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modulus bounds on velocity, acceleration, and force. A kinodynamic solution is a mappingfrom time to generalized forces or accelerations. The resulting motion is governed by a dy-namics equation. In robotics, a long-standing open problem is to synthesize time-optimalkinodynamic solutions, by which we mean solutions that require minimal time and respectthe kinodynamic constraints.While there has been a great deal of work on this problem in the robotics community,there are no exact algorithms except for the one-dimensional case. Furthermore, it canbe shown that in three dimensions, �nding exact solutions is NP-hard.7 Therefore, it isreasonable to pursue approximation algorithms | algorithms that compute kinodynamicsolutions that are \close" to optimal. However, among the many proposed approximate orheuristic techniques, there exist no bounds on the goodness of the resulting solutions, or onthe time-complexity of the algorithms. We consider the restricted situation of particle dy-namics, and provide a provably good approximation algorithm for the 2- and 3-dimensionalcases.We incorporate safety into the meaning of \optimal" by including a speed-dependentobstacle avoidance margin in the problem parameters. From this viewpoint, it is intuitivethat approximation algorithms for kinodynamic planning should trade o� planning time(computational complexity) against optimality in terms of: (a) execution time of the mo-tion, (b) strictness in observing the safety margin, and (c) closeness to the desired startand goal positions and velocities.To analytically express this trade-o� we parameterize closeness to an optimal safe so-lution by a tolerance �, and we bound the planning algorithm's running time in terms ofthis �. Roughly speaking, we show that if there exists a \safe" optimal-time kinodynamicsolution requiring time Topt, then we can �nd a \near-optimal" solution that requires timeat most (1 + �)Topt. Furthermore, the running time of our algorithm is polynomial both inthe closeness of the approximation 1� and in the geometric complexity. These bounds onsolution accuracy and running time are the �rst that have been obtained for 2D and 3Doptimal kinodynamic planning, which has been an open problem in computational roboticsfor over ten years.2 Kinodynamic Motion Planning2.1 The Kinodynamic Planning ProblemKinematic constraints, such as joint limits and obstacles, limit the con�guration (position)of a robot. Dynamics constraints govern the time-derivatives of con�guration (independentof obstacles). They include dynamics laws and bounds on velocity, acceleration, and ap-plied force. Strictly kinodynamic constraints are obstacle-dependent constraints that governcon�guration and its time-derivatives but do not fall into either of the previous categories.7It was �rst observed in [CDRX] that the methods of Canny and Reif [CR] can be extended to demon-strate NP-hardness. For a complete proof see [Xa].2



An example of such a constraint is a speed-dependent obstacle-avoidance margin. A con-straint is a kinodynamic constraint if it belongs to one of the above categories. The state ofa robot at a given time is its con�guration and velocity. The general kinodynamic planningproblem is, for a given robot, to �nd a motion that goes from a start state to a goal statewhile obeying kinodynamic constraints.We consider the following restricted problem. (See �gure 1.) A point mass in <d(d = 2; 3) must be moved from a state S = (s; _s) to a goal state G = (g; _g). In the courseof the motion, the point must avoid a set of polyhedral obstacles. Movement is controlledby applying forces or commanding accelerations, which are equivalent for a point mass.By using a con�guration space approach, this problem is readily extended to cover a rigidnon-rotating robot geometrically described by the union R of convex polyhedra.We will denote the con�guration space <d by C, and its phase space by TC. Phasespace TC is the robot state space and is isomorphic to <2d. Thus, a point in TC is a(position, velocity) pair such as S or G.A robot motion over a time interval [0; Tf ] can be speci�ed by a twice-di�erentiable mapp : [0; Tf ]! C. This map is the path of the motion. In kinodynamic planning, the motionmust obey dynamics and dynamics constraints, and it is convenient to specify _p explicitly.The trajectory of a robot motion is the map � : [0; Tf ]! TC given by �(t) = (p(t); _p(t)).We denote the position and velocity components of a subscripted trajectory �r by pr and _pr,respectively. While a motion p can be given directly as a function of time, two equivalentspeci�cations are useful: (a) an initial position p0 and a velocity function v = _p, and (b)an initial state (p0;v0) and an acceleration function a = �p.The motion must respect upper bounds on the magnitudes of the acceleration andvelocity. At all times t the acceleration �p(t) and the velocity _p(t) must obeyk _p(t)k1 � vmax; and (1)k�p(t)k1 � amax: (2)Eqs. (1) and (2) are the dynamics bounds. When the meaning is clear from context, wewill drop the max subscript.We assume that the obstacles O are represented by a set of convex, possibly overlappingpolyhedra. Suppose these convex polyhedra have a total of n faces overall. We call n thecombinatorial complexity of O. Note that n is also the number of bounding halfplanes ofthe obstacles. Free space is the complement of these obstacles. We assume that the set offree con�gurations is bounded by a d-cube of side length l. A general kinodynamic planningproblem, then, is a tuple (O;S;G; l; a; v).An exact solution to the kinodynamic planning problem is a trajectory � such that�(0) = S, �(Tf ) = G, and � obeys the kinodynamic constraints. That is, the path pavoids all obstacles, the velocity _p respects (1), and �p respects (2). The time for a solution� is simply Tf . The time-optimal kinodynamic planning problem is to �nd a minimal-timekinodynamic solution, which is represented as a suitable encoding of the start state �(0)and the acceleration function a. 3



