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2 Samson Abramsky and Achim JungX = : : :X : : : (1)How can we give a non-circular account of its meaning? Suppose we are working inside somemathematical structure D. We want to �nd an element d 2 D such that substituting d for x in (1)yields a valid equation. The right-hand-side of (1) can be read as a function of X, semanticallyas f :D ! D. We can now see that we are asking for an element d 2 D such that d = f(d)|that is, for a �xpoint of f . Moreover, we want a uniform canonical method for constructing such�xpoints for arbitrary structures D and functions f :D ! D within our framework. Elementaryconsiderations show that the usual categories of mathematical structures either fail to meet thisrequirement at all (sets, topological spaces) or meet it in a trivial fashion (groups, vector spaces).2. Recursive domain equations. Apart from recursive de�nitions of computational objects,programming languages also abound, explicitly or implicitly, in recursive de�nitions of datatypes.The classical example is the type-free �-calculus [Barendregt, 1984]. To give a mathematicalsemantics for the �-calculus is to �nd a mathematical structure D such that terms of the �-calculus can be interpreted as elements of D in such a way that application in the calculusis interpreted by function application. Now consider the self-application term �x:xx. By theusual condition for type-compatibility of a function with its argument, we see that if the secondoccurrence of x in xx has type D, and the whole term xx has type D, then the �rst occurrencemust have, or be construable as having, type [D �! D]. Thus we are led to the requirementthat we have [D �! D] �= D:If we view [: �! :] as a functor F :Cop �C ! C over a suitable category C of mathematicalstructures, then we are looking for a �xpoint D �= F (D;D). Thus recursive datatypes againlead to a requirement for �xpoints, but now lifted to the functorial level. Again we want such�xpoints to exist uniformly and canonically.This second requirement is even further beyond the realms of ordinary mathematical experiencethan the �rst. Collectively, they call for a novel mathematical theory to serve as a foundation for thesemantics of programming languages.A �rst step towards Domain Theory is the familiar result that every monotone function on acomplete lattice, or more generally on a directed-complete partial order with least element, has aleast �xpoint. (For an account of the history of this result, see [Lassez et al., 1982].) Some early usesof this result in the context of formal language theory were [Arden, 1960, Ginsburg and Rice, 1962].It had also found applications in recursion theory [Kleene, 1952, Platek, 1964]. Its application tothe semantics of �rst-order recursion equations and 
owcharts was already well-established amongComputer Scientists by the end of the 1960's [de Bakker and Scott, 1969, Beki�c, 1969, Beki�c, 1971,Park, 1969]. But Domain Theory proper, at least as we understand the term, began in 1969, and wasunambiguously the creation of one man, Dana Scott [1969, 1970, 1971, 1972, 1993]. In particular, thefollowing key insights can be identi�ed in his work:1. Domains as types. The fact that suitable categories of domains are cartesian closed, andhence give rise to models of typed �-calculi. More generally, that domains give mathematicalmeaning to a broad class of data-structuring mechanisms.2. Recursive types. Scott's key construction was a solution to the \domain equation"D �= [D �! D]thus giving the �rst mathematical model of the type-free �-calculus. This led to a generaltheory of solutions of recursive domain equations. In conjunction with (1), this showed thatdomains form a suitable universe for the semantics of programming languages. In this way,Scott provided a mathematical foundation for the work of Christopher Strachey on denotationalsemantics [Milne and Strachey, 1976, Stoy, 1977]. This combination of descriptive richness anda powerful and elegant mathematical theory led to denotational semantics becoming a dominantparadigm in Theoretical Computer Science.3. Continuity vs. Computability. Continuity is a central pillar of Domain theory. It serves as aqualitative approximation to computability. In other words, for most purposes to detect whethersome construction is computationally feasible it is su�cient to check that it is continuous; whilecontinuity is an \algebraic" condition, which is much easier to handle than computability. In



