrap ' R; fst wrap
V snd apl™ " ; (R < row R) ; fst apl.
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Figure 2: Possible circuits corresponding respectively to row R and col R.

Notice that row is defined as a disjunction; the first clause deals with the case where the
second component, of the domain tuple is the singleton list since row takes non-empty
lists. The function col, forming a vertical column of circuits, is defined in terms of its

dual function row via

R:(AxB)—= (BxC) = colR:(list Ax B)— (B x list C),
colR = (row Ril)fl.

The circuits represented by both row and col are shown in Figure 2.
The map function represents repeated parallel composition of the relation R and is

defined by
R:A—-B =
map R =

map R : list A — list B,

null™

U null

Voapl ' ;[R, map R)]; apl.

Finally, the two functions rdl and rdr relate tuples of values to single values and correspond
to the circuit equivalent of “reducing” (or “folding”) in functional programming. They

are defined as

R:(AxB)— A
rdl R

and

S:(AxB)— B
rdr S

rdl R : (A x list B) — A,

row (R ; outr™1) ; outr,

rdr S : (list A x B) — B,
col (S ; outl™ ") ; outl,

respectively. The circuits corresponding to these functions are illustrated in Figure 3.



Figure 3: An illustration of rdl R and rdr R.

3 Programming Ruby in A\Prolog

The higher-order logic language AProlog, developed by Nadathur and Miller [NM88],
naturally supports higher-order programming features in a manner consistent with its
underlying logical foundation. In what follows, we examine how to implement Ruby
primitives in AProlog [LHRB94|. The syntax of AProlog is introduced informally as the
section progresses.

We can define Ruby’s tuple data value in AProlog via the declaration

kind tuple type — type — type.
type : A — B — (tuple A B).

The ‘kind’ operator creates a new type which is simply a type constructor of arity one
less than the number of occurrences of the keyword ‘type’ in the declaration. In the
case above, the type constructor tuple is declared taking two arguments to this new
type. Function and predicate symbols are introduced via a ‘type’ declaration. The infix
function symbol ¢ declared above takes two arbitrary types, A and B, and returns a
value of type tuple A B.

Notice that AProlog is polymorphically typed and is curried in the same sense as in
many functional programming languages, like Haskell, except that type signatures must
be given explicitly for all function and predicate symbols. Type variables in AProlog are
denoted by identifiers beginning with an upper case letter. The type of propositions (or
“truth values”) is the special type ‘o’ and so the type signature of a predicate in AProlog
terminates with this type. A small AProlog program defining “Peano” natural numbers,
given in Figure 4, demonstrates some of these syntactic points. Natural numbers are thus
represented by zero, (succ zero), (succ (suce zero)), and so forth.

We make use of the built-in list type in AProlog in order to implement the primitive



kind nat type.

type zero nat.

type succ mnat — nat.

type add (tuple nat nat) — nat — o.

add (M : zero) M.
add (M : succ N) (succ Y) <« add (M :N)Y.

Figure 4: The implementation of Peano natural numbers in AProlog.

relations pertaining to the Ruby list data value. Lists in AProlog are declared as

kind list type — type.
type nil list A.
type == A — (list A) — (list A).,

where nil denotes the empty list and ‘::" denotes ‘cons’. The AProlog predicate for list
concatenation is append and the basic Ruby relations can now be implemented as shown
in Figure 5.

We represent the Ruby primitives of parallel composition and converse by the respec-
tive predicates

type par (A— B —o0)— (C — D — o0)— (tuple A C) — (tuple B D) — o.
type conv (A— B —0)— B— A—o.

par RS (A:C)(B:D) < RAB,SCD.
conv RBA < RAB.

Several syntactic points are illustrated in this example. We can see from the type declara-
tions of par and conwv that they are both higher-order predicates taking other predicates
as arguments. Predicates in AProlog may be defined as “infix” and are also curried fa-
cilitating substantial notational convenience. For instance, (R par (conv S)) denotes a
valid predicate in itself and can be passed as an argument to other higher-order predi-
cates. Therefore, we can construct goals from predicates which take arbitrarily complex
relations as arguments.

The conspicuous absence of the definition of sequential composition is deliberate for
a technical reason which we now spend a moment to resolve. The implementation of
Ruby we present here unfortunately depends critically on the use of an extra-logical
predicate flex which determines whether or not a logical variable is instantiated. The
reason for using this predicate—a higher-order analogy to the predicate var found in Pro-
log [CM87]—is to overcome a standard problem encountered in most logic programming
languages: As a consequence of the left to right evaluation strategy adopted in logic pro-
gramming language implementations, whereby the leftmost unsolved goal is selected for



type id A—A—o.

type swap (tuple A B) — (tuple B A) — o
type outl (tuple A B) - A — o.

type outr (tuple A B) - B — o.

type fork A — (tuple A A) — o.

type Ish  (tuple (tuple A B) C') — (tuple A (tuple B C)) — o
type rsh  (tuple A (tuple B C')) — (tuple (tuple A B) C') — o
type app  (tuple (list A) (list A)) — (list A)

type apl  (tuple A (list A)) — (list A) —

type apr  (tuple (list A) ) (list A) —

type wrap A — (list A) —
type null A — (list B) = o

id A A.

swap (A: B) (B : A).

outl (A : B) A.

outr (A: B) B

fork A (A: A).

