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Abstract: Kinodynamic planning attempts to solve a robot motion problem subject to
simultaneous kinematic and dynamics constraints. In the general problem, given a robot
system, we must find a minimal-time trajectory that goes from a start position and velocity
to a goal position and velocity while avoiding obstacles by a safety margin and respecting
constraints on velocity and acceleration. We consider the simplified case of a point mass
under Newtonian mechanics, together with velocity and acceleration bounds. The point
must be flown from a start to a goal, amidst polyhedral obstacles in 2D or 3D. While exact
solutions to this problem are not known, we provide the first provably good approximation
algorithm, and show that it runs in polynomial time.

1 Introduction

The kinodynamic planning problem is to synthesize a robot motion subject to simultane-
ous kinematic constraints, such as avoiding obstacles, and dynamics constraints, such as
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modulus bounds on velocity, acceleration, and force. A kinodynamic solution is a mapping
from time to generalized forces or accelerations. The resulting motion is governed by a dy-
namics equation. In robotics, a long-standing open problem is to synthesize time-optimal
kinodynamic solutions, by which we mean solutions that require minimal time and respect
the kinodynamic constraints.

While there has been a great deal of work on this problem in the robotics community,
there are no exact algorithms except for the one-dimensional case. Furthermore, it can
be shown that in three dimensions, finding exact solutions is A/P-hard.” Therefore, it is
reasonable to pursue approzimation algorithms — algorithms that compute kinodynamic
solutions that are “close” to optimal. However, among the many proposed approximate or
heuristic techniques, there exist no bounds on the goodness of the resulting solutions, or on
the time-complexity of the algorithms. We consider the restricted situation of particle dy-
namics, and provide a provably good approximation algorithm for the 2- and 3-dimensional
cases.

We incorporate safety into the meaning of “optimal” by including a speed-dependent
obstacle avoidance margin in the problem parameters. From this viewpoint, it is intuitive
that approximation algorithms for kinodynamic planning should trade off planning time
(computational complexity) against optimality in terms of: (a) execution time of the mo-
tion, (b) strictness in observing the safety margin, and (c) closeness to the desired start
and goal positions and velocities.

To analytically express this trade-off we parameterize closeness to an optimal safe so-
lution by a tolerance e, and we bound the planning algorithm’s running time in terms of
this e. Roughly speaking, we show that if there exists a “safe” optimal-time kinodynamic
solution requiring time 7,,;, then we can find a “near-optimal” solution that requires time
at most (1 + €)7,,:. Furthermore, the running time of our algorithm is polynomial both in
the closeness of the approximation % and in the geometric complexity. These bounds on
solution accuracy and running time are the first that have been obtained for 2D and 3D
optimal kinodynamic planning, which has been an open problem in computational robotics
for over ten years.

2 Kinodynamic Motion Planning

2.1 The Kinodynamic Planning Problem

Kinematic constraints, such as joint limits and obstacles, limit the configuration (position)
of a robot. Dynamics constraints govern the time-derivatives of configuration (independent
of obstacles). They include dynamics laws and bounds on velocity, acceleration, and ap-
plied force. Strictly kinodynamic constraints are obstacle-dependent constraints that govern
configuration and its time-derivatives but do not fall into either of the previous categories.

It was first observed in [CDRX] that the methods of Canny and Reif [CR] can be extended to demon-
strate A"P-hardness. For a complete proof see [Xa].



An example of such a constraint is a speed-dependent obstacle-avoidance margin. A con-
straint is a kinodynamic constraint if it belongs to one of the above categories. The state of
a robot at a given time is its configuration and velocity. The general kinodynamic planning
problem is, for a given robot, to find a motion that goes from a start state to a goal state
while obeying kinodynamic constraints.

We consider the following restricted problem. (See figure 1.) A point mass in R?
(d = 2,3) must be moved from a state S = (s,§) to a goal state G = (g, g). In the course
of the motion, the point must avoid a set of polyhedral obstacles. Movement is controlled
by applying forces or commanding accelerations, which are equivalent for a point mass.
By using a configuration space approach, this problem is readily extended to cover a rigid
non-rotating robot geometrically described by the union R of convex polyhedra.

We will denote the configuration space ®? by C, and its phase space by T'C’. Phase
space T'C' is the robot state space and is isomorphic to ®2?. Thus, a point in 7'C' is a
(position, velocity) pair such as S or G.

A robot motion over a time interval [0, T] can be specified by a twice-differentiable map
p :[0,7T¢] — C. This map is the path of the motion. In kinodynamic planning, the motion
must obey dynamics and dynamics constraints, and it is convenient to specify p explicitly.
The trajectory of a robot motion is the map I' : [0, T¢] — T'C given by I'() = (p(t), p(?)).
We denote the position and velocity components of a subscripted trajectory I', by p, and p,,
respectively. While a motion p can be given directly as a function of time, two equivalent
specifications are useful: (a) an initial position po and a velocity function v = p, and (b)
an initial state (po,vo) and an acceleration function a = p.

