Vectorizing a non-strict functional language for a
data-parallel “Spineless (not so) Tagless G-machine”: DRAFT

Jonathan M.D. Hill*
Department of Computer Science
Queen Mary & Westfield College

University of London

Abstract

The essence of data-parallelism is a O(1) map function. A data-parallel interpretation
of map i1s the application of a function to every element of a parallel data structure at the
same time. This model is at odds with a version of map over lists. Although list map can be
interpreted as applying a function to every element of a list, in a non-strict functional language
the function applications only occur to those elements of the list required by a subsequent
computation.

We reconcile these opposing views of map using a three tiered model: (1) a non-strict
data-parallel evaluation mechanism based upon ‘aims’ [5] is used that combines the “only
evaluate what is required” philosophy of non-strict evaluation, with the “evaluate everything
synchronously, and in paralle]” mechanism of a data-parallel paradigm; (2) program trans-
formations inspired by the map distributivity law are used to wvectorize functional programs
that contain map; (3) the resulting vectorized programs are compiled into machine code that
mimics an abstract machine based upon the Spineless Tagless G-machine [9]. The novel fea-
tures of this machine are that it incorporates the ‘aim’ mechanism of data-parallel evaluation,
and case analysis of algebraic data-types has been vectorized by performing tag-checking in
parallel. These extensions have been incorporated into the Glasgow Haskell compiler [10],
and code is being generated for the CPP Distributed Array Processor (DAP), a massively
parallel SIMD machine.

1 Introduction

Why should data-parallelism be incorporated into a non-strict programming language? Without
going over well-trod ground [6], we identify higher order functions and lazy evaluation as being
desirable in a data-parallel language. In [5, 4] a non-strict data-parallel model was presented in
which the programmer expresses parallel computations in terms of PODs and POD comprehensions.
PODs are parallel data-structures that are an abstraction of the processing elements of a parallel
machine. They share many of the characteristics of monolithic arrays [8], however their distin-
guishing feature is they are unbounded and potentially infinite. Using a notation analogous to
list comprehensions [3], POD comprehensions provide a framework by which communication and
parallel operations on PODs can be expressed. Using these extensions, higher order functions such
as map, fold and scan, each having a better complexity than their sequential counterparts, can be
developed to encapsulate general patterns of parallel computation. However, unlike existing im-
plementations of these functions, non-strictness plays an important role in that 1t enables potential
computations on infinite PODs to be expressed. As described in Hughes [6], lazy data-structures
provide a powerful mechanism of modularising programs because functions that compute over infi-
nite data-structures can be simply composed, or ‘glued’ together. In practical terms this means we

*This work has been supported through a SERC case award in association with Cambridge Parallel Processing.
Author’s address: Department of Computer Science, Queen Mary & Westfield College, University of London,
Mile End Road, E1 4NS. Email: Jon.HillQ@dcs.qmw.ac.uk

> map £ []
> map £ (x:xs)

] > exListA xs = sum (map (+1) xs)
f x : map £ xs > exListB xs = sum (take 10 (map (1/) xs))

Figure 1: An example using list map

can ignore problems that arise from composing functions that perform computations over differing
sized parallel data structures, we can use infinite PoDs and perform finite computations on the
resulting ‘glued’ functions.

2 The aitm of non-strict data-parallelism

Effective use of a data-parallel machine relies upon the synchronous evaluation of a sufficient
number of elements of a parallel object—this seems to be at odds with a non-strict evaluation
strategy. To highlight this dichotomy we investigate the potential for data-parallelism using lazy
lists. The mapping of the increment function (+1) in example exListA of figure 1 could be applied
in a data-parallel manner to each element of the list xs, because the surrounding sum consumes
all of the resulting list. As a general rule, if a map expression is enclosed by a function that is
head and tail strict [14], then data-parallel evaluation of the map is probably feasible. Things are
not quite so simple in example exListB. Because of the non-strictness associated with take, the
mapping of the reciprocal function (1/) is only applied to the first ten elements of the list xs.
We can see from the definition of exListB that we could apply the inner map in a data-parallel
manner to the first ten elements of xs, but does this form a general rule? It seems that the
delaying mechanism of non-strict evaluation throttles any possibilities of data-parallelism inherent
in functional programs that use map.

