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Figure 8: Availability Analysis of the RVC Algorithm

18



Figure 7: State Transition Diagram for RVC Algorithm
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with double ovals are the states where regeneration occurs because of the generation threshold of GT =2.At each of these states one virtual copy is converted to a real copy.For illustrative purposes Figure 7 is the state transition diagram for the case of 4 real copies and 2 virtualcopies, with GT = 2. This is the most directly comparable case with previous studies. The state transitiondiagram is drawn in two parts. The �rst part of the diagram indicates state transitions when real copies failand the second part indicates state transitions when virtual copies fail.To follow the construction of Figure 7, it is necessary to observe that the state where all sites are connectedis (4,4,0,2), which implies that four out of four sites that took part in the last update are operational; zerosites are not working; and the system has two virtual copies. Starting from the initial state (4,4,0,2), wecan obtain the upper part of Figure 7 by letting the real copies fail and recover. The lower part of Figure 7is obtained by letting the virtual copies fail and recover. The two parts taken together model the completesystem. A total of 26 states are required to model all possible state transitions.Using this state transition diagram, we write down the corresponding ow balance equations for the 26states. This system of simultaneous equations together with the augmented equation that all probabilitiessum to one, is then solved2. The results of the availability analysis are plotted in Figure 8. The availabil-ity numbers for majority voting and dynamic linear algorithms have been taken from [13] for comparisonpurposes, after validating the results for the majority voting algorithm.The results of the availability analysis indicate that the performance of the RVC algorithm for the case ofsite failures is superior to the Dynamic-Linear and Majority Voting algorithms. The trade o� for obtainingthis improved availability is in terms of higher costs for maintaining the virtual copies. The improvedperformance of the RVC algorithm results from selective regeneration using a generation threshold, whichis economical over wide area networks. The improvement in availability obtained by our algorithm easilyo�sets the cost of maintaining the virtual copies.8 Conclusion and Future ResearchIn this paper, we propose an algorithm that utilizes regeneration in distributed systems to improve theavailability of replicated data. The proposed algorithm has an advantage over a pure regeneration strategyor a pure dynamic voting strategy, since it automatically maintains system availability using the generationthreshold GT (O), so that manual intervention is avoided for all but total failure. Thus, it is self-adaptiveto changes in system con�guration by regenerating data objects at other sites when there is a danger oflosing the last real copy of the data object. On the other hand when sites recover, some real copies maybe converted back to virtual copies in an e�ort to obtain the optimal initial allocation. Our algorithm2Maple V, a symbolic manipulation system from the University of Waterloo, was used for symbolic calculations.16



so SG(H) must have an edge connecting Ti and Tk; either Ti must precede Tk (Ti �! Tk), or Tk mustprecede Ti (Tk �! Ti). Therefore, SG(H) induces a write order. 2Read Order : Let H be a RVC history. SG(H) induces a read order for H.Suppose Tj reads x from Ti, Tk writes x (i 6= k and j 6= k), and Ti precedes Tk (Ti �! Tk). By propertyRV C2, Tj reads a read quorum of x; and by RV C1, Tk writes a write quorum of x. Since any two readand write quorums must intersect, there is a copy of x, say XM , such that rj[xM ] and wk[xM ] are inH. Since these are conicting operations, either rj[xM ] < wk[xM ] or wk[xM ] < rj [xM ]. In the formercase, Tj �! Tk is in SG(H), and we have proved an induced read order. If wk[xM ] < rj[xM ], then wecan show a contradiction in terms of the version number. Therefore, we have proved that Tj �! Tk,so SG(H) induces a read order for H. 2The two properties read order and write order, imply that SG(H) is an RDSG of H. Also, by conditionRV C4, SG(H) is acyclic. Hence, H is 1SR 27 Availability Analysis of the RVC AlgorithmThe performance of the RVC algorithm is analyzed using a Markov model for the case of site failures. Eventhough the RVC algorithm can handle network partitioning, it is di�cult to perform a general analysis forall possible topologies of the network. Previous studies [10, 13, 15] have used the Markov analysis technique,hence we can compare our results to the results obtained by them for comparable voting based algorithms.The assumptions inherent in a Markov analysis are:1. The communication links do not fail. Only sites are subject to failures and repairs.2. Failures at various sites occur according to a Poisson process with failure rate p. Repairs at varioussites also occur according to a Poisson process with repair rate q.3. Updates occur instantaneously, hence communication delays can be ignored.4. Updates are more frequent than failures or repair. Hence, after any failure or repair, an update alwaysarrives at a functioning site.These assumptions are required only for the performance analysis of the algorithm, and not for theproper functioning of the algorithm itself. A state transition diagram is depicted in Figure 7, and this statetransition diagram depicts the state using a vector notation, state vector = (X;Y; Z;W ), where X is thenumber of sites out of Y that are up, Y is the update sites cardinality, Z is the number of other sites (nottaking part in updates) that are up, and W is the number of sites with virtual copies. The states depicted15



