
Implementing Ruby in a Higher-Order LogicProgramming LanguageRichard McPhee�April 20, 1995AbstractRuby is a relational language for describing hardware circuits. In the past, pro-gramming tools existed which only catered for the execution of functional Rubyexpressions rather than the complete set of relational ones. In this paper, we de-velop an implementation of Ruby in �Prolog|a higher-order logic programminglanguage|allowing the execution of arbitrary, relational Ruby programs.1 IntroductionProgramming problems can be tackled by specifying a program's behaviour in an ab-stract mathematical speci�cation and then, through the application of some appropriatecalculus, converting this into an e�cient and implementable program. Until recently, theart of deriving computer programs from speci�cation has been performed equationally ina functional calculus [Bir87]. However, it has become evident that a relational calculusa�ords us a greater degree of expression and
exibility in both speci�cation and proofsince a relational calculus naturally captures the notions of non-determinism along withfunction converses.Ruby is one such relational language developed by Jones and Sheeran [Jon90, JS90] todescribe the behaviour of hardware circuits. However, existing Ruby programming toolsonly provide for the execution of functional Ruby expressions [LP95, Hut93, Hut92]. Inthis paper, a purely relational implementation of Ruby is developed in �Prolog [LHRB94,NM88]|a higher-order logic programming language|allowing the execution of abstractRuby circuit speci�cations. The implementation is purely relational since expressionshave a well-de�ned converse.The remainder of the paper is organised into four sections. In Section 2, we introducethe Ruby relational language. In Section 3, an implementation of Ruby is developed in�Prolog. An example of using the Ruby implementation is presented in Section 4 and wedraw several conclusions in Section 5.�Author's Address: Richard McPhee, Oxford University Computing Laboratory, Wolfson Building,Parks Road, Oxford OX1 3QD, U.K. Electronic mail: rm@comlab.ox.ac.uk. Telephone: 01865 273865.Fax: 01865 273839. 1

2 RubyRuby is a relational language developed by Jones and Sheeran [Jon90, JS90] for describinghardware circuits. The behaviour of a circuit is speci�ed by a relational program which canthen be transformed into an equivalent program amenable to implementation in hardware.A circuit in Ruby is represented as a binary relation between simple data values. Recallthat a binary relation R : A! B , of type A to B , is a subset of the cartesian product (A�B) of sets A and B . We write a R b to denote that (a; b) 2 R.The data values on which these circuits operate consist solely of integers, and bothtuples and lists of integers. A tuple is represented in Ruby by the notation (a; b) whosetype is (A � B) for any types A and B , and a list is represented by [a0; a1; : : : ; an] foreach element ai having type A and the type of the list is list A. The empty list is denotedby `[]'. It is worth mentioning that, in this paper, tuples are considered distinct fromlists, i.e., a tuple and a list of length two are treated di�erently. Other descriptions ofRuby [JS91a, Jon90] tend to blur the distinction between tuples and lists, allowing themto be dealt with interchangeably. As a consequence, however, automatic type deductionbecomes greatly complicated, so hampering the implementation of Ruby in a stronglytyped language, like �Prolog.A relation in Ruby can be given pictorially, corresponding directly to its interpretationas a circuit. For example, the circuit associated with the relation R : A ! B can berepresented as the single node R .The convention regarding data
ow in such a circuit is that domain values \enter" at theleft and top sides of the node and range values \exit" at the bottom and right sides. Inaddition, multiple wires to and from a node are read from bottom to top. Therefore, arelation (a; b)S (c; d) : (A�B)! (C �D)|taking tuples to tuples|may be representedby the circuit Sa b
c d .Ruby expressions are composed hierarchically from primitive relations and higher-order functions. The most fundamental of these are sequential composition, parallelcomposition, and converse. The sequential composition of two relations R : A ! Band S : B ! C , written as R ; S : A! C , is given byR : A! B ; S : B ! C) R ; S : A! C ;a (R ; S) c � 9b:a R b ^ b S c:The �rst line in this expression denotes the type information of the function in a similarstyle to that adopted by Jones and Sheeran [JS91b]. The sequential composition of twocircuits look like this: 2