A simple solution to these problems is to ensure that map is both head and tail strict [7].
However, in exListB, if any elements of the portion of the list xs after element ten contained
zero, then the result of evaluation will always be L, regardless of whether the list element that
contained zero was required. We find this unnecessary strictness uncomfortable in a non-strict
language.

We propose an evaluation mechanism that combines the desirable features of the lazy and
strict evaluation of map. Whenever a map-like computation is forced, multiple elements of the
parallel object being mapped evaluate their results in synchrony. However, the mechanism retains
a non-strict semantics. We observe from figure 1 that a portion of this list in exListB is forced
by the evaluation of sum. We parallelise this process by providing the programmer with a series
of IO routines' that evaluate a collection of the elements of a data-parallel object all at the same
time. We overcome the problems faced in exListB by using a data-parallel non-strict evaluation
mechanism that maintains a record (the aim) of the elements of the parallel object which need
to be evaluated. Whenever a map-like computation is forced, as with the strict version of map,
evaluation of the function applications of the map occur synchronously and in parallel. However,
only those elements defined by the aim are evaluated. At the cost of introducing a new non-strict
evaluation mechanism, map can be implemented with a constant time complexity, whilst retaining
all the benefits of non-strict evaluation.

This paper describes techniques that form a bridge between a data-parallel non-strict language
and an implementation on a massively parallel SIMD machine. In the following sections we
introduce a series of program identities that vectorize functional programs for evaluation on a
data-parallel machine. The effectiveness of vectorizing functional languages is unquestionable—a
realistic (weather prediction) SISAL program out-performs a Fortran version of the same program
on the CRAY Y-MP [2]. We conclude the paper with an overview of a data-parallel Spineless
Tagless G-Machine, and a selection of the machines state transition rules in the Appendix. For a
detailed description of the machine see [].

1 And programmer annotations in terms of forcing routines, see [5]

MAP; (A ¢ — (2+2)+4) vec
= MAP; (+) (MAP; (A z — 2 * z) vec) (MAP1 (A & — 4) vec)
= MAP; (+) (MAP: (*) (MAP; (A z — 2) vec) (MAP; (A ¢ —) vec))
(MAP; (A ¢ — 4) vec)

= MAP; (+) (MAP: (¥) € ...2...>vec) < ... 4...>
vector vector

RO ((x) €2 > ve0) < 4>
Figure 2: Example vectorization

3 Vectorization and the distributive law of map

Classically a vectorizing compiler for a language such as Fortran transforms serial programs that
typically contain DO loops, into code that utilises available vector instructions of a target machine.
Unfortunately vectorizing compilers for imperative languages can be a rather ‘hit and miss’ affair.
If the body of the loop being vectorized contains any dependency cycles, then vectorisation may
fail unless the compiler can spot that the body is an instance of set of predefined templates such
as reduction or recurrence operations (i.e it special cases fold and scan of trivial operations such as
addition or the maximum of two integers!) [15]. Such dependency cycles arise from the excessive
sequencing of statements inherent in a imperative language because of assignment. Assignment
statements can cause more serious problems if a function call is present in the body of a loop
being vectorized. Vectorization of the function call can only occur if the function is known to be
referentially transparent [2]. Talpin [13] uses a Hindley-Milner based type system in which it is
possible to delimit the scope of side effects into regions. In his FX compiler for the Connection
Machine, he uses these regions to deduce if a function is referentially transparent and can therefore
be vectorized.

Our goal 1s similar to classical vectorisation techniques, however the referential transparency
of a non-strict languages makes things considerably easier for us — it will become apparent that
without referential transparency, none of the algebraic identities we use to vectorize programs
would hold. The inspiration for this work comes from two sources, Steele’s [12] law that “«
distributes over function calls”?, and Bird’s [1] map distributivity law (1).

map (fog) = (map f)o (map g) (1)

Figure 2 shows an example of the kind of transformations we propose to perform. The purpose
of the transformations is to transform programs written in a style promoted by the left hand side
of (1), into a form shown on the right hand-side (the notation used in figure 2 will be described
in detail in the following section).