The motion must respect upper bounds on the magnitudes of the acceleration and
velocity. At all times ¢ the acceleration p(¢) and the velocity p(¢) must obey

Vimazs and (1)
Crman- (2)

B(0)]]

<
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Egs. (1) and (2) are the dynamics bounds. When the meaning is clear from context, we
will drop the maz subscript.

We assume that the obstacles O are represented by a set of convex, possibly overlapping
polyhedra. Suppose these convex polyhedra have a total of n faces overall. We call n the
combinatorial complexity of O. Note that n is also the number of bounding halfplanes of
the obstacles. Free space is the complement of these obstacles. We assume that the set of
free configurations is bounded by a d-cube of side length [. A general kinodynamic planning
problem, then, is a tuple (O, S, G, [, a,v).

An ezxact solution to the kinodynamic planning problem is a trajectory I' such that
I'0) =S, I'(Ty) = G, and I' obeys the kinodynamic constraints. That is, the path p
avoids all obstacles, the velocity p respects (1), and p respects (2). The time for a solution
I' is simply Ty. The time-optimal kinodynamic planning problem is to find a minimal-time
kinodynamic solution, which is represented as a suitable encoding of the start state I'(0)
and the acceleration function a.



A theoretically time-optimal solution may require unrealizable precision in control or
sensing and thus be unexecutable by a physical robot. For this reason, an optimal solution
should observe a safety margin; the margin we define is speed-dependent. Furthermore,
the safety margin ensures the existence of a “tube” or family of solutions “nearby” in time
and in phase-space that “approximate” the optimal safe solution. The existence of such a
“tube” of approximating solutions is essential for our approach. Safety margins are both
practically motivated and mathematically necessary.

A b,-safe kinodynamic solution avoids all obstacles by a safety margin 6,. In this paper,
we define this safety margin to be an affine function of the trajectory speed. This first-
order choice roughly corresponds to how accurately and quickly a robot senses its position
and velocity, combined with how quickly it can correct for velocity errors.® Two positive
scalars ¢y and ¢; characterize the safety margin, which one can view as an obstacle-free
tube centered about the path. Formally, a é,-safe kinodynamic solution has the property
that for all times ¢ in [0, 7], there exists a ball about p(¢) in free space of radius

bu(cosc1)(P(t)) = co + er||p(1)]]-

We will drop the parameters ¢y and ¢; in the discussion when confusion will not arise. Note
that é,-safety is is an example of a kinodynamic constraint that is neither a pure kinematic
constraint nor a pure dynamics constraint. A é,-safe kinodynamic planning problem, then,
is a tuple (O, S, G,a,v,l,co,c1). We call a, v, [, ¢g, and ¢; the kinodynamic bounds.

For fixed ¢y and ¢y, consider the class of all 6,-safe kinodynamic solutions. We define an
optimal b,-safe kinodynamic solution to be a solution whose time is minimal in this class.
We will henceforth employ the term optimal safe kinodynamic solution since ¢,-safety is
the only type we consider here.

We now specify what it means for a kinodynamic solution I'y to be e-approximately
optimal, where a positive € < 1 parameterizes the closeness of the approximation. First of
all, I'; must obey the safety margin

by(cos e1)(Pg) = (1 = €)dy(co, 1)(Py)- (3)

Second, if an optimal safe trajectory takes time 7,,;, then we require that
Tq S (1 + G)Topt-

Now, let us say that an approximating state (x’,%’) is “e-close” to a reference state (x,x)

if

|Ix —x'| = O(e), and (4)
= O(e). (5)

8Consider a one-dimensional system. Recall that % = muv. Therefore, if the control system allows a
maximum velocity error of Av, and Fj., force is available for correcting velocity errors, then %i” distance
might be traveled erroneously before the velocity can be corrected. Concisely stated, ¢; characterizes how
accurately the robot can control its energy consumption.
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For the final criterion, we require that I',(0) and I'y(7},) be e-close to the desired start and
goal states S and G, respectively.?

In order to obtain our result, we must assume four things: a velocity bound, a diameter
bound, L.,-norm acceleration, and safety. Each of these assumptions can be motivated in
physical terms. For example, robots exist in the physical world, and hence of course any
actual robot will have bounded maximum velocity and a bounded workspace. However,
the proofs in this paper do not go through if any of these assumptions is dropped. In [DX2,
DX3, RT], we relax the L. -norm. Safety, as we shall see, proves to be a crucial assumption.