Domain Theory 3order to give this idea of continuity as a smoothed-out version of computability substance, it isnot su�cient to work only with a notion of \completeness" or \convergence"; one also needs anotion of approximation, which does justice to the idea that in�nite objects are given in somecoherent way as limits of their �nite approximations. This leads to considering, not arbitrarycomplete partial orders, but the continuous ones. Indeed, Scott's early work on Domain Theorywas seminal to the subsequent extensive development of the theory of continuous lattices, whichalso drew heavily on ideas from topology, analysis, topological algebra and category theory[Gierz et al., 1980].4. Partial information. A natural concomitant of the notion of approximation in domains isthat they form the basis of a theory of partial information, which extends the familiar notion ofpartial function to encompass a whole spectrum of \degrees of de�nedness". This has importantapplications to the semantics of programming languages, where such multiple degrees of de�ni-tion play a key role in the analysis of computational notions such as lazy vs. eager evaluation,and call-by-name vs. call-by-value parameter-passing mechanisms for procedures.General considerations from recursion theory dictate that partial functions are unavoidable inany discussion of computability. Domain Theory provides an appropriately abstract, structuralsetting in which these notions can be lifted to higher types, recursive types, etc.1.2 Our approachIt is a striking fact that, although Domain Theory has been around for a quarter-century, no book-length treatment of it has yet been published. Quite a number of books on semantics of programminglanguages, incorporating substantial introductions to domain theory as a necessary tool for denota-tional semantics, have appeared [Stoy, 1977, Schmidt, 1986, Gunter, 1992b, Winskel, 1993]; but therehas been no text devoted to the underlying mathematical theory of domains. To make an analogy,it is as if many Calculus textbooks were available, o�ering presentations of some basic analysis inter-leaved with its applications in modelling physical and geometrical problems; but no textbook of RealAnalysis. Although this Handbook Chapter cannot o�er the comprehensive coverage of a full-lengthtextbook, it is nevertheless written in the spirit of a presentation of Real Analysis. That is, we at-tempt to give a crisp, e�cient presentation of the mathematical theory of domains without excursionsinto applications. We hope that such an account will be found useful by readers wishing to acquiresome familiarity with Domain Theory, including those who seek to apply it. Indeed, we believe thatthe chances for exciting new applications of Domain Theory will be enhanced if more people becomeaware of the full richness of the mathematical theory.1.3 OverviewDomains individuallyWe begin by developing the basic mathematical language of Domain Theory, and then present thecentral pillars of the theory: convergence and approximation. We put considerable emphasis on basesof continuous domains, and show how the theory can be developed in terms of these. We also give a�rst presentation of the topological view of Domain Theory, which will be a recurring theme.Domains collectivelyWe study special classes of maps which play a key role in domain theory: retractions, adjunctions,embeddings and projections. We also look at construction on domains such as products, functionspaces, sums and lifting; and at bilimits of directed systems of domains and embeddings.Cartesian closed categories of domainsA particularly important requirement on categories of domains is that they should be cartesian closed(i.e. closed under function spaces). This creates a tension with the requirement for a good theoryof approximation for domains, since neither the category CONT of all continuous domains, nor thecategory ALG of all algebraic domains is cartesian closed. This leads to a non-trivial analysis ofnecessary and su�cient conditions on domains to ensure closure under function spaces, and strikingresults on the classi�cation of the maximal cartesian closed full subcategories of CONT and ALG.This material is based on [Jung, 1989, Jung, 1990].



4 Samson Abramsky and Achim JungRecursive domain equationsThe theory of recursive domain equations is presented. Although this material formed the verystarting point of Domain Theory, a full clari�cation of just what canonicity of solutions means, andhow it can be translated into proof principles for reasoning about these canonical solutions, hasonly emerged over the past two or three years, through the work of Peter Freyd and Andrew Pitts[Freyd, 1991, Freyd, 1992, Pitts, 1993a]. We make extensive use of their insights in our presentation.Equational theoriesWe present a general theory of the construction of free algebras for inequational theories over continu-ous domains. These results, and the underlying constructions in terms of bases, appear to be new. Wethen apply this general theory to powerdomains and give a comprehensive treatment of the Plotkin,Hoare and Smyth powerdomains. In addition to