4 Algebraic identities for vectorization

Vectorization of a functional language based upon Peyton-Jones [9] STG language is presented
in the following sections. The formal operational semantics of this language expressed as a state
transition system can be found in the appendix. The important characteristics of the STG language
is that evaluation is performed by case expressions, whereas letrec expressions delay evaluation,
resulting in a heap allocation of a closure in the abstract machine. Peyton-Jones’s language is
extended with the following data-parallel constructs:

& Pre-vectorization constructs that arise from the desugaring of Data Parallel Haskell programs
containing POD comprehensions. These constructs are the same as the ‘primitive’ parallel
operations proposed in [5].

& Post-vectorization constructs that are introduced by the vectorization process.

?In connection machine Lisp, o has the same meaning as map

(program) prog — {bind} "

(binding) bind — wvar =1f

(lambda form) lf — A {var}* — expr

(expression) expr letrec {bind}t in expr local definition
case expr of alts default case analysis
var {atom}” function application
prim {atom}” primitive operation
constr {atom}”* constructor application
literal

MAP,, (If | var) expry...expr, POD Map &

—————

SEND varvar sending communication &
FETCH varvar fetching communication o
case expr of palts default parallel case analysis &
(atom) atom — var | literal
| < ...atom...>> constant infinite POD &
(case alternatives) alts — {literal => expr ;}* primitive alternative
| {constr {var}* -> expr ;}* algebraic alternative
(parallel alternative) palts — {V literal => expr ;}" parallel primitive alternative é
| {var}* {V constr => expr ;}* parallel algebraic alternative #

(case default) default +— wvar -> expr binding default
| de fault => expr wildcard default

Figure 3: Syntax for a data-parallel extended STG language

Data-parallelism is expressed in the STG language by MAP,, expressions. The semantics of
this expression is to apply a function of arity n, in a curried manner to n primitive vectors — it
is analogous to the family of Haskell map-like functions map, zipWith, zipWith3 | ... zipWith,.
The objective of vectorization is to apply successive program identities to an STG program, such
that any MAP, expressions are reduced to a form that can be directly implemented on a data-
parallel machine. The primitive vectors used in the STG language are a low level abstraction of
the parallel data structures of a data parallel machine (the PoDs of [5] are built on-top of these
vectors). Vectors are array like data structures that are unbounded and potentially infinite. The
important difference between vectors and PoDs is that every cell of a vector is known to be defined
— 1.e with an initialised array of size four, we know that there exists a cell at position two, even
though that cells contents may be undefined.

4.1 Vector form

The starting point for the vectorization process is the assumption that for every primitive operation
in the STG language, there exists an analogous primitive vector operation. For example given
an unboxed [11] addition operation of type “(+#)::Int# -> Int# -> Int#’ we assume there
is a vector addition primitive of type “(+#)::vector Int# -> vector Int# -> vector Int#’;
where the convention prim is used to represent the vector version of the primitive prim. Given the
knowledge that such primitives exist, the basic program identity is the conversion of a primitive
application into a vector form that is directly implementable on a data-parallel machine.

MAP, (A Zy... %y — préimaday...ag) vy... On

= prim (MAP, (A&y... 2y —ay) v1... Uy) Vector form (1)

(MAP, (A 21...2np —ag) v1... Up)

letrec f=Azy— (c+2)*y letrec f = Azy—(z+2)xy
in veelgrize f = Aey—(3F<...2...>)%y

MAP1(Ay — f 1 y) vec in _
f<...1...> wvec

Figure 4: Vectorising local bindings

The goal of vectorization is to simplify all the MAP,, expressions in a STG program until they
reach vector form.

4.2 Basic rules for expressions

Rule T for primitive applications is generalised in a manner similar to Steele’s [12] « distribution
law. By pushing the map inside the arguments of the application, and moving the function being
mapped outwards, more opportunities for simplification to vector form are exposed.