2.2 Statement of Results

In section 3.2 we describe a provably good approximation algorithm for the optimal safe
kinodynamic planning problem. Concisely stated, we show:

Theorem 2.1 Let K = (O,S,G,a,v,l,co,¢1) be an optimal safe kinodynamic planning
problem. Let 0 < e < 1. Let n be the combinatorial complexity of the obstacles O.
Suppose there is a 6,(co, c1)-safe trajectory that obeys the dynamics bounds a and v and
goes from S to G in time T,,. Then the algorithm finds a 6, (co, c1)-safe trajectory that
obeys the dynamics bounds, takes at most time (1 + €)1y, and goes from some S* to some
G* such that S* is e-close to S and G* is e-close to G.
The running time of the algorithm is

o[ [])

1 1
v = max (a(cl+ )7 aler ),g) .
v

Co 2 Co

d= 2,3, where

An optimal safe kinodynamic planning problem has two complexity components. The
combinatorial complexity is the number n of bounding halfplanes on the obstacles O. The
algebraic complexity of the kinodynamic bounds (a, v, [, ¢o, ¢1) is the number of bits needs
to encode them. Our algorithm is an e-approximation scheme that is fully polynomial in
the combinatorial complexity of the geometry and pseudo-polynomial'® in the algebraic
complexity of the kinodynamic bounds.

Note that we cannot claim that the approximately optimal safe solution is necessarily

near to a truly optimal safe solution in position. In this respect it is useful to compare our

°Note that the definition of “e-close” is not symmetric because of the velocity condition in (5). The
condition ||x — x'|| = O(€) may perhaps seem more intuitive. While the results here satisfy this definition,
(5) allows simpler proofs and is necessary for natural extensions of our work beyond the scope of this paper.

10That is, the algorithm has a running time that is polynomial in the quantities a, v, {, co, and ¢,
but it is not polynomial in the size (bit-complexity) of their encodings. See [PS] for a discussion of
pseudopolynomiality.



result to Papadimitriou’s fully polynomial approximation scheme for 3D Euclidean shortest
path [Pap]. Specifically, neither method necessarily finds a solution that is spatially close
to the optimal path, but merely one that has a length (time) that is not too much longer
than the optimal length (time). In fact, the results of [CR] imply that finding a path that
is position-space close to the shortest path, or even one that is homotopic to the optimal
is N"P-hard.

These above results can be extended to a rigid, non-rotating robot whose geometry is
given by a union R of convex polyhedra. This configuration space transformation has been
discussed extensively in the literature (see, eg, [LoP]). The algorithm of [LoP] could be used
as a preprocess to reduce the planning problem for R amidst O to the point navigation
problem we discuss. Since the dynamics equations for such a robot are identical to those
of a point robot, we only need to map the problem to this configuration space and apply
the algorithm.

2.3 Review of Previous Work

For a review of issues in robotics and algorithmic motion planning, see [Bra, Y]. There
exists a large body of work on optimal control in the control theory and robotics literature.
For example, see [Hol, BDG, Sch, SS1, SS2]. Much of this work attempts an analytic
characterization of time-optimal solutions—for example, to prove that in certain cases
piecewise-extremal (“bang-bang”) controls, with a finite number of switchings, suffice. This
has led to many interesting and deep subresults. For example, [BDG, Hol] show how given
a particular trajectory I' = (p,p), its velocity profile can be rescaled so as to respect
dynamics constraints and to be time-optimal. Using these ideas, a number of authors have
proposed heuristic or approximate algorithms for what is hoped to be near time-optimal
trajectory planning. In particular, Sahar and Hollerbach [SH] and Shiller and Dubowsky
[SD] both implemented algorithms which employ a fixed-resolution configuration-space or
phase-space grid to compute, approximately, near minimal-time trajectories for robots with
several degrees of freedom (and full dynamics). They did not bound the goodness of their
approximation, nor the running time of their algorithm. However, their grid methods take
time which grows exponentially with the number of grid points, or the resolution. We
provide the first polynomial-time algorithm.

The polyhedral Euclidean shortest path problem can be viewed as a version of optimal
kinodynamic planning with the acceleration bound « set equal to infinity. This observa-
tion may be used to extend the results of [CR] to show that in 3D, optimal kinodynamic
planning is N'P-hard. In other work, O’Dfmlaing [O] provides an exact algorithm for one-
dimensional kinodynamic planning. These methods may extend to the 2- and 3D cases
as well. Kinodynamic planning in 2D is related to the problem of planning with non-
holonomic constraints, as studied by Fortune and Wilfong [FW, W]. In this problem, a
robot with wheels and a bounded minimum turning radius must be moved. To make the
analogy clear, in our case, the minimum turning radius is %Hp”2 These algorithms might
lead in time to an exact solution to kinodynamic problems in 2D and 3D.



3 Algorithm and Analysis

3.1 The General Idea

Our approach transforms the problem of finding an approximately minimal-time trajectory
to finding the shortest path in a directed graph. The vertices of the graph “discretize” the
statespace T'C', and the edges of the graph correspond to trajectory segments that each
take time 7, a parameter computed by the algorithm.

Given the acceleration bound a, let A be the set of constant accelerations whose com-
ponents are members of {—a,0,a}. Let us choose a timestep 7 such that velocity bound v
is a multiple!! of a7. Applying a member of A for duration 7 is called an (a, 7)-bang. (See
figure 2.) We also use this term to refer to the resulting trajectory segment: we say that
there is an (a, 7)-bang from state X to state Y if following an (a, 7)-bang moves from X to
Y.

