
Vectorizing a non-strict functional language for adata-parallel \Spineless (not so) Tagless G-machine": draftJonathan M.D. Hill�Department of Computer ScienceQueen Mary & West�eld CollegeUniversity of LondonAbstractThe essence of data-parallelism is a O(1) map function. A data-parallel interpretationof map is the application of a function to every element of a parallel data structure at thesame time. This model is at odds with a version of map over lists. Although list map can beinterpreted as applying a function to every element of a list, in a non-strict functional languagethe function applications only occur to those elements of the list required by a subsequentcomputation.We reconcile these opposing views of map using a three tiered model: (1) a non-strictdata-parallel evaluation mechanism based upon `aims' [5] is used that combines the \onlyevaluate what is required" philosophy of non-strict evaluation, with the \evaluate everythingsynchronously, and in parallel" mechanism of a data-parallel paradigm; (2) program trans-formations inspired by the map distributivity law are used to vectorize functional programsthat contain map; (3) the resulting vectorized programs are compiled into machine code thatmimics an abstract machine based upon the Spineless Tagless G-machine [9]. The novel fea-tures of this machine are that it incorporates the `aim' mechanism of data-parallel evaluation,and case analysis of algebraic data-types has been vectorized by performing tag-checking inparallel. These extensions have been incorporated into the Glasgow Haskell compiler [10],and code is being generated for the CPP Distributed Array Processor (DAP), a massivelyparallel SIMD machine.1 IntroductionWhy should data-parallelism be incorporated into a non-strict programming language? Withoutgoing over well-trod ground [6], we identify higher order functions and lazy evaluation as beingdesirable in a data-parallel language. In [5, 4] a non-strict data-parallel model was presented inwhich the programmer expresses parallel computations in terms of pods and pod comprehensions.pods are parallel data-structures that are an abstraction of the processing elements of a parallelmachine. They share many of the characteristics of monolithic arrays [8], however their distin-guishing feature is they are unbounded and potentially in�nite. Using a notation analogous tolist comprehensions [3], pod comprehensions provide a framework by which communication andparallel operations on pods can be expressed. Using these extensions, higher order functions suchas map, fold and scan, each having a better complexity than their sequential counterparts, can bedeveloped to encapsulate general patterns of parallel computation. However, unlike existing im-plementations of these functions, non-strictness plays an important role in that it enables potentialcomputations on in�nite pods to be expressed. As described in Hughes [6], lazy data-structuresprovide a powerful mechanism of modularising programs because functions that compute over in�-nite data-structures can be simply composed, or `glued' together. In practical terms this means we�This work has been supported through a SERC case award in association with Cambridge Parallel Processing.Author's address: Department of Computer Science, Queen Mary & West�eld College, University of London,Mile End Road, E1 4NS. Email: Jon.Hill@dcs.qmw.ac.uk1