MAP, (Azy...2p — far...ap) v1... On

= MAP; f (MAP, (A @1...2p — a1) v1... Up) Applications (IT)

(MAP, (A 21...2np — ag) v1... Up)

b

Rule TIT is a special case of the identity simplification “(A ¢ — z) y = y”.

MAP, (A&y...% ... %, — &) U1 ... U;...0n
Map simplification (IIT)

= U;

Rule TV is rather subtle in that it would seem that the side condition would be extremely
hard to satisfy. The reason for the side-condition is that the expression “MAP; (A — 42#) L”
reduces to L, and not an infinite vector containing 424 . The rule i1s sound however because we can
guarantee that each of the vectors represented by the atoms vy ...v, will never be L, whenever
such an expression is evaluated®. The rule follows from the fact that vectors are infinite data
structures in which every cell (by cell we mean the location that identifies an element of a vector,
and not its contents) of a vector is known to be defined. The mapping of a constant lambda form
such as “A &z — 424£” over such an infinite vector will always produce an infinite vector containing
the number 42#. We write such an infinite vector as <« ... 42# ...>>.

MAP, (Azy...xp —lit) v1... vy
Constants (TV)
> . it > Ifv; £ L; where 1 <i<n

4.3 Mapping through the ‘fire break’ of a local binding

The rules presented so far enable expressions such as the one shown in figure 2 to be reduced to a
vector form. However, vectorization can be easily interrupted by the local bindings in a program
that cause a ‘fire break’ through which the algebraic identities cannot be applied. For example
the body of the letrec in the left of figure 4 can be reduced to “MAPs f < ...1...> wvec”, in
which none of the identities I-IV can be used further.

Each primitive prim in the STG language has an analogous vector primitive with semantics
“MAP, prim”—such expressions can be reduced to vector form. The ‘fire break’ caused by local
bindings can be overcome in a similar way by generating ‘new primitives’ for each binding in the
letrec. As with the vector form simplification, the semantics of these new bindings is equivalent
to “MAP, f” (where n is the arity of f).

3This invariant is guaranteed by the compiler, see [?] for a justification

letrec fi=Ax11...T10n — expry

fe=Azp1...Tpm — expry
in expr

= letrec fi=Az11.

L1 T ETPT]
f1 = MAP, (/\ 11..-L1p — 6l‘p7“1) Z11---T1n

Letrec vectorization (V)

f_k: ATp1.. Tpm — €XPTY
fe =MAP, (A Zp1...2p,m — €TPr1) Tp 1. .. Tkm
in expr

We adopt the convention that f is the mapped version of the binding f. Rule VI follows in the
same way as the vector form identity. If a binding f exists, then a map expression such as the one
shown in the left of figure 4 can be reduced to the expressions shown in the right—rules V and VI
provide a bridge across the fire break.

MAP, f v1...0,
Binding simplification (VT)

=fuv...v, Only if f exists

Rule VII is a generalisation of the program identity for literals (rule TIT). If the « in the body
of the lambda expression in rule VII is free, then the effect is to convert z into an infinite vector
in which every element contains x.

MAP, (Azy...2p — &) 01... Uy
x> fod e 2.} Variable vectorization (VII)
and X does not exist

In the current implementation of the compiler for the DAP, this seemingly trivial rule is usually
the sole culprit for programs failing to vectorize! The problem is there is no general method of
transforming an object of type « into an infinite vector of as—the conversion is ad-hoc for each
type. One solution to this problem is to overload the conversion process using a similar technique
to Haskell overloading. As the vectorizing compiler is based upon the Glasgow Haskell compiler
[10], it would be a natural choice to use Haskell’s overloading mechanism. Unfortunately we
cannot do this (vectorization occurs as a compiler pass after overloading has been resolved), so
the compiler has to re-implement the overloading mechanism to implement rule VII.

