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1. Abstract

We study the motion of an inextensible string fixed at one point in the absence
of gravity, satisfying the equations

ηtt = ∂s(σηs), σss − |ηss|2σ = −|ηst|2, |ηs|2 ≡ 1

with boundary conditions η(t, 1) = 0 and σ(t, 0) = 0. We prove local existence and
uniqueness in the space defined by the weighted Sobolev norms

k∑
j=1

∫ 1

0

sj |∂j
sηt|2 ds +

∫ 1

0

sj+1|∂j+1
s |2 ds,

when k ≥ 3. We do this by approximating with a discrete system sharing all the
essential features, using a Galerkin method.

2. Introduction

In this paper, we explore the motion of a whip, modeled as an inextensible string.
We prove that the partial differential equation describing this motion is locally
well-posed in certain weighted Sobolev spaces. In addition, we are interested in the
motion of a chain, modeled as a coupled system of n pendula, in the limit as n
approaches infinity. We show that the motion of the chain converges to that of the
whip.

Although the equations of motion are well-known and have been studied by many
authors, there are few results known about the general existence and uniqueness
problem. Reeken [Re2] [Re3] proved local existence and uniqueness for the infinite
string in R3 with gravity and initial data sufficiently close (in H26) to the vertical
solution, but aside from this, we know of no other existence result. One aim of the
current paper is to prove a local well-posedness theorem for arbitrary initial data
for the finite string.

One reason this problem is somewhat complicated is that the equation of motion
is hyperbolic, nonlinear, nonlocal, possibly degenerate on a spatial boundary, and
possibly even elliptic under certain conditions.

If η : R×[0, 1] → Rm describes the position η(t, s) of the whip, then one can derive
that the equation of motion in the absence of gravity and under the inextensibility
constraint 〈ηs, ηs〉 ≡ 1 is

ηtt(t, s) = ∂s

(
σ(t, s)ηs(t, s)

)
. (1)

Incorporating gravity introduces some complications; to keep things as simple as
possible, we will neglect it.
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Equation (1) is a standard wave equation; however, the tension σ is determined
nonlocally, as a consequence of the inextensibility constraint, by the ordinary dif-
ferential equation

σss(t, s)− |ηss(t, s)|2σ(t, s) = −|ηst(t, s)|2. (2)

These equations are augmented with boundary conditions for η and σ, depending
on the situation: periodic, two fixed ends, one fixed and one free end, or two free
ends. The case of one fixed and one free end has been the most commonly studied,
so we will focus on it. In this case, we have η(t, 1) ≡ 0 and σ(t, 0) ≡ 0, along with
the compatibility condition ∂sσ(t, 1) ≡ 0.

Having done this, we compare the equations for the chain and show how they
can be thought of as a spatial discretization of the equation of the whip. Unlike
the typical situation, this discretization preserves the geometry of the problem, as
well as conserving energy. We prove that for short time, the solutions converge as
the number of links approaches infinity as long as the initial conditions converge
in a sufficiently strong sense. Since the chain equations come from a vector field
on a product of circles, the solution is obviously defined globally in time, and one
can hope to understand the possible blowup of the whip equation in terms of the
finite-dimensional evolution of the geometry.

It is surprising that not only do the position and velocity of the chain converge to
those of the whip, but the acceleration also converges. In many situations, when one
approximates geometrical constraints, the accelerations do not converge. (A typical
example is the approximation of an incompressible fluid by a slightly compressible
fluid, as discussed by Ebin [E].)

We use the energy norms

Ek =
k∑

j=1

∫ 1

0

sj |∂j
sηt(t, s)|2 ds +

∫ 1

0

sj+1|∂j+1
s η(t, s)|2 ds,

and show that for small time we have local existence and uniqueness in the E3

norm. We prove this by showing that the corresponding discrete estimates for the
chain with n links are uniformly bounded for small time; hence we get a convergent
subsequence in E2 by compactness, which must therefore be a classical solution for
the whip.

Of course, one expects blowup of the whip equation, at least for some initial
data, since the whole purpose of a whip is to construct the initial condition so that
the velocity of the free end approaches infinity after a short time. See McMillen and
Goriely [MG] for a discussion of such issues; although our model neglects some of
the phenomena they consider, one expects that the situations are similar in many
ways. For the heuristics of blowup in our situation, see Thess et al. [TZN]. The
simplest blowup mechanism appears to be the closing off of a loop; as a loop shrinks,
there appears a kink in the whip, representing blowup of both the curvature and
the angular velocity. Thus from the point of view of global well-posedness, the
boundary conditions do not appear to be important.

Victor Yudovich found several results on this problem, although he did not pub-
lish anything on it to my knowledge. I learned of this problem from Alexander
Shnirelman, and I would like to thank him for many useful discussions about it.



THE MOTION OF WHIPS AND CHAINS 3

3. Background

The study of the inextensible string is one of the oldest applications of calculus,
going back to Galileo, and yet it is still being studied to this day. One is especially
concerned about kinks in the solution and what the appropriate jump conditions
should be; authors such as O’Reilly and Varadi [OV], Serre [Se], and Reeken [Re1]
have discussed these issues in detail from differing points of view.

The first problem to be studied was finding the shape of a hanging chain, first
solved incorrectly by Galileo and then correctly by Leibniz and Bernoulli, one of
the first major applications of the calculus of variations.

The shape of small-magnitude vibrations of a chain hanging straight down (in a
linear approximation) goes back to the Bernoullis and Euler [Tr], and is taught in
textbooks today as an example of Bessel functions; see Johnson [J] and Schagerl-
Berger [SB] for related problems. Kolodner [Ko], Dickey [D1], Luning-Perry [LP],
and Allen-Schmidt [AS] studied the problem of a uniformly rotating inextensible
string, one of the few other problems that can be solved more or less exactly.

Burchard and Thomas [BT] obtained a local well-posedness result for the related
problem of inextensible elastica, in which there is a potential energy term reflecting
a resistance to bending; however it is not clear whether the solutions are preserved
in the limit as the potential term goes to zero, so this result does not help in the
present situation.

Many authors have studied the problem of a vertically folded chain falling from
rest; this is a classical problem that appears in several textbooks ([A], [D2], [H], and
[Ros]). In recent years the problem has been debated in the physics literature, in
particular the issue of whether energy is conserved and whether the tip of the chain
falls at an acceleration equal to gravity or faster ([Cal] [CalMar] [CapMaz] [dSR]
[HHR] [IH] [OV] [SSST] [TP] [TPG] [ST]). See Wong-Yasui [WY] or McMillen [M]
for a good survey of the literature.

McMillen and Goriely ([GM] and [MG]) studied a tapered whip theoretically,
numerically, and experimentally, showing that the crack comes not from the tip but
rather from a loop that straightens itself out. Their model uses an elastic rod rather
than a string, however, so that the resulting equation is local. Thess et al. [TZN]
studied the blowup problem for the closed inextensible string, especially as a model
of the blowup problem for the Euler equations for a 3D ideal fluid. They found
divergence in the closing off of loops, showing numerically that sups|ηst| ' 1

T−t and
sups|ηss| ' 1

(T−t)3/2 where T is the blowup time.
The whip-chain equations are interesting partly in and of themselves, but espe-

cially as a simple model of fluids. There are many structural similarities between
the equations (1) and (2) and the Euler equation for an ideal incompressible fluid,
given in Lagrangian form by

ηtt(t, x) = −∇p
(
t, η(t, x)

)
(3)

and
∆p = −Tr

(
[Dηt(t, x) ◦ η−1(t, x)]2

)
, (4)

with some boundary condition to determine ∇p uniquely. (For example, for a free
boundary problem there is a Dirichlet condition, while for a fixed boundary there
is a Neumann condition.)

Both the whip and the ideal fluid equations are geodesic equations of a weak
metric on an infinite-dimensional Riemannian manifold. See [P] for details on this
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approach. In addition, the forces for both equations are determined nonlocally by
solving a nonhomogeneous elliptic equation whose right hand side is the square of a
mixed time-space derivative. The major difference between them is that while the
fluid equations represent an ordinary differential equation on the manifold (see Ebin
and Marsden [EM] for details), the whip equation is a genuine partial differential
equation; the right-hand side is not bounded in any reasonable topology. We will
discuss this in [P]. However, since the whip equation is well-posed in Sobolev spaces
of sufficiently high order, we can talk in the same way about Riemannian exponen-
tial maps. Thus we can hope that studying whip motion can aid in understanding
fluids; for example, one could imagine a well-chosen finite-dimensional system ap-
proximating ideal fluid motion in the same way that chain motion approximates
whip motion.

4. The basic equations: the whip

We will just present the equations here without derivations; the reader may refer
to [P] for a detailed derivation and discussion. Schagerl et al. [SSST] and Thess
et al. [TZN] also present derivations from minimum principles: the basic idea is to
minimize the action

∫ T

0

∫ 1

0
|∂η
∂t |

2 ds dt subject to the constraint |∂η
∂s |

2 ≡ 1.
With a fixed end at s = 1 and a free end at s = 0, the evolution equation is

∂2η

∂t2
(t, s) =

∂

∂s

(
σ(t, s)

∂η

∂s
(t, s)

)
, η(t, 1) = 0; (5)

Differentiating |ηs|2 ≡ 1 twice with respect to t, we find that σ is determined
by the following boundary-value problem for an ordinary differential equation (for
each fixed t):

∂2σ

∂s2
(t, s)−

∣∣∣∣∂2η

∂s2
(t, s)

∣∣∣∣2 σ(t, s) = −
∣∣∣∣ ∂2η

∂s∂t
(t, s)

∣∣∣∣2 ,

σ(t, 0) = 0,
∂σ

∂s
(t, 1) = 0.

(6)

The boundary conditions are compatible as long as η can be extended to an odd
function through s = 1; in that case σ can be extended to an even function through
s = 1. If σ(t, s) is strictly positive for 0 < s ≤ 1, then equation (5) is a hyperbolic
equation with a parabolic degeneracy at s = 0 (since we must have σ(t, 0) = 0). As
such, the only condition necessary to impose at s = 0 is that η(t, 0) remain finite.

The same phenomenon already appears for the model equation

∂2η

∂t2
=

∂

∂s

(
s

∂η

∂s

)
, (7)

with boundary condition η(t, 1) = 0 and η(t, 0) finite: the general solution is

η(t, s) =
∞∑

k=1

(
ak cos λkt

2 + bk sin λkt
2

)
J0(λk

√
s), (8)

where λk is the kth zero of the Bessel function J0. (This is the linearization of our
equation, with gravity incorporated, about the steady state of vertical suspension,
often used to demonstrate applications of Bessel functions.)

We also point out that the reason for not studying the topology of the configu-
ration space rigorously (using Sobolev spaces, for example, as in [EM]) is that we
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already know the geodesic equation (5) cannot be an ordinary differential equation
on an infinite-dimensional manifold: even when σ is a simple function of s as in
(7), the right side is an unbounded operator in any Sobolev space. These issues are
explored in [P].

As in Section 5, we can write the tension σ(t, s) in terms of a Green function.
For simplicity we suppress the dependence on t, since (6) is an ordinary differential
equation in s.

Proposition 4.1. For any fixed time t, the tension σ(s) is given by

σ(s) =
∫ 1

0

G(s, ξ)|ω(ξ)|2 dξ, (9)

where G is the Green function given by

∂2G

∂s2
(s, ξ)− |κ(s)|2G(s, ξ) = −δ(s− ξ), G(0, ξ) = 0, Gs(1, ξ) = 0. (10)

For brevity we have set

κ(t, s) = ηss(t, s) and ω(t, s) = ηts(t, s). (11)

The Green function is symmetric. It satisfies G(s, ξ) > 0 whenever 0 < s ≤ 1,
Gs(s, ξ) > 0 for 0 < s < ξ, and Gs(s, ξ) ≤ 0 for ξ < s < 1.

Proof. The existence of the Green function and the symmetry property G(s, ξ) =
G(ξ, s) is a well-known result of the general theory for second-order equations with
homogeneous boundary conditions. See for example Courant-Hilbert [CH].

