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ensures that the last copy is lost only when the last site of the current majority partition fails. This leads
to improved availability as compared to the pure dynamic voting algorithm. An availability analysis of the
RVC algorithm for the case of site failures confirms that RVC provides higher availability than previously
proposed algorithms.

Future research in this area needs to address the issue of determining the vector GT(O) using as inputs the
communication costs, a statistical profile of the database and availability /reliability considerations. Another
issue that needs further consideration is the determination of the number of virtual copies of each data
object that should be created as well as their location. Finally, an important question is: at which site
should the data object be regenerated when the associated threshold GT(O) has been crossed. We are

currently investigating these issues.
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Figure 8: Availability Analysis of the RVC Algorithm
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Figure 7: State Transition Diagram for RVC Algorithm
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with double ovals are the states where regeneration occurs because of the generation threshold of GT =2.
At each of these states one virtual copy is converted to a real copy.

For illustrative purposes Figure 7 is the state transition diagram for the case of 4 real copies and 2 virtual
copies, with GT = 2. This is the most directly comparable case with previous studies. The state transition
diagram is drawn in two parts. The first part of the diagram indicates state transitions when real copies fail
and the second part indicates state transitions when virtual copies fail.

To follow the construction of Figure 7, it is necessary to observe that the state where all sites are connected
is (4,4,0,2), which implies that four out of four sites that took part in the last update are operational; zero
sites are not working; and the system has two virtual copies. Starting from the initial state (4,4,0,2), we
can obtain the upper part of Figure 7 by letting the real copies fail and recover. The lower part of Figure 7
is obtained by letting the virtual copies fail and recover. The two parts taken together model the complete
system. A total of 26 states are required to model all possible state transitions.

Using this state transition diagram, we write down the corresponding flow balance equations for the 26
states. This system of simultaneous equations together with the augmented equation that all probabilities
sum to one, is then solved?. The results of the availability analysis are plotted in Figure 8. The availabil-
ity numbers for majority voting and dynamic linear algorithms have been taken from [13] for comparison
purposes, after validating the results for the majority voting algorithm.

The results of the availability analysis indicate that the performance of the RVC algorithm for the case of
site failures is superior to the Dynamic-Linear and Majority Voting algorithms. The trade off for obtaining
this improved availability is in terms of higher costs for maintaining the virtual copies. The improved
performance of the RVC algorithm results from selective regeneration using a generation threshold, which
is economical over wide area networks. The improvement in availability obtained by our algorithm easily

offsets the cost of maintaining the virtual copies.

8 Conclusion and Future Research

In this paper, we propose an algorithm that utilizes regeneration in distributed systems to improve the
availability of replicated data. The proposed algorithm has an advantage over a pure regeneration strategy
or a pure dynamic voting strategy, since it automatically maintains system availability using the generation
threshold GT(O), so that manual intervention is avoided for all but total failure. Thus, it is self-adaptive
to changes in system configuration by regenerating data objects at other sites when there is a danger of
losing the last real copy of the data object. On the other hand when sites recover, some real copies may

be converted back to virtual copies in an effort to obtain the optimal initial allocation. Our algorithm

2Maple V, a symbolic manipulation system from the University of Waterloo, was used for symbolic calculations.
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so SG(H) must have an edge connecting 7; and T}; either T; must precede T} (T; — T%), or T must
precede T; (T, — T;). Therefore, SG(H) induces a write order. 2

Read Order : Let H be a RVC history. SG(H) induces a read order for H.