R S .The parallel composition of two relations R and S , written as [R; S], is expressed byR : A! B ; S : C ! D) [R; S] : (A� C)! (B �D);(a; c) [R; S] (b; d) � a R b ^ c S d :The parallel composition of two circuits simply places them over one another in thefollowing way: SR .Every relation R has a well-de�ned converse R�1, given straightforwardly byR : A! B) R�1 : B ! A;b R�1 a � a R b:Converse reverses composition in that (R ; S)�1 = S�1 ; R�1 and is also an involutionsince (R�1)�1 = R.Several primitive relations are used to construct and deconstruct the data values of acircuit. For tuples, we have the relationsa id b � a = b;(a; b) swap (c; d) � a = d ^ b = c;(a; b) outl c � a = c;(a; b) outr c � b = c;a fork (b; c) � a = b ^ a = c;((a; b); c) lsh (d ; (e; f)) � a = d ^ b = e ^ c = f ;(a; (b; c)) rsh ((d ; e); f) � a = d ^ b = e ^ c = f :Of these relations, only id , outl , and outr are essentially primitive in the presence ofrelational intersection. The intersection of two relations R and S , written as R \ S , isde�ned byR : A! B ; S : A! B) R \ S : A! B ;a (R \ S) b � a R b ^ a S b:The primitive Ruby relations for lists are(as; bs) app cs � as ++ bs = cs;(a; as) apl bs � [a] ++ as = bs;(as; a) apr bs � as ++ [a] = bs;a wrap bs � [a] = bs;a null bs � bs = []; 3

Ra b
c Sef g

(a; (b; e)) R $ S ((c; f); g)
Se f hRa c d

((a; e); f) R l S (c; (d ; h))Figure 1: The circuits corresponding to beside and below.where `++' denotes list concatenation. These primitive relations provide us with thebare bones of the Ruby language. The real expressive power is obtained by buildinghigher-order functions|taking relations to relations|from these combining forms. Twocommonly used higher-order functions are simple shorthands, given byfst R � [R; id];snd R � [id ;R]:Since Ruby is a language for designing circuits, a plethora of functions exist for com-bining circuit elements. For two circuits, denoted respectively by the relations R and S ,the function `$' (pronounced `beside') joins R and S together in the following fashion:R : (A� B)! (C �D)S : (D � E)! (F �G))) R $ S : (A� (B � E))! ((C � F)�G);R $ S � rsh ; fst R ; lsh ; snd S ; rsh:The beauty of Ruby is exempli�ed when we de�ne the dual of existing functions in termsof themselves, providing a convenient way to produce new circuits. We can obtain thedual of any higher-order function by �rst taking the converse of all its arguments andthen taking the converse of the entire expression. For example, we can manufacture thefunction `l' (pronounced `below') in terms of its dual function beside byR : (A� B)! (C �D)S : (E � F)! (B � H))) R l S : ((A� E)� F)! (C � (D � H));R l S � (R�1 $ S�1)�1:Both beside and below, interpreted as circuits, are shown in Figure 1.Using beside, we can create a new function row which forms a linear array, cascadingthe circuit R a number of times, de�ned byR : (A� B)! (C � A)) row R : (A� list B)! (list C � A);row R � snd wrap�1 ; R ; fst wrap_ snd apl�1 ; (R $ row R) ; fst apl :4

R R R R
RRRRFigure 2: Possible circuits corresponding respectively to row R and col R.Notice that row is de�ned as a disjunction; the �rst clause deals with the case where thesecond component of the domain tuple is the singleton list since row takes non-emptylists. The function col , forming a vertical column of circuits, is de�ned in terms of itsdual function row viaR : (A� B)! (B � C)) col R : (list A� B)! (B � list C);col R � (row R�1)�1:The circuits represented by both row and col are shown in Figure 2.The map function represents repeated parallel composition of the relation R and isde�ned byR : A! B) map R : list A! list B ;map R � null�1 ; null_ apl�1 ; [R;map R] ; apl :Finally, the two functions rdl and rdr relate tuples of values to single values and correspondto the circuit equivalent of \reducing" (or \folding") in functional programming. Theyare de�ned asR : (A� B)! A) rdl R : (A� list B)! A;rdl R � row (R ; outr�1) ; outr ;and S : (A� B)! B) rdr S : (list A� B)! B ;rdr S � col (S ; outl�1) ; outl ;respectively. The circuits corresponding to these functions are illustrated in Figure 3.5