To prove positivity of the Green function, we first observe that for any ξ ∈ (0, 1),
we have

G(ξ, ξ) =
∫ 1

0

G(s, ξ)δ(s− ξ) ds

=
∫ 1

0

κ2(s)G(s, ξ)G(s, ξ) ds−
∫ 1

0

G(s, ξ)Gss(s, ξ) ds

=
∫ 1

0

κ2(s)G(s, ξ)2 ds +
∫ 1

0

Gs(s, ξ)2 ds,

and since G cannot be identically zero, we must have G(ξ, ξ) > 0 for all ξ ∈ (0, 1).
Since G(0, ξ) = 0, we must have Gs(0, ξ) 6= 0. Assume Gs(0, ξ) < 0; then G
will be negative for small s, and hence there must be a turning point so where
Gs(so, ξ) = 0. If so is the first such point, then the fact that G(s, ξ) < 0 for
0 < s < so implies Gss(s, ξ) < 0, so that Gs is decreasing, a contradiction. Hence
we must have Gs(0, ξ) > 0, and hence G(s, ξ) is positive for small s. Since Gs

cannot have a turning point for s ∈ (0, ξ) (by the same reasoning), Gs must be
positive in (0, ξ), so that G is positive in (0, ξ). A similar argument shows that G
is decreasing for s > ξ. �

In Section 6 we will need good bounds on the quantities sups∈[0,1]
σ(s)

s and
sups∈[0,1]

s
σ(s) . The next theorem helps with this.
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Theorem 4.2. The Green function G(s, x) defined by Proposition 4.1 satisfies the
following bounds.

sup
0≤s,x≤1

|Gs(s, x)| ≤ 1, and sup
0≤s,x≤1

G(s, x)
s

≤ 1 (12)

inf
0≤s,x≤1

G(s, x)
sx

≥ e−ξ

1 + ξ
where ξ =

∫ 1

0

s|κ(s)|2 ds. (13)

Proof. The proof of (12) is easy: we just note that by Proposition 4.1, we have

0 ≤ Gs(s, x) for s < x and Gs(s, x) ≤ 0 for s > x.

Furthermore Gs is increasing on [0, x) and (x, 1], so that

0 ≥ lim
r↘x

Gr(r, x) ≥ Gs(s, x) for s > x

and
0 ≤ Gs(s, x) ≤ lim

r↗x
Gr(r, x) for s < x.

Finally we have
1 + lim

s↘x
Gs(s, x) = lim

s↗x
Gs(s, x).

Combining these, we obtain

0 ≤ Gs(s, x) ≤ 1 for 0 ≤ s < x and − 1 ≤ Gs(s, x) ≤ 0 for x < s ≤ 1.

The second part of (12) follows from G(0, x) = 0 for all x; we have∣∣∣∣G(s, x)
s

∣∣∣∣ =
∣∣∣∣∣
∫ s

0
Gr(r, x) dr

r

∣∣∣∣∣ ≤ sup
0≤r≤1

|Gr(r, x)| ≤ 1.

The proof of (13) is a bit more involved. We first show that if F (s, x) = G(s,x)
sx

then infs,x F (s, x) = F (0, 1). To do this we note that for x < s < 1, we have
Fs(s, x) = sGs(s,x)−G(s,x)

s2x ≤ 0. In addition, if H(s, x) = sGs(s, x) − G(s, x), then
Hs(s, x) = sGss(s, x) = s|κ(s)|2G(s, x) ≥ 0 for 0 < s < x. Since H(0, x) =
−G(0, x) = 0 for all x, we conclude H(s, x) ≥ 0 for 0 < s < x, so that Fs(s, x) ≥ 0
for 0 < s < x.

So for any fixed x, we see F (s, x) is increasing on (0, x) and decreasing on (x, 1);
therefore we know

F (s, x) ≥ F (0, x) for 0 < s < x, (14)

F (s, x) ≥ F (1, x) for x < s < 1. (15)

Letting x approach 1 in (14), we get F (s, 1) ≥ F (0, 1); letting x approach 0 in
(15), we get F (s, 0) ≥ F (1, 0). Thus finally, using F (s, x) = F (x, s), we have
F (s, x) ≥ F (0, x) = F (x, 0) ≥ F (1, 0) for s < x, and by symmetry this is also true
for s > x.

So the minimum of F is F (1, 0), and clearly

F (1, 0) = lim
s→0

G(s, 1)
s

= Gs(0, 1).

Now, as x → 1, we have G(s, x) → ϕ(s) where ϕ′′(s)−|κ(s)|2ϕ(s) = 0, ϕ(0) = 0,
and ϕ′(1) = 1. The above shows that inf0≤s,x≤1 G(s, x) = ϕ′(0), so our goal is now
to find a lower bound for ϕ′(0).
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Clearly ϕ(s) > 0 for 0 < s ≤ 1, so we can define γ(s) = ln [ϕ(s)/s]. We
have γ(0) = lnϕ′(0) and γ(1) = lnϕ(1). Furthermore γ′(s) = ϕ′(s)

ϕ(s) −
1
s , so that

lims→0 sγ′(s) = 0 and γ′(1) = 1
ϕ(1) − 1. Finally we see that

γ′′(s) +
2γ′(s)

s
+ γ′(s)2 = |κ(s)|2,

from which we conclude
d

ds

[
s2γ′(s)

]
= −s2γ′(s)2 + s2|κ(s)|2 (16)

d

ds

[
s(1− s)γ′(s)

]
+ γ′(s) = −s(1− s)γ′(s)2 + s(1− s)|κ(s)|2 (17)

Integrating (16) from s = 0 to s = 1 yields

γ′(1) = −
∫ 1

0

s2γ′(s)2 ds +
∫ 1

0

s2|κ(s)|2 ds ≤
∫ 1

0

s|κ(s)|2 ds = ξ,

so that

ϕ(1) ≥ 1
1 + ξ

. (18)

Integrating (17) yields

γ(1)− γ(0) = −
∫ 1

0

s(1− s)γ′(s)2 ds +
∫ 1

0

s(1− s)|κ(s)|2 ds

≤
∫ 1

0

s|κ(s)|2 ds = ξ,

so that

ln
ϕ′(0)
ϕ(1)

≥ −ξ. (19)

Combining (18) and (19), we get

ϕ′(0) ≥ e−ξ

1 + ξ
.

�

Remark 4.3. We could get an estimate of the form (13) much more easily if we
simply assumed an upper bound on |κ(s)|, using standard Sturm-Liouville compari-
son arguments. However, we prefer the weaker assumption that

∫ 1

0
s|κ(s)|2 ds < ∞,

since it allows for the possibility of the curvature at the free end of the whip ap-
proaching infinity (a possibility not precluded by the equations due to the degen-
eracy there).

It is also worth noting that we do not get a lower bound if we assume only
that

∫ 1

0
s1+α|κ(s)|2 ds < ∞ for some α > 0. A counterexample is furnished by

|κ(s)| = κ0
s , where the equation becomes

σ′′(s)− κ2
0

s2
σ(s) = −|ω(s)|2;

we can easily solve this equation explicitly, and a straightforward computation
confirms that its Green function has inf0≤s,x≤1

G(s,x)
sx = 0.
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5. The basic equations: the chain

We now derive the equations for the finite model, consisting of n particles in Rm,
each of mass 1

n . The particles are assumed to be joined by rigid links of length 1
n ,

whose mass is negligible. The position of the ith particle is ηi(t) for 1 ≤ i ≤ n. The
configuration space is thus homeomorphic to (Sm−1)n, and is naturally embedded
in Rmn. We assume one end is fixed and one end is free; it is a bit more convenient
to assume the fixed end is the (n + 1)st particle, so that ηn+1(t) ≡ 0 for all t.

The kinetic energy in Rmn is

K =
1
2n

n∑
i=1

|η̇i|2. (20)

In addition the constraints are given by

hi(η1, . . . , ηn) =
1
2
|ηi+1 − ηi|2 =

1
2n2

, 1 ≤ i ≤ n.

We can use Lagrange multipliers to obtain the equations of motion, obtaining

η̈i = n2σi(ηi+1 − ηi)− n2σi−1(ηi − ηi−1) (21)

for 1 ≤ i ≤ n. The scaling is chosen so that σi(t) converges (under some assump-
tions) to a function σ(t, s) as n → ∞. The numbers σ physically represent the
tensions in each link. We set σ0 = 0 so the same equation is valid when i = 1.

The constraint equations determine the σ. We get

− |η̇i+1 − η̇i|2 = n2σi+1〈ηi+2 − ηi+1, ηi+1 − ηi〉 − 2σi

+ n2σi−1〈ηi − ηi−1, ηi+1 − ηi〉

for 1 ≤ i < n (again using σ0 = 0), while for i = n we get

−|η̇n|2 = −σn − n2σn−1〈ηn, ηn − ηn−1〉.

A slightly less cumbersome notation is to set δi = n(ηi+1 − ηi); then each δi is a
unit vector and the tension equation is

−|δ̇i|2

n2
= 〈δi, δi+1〉σi+1 − 2σi + 〈δi−1, δi〉σi−1, 1 ≤ i ≤ n− 1,

−|δ̇n|2

n2
= −σn + 〈δn−1, δn〉σn−1.

(22)

Proposition 5.1. The solution of the constraint equations (22) is

σk =
1
n

n∑
j=1

Gkj δ̇
2
j , (23)

where δj = n(ηj+1 − ηj) and the discrete Green function Gkj is constructed by

Gkj =
1
n

min (j,k)∑
i=1

pijpik

bi
, where pij =


j−1∏
m=i

am

bm+1
j > i,

1 j = i,

ai = 〈δi+1, δi〉, and bn = 1, bi = 2− a2
i

bi+1
for 1 ≤ i ≤ n− 1. (24)
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The tensions σk are nonnegative for every choice of δ̇ if and only if ai ≥ 0 for
every i.

Proof. In terms of ai = 〈δi, δi+1〉, we can set up (22) as a matrix equation:

2 −a1 0 · · · 0 0
−a1 2 −a2 · · · 0 0
0 −a2 2 · · · 0 0
...

...
...

. . . 0 0
0 0 0 · · · 2 −an−1

0 0 0 · · · −an−1 1





σ1

σ2

σ3

...
σn−1

σn


=

1
n2



|δ̇1|2
|δ̇2|2
|δ̇3|2

...
|δ̇n−1|2
|δ̇n|2


. (25)

Gaussian elimination yields

b1 0 0 · · · 0 0
−a1 b2 0 · · · 0 0
0 −a2 b3 · · · 0 0
...

...
...

. . . 0 0
0 0 0 · · · bn−1 0
0 0 0 · · · −an−1 bn





σ1

σ2

σ3

...
σn−1

σn


=



c1/n
c2/n
c3/n

...
cn−1/n
cn/n


,

where b is defined as in (24), recursively, by

bn = 1 and bi = 2− a2
i

bi+1
, (26)

and c is defined recursively by

cn =
|δ̇n|2

n
, ci =

|δ̇i|2

n
+

ai

bi+1
ci+1. (27)

The σ are then given recursively by

σ1 =
c1

nb1
, σk =

ck

nbk
+

ak−1

bk
σk−1. (28)

Obviously we have 1 ≤ bi ≤ 2 for every i, although (26) will generally be too
difficult to solve exactly. However (27) and (28) are linear difference equations, and
their solution is easily written in the form (24).

Now we analyze the effect of the sign of a. If any ai are zero, then clearly the
matrix (25) splits into disjoint blocks: if for example aq and ar are zero and q < r,
then the Green function (24) can be written as a sum over each block:

σk =
1
n

r∑
j=q+1

Gkj |δ̇j |2; Gkj =
1
n

min (j,k)∑
i=q+1

pijpik

bi
,

the only difference being that the starting condition for b is br = 2 if r 6= n, while
bn = 1.