Every RVC history has the following properties:RV C1 : If Ti writes x, then H will containwi[xA1 ]; : : : ; wi[xAn ] for some write quorumQw(x) = fxA1 ; : : : ; xAngof x's current physical copies.This is the write rule for the dynamic voting with virtual copies algorithm, and conforms to procedureWRITE discussed before.RV C2 : If Ti reads x, then H contains rj [xA1]; : : : ; rj[xAn ] for some read quorum Qr(x) = fxA1 ; : : : ; xAngof x. Then H contains rrj[xAk ] for some xAk in Qr(x) where V N (xAk) = maxfV N (xi) j xi 2 Qr(x)g.Here rrj refers to the physical copy read for item j, since after the collection of the read quorum, thereal read will be done from one of the current physical copies, and not from the virtual copies.RV C2 says that each transaction that reads data item x, reads a read quorum of x and selects fromthat read quorum, a real copy with the maximum version number. Since the TM cannot determinethe real read until it knows the version numbers of all copies in Qr(x), all read of those copies mustprecede rrj[xA].RV C3 : Every rj[xA] follows at least one wi[xA], i 6= j.This condition requires each copy of X (whether real or virtual) to be initialized before it can beincluded in a read quorum. Without loss of generality, we can assume that the initial values of theversion numbers for all copies of all data items to be initialized to zero.RV C4 : SG(H) is acyclic.This condition says that the underlying concurrency control scheduler uses a correct concurrency controlalgorithm. Thus the RVC algorithm can work with any correct CC algorithm like the distributed 2PL,distributed timestamping, or any distributed optimistic technique. RVC is not restrictive with regardto the concurrency control algorithm, unlike the available copies algorithm that assumes strict 2PLscheduling.Theorem 1: Every RVC history is 1SR.Proof:We shall prove that every RVC history H is 1SR, by proving that SG(H) is an RDSG of H. Then, since SG(H)is known to be acyclic by RV C4, H will be 1SR. First, we prove that H satis�es the following properties:Write Order : Let H be a RVC history. SG(H) induces a write order for H.We can prove this by the following reasoning. Let Ti and Tk write x. Since all write quorums of a dataobject intersect, there exists a real copy xA that Ti and Tk both write. These writes on xA conict,14