R R R R
RRRRFigure 3: An illustration of rdl R and rdr R.3 Programming Ruby in �PrologThe higher-order logic language �Prolog, developed by Nadathur and Miller [NM88],naturally supports higher-order programming features in a manner consistent with itsunderlying logical foundation. In what follows, we examine how to implement Rubyprimitives in �Prolog [LHRB94]. The syntax of �Prolog is introduced informally as thesection progresses.We can de�ne Ruby's tuple data value in �Prolog via the declarationkind tuple type! type! type:type : A! B ! (tuple A B):The `kind' operator creates a new type which is simply a type constructor of arity oneless than the number of occurrences of the keyword `type' in the declaration. In thecase above, the type constructor tuple is declared taking two arguments to this newtype. Function and predicate symbols are introduced via a `type' declaration. The in�xfunction symbol `:' declared above takes two arbitrary types, A and B , and returns avalue of type tuple A B .Notice that �Prolog is polymorphically typed and is curried in the same sense as inmany functional programming languages, like Haskell, except that type signatures mustbe given explicitly for all function and predicate symbols. Type variables in �Prolog aredenoted by identi�ers beginning with an upper case letter. The type of propositions (or\truth values") is the special type `o' and so the type signature of a predicate in �Prologterminates with this type. A small �Prolog program de�ning \Peano" natural numbers,given in Figure 4, demonstrates some of these syntactic points. Natural numbers are thusrepresented by zero, (succ zero), (succ (succ zero)), and so forth.We make use of the built-in list type in �Prolog in order to implement the primitive6

kind nat type:type zero nat :type succ nat ! nat :type add (tuple nat nat)! nat ! o:add (M : zero)M :add (M : succ N) (succ Y) add (M : N) Y :Figure 4: The implementation of Peano natural numbers in �Prolog.relations pertaining to the Ruby list data value. Lists in �Prolog are declared askind list type! type:type nil list A:type :: A! (list A)! (list A):;where nil denotes the empty list and `::' denotes `cons'. The �Prolog predicate for listconcatenation is append and the basic Ruby relations can now be implemented as shownin Figure 5.We represent the Ruby primitives of parallel composition and converse by the respec-tive predicatestype par (A! B ! o)! (C ! D ! o)! (tuple A C)! (tuple B D)! o:type conv (A! B ! o)! B ! A! o:par R S (A : C) (B : D) R A B ; S C D :conv R B A R A B :Several syntactic points are illustrated in this example. We can see from the type declara-tions of par and conv that they are both higher-order predicates taking other predicatesas arguments. Predicates in �Prolog may be de�ned as \in�x" and are also curried fa-cilitating substantial notational convenience. For instance, (R par (conv S)) denotes avalid predicate in itself and can be passed as an argument to other higher-order predi-cates. Therefore, we can construct goals from predicates which take arbitrarily complexrelations as arguments.The conspicuous absence of the de�nition of sequential composition is deliberate fora technical reason which we now spend a moment to resolve. The implementation ofRuby we present here unfortunately depends critically on the use of an extra-logicalpredicate
ex which determines whether or not a logical variable is instantiated. Thereason for using this predicate|a higher-order analogy to the predicate var found in Pro-log [CM87]|is to overcome a standard problem encountered in most logic programminglanguages: As a consequence of the left to right evaluation strategy adopted in logic pro-gramming language implementations, whereby the leftmost unsolved goal is selected for7

type id A! A! o:type swap (tuple A B)! (tuple B A)! o:type outl (tuple A B)! A! o:type outr (tuple A B)! B ! o:type fork A! (tuple A A)! o:type lsh (tuple (tuple A B) C)! (tuple A (tuple B C))! o:type rsh (tuple A (tuple B C))! (tuple (tuple A B) C)! o:type app (tuple (list A) (list A))! (list A)! o:type apl (tuple A (list A))! (list A)! o:type apr (tuple (list A) A)! (list A)! o:type wrap A! (list A)! o:type null A! (list B)! o:id A A:swap (A : B) (B : A):outl (A : B) A:outr (A : B) B :fork A (A : A):lsh ((A : B) : C) (A : (B : C)):rsh (A : (B : C)) ((A : B) : C):apl (A : AS) BS append (A :: nil) AS BS :apr (AS : A) BS append AS (A :: nil) BS :app (A : B)C append A B C :wrap A (A :: nil):null A nil :Figure 5: The implementation of the most primitive Ruby relations in �Prolog.
8

