Regulation of Collagen Type I in Vascular Smooth Muscle Cells by Competition between Nkx2.5 and δEF1/ZEB1

Markella Ponticos, Terrence Partridge, Carol M. Black, David J. Abraham and George Bou-Gharios

Updated information and services can be found at: http://mcb.asm.org/content/24/14/6151

REFERENCES

These include:

This article cites 48 articles, 28 of which can be accessed free at: http://mcb.asm.org/content/24/14/6151#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Regulation of Collagen Type I in Vascular Smooth Muscle Cells by Competition between Nkx2.5 and δEF1/ZEB1

Markella Ponticos,1 Terrence Partridge,2 Carol M. Black,1 David J. Abraham,1 and George Bou-Gharios3*

Centre for Rheumatology, Department of Medicine, University College of London, Hampstead, London NW3 2PF,1 and Department of Muscle Biology, MRC-Clinical Science Centre,2 and Renal Medicine, Department of Medicine,3 Imperial College London, London W12 ONN, United Kingdom

Received 15 December 2003/Returned for modification 28 January 2004/Accepted 14 April 2004

A major component of the vessel wall of large arteries and veins is the extracellular matrix (ECM), which consists of collagens, elastin, and proteoglycans. Collagen type I is one of the most abundant of the ECM proteins. We have previously shown that the pro-collagen type I alpha 2 gene contains an enhancer which confers tissue-specific expression in the majority of collagen-producing cells, including blood vessels. In this paper, we delineate a specific vascular smooth muscle cell (vSMC) element: a 100-bp sequence around −16.6 kb upstream of the transcription start site that regulates collagen expression exclusively in vSMCs. Furthermore, we show that the expression is activated through the binding of the homeodomain protein Nkx2.5, which is further potentiated in the presence of GATA6. In contrast, this element was repressed by the binding of the zinc-finger protein δEF1/ZEB1. We propose a model of regulation where the activating transcription factor Nkx2.5 and the repressor δEF1/ZEB1 compete for an overlapping DNA binding site. This element is important in understanding the molecular mechanisms of vessel remodeling and is a potential target for intervention in vascular diseases where there is excessive deposition of collagen in the vessel wall.

Blood vessels deliver oxygen, nutrients, and immune cells to all the tissues of the body. The walls of large vessels are composed of three layers (tunicae), which contain different cell types embedded in an extracellular matrix (ECM). The tunica intima is located nearest the lumen and is lined by endothelial cells. The tunica media is the elastic and contractile layer composed of highly ordered vascular smooth muscle cells (vSMCs). The tunica adventitia is the outer layer and is primarily composed of connective tissue and resident fibroblasts. The ECM in blood vessels consists of collagens, elastin, fibrilins, proteoglycans, and others. Collagen type I is the most abundant of the collagen fibrils and is found in all three tunicae and especially around the smooth muscle cells of the media, where they provide the necessary mechanical strength and contractility. Collagen type I is also found in the outer layer (adventitia), where it forms large bundles of fibrils which increase progressively in size from its innermost component, closest to the media, to its outermost aspect (24). Collagen type I is a fibrillar protein consisting of two alpha 1 chains (pro-coll1a1) and one alpha 2 chain (pro-coll1a2) coiled together into a triple helix (20). Collagen type I fibers provide the structural support for all tissues and organs of the body and play a critical role in morphogenesis and growth, as well as homeostasis and repair. Little is known about the regulation of collagen type I expression in blood vessels and especially the transcriptional control of this process either during development or in adult tissue. Although the pro-collagen type I chains are transcribed from two different chromosomes, their expression is coordinately regulated at the transcriptional level (46). In the pro-coll1a1 gene, a close homology exists between human and mouse promoters. Brenner and colleagues demonstrated by progressively deleting the mouse pro-coll1a1 gene from its 5′ end that sequences downstream of −181 bp are needed for high-level transient transfection (4). However, in transgenic mice, the mouse minimal proximal promoter (−220 to +110 bp) is silent (30), showing that it is not sufficient to drive expression in vivo. By increasing the length of this promoter, evidence from different groups using human, rat, and mouse promoters showed that the first 3.6 kb drive expression in skin, tendon, bone, and teeth (2, 18, 23, 35). Indeed, the work on the mouse 3.6 kb has further characterized these elements. An element directing expression in the skin was between −220 and −900 (30). The bone element was delineated to 117 bp between −1656 and −1540 (31), and an element with tendon specificity was found to be a combination of sequences between −3.2 and −3.6 kb that have been termed TSE1 and TSE2 (43). From these experiments, a modular arrangement of separate cis-acting elements that activate the pro-coll1a1 gene in different type I collagen-producing cells was hypothesized. In contrast, examination of the pro-coll1a2 gene proximal promoter found no such modular arrangement of regulatory sequences in the proximal region, which only directed weak reporter gene expression in transgenic mice (21). However, expression was significantly increased with the identification of an enhancer region located around −17 kb away from the transcription site. Detailed analysis using transgenesis revealed that this enhancer sequence conferred a high level of expression in almost all collagen type I-producing cells, including those of the blood vessels (3).