Suppose S* = (s*,8") € T'C such that §* is a vector of multiples of ar. Suppose
that (p,p) is a state reachable from S* by some sequence of (a,7)-bangs. Then for each
coordinate ¢,

R I TP,
pi = s+ Srar and
pi = s’ +nat

(6)

for some integers m; and n;. Thus, all states reachable from S* under a sequence of (a, 7)-
bangs belong to a set of states that lie at the interstices of an underlying, regular grid
embedded in T'C'. This grid has spacings of % in position and %4 in velocity. We call
this set of intersticial states the T'C'-grid, and each of these states a T'C' gridpoint.'* We
call a trajectory that results from a sequence of (a,7)-bangs between TC-gridpoints an
(a, 7)-grid-bang trajectory.

Recall (3). We say that state (x,X) obeys ¢! -safety if the ball of radius 6, (]|x||) about x
lies in free space. If 7 is small enough, then a é,-safe trajectory will imply the existence of a
¢! -safe (a, 7)-grid-bang trajectory that meets the other approximation requirements. Since
each (a,7)-bang takes time 7, finding a minimal-time ¢/-safe (a,7)-grid-bang trajectory
between T'C-gridpoints X and Y is identical to finding the shortest path in a graph G(V, &)
embedded in T'C'. The vertices v; € V are the T'C-gridpoints, and the edges e¢; € £ are the
6! -safe (a,7)-bangs between pairs of these vertices. We say that 7, S*, the kinodynamic
parameters, and € induce the graph G(V, E).

1'We use multiple to mean “integer multiple.”

121f the grid-spacing in velocity is ar, then the closest velocity grid-coordinate is always at most o away;
this is what is needed for our proofs. The spacing along the velocity axis is ar. At any fized grid-velocity
(multiple of ar), the spacing along the position axis is ar?. However, the grid positions for odd multiples
of ar (velocity) are offset by % from the grid positions for even multiples of ar. Hence, all the relevant

states lie at the interstices of an underlying, regular grid with spacings of % in position and a7 in velocity.
Thus, the mapping from states to the interstices of the underlying grid is one-to-one, but not onto. The size
of the underlying grid provides a bound on the number of reachable states. See [Xa] for further discussion.



3.2 The Algorithm

To explain the algorithm we need two more definitions. First, given two non-negative
scalars n, and 7n,, we say that state X is within (n.,7,) of state Y if ||x — y|| < 5, and
|Ix — ¥|| < nu. Second, consider two trajectories I'y, I'y : [0,7] — T'C. Given two scalars
ne and n,, we say that we say that I', approvimately tracks Iy to tolerance (ng,n,) in the
Loo-norm if for all times t,

Ny,  and
Nv-

[Pa(t) = o ()]
1Ba () = P ()]l

IAIA

Given problem (O,S,G,a,v,l,co,¢1) and approximation parameter €, our algorithm
does the following:

1. It chooses a timestep 7 as a function of a, v, €, ¢g, and ¢;. Specifically, the algorithm
chooses the largest 7 such that 7 < =, ar|v, and

€ . 2cg¢€ Co€
T < —mm( , )
13 aler +1) aler + 1)

2. Next, the algorithm chooses the starting T'C'-gridpoint S* according to the following:

s* = s, and $* is the multiple of ar closest to ls’?

3. It then searches for the shortest path in the induced embedded graph G(V,€&), de-
scribed above, from S* to any state (vertex) that is within (?, o) of (g, 1—_|g_—6) The
algorithm explores the graph using breadth-first search, checking the ¢! -safety of each

(a,7)-grid-bang it considers.

To show the correctness and complexity of the algorithm we must show how to choose
7 so that the following holds: if there exists a ¢,-safe trajectory from S to G taking time
T, then there also exists a 6,-safe (a,7)-grid-bang trajectory between states e-close to S
and G that takes time (1 + €)7.

We first observe that if trajectory I',,; obeys dynamics bounds ¢ and v, then there is
a time-rescaled [Hol] trajectory I, that takes time (1 + ¢)7,,; and that obeys dynamics
bounds ﬁ and (1UTE) We then choose 5, and 7, that guarantee that if I', tracks IV ,
to tolerance (1., 7,), then it will be é!-safe. We then show there is a 7 proportional to €
such that there exists an (a, 7)-grid-bang trajectory I'; that (a) approximately tracks I”

opt

to this tolerance, and (b) is within (%, o) of I, when ¢ = 0 and when ¢ = (1 + €)T,;.
The latter implies ¢-closeness.

Finally, we show that 6,-safety-checking is O(n) per (a,7)-bang. Recalling that T'C-
gridpoints have the form (6), we find that |V| is O (aéig)d. The definition of (a,7)-bang

implies that the maximal out-degree in G is 3%. Thus we get the complexity bound in
Theorem 2.1.




3.3 Time-Rescaling and Safe Tracking

We say that a path p is traversed by a trajectory I' if the image of the position component
of I' is equal to the image of p.