Hence by working within each block, we can assume that all a are nonzero.
Thus if all a are positive, the discrete Green function matrix (24) will be positive-
definite, and any choice of δ̇ which is not identically zero will lead to all tensions
being strictly positive. On the other hand, if ai < 0 for some i (representing a
sharp kink, with two portions of the chain meeting at an acute angle), then there
will be some choice of δ̇ so that some σ is negative. For example, suppose ai > 0
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for i < q and aq < 0. Then setting δ̇1 to be any unit vector and δ̇i = 0 for i > 1
gives

σk =
1
n2

p1k

b1
=

1
n2b1

k−1∏
m=1

am

bm+1
,

and therefore σq+1 < 0. �

Now we want to prove the basic estimates for the discrete Green function defined
in Proposition 5.1, analogously to those in Theorem 4.2.

Theorem 5.2. Suppose Gkj, ηk, δk, ak, and bk are defined as in Proposition 5.1.
Assume the ηk are such that ak = 〈δi+1, δi〉 ≥ 0 for all k.

Then the discrete Green function Gkj satisfies the following bounds.
First, if 1 ≤ j, k ≤ n, and if ξkj ≡ n(Gkj −Gk−1,j) with G0j = 0, then

|ξkj | ≤ 1 for every k and j. (29)

Second, if |δk+1 − δk| ≤ 1 for all k, we have

Gkj ≥
e−ξ

1 + ξ
where ξ =

1
n2

n−1∑
k=1

k|κk|2 (30)

and κk ≡ n(δk+1 − δk) is the discrete curvature.

Proof. From Proposition 5.1 we know that Gkj ≥ 0 for all k and j.
Assume first that j 6= n. Then the discrete Green function satisfies the equation

ak+1Gk+1,j − 2Gkj + ak−1Gk−1,j = − 1
n

δkj

for 1 ≤ k < n− 1, while
−Gnj + an−1Gn−1,j = 0

Since ak = 〈δk, δk+1〉 with |δk| = 1, we have ak < 1. Thus for k 6= j we have

Gk+1,j − 2Gkj + Gk−1,j = (1− ak+1)Gk+1,j + (1− ak−1)Gk−1,j ≥ 0. (31)

Thus ξk+1,j − ξkj ≥ 0 for all k 6= j. Since ξ1j = n(G1j − G0j) = nG1j ≥ 0, we
conclude that ξkj ≥ ξ1j ≥ 0 as long as k < j.

On the other hand, if j 6= n then we have −Gnj +Gn−1,j = (1−an−1)Gn−1,j ≥ 0,
so that ξnj ≤ 0, and thus ξkj ≤ ξnj ≤ 0 for all k > j.

Finally when k = j we have

Gj+1,j − 2Gjj + Gj−1,j = − 1
n

+ (1− aj+1)Gj+1,j + (1− aj−1)Gj−1,j ≥ 0.

Thus ξj+1,j − ξjj ≥ −1. We conclude that

0 ≤ ξ1j ≤ · · · ≤ ξjj ≤ 1 + ξj+1,j ≤ · · · ≤ 1 + ξnj ≤ 1.

Hence we must have |ξkj | ≤ 1 for all k, as long as j 6= n.
If j = n, the situation is slightly different; in that case we have

−Gnn + an−1Gn−1,n = − 1
n

,

so that ξnn = 1− n(1− an−1)Gn−1,n ≤ 1, and we still get

0 ≤ ξ1n ≤ ξ2n ≤ · · · ≤ ξn−1,n ≤ ξnn ≤ 1.
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To obtain (30), we use the same tricks as in Theorem 4.2. That is, we first show
that Gkj ≥ nG1n, then get an estimate for G1n. To do this, define Fkj = n2

kj Gkj ,
and observe that for 1 < k ≤ n we have

Fkj − Fk−1,j =
n2

j

(
Gkj

k
− Gk−1,j

k − 1

)
=

n2

k(k − 1)
[(k − 1)(Gkj −Gk−1,j)−Gk−1,j ] .

Now if k > j we know from above that ξkj = n(Gkj − Gk−1,j) ≤ 0, so that
Gkj ≤ Gk−1,j , and thus Fkj − Fk−1,j ≤ 0. Thus Fkj ≥ Fnj if k ≥ j.

On the other hand, if we define for 1 ≤ k ≤ n the quantity Hkj = (k− 1)(Gkj −
Gk−1,j)−Gk−1,j , then it is easy to compute that

Hk+1,j −Hkj = k
[
Gk+1,j − 2Gkj + Gk−1,j

]
,

and we conclude using (31) that if k < j then Hk+1,j − Hkj ≥ 0. Since H1j = 0,
this shows that Hkj ≥ 0 as long as k ≤ j. Then since Fkj − Fk−1,j = n2

k(k−1)Hkj

for k > 1, we have Fkj ≥ Fk−1,j as long as 1 < k ≤ j, and hence Fkj ≥ F1j for
1 ≤ k ≤ j.

Using Fkj = Fjk, we conclude that if k ≥ j then Fkj ≥ Fnj = Fjn, and since j ≤
n we have Fjn ≥ F1n. Hence this is also true if k ≤ j, and we get min1≤j,k≤n Fkj =
F1n = nG1n.

Now using the formula (24) we have that

nG1n =
p11p1n

b1
=

1
b1

n−1∏
m=1

am

bm+1
=
∏n−1

k=1 ak∏n
l=1 bl

. (32)

First we get an upper estimate for
∏n

l=1 bl. Writing bk = 1+ gk, we observe that
gn = 0, that 0 ≤ gk ≤ 1 for every k, and that

(1 + gk)(1 + gk+1) = 2(1 + gk+1)− a2
k.

Now if κk = n(δk+1 − δk) for 1 ≤ k ≤ n− 1, then

ak = 〈δk+1, δk〉 = 1− 1
2
|δk+1 − δk|2 = 1− 1

2n2
|κk|2,

and we quickly find that

gk − gk+1 = −gkgk+1 +
|κk|2

n2
− |κk|4

4n4
,

from which we conclude that

gj =
n−1∑
k=j

(gk − gk+1) ≤
1
n2

n−1∑
k=j

|κk|2

for 1 ≤ j ≤ n− 1.
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Now using the inequality between geometric and arithmetic means,
(∏n−1

j=1 cj

)1/(n−1)

≤∑n−1
j=1

cj

n−1 for cj = 1 + gj , we get

n∏
j=1

bj =
n−1∏
j=1

(1 + gj) ≤
n−1∏
j=1

1 + 1
n2

n−1∑
k=j

|κk|2


≤

1 +
1

n2(n− 1)

n−1∑
j=1

n−1∑
k=j

|κk|2
n−1

=

(
1 +

1
n2(n− 1)

n−1∑
k=1

k|κk|2
)n−1

.

Then the formula (1 + c
n−1 )n−1 ≤ ec yields that

n∏
j=1

bj ≤ exp

(
1
n2

n−1∑
k=1

k|κk|2
)

.

Next we get a lower estimate for
∏n−1

k=1 ak. Using (1− x)n−1 ≥ 1− (n− 1)x for
every n ≥ 1 whenever 0 ≤ x, we have

1− |κk|2

2n2
≥
(

1− (n− 1)|κk|2

2n2

)1/n−1

,

and thus
n−1∏
k=1

ak =
n−1∏
k=1

(
1− |κk|2

2n2

)
≥

[
n−1∏
k=1

(
1− (n− 1)|κk|2

2n2

)]1/n−1

.

Next, using the fact that 1 − x
2 ≥ 1

1+x whenever 0 ≤ x ≤ 1, along with the
assumption that |κk| ≤ n for all k, we get

n−1∏
k=1

ak ≥
1[∏n−1

k=1

(
1 + (n−1)|κk|2

n2

)]1/n−1
.

Again using the inequality between geometric and arithmetic means, we get
n−1∏
k=1

ak ≥
1

1
n−1

∑n−1
k=1

(
1 + (n−1)|κk|2

n2

)
=

1
1 + 1

n2

∑n−1
k=1 |κk|2

≥ 1
1 + 1

n2

∑n−1
k=1 k|κk|2

.

�

All of the above computations have assumed that there is no gravity; when there
is a uniform gravitational field −gem, it is not difficult to see that the equations
are modified only at the boundary points. The new Lagrangian is

L =
1
2n

n∑
i=1

|η̇i|2 −
1
n

n∑
i=1

g〈ηi, em〉.
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The corrected versions of (21) and (22) in this case are

η̈i = n2σi(ηi+1 − ηi)− n2σi−1(ηi − ηi−1)− gem

along with

−|δ̇i|2

n2
= 〈δi, δi+1〉σi+1 − 2σi + 〈δi−1, δi〉σi−1, 1 ≤ i ≤ n− 1,

−|δ̇n|2

n2
= −σn + 〈δn−1, δn〉σn−1 −

g

n
〈em, δn〉.

Proposition 5.1 is then easily modified to

σk =
1
n

n∑
j=1

Gkj |δ̇j |2 + gGkn〈em, δn〉, (33)

so that the conditions for all tensions to be nonnegative is that all 〈δi, δi+1〉 ≥ 0 and
in addition 〈em, δn〉 ≥ 0. In other words, the link at the fixed point should be at or
below the horizontal. Physically, this condition is understandable; the equilibrium
with the chain hanging straight down, δi = em, corresponds to strictly positive
tension, while the unstable equilibrium with the chain suspended above the fixed
point, δi = −em, results in all links being compressed.

The analogous condition for the whip holds as well, as can easily be derived.

6. A priori estimates for the whip

In this section we derive estimates for equations (5) and (6), assuming the exis-
tence of a smooth solution. The actual construction of a solution will come from
a limiting process in the chain equation in Section 7; however the estimates here
prove uniqueness. They can also be used to understand persistence of smooth so-
lutions, although we will leave a more detailed analysis of this to future research.
The estimates in this section also suggest the correct form of the corresponding
estimates for the chain, which we will explore in Section 7.

Because of the parabolic degeneracy of (5) at the free end s = 0, we need
weighted estimates which are not completely standard; hence we will derive our
own.

We define the weighted inner products Uk and Vk by the formulas

Uk =
∫ 1

0

sk|∂k
s ηt|2 ds and Vk =

∫ 1

0

sk+1|∂k+1
s η|2 ds. (34)

We will see that the estimates close up at k = 3; in other words, the quantities
U0, U1, U2, U3, V0, V1, V2, V3 can all be bounded in terms of each other, and all higher
norms can be bounded in terms of these. The reason so many derivatives are needed
is partly due to the degeneracy, and partly due to the nonlinearity of the tension
constraint (6).

The basic estimates we need are the following weighted analogues of the one-
dimensional Poincaré inequality and Sobolev inequality.

Theorem 6.1. Let f : [0, 1] → Rm be C∞. Then for any r > 0 we have∫ 1

0

sr−1|f(s)|2 ds .
∫ 1

0

sr|f(s)|2 ds +
∫ 1

0

sr+1|f ′(s)|2 ds, (35)
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as well as

sup
x∈[0,1]

xr|f(x)|2 .
∫ 1

0

sr|f(s)|2 ds +
∫ 1

0

sr+1|f ′(s)|2 ds, (36)

where the constants are independent of f .

Proof. The starting point is the following basic equation, valid for any p, q ∈ R and
any a < b in (0, 1), an easy integration by parts:∫ b

a

sq+1|f ′(s)|2 ds = −psq|f(s)|2
∣∣∣s=b

s=a

+ p(q − p)
∫ b

a

sq−1|f(s)|2 ds +
∫ b

a

sq−2p+1

∣∣∣∣ d

ds

(
spf(s)

)∣∣∣∣2 ds. (37)

Now set p = q = r, a = x, and b = 1 in (37) to get

xr|f(x)|2 ≤ |f(1)|2 +
1
r

∫ 1

0

sr+1|f ′(s)|2 ds. (38)

Next, set p = r
2 , q = r, a = 0, and b = 1 to get∫ 1

0

sr−1|f(s)|2 ds ≤ 2
r
|f(1)|2 +

4
r2

∫ 1

0

sr+1|f ′(s)2| ds. (39)

Choose q = r + 1 and p = −(r + 1) with a = x and b = 1, so we have

|f(1)|2 ≤ xr+1|f(x)|2 + 2(r + 1)
∫ 1

0

sr|f |2 ds +
1

r + 1

∫ 1

0

sr+2|f ′|2 ds. (40)

Thus combining (38) and (40), we get

xr(1− x)|f(x)|2 ≤ 2(r + 1)
∫ 1

0

sr|f |2 ds

+
1

r + 1

∫ 1

0

sr+2|f ′|2 ds +
1
r

∫ 1

0

sr+1|f ′|2 ds,

for all x < 1. Hence as long as the right side is bounded, we have

lim
x→0

xr|f(x)|2 ≤ 2(r + 1)
∫ 1

0

sr|f |2 ds +
2
r

∫ 1

0

sr+1|f ′|2 ds.