> map f [] = []> map f (x:xs) = f x : map f xs > exListA xs = sum (map (+1) xs)> exListB xs = sum (take 10 (map (1/) xs))Figure 1: An example using list mapcan ignore problems that arise from composing functions that perform computations over di�eringsized parallel data structures, we can use in�nite pods and perform �nite computations on theresulting `glued' functions.2 The aim of non-strict data-parallelismE�ective use of a data-parallel machine relies upon the synchronous evaluation of a su�cientnumber of elements of a parallel object|this seems to be at odds with a non-strict evaluationstrategy. To highlight this dichotomy we investigate the potential for data-parallelism using lazylists. The mapping of the increment function (+1) in example exListA of �gure 1 could be appliedin a data-parallel manner to each element of the list xs, because the surrounding sum consumesall of the resulting list. As a general rule, if a map expression is enclosed by a function that ishead and tail strict [14], then data-parallel evaluation of the map is probably feasible. Things arenot quite so simple in example exListB. Because of the non-strictness associated with take, themapping of the reciprocal function (1/) is only applied to the �rst ten elements of the list xs.We can see from the de�nition of exListB that we could apply the inner map in a data-parallelmanner to the �rst ten elements of xs, but does this form a general rule? It seems that thedelaying mechanism of non-strict evaluation throttles any possibilities of data-parallelism inherentin functional programs that use map.A simple solution to these problems is to ensure that map is both head and tail strict [7].However, in exListB, if any elements of the portion of the list xs after element ten containedzero, then the result of evaluation will always be ?, regardless of whether the list element thatcontained zero was required. We �nd this unnecessary strictness uncomfortable in a non-strictlanguage.We propose an evaluation mechanism that combines the desirable features of the lazy andstrict evaluation of map. Whenever a map-like computation is forced, multiple elements of theparallel object being mapped evaluate their results in synchrony. However, the mechanism retainsa non-strict semantics. We observe from �gure 1 that a portion of this list in exListB is forcedby the evaluation of sum. We parallelise this process by providing the programmer with a seriesof IO routines1 that evaluate a collection of the elements of a data-parallel object all at the sametime. We overcome the problems faced in exListB by using a data-parallel non-strict evaluationmechanism that maintains a record (the aim) of the elements of the parallel object which needto be evaluated. Whenever a map-like computation is forced, as with the strict version of map,evaluation of the function applications of the map occur synchronously and in parallel. However,only those elements de�ned by the aim are evaluated. At the cost of introducing a new non-strictevaluation mechanism,map can be implemented with a constant time complexity, whilst retainingall the bene�ts of non-strict evaluation.This paper describes techniques that form a bridge between a data-parallel non-strict languageand an implementation on a massively parallel SIMD machine. In the following sections weintroduce a series of program identities that vectorize functional programs for evaluation on adata-parallel machine. The e�ectiveness of vectorizing functional languages is unquestionable|arealistic (weather prediction) SISAL program out-performs a Fortran version of the same programon the CRAY Y-MP [2]. We conclude the paper with an overview of a data-parallel SpinelessTagless G-Machine, and a selection of the machines state transition rules in the Appendix. For adetailed description of the machine see [].1And programmer annotations in terms of forcing routines, see [5]2

map1 (� x! (2 � x) + 4) vec) map2 (+) (map1 (� x! 2 � x) vec) (map1 (� x! 4) vec)) map2 (+) (map2 (�) (map1 (� x! 2) vec) (map1 (� x! x) vec))(map1 (� x! 4) vec)) map2 (+) (map2 (�) � : : : 2 : : :� vec)� : : : 4 : : :�rename) vector(+) (vector(�) � : : : 2 : : :� vec)� : : : 4 : : :�Figure 2: Example vectorization3 Vectorization and the distributive law of mapClassically a vectorizing compiler for a language such as Fortran transforms serial programs thattypically contain DO loops, into code that utilises available vector instructions of a target machine.Unfortunately vectorizing compilers for imperative languages can be a rather `hit and miss' a�air.If the body of the loop being vectorized contains any dependency cycles, then vectorisation mayfail unless the compiler can spot that the body is an instance of set of prede�ned templates suchas reduction or recurrence operations (i.e it special cases fold and scan of trivial operations such asaddition or the maximum of two integers!) [15]. Such dependency cycles arise from the excessivesequencing of statements inherent in a imperative language because of assignment. Assignmentstatements can cause more serious problems if a function call is present in the body of a loopbeing vectorized. Vectorization of the function call can only occur if the function is known to bereferentially transparent [2]. Talpin [13] uses a Hindley-Milner based type system in which it ispossible to delimit the scope of side e�ects into regions. In his FX compiler for the ConnectionMachine, he uses these regions to deduce if a function is referentially transparent and can thereforebe vectorized.Our goal is similar to classical vectorisation techniques, however the referential transparencyof a non-strict languages makes things considerably easier for us | it will become apparent thatwithout referential transparency, none of the algebraic identities we use to vectorize programswould hold. The inspiration for this work comes from two sources, Steele's [12] law that \�distributes over function calls"2, and Bird's [1] map distributivity law (1).map (f � g) � (map f) � (map g) (1)Figure 2 shows an example of the kind of transformations we propose to perform. The purposeof the transformations is to transform programs written in a style promoted by the left hand sideof (1), into a form shown on the right hand-side (the notation used in �gure 2 will be describedin detail in the following section).4 Algebraic identities for vectorizationVectorization of a functional language based upon Peyton-Jones [9] STG language is presentedin the following sections. The formal operational semantics of this language expressed as a statetransition system can be found in the appendix. The important characteristics of the STG languageis that evaluation is performed by case expressions, whereas letrec expressions delay evaluation,resulting in a heap allocation of a closure in the abstract machine. Peyton-Jones's language isextended with the following data-parallel constructs:| Pre-vectorization constructs that arise from the desugaring of Data Parallel Haskell programscontaining pod comprehensions. These constructs are the same as the `primitive' paralleloperations proposed in [5].� Post-vectorization constructs that are introduced by the vectorization process.2In connection machine Lisp, � has the same meaning as map3