Suppose T; reads x from T, T}, writes x (1 # k and j # k), and T} precedes Ty (T; — T). By property
RV )y, T; reads a read quorum of x; and by RV Cy, T, writes a write quorum of x. Since any two read
and write quorums must intersect, there is a copy of x, say Xz, such that »;[z] and we[za] are in
H. Since these are conflicting operations, either r;[zar] < wg[zam] or wi[zam] < 7j[zar]. In the former
case, Tj — T is in SG(H), and we have proved an induced read order. If wg[zas] < 7;[2ar], then we
can show a contradiction in terms of the version number. Therefore, we have proved that T; — T,

so SG(H) induces a read order for H. 2

The two properties read order and write order, imply that SG(H) is an RDSG of H. Also, by condition
RV C4, SG(H) is acyclic. Hence, H is 1SR 2

7 Availability Analysis of the RVC Algorithm

The performance of the RVC algorithm is analyzed using a Markov model for the case of site failures. Even
though the RVC algorithm can handle network partitioning, it is difficult to perform a general analysis for
all possible topologies of the network. Previous studies [10, 13, 15] have used the Markov analysis technique,
hence we can compare our results to the results obtained by them for comparable voting based algorithms.

The assumptions inherent in a Markov analysis are:
1. The communication links do not fail. Only sites are subject to failures and repairs.

2. Failures at various sites occur according to a Poisson process with failure rate p. Repairs at various

sites also occur according to a Poisson process with repair rate g.
3. Updates occur instantaneously, hence communication delays can be ignored.

4. Updates are more frequent than failures or repair. Hence, after any failure or repair, an update always

arrives at a functioning site.

These assumptions are required only for the performance analysis of the algorithm, and not for the
proper functioning of the algorithm itself. A state transition diagram is depicted in Figure 7, and this state
transition diagram depicts the state using a vector notation, state vector = (X,Y, Z, W), where X is the
number of sites out of ¥ that are up, Y is the update sites cardinality, Z is the number of other sites (not

taking part in updates) that are up, and W is the number of sites with virtual copies. The states depicted
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Every RVC history has the following properties:

RV C; : If T; writes x, then H will contain w;[# 4,], ..., w;[z4,] for some write quorum Q, (z) = {z4,,...,z4,}

of x’s current physical copies.

This is the write rule for the dynamic voting with virtual copies algorithm, and conforms to procedure

WRITE discussed before.

RV, : If T; reads x, then H contains rj[z4,],...,7j[#4,] for some read quorum @, (z) = {z4,,...,24,}
of x. Then H contains rr;[z4,] for some 24, in Q.(z) where VN (24, ) = maz{VN(z;) | ; € Q,(z)}.
Here rr; refers to the physical copy read for item j, since after the collection of the read quorum, the

real read will be done from one of the current physical copies, and not from the virtual copies.

RV C, says that each transaction that reads data item x, reads a read quorum of x and selects from
that read quorum, a real copy with the maximum version number. Since the TM cannot determine
the real read until it knows the version numbers of all copies in Q,(z), all read of those copies must

precede rr;[z4].

RV C3 : Every rj[z 4] follows at least one w;[z4], ¢ # j.
This condition requires each copy of X (whether real or virtual) to be initialized before it can be

included in a read quorum. Without loss of generality, we can assume that the initial values of the

version numbers for all copies of all data items to be initialized to zero.

RVC, : SG(H) is acyclic.
This condition says that the underlying concurrency control scheduler uses a correct concurrency control
algorithm. Thus the RVC algorithm can work with any correct CC algorithm like the distributed 2PL,
distributed timestamping, or any distributed optimistic technique. RVC is not restrictive with regard
to the concurrency control algorithm, unlike the available copies algorithm that assumes strict 2PL

scheduling.

Theorem 1: Every RVC history is 1SR.

Proof:

We shall prove that every RVC history H is 1SR, by proving that SG(H) is an RDSG of H. Then, since SG(H)
is known to be acyclic by RV Cy4, H will be 1SR. First, we prove that H satisfies the following properties:

Write Order : Let H be a RVC history. SG(H) induces a write order for H.

We can prove this by the following reasoning. Let T; and T} write x. Since all write quorums of a data

object intersect, there exists a real copy z4 that T; and T both write. These writes on z 4 conflict,
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This example traces our algorithm for one complete cycle starting from a non-partitioned state and
continuing through several site failures. The recovery of sites is further traced until all sites have recovered.
Notice that due to the value of generation threshold chosen (GT(O) = 2), we end the cycle with two virtual
copies at sites D and F, just as we had started with two virtual copies at sites D and E. This illustrates

the self adaptive nature of the algorithm.