We hypothesized, based on the pro-coll1a1 data, that there must be a separate cis-regulatory element(s) within the pro-
colla2 enhancer sequence which controls the expression of collagen type I in mesenchymal cells, including vSMCs, during embryonic development. Such an element(s) may be important not only in the development of blood vessels but also in adult vessels during remodeling, repair, and vascular pathology, such as atherosclerosis and pulmonary hypertension, where excessive levels of matrix proteins are deposited within the vessel (reviewed in references 17 and 29). With this in mind, our aim was to delineate the element that confers expression in vSMCs and elucidate the mechanism of its regulation by identifying the transcription factors that bind the DNA within this element.

In this study, we present data that identify, for the first time, a vSMC-specific collagen type I regulatory element located within the pro-colla2 enhancer region. We have determined the minimal sequence within this enhancer able to drive the expression of a reporter gene exclusively in vSMCs. Furthermore, we show that the homeodomain transcription factor Nkx2.5 activates this sequence and that the zinc-finger transcriptional repressor δEF1 (δEF1/ZEB1) inhibits transcriptional activation, by a mechanism involving competition for an overlapping DNA binding site, which characterizes the vSMC-specific sequence.

MATERIALS AND METHODS

DNA constructions. The clone λ3-3 derived from a λ FIX II library contained 5′-flanking sequences of the pro-colla2 collagen gene from kb −23.3 to −11.0 relative to the transcriptional start site. pLacRM350 (construct I) and pLacES350 vectors contained the mouse pro-colla2 gene minimal promoter (bp +54 to −350) 5′ of the LacZ gene (10). Constructs II (pGβ −17.0 to −13.5), III (pGβ −16.4 to −13.5) were previously described (3). All of the smaller constructs were generated by using proofreading Pfu DNA polymerase (Stratagene, La Jolla, Calif.), using construct II as template and with various primers (designated to include sites for endonucleases XhoI and NotI). The PCR fragments were originally cloned into TOPO-Blunt vector (Invitrogen), sequenced, and then excised and inserted into the pLacES expression vector, pMP −16.8 to −16.5 (construct V) contains the 364-bp fragment from kb −16.82 to −16.476. pMP −16.7 to −16.5 (construct VI) contains the 202-bp fragment from kb −16.698 to −16.476. pMP −16.65 to −16.5 (construct VII) contains the 149-bp sequence between kb −16.664 and −16.467. pMP −16.6 to −16.55 (construct IX) contains the fragment which extends from kb −16.698 to −16.576 (120 bp). pMP −16.65 to −16.55 (construct X) contains sequences between kb −16.644 and −16.576 (70 bp).

Mutant constructs were synthesized using a PCR approach. Primers (5′-CTC GAGCAGGTACTCATGATG-3′, 5′-CTCCAAGACATCCCCATATGGT-3′, and 5′-GGCGGGCCATATAACCTACCTTTTACGATG-3′) were designed for the pDEF1WT, pDEF1mut1 1 and pDEF1mut2 constructs, respectively. These were amplified as the wild-type sequences described above and cloned into the pLacES350 vector. Complementary oligonucleotides with appropriate overhangs containing point mutations were synthesized and annealed before being cloned into the pLacES350 vector. For the pMP −16.65 to −16.55 Nkx mutant construct, the following sequence was synthesized: 5′-TCGACAGCTTTCGCTGACCTTCT TCCAAACCTTAACGGTGTTAGTCTGGCGGACCGGGGTTGTCCTGCGGACGACGTGGTG GAGGACCTCATGAGT-3′ (with mutations underlined). Expression vectors for rat Nkx2.5, mouse Nkx2.5, pcmvDef1, and pGATA4/GATA6 were kind gifts from S. Evans, R. Harvey, H. Kondo, and R. Schwartz, respectively.