(program) prog 7! fbindg+(binding) bind 7! var = lf(lambda form) lf 7! � fvarg� ! expr(expression) expr 7! letrec fbindg+ in expr local de�nitionj case expr of alts default case analysisj var fatomg� function applicationj prim fatomg� primitive operationj constr fatomg� constructor applicationj literalj mapn (lf j var) expr1 : : : exprn pod Map |j send varvar sending communication |j fetch varvar fetching communication |j case expr of palts default parallel case analysis �(atom) atom 7! var j literalj � : : : atom : : :� constant in�nite pod �(case alternatives) alts 7! fliteral -> expr ;g� primitive alternativej fconstr fvarg� -> expr ;g� algebraic alternative(parallel alternative) palts 7! f8 literal -> expr ;g� parallel primitive alternative �j fvarg� f8 constr -> expr ;g� parallel algebraic alternative �(case default) default 7! var -> expr binding defaultj default -> expr wildcard defaultFigure 3: Syntax for a data-parallel extended STG languageData-parallelism is expressed in the STG language by mapn expressions. The semantics ofthis expression is to apply a function of arity n, in a curried manner to n primitive vectors | itis analogous to the family of Haskell map-like functions map, zipWith, zipWith3 , : : : ,zipWithn.The objective of vectorization is to apply successive program identities to an STG program, suchthat any mapn expressions are reduced to a form that can be directly implemented on a data-parallel machine. The primitive vectors used in the STG language are a low level abstraction ofthe parallel data structures of a data parallel machine (the pods of [5] are built on-top of thesevectors). Vectors are array like data structures that are unbounded and potentially in�nite. Theimportant di�erence between vectors and pods is that every cell of a vector is known to be de�ned| i.e with an initialised array of size four, we know that there exists a cell at position two, eventhough that cells contents may be unde�ned.4.1 Vector formThe starting point for the vectorization process is the assumption that for every primitive operationin the STG language, there exists an analogous primitive vector operation. For example givenan unboxed [11] addition operation of type \(+#)::Int# -> Int# -> Int#" we assume thereis a vector addition primitive of type \(+#)::vector Int# -> vector Int# -> vector Int#";where the convention prim is used to represent the vector version of the primitive prim. Given theknowledge that such primitives exist, the basic program identity is the conversion of a primitiveapplication into a vector form that is directly implementable on a data-parallel machine.mapn (� x1 : : :xn ! prim a1 : : :ak) v1 : : : vn) prim (mapn (� x1 : : : xn! a1) v1 : : : vn)...(mapn (� x1 : : : xn! ak) v1 : : : vn) Vector form (I)4