Hence if both
∫ 1

0
sr|f |2 ds < ∞ and

∫ 1

0
sr+1|f ′|2 ds < ∞, then we must have

limx→0 xr|f(x)|2 < ∞ and so limx→0 xr+1|f(x)|2 = 0. Then since∫ 1

0

sr+2|f ′|2 ds ≤
∫ 1

0

sr+1|f ′|2 ds,

equation (40) implies

|f(1)|2 ≤ 2(r + 1)
∫ 1

0

sr|f(s)|2 ds +
1

r + 1

∫ 1

0

sr+1|f ′(s)|2 ds. (41)

Combining (39) with (41), we get (35). Combining (38) with (41), we get (36).
�
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Remark 6.2. The estimate (39), in the case f(1) = 0, is a very special case of the
weighted Hardy inequality. See [KP] and the many references therein for discussion
of it and various generalizations.

The example f(s) = arcsinh (ln s) demonstrates that the inequalities (35) and
(36) cannot be extended to r = 0: in that case we have f(1) = 0,

∫ 1

0
|f(s)|2 ds <∫ 1

0
(ln s)2 ds < ∞, and

∫ 1

0
s|f ′(s)|2 ds = π

2 < ∞, while
∫ 1

0
1
s |f(s)|2 ds and supx∈[0,1]|f(x)|2

are both infinite.

Now to get good estimates on the quantities Uk and Vk defined in (34), it is more
natural to derive equations for the time-dependent inner products

Ũk =
∫ 1

0

σk|∂k
s ηt|2 ds and Ṽk =

∫ 1

0

σk+1|∂k+1
s η|2 ds, (42)

since σ(s) rather than s is what appears in equation (5).
We now derive estimates for the higher derivatives of σ, in terms of spatial

derivatives of η and ηt.

Theorem 6.3. Let η(t, s) be a function on J × [0, 1] for some time interval J
satisfying |ηs(t, s)| ≡ 1, and set

Uk =
∫ 1

0

sk|∂k
s ηt|2 ds, Vk =

∫ 1

0

sk+1|∂k+1
s η|2 ds

for every k ∈ N. Set

Pk =
k∑

j=1

Uj and Qk =
k∑

j=1

Vj .

If σ : [0, 1] → R satisfies

σss − |ηss|2 = −|ηst|2, σs(1) = 0, σ(0) = 0, (43)

then setting A = sups∈[0,1]|σs|, we have

sup
s∈[0,1]

σ(s)
s

≤ A . P2, (44)

In addition, for any α > 0 and any integer k ≥ 1, let

Dk =
∫ 1

0

sk+α| dk+1

dsk+1 σ|2 ds.

Then for k = 1 or k = 2 we have

Dk . A2Q3Vk + P3Uk, (45)

while for k ≥ 3 we have

Dk . A2Q3Vk + P3Uk + A2Q2
k−1 + P 2

k−1 + Q2
k−1

k−3∑
j=0

(Dk−2−j + Dk−1−j), (46)

where all the inequalities involve only numerical constants.
Thus for k ≥ 4, we have

Dk . F1Uk + F2Vk + F3, (47)

where F1, F2, and F3 depend only on Pk−1 and Qk−1.
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Proof. We first observe that

sup
s

σ(s)
s

= sup
s

∫ s

0
σx(x) dx

s
≤ sup

s
|σs| = A.

Next we have by Theorem 4.2 that sups|Gs(s, x)| ≤ 1, so that

sup
s
|σs(s)| = sup

s
|
∫ 1

0

|Gs(s, x)||ηxt(x)|2 ds ≤
∫ 1

0

|ηst(s)|2 ds

.
∫ 1

0

s|ηst|2 +
∫

s2|ηsst|2 = P2,

by (35). Thus we obtain (44).
If k ≥ 1 we have

∫
sk+α|∂k+1

s σ|2 =
∫

sk+α
∣∣∣−∑k−1

i=0

(
k−1

i

)
〈∂i+1

s ηt, ∂
k−i
s ηt〉

+
∑k−1

j=0

∑j
i=0

(
k−1

j

)(
j
i

)
(∂k−1−j

s σ)2〈∂i+2
s η, ∂j−i+2

s η〉
∣∣∣2

.
∑k−1

j=0

∑j
i=0

∫
sk+α(∂k−1−j

s σ)2|∂i+2
s η|2|∂j−i+2

s η|2

+
∑k−1

i=0

∫
sk+α|∂i+1

s ηt|2|∂k−i
s ηt|2

.
∑k−1

i=0

∫
sk+ασ2|∂i+2

s η|2|∂k+1−i
s η|2 (I)

+
∑k−2

i=0

∫
sk+ασ2

s |∂i+2
s η|2|∂k−i

s η|2 (II)

+
∑k−3

j=0

∑j
i=0

∫
sk+α(∂k−1−j

s σ)2|∂i+2
s η|2|∂j−i+2

s η|2 (III)

+
∑k−1

i=0

∫
sk+α|∂i+1

s ηt|2|∂k−i
s ηt|2. (IV)

Let us analyze these terms separately. We use (35) and (36) freely.
First, in part (I) we have by (44) that

∑k−1
i=0

∫
sk+ασ2|∂i+2

s η|2|∂k+1−i
s η|2

. A2
∑k−1

i=0

∫
sk+2+α|∂i+2

s η|2|∂k+1−i
s η|2

. A2
[
sk+2+α|∂k+1

s η|2|ηss|2 +
∑k−2

i=1 sk+2+α|∂i+2
s η|2|∂k+1−i

s η|2
]

. A2
[(

sups s|ηss|2
)( ∫

sk+1|∂k+1
s η|2

)
+
∑k−2

i=1

(
sups sk+1−i|∂k+1−i

s η|2
)( ∫

si+1|∂i+2
s η|2

)]
. A2

[
(V1 + V2 + V3)Vk +

∑k−2
i=1 (Vi+1 + Vi+2)(Vk−i + Vk+1−i)

]
. A2

[
Q3Vk + Q2

k−1

]
if k > 2. (If k = 1 or k = 2 the last sum disappears.)
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Term (II) is zero if k = 1; otherwise we have∑k−2
i=0

∫
sk+ασ2

s |∂i+2
s η|2|∂k−i

s η|2

. A2
∑k−2

i=0

∫
sk+α|∂i+2

s η|2|∂k−i
s η|2

. A2
[(

sup s|ηss|2
)( ∫

sk−1|∂k
s η|2

)
+
∑k−3

i=1

(
sup sk−i−1|∂k−i

s η|2
)( ∫

si+1|∂i+2
s η|2

)]
. A2

[
Q3(Vk−1 + Vk)

+
k−3∑
i=1

(Vi+1 + Vi+2)(Vk−i−1 + Vk−i + Vk−i+1)
]

. A2
[
Q3Vk + Q2

k−1

]
.

(Again if k = 2 the last sum is zero.)
Term (III) is zero if k = 1 or k = 2. Otherwise,∑k−3

j=0

∑j
i=0

∫
sk+α(∂k−1−j

s σ)2|∂i+2
s η|2|∂j−i+2

s η|2

.
∑k−3

j=0

[
sups sk−3−j+α(∂k−1−j

s σ)2
]
·∑j

i=0

(
sups sj−i+2|∂k−1−i

s η|2
)( ∫

si+1|∂i+2
s η|2

)
.
∑k−3

j=0

[ ∫
sk−2−j+α(∂k−1−j

s σ)2 +
∫

sk−2−j+α(∂k−j
s σ)2

]
·[∫

si+2|∂i+2
s η|2 + si+3|∂i+3

s η|2
]
·[∫

sj−i+2|∂j−i+2
s η|2 + sj−i+3|∂j−i+3

s η|2
]

.
∑k−3

j=0 [Dk−2−j + Dk−1−j ]
∑j

i=0[Vi+1 + Vi+2][Vj−i+1 + Vj−i+2]

. Q2
k−1

∑k−3
j=0 [Dk−2−j + Dk−1−j ].

Notice this is the first time we use the fact that α > 0, to estimate sups sα(σss)2

when j = k − 3 in terms of the integrals using equation (36).
Finally for term (IV) we have∑k−1

i=0

∫
sk+α|∂i+1

s ηt|2|∂k−i
s ηt|2

.
∫

sk+α|∂k
s ηt|2|ηst|2 +

∑k−2
i=1

∫
sk+α|∂i+1

s ηt|2|∂k−i
s ηt|2

.
(
sups sα|ηst|2

)
Uk +

∑k−2
i=1

(
sups sk−i+α|∂k−i

s ηt|2
)( ∫

si|∂i+1
s ηt|2

)
.
( ∫

sα|ηst|2 + s1+α|ηsst|2
)
Uk

+
∑k−2

i=1

( ∫
si+1|∂i+1

s ηt|2 +
∫

si+2|∂i+2
s ηt|2

)
·( ∫

sk−i|∂k−i
s ηt|2 +

∫
sk−i+1|∂k−i+1

s ηt|2
)

. P3Uk +
∑k−2

i=1 (Ui+1 + Ui+2)(Uk−i + Uk−i+1)

. P3Uk + P 2
k−1.

Here again the last sum disappears if k = 1 or k = 2. Furthermore it is essential to
have α > 0 to get a bound on sups sα|ηst|2 in terms of P3.
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Putting (I)–(IV) together, we obtain (46) when k ≥ 3, with the special cases
(45) when the sums disappear for k = 1 or k = 2.

Equation (47) is easy inductively from (46). �

We can now do the energy estimates: we just need an upper bound on sup
0≤s≤1

σt(t,s)
s

because the appropriate energy norms are time-dependent.

Proposition 6.4. Suppose η and σ are as in Theorem 6.3. Then C(t) = sup0≤s≤1
σt(t,s)

s
satisfies

C2 . P 3
2 Q3, (48)

where Pk and Qk are the energy norms as in Theorem 6.3.

Proof. We first observe the following consequences of Theorem 6.1.∫
|ηss|2 .

∫
s2|ηsss|2 .

∫
s3|ηsss|2 + s4|ηssss|2 ≤ Q3 (49)∫

|ηst|2 .
∫

s|ηst|2 + s2|ηsst|2 ≤ P2 (50)∫
s2|ηsss|2 .

∫
s3|ηsss|2 + s4|ηssss|2 ≤ Q3 (51)

Next we differentiate the equation for σ in time to obtain

σtss − |ηss|2σt = 2〈ηss, ηsst〉σ − 2〈ηst, ηstt〉
= 2〈ηss, ηsst〉σ − 2〈ηst, ηsss〉σ − 4〈ηst, ηss〉σs.

Since σts(1) = 0 and σt(0) = 0, we see that σt satisfies the same equation as σ with
the same boundary conditions, and hence we can write, using Proposition 4.1,

σt(s) = 2
∫ 1

0

G(s, x)
[
〈ηxx, ηxxt〉σ(x)− 〈ηxt, ηxxx〉σ(x)− 2〈ηxt, ηxx〉σx

]
dx.

Now using (12) we get

sup
s

σt(s)
s

≤ 2A

∫ 1

0

s|ηss||ηsst|+ s|ηst||ηsss|+ 2|ηst||ηss| ds,

and hence

C2

A2
.
(∫
|ηss|2

) (∫
s2|ηsst|2

)
+
(∫
|ηst|2

) (∫
s2|ηsss|2

)
+
(∫
|ηst|2

) (∫
|ηss|2

)
. Q3P2,

using (49), (50), and (51). �

Finally we compute the energy estimates.