This example traces our algorithm for one complete cycle starting from a non-partitioned state andcontinuing through several site failures. The recovery of sites is further traced until all sites have recovered.Notice that due to the value of generation threshold chosen (GT (O) = 2), we end the cycle with two virtualcopies at sites D and E, just as we had started with two virtual copies at sites D and E. This illustratesthe self adaptive nature of the algorithm.6 Correctness of the RVC AlgorithmDynamic voting as proposed by Jajodia and Mutchler [10] has been proved correct. The read, write, failureand recover mechanisms are di�erent for our algorithm than they are for plain dynamic voting, and for thisreason we cannot assume that the proof of dynamic voting would directly apply here.Our objective is to show that the replicated data (RD) histories produced by the RVC algorithm are one-copy serializable (1SR). We will utilize a modi�ed serializability graph (SG) in the proof. The serializabilitygraph is a graph that is used in proving the correctness of concurrency control algorithms [24]. We alsoassume that a software module called the transaction manager (TM) is running at each site that handlesconict serialization, and we further assume that the underlying concurrency control protocol used by theTM is two phase locking (2PL). These assumptions are standard practice on all major database systems [3].The SG models the fact that two transactions, that have conicting requests for the same data item,must be synchronized, even if they do not access the same copy of that data item. This is consistent withthe one-copy view of the database held by the user. A node ni precedes node nj, denoted by ni � nj , in adirected acyclic graph if there is a path from ni to nj . Given a replicated data history H, a replicated dataserialization graph (RDSG) is an augmented graph of SG(H) (i.e. SG(H) with possibly other edges added)such that the following conditions hold:1. If Ti and Tj write data item x, then either Ti � Tj or Tj � Ti.2. If Tj reads-from Ti, Tk writes some copy of x (k 6= i, k 6= j), and Ti � Tk, then Tj � Tk.A RDSG satisfying condition (1), is said to induce a write order for H. If it satis�es condition (2), theRDSG is said to induce a read order for H. Therefore, RDSG(H) is an extension of SG(H), that induces aread order and a write order for H. With these de�nitions, we can state the following important propertyfrom [3]:Bernstein et al[1987]: Let H be an RD history. If H has an acyclic RDSG, then H is 1SR.Let us de�ne a RVC (Regeneration with Virtual Copies) history as an RD history that models theexecution of the RVC algorithm. We now state our theorem:13



Since the generation threshold (=2) has been crossed, D0 is upgraded to a real copy by copying informationfrom site C. Now, if a partition occurs, C and D are both partitions containing one real copy. The tie formajority partition will be broken in favor of the lexicographically largest copy, in this case, C. Thus, siteC will be the majority partition. We have thus shown that read and write operations are always performedin a majority partition. A majority partition can always be obtained down to the last copy. At any state,for any possible partitioning, the topological information about the network carried in the Ui vector enablesthe collection of votes to form a majority partition.We now continue the example to illustrate site recovery and integration.State VI (After site B recovers)Suppose, site B recovers (and runs the function recover) and �nds that it can communicate with C;D. Thensite B determines that it is in a majority partition, and it proceeds to integrate by copying the object'sinformation from C or D, giving:AO BO CO D0O E0OvO = 10 vO = 12 vO = 12 vO = 12 vO = 8UOA = UOB = UOC = UOD = UOE =(A;C;D) (B;C;D) (B;C;D) (B;C;D) (A;B;C;D;E)The threshold (GT = 2) is reached, hence the lexicographically lowest copy (i.e. at D) is converted intoa virtual copy.State VII (After site A recovers)Site A recovers (and an update arrives) and runs the function recover, described later, for each dataobject owned by site A. The state of the system after site A recovers is:AO BO CO D0O E0OvO = 13 vO = 13 vO = 13 vO = 13 vO = 8UOA = UOB = UOC = UOD = UOE =(A;B;C;D) (A;B;C;D) (A;B;C;D) (A;B;C;D) (A;B;C;D;E)State VIII (After site E recovers)After site E recovers, all sites can communicate with each other and all sites integrate with each other,forming a non-partitioned network. The state of the system at this point is:AO BO CO D0O E0OvO = 14 vO = 14 vO = 14 vO = 14 vO = 14UOA = UOB = UOC = UOD = UOE =(A;B;C;D;E) (A;B;C;D;E) (A;B;C;D;E) (A;B;C;D;E) (A;B;C;D;E)12