Cell lines. All cells were cultured in Dulbecco’s modified Eagle’s medium (Life Technologies) supplemented with 10% heat-inactivated fetal calf serum and 2 mM L-glutamine. A7r5, smooth muscle cells derived from the thoracic aorta of the mouse, were maintained from the European Collection of Animal Cell Culture. Human vSMCs (HvSMCs) were obtained from human circumflex vessels from the human aorta (TCS Cellworks) and cultured in vitro. Lovastatin (2 μg/mL) was added to the medium to reduce the rate of cell growth.

RESULTS

In order to identify the sequences which contained a vSMC-specific regulatory element, plasmid constructs were generated harboring different sequences within the 3.5-kb enhancer region between −13.3 and −17.0 kb upstream of the transcription start site, which has been shown in transgenic mice to induce reporter gene expression in almost all collagen-producing cells, including vSMCs in vessels (3). These enhancer sequences were synthesized using a PCR approach. Primers (5′-CTC GAGCAGGTACTCATGATG-3′, 5′-CTCCAAGACATCCCCATATGGT-3′, and 5′-GGCGGGCCATATAACCTACCTTTTACGATG-3′) were designed for the pDEF1WT, pDEF1mut1 1 and pDEF1mut2 constructs, respectively. These were amplified as the wild-type sequences described above and cloned into the pLacES350 vector. Complementary oligonucleotides with appropriate overhangs containing point mutations were synthesized and annealed before being cloned into the pLacES350 vector. For the pMP −16.65 to −16.55 Nkx mutant construct, the following sequence was synthesized: 5′-TCGACAGCTTTCGCTGACCTTCT TCCAAACCTTAACGGTGTTAGTCTGGCGGACCGGGGTTGTCCTGCGGACGACGTGGTG GAGGACCTCATGAGT-3′ (with mutations underlined). Expression vectors for rat Nkx2.5, mouse Nkx2.5, pcmvDef1, and pGATA4/GATA6 were kind gifts from S. Evans, R. Harvey, H. Kondo, and R. Schwartz, respectively.
quences were placed 5' of the proximal pro-coll1a2 promoter (350 bp), driving the expression of the β-galactosidase reporter gene, and were transiently transfected in different cell lines. Figure 1 shows a diagrammatic representation of the full enhancer (construct II) and the pro-coll1a2 proximal promoter (350 bp) alone (construct I). A convenient restriction site at −16.6 kb (AvaI) divided the 3.65-kb enhancer into two fragments of 0.4 kb (construct III) and 3.1 kb (construct IV).

Among many collagen-expressing cell lines used were the vSMC line A7r5, the embryonic mouse fibroblast cell line L929, and the osteoblast cell line Ros17/2. The non-collagen-expressing lymphocyte cell line EL4 was used as a control cell line. The transgene was expressed in all cell lines (A7r5, L929, and Ros17) except the non-collagen-producing cell line EL4. β-Galactosidase activity was enhanced by the addition of the 3.5-kb far-upstream enhancer. The 0.4-kb fragment (construct III) showed elevated β-galactosidase activity in the osteoblast cell line (Ros17/2), suggesting that it may contain important sequences for collagen expression in this cell type. In contrast, this construct produced very low β-galactosidase activity in the fibroblast L929 cell line, whereas the 3.1-kb fragment, construct IV, conferred the highest levels of β-galactosidase activity, suggesting that the 0.4-kb 5' region of the enhancer is not involved in the regulation of pro-coll1a2 in this cell type.