Theorem 6.5. Let η(t, s) be a smooth function on J × [0, 1] for some time interval
J satisfying |ηs(t, s)| ≡ 1, along with η(t, 1) = 0, and suppose that η is odd through
s = 1 (i.e., that ∂k

s η(t, 1) = 0 for every even integer k).
Suppose σ : J × [0, 1] → R is a smooth function with σ(t, 0) = 0 and σ even

through s = 1 (i.e., ∂k
s σ(t, 1) = 0 for every odd integer k).
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Let α > 0, set

Uk =
∫ 1

0

sk|∂k
s ηt|2 ds, Vk =

∫ 1

0

sk+1|∂k+1
s η|2 ds,

and Dk =
∫ 1

0

sk+α|∂k+1
s σ|2 ds

for every k ∈ N, and set

Pk =
k∑

j=1

Uj , Qk =
k∑

j=1

Vj , and Rk =
k∑

j=1

Dj .

Finally set

Ũk =
∫ 1

0

σk|∂k
s ηt|2 ds, Ṽk =

∫ 1

0

σk+1|∂k+1
s η|2 ds.

Then with A = sups|σs| and C = sups
|σt|
s , we have

d

dt
(Ũ1 + Ṽ1) . CU1 + CAV1, (52)

d

dt
(Ũ2 + Ṽ2) . CAU2 + CA2V2 + A2

√
R2P2Q3, (53)

d

dt
(Ũ3 + Ṽ3) . CA2U3 + CA3V3 + A3

√
R3P3Q3, (54)

where all the inequalities involve only numerical constants.
Furthermore, for k ≥ 4, we have

d

dt
(Ũk + Ṽk) . G1Uk + G2Vk + G3Dk + G4, (55)

where G1, G2, G3, and G4 depend only on Pk−1, Qk−1, and Rk−1.

Proof. We just compute:

d

dt
(Ũk + Ṽk) =

d

dt

∫
σk|∂k

s ηt|2 + σk+1|∂k+1
s η|2

=
∫

kσk−1σt|∂k
s ηt|2 + (k + 1)σkσt|∂k+1

s η|2

+ 2
∫

σk〈∂k
s ηt, ∂

k+1
s (σηs)〉+ σk+1〈∂k+1

s ηt, ∂
k+1
s η〉

≤
∫

kσk−1σt|∂k
s ηt|2 + (k + 1)σkσt|∂k+1

s η|2

+
∫

∂s

(
σk〈∂k

s ηt, ∂
k+1
s η〉

)
+
∑k−1

j=1

(
k+1

j

) ∫
σk(∂k+1−j

s σ)〈∂k
s ηt, ∂

j+1
s η〉

+
∫

σk(∂k+1
s σ)〈∂k

s ηt, ηs〉
= φ1 + φ2 + φ3 + φ4.

First, for φ1, we use Proposition 6.4 and Theorem 6.3 to get |σt| ≤ Cs and
|σ| ≤ As, so that

φ1 =
∣∣∫ kσk−1σt|∂k

s ηt|2 + (k + 1)σkσt|∂k+1
s η|2

∣∣
. Ak−1C

∫
sk|∂k

s ηt|2 + AkC
∫

sk+1|∂k+1
s η|2

= Ak−1CUk + AkCVk.
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We then observe that

φ2 = σk〈∂k
s ηt, ∂

k+1
s η〉

∣∣s=1

s=0
= 0

since σ(t, 0) = 0 and η and ηt are both odd through s = 1, so that one of ∂k
s ηt or

∂k+1
s η is zero at s = 1 for every integer k.

Next, we observe that φ3 = 0 if k = 1, and if k ≥ 2 we have

φ2
3 .

∑k−1
j=1

(∫
σk(∂k+1−j

s σ)〈∂k
s ηt, ∂

j+1
s η〉

)2
. A2k

∑k−1
j=1

(∫
sk|∂k

s ηt|2
) (∫

sk|∂k+1−j
s σ|2|∂j+1

s η|2
)

. A2kUk

[(
sups sσ2

ss

) ∫
sk−1|∂k

s η|2

+
∑k−2

j=1

(
sups sj |∂j+1

s η|2
) ∫

sk−j |∂k+1−j
s σ|2

]
. A2kUk

[( ∫
sσ2

ss + s2σ2
sss

)( ∫
sk|∂k

s η|2 + sk+1|∂k+1
s η|2

)
+
∑k−2

j=1

( ∫
sj |∂j+1

s η|2 + sj+1|∂j+2
s η|2

)
·( ∫

sk−j+1|∂k−j+1
s σ|2 + sk−j+2|∂k−j+2

s σ|2
)]

. A2kUk

[
(D1 + D2 + D3)(Vk−1 + Vk)

+
∑k−2

j=1 (Vj + Vj+1 + Vj+2)(Dk−j + Dk−j+1)
]
.

Finally for φ4, we first observe that |ηs|2 ≡ 1 implies 〈ηs, ηst〉 ≡ 0. Hence

0 = ∂k−1
s 〈ηs, ηst〉 =

∑k−1
j=0

(
k−1

j

)
〈∂j+1

s η, ∂k−j
s ηt〉,

so that
〈∂k

s ηt, ηs〉 = −
∑k−1

j=1

(
k−1

j

)
〈∂j+1

s η, ∂k−j
s ηt〉.

Again we notice this is zero if k = 1. If k ≥ 2 we have (choosing α = 1
2 in Theorem

6.3 for the σ estimates Dk):

φ2
4 =

(∫
σk(∂k+1

s σ)〈∂k
s ηt, ηs〉

)2
. A2k

∑k−1
j=1

(∫
sk(∂k+1

s σ)〈∂j+1
s η, ∂k−j

s ηt〉
)2

. A2k
∫

sk+1/2(∂k+1
s σ)2

∑k−1
j=1

∫
sk−1/2|∂j+1

s η|2|∂k−j
s ηt|2

. A2kDk

[(
sups s1/2|ηst|2

) ∫
sk−1|∂k

s η|2

+
∑k−2

j=1

(
sups sj+1/2|∂j+1

s η|2
) ∫

sk−j−1|∂k−j
s ηt|2

]
. A2kDk

[
(U1 + U2 + U3)(Vk−1 + Vk)

+
∑k−2

j=1 (Vj + Vj+1 + Vj+2)(Uk−j + Uk−j+1)
]
.

Putting all of these inequalities together, we obtain (52)–(54). Using
√

ab . a+b,
we easily conclude (52)–(55). �

The main complication in this proof and in the proof of Theorem 6.5 is that, by
Remark 6.2, we cannot get an estimate for quantities like sups|ηst|2 directly using
the estimates above; instead we need some weighting like sups sα|ηst|2 for some
α > 0 to get an estimate in terms of P3. Of course, the standard version of the
one-dimensional Sobolev inequality would apply here to get a supremum in terms
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of integrals of derivatives, but to get the proper weighted norms we would need to
go up to P4.

Theorems 6.3 and 6.5 imply that the estimates close up at k = 3; we just need
to be able to estimate Uk and Vk in terms of Ũk and Ṽk respectively. To do this,
we just need an upper bound on s

σ , or equivalently a lower bound on σ
s .

Lemma 6.6. Let σ and η solve (57). Then

U0 =
∫ 1

0

|ηt(t, s)|2 ds

is constant in time, and if U0 = 0 then η(t, s) is constant in time. In addition

1
B
≡ inf

0≤s≤1

σ(s)
s

≥ e−Q2

1 + Q2

U0

4
, (56)

where

Q2 =
∫ 1

0

s2|ηss|2 ds +
∫ 1

0

s3|ηsss|3 ds.

Proof. To prove that U0 is constant in time, we use

d

dt

∫ 1

0

|ηt(t, s)|2 ds = 2
∫ 1

0

〈ηt(t, s), ηtt(t, s)〉 ds

= 2
∫ 1

0

〈ηt(t, s), ∂s(σηs)〉 ds

= 2
∫ 1

0

∂

∂s

(
σ〈ηt, ηs〉) ds− 2

∫ 1

0

σ〈ηst, ηs〉

= 0,

using the fact that σ(0) = 0, ηt(1) = 0, and 〈ηts, ηs〉 = 0 since |ηs|2 ≡ 1. Hence
U0 is constant in time. If U0 is zero, then ηt(t, s) = 0 for all t and s, so that
η(t, s) = η(0, s) = γ(s), and the chain never moves.

Now to prove (56), we use Proposition 4.1 and Theorem 4.2 to get

1
B

= inf
s

σ(s)
s

= inf
s

∫ 1

0

G(s, x)
s

|ηxt(x)|2 dx

≥ inf
s,x

G(s, x)
sx

∫ 1

0

s|ηst(s)|2 ds ≥ e−ξ

1 + ξ
U1,

where ξ =
∫

s|ηss|2. We have ξ ≤ Q2 by (35) and U1 ≥ U0
4 by (39) (since ηt(1) = 0),

and (56) follows. �

Combining Theorems 6.3 and 6.5 with Lemma 6.6, we see that all the estimates
close up at k = 3, and that all higher norms are controlled by P3 and Q3. Hence
we obtain the following criterion for blowup of smooth solutions.

Corollary 6.7. Suppose η, σ is a solution of the system

ηtt = ∂s(σηs), σss − |ηss|2 = −|ηst|2, |ηs|2 ≡ 1,

η(t, 1) = 0, σs(1) = 0, σ(0) = 0, η(0, s) = γ(s), ηt(0, s) = w(s), (57)

where we assume that |γ′(s)|2 = 1 and 〈γ′(s), w′(s)〉 = 0 for all s.
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Assume that U0 > 0 and that in some time interval [0, T ], the norms P3(t) and
Q3(t) are bounded uniformly. Assume further that Uk(0) and Vk(0) are bounded for
all k. Then Uk(t) and Vk(t) are also bounded in [0, T ] for all k.

Proof. Combining (46) with (55), we see that

d

dt
(Ũk + Ṽk) ≤ H1Uk + H2Vk + H3

where H1, H2, and H3 are bounded. Furthermore since Q2 is bounded, so is
B(t) = sups

s
σ(t,s) by Lemma 6.6, and thus

d

dt
(Ũk + Ṽk) ≤ BkH1Ũk + Bk+1H2Ṽk + H3.

So by Gronwall’s inequality, Ũk(t) and Ṽk(t) are bounded on [0, T ] in terms of Ũk(0)
and Ṽk(0). Thus finally Uk(t) and Vk(t) are also bounded on [0, T ]. �

Remark 6.8. Certainly the estimates in Theorems 6.3 and 6.5 seem to demand
a lot of the functions; they only close up at k = 3, which essentially requires that
away from the free end, the whip’s position must be locally H4, so that at minimum
it has three continuous derivatives. This is partly due to the basic structure of the
equations, but mostly due to the lack of any constraint at the free end. The main
issue is that we need to keep increasing the weighting of the norms, because if we
were to take any other norm

Ũk + Ṽk =
∫ 1

0

σp|∂k
s ηt|2 + σp+1|∂k+1

s η|2

and differentiate in time (even if σ were constant in time) we would end up with

d

dt
(Ũk + Ṽk) =

∫ 1

0

σp〈∂k
s ηt, ∂

k+1
s (σηs)〉+ σp+1〈∂k+1

s η, ∂k+1
s ηt〉

=
∫ 1

0

σp+1〈∂k
s ηt, ∂

k+2
s η〉+ (k + 1)σsσ

p〈∂k
s ηt, ∂

k+1
s η〉

+ σp+1〈∂k+1
s η, ∂k+1

s ηt〉+ lower order terms

=
∫ 1

0

(k − p)σsσ
p〈∂k

s ηt, ∂
k+1
s η〉+ lower order terms,

and if k 6= p, then it’s easy to see there is no way to bound this term by (Ũk + Ṽk).
If we knew σ were always positive, as for example for a whip with fixed endpoints

or a periodic loop, a bound in terms of P2 and Q2 would be sufficient. With more
sophisticated techniques we could perhaps reduce the dependence to P1 and Q1;
but of course, we could not expect to go beyond that. The tension equation clearly
could not be expected to make sense unless ηss were in L2, so we need at least Q1

to be bounded.