> update::(Eq a, Pid a) => <<a;b>> -> a -> b -> <<a;b>>
> update vec 1 x = << (| a; if a == i then x else b |) | (la;bl) <<~ vec >>

The function update is an example in which rule VII is used during vectorization. update
provides a O(1) updating mechanism of PODs using a map-like transformation expressed as a POD
comprehension. The result of vectorizing this function is an infinite vector containing x at each
element (rule VII), is merged with the vector to be updated (see section 5.1). This updating
mechanism provides yet another solution to the constant time array updating problem in purely
functional languages. By using the rather large hammer of data-parallelism, a O(1) complexity
update is achieved, albeit at the cost of O(N) space complexity.

4.4 Mapping through a primitive case expression

The STG language provides a primitive form of case analysis similar to a C-style switch statement.
The important characteristic of case in the STG machine is it provides the only mechanism by
which evaluation is forced—the discriminant of the case is reduced to weak head normal form. In

egInt =Xz y— case (z —# y) of ‘ eqint = Az y — case (v —# y) of
0 o1 el Y 0# — 1>
default — 0# default — < ... 0# >

Figure 5: Vectorising a binding containing a primitive case

a similar vein to the rules presented so far, when vectorization reduces an expression to a case
enclosed by a map, the solution to vectorizing the case is to push the map inside the alternatives
of the case.

case expr of
{1ty —expry ;

MAP, | Az1...2, — Dl vV ...Un

lity, — expry ;
default — exprg
Primitive case (VIII)
= case (MAP, (A 1 ...2y — expr) vy ...v,) of
Viity, —MAP,(Aa1...2n — expri) v1...0n ;

Viity, —MAP,(Aa1... .2 — expry) vi...0n ;
default — MAP, (A @1 ...2, — exprq) v1...0p

The operational semantics for €ase is described in Appendix B.2. The salient features of an
evaluation of a vectorized case expression as shown in the right of figure 5 are:

e The vector represented by the discriminant “x 1 # y” is evaluated in parallel;

e Every vector element of the discriminant that matches against the literal 04 evaluates the
first alternative of the case expression synchronously and in parallel;

e Those vector elements failing to match against the first alternative evaluate the default
alternative;

e The vector that results from the case expression is created by merging the vector resulting
from the first alternative, with the vector from the default, using a priority specified by the
matched literal of the discriminant;

If a variable default binding is used in a primitive case expression, then the translation of the
default in rule VIII is changed to:
T —exprg = X — MAPp41(A 2 &12y — expry) @ v1...0,

5 Vectorizing algebraic data types

Vectorization is guided by the goal of reducing expressions into a form that can be directly im-
plemented on a data-parallel machine. Similarly, the construction of vectors containing algebraic
data types (ADT’s), and the scrutiny of such forms by case analysis is guided by following machine
constraints:

Constraint 1 Some data-parallel machines (i.e the CPP DAP) require that vectors only contain unboxed
primitive data-types—the hardware is not suited to the parallel evaluation of vectors of
pointers.

Constraint 2 When a parallel case expression such as the one shown in figure 5 1s evaluated, potentially all
the alternative of the case need evaluating. The result of each of these alternatives may be a
head normal form that contains as yet unevaluated closures (e.g an ADT). These resulting

Processor 1

Processor 2

Mkint | 42# | [Nil']

Figure 6: Ideal representation of a vector of lists

q P b il
I
<<‘.. ‘.‘>> n“ <<‘.‘ ‘.‘>>

mkint | 42# | [nNil]

Figure 7: A naive representation of a vector of lists

PEPES Processor I Procr oo o
Const. Nil# /ﬁ
Processor

e Processor 1) e Processor T Processor o @
oo G Came e DT Koo T e -G Gade e s

Figure 8: The “inside out” representation of a vector of lists

head normal forms need to be “merged” into a single vector that encapsulates the meaning
of the entire case.

Wish 1 If different elements of the discriminant of a vector contain the same data, and a successful
match of a case alternative occurs, then each of the vector elements that matched evaluate
the body of the matched alternative at the same time.

As a running example the vector shown in figure 6 is transformed into a series of representations
with varying degrees of suitability for a data-parallel machine.