letrec f = � x y ! (x+ 2) � yin vectorize)map1(� y ! f 1 y) vec letrec f = � x y ! (x+ 2) � yf = � x y ! (x+� : : : 2 : : :�)�yin f � : : : 1 : : :� vecFigure 4: Vectorising local bindingsThe goal of vectorization is to simplify all the mapn expressions in a STG program until theyreach vector form.4.2 Basic rules for expressionsRule I for primitive applications is generalised in a manner similar to Steele's [12] � distributionlaw. By pushing the map inside the arguments of the application, and moving the function beingmapped outwards, more opportunities for simpli�cation to vector form are exposed.mapn (� x1 : : :xn ! f a1 : : :ak) v1 : : : vn)mapk f (mapn (� x1 : : : xn ! a1) v1 : : : vn)...(mapn (� x1 : : : xn ! ak) v1 : : : vn) Applications (II)Rule III is a special case of the identity simpli�cation \(� x! x) y � y".mapn (� x1 : : :xi : : : xn ! xi) v1 : : : vi : : : vn) vi Map simpli�cation (III)Rule IV is rather subtle in that it would seem that the side condition would be extremelyhard to satisfy. The reason for the side-condition is that the expression \map1 (� x! 42#) ?"reduces to ?, and not an in�nite vector containing 42#. The rule is sound however because we canguarantee that each of the vectors represented by the atoms v1 : : : vn will never be ?, wheneversuch an expression is evaluated3. The rule follows from the fact that vectors are in�nite datastructures in which every cell (by cell we mean the location that identi�es an element of a vector,and not its contents) of a vector is known to be de�ned. The mapping of a constant lambda formsuch as \� x! 42#" over such an in�nite vector will always produce an in�nite vector containingthe number 42#. We write such an in�nite vector as � : : :42# : : :�.mapn (� x1 : : :xn ! lit) v1 : : : vn)� : : : lit : : :� If vi 6� ?; where 1 � i � n Constants (IV)4.3 Mapping through the `�re break' of a local bindingThe rules presented so far enable expressions such as the one shown in �gure 2 to be reduced to avector form. However, vectorization can be easily interrupted by the local bindings in a programthat cause a `�re break' through which the algebraic identities cannot be applied. For examplethe body of the letrec in the left of �gure 4 can be reduced to \map2 f � : : :1 : : :� vec", inwhich none of the identities I{IV can be used further.Each primitive prim in the STG language has an analogous vector primitive with semantics\mapn prim"|such expressions can be reduced to vector form. The `�re break' caused by localbindings can be overcome in a similar way by generating `new primitives' for each binding in theletrec. As with the vector form simpli�cation, the semantics of these new bindings is equivalentto \mapn f" (where n is the arity of f).3This invariant is guaranteed by the compiler, see [?] for a justi�cation5

letrec f1 = � x1;1 : : :x1;n ! expr1...fk = � xk;1 : : :xk;m ! exprkin expr) letrec f1 = � x1;1 : : :x1;n ! expr1f1 =mapn (� x1;1 : : : x1;n! expr1) x1;1 : : :x1;n...fk = � xk;1 : : :xk;m ! exprkfk =mapm (� xk;1 : : :xk;m ! expr1) xk;1 : : : xk;min expr Letrec vectorization (V)We adopt the convention that f is the mapped version of the binding f . Rule VI follows in thesame way as the vector form identity. If a binding f exists, then a map expression such as the oneshown in the left of �gure 4 can be reduced to the expressions shown in the right|rules V and VIprovide a bridge across the �re break.mapn f v1 : : : vn) f v1 : : : vn Only if f exists Binding simpli�cation (VI)Rule VII is a generalisation of the program identity for literals (rule III). If the x in the bodyof the lambda expression in rule VII is free, then the e�ect is to convert x into an in�nite vectorin which every element contains x.mapn (� x1 : : :xn ! x) v1 : : : vn)� : : :x : : :� If x 62 fx1 : : : xngand x does not exist Variable vectorization (VII)In the current implementation of the compiler for the DAP, this seemingly trivial rule is usuallythe sole culprit for programs failing to vectorize! The problem is there is no general method oftransforming an object of type � into an in�nite vector of �s|the conversion is ad-hoc for eachtype. One solution to this problem is to overload the conversion process using a similar techniqueto Haskell overloading. As the vectorizing compiler is based upon the Glasgow Haskell compiler[10], it would be a natural choice to use Haskell's overloading mechanism. Unfortunately wecannot do this (vectorization occurs as a compiler pass after overloading has been resolved), sothe compiler has to re-implement the overloading mechanism to implement rule VII.> update::(Eq a, Pid a) => <<a;b>> -> a -> b -> <<a;b>>> update vec i x = << (| a; if a == i then x else b |) | (|a;b|) <<- vec >>The function update is an example in which rule VII is used during vectorization. updateprovides a O(1) updating mechanism of pods using a map-like transformation expressed as a podcomprehension. The result of vectorizing this function is an in�nite vector containing x at eachelement (rule VII), is merged with the vector to be updated (see section 5.1). This updatingmechanism provides yet another solution to the constant time array updating problem in purelyfunctional languages. By using the rather large hammer of data-parallelism, a O(1) complexityupdate is achieved, albeit at the cost of O(N) space complexity.4.4 Mapping through a primitive case expressionThe STG language provides a primitive form of case analysis similar to a C-style switch statement.The important characteristic of case in the STG machine is it provides the only mechanism bywhich evaluation is forced|the discriminant of the case is reduced to weak head normal form. In6