The phenomenon in Remark 6.8 is perhaps explained by the following observa-
tion, which is much simpler in dimension two.
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Proposition 6.9. (η, σ) is a smooth solution of (57) in R2 if and only if the
functions θ : D4 → S1 and α : D4 → R+ defined by(

cos θ(x), sin θ(x)
)

= ηs(|x|2)

α(x) =
σ(|x|2)
4|x|2

are spherically symmetric solutions of the equations

θtt = α∆θ + 〈∇α,∇θ〉
∆α− |∇θ|2α = −|θt|2.

(58)

with Neumann boundary condition ∂θ
∂ν = 0 for θ and Robin boundary condition

∂α
∂ν + 2α = 0 for α on ∂D4 = S3. Furthermore any smooth solution has α > 0
everywhere, so that the hyperbolic equation for θ is nondegenerate.

Proof. Since ηs is a unit vector, we can write ηs = (cos θ, sin θ) for some θ ∈ S1.
Differentiating the equation for η with respect to s and using this formula, we
obtain the following equation for θ:

θtt = σθss + 2σsθs.

Now if we set σ(s) = 4sα(s), the equations change to

θtt = 4α(sθss + θs) + 4sαsθs

−|θt|2 = 4sαss + 8αs − 4s|θs|2α.

Now changing variables by s = r2, we easily see that these equations are

θtt = α
(
θrr + 3

r θr

)
+ 2αrθr

−|θt|2 = αrr + 3
r αr − |θr|2α.

Now the operator ∂2

∂r2 + n−1
r

∂
∂r is familiar as the spherically symmetric Laplacian

on Rn, and hence we recognize both terms above as coming from the Laplacian on
R4 under the assumption that α and θ are both spherically symmetric.

The boundary conditions are easy to check: the condition for α comes from
dσ
ds

∣∣
s=1

= 0, which translates into α(1) + 1
2αr(1) = 0, and the condition on θ comes

from the fact that a smooth solution of (57) will be odd through s = 1, which
forces θ to be even through s = 1. Positivity of α comes from the fact that σ(s)

s is
bounded below, using Lemma 6.6. �

The fact that the degeneracy can be removed if we work in a higher-dimensional
space, and thus in some sense the equations naturally “live” there, is essentially the
reason why we need higher than usual Sobolev order for the estimates to close.

7. Convergence as the chain approaches the whip

We now show how to construct the solution of the partial differential equations
(57), by showing that solutions of the ordinary differential equations (22) and (21)
converge in the limit as the number of links approaches infinity. It is easy to see
that this is true formally, in the sense that if we knew σi = σ( i

n ) and ηi = η( i−1
n )

for smooth functions σ and η, then the limit of (21) and (22) would be (57). The
main requirement is to show that there are finite-dimensional analogues of each of
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the energy norms in Theorems 6.3 and 6.5, and that they are bounded by numbers
independent of n, so that we can find a convergent subsequence.

As a consequence, we have that the motion of a chain converges to the motion of
a whip as n approaches infinity, in the sense that position, velocity, and acceleration
all converge.

The analogues of the energy Uk and Vk from (34) are the discrete energy norms

uk =
1
n

n−k+1∑
j=1

Γ(j + k)
nkΓ(j)

|nk∆kη̇j |2,

vk =
1
n

n−k∑
j=1

Γ(j + k + 1)
nk+1Γ(j)

|nk+1∆k+1ηj |2,

(59)

and the analogues of (42) are the time-dependent energy norms

ũk =
1
n

n−k+1∑
j=1

σjσj+1 · · ·σj+k−1|nk∆kη̇j |2,

ṽk =
1
n

n−k∑
j=1

σjσj+1 · · ·σj+k|nk+1∆k+1ηj |2.

(60)

Here ∆k is the difference operator, defined recursively by

∆0ηj = ηj , ∆k+1ηj = ∆kηj+1 −∆kηj .

We replace the powers sq with gamma function terms Γ(k+q)
nqΓ(k) , which reduce when

q is an integer to k(k+1)···(k+q−1)
nq . These behave much more nicely in difference

equations than the more obvious analogue ( k
n )q, though they are the same in the

limit as n approaches infinity.
Clearly if ηj = η( j−1

n ) for every j, and jn is a sequence such that jn

n → s, then
we have

lim
n→∞

nk∆kηjn
=

∂kη

∂sk
.

Hence the weighting by powers of n is to ensure

lim
n→∞

uk = Uk, lim
n→∞

vk = Vk, lim
n→∞

ũk = Ũk, lim
n→∞

ṽk = Ṽk

as long as ηj = η( j−1
n ) for some smooth function η.

Now we need to construct discrete analogues of all the estimates in Section 6.
The starting point is the following analogue of Theorem 6.1.

Theorem 7.1. Let fk be a finite sequence in Rm, for 1 ≤ k ≤ n. Denote ∆fk =
fk+1 − fk for 1 ≤ k ≤ n − 1. Then for any r > 0, we have the discrete weighted
Poincaré inequality

n∑
k=1

Γ(k + r − 1)
Γ(k)

|fk|2 .
n∑

k=1

Γ(k + r)
Γ(k)

|fk|2 +
n−1∑
k=1

Γ(k + r + 1)
Γ(k)

|∆fk|2 (61)

and the discrete weighted Sobolev inequality

max
1≤m≤n

Γ(m + r)
Γ(m)

|fm|2 .
n∑

k=1

Γ(k + r)
Γ(k)

|fk|2 +
n−1∑
k=1

Γ(k + r + 1)
Γ(k)

|∆fk|2. (62)
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Proof. The main thing here is a discrete analogue of the basic formula (37). Let p
and q be any real numbers. We have

|(p + k)fk+1 − kfk|2 = p2|fk+1|2 + k(k + p)|∆fk|2 + pk
(
|fk+1|2 − |fk|2

)
We multiply through by Γ(k+q)

Γ(k+1) , then observe that the terms on the right side can
be simplified a bit, using the formula Γ(x + 1) = xΓ(x), to

p2 Γ(k + q)
Γ(k + 1)

|fk+1|2 + pk
Γ(k + q)
Γ(k + 1)

(
|fk+1|2 − |fk|2

)
= p(p− q)

Γ(k + q)
Γ(k + 1)

|fk+1|2 + p∆
(

Γ(k + q)
Γ(k)

|fk|2
)

Now let i and j be any integers with 1 ≤ i < j ≤ n. Summing all the terms from
k = i to k = j − 1 and using the telescope formula

∑j−1
k=i ∆bk = bj − bi, we obtain

j−1∑
k=i

Γ(k + q)
Γ(k + 1)

|(k + p)fk+1 − kfk|2 = p(p− q)
j−1∑
k=i

Γ(k + q)
Γ(k + 1)

|fk+1|2

+
j−1∑
k=i

(k + p)
Γ(k + q)

Γ(k)
|∆fk|2 + p

Γ(j + q)
Γ(j)

|fj |2 − p
Γ(i + q)

Γ(i)
|fi|2. (63)

The rest of the proof proceeds exactly as the proof of Theorem 6.1, and we omit
it. �

Now we prove the discrete analogues of Theorems 6.3 and 6.5.

Theorem 7.2. Let ηk(t) ∈ Rm, σk(t) ∈ R be functions of time defined for 1 ≤ k ≤
n, with ηn+1 ≡ 0 and σ0 ≡ 0 for convenience. Set δk = n(ηk+1−ηk) for 1 ≤ k ≤ n.
Suppose that ηk and σk solve the system

η̈k = nσkδk − nσk−1δk−1, 1 ≤ k ≤ n,

−|δ̇k|2

n2
= 〈δk+1, δk〉σk+1 − 2σk + 〈δk, δk−1〉σk−1

ηk(0) = γk, η̇k(0) = wk, ηn+1 = 0, σ0 = 0,

(64)

where we assume that |γk+1 − γk|2 = 1
n2 and 〈γk+1 − γk, wk+1 − wk〉 = 0 for

1 ≤ k ≤ n.
For α ∈ (0, 1), set

dk =
1
n

n−k−1∑
j=0

Γ(j + k + α)
nk+αΓ(j)

|nk+1∆k+1σj |2.

With uk and vk defined as in (59), set

pk =
k∑

j=1

uj , qk =
k∑

j=1

vk, and rk =
k∑

j=1

dj . (65)
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Set

a = max
1≤k≤n

n|σk − σk−1|,

b = max
1≤k≤n

k

nσk
,

c = max
1≤k≤n

n|σ̇k|
k

.

Then |δk|2 ≡ 1, so that v0(t) ≡ n+1
2n for all t. In addition we have the following

a priori estimates, involving only numerical constants (independent of σk and ηk).
First we have

a . p2, b . 4eq2(1 + q2)/u0, c . p
3/2
2 q

1/2
3 . (66)

We also have

d1 . a2q3v1 + p2u1, (67)

d2 . a2q3v2 + p3u2, (68)

d3 . a2q3v3 + p3u3 + q2
2(a2q3q2 + p3p2). (69)

Finally we have

d

dt
(ũ1 + ṽ1) . cu1 + cav1, (70)

d

dt
(ũ2 + ṽ2) . cau2 + ca2v2 + a2√r2p2q3, (71)

d

dt
(ũ3 + ṽ3) . ca2u3 + ca3v3 + a3√r3p3q3. (72)

Proof. These are generally proved in the same way as the estimates in Section 6.
The analogue of (44) is the following:

max
1≤k≤n

nσk

k
= max

1≤k≤n

1
k

k∑
j=1

n(σj − σj−1) ≤
1
k

k∑
j=1

a = a. (73)

That |δk|2 ≡ 1 for all k and t is automatic, since we are dealing with ordinary
differential equations for which existence and uniqueness are easy. Hence we get
v0 = 1

n2

∑n
k=1 k|δk|2 = n+1

2n .
For u0 we have

d
dt

∑n
k=1|η̇k|2 = 2

∑n
k=1〈η̇k, η̈k〉

= 2n
∑n

k=1〈η̇k, σkδk − σk−1δk−1〉
= 2n

∑n
k=1〈η̇k, σkδk〉 − 2n

∑n
k=2〈η̇k−1, σk−1δk−1〉

− 2n
∑n

k=2〈η̇k − η̇k−1, σk−1δk−1〉
= 2nσn〈η̇n, δn〉 −

∑n
k=2 σk−1

d
dt |δk|2

= 0

since nη̇n = −δ̇n and |δk|2 is constant in time for all k. If u0 is zero, then η̇k = 0
for every k, so the chain doesn’t move.

The proofs of the bound for b in (66) is clearly exactly the same as the proof of
Lemma 6.6.
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To prove the bound for c we differentiate the equation for σ in time, using
δ̈k = n2σk+1δk+1 − 2n2σkδk + n2σk−1δk−1, to obtain

− 2σk+1〈δ̇k, δk+1 − δk〉 − 2σk−1〈δ̇k, δk−1 − δk〉

= (〈δ̇k+1, δk〉+ 〈δk+1, δ̇k〉)σk+1 + 〈δk+1, δk〉σ̇k+1

− 2σ̇k + (〈δ̇k, δk−1〉+ 〈δk, δ̇k−1〉)σk−1 + 〈δk, δk−1〉σ̇k−1,

for 1 ≤ k ≤ n− 1, again using σ0 ≡ 0 for convenience. For k = n we have

σ̇n − 〈δn−1, δn〉σ̇n−1 = σn−1

(
〈δn, δ̇n−1〉+ 3〈δn−1, δ̇n〉

)
.