5.1 A naive implementation

A trivial way of fulfilling the constraints imposed on the parallel representation of constructors is
to represent a vector of ADT’s as a specialised, but purely sequential closure that we term a ‘case
closure’. A case closure, written as < (ay, adty), ..., (an,adty) > is a representation for a vector
of ADT’s in which those processors that contain a / in the boolean vector «; all contain the
same algebraic data type represented by adt;; where 1 < ¢ < n. Figure 7 shows the case closure
representation of the exemplar vector.

The down-side to this representation is that the matching of such case closures has a complexity
linear to the size of the case closure. More seriously, different alternatives of the case expression
may be evaluated N times; where N is the size of the case closure, and N can be much larger
than the number of alternatives in the case expression. For example if the case closure contained
the lists “Cons (MkInt 1#) Nil)” and “Cons (MkInt 2#) Nil”, then if a case expression had a
Cons alternative, this would be evaluated twice! We need a better representation for ADT’s.

5.2 The “inside out” transformation

The solution we adopt to the adverse effects of case closures, is to merge case closures with the
representation of algebraic data types.

5.3 The “Inside out” transformation applied to trees

data Tree a = Empty | Leaf a | Branch (Tree a) (Tree a)

insideoutdate Tree a = <<Empty# | Leaf# | | Branch# | NotHere#>>
<<a>> (Tree a) (Tree a)

5.4 The program identity for constructors

MAP, (A 21 ...25 — constr a; ... ay

=> <& ...constr...>> (MAP, (A&y... %y —a1) v1... Uy) Constructors (IX)

(MAP, (A 21...2np — ag) v1... Up)

5.5 The program identity for case analysis

case expr of
constriwy ... w; — expry ;

MAP, | Az1...2, — :] v,

constrywy ... w; — expry ;
default — exprg
Algebraic case (X)
= case (MAP, (A 1 ...2y — expr) vy ...v,) of
Wy...Ws ¥ constry —MAP,(A &1 ...25 — €Xpri) vy ...v, ;

Y constry — MAP, (A @1 ... &p — €Xpry) v1...0n ;
default — MAP,(A 21...2, — exprqg) v1...0p

References

[1] R. S. Bird. Algebraic identities for program calculation. The Computer Journal, 32(2):122-
126, 1989.

[2] D. Cann. Retire fortran? a debate rekindled. Communications of the ACM, Aug. 1992.

[3] J. Darlington. Program transformation and synthesis: present capabilities. Technical Report
77/43, Dept of Computing and Control, Imperial College, London, Sept. 1977.

[4] J. M. D. Hill. Data Parallel Haskell: Mixing old and new glue. Technical Report 611,
Department of computer Science, QMW Dec. 1992. Available by FTP from ftp.dcs.qmw.ac.uk
in /pub/cpe/jon_hill/dpGlue.ps.

[5] J. M. D. Hill. The aim is laziness in a data-parallel language. In K. Hammond and
J. T. O’Donnell, editors, Functional programming Glasgow, 1993. Available by FTP from
ftp.des.gmw.ac.uk in /pub/cpe/jon_hill /aimDpLaziness.ps.

[6] J. Hughes. Why functional programming matters. The Computer Journal, 32(2):98-107,
1989.

[7] G. K. Jouret. Compiling functional languages for SIMD architectures. In Third IEEE Sym-
postum on parallel and distributed processing, pages 79-86, 1993.

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

P. J. Landin. A correspondence between ALGOL 60 and Church’s lambda notation. Com-
munications of the ACM, 8(2):89-101, Feb. 1965. Part 2 in CACM Vol 8(2) 1965, pages
158-165.

S. L. Peyton Jones. Implementing lazy functional languages on stock hardware: the spineless
tagless G-machine. Journal of Functional Programmang, 1992.

S. L. Peyton Jones, C. V. Hall, K. Hammond, W. D. Partain, and P. L. Wadler. The Glasgow
Haskell Compiler: a technical overview. In Joint Framework for Information Technology

(JFIT) Conference, Keele, March 1993.

S. L. Peyton Jones and J. Launchbury. Unboxed values as first class citizens in a non-strict
functional language. In Functional Programming Languages and Computer Architecture, Sept.

1991.

G. L. Steele Jr. and W. D. Hillis. Connection machine Lisp : Fine-grained parallel symbolic
processing. In ACM Conference on Lisp and Functional Programmang, pages 279-297, 1986.