6 Correctness of the RVC Algorithm

Dynamic voting as proposed by Jajodia and Mutchler [10] has been proved correct. The read, write, failure
and recover mechanisms are different for our algorithm than they are for plain dynamic voting, and for this
reason we cannot assume that the proof of dynamic voting would directly apply here.

Our objective is to show that the replicated data (RD) histories produced by the RVC algorithm are one-
copy serializable (1SR). We will utilize a modified serializability graph (SG) in the proof. The serializability
graph is a graph that is used in proving the correctness of concurrency control algorithms [24]. We also
assume that a software module called the transaction manager (TM) is running at each site that handles
conflict serialization, and we further assume that the underlying concurrency control protocol used by the
TM is two phase locking (2PL). These assumptions are standard practice on all major database systems [3].

The SG models the fact that two transactions, that have conflicting requests for the same data item,
must be synchronized, even if they do not access the same copy of that data item. This is consistent with
the one-copy view of the database held by the user. A node n; precedes node n;, denoted by n; < n;,in a
directed acyclic graph if there is a path from n; to n;. Given a replicated data history H, a replicated data
serialization graph (RDSG) is an augmented graph of SG(H) (i.e. SG(H) with possibly other edges added)
such that the following conditions hold:

1. If T; and T; write data item x, then either T; < T or T; < T;.

2. If T} reads-from T;, T}, writes some copy of x (k # i, k # j), and T; < Ty, then T; < T.

A RDSG satisfying condition (1), is said to induce a write order for H. If it satisfies condition (2), the
RDSG is said to induce a read order for H. Therefore, RDSG(H) is an extension of SG(H), that induces a
read order and a write order for H. With these definitions, we can state the following important property
from [3]:

Bernstein et alf1987]: Let H be an RD history. If H has an acyclic RDSG, then H is 1SR.
Let us define a RVC (Regeneration with Virtual Copies) history as an RD history that models the

execution of the RVC algorithm. We now state our theorem:
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Since the generation threshold (=2) has been crossed, D' is upgraded to a real copy by copying information
from site C. Now, if a partition occurs, C and D are both partitions containing one real copy. The tie for
majority partition will be broken in favor of the lexicographically largest copy, in this case, C. Thus, site
C will be the majority partition. We have thus shown that read and write operations are always performed
in a majority partition. A majority partition can always be obtained down to the last copy. At any state,
for any possible partitioning, the topological information about the network carried in the U; vector enables
the collection of votes to form a majority partition.

We now continue the example to illustrate site recovery and integration.

State VI (After site B recovers)
Suppose, site B recovers (and runs the function recover) and finds that it can communicate with C, D. Then
site B determines that it is in a majority partition, and it proceeds to integrate by copying the object’s

information from C or D, giving:

Ao Bo Co Dg, Ep
Uo:lO Uo:12 Uo:12 Uo:12 Uo:8
Ug = Ug = UCO = U[O) = Ug =

(4,¢,D) | (B,C,D) | (B,C,D)|(B,C,D) | (A,B,C,D,E)

The threshold (GT = 2) is reached, hence the lexicographically lowest copy (i.e. at D) is converted into

a virtual copy.

State VII (After site A recovers)

Site A recovers (and an update arrives) and runs the function recover, described later, for each data

object owned by site A. The state of the system after site A recovers is:

Ao BO C’O DIO EIO
Uo:13 Uo:13 Uo:13 Uo:13 Uo:8
Ug = Ug = UCO = U[O) = Ug =

(4,B,C,D) | (4,B,C,D) | (4,B,C,D) | (4,B,C,D) | (4 B,C,D,E)

State VIII (After site E recovers)
After site F recovers, all sites can communicate with each other and all sites integrate with each other,

forming a non-partitioned network. The state of the system at this point is:

Ao Bo Co D, E,
Uo:14 Uo:14 Uo:14 Uo:14 Uo:14
Ug = Ug = UCO = U[O) = Ug =
(A,B,C,D,E) | (4,B,C,D,E) | (A,B,C,D,E) | (4,B,C,D,E) | (A, B,C,D, E)
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(4,B,C,D,E) | (4,B,C,D,E) | (4,B,C,D,E) | (4,B,C,D,E) | (4,B,C, D, E)

State III (After site F fails and one update takes place)

The state of the system after site E’s failure is:

Ao BO C’O DIO EIO
Uo:g Uo:g Uo:g Uo:g Uo:8
Ug: Ug: UCO: U[O): Ug:

(4,B,C,D) | (4,B,C,D) | (4,B,C,D) | (4,B,C,D) | (4 B,C,D,E)

The virtual copy at site E is not included in the write quorum, and the update vectors of all the opera-
tional sites reflect the set of sites that participated in the last update to data object O. The version number
of E remains 8, indicating that it has become out-of-date. It should be noted that if site E had failed, and
there was no update at that point in time, the state information of all the other sites would not have been
updated instantaneously merely on failure of E. The state information would be updated at the next update

request to the data object O.

State IV (After site B fails and one update takes place)

The state of the system after site B’s failure is:

Ao BO C’O DIO EIO
Uo:lO Uo:g Uo:lO Uo:lO Uo:8
Ug = Ug = UCO = U[O) = Ug =

(4,C,D) | (4,B,C,D) | (4,C,D) | (4,C,D) | (4,B,C, D, E)

Now consider some hypothetical partitioning, say A/CD’'. CD' would be the majority partition, since
it has 2 out of three current copies (real and virtual). For partitioning AC/D’, AC would be the major-
ity partition. Hence for any possible partitioning of the functional sites, we can find a majority partition,
thereby guaranteeing mutual exclusion. If there are ties in the voting process, the ties are resolved by using

lexicographical ordering rules as pointed out in the Figure 2

State V (After Site A fails and one update takes place)

The state of the system after site A’s failure is:

Ao Bo Co Do E.
Uo:lO Uo:g Uo:].]. Uo:].]. Uo:8
Ug = Ug = UCO = U[O) = Ug =

(4,C,D) | (4,B,C,D)| (C,D) | (C,D) | (4,B,C,D,E)
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Figure 6: The DO_RECOVER Module

procedure DO_RECOVER(s: site_id);
begin
for each data object O €1
if majority(O, %, C) then
if O is a real copy
if site 4 € T'(4, O) {site 4 is in optimal alloc.}
copy contents of O from any ¢ € S;
update state information;
commit(C);
else {site 7 is not in optimal alloc.}
convert site ¢’s copy to virtual copy
update state information
commit(C);
else if O is a virtual copy

update state information;
commit(C);
else {O is not in a majority partition}
abort(C);
end; {DO_RECOVER}

5 An Example of the RVC Algorithm

For the purpose of illustrating the detailed operation of the RVC algorithm, consider a five site network
with the value of the generation threshold for the given data object O, GT'(O) assumed to be set to 2 for
illustration purposes. We have left the procedure for determining the GT(O) unspecified at this point, but
one technique for determining it is to set GT(O) to the number of copies of data object O to attain a
minimum tolerable availability in the system. This can be obtained as a result of a file allocation algorithm

that incorporates availability constraints. Details of such an algorithm can be found in [22].

State I (initial state)
The initial state of the system has version numbers equals to six and, as depicted by the update vectors, all

five sites that have a copy of the data object are in communication with each other.

Ao BO C’O DIO EIO
UOZG UOZG UOZG UOZG UOZG
Ug: Ug: UCO: U[O): Ug:

(4,B,C,D,E) | (4,B,C,D,E) | (4,B,C,D,E) | (4,B,C,D,E) | (4,B,C, D, E)

State II (after two updates)
This state depicts the system after two updates have been successfully propagated. The update vectors show

that each site can communicate with all other sites.
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Figure 4: The DO_WRITE Module

procedure DO_WRITE(O: object)
begin
if majority(O, site, C) then
for each data object : € S
if ¢ is a real copy
perform the write
update state information
else if 7 is a virtual copy
update state information;
commit(C)
else
abort(C)
end; {DO_WRITE}