AO BO CO D0O E0OvO = 8 vO = 8 vO = 8 vO = 8 vO = 8UOA = UOB = UOC = UOD = UOE =(A;B;C;D;E) (A;B;C;D;E) (A;B;C;D;E) (A;B;C;D;E) (A;B;C;D;E)State III (After site E fails and one update takes place)The state of the system after site E's failure is:AO BO CO D0O E0OvO = 9 vO = 9 vO = 9 vO = 9 vO = 8UOA = UOB = UOC = UOD = UOE =(A;B;C;D) (A;B;C;D) (A;B;C;D) (A;B;C;D) (A;B;C;D;E)The virtual copy at site E is not included in the write quorum, and the update vectors of all the opera-tional sites reect the set of sites that participated in the last update to data object O. The version numberof E remains 8, indicating that it has become out-of-date. It should be noted that if site E had failed, andthere was no update at that point in time, the state information of all the other sites would not have beenupdated instantaneously merely on failure of E. The state information would be updated at the next updaterequest to the data object O.State IV (After site B fails and one update takes place)The state of the system after site B's failure is:AO BO CO D0O E0OvO = 10 vO = 9 vO = 10 vO = 10 vO = 8UOA = UOB = UOC = UOD = UOE =(A;C;D) (A;B;C;D) (A;C;D) (A;C;D) (A;B;C;D;E)Now consider some hypothetical partitioning, say A=CD0. CD0 would be the majority partition, sinceit has 2 out of three current copies (real and virtual). For partitioning AC=D0, AC would be the major-ity partition. Hence for any possible partitioning of the functional sites, we can �nd a majority partition,thereby guaranteeing mutual exclusion. If there are ties in the voting process, the ties are resolved by usinglexicographical ordering rules as pointed out in the Figure 2State V (After Site A fails and one update takes place)The state of the system after site A's failure is:AO BO CO DO E0OvO = 10 vO = 9 vO = 11 vO = 11 vO = 8UOA = UOB = UOC = UOD = UOE =(A;C;D) (A;B;C;D) (C;D) (C;D) (A;B;C;D;E)11



Figure 6: The DO RECOVER Moduleprocedure DO RECOVER(i: site id);beginfor each data object O 2 iif majority(O; i; C) thenif O is a real copyif site i 2 T (i; O) fsite i is in optimal alloc.gcopy contents of O from any i 2 S;update state information;commit(C);else fsite i is not in optimal alloc.gconvert site i's copy to virtual copyupdate state informationcommit(C);else if O is a virtual copyupdate state information;commit(C);else fO is not in a majority partitiongabort(C);end; fDO RECOVERg5 An Example of the RVC AlgorithmFor the purpose of illustrating the detailed operation of the RVC algorithm, consider a �ve site networkwith the value of the generation threshold for the given data object O, GT (O) assumed to be set to 2 forillustration purposes. We have left the procedure for determining the GT (O) unspeci�ed at this point, butone technique for determining it is to set GT (O) to the number of copies of data object O to attain aminimum tolerable availability in the system. This can be obtained as a result of a �le allocation algorithmthat incorporates availability constraints. Details of such an algorithm can be found in [22].State I (initial state)The initial state of the system has version numbers equals to six and, as depicted by the update vectors, all�ve sites that have a copy of the data object are in communication with each other.AO BO CO D0O E0OvO = 6 vO = 6 vO = 6 vO = 6 vO = 6UOA = UOB = UOC = UOD = UOE =(A;B;C;D;E) (A;B;C;D;E) (A;B;C;D;E) (A;B;C;D;E) (A;B;C;D;E)State II (after two updates)This state depicts the system after two updates have been successfully propagated. The update vectors showthat each site can communicate with all other sites. 10



Figure 4: The DO WRITE Moduleprocedure DO WRITE(O: object)beginif majority(O, site, C) thenfor each data object i 2 Sif i is a real copyperform the writeupdate state informationelse if i is a virtual copyupdate state information;commit(C)elseabort(C)end; fDO WRITEg
Figure 5: The DO FAILURE Moduleprocedure DO FAILURE(i: site id);beginfor each data object O 2 iif (O is a real copy) and (GT(O) < k) thendetermine the site j,to regenerate data object Oupgrade a virtual copy of O toreal copy at site jend; fDO FAILUREg 9