Of greater interest to this study are the data obtained from the vSMC line A7r5, showing that neither the 0.4-kb fragment (construct III) nor the 3.1-kb fragment (construct IV) generated any β-galactosidase activity compared with the full enhancer sequence. On the basis of these results, we hypothesized that in vSMCs, the enhancer-specific cis-acting sequence is disrupted by the AvaI restriction enzyme digest. To test this, we generated construct V, a 364-bp construct which includes the AvaI restriction enzyme site (Fig. 2A). This was fused to the minimal promoter and the LacZ reporter gene as with the rest of the constructs. Transient transfection in A7r5 cells, HvSMCs, and L929 cells produce specific increases of β-galactosidase activity in A7r5 and HvSMCs (Fig. 2A), but not in the L929 fibroblasts or any of the other cell lines (data not shown), suggesting a specificity of this regulatory sequence in vSMCs.

Delineation of the vSMC element. The 364-bp DNA sequence surrounding the AvaI site (construct V) was analyzed using a transcription factor site program (TransFac/MatInspector) (27), which revealed several putative binding sites (Fig. 2B).
Among these were muscle-specific transcription factor Mef2C, a serum response element (SRE), a delta crystallin elongation factor 1 (H9254 EF1/ZEB1), GATA, and the homeobox transcription factor Nkx2.5, as well as activation protein 1 (AP1).

Since the AP1 site overlapped the Ava1 site, we tested whether the disruption of the AP1 binding site had an effect on the vSMC element. Transient cotransfections using a trans-activation domain mutant of AP1 (c-Jun; TAM67) (15) with construct VII resulted in no change in overall activities in vitro (Fig. 3A). A functional role of AP1 in vitro would have predicted a decrease in overall activity.

In order to define the minimal functional sequence which drives the vSMC element, smaller deletion constructs were made and tested in transient-transfection assays to ascertain the importance of each of the putative binding sites in vSMCs (Fig. 3B). In this experiment, the transfections were repeated on HvSMCs. Removal of the Mef2C/SRE site, construct VI, produced a small decrease in beta-galactosidase activity in A7r5 cells and HvSMCs. This decrease in activity was not statistically significant (P > 0.05) in A7r5 cells but was significant in HvSMCs (P < 0.01), suggesting that the Mef2C/SRE site may be species dependent but not essential for the overall regulation of this element. However, when both the Mef2C/SRE (site a) and the δEF1/ZEB1 (site b) sites were removed in construct VII, beta-galactosidase activity was significantly increased (P < 0.001) in both A7r5 cells and HvSMCs. Taken together, these results imply that while the Mef2C/SRE site may not be functionally essential in the vSMC element, the δEF1/ZEB1 site exerts a repressive effect on reporter gene activity, since its removal leads to significantly increasing activity levels compared with those of construct VI (P < 0.001). Removal of site d, which contains the putative overlapping δEF1/ZEB1 and Nkx2.5 sites in construct VIII, caused the complete loss of reporter gene activity in both A7r5 cells and HvSMCs, indicating the potential importance of this site within the vSMC element in procollagen expression.

Moreover, the data obtained from transfections with construct VIII suggested that the second Nkx2.5 (site f) cannot drive activation in isolation but did seem to cooperate with the main activation site (site d). Construct X was still active in vSMCs despite the absence of site f, though it was significantly less than construct VII (P < 0.01). These results were also supported by the data obtained with constructs VI and IX. Construct VI, although active, is partially repressed by δEF1/ZEB1 binding. However construct IX, which only differs from construct VI by the absence of site f, is significantly less active (P < 0.001). All the constructs described above are inactive in the fibroblastic cell line L929 (data not shown).
δEF1/ZEB1 represses the vSMC element. The transient-transfection data presented above implied that the binding of transcription factor to site b has an overall repressive effect on reporter gene expression in vSMCs. Sites b and d have been identified as putative binding sites for zinc-finger DNA binding proteins of the δEF1/ZEB1 family (25, 26, 28, 34). These contain two zinc-finger clusters, each binding independently to a C(A/T)CCT(G) sequence in a bipartite manner, with the separating distance and orientation between the two sequences being variable (28). The objective in the following experiment was to determine whether sites b and d were functional binding sites for δEF1/ZEB1 and whether they were part of the transcriptional regulatory mechanism of the vSMC element.