J.-P. Talpin. Aspects théoriques et praticques de l'inférence de type et d’effets. PhD thesis,
L’Ecole nationale supérieure des mines de Paris, May 1993. (Thesis in English).

P. Wadler and R. J. M. Hughes. Projections for strictness analysis. In Functional Program-
ming Languages and Computer Architecture, number 274 in LNCS, 1987.

M. Wolfe. Optimizing supercompilers for supercomputers. Pitman, 1989.

10

Appendices: Extremely drafty

A The representation of parallel closures

Unevaluated computations are represented by closures of the form (vs\ zs -> e) ws. When
evaluation of such a closure is completed, an update is performed that overwrites the closure
with its computed head normal form. One of the distinguishing features of our data parallel
implementation is its updating mechanism.

In DPHaskell we term the aim of evaluation to be the set of processors which we wish to
evaluate to head normal form. Evaluation of a closure that represents an unevaluated parallel
computation i1s performed under a particular aim—the resulting head normal form is only defined
at those processors defined by the aim. This raises a problem; we cannot simply update a closure
with i1ts head normal form without losing the representation of those processors not defined by
the aim. A solution to this problem is to introduce a hybrid closure that can represent both head
normal forms end thunks at the same time:

(vs \a a\ ->e)ws

The desired reading of such a ‘Parallel Closure’ is those processors defined by «, have a value
represented by the head normal form ‘a’; those processors not defined by « have a value represented
by the thunk (vs\ u {} => e)ws. As will become apparent latter, we distinguish between two kinds
of parallel closure; those which contain constructor or primitive value head normal forms, and
those which contain function values?.

As well as providing parallel closures, the other fundamental closure type is the ‘CaseClosure’.
This comes in one of two flavours: < ajay ...ana, >; such that each processor defined by alpha;
has a constructor defined in the corresponding processor of a1; <« «ja; ...aza, > in which each
of the a; is the address of function valued closure. The use of ‘Case Closure’s will be addressed in
the subsequent sections.

B An overview of the data-parallel STG machine

B.1 Basic Rules

(Eval (f) p @) as {} ps rs ms us h o

(1) such that val p o f = Addr a

= (Enter a a) (val po xs) Has {} ps rs ms us h o

(Enter a «) as {} ps rs ms us hlar— (vs\nzs->e)wss] o

such that length(as) > length(zs)

(2) — (Fval e p a) as’ s rs ms us h o
(pa) r

where wsq H as’ = as
length(ws,) = length(zs)
p plvs — wsy, zs — wsq)

4 These are the result of a partial application update—more on these beasts latter

11

B.2 Parallel Case expressions

(Eval (case e of alts) p a) as {} ps rs ms us h o

(3)

= (Eval e p a)

as {}

{} (alts,p,a,ps):rs ms us h o

(Eval (€c> zs)pa) as {} ps rs ms us h o

(4) = (MergeCon con o) as {} ps rs ms us h' o

where b’ = hcon —<c> val p o v5]

Unlike vanilla constructors, evaluation of a parallel constructor causes a heap allocation—the extent

of the parallel object is not known until runtime. Notice how the MergeCon instruction uses the address

of the constructor as its first argument.

(MergeCon con ') as {3 {3 rQ(alt,p,a? ps):rs ms us h o

1

(5) sanity check o' = o2 if alt is not a send

= FlatCon as {(con,a”)} {} r:irs ms us h o
FlatCon as (con,a):fs ps rs ms us hlcon—daic1--anpcypd] o
(6) | = FlatCon as fs' ps rs ms us h o

where fs' = {(c1, 01 Na),...,(cn,an Na)} H fs

V81 - VSp
| Vea -> €13

FlatCon as (con,a'):fs ps r@ cp,o,ps' | irs ms wus b oo
| Vern -> en;

default -> epq1;

such that b con =<c> wsy -+ wsy

(7) | = FlatCon as fs ps” r:rs ms us h o
where
a1 = o' Ne=e1)
an = o' N(e=cn)
Qnt1 — Q& — Qnp
ps" = {(as, plvsi— wsil,ei) | oy €{an, ..., ant1}, a0 £ {}} H ps

The FlatCon state flattens the tree like structure of a case closure. Whenever the top most item on the
flatten stack is an ordinary parallel constructor, we apply it to the return continuation, building up a list

of what RHS need to be evaluated on the path stack.