A theoretically time-optimal solution may require unrealizable precision in control orsensing and thus be unexecutable by a physical robot. For this reason, an optimal solutionshould observe a safety margin; the margin we de�ne is speed-dependent. Furthermore,the safety margin ensures the existence of a \tube" or family of solutions \nearby" in timeand in phase-space that \approximate" the optimal safe solution. The existence of such a\tube" of approximating solutions is essential for our approach. Safety margins are bothpractically motivated and mathematically necessary.A �v-safe kinodynamic solution avoids all obstacles by a safety margin �v. In this paper,we de�ne this safety margin to be an a�ne function of the trajectory speed. This �rst-order choice roughly corresponds to how accurately and quickly a robot senses its positionand velocity, combined with how quickly it can correct for velocity errors.8 Two positivescalars c0 and c1 characterize the safety margin, which one can view as an obstacle-freetube centered about the path. Formally, a �v-safe kinodynamic solution has the propertythat for all times t in [0; Tf ], there exists a ball about p(t) in free space of radius�v(c0; c1)( _p(t)) = c0 + c1k _p(t)k:We will drop the parameters c0 and c1 in the discussion when confusion will not arise. Notethat �v-safety is is an example of a kinodynamic constraint that is neither a pure kinematicconstraint nor a pure dynamics constraint. A �v-safe kinodynamic planning problem, then,is a tuple (O;S;G; a; v; l; c0; c1). We call a, v, l, c0, and c1 the kinodynamic bounds.For �xed c0 and c1, consider the class of all �v-safe kinodynamic solutions. We de�ne anoptimal �v-safe kinodynamic solution to be a solution whose time is minimal in this class.We will henceforth employ the term optimal safe kinodynamic solution since �v-safety isthe only type we consider here.We now specify what it means for a kinodynamic solution �q to be �-approximatelyoptimal, where a positive � < 1 parameterizes the closeness of the approximation. First ofall, �q must obey the safety margin�0v(c0; c1)( _pq) = (1� �)�v(c0; c1)( _pq): (3)Second, if an optimal safe trajectory takes time Topt, then we require thatTq � (1 + �)Topt:Now, let us say that an approximating state (x0; _x0) is \�-close" to a reference state (x; _x)if kx� x0k = O(�); and (4)




 _x1 + � � _x0




 = O(�): (5)8Consider a one-dimensional system. Recall that @E@v = mv. Therefore, if the control system allows amaximumvelocity error of �v, and Fres force is available for correcting velocity errors, then mv�vFres distancemight be traveled erroneously before the velocity can be corrected. Concisely stated, c1 characterizes howaccurately the robot can control its energy consumption.4



For the �nal criterion, we require that �q(0) and �q(Tq) be �-close to the desired start andgoal states S and G, respectively.9In order to obtain our result, we must assume four things: a velocity bound, a diameterbound, L1-norm acceleration, and safety. Each of these assumptions can be motivated inphysical terms. For example, robots exist in the physical world, and hence of course anyactual robot will have bounded maximum velocity and a bounded workspace. However,the proofs in this paper do not go through if any of these assumptions is dropped. In [DX2,DX3, RT], we relax the L1-norm. Safety, as we shall see, proves to be a crucial assumption.2.2 Statement of ResultsIn section 3.2 we describe a provably good approximation algorithm for the optimal safekinodynamic planning problem. Concisely stated, we show:Theorem 2.1 Let K = (O;S;G; a; v; l; c0; c1) be an optimal safe kinodynamic planningproblem. Let 0 < � < 1. Let n be the combinatorial complexity of the obstacles O.Suppose there is a �v(c0; c1)-safe trajectory that obeys the dynamics bounds a and v andgoes from S to G in time Topt. Then the algorithm �nds a �0v(c0; c1)-safe trajectory thatobeys the dynamics bounds, takes at most time (1 + �)Topt, and goes from some S� to someG� such that S� is �-close to S and G� is �-close to G.The running time of the algorithm isO0@n " lv
3�6 #d1A ;d = 2; 3, where 
 = max0@a(c1 + 1)c0 ;sa(c1 + 1)2c0 ; av1A :An optimal safe kinodynamic planning problem has two complexity components. Thecombinatorial complexity is the number n of bounding halfplanes on the obstacles O. Thealgebraic complexity of the kinodynamic bounds (a, v, l, c0, c1) is the number of bits needsto encode them. Our algorithm is an �-approximation scheme that is fully polynomial inthe combinatorial complexity of the geometry and pseudo-polynomial10 in the algebraiccomplexity of the kinodynamic bounds.Note that we cannot claim that the approximately optimal safe solution is necessarilynear to a truly optimal safe solution in position. In this respect it is useful to compare our9Note that the de�nition of \�-close" is not symmetric because of the velocity condition in (5). Thecondition k _x� _x0k = O(�) may perhaps seem more intuitive. While the results here satisfy this de�nition,(5) allows simpler proofs and is necessary for natural extensions of our work beyond the scope of this paper.10That is, the algorithm has a running time that is polynomial in the quantities a, v, l, c0, and c1,but it is not polynomial in the size (bit-complexity) of their encodings. See [PS] for a discussion ofpseudopolynomiality. 5