Point mutations were introduced in either site b or site d using a PCR-based method (Fig. 4A) in order to abolish possible binding of δEF1/ZEB1. The mutations in site d, which includes an overlapping putative Nkx2.5 binding site, were designed to alter only the δEF1/ZEB1 site, leaving the putative Nkx2.5 site unchanged. According to the reported mechanism of binding of δEF1/ZEB1, the destruction of either sequence on which the zinc-finger clusters can bind should prevent association of δEF1/ZEB1 with the DNA (28). The data obtained using mutant constructs in A7r5 cells, pMPdef1 Mut 1 and pMPdef1 Mut 2, clearly showed that the repression of reporter gene activity observed with constructs VI and pMP def1WT was alleviated when either site b or site d was mutated (Fig. 4A).

Cotransfections of the wild-type and mutant constructs with a pCMVδEF1 overexpression vector were also carried out in A7r5 cells. In the presence of pCMVδEF1, the normally active construct V was repressed, as was the control construct pMPdef1WT (Fig. 4B). Constructs VI and IX, which contain both putative δEF1/ZEB1 sites (sites b and d), are already repressed, and the additional δEF1/ZEB1 expression had little effect, although their activity was lower. Additional δEF1/ZEB1 expression did not alter the activity levels of construct VII (which contains only site d) or the levels of the two mutant constructs pMPdef1 Mut 1 and pMPdef1 Mut 2 (Fig. 4B). These data supported our hypothesis that δEF1/ZEB1 repressed the active pro-colla2 vSMC element.

To confirm that δEF1/ZEB1 actually binds to the DNA sequence, we carried out DNA EMSAs. Figure 4C shows that the incubation of the A7r5 nuclear extracts with wild-type probe followed by incubation with a δEF1-specific antibody led to a supershift of the δEF1/ZEB1-DNA complex (lane 3). In addition, when Smad-interactive protein 1 (SIP1) antibody was incubated with the binding mixture, no effect was observed on the δEF1/ZEB1-DNA complex (lane 4). SIP1 belongs to the same family of zinc finger transcription factors and is known to preferentially bind the same DNA sequence (CACCT).
Depletion of δEF1/ZEB1 by preincubation of nuclear extracts with CACCT fragments prior to the addition of the labeled probe led to a decrease in the intensity of the δEF1/ZEB1 complex (lane 5). In addition, cold competitor oligonucleotides of the putative δEF1/ZEB1 (site b) successfully competed for the formation of the labeled probe-δEF1/ZEB1 complex (lane 7). In control experiments when a probe (in which the putative δEF1/ZEB1 site d had been mutated) was used, the DNA-δEF1 complex was completely abolished (lane 8). Similar results were obtained with the probe in which the δEF1/ZEB1 site b was mutated (data not shown). The presence of δEF1/ZEB1 in vSMCs and specifically in the A7r5 line has never been formally demonstrated. Therefore, RT-PCR was carried out on mRNA obtained from A7r5 cells and using primers already published (47), and it showed that δEF1/ZEB1 is expressed in this cell line (Fig. 4D).

Activation of the vSMC element. Having shown that the vSMC element was repressed by δEF1/ZEB1 binding to the DNA at sites b and d, we focused on the transcription factors that are involved in the activation of this element. Transient-transfection data presented above in Fig. 3 showed that both constructs VII and X have the highest levels of reporter gene activity in vSMCs. However, construct X does not include site f (a putative Nkx2.5 binding site), but it does contain site d, a putative site for the Nkx2.5 homeodomain transcription factor which has been shown to be involved in the regulation of cardiovascular genes (41). However, other homeodomain NK family members are capable of binding the same sequence, including Nkx3.1 (5), which is also expressed in vessels (42) and has been shown to be involved in the transcriptional regulation of vSMC genes (5).

To verify the involvement of Nkx2.5, a mutant construct was generated, pMP−16.65/−16.55 Nkx mut 1, which has four point mutations of essential bases which impair Nkx2.5 binding (two in the Nkx2.5 consensus site and two in the TAAT box). The TAAT box is a complementary site which, together with the Nkx2.5 consensus site, forms the Nkx2.5 response element (7). The mutant construct has intact CACTTAG sequences and can, therefore, bind Nkx3.1 but not Nkx2.5. Transient transfection using this construct (Fig. 5A) clearly showed that