12

FlatCon as {} (a',p,e)ips (alt,p', o ps'yirs ms us h o

= (Eval e p ') as {} s {3 (L,u,a? ps’,rs):ms us b’ &

(8) where k = length(ps) +1
© = durul - Ugu) B,
wp = “filler”, u} — “filler”

B’ h

up +— “filler”, ufk — “filler”

When the flatten stack is empty, the path stack will contain a number of expressions that are to to be
evaluated, then “merged” together. Because the resulting head normal forms may contain thunks, we
allocate a case closure to represent the merged constructor. The number of slots in this case closure can
be found from the depth of the path stack. We empty the return stack to force a stall on the continuation
passing style of the STG machine, the address of the merged case closure is pushed onto the merge stack,
ms, with the other saved stacks.

(MergeCon con ') as {} (o%,p,e):ps {} (k,u,a® ps’,rsyims us b o

such that h u = < a1 af - - ax a§€~~~an an,

= (Eval e p o?) as {} ps {} (k+1,u,0% ps’ ,rs'):ms us b’ o

where B = hlu — q a1 af - ax—1 aj_, al con--apn un >]

The continuation passing style of the STG machine does’nt really fit in with the evaluation mechanism
of the data parallel STG machine. When we evaluate a case expression, we need to evaluate all the RHS
alternatives—hence we empty the return stack to force a stall of the STG continuation passing style, if the
path stack is not empty, a merge will be performed and the next expression on the path stack evaluated.

(MergeCon con o) as {} {} {} (n,u,a® ps’,rs')ims us h o
such that hu=daic1- - -ap Cn >

(10) sanity check ps' = {} = rs' £ {}
ps' £} = s’ =)
= (MergeCon u o®) as {} ps’ rs ms us b’ o

where b’/ = h[u = 9 a1 €1+ @pt cne1 ot con]

B.3 A note on the representation of constructors

(Eval con p) as {} ps rs ms us h o
such that hcon=daay aj - -ana, >

(11)

sanity check a; U---Uay, C o

= (MergeCon con a) as {} ps rs ms us h o

In Peyton-Jone’s STG machine, the heap only contains closures of the form “(vs\u zs -> €) ws”— for
example a heap allocated constructor is wrapped in a non-updatable closure thus:

crs = (vs\n {}-> c vs) zs

13

Because many of the rules ‘look inside’ the closure to perform updates or a merge, we adopt the opposite
approach to make the presentation of the material a little clearer. Therefore a parallel constructor such as
“&c>» xs” can be heap allocated without wrapping it within a closure. The downside to this approach
is the extra rules needed for the evaluation of such closures.

B.4 Updating

(Enter a «) as {} ps rs ms us hla — (vs \u {} -> e)wsy] o

(12) = (Bvalepa) {3 {3 {3} {3 {} (as,ps,rs,ms,a):us h o

where p = [vs — wsy]

(MergeCon con a) 0 {0 {3 {} (asu,psu,rsu,msu,au):us h o

such that b a, = (vs \u {} -> €) wsy
(13)

= (MergeCon con «) asy {} psu 7Sa mSu us hy, o

where hy = hla, — (vs \a con\ -> €) wsy]

Applying the first update to a closure simply overwrites the closure with a parallel closure that contains
the calculated head normal form.

(MergeCon con a) 0 {0 {3 {} (asu,psu,rsu,msu,au):us h o

such that & a., = (vs \&' con’\ —>e)ws;

(14)

= (MergeCon con «) asy {} psu 784 mSu us hy, o

where h, = h| ** (vs \(a @ ') u\ =>e) wsy,
“ v +— docon o con' >

Applying an update to a re-entered parallel closure needs to merge the evaluated head normal form
with its previously evaluated value.

14