result to Papadimitriou's fully polynomial approximation scheme for 3D Euclidean shortestpath [Pap]. Speci�cally, neither method necessarily �nds a solution that is spatially closeto the optimal path, but merely one that has a length (time) that is not too much longerthan the optimal length (time). In fact, the results of [CR] imply that �nding a path thatis position-space close to the shortest path, or even one that is homotopic to the optimalis NP-hard.These above results can be extended to a rigid, non-rotating robot whose geometry isgiven by a union R of convex polyhedra. This con�guration space transformation has beendiscussed extensively in the literature (see, eg, [LoP]). The algorithm of [LoP] could be usedas a preprocess to reduce the planning problem for R amidst O to the point navigationproblem we discuss. Since the dynamics equations for such a robot are identical to thoseof a point robot, we only need to map the problem to this con�guration space and applythe algorithm.2.3 Review of Previous WorkFor a review of issues in robotics and algorithmic motion planning, see [Bra, Y]. Thereexists a large body of work on optimal control in the control theory and robotics literature.For example, see [Hol, BDG, Sch, SS1, SS2]. Much of this work attempts an analyticcharacterization of time-optimal solutions|for example, to prove that in certain casespiecewise-extremal (\bang-bang") controls, with a �nite number of switchings, su�ce. Thishas led to many interesting and deep subresults. For example, [BDG, Hol] show how givena particular trajectory � = (p; _p), its velocity pro�le can be rescaled so as to respectdynamics constraints and to be time-optimal. Using these ideas, a number of authors haveproposed heuristic or approximate algorithms for what is hoped to be near time-optimaltrajectory planning. In particular, Sahar and Hollerbach [SH] and Shiller and Dubowsky[SD] both implemented algorithms which employ a �xed-resolution con�guration-space orphase-space grid to compute, approximately, near minimal-time trajectories for robots withseveral degrees of freedom (and full dynamics). They did not bound the goodness of theirapproximation, nor the running time of their algorithm. However, their grid methods taketime which grows exponentially with the number of grid points, or the resolution. Weprovide the �rst polynomial-time algorithm.The polyhedral Euclidean shortest path problem can be viewed as a version of optimalkinodynamic planning with the acceleration bound a set equal to in�nity. This observa-tion may be used to extend the results of [CR] to show that in 3D, optimal kinodynamicplanning is NP-hard. In other work, �O'D�unlaing [O] provides an exact algorithm for one-dimensional kinodynamic planning. These methods may extend to the 2- and 3D casesas well. Kinodynamic planning in 2D is related to the problem of planning with non-holonomic constraints, as studied by Fortune and Wilfong [FW, W]. In this problem, arobot with wheels and a bounded minimum turning radius must be moved. To make theanalogy clear, in our case, the minimum turning radius is 1ak _pk2. These algorithms mightlead in time to an exact solution to kinodynamic problems in 2D and 3D.6



3 Algorithm and Analysis3.1 The General IdeaOur approach transforms the problem of �nding an approximately minimal-time trajectoryto �nding the shortest path in a directed graph. The vertices of the graph \discretize" thestatespace TC, and the edges of the graph correspond to trajectory segments that eachtake time � , a parameter computed by the algorithm.Given the acceleration bound a, let A be the set of constant accelerations whose com-ponents are members of f�a; 0; ag. Let us choose a timestep � such that velocity bound vis a multiple11 of a� . Applying a member of A for duration � is called an (a; � )-bang. (See�gure 2.) We also use this term to refer to the resulting trajectory segment: we say thatthere is an (a; � )-bang from state X to state Y if following an (a; � )-bang moves from X toY. Suppose S� = (s�; _s�) 2 TC such that _s� is a vector of multiples of a� . Supposethat (p; _p) is a state reachable from S� by some sequence of (a; � )-bangs. Then for eachcoordinate i, pi = s�i + mi2 a� 2 and_pi = _s�i + nia� (6)for some integers mi and ni. Thus, all states reachable from S� under a sequence of (a; � )-bangs belong to a set of states that lie at the interstices of an underlying, regular gridembedded in TC. This grid has spacings of a�22 in position and a�2 in velocity. We callthis set of intersticial states the TC-grid, and each of these states a TC gridpoint.12 Wecall a trajectory that results from a sequence of (a; � )-bangs between TC-gridpoints an(a; � )-grid-bang trajectory.Recall (3). We say that state (x; _x) obeys �0v-safety if the ball of radius �0v(k _xk) about xlies in free space. If � is small enough, then a �v-safe trajectory will imply the existence of a�0v-safe (a; � )-grid-bang trajectory that meets the other approximation requirements. Sinceeach (a; � )-bang takes time � , �nding a minimal-time �0v-safe (a; � )-grid-bang trajectorybetween TC-gridpoints X and Y is identical to �nding the shortest path in a graph G(V; E)embedded in TC. The vertices vi 2 V are the TC-gridpoints, and the edges ej 2 E are the�0v-safe (a; � )-bangs between pairs of these vertices. We say that � , S�, the kinodynamicparameters, and � induce the graph G(V; E).11We use multiple to mean \integer multiple."12If the grid-spacing in velocity is a� , then the closest velocity grid-coordinate is always at most a�2 away;this is what is needed for our proofs. The spacing along the velocity axis is a� . At any �xed grid-velocity(multiple of a� ), the spacing along the position axis is a�2. However, the grid positions for odd multiplesof a� (velocity) are o�set by a�22 from the grid positions for even multiples of a� . Hence, all the relevantstates lie at the interstices of an underlying, regular grid with spacings of a�22 in position and a� in velocity.Thus, the mapping from states to the interstices of the underlying grid is one-to-one, but not onto. The sizeof the underlying grid provides a bound on the number of reachable states. See [Xa] for further discussion.7