Thus we have

σ̇k = n
n−1∑
j=1

Gkj

([
〈δ̇j+1, δj〉+ 3〈δj+1, δ̇j〉

]
σj+1

+
[
3〈δ̇j , δj−1〉+ 〈δj , δ̇j−1〉

]
σj−1

)
+ nGknσn−1

[
〈δn, δ̇n−1〉+ 3〈δn−1, δ̇n〉

]
= n

n−1∑
j=2

Gkj

(
∆σj

[
− 〈δ̇j+1,∆δj〉+ 3〈∆δj , δ̇j〉

]
−∆σj−1

[
〈∆δj−1, δ̇j−1〉 − 3〈δ̇j ,∆δj−1〉

]
+ σj

[
2〈δ̇j ,∆2δj−1〉 − 〈∆δj ,∆δ̇j〉 − 〈∆δj−1,∆δ̇j−1〉

])
+ nGk1σ2

[
− 〈δ̇2,∆δ1〉+ 3〈δ1, δ̇1〉

]
+ nGknσn−1

[
〈∆δn−1, δ̇n−1〉 − 3〈∆δn−1, δ̇n〉

]
Thus we have

1
a

n|σ̇k|
k

. n2
n−1∑
j=2

(
|∆η̇j+1||∆2ηj |+ |∆2ηj ||∆η̇j |+ |∆η̇j−1||∆2ηj−1|

+ |∆2ηj−1||∆η̇j |+ j|∆3ηj−1||∆η̇j |+ j|∆2ηj ||∆2η̇j |

+ j|∆2ηj−1||∆2η̇j−1|
)

+ n2|∆η̇2||∆2η1|+ n2|∆2η1||∆η̇1|

+ n3|∆2ηn−1||∆η̇n−1|+ n3|∆2ηn−1||∆η̇n|

. n2

n−1∑
j=1

|∆η̇j ||∆2ηj |+
n−2∑
j=1

j|∆3ηj ||∆η̇j |+
n−1∑
j=1

j|∆2ηj ||∆2η̇j |


+ n3|∆2ηn−1||∆η̇n|.

From this the bounds follow as before.
Now to approximate the norms dj , recall that the defining equation for σj is

ajσj+1 − 2σj + aj−1σj−1 = − 1
n2 |δ̇j |2.

Using κj = n(δj+1−δj) as in the proof of Theorem 5.2, we see that aj = 1− 1
2n2 |κj |2,

so that

σj+1 − 2σj + σj−1 = − 1
2n2

(
2|δ̇j |2 + |κj |2σj+1 + |κj−1|2σj−1

)



28 STEPHEN C. PRESTON

for 1 ≤ j ≤ n− 2, while

an−1σn−1 − σn = − 1
n2 |δ̇n|2.

We then get

1
n

n−3∑
j=0

Γ(j+1+α)
n1+αΓ(j) |n

2∆2σj |2

. n−2−α∑n−3
j=0

Γ(j+1+α)
Γ(j)

(
|δ̇j+1|4 + |κj+1|4σ2

j+2 + |κj |4σ2
j

)
. 1

n2+α

(∑n−2
j=1

Γ(j+α)
Γ(j−1) |n∆η̇j |4 + a2

∑n−2
j=1

(j+1)2

n2
Γ(j+α)
Γ(j−1) |n

2∆2ηj |4
)

.
(
max1≤j≤n

Γ(j+α−1)
Γ(j−1) |n∆η̇j |2

)
1
n

∑n−1
j=1 (j + α− 1)|n∆η̇j |2

+ a2
(
max1≤j≤n−1

j
n |n

2∆2ηj |2
)

1
n

∑n−2
j=1

j(j+1)
n2 |n2∆2ηj |2

. p2
2 + a2q2

2 ,

using (35) and (36).
We’ll skip the details for the higher norms of σj , but the basic estimates are

proved exactly as in Theorem 6.3. The only thing to worry about is the analogue
of the formulas for σsss and σssss, which we do now. For the third difference, we
clearly have

∆3σj−1 = σj+2 − 3σj+1 + 3σj − σj−1

= − 1
2n2

(
2|δ̇j+1|2 − 2|δ̇j |2 + |κj+1|2σj+2

+ |κj |2σj − |κj |2σj+1 − |κj−1|2σj−1

)
= − 1

2n2

(
2〈δ̇j+1 + δ̇j ,∆δ̇j〉+ ∆σj+1|κj+1|2 + ∆σj−1|κj−1|2

〈κj+1 + κj ,∆κj〉σj+1 + 〈κj + κj−1,∆κj−1〉σj

)
.

For the fourth difference, we have

∆4σj−1 = σj+3 − 4σj+2 + 6σj+1 − 4σj + σj−1

= − 1
n2

(
|∆δ̇j+1|2 + |∆δ̇j |2 + 2〈δ̇j+1,∆2δ̇j〉

)
− 1

2n2

(
|κj+2|2∆2σj+1 + 2∆σj+1〈κj+2 + κj+1,∆κj+1〉

+ |κj−1|2∆2σj−1 + 2∆σj〈κj + κj−1,∆κj−1〉
)

− σj+1
2n2

(
|∆κj+1|2 + |∆κj−1|2 + 2〈∆κj ,∆κj+1〉

+ 2〈κj ,∆2κj〉+ 2〈κj ,∆2κj−1〉
)
.
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For (70) we have
d

dt
(ũ1 + ṽ1) =

d

dt

(
n
∑n

j=1 σj |n∆η̇j |2 + n3
∑n−1

j=1 σjσj+1|n2∆2ηj |2
)

= n
∑n

j=1 σ̇j |∆η̇j |2 + n3
∑n−1

j=1 (σ̇jσj+1 + σj σ̇j+1)|∆2ηj |2

+ 2n
∑n−1

j=1 σj〈σj+1δj+1 − 2σjδj + σj−1δj−1, δ̇j〉

+ σjσj+1〈δj+1 − δj , δ̇j+1 − δ̇j〉 − 2n2σnσn−1〈η̇n, δn−1〉

≤ cu1 + 2cav1 + 2n
∑n−1

j=2 σjσj−1〈δj−1, δ̇j〉

− 2n
∑n−1

j=1 σjσj+1〈δj , δ̇j+1〉+ 2nσn−1σn〈δ̇n, δn−1〉
= cu1 + 2cav1

For the proofs of (71) and (72), we will just write the basic difference formulas;
again the proofs work the same as for Theorem 6.5.

We easily verify, after some manipulations, that
d

dt
(ũ2 + ṽ2)

= 1
n

∑n−1
j=1

d
dt (σjσj+1)|n2∆2η̇j |2 + 1

n

∑n−2
j=1

d
dt (σjσj+1σj+2)|n3∆3ηj |2)

+ n3
∑n−2

j=1

[
σjσj+1σj+2〈δj+2 − 2δj+1 + δj , δ̇j+2 − 2δ̇j+1 + δ̇j〉

+ σjσj+1〈∆δ̇j , σj+2δj+2 − 3σj+1δj+1 + 3σjδj − σj−1δj−1〉
]

+ n3σn−1σn〈δ̇n−1,−2σnδn + 3σn−1δn−1 − σn−2δn−2〉

= 1
n

∑n−1
j=1

d
dt (σjσj+1)|n2∆2η̇j |2 + 1

n

∑n−2
j=1

d
dt (σjσj+1σj+2)|n3∆3ηj |2)

+ n3∑n−1
j=1 σjσj+1

[
〈∆δj ,∆δ̇j〉(2σj+2 − 3σj+1 + σj−1)

+ 〈δj , δ̇j+1 − δ̇j〉(σj+2 − 3σj+1 + 3σj − σj−1)
]
.

Analyzing the differences of the σj , we observe that

2σj+2 − 3σj+1 + σj−1 = 2∆2σj + ∆2σj−1,

σj+2 − 3σj+1 + 3σj − σj−1 = ∆3σj−1.

Now these terms can be estimated in terms of d1 and d2.
For the third discrete norm we have, after a lot of algebra,

d

dt
(ũ3 + ṽ3) = n5 d

dt

∑n−2
j=1 σjσj+1σj+2|∆3η̇j |2

+ n7 d
dt

∑n−3
j=1 σjσj+1σj+2σj+3|∆4ηj |2

= n5
∑n−2

j=1
d
dt (σjσj+1σj+2)|∆3η̇j |2

+ n7
∑n−3

j=1
d
dt (σjσj+1σj+2σj+3)|∆4ηj |2

+ n7∑n−2
j=1 σjσj+1σj+2

(
(3σj+3 − 4σj+2 + σj−1)〈∆2δj ,∆2δ̇j〉

+ (3σj+3 − 8σj+2 + 6σj+1 − σj−1)〈∆δj ,∆2δ̇j〉

+ (σj+3 − 4σj+2 + 6σj+1 − 4σj + σj−1)〈δj ,∆2δ̇j〉
)

+ n7σn〈−2δn + 3δn−1 − δn−2, δ̇n − 2δ̇n−1 + δ̇n−2〉.
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We clearly have

3σj+3 − 4σj+2 + σj−1 = 3∆2σj+1 + 2∆2σj + ∆2σj−1,

3σj+3 − 8σj+2 + 6σj+1 − σj−1 = 3∆3σj + ∆3σj−1,

σj+3 − 4σj+2 + 6σj+1 − 4σj + σj−1 = ∆4σj−1,

and so using the bounds on d1, d2, and d3, we can estimate all these terms as in
the proof of Theorem 6.5. �

Now we can finally prove the local existence theorem for the system (57) of
partial differential equations. The fact that all the smooth a priori estimates from
Theorems 6.3 and 6.5 have discrete analogues in Theorem 7.2 allows us to construct
the solution as a limit of a subsequence of discrete solutions as n → ∞, following
the technique of Ladyzhenskaya [L] and references therein. First, some lemmas.

Lemma 7.3. Suppose γ : [0, 1] → Rm and w : [0, 1] → Rm are functions with
bounded weighted Sobolev norms:∫ 1

0

s2|γ′′(s)|2 + s3|γ′′′(s)|2 + s4|γiv(s)|2 ds < ∞

and ∫ 1

0

s|w′(s)|2 + s2|w′′(s)|2 + s3|w′′′(s)|2 ds < ∞,

and that in addition we have

|γ′(s)|2 ≡ 1 and 〈γ′(s), w′(s)〉 ≡ 0

for all s ∈ [0, 1], along with the compatibility conditions γ(1) = 0 and w(1) = 0.
For n ∈ N define the discrete approximations γn and wn to these initial condi-

tions as follows:

(γn)i = − 1
n

n∑
j=i

γ′( j
n ),

(wn)i = − 1
n

n∑
j=i

w′( j
n ).

(74)

Let (ηn)i(t) and (σn)i(t), for 1 ≤ i ≤ n, be the solution of equations (64) with
ηn(0) = γn and η̇n(0) = wn.

Then there is a T > 0 such that the discrete energy norm e3(t) = 1 + p3(t) +
q3(t) (where p3 and q3 are defined as in (65)) is bounded uniformly on [0, T ] and
uniformly in n.

Proof. Note that the definition (74) ensures that n|(γn)i+1 − (γn)i| = 1 for each
1 ≤ i ≤ n, and also 〈(γn)i+1 − (γn)i, (wn)i+1 − (wn)i〉 = 0, so that γn and wn will
serve as proper initial conditions for the ODEs (64).

Let q2(0) = v1(0) + v2(0) be the norm of the initial data γn, and choose any
R > q2(0). Choose any β > max{1, 4eR(1 + R)/u0(0)}. Then as long as q2(t) < R,
we will have the corresponding b(t) = sup1≤k≤n

k
nσk(t) < β by (66), and this allows

us to uniformly relate the norms ẽ3(t) and e3(t) for short time.
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Now with ẽ3(t) = 1+
∑3

i=1 ũi(t)+ ṽi(t), we combine all the estimates of Theorem
7.2, finding a numerical constant M independent of all the data such that the
following crude estimate holds:

dẽ3

dt
≤ Me3(t)7.

Next, we have e3(t) ≤ max{b(t), 1}4ẽ3(t) ≤ β4ẽ3(t), so that ẽ3 satisfies the differ-
ential inequality

dẽ3

dt
≤ Mβ28ẽ3(t)

as long as q2(t) < R. Gronwall’s inequality then implies

ẽ3(t) ≤ ẽ3(0)[1− 6Mβ28ẽ3(0)6t]−1/6.