characterizing these as free algebras for certain in-equational theories, we also prove representation theorems which characterize a powerdomain over Das a certain space of subsets of D; these results make considerable use of topological methods.Domains and logicWe develop the logical point of view of Domain Theory, in which domains are characterized in termsof their observable properties, and functions in terms of their actions on these properties. The generalframework for this is provided by Stone duality; we develop the rudiments of Stone duality in somegenerality, and then specialize it to domains. Finally, we present \Domain Theory in Logical Form"[Abramsky, 1991b], in which a metalanguage of types and terms suitable for denotational semantics isextended with a language of properties, and presented axiomatically as a programming logic in sucha way that the lattice of properties over each type is the Stone dual of the domain denoted by thattype, and the prime �lter of properties which can be proved to hold of a term correspond under Stoneduality to the domain element denoted by that term. This yields a systematic way of moving backand forth between the logical and denotational descriptions of some computational situation, eachdetermining the other up to isomorphism.AcknowledgementsWe would like to thank Ji�r�� Ad�amek, Reinhold Heckmann, Michael Huth, Mathias Kegelmann, PhilippS�underhauf, and Paul Taylor for very careful proof reading. Achim Jung would particularly like tothank the people from the \Domain Theory Group" at Darmstadt, who provided a stimulating andsupportive environment.Our major intellectual debts, inevitably, are to Dana Scott and Gordon Plotkin. The more welearn about Domain Theory, the more we appreciate the depth of their insights.2 Domains individuallyWe will begin by introducing the basic language of Domain Theory. Most topics we deal with in thissection are treated more thoroughly and at a more leisurely pace in [Davey and Priestley, 1990].2.1 Convergence2.1.1 Posets and preordersDe�nition 2.1.1. A set P with a binary relation v is called a partially ordered set or poset if thefollowing holds for all x; y; z 2 P :1. x v x (Re
exivity)2. x v y ^ y v z =) x v z (Transitivity)3. x v y ^ y v x =) x = y (Antisymmetry)Small �nite partially ordered sets can be drawn as line diagrams (Hasse diagrams). Examples aregiven in Figure 1. We will also allow ourselves to draw in�nite posets by showing a �nite part whichillustrates the building principle. Three examples are given in Figure 2. We prefer the notation vto the more common � because the order on domains we are studying here often coexists with anotherwise unrelated intrinsic order. The 
at and lazy natural numbers from Figure 2 illustrate this.If we drop antisymmetry from our list of requirements then we get what is known as preorders.This does not change the theory very much. As is easily seen, the sub-relation v \ w is in any case an



Domain Theory 5bThe 
at booleans?btrue bfalse@@�� bThe four-element latticeb bb@@��@@�� bThe four-element chainbbbFig. 1. A few posets drawn as line diagrams.bordinal0b 1b 2b !`̀̀ b
at?b0 b1 b2 b3 ` ` `HHHH@@ �� blazyb0 bb1 bb2 b` ` `@@������@@@@Fig. 2. Three versions of the natural numbers.equivalence relation and if two elements from two equivalence classes x 2 A; y 2 B are related by v,then so is any pair of elements from A and B. We can therefore pass from a preorder to a canonicalpartially ordered set by taking equivalence classes. Pictorially, the situation then looks as in Figure 3.Many notions from the theory of ordered sets make sense even if re
exivity fails. Hence we maysum up these considerations with the slogan: Order theory is the study of transitive relations. Acommon way to extract the order-theoretic content from a relation R is to pass to the transitiveclosure of R, de�ned as Sn2Nnf0gRn.Ordered sets can be turned upside down:Proposition 2.1.2. If hP;vi is an ordered set then so is P op = hP;wi.One consequence of this observation is that each of the concepts introduced below has a dualcounterpart.2.1.2 Notation from order theoryThe following concepts form the core language of order theory.De�nition 2.1.3. Let (P;v) be an ordered set.1. A subset A of P is an upper set if x 2 A implies y 2 A for all y w x. We denote by "A the set ofall elements above some element of A. If no confusion is to be feared then we abbreviate "fxgas "x. The dual notions are lower set and #A.2. An element x 2 P is called an upper bound for a subset A � P , if x is above every element of A.We often write A v x in this situation. We denote by ub(A) the set of all upper bounds of A.Dually, lb(A) denotes the set of lower bounds of A.
b b b bb b b b bbAAA ������ AAA�� ���� �� �� ���� ��Fig. 3. A preorder whose canonical quotient is the four-element lattice.