Figure 2: The Function Majorityfunction majority(O: object, i: site id, var C: set of sites):boolean;beginC  � set of sites that communicate with this sitefor each i 2 C beginread vi; Uiendlet vmax = maxfvi j i 2 Cgfor each i 2 C beginif vi = vmax theninclude i in set Sendlet U = Ui for some i 2 Sif (card(S) > 1=2 card(U )) or(card(S) = 1=2 card(U ) and maxi2U (vi) 2 S) thenmajority := trueelsemajority := falseend; fmajoritygassociated with each data object consists of: vO = integerUOA = (A;B;C;D;E)where, vO indicates the version number of object O, and UOA indicates the update site vector of object O atsite A. This vector contains a list of the sites that participated in the last update to object O.Figure 3: The DO READ Moduleprocedure DO READ(O: object)beginif majority(O, site, C) thenselect any real copy i 2 Sread from icommit(C)elseabort(C)end; fDO READg8



Step 3: When a site detects the failure of another site, it runs the DO FAILURE module. For each dataobject O belonging to the failed site1, if the copy at the failed site was a real copy and the generationthreshold GT (O) has been crossed, convert one virtual copy to a real copy. The site at which the dataobject is to be regenerated is determined based on communication cost minimization considerations,node utilization considerations or network reliability considerations depending on the organizationalpriorities. This module ensures that no data object loses its last real copy, unless there are no moresites to regenerate on.Step 4: When a site recovers, the DO RECOVER module is executed by that site. This module �rstdetermines whether the site is in the current majority partition with respect to each data object storedat that site. For each data object O that has a current majority partition it determines if the GT (O)of that data object has been exceeded. If so, real copies of the data object are converted to virtualcopies in accordance with the vector T (O; j) of initial �le allocations. Otherwise, the data object Ois made current and its state information is updated. The objective of this module is to try to movetowards the optimal �le allocation stored in the vector T (O; j) for each data object O.An important consideration for our algorithm is that there may be a high communication cost if a realcopy of a large object needs to be updated during recovery at a distant site. This is handled in two ways in ouralgorithm. First, regeneration is performed selectively according to prede�ned rules. Selective regenerationis described more fully in Figures 3 through 6. Second, if there is a need during selective regeneration tocreate a real copy of a large data object at a remote site, this can be done by using the di�erential �leconcept. Only the di�s between the version number at the remote site and subsequent updates need tobe sent to the remote site, where local processing is performed to bring the data object up to date. Thetechnique of sending di�s saves communication costs, specially in the case of large data objects over longdistances. Hence, selective regeneration is a preventive approach to minimize incurring large communicationcosts, whereas di�erential updates minimize communication costs when an update is absolutely necessary.Descriptive code for the RVC algorithm is provided in Figures 2 through 6. Figure 2 describes themajority function, which determines whether a given site i belongs to a majority partition with respect toa data object O. The other modules in the algorithm use function majority to initiate the collection of amajority of current sites in the present partition.The notation used in the description is as follows. Suppose the distributed system consists of sites(A;B;C; : : : ; ). Each data object could be replicated at one or more of the sites. If a data object O has a realcopy at site A, then we denote it by AO. A virtual copy at site A is denoted by A0O. The state information1This information is maintained in the allocation table T (O;j)). The table T (O; j) is itself fully replicated.7



data objects (i.e. data objects requiring large storage). In such environments the RVC algorithm can workin conjunction with a �le allocation algorithm to optimize system performance and availability.3 Design Objectives of the RVC AlgorithmThe design objectives for the algorithm are:1. The algorithm should be applicable to geographically distributed architecture.2. The algorithm should be able to handle Network partitioning as well as site failure.3. A read quorum should require only one current real copy of a data object. The other virtual copiescomprising the quorum could have state information, but no associated data.4. A write quorum should require a minimum of one current real copy of a data item. The other copiescould be virtual copies.5. Virtual copies can be upgraded to real copies according to a prespeci�ed protocol, whenever the numberof real copies drops below a speci�ed generation threshold.6. The algorithm should be truly distributed. That is, each partition should be able to decide au-tonomously whether it is a majority partition based on the state information associated with the dataobjects in that partition.4 Description of the RVC AlgorithmWe �rst present the algorithm's major steps followed by a detailed description of the algorithm.Step 1: When a read request for a data object O is received at a given site, the DO READ module isexecuted by that site, which then runs the function majority to check if it is in the current majoritypartition with respect to the data object O. If it is, the read request is satis�ed by a real copy in thatpartition. Otherwise, the request is turned down. A quorum made up of at least one real copy will beallowed.Step 2: When a write request for a data object O is received at a given site, that site will execute theDO WRITE module. If the site determines that it is in a current majority partition, the update willbe propagated to each site that has a real copy and the associated state information will be updated.For those sites that have virtual copies, only the state information will be updated.6