Figure 5: The DO_FAILURE Module

procedure DO_FAILURE(:: site_id);
begin
for each data object O €1
if (O is a real copy) and (GT(O) < k) then
determine the site j,
to regenerate data object O
upgrade a virtual copy of O to
real copy at site j

end; {DO_FAILURE}




Figure 2: The Function Majority

function majority(O: object, i: site_id, var C: set_of_sites):
boolean;
begin
C «—— set of sites that communicate with this site
for each 7 € C begin
read v;, U;
end
let vymge = maz{v; | 1€ C}
for each 7 € C begin
if v; = v,42 then
include 7 in set S
end
let U =U; for somez € S
if (card(S) > 1/2 card(U)) or
(card(S) = 1/2 card(U) and max;cp(v;) € S) then
majority := true
else
majority := false
end; {majority}

associated with each data object consists of:

vo = integer

U9 =(4,B,C,D,E)

where, vo indicates the version number of object O, and U¢ indicates the update site vector of object O at

site A. This vector contains a list of the sites that participated in the last update to object O.

Figure 3: The DO_READ Module

procedure DO_READ(O: object)
begin
if majority(O, site, C) then
select any real copy i € S
read from ¢
commit(C)
else
abort(C)
end; {DO_READ}




Step 3: When a site detects the failure of another site, it runs the DO_FAILURE module. For each data
object O belonging to the failed site!, if the copy at the failed site was a real copy and the generation
threshold GT(O) has been crossed, convert one virtual copy to a real copy. The site at which the data
object is to be regenerated is determined based on communication cost minimization considerations,
node utilization considerations or network reliability considerations depending on the organizational
priorities. This module ensures that no data object loses its last real copy, unless there are no more

sites to regenerate on.

Step 4: When a site recovers, the DO_RECOVER module is executed by that site. This module first
determines whether the site is in the current majority partition with respect to eech data object stored
at that site. For each data object O that has a current majority partition it determines if the GT(O)
of that data object has been exceeded. If so, real copies of the data object are converted to virtual
copies in accordance with the vector T(O, j) of initial file allocations. Otherwise, the data object O
is made current and its state information is updated. The objective of this module is to try to move

towards the optimal file allocation stored in the vector T(O, j) for each data object O.

An important consideration for our algorithm is that there may be a high communication cost if a real
copy of a large object needs to be updated during recovery at a distant site. This is handled in two ways in our
algorithm. First, regeneration is performed selectively according to predefined rules. Selective regeneration
is described more fully in Figures 3 through 6. Second, if there is a need during selective regeneration to
create a real copy of a large data object at a remote site, this can be done by using the differential file
concept. Only the diffs between the version number at the remote site and subsequent updates need to
be sent to the remote site, where local processing is performed to bring the data object up to date. The
technique of sending diffs saves communication costs, specially in the case of large data objects over long
distances. Hence, selective regeneration is a preventive approach to minimize incurring large communication
costs, whereas differential updates minimize communication costs when an update is absolutely necessary.

Descriptive code for the RVC algorithm is provided in Figures 2 through 6. Figure 2 describes the
magjority function, which determines whether a given site ¢ belongs to a majority partition with respect to
a data object O. The other modules in the algorithm use function majority to initiate the collection of a
majority of current sites in the present partition.

The notation used in the description is as follows. Suppose the distributed system consists of sites
(4,B,C,...,). Each data object could be replicated at one or more of the sites. If a data object O has a real

copy at site A4, then we denote it by Ap. A virtual copy at site 4 is denoted by A},. The state information

1 This information is maintained in the allocation table T(0,5)). The table T(O, j) is itself fully replicated.



data objects (i.e. data objects requiring large storage). In such environments the RVC algorithm can work

in conjunction with a file allocation algorithm to optimize system performance and availability.

3

Design Objectives of the RVC Algorithm

The design objectives for the algorithm are:

1.

4

The algorithm should be applicable to geographically distributed architecture.
The algorithm should be able to handle Network partitioning as well as site failure.