resolution, certain queries can result in in�nite computation. A simple example whichdemonstrates this undesirable property is the query?� add (X : Y) Z ; add (X : Y) (succ succ zero):;assuming the previous de�nition of the predicate add . Since the leftmost subgoal add (X :Y) Z can be satis�ed in an in�nite number of ways, the whole query results in non-termination in �Prolog when all possible solutions are requested. The situation is, intheory, recti�ed by simply swapping the two subgoals in the conjunction. The problemcan essentially be reduced to the fact that conjunction is not commutative in �Prolog.This evaluation problem particularly a�ects an implementation of Ruby in �Prologsince we desire the ability to run queries \in reverse," i.e., solving for logical variables ineither the range or domain positions of a relation. By doing so, we satisfy the requirementthat each relation in Ruby has a well de�ned converse. However, the fundamental Rubyprimitive of sequential composition is directly a�ected by this problem. To see why,consider a na��ve, in�x implementation of sequential composition in �Prolog:type comp 0 (A! B ! o)! (B ! C ! o)! A! C ! o:comp 0 R S A C sigma Bn (R A B ; S B C):The �Prolog primitive `sigma' denotes existential quanti�cation and the operator `n' de-notes in�x �-abstraction, providing a way to create predicates. Then the query?� add comp 0 (conv add) A (succ zero : succ zero):;decomposes into the expression?� sigma Bn (add A B ; add (succ zero : succ zero) B):;which is exactly the problematic situation we wish to avoid.The solution is straightforward although admittedly less declarative than one mightprefer. In the de�nition of sequential composition, we check whether the domain parame-ter is uninstantiated. If it is, we resolve the clauses in the composition in the reverse orderto avoid slipping into an in�nite computation. This results in a revised implementation ofcomposition, given in Figure 6. The appearance of the cut `!' in the �rst clause of compsimply avoids the second clause being attempted should the �rst one fail. Another pointto note is that some type obscuring takes place simply to overcome the fact that a Rubyvalue comprises of either a number, or a tuple or list of numbers. An alternative methodfor tackling this di�culty would be to attach an explicit type constructor to each Rubyvalue to di�erentiate between them.Now that we have implemented comp, we can easily implement the other Ruby higher-order functions, as illustrated in Figure 7. An attractive aspect of using �Prolog toimplement Ruby is the ease with which Ruby operators translate into �Prolog syntax; thehigher-order functions translate almost identically from their abstract Ruby de�nitions totheir corresponding implementations in �Prolog. In the next section, we look at a simpleexample of how to create new Ruby relations in �Prolog.9

type comp (A! B ! o)! (B ! C ! o)! A! C ! o:kind anonymous type:type untype A! anonymous:type uninstantiated A! o:type
exible anonymous ! o:comp R S A C uninstantiated A; !; sigma Bn (S B C ;R A B):comp R S A C sigma Bn (R A B ; S B C):uninstantiated A
exible (untype A):
exible (untype A)
ex A; !:
exible (untype (A : B))
exible (untype A);
exible (untype B):
exible (untype (A :: nil))
exible (untype A):
exible (untype (A :: AS))
exible (untype A);
exible (untype AS):Figure 6: The implementation of sequential composition comp in �Prolog.4 A Simple Sorting Circuit in RubyIn this section, we present a circuit which sorts an arbitrary, non-empty list of naturalnumbers. We noted earlier that we require the ability to solve logic variables in boththe range and domain positions of a relation, so preserving the converse of each Rubyrelation. However, the arithmetic primitives of �Prolog are unable to support such a
exible computational requirement. As a consequence, we utilise the alternative de�nitionof \Peano" natural numbers introduced in the previous section.Two alternative methods for describing the sorting circuit have been given in the past,one by Sheeran and Jones [SJ87] and the other by Hutton [Hut92]. We implement theformer presentation in this section. The sorting circuit is illustrated in Figure 8. Eachnode cmp is a comparison operation|taking tuples to sorted tuples|and we can see fromthe �gure that some kind of reduction is being performed with a column of comparisons.In fact, the reduction is the converse of a reduce right, rdr�1. In Ruby notation, we cande�ne the sorting circuit sort assort : list nat ! list nat ;sort � wrap�1 ; wrap_ rdr�1 (apr�1 ; col cmp)�1 ; snd wrap�1 ; apr :The translation of this expression into �Prolog is shown in Figure 9 including a suitablede�nition of cmp. We can then query?� sort (succ succ zero :: zero :: succ succ succ zero :: succ zero :: nil) B :;10