The motivation for our algorithm can be described with reference to Figure 1. We consider two cases:site failures, and network partitioning. For illustrative purposes, we consider a network with seven sites,numbered one through seven. Assume that the �le allocation algorithm determines that a copy of the �leshould be located at sites 1, 3, 5 and 7.Consider the case of site failures which is depicted in the �rst diagram of Figure 1 and suppose that sitesstart failing in the order of 1, 3, 5 and 7. Even though there has been no partitioning, and sites 2, 4 and 6 areoperational, the availability of the �le went down to zero (since not even one copy of the �le is accessible). Atthis point any voting based algorithm will not allow operations to continue in any partition. Our proposedalgorithm, which is referred to as Regeneration with Virtual Copies (RVC) and is described in section 4avoids this problem by keeping virtual copies at sites 2, 4, and 6 and having these virtual copies participatein the voting process. Thus, as soon as sites start to fail, data object copies will be selectively regeneratedat other sites. In the context of systems subject to site failures only, we observe that the last copy to failwill be a real copy, and a copy is available as long as at least one site in the network is operational.In the case of network partitioning, depicted in the second diagram of Figure 1, we start with the initialcon�guration having data object copies at sites 1, 3, 5 and 7. Suppose that the network partitions intosites 1 and 3 in one partition and sites 5 and 7 in the second partition. The dynamic voting algorithm withlinearly ordered copies (where ties are broken in favor of the lexicographically lowest numbered copy) willallow updates and reads in the partition containing sites 1 and 3. If another partition occurs, resulting inhaving sites 1 and 3 in di�erent partitions, processing will be allowed only in the partition containing sites 1and 4. The danger here is that if site 1 fails, dynamic voting class of algorithms will allow processing in noneof the partitions. It is this shortcoming of the voting class of algorithms that we wish to overcome throughour proposal.The RVC algorithm allows processing to continue by regenerating the virtual copy kept at site 4 to areal copy. Thus, unlike currently available dynamic voting schemes, even if site 1 fails, site 4 will, under theRVC algorithm, still allow operations to continue.It should be noted that regeneration will lead to sub-optimal allocation of �les, since the new allocationobtained by regeneration will not be the same as the optimal solution determined by the �le allocationalgorithm. However, this sub-optimal mode of operation is preferable to having no data object copiesavailable at all. As sites recover, and/or communication links are repaired, the system can be restored to itsoriginal \optimal" con�guration.To summarize, our work combines the advantages of the dynamic voting approach with the regenerationapproach to achieve a selective regeneration policy that satis�es consistency constraints. Our algorithmwould be e�ective in such applications as military tracking �les, version management of graphics �les inCAD/CAM systems, and other image tracking applications involving infrequent updates to relatively large5