6 Samson Abramsky and Achim Jung3. An element x 2 P is maximal if there is no other element of P above it: "x\P = fxg. Minimalelements are de�ned dually. For a subset A � P the minimal elements of ub(A) are calledminimal upper bounds of A. The set of all minimal upper bounds of A is denoted by mub(A).4. If all elements of P are below a single element x 2 P , then x is said to be the largest element .The dually de�ned least element of a poset is also called bottom and is commonly denoted by ?.In the presence of a least element we speak of a pointed poset .5. If for a subset A � P the set of upper bounds has a least element x, then x is called thesupremum or join. We write x = FA in this case. In the other direction we speak of in�mumor meet and write x = dA.6. A partially ordered set P is a t-semilattice (u-semilattice) if the supremum (in�mum) for eachpair of elements exists. If P is both a t- and a u-semilattice then P is called a lattice. A latticeis complete if suprema and in�ma exist for all subsets.The operations of forming suprema, resp. in�ma, have a few basic properties which we will usethroughout this text without mentioning them further.Proposition 2.1.4. Let P be a poset such that the suprema and in�ma occurring in the followingformulae exist. (A;B and all Ai are subsets of P .)1. A � B implies FA v FB and dA w dB.2. FA = F(#A) and dA = d("A).3. If A = Si2I Ai then FA = Fi2I(FAi) and similarly for the in�mum.Proof. We illustrate order theoretic reasoning with suprema by showing (3). The element FA isabove each element FAi by (1), so it is an upper bound of the set fFAi j i 2 Ig. Since Fi2I(FAi) isthe least upper bound of this set, we have FA w Fi2I(FAi). Conversely, each a 2 A is contained insome Ai and therefore below the corresponding FAi which in turn is below Fi2I(FAi). Hence theright hand side is an upper bound of A and as FA is the least such, we also have FA v Fi2I(FAi).Let us conclude this subsection by looking at an important family of examples of complete lattices.Suppose X is a set and L is a family of subsets of X. We call L a closure system if it is closed underthe formation of intersections, that is, whenever each member of a family (Ai)i2I belongs to L thenso does Ti2I Ai. Because we have allowed the index set to be empty, this implies that X is in L.We call the members of L hulls or closed sets. Given an arbitrary subset A of X, one can formTfB 2 L j A � Bg. This is the least superset of A which belongs to L and is called the hull or theclosure of A.Proposition 2.1.5. Every closure system is a complete lattice with respect to inclusion.Proof. In�ma are given by intersections and for the supremum one takes the closure of the union.2.1.3 Monotone functionsDe�nition 2.1.6. Let P and Q be partially ordered sets. A function f :P ! Q is called monotoneif for all x; y 2 P with x v y we also have f(x) v f(y) in Q.`Monotone' is really an abbreviation for `monotone order-preserving', but since we have no usefor monotone order-reversing maps (x v y =) f(x) w f(y)), we have opted for the shorter ex-pression. Alternative terminology is isotone (vs. antitone) or the other half of the full expression:order-preserving mapping.The set [P m�! Q] of all monotone functions between two posets, when ordered pointwise (i.e. f v gif for all x 2 P , f(x) v g(x)), gives rise to another partially ordered set, the monotone function spacebetween P and Q. The category POSET of posets and monotone maps has pleasing properties, seeExercise 2.3.9(9).Proposition 2.1.7. If L is a complete lattice then every monotone map from L to L has a �xpoint.The least of these is given by l fx 2 L j f(x) v xg ;the largest by G fx 2 L j x v f(x)g :



Domain Theory 7Proof. Let A = fx 2 L j f(x) v xg and a = dA. For each x 2 A we have a v x and f(a) v f(x) v x.Taking the in�mum we get f(a) v d f(A) v dA = a and a 2 A follows. On the other hand, x 2 Aalways implies f(x) 2 A by monotonicity. Applying this to a yields f(a) 2 A and hence a v f(a).For lattices, the converse is also true: The existence of �xpoints for monotone maps impliescompleteness. But the proof is much harder and relies on the Axiom of Choice, see [Markowsky, 1976].2.1.4 Directed setsDe�nition 2.1.8. Let P be a poset. A subset A of P is directed , if it is nonempty and each pairof elements of A has an upper bound in A. If a directed set A has a supremum then this is denotedby F"A.Directed lower sets are called ideals. Ideals of the form #x are called principal .The dual notions are �ltered set and (principal) �lter .Simple examples of directed sets are chains. These are non-empty subsets which are totallyordered, i.e. for each pair x; y either x v y or y v x holds. The chain of natural numbers with theirnatural order is particularly simple; subsets of a poset isomorphic to it are usually called !