Ish((A:B):C)(A:(B:()).

rsh (A:(B:C))((A:B):C).

apl (A : AS) BS < append (A :: nil) AS BS.
apr (AS : A) BS < append AS (A :: nil) BS.
app (A: B) C < append AB C.

wrap A (A :: nil).

null A nil.

Figure 5: The implementation of the most primitive Ruby relations in AProlog.



resolution, certain queries can result in infinite computation. A simple example which
demonstrates this undesirable property is the query

7— add (X :Y) Z,add (X : Y) (succ succ zero).,

assuming the previous definition of the predicate add. Since the leftmost subgoal add (X :
Y) Z can be satisfied in an infinite number of ways, the whole query results in non-
termination in AProlog when all possible solutions are requested. The situation is, in
theory, rectified by simply swapping the two subgoals in the conjunction. The problem
can essentially be reduced to the fact that conjunction is not commutative in AProlog.

This evaluation problem particularly affects an implementation of Ruby in AProlog
since we desire the ability to run queries “in reverse,” i.e., solving for logical variables in
either the range or domain positions of a relation. By doing so, we satisfy the requirement
that each relation in Ruby has a well defined converse. However, the fundamental Ruby
primitive of sequential composition is directly affected by this problem. To see why,
consider a naive, infix implementation of sequential composition in AProlog:

type comp’ (A—- B —0)—(B—C—0)—>A—C—o.
comp' RS AC <« sigmaB\(RAB,SBZC).

The AProlog primitive ‘sigma’ denotes existential quantification and the operator ‘\’ de-
notes infix A-abstraction, providing a way to create predicates. Then the query

?— add comp' (conv add) A (succ zero : succ zero).,

decomposes into the expression
?— sigma B\ (add A B, add (succ zero : succ zero) B).,

which is exactly the problematic situation we wish to avoid.

The solution is straightforward although admittedly less declarative than one might
prefer. In the definition of sequential composition, we check whether the domain parame-
ter is uninstantiated. If it is, we resolve the clauses in the composition in the reverse order
to avoid slipping into an infinite computation. This results in a revised implementation of
composition, given in Figure 6. The appearance of the cut ‘!’ in the first clause of comp
simply avoids the second clause being attempted should the first one fail. Another point
to note is that some type obscuring takes place simply to overcome the fact that a Ruby
value comprises of either a number, or a tuple or list of numbers. An alternative method
for tackling this difficulty would be to attach an explicit type constructor to each Ruby
value to differentiate between them.

Now that we have implemented comp, we can easily implement the other Ruby higher-
order functions, as illustrated in Figure 7. An attractive aspect of using AProlog to
implement Ruby is the ease with which Ruby operators translate into AProlog syntax; the
higher-order functions translate almost identically from their abstract Ruby definitions to
their corresponding implementations in AProlog. In the next section, we look at a simple
example of how to create new Ruby relations in AProlog.



type comp (A-B—0)—>(B—>C—0)—A—C—o.

kind anonymous type.
type untype A — anonymous.
type wuninstantiated A — o.

type flexible anonymous — o.

comp RS AC <« wuninstantiated A,!,sigma B\ (S B C,R A B).
compRS AC <« sigmaB\(RAB,SBC).

uninstantiated A <«  flezible (untype A).

flexible (untype A) — flex A,

flexible (untype (A : B))  «+ flexible (untype A), flexible (untype B).
flexible (untype (A :: nil)) <« flexible (untype A).

flexible (untype (A :: AS)) <« flexible (untype A), flexible (untype AS).

Figure 6: The implementation of sequential composition comp in AProlog.

4 A Simple Sorting Circuit in Ruby

In this section, we present a circuit which sorts an arbitrary, non-empty list of natural
numbers. We noted earlier that we require the ability to solve logic variables in both
the range and domain positions of a relation, so preserving the converse of each Ruby
relation. However, the arithmetic primitives of AProlog are unable to support such a
flexible computational requirement. As a consequence, we utilise the alternative definition
of “Peano” natural numbers introduced in the previous section.

Two alternative methods for describing the sorting circuit have been given in the past,
one by Sheeran and Jones [SJ87] and the other by Hutton [Hut92]. We implement the
former presentation in this section. The sorting circuit is illustrated in Figure 8. Each
node cmp is a comparison operation—taking tuples to sorted tuples—and we can see from
the figure that some kind of reduction is being performed with a column of comparisons.
In fact, the reduction is the converse of a reduce right, rdr—'. In Ruby notation, we can
define the sorting circuit sort as

sort : list nat — list nat,

sort = wrap~ ' ; wrap

1 1

_ N ~1 _
Vordr (apr='; col emp) ; snd wrap™'; apr.