Figure 1: Motivation for RVC Algorithm
Initial allocation of data objects to nodes of the DCS can be performed by a �le allocation algorithm suchas the algorithms proposed in [5, 17, 16, 7, 21]. We have recently proposed an algorithm[22] to calculate theoptimal number of copies of a data object, given communication costs between sites, storage costs and nodeand site reliabilities. This algorithm gives the overall system reliability or availability for a speci�ed numberof copies of a data object, hence it can be used to calculate GT (O) by specifying the minimum reliability oravailability desired by the system administrator or organizational policies.GT (O), therefore represents the optimal number of �le copies to be maintained in the DCS for eachdata object. We maintain an allocation table T (O; j), whose row indices represent data objects and columnindices represent the sites at which data object O has been initially allocated. The table T (O; j) can be azero-one matrix, where an element TOj is set to 1 if site j has a copy of the data object O, and 0 otherwise.The allocation table T (O; j) is itself replicated at all sites, since it has to be available to determine a majoritypartition for each read and write operation.Dynamic voting as proposed in [6, 10, 12] requires real copies of data objects at all sites at which the dataobject is replicated. We propose to integrate Virtual Copies with dynamic voting. Virtual copies containonly state information and participate in the voting process both for read and write quorums, whereas realcopies have state information as well as associated data of the object. We also impose the constraint thateach quorum must contain at least one real copy of the data object.Regeneration in our protocol refers to converting a virtual data object copy to a real data object copy,whenever the generation threshold has been crossed. This ensures that the last copy to fail is a real copy.Regeneration will also work to convert real copies to virtual copies, when the need arises, e.g. when sitesare recovering, resulting in a surfeit of real copies. This will result in a self-regulating (and self-adaptive)system that monitors the number of real and virtual copies of all data objects in the system, and seeks tomaintain a prede�ned level of the number of real and virtual copies in the system.4



called regeneration, which is quite similar to �le migration. Regeneration in distributed computing systemshas been recently suggested in [19, 15, 14, 9, 1] as a mechanism for maintaining consistency of replicateddata in distributed computing systems. Distributed databases and distributed �le service mechanisms areexamples of distributed computing systems.The algorithm proposed in [19], is an example of a regeneration algorithm that implements a replicateddirectory system. Such a system allows the selection of arbitrary objects to be replicated, the choice ofthe number of replicas of each object, and the placement of copies on machines (that are assumed to haveindependent failure modes). The replication level is restored by automatically replacing lost copies (due tonode crashes) on other active sites. The algorithm uses a read one write all strategy (ROWA); if some copiesare found to be inaccessible, new replicas are created to replace them. Some limitations of this algorithm are:it is not applicable to network partitioning; it is proposed for distributed systems on a local area network,but not for distributed systems on a wide area network; and it requires additional storage overhead due toreplicated directories that are used to point to current copies.Any mutual consistency protocol that implements mutual exclusion, including voting and dynamic votinginvolves data transfer over the network. This data transfer is necessary since all copies that participate in anupdate to any data object have to be made current. If the database is distributed over a wide area network,this will involve large data transfers over long distances. This is contrary to the philosophy of distributeddatabase design, which advocates minimizing data transfer over the network as one of its primary objective.This problem is further compounded if updates are numerous. At every update, large data transfer will berequired in order to keep the copies of each data object synchronized. Hence, a regeneration approach inwide area distributed computing systems has to minimize data transfer by regenerating only when absolutelynecessary. In this paper we propose a consistency control algorithm that selectively utilizes regeneration,and also accommodates the case of network partitioning. Our algorithm provides greater availability thanprevious voting based algorithms by incorporating selective regeneration.The rest of paper is organized as follows. In the next section we present a motivation for the proposedalgorithm, followed by the design objectives of the algorithm. A description of the algorithm in terms of theDO READ, DO WRITE, DO FAILURE and DO RECOVER modules is presented in section 4. An examplein the section 5 illustrates the working of our algorithm. We present a proof of correctness of the algorithmin section 6 and a stochastic availability analysis in section 7.2 Motivation for the Proposed AlgorithmIn wide area network environments, the key to using regeneration is to use it selectively. Thus, we proposea policy of selective regeneration through a mechanism that is referred to as generation threshold (GT (O)).3