Lemma 3.1 If path p is traversed in time T, by a trajectory I', under acceleration bound

a and velocity bound v, then there exists some 1" that traverses p in time T,(1 + €) while

obeying acceleration bound ﬁ and velocity bound 1. In particular, this is true of

I = (pl, ), where

v = 0 () .
Pt = b (i)
Proof: Follows from the results of [Hol] or from direct computation using (7). U

To prove the main theorem we need to note that (7) preserves ¢,-safety:

Observation 3.2 Suppose I, is a 6,(co, c1)-safe trajectory from S to G that takes time T,
and obeys bounds v and a. Then 1, as defined by (7) is 6,(co, ¢1)-safe, obeys bounds =%

14¢

and G5z, and goes from ' = (s, 37) to G = (g, ;).

Intuitively, we expect that if a trajectory I', tracks I/ as defined in (7) closely enough,
then I'y will be (1 — €)é,-safe. We have the following lemma, which is independent of norm:

Lemma 3.3 (The Safe Tracking Lemma) Let 6, be specified by ¢y and ¢1, and let 0 <
€ < 1. Let the tracking tolerance (n.,n,) satisfy the condition'

y < Co € d
o= g (8)

e ST

Suppose that T'; tracks I to tolerance (n;,n,). Then the 6! -tube induced by Uy, lies within
the 6,-tube induced by I',.

Proof: = We find positive real numbers 5, and 7, such that if I'; tracks I to tolerance
(N2, ny), then the ¢/-tube induced by I, lies entirely inside the é,-tube induced by T',.
Henceforth, let ¢, = (1 — €)¢p and ¢} = (1 — €)ey.

Suppose that x € C lies inside the ¢/ -tube induced by I',. Then for some
t €[0,(1+¢)T}],

1% = Py(ta)l| < ¢ + cillPy(ta)]l- (9)
Let B,(x) denote the ball of radius n about x. If I',(¢) tracks I".(¢) to tolerance (1,,7.),
then py(t.) € By, (p;(t:)) and py(t:) € By, (p;(t:)), Therefore

% = pilt)ll < [lx = py(te) ]| + 72, and
1By (L)l < DL + 70

13We write two inequalities because 7, and 7, have different dimensions (units).
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Since pl(t,) = pT(lf_E) and pl(t;) = 1+ep7“(1+e) by substituting into (9) and adding 7,

to the right-hand side,
o) - 10
(1 + 6) H M ) (10)

[ .
e ()| < b (o

Now, suppose that 8 > 0 and that 7, and 7, satisfy the following condition:

Ne < PN

Simple manipulation then shows that 7, + (1 — €)ein, < eco. Thus,

But then,

o+ e+ e < co (12)
o+ e+ (e

ty
v ] < ) 1
(1‘|‘6)H+n) “ta (1—|-6)H (3)
This implies that ||x — pr(lt

_le)H < ¢+ Calr(liE)H via (10). Therefore, x lies inside the
0,-tube induced by I',.

Since x is an arbitrary point inside the ¢/-tube induced by Iy, it follows that the &!-
tube induced by I'; lies entirely inside the é,-tube induced by I',. Recall the hypotheses
concerning ¢, ¢1, and e. Choosing 8 = 1, we see that condition (8) and the other hypotheses
of the lemma together ensure that (11) is satisfied. 0

3.4 The Tracking Lemma

The Tracking Lemma relates a timestep size 7 to a tracking tolerance. In particular, it tells
how to choose 7 to assure that in the absence of obstacles, for every I', that obeys dynamics
bounds (1+ 2 and - there will exist an (a,7)-grid- bang trajectory I'y that tracks I', to
tolerance (1, 7, ). We first need the following.

Lemma 3.4 Let € > 0, and let T', be a trajectory respecting dynamics bounds i )2 and
Let 7 < <, and let atlv.
Suppose that

1—|—e

N>

ml@:

Then if (Pqgos Pgo) s a T'C-gridpoint such that |[py —pu(0)| < %3 nd |Pgo —pu(())H < et
there exists an (a,7)-grid-bang trajectory Uy such that T',(0) =
is within (ﬂ ) of TW(NT).

27 2
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Proof:

Since we are using the L.,-norm, it is sufficient to consider the case of a one-dimensional
configuration space C'. We show that the lower bound on N given by (14) is sufficiently
large to guarantee that if I, meets the hypotheses of the lemma then some (a, 7)-grid-bang
trajectory can meet the endpoint conditions.

Let ¢ > 0, 7 < ¢, and at|v. Let p,(0), pu(0), and p,(N7) be fixed, and consider some
', that satisfies these endpoint conditions and the hypotheses of the lemma. Let (pyo, Pyo)
be a T'C-gridpoint within (%, &) of I'y(0). To find a sufficiently large N, we introduce
variables b and Q. These variables depend on I',. Let b be an integer such that such that

. . aT
|pq0 + bat — pu(NT)| < 7

Now, define Q to be the collection of all (a, 7)-grid-bang trajectories of time length N7
starting at (pgo, pgo) with net velocity change bar. The positions reached by the different
trajectories in @ at time N7 form a set of discrete points spaced at apart. Call these
positions the Q-positions. If the range of Q-positions spans the range of possible I',(NT),
then for some trajectory I'y € Q, |p,(N7) — pu(N7)| < %

We show how to choose N so that the maximum Q-position exceeds the maximum
possible p,(N7). A similar argument shows that the same N guarantees that the minimum
Q-position is less than the minimum possible p,(N7). For the remainder of this proof, we
will refer to the trajectories that achieve the maximum Q-position and the maximum
possible p,(N7) as I', and 'y, respectively.