A read gquorum should require only one current real copy of a data object. The other virtual copies

comprising the quorum could have state information, but no associated data.

A write quorum should require a minimum of one current real copy of a data item. The other copies

could be virtual copies.

Virtual copies can be upgraded to real copies according to a prespecified protocol, whenever the number

of real copies drops below a specified generation threshold.

The algorithm should be truly distributed. That is, each partition should be able to decide au-
tonomously whether it is a majority partition based on the state information associated with the data

objects in that partition.

Description of the RVC Algorithm

We first present the algorithm’s major steps followed by a detailed description of the algorithm.

Step 1: When a read request for a data object O is received at a given site, the DO_READ module is

executed by that site, which then runs the function majority to check if it is in the current majority
partition with respect to the data object O. If it is, the read request is satisfied by a real copy in that
partition. Otherwise, the request is turned down. A quorum made up of at least one real copy will be

allowed.

Step 2: When a write request for a data object O is received at a given site, that site will execute the

DO_WRITE module. If the site determines that it is in a current majority partition, the update will
be propagated to each site that has a real copy and the associated state information will be updated.

For those sites that have virtual copies, only the state information will be updated.



The motivation for our algorithm can be described with reference to Figure 1. We consider two cases:
site failures, and network partitioning. For illustrative purposes, we consider a network with seven sites,
numbered one through seven. Assume that the file allocation algorithm determines that a copy of the file
should be located at sites 1, 3, 5 and 7.

Consider the case of site failures which is depicted in the first diagram of Figure 1 and suppose that sites
start failing in the order of 1, 3, 5 and 7. Even though there has been no partitioning, and sites 2, 4 and 6 are
operational, the availability of the file went down to zero (since not even one copy of the file is accessible). At
this point any voting based algorithm will not allow operations to continue in any partition. Our proposed
algorithm, which is referred to as Regeneration with Virtual Copies (RVC) and is described in section 4
avoids this problem by keeping virtual copies at sites 2, 4, and 6 and having these virtual copies participate
in the voting process. Thus, as soon as sites start to fail, data object copies will be selectively regenerated
at other sites. In the context of systems subject to site failures only, we observe that the last copy to fail
will be a real copy, and a copy is available as long as at least one site in the network is operational.

In the case of network partitioning, depicted in the second diagram of Figure 1, we start with the initial
configuration having data object copies at sites 1, 3, 5 and 7. Suppose that the network partitions into
sites 1 and 3 in one partition and sites 5 and 7 in the second partition. The dynamic voting algorithm with
linearly ordered copies (where ties are broken in favor of the lexicographically lowest numbered copy) will
allow updates and reads in the partition containing sites 1 and 3. If another partition occurs, resulting in
having sites 1 and 3 in different partitions, processing will be allowed only in the partition containing sites 1
and 4. The danger here is that if site 1 fails, dynamic voting class of algorithms will allow processing in none
of the partitions. It is this shortcoming of the voting class of algorithms that we wish to overcome through
our proposal.

The RVC algorithm allows processing to continue by regenerating the virtual copy kept at site 4 to a
real copy. Thus, unlike currently available dynamic voting schemes, even if site 1 fails, site 4 will, under the
RVC algorithm, still allow operations to continue.

It should be noted that regeneration will lead to sub-optimal allocation of files, since the new allocation
obtained by regeneration will not be the same as the optimal solution determined by the file allocation
algorithm. However, this sub-optimal mode of operation is preferable to having no data object copies
available at all. As sites recover, and/or communication links are repaired, the system can be restored to its
original “optimal” configuration.