![Diagram](https://via.placeholder.com/150)
when the consensus binding Nkx2.5 sites were mutated, the levels of reporter gene activity decreased significantly compared with that of the wild type ($P < 0.01$). Furthermore, when the Nkx2.5 site mutant construct was cotransfected with an Nkx2.5 overexpression vector, it remained inactive (Fig. 5B). In contrast, when an Nkx3.1 overexpression vector was added, the expression of the reporter gene returned to its highest level. These data suggested that, although Nkx3.1 can activate the vSMC element in vitro, it may not be binding in the A7r5 cell line. Indeed, RT-PCR of A7r5 mRNA using specific RT-PCR primers for Nkx2.5 and Nkx3.1 showed that Nkx2.5 but not Nkx3.1 mRNA was present in the A7r5 cell line (Fig. 5C). Moreover, primary human aortic SMCs also expressed Nkx2.5 (Fig. 5C).

In order to confirm that site d is a functional Nkx2.5 binding site, EMSAs were carried out using 32P-labeled double-stranded oligonucleotides (Fig. 5D). The wild-type probe was incubated in the presence of A7r5 nuclear extract (lane 2) and Nkx2.5 overexpression. Mutated Nkx2.5 blocks the activity of Nkx2.5 but not of Nkx3.1. (C) RT-PCR on mRNA isolated from A7r5 cells showed an 802-bp PCR cDNA product for Nkx2.5 in A7r5 mRNA (lane 2), the controls lacking reverse transcriptase (lane 3), and water substituted for cDNA (lane 1). The rat total RNA confirmed the 802-bp product. No Nkx3.1 (507-bp) product was observed in A7r5, although the 1,600-bp genomic PCR product was seen in lane 2. RT-PCR was also carried out on mRNA from primary human aortic SMCs. The 244-bp cDNA product (lane 4) showed Nkx2.5 expression in these cells, while only a faint product (1,780 bp) was observed in the genomic control (lane 5). Lane 6 shows the control, in which water was substituted for cDNA, and the DNA ladder (GeneRuler 100-bp ladder) for size reference. (D) A 70-bp double-stranded oligonucleotide starting from base 170 of the sequence presented in Fig. 2B containing the putative Nkx2.5 (site d) (lanes 1 to 5) was used as a radiolabeled probe in an EMSA with nuclear extracts from A7r5 cells. Two probe-DNA complexes were observed (lane 2). Preincubation of nuclear extract with an Nkx2.5-specific antibody prior to the addition of the radiolabeled probe diminished binding of the probe-DNA complexes (lane 3). A supershift of the upper band was observed when Nkx2.5-specific antibody was incubated with the probe-DNA complex mixture after it had been formed (lane 4). Competition using a 5 M excess of unlabeled double-stranded consensus oligonucleotide for Nkx2.5 is shown in lane 5. The same 70-bp core sequence with a TAAGTG motif mutated in site d to TAATGG (lanes 8 and 9) can be compared to the wild-type (WT) probe (lanes 6 and 7).
carried out using this probe resulted in the absence of only the putative Nkx2.5-probe complex (lane 9).

Synergy between Nkx2.5 and GATA6. The regulatory sequence reported in this study contains a putative GATA binding site, although it is a noncanonical site (GATT). This putative GATA site is present in the 5′/H11032 end of construct VI, but it is notably absent from constructs VII and X. Using overexpression vectors for GATA4 and GATA6, we carried out co-transfection experiments with construct I, pMPdef1 Mut1, and construct V. The data obtained in Fig. 6 revealed that only GATA6 cooperated with Nkx2.5 to enhance reporter gene activity.

DISCUSSION

This paper presents evidence for a specific vSMC element in the mouse pro-colla2 enhancer located approximately −16.6 kb upstream of the transcription start site. It also supports the idea that transcriptional regulation by this element is achieved by a finely tuned repression-activation mechanism in which the repressing transcription factor δEF1/ZEB1 and the activating homeodomain factor Nkx2.5 compete for an overlapping site.

The first piece of evidence for a specific vSMC regulatory element was provided by transient-transfection data in various cell lines. The interruption of a sequence at an AvaI (−16.6 kb) site resulted in the loss of reporter gene expression only in vSMCs. Further investigation confirmed that this sequence was exclusively activated in A7R5 cells and human primary vSMCs. Deletion experiments carried out on both the 5′ and 3′ ends of the sequence identified a core functional sequence located 12 bp upstream of the AvaI site and spanning a further 50 bp upstream. In silico analysis of this sequence provided putative transcription factor binding sites, which were investigated further individually and in combination for their potential role in the regulation of this element.