type map (A! B ! o)! (list A)! (list B)! o:type beside ((tuple A B)! (tuple C D)! o)!((tuple D E)! (tuple F G)! o)!(tuple A (tuple B E))! (tuple (tuple C F)G)! o:type below ((tuple A B)! (tuple C D)! o)!((tuple E F)! (tuple B H)! o)!(tuple (tuple A E) F)! (tuple C (tuple D H))! o:type row ((tuple A B)! (tuple C A)! o)!(tuple A (list B))! (tuple (list C)A)! o:type col ((tuple A B)! (tuple B C)! o)!(tuple (list A) B)! (tuple B (list C))! o:type rdl ((tuple A B)! A! o)! ((tuple A (list B)))! A! o:type rdr ((tuple A B)! B ! o)! ((tuple (list A) B))! B ! o:map R A B (conv apl) comp (par R (map R)) comp apl A B :map R A B (conv null) comp null A B :beside R S A B rsh comp (fst R) comp lsh comp (snd S) comp rsh A B :below R S A B conv ((conv R) beside (conv S))A B :row R A B (snd (conv apl)) comp (R beside (row R)) comp (fst apl) A B :row R A B (snd (conv wrap)) comp R comp (fst wrap) A B :col R A B conv (row (conv R)) A B :rdl R A B (row (R comp (conv outr))) comp outr A B :rdr R A B (col (R comp (conv outl))) comp outl A B :Figure 7: The implementation of Ruby higher-order functions in �Prolog.
11

cmpcmp cmpcmp cmp cmpcmp cmp cmp cmp
Figure 8: A possible circuit corresponding to sort .type leq nat ! nat ! o:type min (tuple nat nat)! nat ! o:type max (tuple nat nat)! nat ! o:type cmp (tuple nat nat)! (tuple nat nat)! o:type sort (list nat)! (list nat)! o:leq zero M :leq (succ M) (succ N) leq M N :min (M : N)M leq M N :min (M : N) N leq N M :max (M : N)M leq N M :max (M : N) N leq M N :cmp A B fork comp (min par max) A B :sort A B (conv (rdr (conv ((conv apr) comp (col cmp))))) comp(snd (conv wrap)) comp apr A B :sort A B (conv wrap) comp wrap A B :Figure 9: The implementation of sort in �Prolog.12

to obtain the result B = (zero :: succ zero :: succ succ zero :: succ succ succ zero :: nil).We encounter a more interesting example by solving the converse of sort . The query?� conv sort (zero :: succ zero :: succ succ zero :: succ succ succ zero :: nil) B :;computes every permutation of the given list, corresponding to all the lists which, whensorted, result in the given list.5 ConclusionsIn this paper, a relational implementation of Ruby1 was developed in �Prolog allowingthe execution of abstract relational Ruby speci�cations for the �rst time. Moreover, thetranslation of a Ruby speci�cation to its concrete representation in �Prolog is naturaland straightforward. The implementation of relations presented here demonstrates apreviously undocumented use of �Prolog, perhaps suggesting a new area for the practicalapplication of higher-order logic programming.The left to right computational strategy employed in �Prolog does, unfortunately,hamper a completely declarative solution since we arti�cially a�ect the
ow of controlin a Ruby program. However, this indicates more of a problem with logic programminglanguages in general rather than with the Ruby implementation in particular.As a consequence of this problem, no correctness results are given for the Ruby im-plementation. It would appear, though, that creating new Ruby relations using only theprimitive set presented in this paper suggests that the resulting program should executecorrectly.One of the most interesting aspects of the Ruby implementation is that each rela-tion has a well-de�ned converse which greatly eases the de�nition of some other rela-tions. The value of the Ruby implementation presented here is not one of circuit synthe-sis [LP95, Hut92] but rather of the e�ective demonstration that a relational calculus canbe programmed in �Prolog. At this stage, it remains unclear, but certainly an intriguingquestion, whether higher-order logic programming languages can be used to implementmore expressive relational languages [BdM94, ABH+92, M�ol92, SS88] than Ruby, partic-ularly given the dependence of this implementation on an extra-logical feature.AcknowledgementsI would like to extend my sincere thanks to Oege de Moor. Also, I would like to thankGeraint Jones, Graham Hutton, and Wayne Luk for their useful comments. I gratefullyacknowledge the �nancial support of the Engineering and Physical Sciences ResearchCouncil of the United Kingdom.1The �Prolog implementation of Ruby is available via anonymous ftp from the siteftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Richard.McPhee/ruby
13