3.2 The AlgorithmTo explain the algorithm we need two more de�nitions. First, given two non-negativescalars �x and �v, we say that state X is within (�x; �v) of state Y if kx � yk � �x andk _x � _yk � �v. Second, consider two trajectories �a; �b : [0; T ] ! TC. Given two scalars�x and �v, we say that we say that �a approximately tracks �b to tolerance (�x; �v) in theL1-norm if for all times t, kpa(t)� pb(t)k1 � �x; andk _pa(t)� _pb(t)k1 � �v:Given problem (O;S;G; a; v; l; c0; c1) and approximation parameter �, our algorithmdoes the following:1. It chooses a timestep � as a function of a, v, �, c0, and c1. Speci�cally, the algorithmchooses the largest � such that � � �va , a� jv, and� � �13 min�s 2c0�a(c1 + 1) ; c0�a(c1 + 1)�:2. Next, the algorithm chooses the starting TC-gridpoint S� according to the following:s� = s, and _s� is the multiple of a� closest to _s1+� .3. It then searches for the shortest path in the induced embedded graph G(V; E), de-scribed above, from S� to any state (vertex) that is within (a�22 ; a�2 ) of (g; _g1+� ). Thealgorithm explores the graph using breadth-�rst search, checking the �0v-safety of each(a; � )-grid-bang it considers.To show the correctness and complexity of the algorithm we must show how to choose� so that the following holds: if there exists a �v-safe trajectory from S to G taking timeT , then there also exists a �0v-safe (a; � )-grid-bang trajectory between states �-close to Sand G that takes time (1 + �)T .We �rst observe that if trajectory �opt obeys dynamics bounds a and v, then there isa time-rescaled [Hol] trajectory �0opt that takes time (1 + �)Topt and that obeys dynamicsbounds a(1+�)2 and v(1+�) . We then choose �x and �v that guarantee that if �q tracks �0optto tolerance (�x; �v), then it will be �0v-safe. We then show there is a � proportional to �2such that there exists an (a; � )-grid-bang trajectory �q that (a) approximately tracks �0optto this tolerance, and (b) is within (a�22 ; a�2 ) of �0opt when t = 0 and when t = (1 + �)Topt.The latter implies �-closeness.Finally, we show that �v-safety-checking is O(n) per (a; � )-bang. Recalling that TC-gridpoints have the form (6), we �nd that jVj is O � lva2�3�d. The de�nition of (a; � )-bangimplies that the maximal out-degree in G is 3d. Thus we get the complexity bound inTheorem 2.1. 8