The I', that attains the maximum Q-position obeys either (a) full positive acceler-
ation, possibly followed by zero acceleration for one timestep, followed by full negative
acceleration'® or (b) full positive acceleration until its velocity is v, followed by zero ac-
celeration, followed by full negative acceleration. Similarly, a I',, that maximizes p,(NT)
obeys either (c) full positive acceleration followed by full negative acceleration, or (d) full
positive acceleration until its velocity is ﬁ, followed by zero acceleration, followed by
full negative acceleration.

Consider p, and p, and their role in determining p,(N7) and p,(N7). In the worst
case, pgo = pu(0) — 4 and py(N7) = pu(N7) — & If p,(N7) is to be greater than p,(N7),
then we can divide the interval [0, N7] into three intervals during which I'; “loses ground
to” I'y, “gains on” I',, and “loses ground to” I',. (See figure 3.) In other words, there are

times t. and #;, 0 < t. < t; < N7, such that
Pe(t) < pult) 0 <t <t
pe(t) > pu(t) ift.<t<t; and
Pe(t) < pult) ift;<t< N
Now, when I'; is accelerating full-positive,

B1) — ult) > a (1 —ﬁ) -2

1 The zero acceleration timestep in the first case occurs if N — W is odd.
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Similarly, when I'; is accelerating full-negative,

ca

Bt = it) < 5.

Hence, when 0 < & < t., py(t) — pu(t) > 5,
Then, because pyo > pu(0) — %= and py(N7) > p(N7) — &

2 2

and when #; <t < N7, p,(t) — pu(t) < =%

o (Pult) — py(t))dt < 2=, and
NT . M a7'2
0 (Du(l) = py(1))dl < .
Therefore, it is sufficient to choose an N that guarantees

CLT2

tl . .
[ G = puenar > 2= (15)
te 2¢

Consider the behavior of p,(t) — p,(f) between times ¢. and ¢;. For now, suppose that
py(t) < v during this time. Then, for an interval of time I. beginning with ., both p,(t)
and p,(t) — pu(t) increase; for an interval [; beginning at most one timestep after I. and

ending with #;, both p,(¢) and p,(¢) — p.(?) decrease. Furthermore,

> %(t—1t.) during I, and
> (4 —t) during I,

Using some manipulation, we then see that if p,(¢) < v for all ¢ € [t., 1], the condition

2T
—t.>2—+1 (16)
€

guarantees that (15) is true.

Now, suppose p,(t) = v for some interval I, C [t.,t]. (See figure 4.) Then, for
an interval of time /. immediately preceeding I,, and beginning with t., both p,(¢) and
Pq(t) — pu(t) increase; for an interval [; immediately after /,,, and ending with ¢;, both p,(t)
and p,(1) — pu(1) decrease. However, during I,,,, py(t) — pu(t) = a7, since 7 < <. It follows
that (16) again guarantees that (15) is true.

We observe that
t. <
Nt — tl S

Recalling (16), we see that the following choice of N guarantees that the range of
Q-positions will be adequate:

1
N=dl| 4
€

Using the fact that 0 < e < 1, we obtain the sufficient condition (14). O
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Lemma 3.5 (The Tracking Lemma) Let ¢ > 0. Let Iy be a trajectory that respects
dynamics bounds =5 and 7 and takes time T,. Let n, and n, be positive. Let 7 < <

(1+¢)?
- € . ( 2cq€ Co€ ) (17)
= 13 i ale; +1) a(ey + 1)/

and at|v. Furthermore, let N be given by (14), and suppose that T, > Nt. Then in
the absence of obstacles there exists an (a,T)-grid-bang trajectory Uy respecting dynamics
bounds v and a that approximately tracks I, to tolerance (n,,1,) during [0,T,] and obeys
the following conditions:

Suppose that

Ba) ool < o

pq 0 - pu 0 0 S %,

Ipe(Tw) — pu(Tu)||ce < ar?,  and (18)
1Pg(Tu) — Pu(Tu)||oe < aT.