To summarize, our work combines the advantages of the dynamic voting approach with the regeneration
approach to achieve a selective regeneration policy that satisfies consistency constraints. Our algorithm
would be effective in such applications as military tracking files, version management of graphics files in

CAD/CAM systems, and other image tracking applications involving infrequent updates to relatively large



Figure 1: Motivation for RVC Algorithm

Initial allocation of data objects to nodes of the DCS can be performed by a file allocation algorithm such
as the algorithms proposed in [5, 17, 16, 7, 21]. We have recently proposed an algorithm[22] to calculate the
optimal number of copies of a data object, given communication costs between sites, storage costs and node
and site reliabilities. This algorithm gives the overall system reliability or availability for a specified number
of copies of a data object, hence it can be used to calculate GT(O) by specifying the minimum reliability or
availability desired by the system administrator or organizational policies.

GT(0O), therefore represents the optimal number of file copies to be maintained in the DCS for each
data object. We maintain an allocation table T(O, j), whose row indices represent data objects and column
indices represent the sites at which data object O has been initially allocated. The table T(O, j) can be a
zero-one matrix, where an element Tp; is set to 1 if site j has a copy of the data object O, and 0 otherwise.
The allocation table T(O, j) is itself replicated at all sites, since it has to be available to determine a majority
partition for each read and write operation.

Dynamic voting as proposed in [6, 10, 12] requires real copies of data objects at all sites at which the data
object is replicated. We propose to integrate Virtual Copies with dynamic voting. Virtual copies contain
only state information and participate in the voting process both for read and write quorums, whereas real
copies have state information as well as associated data of the object. We also impose the constraint that
each quorum must contain at least one real copy of the data object.

Regeneration in our protocol refers to converting a virtual data object copy to a real data object copy,
whenever the generation threshold has been crossed. This ensures that the last copy to fail is a real copy.
Regeneration will also work to convert real copies to virtual copies, when the need arises, e.g. when sites
are recovering, resulting in a surfeit of real copies. This will result in a self-regulating (and self-adaptive)
system that monitors the number of real and virtual copies of all data objects in the system, and seeks to

maintain a predefined level of the number of real and virtual copies in the system.



called regeneration, which is quite similar to file migration. Regeneration in distributed computing systems
has been recently suggested in [19, 15, 14, 9, 1] as a mechanism for maintaining consistency of replicated
data in distributed computing systems. Distributed databases and distributed file service mechanisms are
examples of distributed computing systems.

The algorithm proposed in [19], is an example of a regeneration algorithm that implements a replicated
directory system. Such a system allows the selection of arbitrary objects to be replicated, the choice of
the number of replicas of each object, and the placement of copies on machines (that are assumed to have
independent failure modes). The replication level is restored by automatically replacing lost copies (due to
node crashes) on other active sites. The algorithm uses a read one write all strategy (ROWA); if some copies
are found to be inaccessible, new replicas are created to replace them. Some limitations of this algorithm are:
it is not applicable to network partitioning; it is proposed for distributed systems on a local area network,
but not for distributed systems on a wide area network; and it requires additional storage overhead due to
replicated directories that are used to point to current copies.

Any mutual consistency protocol that implements mutual exclusion, including voting and dynamic voting
involves data transfer over the network. This data transfer is necessary since all copies that participate in an
update to any data object have to be made current. If the database is distributed over a wide area network,
this will involve large data transfers over long distances. This is contrary to the philosophy of distributed
database design, which advocates minimizing data transfer over the network as one of its primary objective.
This problem is further compounded if updates are numerous. At every update, large data transfer will be
required in order to keep the copies of each data object synchronized. Hence, a regeneration approach in
wide area distributed computing systems has to minimize data transfer by regenerating only when absolutely
necessary. In this paper we propose a consistency control algorithm that selectively utilizes regeneration,
and also accommodates the case of network partitioning. Our algorithm provides greater availability than
previous voting based algorithms by incorporating selective regeneration.

The rest of paper is organized as follows. In the next section we present a motivation for the proposed
algorithm, followed by the design objectives of the algorithm. A description of the algorithm in terms of the
DO_READ, DO_WRITE, DO_FAILURE and DO_RECOVER modules is presented in section 4. An example
in the section b illustrates the working of our algorithm. We present a proof of correctness of the algorithm

in section 6 and a stochastic availability analysis in section 7.