eqInt = � x y! case (x �# y) of0# ! 1#; vectorize)default ! 0# eqInt = � x y ! case (x �# y) of8 0# ! � : : : 1# : : :�;default ! � : : : 0# : : :�Figure 5: Vectorising a binding containing a primitive casea similar vein to the rules presented so far, when vectorization reduces an expression to a caseenclosed by a map, the solution to vectorizing the case is to push the map inside the alternativesof the case.mapn0BBBBB@� x1 : : :xn ! case expr oflit1 ! expr1 ;...litk ! exprk ;default! exprd 1CCCCCA v1 : : : vn) case (mapn(� x1 : : :xn ! expr) v1 : : : vn) of8 lit1 !mapn(� x1 : : : xn ! expr1) v1 : : : vn ;...8 litk !mapn(� x1 : : : xn ! exprk) v1 : : : vn ;default!mapn(� x1 : : : xn ! exprd) v1 : : : vn Primitive case (VIII)The operational semantics for case is described in Appendix B.2. The salient features of anevaluation of a vectorized case expression as shown in the right of �gure 5 are:� The vector represented by the discriminant \x �# y" is evaluated in parallel;� Every vector element of the discriminant that matches against the literal 0# evaluates the�rst alternative of the case expression synchronously and in parallel;� Those vector elements failing to match against the �rst alternative evaluate the defaultalternative;� The vector that results from the case expression is created by merging the vector resultingfrom the �rst alternative, with the vector from the default, using a priority speci�ed by thematched literal of the discriminant;If a variable default binding is used in a primitive case expression, then the translation of thedefault in rule VIII is changed to:x! exprd) x! mapn+1(� x x1 : : :xn ! exprd) x v1 : : : vn5 Vectorizing algebraic data typesVectorization is guided by the goal of reducing expressions into a form that can be directly im-plemented on a data-parallel machine. Similarly, the construction of vectors containing algebraicdata types (ADT's), and the scrutiny of such forms by case analysis is guided by following machineconstraints:Constraint 1 Some data-parallel machines (i.e the CPP DAP) require that vectors only contain unboxedprimitive data-types|the hardware is not suited to the parallel evaluation of vectors ofpointers.Constraint 2 When a parallel case expression such as the one shown in �gure 5 is evaluated, potentially allthe alternative of the case need evaluating. The result of each of these alternatives may be ahead normal form that contains as yet unevaluated closures (e.g an ADT). These resulting7

Nil

Processor 2

NilMkInt 42#

Processor 1

ConsFigure 6: Ideal representation of a vector of lists
(,) , (,)

Nil

Processor 2Processor 1Processor 2Processor 1

NilMkInt 42#

ConsFigure 7: A naive representation of a vector of lists
MkInt#

Processor 1 Processor 2
N/H#

Processor 2Processor 1

42# ????

Processor 1 Processor 2

Cons# Nil#

N/H#
Processor 1 Processor 2

Nil#Figure 8: The \inside out" representation of a vector of listshead normal forms need to be \merged" into a single vector that encapsulates the meaningof the entire case.Wish 1 If di�erent elements of the discriminant of a vector contain the same data, and a successfulmatch of a case alternative occurs, then each of the vector elements that matched evaluatethe body of the matched alternative at the same time.As a running example the vector shown in �gure 6 is transformed into a series of representationswith varying degrees of suitability for a data-parallel machine.5.1 A naive implementationA trivial way of ful�lling the constraints imposed on the parallel representation of constructors isto represent a vector of ADT's as a specialised, but purely sequential closure that we term a `caseclosure'. A case closure, written as / (�1; adt1); : : : ; (�n; adtn) . is a representation for a vectorof ADT's in which those processors that contain a p in the boolean vector �i all contain thesame algebraic data type represented by adti; where 1 � i � n. Figure 7 shows the case closurerepresentation of the exemplar vector.The down-side to this representation is that the matching of such case closures has a complexitylinear to the size of the case closure. More seriously, di�erent alternatives of the case expressionmay be evaluated N times; where N is the size of the case closure, and N can be much largerthan the number of alternatives in the case expression. For example if the case closure containedthe lists \Cons (MkInt 1#) Nil)" and \Cons (MkInt 2#) Nil", then if a case expression had aCons alternative, this would be evaluated twice! We need a better representation for ADT's.5.2 The \inside out" transformationThe solution we adopt to the adverse e�ects of case closures, is to merge case closures with therepresentation of algebraic data types. 8