One of these putative transcription factors is δEF1/ZEB1, a DNA binding protein containing two zinc-finger clusters separated by a homeodomain. Each of the clusters binds independently to a 5′-CACCT or 5′-CCTCCT sequence, both of which are necessary for binding, and if either is mutated binding is abolished (28, 34, 36).

In this paper we have identified two functional δEF1 sites, 43 bp apart, within the core sequence. Together, these sites repress reporter gene activity in transient transfections of vSMCs, and if either site is mutated, repression of reporter gene activity is lost. Moreover, we have provided evidence for the presence of endogenous δEF1 expression in nuclear extracts of vSMCs and showed that δEF1 binds to the naked DNA containing the core sequence. This protein complex bound to the DNA sequence was further characterized by antibody raised against δEF1. The protein-DNA complex did not contain other members of the δEF1/ZEB-1 transcription factor family, such as SIP1 (ZEB-2), which is also a repressor and binds to the same DNA motif (28). Thus, δEF1/ZEB-1 is the primary candidate for the repression of the pro-colla2 element in vSMCs. It is of interest in this respect that the pro-colla1 gene was shown to be negatively regulated by δEF1/ZEB-1 in osteoblasts (44). Expression of other collagen genes, namely, col2a1 (19) and col11a2, in cartilage also appears to be repressed by δEF1/ZEB-1 (40).
The 3′ δEF1 site within this element overlaps another putative transcription factor binding site belonging to the NK-2 homeodomain family (14), which includes several members which are highly conserved across vertebrate species, notably Nkx2.5 (32) and Nkx3.1, which have been reported to be expressed in vessels (42). Our data provide evidence that the homeodomain transcription factor Nkx2.5 binds directly to the vSMC-specific procoll1a2 enhancer sequence, resulting in the activation of the reporter gene. Nkx2.5 is a homeobox gene that has been identified as the vertebrate homologue of tinman, and it is required for drosophila and mammalian cardiac development (reviewed by Harvey [14] and Schwartz and Olson [32]). It is also involved in the transcriptional regulation of vascular smooth muscle genes (11, 48). However, Nkx2.5 expression has not been reported in vSMCs. Nkx2.5 null mice die between embryonic days 9.5 and 11.5 embryonic development from arrest of cardiac development after cardiac looping and poor development of blood vessels (41). In this study, Nkx2.5 but not Nkx3.1 expression was found in the A7r5 cell line by using RT-PCR. Interestingly, a combination of transfection and mutation analysis showed that Nkx3.1 is able to activate the element when cotransfected in the cells but that it is not the endogenous activator, since EMSA data showed a supershift when using anti-Nkx 2.5 antibodies but not with anti-Nkx3.1 antibodies. We conclude that Nkx2.5 is the most likely candidate responsible for the activation of the vSMC element in the procoll1a2 promoter.

In order to test whether all the factors that are necessary for the functional activity of the core element have been accounted for, transfection experiments in fibroblasts were carried out. The Nkx2.5 expression vector was cotransfected with the active core element (in which the δEF1/ZEB1 binding motif was mutated) in L929 fibroblasts. They produced no reporter gene activity, indicating that other factors are necessary which may be absent in these cells. Since GATA6 transcripts have been detected in human and rat vSMCs (38) and GATA4 has been reported in pulmonary artery smooth muscle cells (39), we investigated their contributions to the functional activity of the core vSMC element. When the homeodomain transcription factors GATA4 and GATA6 were cotransfected with Nkx2.5 in fibroblasts, a significant increase of reporter gene activity was observed (data not shown). When repeated in the A7r5 cell line, this experiment resulted in a considerable increase in reporter gene activity in the presence of GATA6 but not GATA4. Cooperation between Nkx2.5 and GATA family members has been reported widely (9, 11, 22). GATA6 is a transcriptional regulatory protein with a distinct developmental and tissue-specific profile. It is thought to regulate cell-specific expression patterns and may mediate growth factor stimulation in vSMCs (38). We hypothesize that GATA6 binds to the core element on a noncanonical GATT motif 11 bp upstream of the functional Nkx2.5 binding site. Experiments are under way to evaluate the interaction(s) of GATA6, Nkx2.5, and other transcription factors such as LIM proteins (6) in the regulation of collagen type I.