3.3 Time-Rescaling and Safe TrackingWe say that a path p is traversed by a trajectory � if the image of the position componentof � is equal to the image of p.Lemma 3.1 If path p is traversed in time Tr by a trajectory �r under acceleration bounda and velocity bound v, then there exists some �0r that traverses p in time Tr(1 + �) whileobeying acceleration bound a(1+�)2 and velocity bound v1+� . In particular, this is true of�0r = (p0r; _p0r), where p0r(t) = pr � t1+�� ;_p0r(t) = 11+� _pr � t1+�� : (7)Proof: Follows from the results of [Hol] or from direct computation using (7). tuTo prove the main theorem we need to note that (7) preserves �v-safety:Observation 3.2 Suppose �r is a �v(c0; c1)-safe trajectory from S to G that takes time Trand obeys bounds v and a. Then �0r as de�ned by (7) is �v(c0; c1)-safe, obeys bounds v1+�and a(1+�)2 , and goes from S0 = (s; _s1+�) to G0 = (g; _g1+�).Intuitively, we expect that if a trajectory �q tracks �0r as de�ned in (7) closely enough,then �q will be (1� �)�v-safe. We have the following lemma, which is independent of norm:Lemma 3.3 (The Safe Tracking Lemma) Let �v be speci�ed by c0 and c1, and let 0 <� < 1. Let the tracking tolerance (�x; �v) satisfy the condition13�v � c0�c1+1 ; and�x � c0�c1+1 : (8)Suppose that �q tracks �0r to tolerance (�x; �v). Then the �0v-tube induced by �q lies withinthe �v-tube induced by �r.Proof: We �nd positive real numbers �x and �v such that if �q tracks �0r to tolerance(�x; �v), then the �0v-tube induced by �q lies entirely inside the �v-tube induced by �r.Henceforth, let c00 = (1� �)c0 and c01 = (1� �)c1.Suppose that x 2 C lies inside the �0v-tube induced by �q. Then for sometx 2 [0; (1 + �)Tr], kx� pq(tx)k < c00 + c01k _pq(tx)k: (9)Let B�(x) denote the ball of radius � about x. If �q(t) tracks �0r(t) to tolerance (�x; �v),then pq(tx) 2 B�x(p0r(tx)) and _pq(tx) 2 B�v( _p0r(tx)), Thereforekx� p0r(tx)k � kx� pq(tx)k+ �x; andk _pq(tx)k � k _p0r(tx)k+ �v:13We write two inequalities because �x and �v have di�erent dimensions (units).9



Since p0r(tx) = pr( tx1+�) and _p0r(tx) = 11+� _pr( tx1+�), by substituting into (9) and adding �xto the right-hand side,



x� pr � tx1 + ��



 < c00 + �x + c01 �



 _pr � tx1 + ��



+ �v� : (10)Now, suppose that � > 0 and that �x and �v satisfy the following condition:�v � c0�c1(1��)+��x � ��v: (11)Simple manipulation then shows that �x + (1� �)c1�v � �c0. Thus,c00 + �x + c01�v � c0: (12)But then, c00 + �x + c01 �



 _pr � tx1 + ��



+ �v� � c0 + c1 



 _pr � tx1 + ��



 : (13)This implies that kx � pr( tx1+� )k < c0 + c1k _pr( tx1+�)k via (10). Therefore, x lies inside the�v-tube induced by �r.Since x is an arbitrary point inside the �0v-tube induced by �q, it follows that the �0v-tube induced by �q lies entirely inside the �v-tube induced by �r. Recall the hypothesesconcerning c0, c1, and �. Choosing � = 1, we see that condition (8) and the other hypothesesof the lemma together ensure that (11) is satis�ed. tu3.4 The Tracking LemmaThe Tracking Lemma relates a timestep size � to a tracking tolerance. In particular, it tellshow to choose � to assure that in the absence of obstacles, for every �u that obeys dynamicsbounds a(1+�)2 and v1+� there will exist an (a; � )-grid-bang trajectory �q that tracks �u totolerance (�x; �v). We �rst need the following.Lemma 3.4 Let � > 0, and let �u be a trajectory respecting dynamics bounds a(1+�)2 andv1+� . Let � � �va , and let a� jv.Suppose that N � 6� : (14)Then if (pq0; _pq0) is a TC-gridpoint such that kpq0�pu(0)k � a�22 and k _pq0� _pu(0)k � a�2 ,there exists an (a; � )-grid-bang trajectory �q such that �q(0) = (pq0; _pq0) and that �q(N� )is within (a�22 ; a�2 ) of �u(N� ). 10



Proof:Since we are using the L1-norm, it is su�cient to consider the case of a one-dimensionalcon�guration space C. We show that the lower bound on N given by (14) is su�cientlylarge to guarantee that if �u meets the hypotheses of the lemma then some (a; � )-grid-bangtrajectory can meet the endpoint conditions.Let � > 0, � � �va , and a� jv. Let pu(0), _pu(0), and _pu(N� ) be �xed, and consider some�u that satis�es these endpoint conditions and the hypotheses of the lemma. Let (pq0; _pq0)be a TC-gridpoint within (a�22 ; a�2 ) of �u(0). To �nd a su�ciently large N , we introducevariables b and Q. These variables depend on �u. Let b be an integer such that such thatj _pq0 + ba� � _pu(N� )j � a�2 :Now, de�ne Q to be the collection of all (a; � )-grid-bang trajectories of time length N�starting at (pq0; _pq0) with net velocity change ba� . The positions reached by the di�erenttrajectories in Q at time N� form a set of discrete points spaced a� apart. Call thesepositions the Q-positions. If the range of Q-positions spans the range of possible �u(N� ),then for some trajectory �q 2 Q, jpq(N� )� pu(N� )j � a�22 .We show how to choose N so that the maximum Q-position exceeds the maximumpossible pu(N� ). A similar argument shows that the same N guarantees that the minimumQ-position is less than the minimum possible pu(N� ). For the remainder of this proof, wewill refer to the trajectories that achieve the maximum Q-position and the maximumpossible pu(N� ) as �q and �u, respectively.The �q that attains the maximum Q-position obeys either (a) full positive acceler-ation, possibly followed by zero acceleration for one timestep, followed by full negativeacceleration14, or (b) full positive acceleration until its velocity is v, followed by zero ac-celeration, followed by full negative acceleration. Similarly, a �u that maximizes pu(N� )obeys either (c) full positive acceleration followed by full negative acceleration, or (d) fullpositive acceleration until its velocity is v(1+�) , followed by zero acceleration, followed byfull negative acceleration.Consider _pq and _pu and their role in determining pq(N� ) and pu(N� ). In the worstcase, _pq0 = _pu(0)� a�2 and _pq(N� ) = _pu(N� )� a�2 . If pq(N� ) is to be greater than pu(N� ),then we can divide the interval [0; N� ] into three intervals during which �q \loses groundto" �u, \gains on" �u, and \loses ground to" �u. (See �gure 3.) In other words, there aretimes tc and tl, 0 < tc < tl < N� , such that_pq(t) < _pu(t) if 0 < t < tc;_pq(t) > _pu(t) if tc < t < tl; and_pq(t) < _pu(t) if tl < t < N�:Now, when �q is accelerating full-positive,�pq(t)� �pu(t) � a 1 � 1(1 + �)2! > �a2 :14The zero acceleration timestep in the �rst case occurs if N � _pq(N�)� _pq0a� is odd.11