-chains.Another frequent type of directed set is given by the set of �nite subsets of an arbitrary set. Usingthis and Proposition 2.1.4(3), we get the following useful decomposition of general suprema.Proposition 2.1.9. Let A be a non-empty subset of a t-semilattice for which FA exists. Then thejoin of A can also be written asG"fGM jM � A �nite and non-emptyg :General directed sets, on the other hand, may be quite messy and unstructured. Sometimes onecan �nd a well-behaved co�nal subset, such as a chain, where we say that A is co�nal in B, if for allb 2 B there is an a 2 A above it. Such a co�nal subset will have the same supremum (if it exists).But co�nal chains do not always exist, as Exercise 2.3.9(6) shows. Still, every directed set may bethought of as being equipped externally with a nice structure as we will now work out.De�nition 2.1.10. A monotone net in a poset P is a monotone function � from a directed set Iinto P . The set I is called the index set of the net.Let �: I ! P be a monotone net. If we are given a monotone function �: J ! I, where J isdirected and where for all i 2 I there is j 2 J with �(j) � i, then we call � � �: J ! P a subnet of �.A monotone net �: I ! P has a supremum in P , if the set f�(i) j i 2 Ig has a supremum in P .Every directed set can be viewed as a monotone net: let the set itself be the index set. On the otherhand, the image of a monotone net �: I ! P is a directed set in P . So what are nets good for? Theanswer is given in the following proposition (which seems to have been stated �rst in [Krasner, 1939]).Lemma 2.1.11. Let P be a poset and let �: I ! D be a monotone net. Then � has a subnet� � �: J ! D, whose index set J is a lattice in which every principal ideal is �nite.Proof. Let J be the set of �nite subsets of I. Clearly, J is a lattice in which every principal ideal is�nite. We de�ne the mapping �: J ! I by induction on the cardinality of the elements of J :�(�) = any element of I ;�(A) = any upper bound of the set A [ f�(B) j B � Ag; A 6= �:It is obvious that � is monotone and de�nes a subnet.This lemma allows to base an induction proof on an arbitrary directed set. This was recentlyapplied to settle a long-standing conjecture in lattice theory, see [Tischendorf and T�uma, 1993].Proposition 2.1.12. Let I be directed and �: I � I ! P be a monotone net. Under the assumptionthat the indicated directed suprema exist, the following equalities hold:G"i;j2I�(i; j) =G"i2I (G"j2J �(i; j)) =G"j2J(G"i2I �(i; j)) =G"i2I �(i; i):



8 Samson Abramsky and Achim Jung2.1.5 Directed-complete partial ordersDe�nition 2.1.13. A poset D in which every directed subset has a supremum we call a directed-complete partial order , or dcpo for short.Examples 2.1.14.� Every complete lattice is also a dcpo. Instances of this are powersets, topologies, subgrouplattices, congruence lattices, and, more generally, closure systems. As Proposition 2.1.9 shows,a lattice which is also a dcpo is almost complete. Only a least element may be missing.� Every �nite poset is a dcpo.� The set of natural numbers with the usual order does not form a dcpo; we have to add a topelement as done in Figure 2. In general, it is a di�cult problem how to add points to a posetso that it becomes a dcpo. Using Proposition 2.1.15 below, Markowsky has de�ned such acompletion via chains in [Markowsky, 1976]. Luckily, we need not worry about this problem indomain theory because here we are usually interested in algebraic or continuous dcpo's where acompletion is easily de�ned, see Section 2.2.6 below. The correct formulation of what constitutesa completion, of course, takes also morphisms into account. A general framework is describedin [Poign�e, 1992], Sections 3.3 to 3.6.� The points of a locale form a dcpo in the specialization order, see [Vickers, 1989, Johnstone, 1982].More examples will follow in the next subsection. There we will also discuss the question of whetherdirected sets or !-chains should be used to de�ne dcpo's. Arbitrarily long chains have the full powerof directed sets (despite Exercise 2.3.9(6)) as the following proposition shows.Proposition 2.1.15. A partially ordered set D is a dcpo if and only if each chain in D has asupremum.The proof, which uses the Axiom of Choice, goes back to a lemma of Iwamura [Iwamura, 1944]and can be found in [Markowsky, 1976].The following, which may also be found in [Markowsky, 1976], complements Proposition 2.1.7above.Proposition 2.1.16. A pointed poset P is a dcpo if and only if every monotone map on P has a�xpoint.2.1.6 Continuous functionsDe�nition 2.1.17. Let D and E be dcpo's. A function f :D ! E is (Scott-) continuous if it ismonotone and if for each directed subset A of D we have f(F"A) = F"f(A). We denote the set ofall continuous functions from D to E, ordered pointwise, by [D �! E].A function between pointed dcpo's, which preserves the bottom element, is called strict . We denotethe space of all continuous strict functions by [D ?!�! E].The identity function on a set A is denoted by idA, the constant function with image fxg by cx.The preservation of joins of directed sets is actually enough to de�ne continuous maps. In practice,however, one usually needs to show �rst that f(A) is directed. This is equivalent to monotonicity.Proposition 2.1.18. Let D and E be dcpo's. Then [D �! E] is again a dcpo. Directed suprema in[D �! E] are calculated pointwise.Proof. Let F be a directed collection of functions from D to E. Let g:D ! E be the function, whichis de�ned by g(x) = F"f2F f(x). Let A � D be directed.g(G"A) = G"f2F f(G"A)= G"f2F G"a2A f(a)= G"a2A G"f2F f(a)= G"a2A g(a):