The translation of this expression into AProlog is shown in Figure 9 including a suitable
definition of emp. We can then query

T—  sort (succ suce zero 11 zero 1t suce succ succ zero :: succ zero :: nil) B.,
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A — B — o) — (list A) — (list B) — o.

(tuple A B) — (tuple C D) — 0) —

(tuple D E) — (tuple F G) — 0) —

tuple A (tuple B E)) — (tuple (tuple C F) G) — o.

type map
type beside

(

(

(

(
type below ((tuple A B) — (tuple C D) — 0) —

((tuple E F) — (tuple B H) — 0) —

(tuple (tuple A E) F) — (tuple C (tuple D H)) — o.
type row ((tuple A B) — (tuple C A) — 0) —

(tuple A (list B)) — (tuple (list C) A) — o.
type col ((tuple A B) — (tuple B C) — 0) —

(tuple (list A) B) — (tuple B (list C')) — o.
type rdl ((tuple A B) - A — 0) — ((tuple A (list B))) = A — o.
type rdr ((tuple A B) - B — 0) — ((tuple (list A) B)) — B — o.

map R AB < (conv apl) comp (par R (map R)) comp apl A B.
map R AB < (conv null) comp null A B.

beside RS A B <« rsh comp (fst R) comp lsh comp (snd S) comp rsh A B.
below RS AB <+ conv ((conv R) beside (conv S)) A B.

row RAB <« (snd (conv apl)) comp (R beside (row R)) comp (fst apl) A B.
row RAB <« (snd (conv wrap)) comp R comp (fst wrap) A B.

col RAB <« conv (row (conv R)) A B.
rdlR AB < (row (R comp (conv outr))) comp outr A B.

rdr RAB < (col (R comp (conv outl))) comp outl A B.

Figure 7: The implementation of Ruby higher-order functions in AProlog.
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type leq

type min
type maz
type cmp
type sort
leq zero M.

—cmp

—lcemp cmp

—cmp cmp cmp

—lemp cmp cmp cmp

Figure 8: A possible circuit corresponding to sort.

nat — nat — o.

(tuple nat nat) — nat — o.

(tuple nat nat) — nat — o.

(tuple nat nat) — (tuple nat nat) — o.
(list nat) — (list nat) — o.

leq (suce M) (succ N) < leq M N.

min (M :
min (M :

maz (M :
maz (M :

N)M <« leqgM N.
N)N <« leq N M.

N)M <« leqgN M.
N)N <« legM N.

cmp A B <« fork comp (min par maz) A B.

sort AB <«

sort AB <«

(conv (rdr (conv ((conv apr) comp (col ecmp))))) comp
(snd (conv wrap)) comp apr A B.

(conv wrap) comp wrap A B.

Figure 9: The implementation of sort in AProlog.
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to obtain the result B = (zero :: succ zero :: succ succ zero :: succ succ succ zero :: nil).
We encounter a more interesting example by solving the converse of sort. The query

T—  conv sort (zero 11 succ zero 1 Succ succ zero :: succ succ suce zero :: nil) B.,

computes every permutation of the given list, corresponding to all the lists which, when
sorted, result in the given list.

5 Conclusions

In this paper, a relational implementation of Ruby' was developed in AProlog allowing
the execution of abstract relational Ruby specifications for the first time. Moreover, the
translation of a Ruby specification to its concrete representation in AProlog is natural
and straightforward. The implementation of relations presented here demonstrates a
previously undocumented use of AProlog, perhaps suggesting a new area for the practical
application of higher-order logic programming.

The left to right computational strategy employed in AProlog does, unfortunately,
hamper a completely declarative solution since we artificially affect the flow of control
in a Ruby program. However, this indicates more of a problem with logic programming
languages in general rather than with the Ruby implementation in particular.

As a consequence of this problem, no correctness results are given for the Ruby im-
plementation. It would appear, though, that creating new Ruby relations using only the
primitive set presented in this paper suggests that the resulting program should execute
correctly.

One of the most interesting aspects of the Ruby implementation is that each rela-
tion has a well-defined converse which greatly eases the definition of some other rela-
tions. The value of the Ruby implementation presented here is not one of circuit synthe-
sis [LP95, Hut92] but rather of the effective demonstration that a relational calculus can
be programmed in AProlog. At this stage, it remains unclear, but certainly an intriguing
question, whether higher-order logic programming languages can be used to implement
more expressive relational languages [BAM94, ABH"92, M6192, SS88] than Ruby, partic-
ularly given the dependence of this implementation on an extra-logical feature.
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