Similarly, when �q is accelerating full-negative,�pq(t)� �pu(t) < �a2 :Hence, when 0 � t < tc, �pq(t) � �pu(t) > �a2 , and when tl < t � N� , �pq(t) � �pu(t) < � �a2 .Then, because _pq0 � _pu(0)� a�2 and _pq(N� ) � _pu(N� )� a�2 ,R tc0 ( _pu(t)� _pq(t))dt < a�24� ; andRN�tl ( _pu(t)� _pq(t))dt < a�24� :Therefore, it is su�cient to choose an N that guaranteesZ tltc ( _pq(t)� _pu(t))dt � a� 22� : (15)Consider the behavior of _pq(t) � _pu(t) between times tc and tl. For now, suppose that_pq(t) < v during this time. Then, for an interval of time Ic beginning with tc, both _pq(t)and _pq(t) � _pu(t) increase; for an interval Il beginning at most one timestep after Ic andending with tl, both _pq(t) and _pq(t)� _pu(t) decrease. Furthermore,_pq(t)� _pu(t) > a�2 (t� tc) during Ic, and_pq(t)� _pu(t) > a�2 (tl � t) during Il.Using some manipulation, we then see that if _pq(t) < v for all t 2 [tc; tl], the conditiontl � tc � 2�� + 1 (16)guarantees that (15) is true.Now, suppose _pq(t) = v for some interval Im � [tc; tl]. (See �gure 4.) Then, foran interval of time Ic immediately preceeding Im and beginning with tc, both _pq(t) and_pq(t)� _pu(t) increase; for an interval Il immediately after Im and ending with tl, both _pq(t)and _pq(t)� _pu(t) decrease. However, during Im, _pq(t)� _pu(t) � a� , since � � �va . It followsthat (16) again guarantees that (15) is true.We observe that tc � �� ; andN� � tl � �� :Recalling (16), we see that the following choice of N guarantees that the range ofQ-positions will be adequate: N = 4 �1��+ 1:Using the fact that 0 < � < 1, we obtain the su�cient condition (14). tu12



Lemma 3.5 (The Tracking Lemma) Let � > 0. Let �u be a trajectory that respectsdynamics bounds a(1+�)2 and v1+� and takes time Tu. Let �x and �v be positive. Let � � �vaSuppose that � � �13 min�s 2c0�a(c1 + 1) ; c0�a(c1 + 1)�; (17)and a� jv. Furthermore, let N be given by (14), and suppose that Tu � N� . Then inthe absence of obstacles there exists an (a; � )-grid-bang trajectory �q respecting dynamicsbounds v and a that approximately tracks �u to tolerance (�x; �v) during [0; Tu] and obeysthe following conditions: pq(0) = pu(0);k _pq(0)� _pu(0)k1 � a�2 ;kpq(Tu)� pu(Tu)k1 � a� 2; andk _pq(Tu)� _pu(Tu)k1 � a�: (18)Proof:We show that the the upper bound (17) is correct. Let the hypotheses of the lemmabe satis�ed. Let N be given by (14). Then it follows from Lemma 3.4 that there is an(a; � )-grid-bang trajectory �q such that for any positive integer k satisfying kN� � Tu,kpq(kN� )� pu(kN� )k1 � a�22 ; andk _pq(kN� )� _pu(kN� )k1 � a�2 : (19)This can be shown by induction on k.Now, for all t, k�pu(t)� �pq(t)k1 � 2a. By considering the relative velocity in the worstcase, where along some axis jpq(kN� )� pu(kN� )j = a�22 ;j _pq(kN� )� _pu(kN� )j = a�2 ;jpq((k + 1)N� )� pu((k + 1)N� )j = �a�22 ; andj _pq((k + 1)N� )� _pu((k + 1)N� )j = �a�2 ;we conclude that for all t 2 [0; Tu],kpq(t)� pu(t)k1 < a(N + 1)2� 22 (20)To guarantee that the right-hand side of (20) is less than �x, it is su�cient that� < s2�xa � 1N + 1� : (21)Since k _pq(t)� _pu(t)k1 < a(N +1)� when 0 � t � Tu, for the velocity case we require that13