Proof:
We show that the the upper bound (17) is correct. Let the hypotheses of the lemma
be satisfied. Let N be given by (14). Then it follows from Lemma 3.4 that there is an
(a, 7)-grid-bang trajectory I'; such that for any positive integer k satisfying kNt < T,
[Py (RNT) = pu(ANT)|loe < 25,
1Dy (ANT) = Pu(kNT) [l < 5

2

and

(19)

This can be shown by induction on k.
Now, for all , ||pu(t) — Pg(t)||cc < 2a. By considering the relative velocity in the worst
case, where along some axis

pa(kNT) = pu(kNT)| = 22,
B, (NT) = (ENT)] =,

pa((k+ 1NT) = puf(k+ 1)NT)| = =22, and

Bal(k+ NT) = Bl (b + 1)NT)] = =2,

we conclude that for all ¢ € [0,7,],

1P4() = Pult)][c < (20)

To guarantee that the right-hand side of (20) is less than 7, it is sufficient that

< @ (ﬁ) . (21)

Since ||py(?) — Pu(t)||lco < a(N +1)7 when 0 <t < T, for the velocity case we require that

13



It T, > N7 is not a multiple of N7, then for some natural numbers n < N and k,
(kN + n)7 is within % of T,,. Substituting twice the value for N from Lemma 3.4 and
rounding to simplify yields the condition (17). [

3.5 Safety Checking

We describe how to check whether an (a,7)-bang violates the speed-dependent safety-
margin 6,(co,c1) in O(n) time. We review some basic computational geometry, describe
the special case when ¢; = 0, and then extend the method to the general case.

As noted above, we assume that obstacles are the union of convex polyhedra. For now,
let the safety margin be a constant ¢y > 0, and define the B, to be the L., ball with
radius ¢g. Staying co-safe relative to a convex polyhedron A is then equivalent to avoiding
A =A@ B.., where “®” denotes the Minkowski sum. Since B., is a d-cube, A is also a
convex polyhedron and has O(|faces(A)|) faces. By taking the Minkowski sum of each of
the obstacles with B., we obtain the expanded obstacles.

Suppose A has faces { Fy,...,F,, } lying on the boundary planes of the closed half-
spaces { Hy,..., H, }. The boundary plane of each H; is the kernel of an affine function
fi. If n; 1s a unit vector in the outward normal direction from the boundary plane of H;,

€0

and y; is any point on this boundary then
fi(x) = (ng,x) — (04, y3). (23)

The polyhedron A is thus described by a set of functions F = { fo,..., fm }.

A point x is on the boundary of A if and only if it lies on some closed face Fj, of A.
Equivalently, fx(x) = 0, and for all f; that determine an edge of Fj, f;(x) < 0. Since for
a convex polyhedron the numbers of edges and faces are linearly related and an edge is
common to two faces, determining whether x lies on the boundary of any of the expanded
of obstacles takes total time O(n).

Without loss of generality, suppose that (a,7)-bang p begins at £ = 0 and that p(0) is
co-safe. We then can check the cg-safety of p(¢) by determining whether p(¢) violates the
boundary of an expanded obstacle. For a face I, of A, we only need to solve fi(p(t)) =0,
and for each solution ¢, check whether f;(p(ts)) > 0 for some f; that determines an edge
of Fk with fk

Now, consider the speed-dependent safety function é,. For each time ¢, the point p(¢)
should avoid the obstacles expanded by an L., ball with radius é,(p(%)).

In other words, p(t) is 6,-safe relative to a convex polyhedron A if and only if it avoids
the expanded obstacle A(p(t)) = A® Bs, (p(t)), where By, (p(t)) is the Lo, ball with radius
5(P(1)). A(pP(t)) is described similarly to A, by a set of functions F = {fos-- ' fm }. For
each f; € F,

Filp(1), (1)) = (ni, p(t)) — (i, yi + Q| B(1)]|o0), (24)
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where q; is a constant vector that depends only on n;. To check whether p(#) violates the
faces of A, we use the f; € F the same way we use the f; € F above.

Since p( ) is quadratic, fk( (t),p(t)) = 0 has solutions of the form ¢ = a + v/b. When
computing the inequalities we can square twice to eliminate the radical, and thus it is
adequate to compute square roots symbolically. This implies that safety checking never
requires numbers longer (in the number of bits) than a constant-multiple of the length of
the longest number in the input. Therefore, we can still use the real-RAM computation
model. By the same argument as in checking whether a point is in on an expanded obstacle
boundary, we need to solve O(n) equations and check O(n) inequalities, overall. Therefore,
the cost of safety-checking is O(n) per (a,7)-bang.

3.6 Proving the Main Theorem

We can now prove Theorem 2.1.
Proof of Theorem 2.1:

Let K = (0,8,G,a,v,l, ¢, c1) be an instance of the optimal safe kinodynamic planning
problem. Let 0 < e < 1.

Suppose 'y is a 6,(co, ¢1)-safe trajectory that obeys the dynamics bounds ¢ and v and
goes from S to G in time T,,;. By Lemma 3.1 and Observation 3.2 that follows it, there is

a trajectory I', . that is (5 (co, ¢1)-safe, obeys bounds - and ﬁ, takes time (1 + €)1,

+
and goes from S’ = (s, 13) to G' = (g, 1-|-e)
Now suppose we run the algorithm described in Section 3.2. The choice of 7 in the

algorithm matches the conditions in Lemma 3.5 when the values of 1, and 7, from equation
(8) in Lemma 3.3 are substituted into equation (17). Furthermore, the algorithm’s choice
of S* obeys the condition on (pyo, Pgo) in Lemma 3.4. Therefore, some (a, 7)-grid-bang
trajectory beginning at S* tracks I ; closely enough to be ¢,(co,c1)-safe, to obey the
dynamics bounds a and v, and to take time (1 + €) to reach a state G* within tolerance
(a;’ aT) f G_/

Breadth-first search guarantees such a trajectory will be found if there is no ¢/ (co, 1 )-
safe (a, 7)-grid-bang trajectory beginning at S* that obeys the dynamics bounds and comes
adequately close to G’ in less time. Thus, the algorithm will find a trajectory meeting the
conditions of the theorem.