5.3 The \Inside out" transformation applied to treesdata Tree a = Empty | Leaf a | Branch (Tree a) (Tree a)insideoutdate Tree a = <<Empty# | Leaf# | | Branch# | NotHere#>><<a>> (Tree a) (Tree a)5.4 The program identity for constructorsmapn(� x1 : : :xn ! constr a1 : : : an)� : : : constr : : :� (mapn (� x1 : : : xn ! a1) v1 : : : vn)...(mapn (� x1 : : : xn ! ak) v1 : : : vn) Constructors (IX)5.5 The program identity for case analysismapn0BBBBB@� x1 : : :xn ! case expr ofconstr1w1 : : :wi ! expr1 ;...constrkw1 : : :wj! exprk ;default ! exprd 1CCCCCA v1 : : : vn) case (mapn(� x1 : : :xn ! expr) v1 : : : vn) ofw1 : : :ws 8 constr1!mapn(� x1 : : : xn! expr1) v1 : : : vn ;...8 constrk!mapn(� x1 : : : xn! exprk) v1 : : : vn ;default !mapn(� x1 : : : xn! exprd) v1 : : : vn Algebraic case (X)References[1] R. S. Bird. Algebraic identities for program calculation. The Computer Journal, 32(2):122{126, 1989.[2] D. Cann. Retire fortran? a debate rekindled. Communications of the ACM, Aug. 1992.[3] J. Darlington. Program transformation and synthesis: present capabilities. Technical Report77/43, Dept of Computing and Control, Imperial College, London, Sept. 1977.[4] J. M. D. Hill. Data Parallel Haskell: Mixing old and new glue. Technical Report 611,Department of computer Science, QMW, Dec. 1992. Available by FTP from ftp.dcs.qmw.ac.ukin /pub/cpc/jon hill/dpGlue.ps.[5] J. M. D. Hill. The aim is laziness in a data-parallel language. In K. Hammond andJ. T. O'Donnell, editors, Functional programming Glasgow, 1993. Available by FTP fromftp.dcs.qmw.ac.uk in /pub/cpc/jon hill/aimDpLaziness.ps.[6] J. Hughes. Why functional programming matters. The Computer Journal, 32(2):98{107,1989.[7] G. K. Jouret. Compiling functional languages for SIMD architectures. In Third IEEE Sym-posium on parallel and distributed processing, pages 79{86, 1993.9

[8] P. J. Landin. A correspondence between ALGOL 60 and Church's lambda notation. Com-munications of the ACM, 8(2):89{101, Feb. 1965. Part 2 in CACM Vol 8(2) 1965, pages158{165.[9] S. L. Peyton Jones. Implementing lazy functional languages on stock hardware: the spinelesstagless G-machine. Journal of Functional Programming, 1992.[10] S. L. Peyton Jones, C. V. Hall, K. Hammond,W. D. Partain, and P. L. Wadler. The GlasgowHaskell Compiler: a technical overview. In Joint Framework for Information Technology(JFIT) Conference, Keele, March 1993.[11] S. L. Peyton Jones and J. Launchbury. Unboxed values as �rst class citizens in a non-strictfunctional language. In Functional Programming Languages and Computer Architecture, Sept.1991.[12] G. L. Steele Jr. and W. D. Hillis. Connection machine Lisp : Fine-grained parallel symbolicprocessing. In ACM Conference on Lisp and Functional Programming, pages 279{297, 1986.[13] J.-P. Talpin. Aspects th�eoriques et praticques de l'inf�erence de type et d'e�ets. PhD thesis,L'Ecole nationale sup�erieure des mines de Paris, May 1993. (Thesis in English).[14] P. Wadler and R. J. M. Hughes. Projections for strictness analysis. In Functional Program-ming Languages and Computer Architecture, number 274 in LNCS, 1987.[15] M. Wolfe. Optimizing supercompilers for supercomputers. Pitman, 1989.