Domain Theory 9This shows that g is continuous.The class of all dcpo's together with Scott-continuous functions forms a category, which we denoteby DCPO. It has strong closure properties as we shall see shortly. For the moment we concentrate onthat property of continuous maps which is one of the main reasons for the success of domain theory,namely, that �xpoints can be calculated easily and uniformly.Theorem 2.1.19. Let D be a pointed dcpo.1. Every continuous function f on D has a least �xpoint. It is given by F"n2Nfn(?).2. The assignment �x: [D �! D] ! D, f 7! F"n2Nfn(?) is continuous.Proof. (1) The set ffn(?) j n 2 Ng is a chain. This follows from ? v f(?) and the monotonicityof f . Using continuity of f we get f(F"n2Nfn(?)) = F"n2Nfn+1(?) and the latter is clearly equalto F"n2Nfn(?).If x is any other �xpoint of f then from ? v x we get f(?) v f(x) = x and so on by induction.Hence x is an upper bound of all fn(?) and that is why it must be above �x(f).(2) Let us �rst look at the n-fold iteration operator itn: [D �! D] ! D which maps f to fn(?).We show its continuity by induction. The 0th iteration operator equals c? so nothing has to be shownthere. For the induction step let F be a directed family of continuous functions on D. We calculate:itn+1(F"F ) = (F"F )(itn(F"F )) de�nition= (F"F )(F"f2F itn(f)) ind. hypothesis= F"g2F g(F"f2F (itn(f))) Prop. 2.1.18= F"g2F F"f2F g(itn(f)) continuity of g= F"f2F fn+1(?) Prop. 2.1.12The pointwise supremum of all iteration operators (which form a chain as we have seen in (1)) isprecisely �x and so the latter is also continuous.The least �xpoint operator is the mathematical counterpart of recursive and iterative statements inprogramming languages. When proving a property of such a statement semantically, one often employsthe following proof principle which is known under the name �xpoint induction (see [Tennent, 1991]or any other book on denotational semantics). Call a predicate on (i.e. a subset of) a dcpo admissibleif it contains ? and is closed under suprema of !-chains. The following is then easily established:Lemma 2.1.20. Let D be a dcpo, P � D an admissible predicate, and f :D ! D a Scott-continuousfunction. If it is true that f(x) satis�es P whenever x satis�es P , then it must be true that �x(f)satis�es P .We also note the following invariance property of the least �xpoint operator. In fact, it characterizes�x uniquely among all �xpoint operators (Exercise 2.3.9(16)).Lemma 2.1.21. Let D and E be pointed dcpo's and letD h - EDf? h - E?gbe a commutative diagram of continuous functions where h is strict. Then �x(g) = h(�x(f)).Proof. Using continuity of h, commutativity of the diagram, and strictness of h in turn we calculate:h(�x(f)) = h(G"n2Nfn(?))= G"n2Nh � fn(?)= G"n2Ngn � h(?)



10 Samson Abramsky and Achim Jung= �x(g)2.2 ApproximationIn the last subsection we have explained the kind of limits that domain theory deals with, namely,suprema of directed sets. We could have said much more about these \convergence spaces" calleddcpo's. But the topic can easily become esoteric and lose its connection with computing. For example,the cardinality of dcpo's has not been restricted yet and indeed, we didn't have the tools to sensiblydo so (Exercise 2.3.9(18)). We will in this subsection introduce the idea that elements are composedof (or `approximated by') `simple' pieces. This will enrich our theory immensely and will also give thedesired connection to semantics.2.2.1 The order of approximationDe�nition 2.2.1. Let x and y be elements of a dcpo D. We say that x approximates y if for alldirected subsets A of D, y v F"A implies x v a for some a 2 A. We say that x is compact if itapproximates itself.We introduce the following notation for x; y 2 D and A � D:x� y , x approximates y##x = fy 2 D j y � xg""x = fy 2 D j x� yg""A = [a2A ""aK(D) = fx 2 D j x compactgThe relation � is traditionally called `way-below relation'. M.B. Smyth introduced the expression`order of de�nite re�nement' in [Smyth, 1986]. Throughout this text we will refer to it as the order ofapproximation, even though the relation is not re
exive. Other common terminology for `compact' is�nite or isolated . The analogy to �nite sets is indeed very strong; however one covers a �nite set Mby a directed collection (Ai)i2I of sets, M will always be contained in some Ai already.In general, approximation is not an absolute property of single points. Rather, we could phrasex� y as \x is a lot simpler than y", which clearly depends on y as much as it depends on x.An element which is compact approximates every element above it. More generally, we observethe following basic properties of approximation.Proposition 2.2.2. Let D be a dcpo. Then the following is true for all x; x0; y; y0 2 D:1. x� y =) x v y;2. x0 v x� y v y0 =) x0 � y0.2.2.2 Bases in dcpo'sDe�nition 2.2.3. We say that a subset B of a dcpo D is a basis for D, if for every element x of D theset Bx = ##x \ B contains a directed subset with supremum x. We call elements of Bx approximantsto x relative to B.We may think of the rational numbers as a basis for the reals (with a top element added, in orderto get a dcpo), but other choices are also possible: dyadic numbers, irrational numbers, etc.Proposition 2.2.4. Let D be a dcpo with basis B.1. For every x 2 D the set Bx is directed and x = F"Bx.2. B contains K(D).3. Every superset of B is also a basis for D.Proof. (1) It is clear that the join of Bx equals x. The point is directedness. From the de�nition weknow there is some directed subset A of Bx with F"A = x. Let now y; y0 be elements approximatingx.There must be elements a; a0 in A above y; y0, respectively. These have an upper bound a00 in A, whichby de�nition belongs to Bx.