We also examined the potential role of AP1, which overlaps the AvaI restriction site, and we found that at least in transient transfections, where chromatin structure is not involved, the ubiquitous AP1 transcription factor is not essential for the functional activity of this sequence in vSMCs. However, this

FIG. 7. Proposed model for the regulation of the procoll1a2 vSMC element. (A) In the resting state, when the vSMC is not producing collagen, the δEF1/ZEB1 homeodomain repressor is bound on two adjacent sites on a vSMC element located at approximately −16.6 kb upstream of the transcriptional start site. The 3′ δEF1/ZEB1 DNA binding site overlaps a Nkx2.5 homeodomain activator binding site. When the δEF1/ZEB1 repressor is occupying both of its sites, the Nkx2.5 activator is unable to access its binding motif. GATA6 is also unable to access its binding site when δEF1/ZEB1 is bound to the DNA. These conditions result in a repressed element. (B) When the vSMC is activated and collagen type I is synthesized, we propose that δEF1/ZEB1 is displaced from its binding site by Nkx2.5, thus opening the DNA and allowing GATA6 to bind and synergize with Nkx2, leading to transcriptional activation of procoll1a2.
does not rule out its potential for a role in vivo. Careful analysis of the sequence also revealed that a series of Nkx2.5 sites downstream of the AvaI site, although not essential for activation in vitro, may cooperate in vivo to increase the potential of the main activation site (Nkx2.5, site d).

Based on the data presented in this study, we propose a simple mechanism of action in VSMCs (Fig. 7) whereby, during the resting state, collagen type I is repressed by ΔEF1/ZEB1. Binding by ΔEF1/ZEB1 on the putative overlapping site shared with Nkx2.5 would impair the access of the homeodomain Nkx2.5 and hinder the binding of the synergistic activator GATA6. Indeed, ΔEF1/ZEB1 has been previously reported to cause repression by competing for an activating site as well as possessing an inhibitory domain (33). When VSMCs are stimulated to produce collagen type I during vascular remodeling or injury, chromatin modification coupled with altered concentrations of relevant transcription factors leads to increased activation coupled with altered concentration of serum response factor and the GATA and NK families governs the significance of such an on-off switch regulatory mechanism for the production of collagen type I in VSMCs is very attractive and with much therapeutic potential, especially since SMCs play an important role in vascular pathological processes, such as essential hypertension and atherosclerosis, where major changes take place in arterial wall structure. Human atherosclerotic lesions start off as preexisting intimal thickening, which is defined by the accumulation of SMCs in the intima in the absence of lipid or macrophage foam cells (45). ECM proteins are typical components of the arterial intima, and it is estimated that up to 60% of the volume of the intima consists of ECM proteins such as collagens and proteoglycans (37). The importance of matrix proteins for intimal maturation was recently confirmed by gene expression profiling of the maturing neo-intima and the underlying media. Thirteen genes were upregulated in the neo-intima. Seven of these 13 genes encoded matrix proteins (six collagens and one versican), and two genes encoded known inducers of matrix synthesis (Cbfal/Runx2 and connective tissue growth factor) (12).

Since there is a high degree of homology between the mouse and human pro-COL1A2 far-upstream enhancer sequences, this model may be applicable to human vascular disease. Indeed, two footprints between kb −20.1 and −19.9 contain similar transcription factor binding motifs (1).

In summary, this is the first study to provide evidence for a lineage-specific element within the far-upstream enhancer of pro-collagen II, namely, a vascular smooth muscle transcriptional element. The core element consists of a 70-bp DNA sequence on which the repressor ΔEF1/ZEB1 competes with the activator Nkx2.5 for an overlapping site, providing a finely balanced mechanism for the regulation of collagen type I in VSMCs.

ACKNOWLEDGMENTS

This work was supported by the Arthritis Research Campaign UK, the Medical Research Council UK, and the Raynoud’s and Scleroderma Association.

We thank S. Evans, R. Harvey, J. Rossert, H. Kondoh, and R. Schwartz for expression vectors used in this project. We also thank V. Lefebvre for guidance with the EMSA.

REFERENCES