� � �va � 1N + 1� : (22)If Tu > N� is not a multiple of N� , then for some natural numbers n < N and k,(kN + n)� is within �2 of Tu. Substituting twice the value for N from Lemma 3.4 androunding to simplify yields the condition (17). tu3.5 Safety CheckingWe describe how to check whether an (a; � )-bang violates the speed-dependent safety-margin �v(c0; c1) in O(n) time. We review some basic computational geometry, describethe special case when c1 = 0, and then extend the method to the general case.As noted above, we assume that obstacles are the union of convex polyhedra. For now,let the safety margin be a constant c0 > 0, and de�ne the Bc0 to be the L1 ball withradius c0. Staying c0-safe relative to a convex polyhedron A is then equivalent to avoidingA = A � Bc0 , where \�" denotes the Minkowski sum. Since Bc0 is a d-cube, A is also aconvex polyhedron and has O(jfaces(A)j) faces. By taking the Minkowski sum of each ofthe obstacles with Bc0 we obtain the expanded obstacles.Suppose A has faces fF0; : : : ; Fm g lying on the boundary planes of the closed half-spaces fH0; : : : ;Hm g. The boundary plane of each Hi is the kernel of an a�ne functionfi. If ni is a unit vector in the outward normal direction from the boundary plane of Hi,and yi is any point on this boundary thenfi(x) = hni;xi � hni;yii: (23)The polyhedron A is thus described by a set of functions F = f f0; : : : ; fm g.A point x is on the boundary of A if and only if it lies on some closed face Fk of A.Equivalently, fk(x) = 0, and for all fj that determine an edge of Fk, fj(x) � 0. Since fora convex polyhedron the numbers of edges and faces are linearly related and an edge iscommon to two faces, determining whether x lies on the boundary of any of the expandedof obstacles takes total time O(n).Without loss of generality, suppose that (a; � )-bang p begins at t = 0 and that p(0) isc0-safe. We then can check the c0-safety of p(t) by determining whether p(t) violates theboundary of an expanded obstacle. For a face Fk of A, we only need to solve fk(p(t)) = 0,and for each solution ts check whether fj(p(ts)) > 0 for some fj that determines an edgeof Fk with fk.Now, consider the speed-dependent safety function �v. For each time t, the point p(t)should avoid the obstacles expanded by an L1 ball with radius �v( _p(t)).In other words, p(t) is �v-safe relative to a convex polyhedron A if and only if it avoidsthe expanded obstacle ~A( _p(t)) = A�B�v( _p(t)), where B�v( _p(t)) is the L1 ball with radius�v( _p(t)). ~A( _p(t)) is described similarly to A, by a set of functions ~F = f ~f0; : : : ; ~fm g. Foreach fi 2 F , ~fi(p(t); _p(t)) = hni;p(t)i � hni;yi + qik _p(t)k1i; (24)14



where qi is a constant vector that depends only on ni. To check whether p(t) violates thefaces of ~A, we use the ~fi 2 ~F the same way we use the fi 2 F above.Since p(t) is quadratic, ~fk(p(t); _p(t)) = 0 has solutions of the form t = a+pb. Whencomputing the inequalities we can square twice to eliminate the radical, and thus it isadequate to compute square roots symbolically. This implies that safety checking neverrequires numbers longer (in the number of bits) than a constant-multiple of the length ofthe longest number in the input. Therefore, we can still use the real-RAM computationmodel. By the same argument as in checking whether a point is in on an expanded obstacleboundary, we need to solve O(n) equations and check O(n) inequalities, overall. Therefore,the cost of safety-checking is O(n) per (a; � )-bang.3.6 Proving the Main TheoremWe can now prove Theorem 2.1.Proof of Theorem 2.1:Let K = (O;S;G; a; v; l; c0; c1) be an instance of the optimal safe kinodynamic planningproblem. Let 0 < � < 1.Suppose �opt is a �v(c0; c1)-safe trajectory that obeys the dynamics bounds a and v andgoes from S to G in time Topt. By Lemma 3.1 and Observation 3.2 that follows it, there isa trajectory �0opt that is �v(c0; c1)-safe, obeys bounds v1+� and a(1+�)2 , takes time (1 + �)Topt,and goes from S0 = (s; _s1+�) to G0 = (g; _g1+�).Now suppose we run the algorithm described in Section 3.2. The choice of � in thealgorithm matches the conditions in Lemma 3.5 when the values of �x and �v from equation(8) in Lemma 3.3 are substituted into equation (17). Furthermore, the algorithm's choiceof S� obeys the condition on (pq0; _pq0) in Lemma 3.4. Therefore, some (a; � )-grid-bangtrajectory beginning at S� tracks �0opt closely enough to be �0v(c0; c1)-safe, to obey thedynamics bounds a and v, and to take time (1 + �) to reach a state G� within tolerance(a�22 ; a�2 ) of G0.Breadth-�rst search guarantees such a trajectory will be found if there is no �0v(c0; c1)-safe (a; � )-grid-bang trajectory beginning at S� that obeys the dynamics bounds and comesadequately close to G0 in less time. Thus, the algorithm will �nd a trajectory meeting theconditions of the theorem.To establish the time bound, we now bound the numberG1(a; �; v; l; d) of TC-gridpointsfor a point robot with maximum (L1) speed v in a d-dimensional free-space of diameterl. Without loss of generality, choose s� to be the \zero" position. Recalling the canonicalform of a TC-gridpoint from (6), we concludeG1(a; �; v; l; d) = O0@ vla2� 3!d1A :Since the number of (a; � )-bangs from a state is constant (3d) and the cost of checkingthe safety of a bang is O(n), the total complexity of the algorithm can be obtained by15