10

Appendices: Extremely draftyA The representation of parallel closuresUnevaluated computations are represented by closures of the form (vsn xs -> e) ws. Whenevaluation of such a closure is completed, an update is performed that overwrites the closurewith its computed head normal form. One of the distinguishing features of our data parallelimplementation is its updating mechanism.In DPHaskell we term the aim of evaluation to be the set of processors which we wish toevaluate to head normal form. Evaluation of a closure that represents an unevaluated parallelcomputation is performed under a particular aim|the resulting head normal form is only de�nedat those processors de�ned by the aim. This raises a problem; we cannot simply update a closurewith its head normal form without losing the representation of those processors not de�ned bythe aim. A solution to this problem is to introduce a hybrid closure that can represent both headnormal forms and thunks at the same time:(vs n� an ->e)wsThe desired reading of such a `Parallel Closure' is those processors de�ned by �, have a valuerepresented by the head normal form `a'; those processors not de�ned by � have a value representedby the thunk (vsn u fg -> e)ws. As will become apparent latter, we distinguish between two kindsof parallel closure; those which contain constructor or primitive value head normal forms, andthose which contain function values4.As well as providing parallel closures, the other fundamental closure type is the `CaseClosure'.This comes in one of two avours: / �1a1 : : :�nan .; such that each processor de�ned by alphaihas a constructor de�ned in the corresponding processor of a1; // �1a1 : : : �nan .. in which eachof the a1 is the address of function valued closure. The use of `Case Closure's will be addressed inthe subsequent sections.B An overview of the data-parallel STG machineB.1 Basic Rules(1) (Eval (f xs) � �) as fg ps rs ms us h �such that val � � f = Addr a=) (Enter a �) (val � � xs) ++ as fg ps rs ms us h �(2) (Enter a �) as fg ps rs ms us h[a 7! (vs nn xs -> e)wsf] �such that length(as) � length(xs)=) (Eval e � �) as0 fg ps rs ms us h �where wsa ++ as0 = aslength(wsa) = length(xs)� = �[vs 7! wsf ; xs 7! wsa]4These are the result of a partial application update|more on these beasts latter11

B.2 Parallel Case expressions(3) (Eval (case e of alts) � �) as fg ps rs ms us h �=) (Eval e � �) as fg fg (alts; �; �; ps) :rs ms us h �(4) (Eval (�c� xs) � �) as fg ps rs ms us h �=) (MergeCon con �) as fg ps rs ms us h0 �where h0 = h[con 7!�c� val � � xs]Unlike vanilla constructors, evaluation of a parallel constructor causes a heap allocation|the extentof the parallel object is not known until runtime. Notice how the MergeCon instruction uses the addressof the constructor as its �rst argument.(5) (MergeCon con �1) as fg fg r@(alt; �; �2; ps) :rs ms us h �sanity check �1 � �2 if alt is not a send=) FlatCon as f(con;�1)g fg r :rs ms us h �(6) FlatCon as (con;�) :fs ps rs ms us h[con 7! / �1 c1 � � ��n cn .] �=) FlatCon as fs0 ps rs ms us h �where fs0 = f(c1; �1 \ �); : : : ; (cn; �n \ �)g ++ fs
(7) FlatCon as (con;�1) :fs ps r@0BBBB@ vs1 � � � vsnj 8c1 -> e1;...j 8cn -> en;default -> en+1; ; �; �2; ps01CCCCA :rs ms us h �such that h con =�c� ws1 � � �wsn=) FlatCon as fs ps00 r :rs ms us h �where�1 = �1 \ (c � c1)...�n = �1 \ (c � cn)�n+1 = �1 � �nps00 = f(�i; �[vsi 7! wsi]; ei) j �i 2 f�1; : : : ; �n+1g; �i 6= fgg ++ psThe FlatCon state attens the tree like structure of a case closure. Whenever the top most item on theatten stack is an ordinary parallel constructor, we apply it to the return continuation, building up a listof what RHS need to be evaluated on the path stack.12