Let T1 = (12Mβ28ẽ3(0)6)−1; then we have a uniform bound on ẽ3(t) for t ∈ [0, T1]
as long as q2(t) < R.

To finish, we need a bound on q2(t) to confirm our assumption. So we compute

dq2

dt
= 2

∫ 1

0

s2〈ηss, ηsst〉 ds + 2
∫ 1

0

s3〈ηsss, ηssst〉 ds

≤ 2
√(∫

s2|ηss|2
) (∫

s2|ηsst|2
)

+ 2
√(∫

s3|ηsss|2
) (∫

s3|ηssst|2
)

≤ 2
√

q2p3

≤ 2β3/2
√

q2p̃3.

We thus have √
q2(t) ≤

√
q2(0) + β3/2

∫ t

0

√
p̃3(τ) dτ.

Now choose T2 small enough so that the right hand side is less than
√

R.
Then for T = min{T1, T2}, we have q2(t) < R, so that b(t) < β, and ẽ3(t) is

uniformly bounded. Hence on [0, T ], we also know e3(t) ≤ β4ẽ3(t) is uniformly
bounded, and all these bounds are independent of n. �

Next we need to find an interpolating function for the discrete data, for any fixed
time: the important thing is to bound the derivatives of the interpolating function
in terms of the differences, with constants independent of n. The proof is a simple
consequence of a theorem of Kunkle.

Lemma 7.4. Let f1, · · · , fn be a finite sequence in Rm, and adjoin fn+1 = 0. Then
we can find a function f : [0, 1] → Rm such that f( i−1

n ) = fi for 1 ≤ i ≤ n + 1, and
constants independent of n such that∫ 1

0

sk|f (k)(s)|2 ds ≤ Mk
1
n

n−k∑
i=1

Γ(i + k)
nkΓ(i)

|nk∆kfi|2 (75)

for 1 ≤ k ≤ 4.

Proof. The result of Kunkle [Ku] is that for any integer N one can find a constant
C such that for any such data, there is an interpolating functions such that for
0 ≤ k ≤ N we have |f (k)(s)| ≤ C|nk∆kfj if j−1

n ≤ s ≤ j+N−1
n . So we just integrate

both sides over intervals [ i
n , i+1

n ] and sum. �

Our final lemma is a weighted version of the Rellich theorem.
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Lemma 7.5. Let Nk[0, 1] be the completion of the space of smooth functions from
[0, 1] to Rm, in the norm given by

‖f‖2
Nk

=
k∑

j=0

∫ 1

0

sj |d
jf

dsj |2 ds. (76)

Then Nk+1 is compactly embedded in Nk for each nonnegative integer k.

Proof. By (35), we know that there is a constant λk such that

‖f‖2
Nk

≤ λk

k+1∑
j=0

∫ 1

0

sj+1|d
jf

dsj |2 ds.

Now we use a trick from [OK]. For any n ∈ N, the operator

In(f)(x) =

{
f(x) x ≥ 1

n

0 x < 1
n

is certainly compact as an operator from W to V , by Rellich’s lemma on [ 1
n , 1] (in

ordinary Sobolev spaces). So to prove I : Nk+1 → Nk is compact, we just need
to show In converges in norm to I, since a limit of compact operators is compact.
Now

‖In(f)− If‖2
Nk

=
k∑

j=0

∫ 1/n

0

sj |d
jf

dsj |2 ds

≤ λk

k+1∑
j=0

∫ 1/n

0

sj+1|d
jf

dsj |2 ds ≤ λk

n
‖f‖2

Nk+1
,

so that In → I in L(W,V ). �

Theorem 7.6. Given initial conditions γ and w as in Lemma 7.3, there is a T > 0
such that there is a unique solution η of the system (57) in L∞([0, T ], N3[0, 1]) ∩
W 1,∞([0, T ], N2[0, 1]).

Proof. For each fixed t and each n ∈ N, construct the piecewise interpolating poly-
nomial as in Lemma 7.4, and call it η̃n(t). Then by Lemma 7.3 we get a uniform
bound on on E3(t) in some short time interval [0, T ]; in other words, the family η̃n

is bounded in L∞([0, T ], N4[0, 1]) ∩W 1,∞([0, T ], N3[0, 1]).
By the compactness Lemma 7.5, there is a subsequence η̃nk

which converges
strongly in L∞([0, T ], N3[0, 1]) ∩ W 1,∞([0, T ], N2[0, 1]). For any ε > 0 the con-
vergence is in H3[ε, 1], and thus by the usual Sobolev embedding theorem also in
C2[ε, 1]. So we can take the limit of the system (64) pointwise to see that we have
a solution of (57).

Uniqueness follows from the energy conservation result
∫ 1

0
|ηt|2 ds = constant,

the derivation of which is valid since ηt ∈ N2. �

Combining Theorem 7.6 and Corollary 6.7, we have the following Corollary.

Corollary 7.7. Suppose γ and w are C∞ initial conditions for (57) which are odd
through s = 1, i.e., all even derivatives are zero at s = 1. Then (57) has a C∞

solution on some time interval [0, T ], and T < ∞ if and only if
∫ T

0
E3(t) dt = ∞.



THE MOTION OF WHIPS AND CHAINS 33

8. Future research

In this paper we considered the whip with one fixed and one free end as boundary
conditions. The other possibilities are to have two free ends, to have two fixed ends,
and to have a periodic loop. All of the estimates in this paper have analogues in
those cases. When there are two free ends, the tension must satisfy σ(0) = 0 and
σ(1) = 0, so the appropriate weighted norms look like

∫ 1

0
sk(1 − s)k|f (k)(s)|2 ds;

we would expect to need at least as many derivatives as in the one-fixed, one-free
case and possibly more to get the estimates to close up. When there are two fixed
ends, or when the whip is periodic, the problem becomes simpler since we can use
ordinary Sobolev spaces for the estimates, and one could probably get estimates in
lower-order norms.

The addition of gravity brings some complications. One is that the boundary
conditions change, and oddness through the fixed point is no longer enough to
satisfy the conditions automatically. The other is that, as mentioned, if the whip is
above the fixed point, the tension may become negative. In that case the evolution
equation becomes elliptic.

The blowup criterion
∫ T

0
E3(t) dt can certainly be improved; once we know a

solution exists, we can use alternative methods to get better a priori bounds on it.
Thess et al. have speculated that blowup for the periodic loop might be controlled
by the L∞ norms of |ηss| and |ηst|, analogous to the way blowup for the ideal Euler
equations is controlled by the L∞ norm of vorticity. This is an interesting problem
to study, since we have a much greater handle on all aspects of this one-dimensional
problem. We will explore this in a future paper.

In addition, the geometry of the space of inextensible curves is interesting in
its own right. Although the geometric objects are not continuous in the Sobolev
topology (unlike on the group of volumorphisms), the curvature formulas still make
sense, and one can compute that all sectional curvatures are nonnegative. We can
thus study stability of the motion from the geometric point of view (as in [AK]),
as well as the geometry of blowup. See [P] for details on this.

Finally, the technique of approximating a continuous system with a discrete
system preserving the geometry may be interesting to apply to fluids directly. For
example, in two dimensions we could consider a rectangular grid on a torus, the
vertices of which are free to move as long as all quadrilateral areas are preserved.
Although such a model may not have global existence (as edges of a quadrilateral
may collapse to give a triangle without changing the area), we might still get some
useful insight out of it.

References

AS. T.J. Allen and J.R. Schmidt, Vibrational modes of a rotating string, Can. J. Phys. 76 no.
12, 965–975 (1998).

A. S.S. Antman, Nonlinear problems of elasticity, Springer, 1995.
AK. V. Arnold and B. Khesin, Topological methods in Hydrodynamics, Springer, 1998.
BT. A. Burchard and L.E. Thomas, On the Cauchy problem for a dynamical Euler’s elastica,

Comm. Partial Differential Equations 28 no. 1 and 2, 271–300 (2003).

CalMar. M.G. Calkin and R.H. March, The dynamics of a falling chain: I, Am. J. Phys. 57
154–157 (1989).

Cal. M.G. Calkin, The dynamics of a falling chain: II, Am. J. Phys. 57 157–159 (1989).
CapMaz. G. Capriz and G. Mazzini, An apparent paradox in the mechanics of strings, Meccanica

28 no. 2, 91–95 (1993).



34 STEPHEN C. PRESTON

CH. R. Courant and D. Hilbert, Methods of mathematical physics, volume 1, Wiley-Interscience,

New York, 1953.

dSR. C.A. de Sousa and V.H. Rodrigues, Mass redistribution in variable mass systems, Eur. J.
Phys. 25 41–49 (2004).

D1. R.W. Dickey, Dynamic behavior of the inextensible string, Quart. Appl. Math. 62 part 1,

135–161 (2004).
D2. R.W. Dickey, Bifurcation problems in nonlinear elasticity, Pitman, New York (1977).

E. D.G. Ebin, The motion of slightly compressible fluids viewed as a motion with strong con-

straining force, Ann. Math. 105 no. 1, 141–200 (1977).
EM. D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible

fluid, Ann. of Math. 92 102–163 (1970).

GM. A. Goriely and T. McMillen, Shape of a cracking whip, Phys. Rev. Lett. 88 no. 24 (2002).
H. G. Hamel, Theoretische Mechanik, 2nd ed., Springer-Verlag, Berlin, 1949.

HHR. W.A. Heywood, H. Hurwitz, Jr., and D.Z. Ryan, Whip effect in a falling chain, Am. J.
Phys., 23, no. 5, (1955).

IH. H. Irschik and H.J. Holl, The equations of Lagrange written for a non-material volume,

Acta Mech. 153 231–248 (2002).
J. H.L. Johnson, The existence of a periodic solution of a vibrating hanging string, SIAM J.

Appl. Math. 16 no. 5, 1048–1058 (1968).

Ko. I.I. Kolodner, Heavy rotating string — a nonlinear eigenvalue problem, Comm. Pure Appl.
Math. 8 no. 3, 395–408 (1955).

Ku. T. Kunkle, Lagrange interpolation on a lattice: bounding derivatives by divided differences,

J. Approx. Theory, 71 no. 1, 94–103 (1992).
KP. A. Kufner and L.-E. Persson, Weighted inequalities of Hardy type, World Scientific, Hack-

ensack, NJ, 2003.

L. O.A. Ladyzhenskaya, The boundary value problems of mathematical physics, Springer-
Verlag, New York, 1985.

LP. C.D. Luning and W.L. Perry, Iterative solutions of a non-linear boundary value problem
for a rotating string, Internat. J. Non-Linear Mech. 19 no. 1, 83–92 (1984).

M. T. McMillen, On the falling (or not) of the folded inextensible string, unpublished, accessed

via http://math.fullerton.edu/tmcmillen/
MG. T. McMillen and A. Goriely, Whip waves, Phys. D 184 192–225 (2003).

OK. B. Opic and A. Kufner, Remark on compactness of imbeddings in weighted spaces, Math.

Nachr. 133 63–69 (1987).
OV. O.M. O’Reilly and P. Varadi, A treatment of shocks in one-dimensional thermomechanical

media, Continuum Mech. Thermodyn. 11 339–352 (1999).

P. S.C. Preston, The geometry of whips and chains, to appear.
Re1. M. Reeken, The equation of motion of a chain, Math. Z. 155 no. 3, 219–237 (1977).

Re2. M. Reeken, Classical solutions of the chain equation I, Math. Z. 165 143–169 (1979).

Re3. M. Reeken, Classical solutions of the chain equation II, Math. Z. 166 67–82 (1979).
Ros. R.M. Rosenberg, Analytic mechanics of discrete systems, Plenum Press, New York, 1977.

SB. M. Schagerl and A. Berger, Propagation of small waves in inextensible strings, Wave Motion
35 339–353 (2002).

SSST. M. Schagerl, A. Steindl, W. Steiner, and H. Troger, On the paradox of the free falling

folded chain, Acta Mechanica 125 155–168 (1997).
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