References[ABH+92] C. J. Aarts, R. C. Backhouse, P. Hoogendijk, E. Voermans, and J. C. S. P.Van der Woude. A relational theory of datatypes. Available via anonymous ftpfrom ftp.win.tue.nl in directory pub/math.prog.construction, September1992.[BdM94] R. S. Bird and O. de Moor. Relational program derivation and context-freelanguage recognition. In A.W. Roscoe, editor, A Classical Mind: Essays dedi-cated to C.A.R. Hoare. Prentice Hall International, 1994.[Bir87] R. S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic ofProgramming and Calculi of Discrete Design, volume 36 of NATO ASI SeriesF, pages 3{42. Springer{Verlag, 1987.[CM87] W. Clocksin and C. Mellish. Programming in Prolog. Springer-Verlag, thirdedition, 1987.[Hut92] G. Hutton. Between Functions and Relations in Calculating Programs. Re-search report, Department of Computer Science, Glasgow University, 1992.[Hut93] G. Hutton. The Ruby Interpreter. Chalmers University of Technology, Sweden,1993.[Jon90] G. Jones. Designing circuits by calculation. Technical Report PRG{TR{10{90,Programming Research Group, 11 Keble Road, Oxford OX1 3QD, England,1990.[JS90] G. Jones and M. Sheeran. Circuit design in Ruby. In J. Staunstrup, editor,Formal Methods for VLSI Design, pages 13{70. Elsevier Science Publications,1990.[JS91a] G. Jones and M. Sheeran. Collecting butter
ies. Technical Monograph PRG-91, University of Oxford, Programming Research Group, 1991.[JS91b] G. Jones and M. Sheeran. Relations and re�nement in circuit design. InJ. Woodcock and C. Morgan, editors, Third Re�nement Workshop, 1990.Springer Workshops in Computing, 1991.[LHRB94] S. Le Huitouze, O. Ridoux, and P. Brisset. Prolog/Mali reference manual.Available via anonymous ftp from ftp://ftp.irisa.fr/local/lande/pm,1994.[LP95] W. Luk and C. Pitcher. Simulation Facilities in Rebecca. Imperial College ofScience, Technology, and Medicine, London, U.K., 1995.[M�ol92] B. M�oller. Derivation of graph and pointer algorithms. In B. M�oller,H. Partsch, and S. Schuman, editors, Formal Program Development, Proceed-ings of the IFIP TC2/WG2.1 State of the Art Seminar. Springer, 1992.14

[NM88] G. Nadathur and D. Miller. An overview of �Prolog. In R. Kowalski and K. A.Bowen, editors, Fifth International Logic Programming Conference, pages 810{827, Seattle, U.S.A., 1988. MIT Press.[SJ87] M. Sheeran and G. Jones. Relations + higher-order functions = hardwaredescriptions. In W. E. Proebster and H. Reiner, editors, Proceedings of theIEEE Comp Euro 87: VLSI and Computers, pages 303{306, Hamburg, 1987.[SS88] G. Schmidt and T. Str�ohlein. Relationen und Grafen. Springer-Verlag, 1988.

15