To establish the time bound, we now bound the number G, (a, 7,v, [, d) of T'C-gridpoints
for a point robot with maximum (L.,) speed v in a d-dimensional free-space of diameter
[. Without loss of generality, choose s* to be the “zero” position. Recalling the canonical

form of a T'C-gridpoint from (6), we conclude

d
vl
Goola,m,0,1,d) =0 ((a27-3) ) :

Since the number of (a, 7)-bangs from a state is constant (3?) and the cost of checking

the safety of a bang is O(n), the total complexity of the algorithm can be obtained by
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substituting in 7 from (17). Since € < 1, we can use

e . ( 2¢q Co )
7 < — min ,
13 aler +1) aler + 1)

instead of (17) to get the bound in the theorem.

4 Conclusions

In this paper we described the first polynomial-time, provably good approximation algo-

rithm for kinodynamic planning. We feel that kinodynamic planning represents a new

direction in algorithmic motion planning, and expect to see much progress in this area.
There are many directions for future research:

1. The complexity of our algorithm can probably be improved. For work in this direc-

tion, see [DX1,DX2,DX3, Xal.

2. Other search algorithms, such as A*, may be employed in place of a breadth-first
search.

3. Precise lower bounds for kinodynamic planning should be established (especially in
the 2D case). For work in this direction, see [Xa].

4. Exact algorithms should be explored. For work in this direction, see [CRR].

5. We conjecture that if contact is allowed (rather than é,-safety) then the complexity of
the problem increases considerably. More specifically, one can imagine three related
kinodynamic planning problems:

(a) The first is explored in this paper, where the robot must avoid obstacles by a
speed-dependent safety margin.

(b) A second problem might be likened to figure skating: forbidden regions are
marked out in the plane (the “ice”), and a path with velocity-dependent non-
holonomic constraints must be synthesized. The “obstacles” may be grazed but
not crossed. However, the forbidden regions exert no reaction forces on the
robot, even when in contact. This second problem corresponds to theoretical
“true” optimality.

(c) One can also imagine a third problem in which the reaction forces (impact,
constraint forces, and friction) of the obstacle surfaces are taken into account.

Finally, one may consider the optimization version of each of these problems. Note
that while the theoretical formulation of the “figure skating” problem is quite clean,
it may be rather far from practical interest.

16



From a combinatorial standpoint, we believe that in order to obtain near- (e-) op-
timality for the figure-skating problem, a grid such as ours would have to have at
least exponential size. In particular, we conjecture that the grid spacing may be a
superpolynomial function of the minimum distance between obstacles.

. It would be interesting to extend our approach to 2-norm velocity and acceleration

bounds. For work in this direction, see [DX2, DX3, RT, Xa].

. It would be of value to extend our approach to to manipulator systems with full ro-

tational dynamics. For example, one might consider the rigid body dynamics of open
kinematic chains with revolute and prismatic joints. Finding near-optimal kinody-
namic solutions in these cases would be of great interest. For work in this direction,

see [JHCP, DX2, DX3, Xa].

In addition, there is a great deal of interesting experimental work to be done, in reducing

these algorithms to practice, and on developing search heuristics. For work on implementa-
tion of our approach, and experiments, see [DX1, Xa]. Computational kinodynamics seems

a particularly fruitful area in which to pursue fast, provably good approximation algo-

rithms, since while the problems are of considerable intrinsic interest, exact solutions may

well be intractable. Finally, since the problem has an optimization flavor, the algorithms

and proof techniques draw on several branches of computer science and robotics.
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S

Figure 1: A kinodynamic planning problem for a point robot, showing the obstacles, the start S, the goal G, and three
solutions: time-optimal I', optimal (safe) I';, and approximately optimal I'g, which happens to be exact at the start and goal.

Figure 2: Extremal accelerations (left) that generate (a,7)-bangs (right).
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L

Figure 3: An example of p, and pg that achieve the maximum position subject to conditions at times 0 and N7. In this
case, pg never reaches the maximum allowed velocity v. N must be large enough so that the distance I'y gains over I'y. during
I. and I; makes up for the distance Iy loses to I'; during [0, t.] and [t;, N7].

Figure 4: An example of p, and pg that achieve the maximum position subject to conditions at times 0 and N7. In this
case, pgq sustains the maximum allowed velocity v for the interval I,,. N must be large enough so that the distance I'y gains
over I'; during Ic, I, and I; makes up for the distance I'y loses to I'; during [0, tc] and [t;, N7]. Note that in this figure, the

condition 7 < £ is not met.
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