(8) FlatCon as fg (�1; �; e) :ps (alt; �0; �2; ps0) :rs ms us h �=) (Eval e � �1) as fg ps fg (1; u; �2; ps0; rs) :ms us h0 �where k = length(ps) + 1h0 = h2664 u 7! / u1u01 � � �uku0k .;u1 7! \�ller"; u01 7! \�ller"...uk 7! \�ller"; u0k 7! \�ller" 3775When the atten stack is empty, the path stack will contain a number of expressions that are to to beevaluated, then \merged" together. Because the resulting head normal forms may contain thunks, weallocate a case closure to represent the merged constructor. The number of slots in this case closure canbe found from the depth of the path stack. We empty the return stack to force a stall on the continuationpassing style of the STG machine, the address of the merged case closure is pushed onto the merge stack,ms, with the other saved stacks.(9) (MergeCon con �1) as fg (�2; �; e) :ps fg (k; u; �3; ps0; rs0) :ms us h �such that h u = / a1 a01 � � �ak a0k � � �an a0n .=) (Eval e � �2) as fg ps fg (k + 1; u; �3; ps0; rs0) :ms us h0 �where h0 = h[u 7! / a1 a01 � � � ak�1 a0k�1 �1 con � � ��n un .]The continuation passing style of the STG machine does'nt really �t in with the evaluation mechanismof the data parallel STG machine. When we evaluate a case expression, we need to evaluate all the RHSalternatives|hence we empty the return stack to force a stall of the STG continuation passing style, if thepath stack is not empty, a merge will be performed and the next expression on the path stack evaluated.(10) (MergeCon con �1) as fg fg fg (n; u;�2; ps0; rs0) :ms us h �such that h u = / �1 c1 � � ��n cn .sanity check ps0 = fg) rs0 6= fgps0 6= fg) rs0 = fg=) (MergeCon u �2) as fg ps0 rs0 ms us h0 �where h0 = h[u 7! / �1 c1 � � ��n�1 cn�1 �1 con .]B.3 A note on the representation of constructors(11) (Eval con � �) as fg ps rs ms us h �such that h con = / a1 a01 � � �ana0n .sanity check a1 [� � � [an � �=) (MergeCon con �) as fg ps rs ms us h �In Peyton-Jone's STG machine, the heap only contains closures of the form \(vsnu xs -> e) ws"| forexample a heap allocated constructor is wrapped in a non-updatable closure thus:c xs � (vsnn fg-> c vs) xs13

Because many of the rules `look inside' the closure to perform updates or a merge, we adopt the oppositeapproach to make the presentation of the material a little clearer. Therefore a parallel constructor such as\�c� xs" can be heap allocated without wrapping it within a closure. The downside to this approachis the extra rules needed for the evaluation of such closures.B.4 Updating(12) (Enter a �) as fg ps rs ms us h[a 7! (vs nu fg -> e)wsf] �=) (Eval e � �) fg fg fg fg fg (as; ps; rs;ms; a) :us h �where � = [vs 7! wsf](13) (MergeCon con �) fg fg fg fg fg (asu; psu; rsu;msu; au) :us h �such that h au = (vs nu fg -> e) wsf=) (MergeCon con �) asu fg psu rsu msu us hu �where hu = h[au 7! (vs n� conn -> e) wsf]Applying the �rst update to a closure simply overwrites the closure with a parallel closure that containsthe calculated head normal form.(14) (MergeCon con �) fg fg fg fg fg (asu; psu; rsu;msu; au) :us h �such that h au = (vs n�0 con0n ->e)wsf=) (MergeCon con �) asu fg psu rsu msu us hu �where hu = h� au 7! (vs n(�� �0) un -> e) wsf ;u 7! / � con �0 con0 . �Applying an update to a re-entered parallel closure needs to merge the evaluated head normal formwith its previously evaluated value.
14