substituting in � from (17). Since � < 1, we can use� � �213 min�s 2c0a(c1 + 1) ; c0a(c1 + 1)�instead of (17) to get the bound in the theorem.4 ConclusionsIn this paper we described the �rst polynomial-time, provably good approximation algo-rithm for kinodynamic planning. We feel that kinodynamic planning represents a newdirection in algorithmic motion planning, and expect to see much progress in this area.There are many directions for future research:1. The complexity of our algorithm can probably be improved. For work in this direc-tion, see [DX1,DX2,DX3, Xa].2. Other search algorithms, such as A�, may be employed in place of a breadth-�rstsearch.3. Precise lower bounds for kinodynamic planning should be established (especially inthe 2D case). For work in this direction, see [Xa].4. Exact algorithms should be explored. For work in this direction, see [CRR].5. We conjecture that if contact is allowed (rather than �v-safety) then the complexity ofthe problem increases considerably. More speci�cally, one can imagine three relatedkinodynamic planning problems:(a) The �rst is explored in this paper, where the robot must avoid obstacles by aspeed-dependent safety margin.(b) A second problem might be likened to �gure skating: forbidden regions aremarked out in the plane (the \ice"), and a path with velocity-dependent non-holonomic constraints must be synthesized. The \obstacles" may be grazed butnot crossed. However, the forbidden regions exert no reaction forces on therobot, even when in contact. This second problem corresponds to theoretical\true" optimality.(c) One can also imagine a third problem in which the reaction forces (impact,constraint forces, and friction) of the obstacle surfaces are taken into account.Finally, one may consider the optimization version of each of these problems. Notethat while the theoretical formulation of the \�gure skating" problem is quite clean,it may be rather far from practical interest.16



From a combinatorial standpoint, we believe that in order to obtain near- (�-) op-timality for the �gure-skating problem, a grid such as ours would have to have atleast exponential size. In particular, we conjecture that the grid spacing may be asuperpolynomial function of the minimum distance between obstacles.6. It would be interesting to extend our approach to 2-norm velocity and accelerationbounds. For work in this direction, see [DX2, DX3, RT, Xa].7. It would be of value to extend our approach to to manipulator systems with full ro-tational dynamics. For example, one might consider the rigid body dynamics of openkinematic chains with revolute and prismatic joints. Finding near-optimal kinody-namic solutions in these cases would be of great interest. For work in this direction,see [JHCP, DX2, DX3, Xa].In addition, there is a great deal of interesting experimental work to be done, in reducingthese algorithms to practice, and on developing search heuristics. For work on implementa-tion of our approach, and experiments, see [DX1, Xa]. Computational kinodynamics seemsa particularly fruitful area in which to pursue fast, provably good approximation algo-rithms, since while the problems are of considerable intrinsic interest, exact solutions maywell be intractable. Finally, since the problem has an optimization 
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�q ��r �v GSFigure 1: A kinodynamic planning problem for a point robot, showing the obstacles, the start S, the goal G, and threesolutions: time-optimal �, optimal (safe) �r , and approximately optimal �q , which happens to be exact at the start and goal.
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Figure 2: Extremal accelerations (left) that generate (a; �)-bangs (right).20
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Figure 3: An example of _pr and _pq that achieve the maximum position subject to conditions at times 0 and N� . In thiscase, _pq never reaches the maximum allowed velocity v. N must be large enough so that the distance �q gains over �r duringIc and Il makes up for the distance �q loses to �r during [0; tc] and [tl; N� ].
a�2 N�t tltc0 _pq_pr

vv1+�v Ic Im IlFigure 4: An example of _pr and _pq that achieve the maximum position subject to conditions at times 0 and N� . In thiscase, _pq sustains the maximum allowed velocity v for the interval Im. N must be large enough so that the distance �q gainsover �r during Ic, Im, and Il makes up for the distance �q loses to �r during [0; tc] and [tl; N� ]. Note that in this �gure, thecondition � � �va is not met. 21