Domain Theory 11(2) We have to show that every element c of K(D) belongs to B. Indeed, since c = F"Bc theremust be an element b 2 Bc above c. All of Bc is below c, so b is actually equal to c.(3) is immediate from the de�nition.Corollary 2.2.5. Let D be a dcpo with basis B.1. The largest basis for D is D itself.2. B is the smallest basis for D if and only if B = K(D).The `only if' part of (2) is not a direct consequence of the preceding proposition. We leave itsproof as Exercise 2.3.9(26).2.2.3 Continuous and algebraic domainsDe�nition 2.2.6. A dcpo is called continuous or a continuous domain if it has a basis. It is calledalgebraic or an algebraic domain if it has a basis of compact elements. We say D is !-continuous ifthere exists a countable basis and we call it !-algebraic if K(D) is a countable basis.Here we are using the word \domain" for the �rst time. Indeed, for us a structure only quali�esas a domain if it embodies both a notion of convergence and a notion of approximation.In the light of Proposition 2.2.4 we can reformulate De�nition 2.2.6 as follows, avoiding existentialquanti�cation.Proposition 2.2.7.1. A dcpo D is continuous if and only if for all x 2 D, x = F"##x holds.2. It is algebraic if and only if for all x 2 D, x = F"K(D)x holds.The word `algebraic' points to algebra. Let us make this connection precise.De�nition 2.2.8. A closure system L (cf. Section 2.1.2) is called inductive, if it is closed underdirected union.Proposition 2.2.9. Every inductive closure system L is an algebraic lattice. The compact elementsare precisely the �nitely generated hulls.Proof. If A is the hull of a �nite set M and if (Bi)i2I is a directed family of hulls such thatF"i2I Bi =Si2I Bi � A, then M is already contained in some Bi. Hence hulls of �nite sets are compact elementsin the complete lattice L. On the other hand, every closed set is the directed union of �nitely generatedhulls, so these form a basis. By Proposition 2.2.4(2), there cannot be any other compact elements.Given a group, (or, more generally, an algebra in the sense of universal algebra), then there aretwo canonical inductive closure systems associated with it, the lattice of subgroups (subalgebras) andthe lattice of normal subgroups (congruence relations).Other standard examples of algebraic domains are:� Any set with the discrete order is an algebraic domain. In semantics one usually adds a bottomelement (standing for divergence) resulting in so-called 
at domains. (The 
at natural numbersare shown in Figure 2.) A basis must in either case contain all elements.� The set [X * Y ] of partial functions between sets X and Y ordered by graph inclusion. Compactelements are those functions which have a �nite carrier. It is naturally isomorphic to [X �! Y?]and to [X? ?!�! Y?].� Every �nite poset.Continuous domains:� Every algebraic dcpo is also continuous. This follows directly from the de�nition. The order ofapproximation is characterized by x� y if and only if there exists a compact element c betweenx and y.� The unit interval is a continuous lattice. It plays a central role in the theory of continuouslattices, see [Gierz et al., 1980], Chapter IV and in particular Theorem 2.19.Another way of modelling the real numbers in domain theory is to take all closed intervals of�nite length and to order them by reversed inclusion. Single element intervals are maximal inthis domain and provide a faithful representation of the real line. A countable basis is given bythe set of intervals with rational endpoints.