one, and only one partition. Such a partition is referred to as the majority partition. Consistency controlalgorithms ensure that user requests are processed in such a manner that mutual consistency of all dataobjects is preserved when site failures and/or network partitioning occur.Consistency control algorithms can be classi�ed according to whether they can handle site failures only,or both site failures and network partitioning. Two representative algorithms that can handle site failuresonly, are ROWAA (Read-One-Write-All-Available) [4] and Available Copies[2]. These algorithms function byreading any available copy of the data object (preferably local) and writing into all available copies. Underthese algorithms a user query can be always satis�ed as long as at least one copy of the desired data objectis available. Updates of a data object, in this case, will always be satis�ed as long as the last copy of a dataobject is not lost.Voting algorithms for preserving mutual consistency of replicated data by mutual exclusion have beenproposed by Thomas[23] and Gi�ord[8]. Voting type of algorithms can handle network partitioning inaddition to site failures. This is achieved by a process of quorum collection which lets a network partitiondecide autonomously whether it constitutes a majority of current copies of a data object. If so, query andupdate operations would be allowed to proceed. The voting algorithms proposed in [23, 8] utilize a staticquorum, which results in a limited database availability.The dynamic voting algorithm proposed by Jajodia and Mutchler [10] and later re�ned in [11, 12], usesa version number, VNi, of a copy, which counts the number of successful updates to the data object. Thecurrent version number is the maximum of the version numbers of all copies of a data object. A copy iscurrent if its version number equals the current version number of the replicated data object. A partitionis de�ned as a majority partition if it contains a majority of the current copies. Associated with each copyat a site i is another integer called the update site cardinality, SCi. The update site cardinality is usedin determining whether the current partition is a majority partition or not. SCi maintains the number ofcopies of the data object that participated in the last update, hence each partition can autonomously decidewhether they have a majority of copies with respect to the version number and the site cardinality. Basedupon the values of V Ni and SCi, certain rules are de�ned for reading and updating data objects. Rules formerging of data objects are also speci�ed. A recent modi�cation of this algorithm can be found in [13].Other algorithms based on voting are: Voting with Witnesses[18] and Voting with Ghosts[20]. The votingwith witnesses algorithm proposes data object copies called witnesses that can attest to the state of a dataobject by maintaining state information in the form of the version number. Witnesses can take part in thecollection of read quorums. The voting with ghosts algorithm proposes data object copies that again carryonly state information, but take part in write quorums. The objective of these algorithms is to improve theavailability of the DCS.A di�erent approach to maintaining replicated databases has been adopted by proponents of a technique2



Regeneration with Virtual Copies for Distributed ComputingSystemsNabil R. Adam Rajiv TewariRutgers University Temple UniversityNewark, NJ 07102 Philadelphia, PA 19122adam@adam.rutgers.edu tewari@cis.temple.eduMay 1, 1991Revised July 1, 1994AbstractWe consider the consistency control problem for replicated data in a distributed computing system(DCS) and propose a new algorithm to dynamically regenerate copies of data objects in response tonode failures and network partitioning in the system. The DCS is assumed to have strict consistencyconstraints for data object copies. The new algorithm combines the advantages of voting based algorithmsand regeneration mechanisms to maintain mutual consistency of replicated data objects in the case ofnode failures and network partitioning. Our algorithm extends the feasibility of regeneration to DCS onwide area networks, and is able to satisfy user queries as long as there is one current partition in thesystem. A stochastic availability analysis of our algorithm shows that it provides improved availabilityas compared to previously proposed dynamic voting algorithms.1 IntroductionIn a distributed computing environment, two types of failures may occur: the processor at a given site may fail(referred to as site failure), and communication between two sites may fail (referred to as communication linkfailure). When a site fails, processing at that site stops and the contents of the volatile storage are destroyed.Communication links may fail due to such reasons as noise in the link, or temporary link malfunction.Link failures may result in network partitioning, isolating the network into two (or more) connectedcomponents, such that nodes within a given component are able to communicate with one another but notwith nodes in other components. If we model the distributed computing system by a network where nodesrepresent sites and arcs represent links, then partitioning divides the operational sites into two or morecomponents. Each component is referred to as a partition. Since these components cannot communicate,mutual consistency of replicated data can be preserved only if user requests are allowed to be processed in1