2 DMotivation for the Proposed Algorithm

In wide area network environments, the key to using regeneration is to use it selectively. Thus, we propose

a policy of selective regeneration through a mechanism that is referred to as generation threshold (GT(O)).



one, and only one partition. Such a partition is referred to as the majority partition. Consistency control
algorithms ensure that user requests are processed in such a manner that mutual consistency of all data
objects is preserved when site failures and/or network partitioning occur.

Consistency control algorithms can be classified according to whether they can handle site failures only,
or both site failures and network partitioning. Two representative algorithms that can handle site failures
only, are ROWAA (Read-One-Write-All-Available) [4] and Available Copies[2]. These algorithms function by
reading any available copy of the data object (preferably local) and writing into all available copies. Under
these algorithms a user query can be always satisfied as long as at least one copy of the desired data object
is available. Updates of a data object, in this case, will always be satisfied as long as the last copy of a data
object is not lost.

Voting algorithms for preserving mutual consistency of replicated data by mutual exclusion have been
proposed by Thomas[23] and Gifford[8]. Voting type of algorithms can handle network partitioning in
addition to site failures. This is achieved by a process of quorum collection which lets a network partition
decide autonomously whether it constitutes a majority of current copies of a data object. If so, query and
update operations would be allowed to proceed. The voting algorithms proposed in [23, 8] utilize a static
quorum, which results in a limited database availability.

The dynamic voting algorithm proposed by Jajodia and Mutchler [10] and later refined in [11, 12], uses
a version number, VN;, of a copy, which counts the number of successful updates to the data object. The
current version number is the maximum of the version numbers of all copies of a data object. A copy is
current if its version number equals the current version number of the replicated data object. A partition
is defined as a majority partition if it contains a majority of the current copies. Associated with each copy
at a site 7 is another integer called the update site cardinality, SC;. The update site cardinality is used
in determining whether the current partition is a majority partition or not. SC; maintains the number of
copies of the data object that participated in the last update, hence each partition can autonomously decide
whether they have a majority of copies with respect to the version number and the site cardinality. Based
upon the values of VN; and SC;, certain rules are defined for reading and updating data objects. Rules for
merging of data objects are also specified. A recent modification of this algorithm can be found in [13].

Other algorithms based on voting are: Voting with Witnesses[18] and Voting with Ghosts[20]. The voting
with witnesses algorithm proposes data object copies called witnesses that can attest to the state of a data
object by maintaining state information in the form of the version number. Witnesses can take part in the
collection of read quorums. The voting with ghosts algorithm proposes data object copies that again carry
only state information, but take part in write quorums. The objective of these algorithms is to improve the
availability of the DCS.

A different approach to maintaining replicated databases has been adopted by proponents of a technique
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Abstract

We consider the consistency control problem for replicated data in a distributed computing system
(DCS) and propose a new algorithm to dynamically regenerate copies of data objects in response to
node failures and network partitioning in the system. The DCS is assumed to have strict consistency
constraints for data object copies. The new algorithm combines the advantages of voting based algorithms
and regeneration mechanisms to maintain mutual consistency of replicated data objects in the case of
node failures and network partitioning. Our algorithm extends the feasibility of regeneration to DCS on
wide area networks, and is able to satisfy user queries as long as there is one current partition in the
system. A stochastic availability analysis of our algorithm shows that it provides improved availability

as compared to previously proposed dynamic voting algorithms.

1 Introduction

In a distributed computing environment, two types of failures may occur: the processor at a given site may fail
(referred to as site failure), and communication between two sites may fail (referred to as communication link
failure). When a site fails, processing at that site stops and the contents of the volatile storage are destroyed.
Communication links may fail due to such reasons as noise in the link, or temporary link malfunction.
Link failures may result in network partitioning, isolating the network into two (or more) connected
components, such that nodes within a given component are able to communicate with one another but not
with nodes in other components. If we model the distributed computing system by a network where nodes
represent sites and arcs represent links, then partitioning divides the operational sites into two or more
components. Each component is referred to as a partition. Since these components cannot communicate,

mutual consistency of replicated data can be preserved only if user requests are allowed to be processed in