12 Samson Abramsky and Achim JungD : ba0 ba1 ba2 b > b b2b b1b b0` ` ` ```������ AAAAAA E : bbbb bbbb`̀̀ `̀̀Fig. 4. A continuous (E) and a non-continuous (D) dcpo.cycx cb#x n #y #y@@@@@@@@@ ��������������@@@���@@Fig. 5. Basis element b witnesses that x is not below y.� The lattice of open subsets of a sober space X forms a continuous lattice if and only if X islocally compact. Compact Hausdor� spaces are a special case. Here O� U holds if and only ifthere exists a compact set C such that O � C � U . This meeting point of topology and domaintheory is discussed in detail in [Smyth, 1992, Vickers, 1989, Johnstone, 1982, Gierz et al., 1980]and will also be addressed in Chapter 7.At this point it may be helpful to give an example of a non-continuous dcpo. The easiest to explainis depicted in Figure 4 (labelled D). We show that the order of approximation on D is empty. Pairs(ai; bj) and (bi; aj) cannot belong to the order of approximation because they are not related in theorder. Two points ai v aj in the same `leg' are still not approximating because (bn)n2Nis a directedset with supremum above aj but containing no element above ai.A non-continuous distributive complete lattice is much harder to visualize by a line diagram. Fromwhat we have said we know that the topology of a sober space which is not locally compact is such alattice. Exercise 2.3.9(21) discusses this in detail.If D is pointed then the order of approximation is non-empty because a bottom element approxi-mates every other element.A basis not only gives approximations for elements, it also approximates the order relation:Proposition 2.2.10. Let D be a continuous domain with basis B and let x and y be elements of D.Then x v y, Bx � By and Bx � #y are all equivalent.The form in which we will usually apply this proposition is: x 6v y implies there exists b 2 Bx withb 6v y. A picture of this situation is given in Figure 5.In the light of Proposition 2.2.10 we can now also give a more intuitive reason why the dcpo D inFigure 4 is not continuous. A natural candidate for a basis in D is the collection of all ai's and bi's(certainly, > doesn't approximate anything). Proposition 2.2.10 expresses the idea that in a continuousdomain all information about how elements are related is contained in the basis already. And the factthat F"n2Nan = F"n2Nbn = > holds in D is precisely what is not visible in the would-be basis. Thus,the dcpo should look rather like E in the same �gure (which indeed is an algebraic domain).Bases allow to express the continuity of functions in a form reminiscent of the �-� de�nition forreal-valued functions.Proposition 2.2.11. A map f between continuous domains D and E with bases B and C, respec-tively, is continuous if and only if for each x 2 D and e 2 Cf(x) there exists d 2 Bx with f("d) � "e.



Domain Theory 13Proof. By continuity we have f(x) = f(F"Bx) = F"d2Bx f(d). Since e approximates f(x), thereexists d 2 Bx with f(d) w e. Monotonicity of f then implies f("d) � "e.For the converse we �rst show monotonicity. Suppose x v y holds but f(x) is not below f(y).By Proposition 2.2.10 there is e 2 Cf(x) n #f(y) and from our assumption we get d 2 Bx such thatf("d) � "e. Since y belongs to "d this is a contradiction. Now let A be a directed subset of D withx as its join. Monotonicity implies F"f(A) v f(F"A) = f(x). If the converse relation does not holdthen we can again choose e 2 Cf(x) with e 6v F"f(A) and for some d 2 Bx we have f("d) � "e. Sinced approximates x, some a 2 A is above d and we get F"f(A) w f(a) w f(d) w e contradicting ourchoice of e.Finally, we cite a result which reduces the calculation of least �xpoints to a basis. The point hereis that a continuous function need not preserve compactness nor the order of approximation and sothe sequence ?; f(?); f(f(?)); : : : need not consist of basis elements.Proposition 2.2.12. If D is a pointed !-continuous domain with basis B and if f :D ! D is acontinuous map, then there exists an !-chain b0 v b1 v b2 v : : : of basis elements such that thefollowing conditions are satis�ed:1. b0 = ?,2. 8n 2 N: bn+1 v f(bn),3. F"n2Nbn = �x(f) (= F"n2Nfn(?)).A proof may be found in [Abramsky, 1990b].2.2.4 Comments on possible variationsdirected sets vs. !-chains Let us start with the following observation.Proposition 2.2.13. If a dcpo D has a countable basis then every directed subset of D contains an!-chain with the same supremum.This raises the question whether one shouldn't build up the whole theory using !-chains. Thebasic de�nitions then read: An !-ccpo is a poset in which every !-chain has a supremum. A functionis !-continuous if it preserves joins of !-chains. An element x is !-approximating y if F"n2Nan w yimplies an w x for some n 2 N. An !-ccpo is continuous if there is a countable subset B suchthat every element is the join of an !-chain of elements from B !-approximating it. Similarly foralgebraicity. (This is the approach adopted in [Plotkin, 1981], for example.) The main point aboutthese de�nitions is the countability of the basis. It ensures that they are in complete harmony withour set-up, because we can show:Proposition 2.2.14.1. Every continuous !-ccpo is a continuous dcpo.2. Every algebraic !-ccpo is an algebraic dcpo.3. Every !-continuous map between continuous !-ccpo's is continuous.Proof. (1) Let (bn)n2Nbe an enumeration of a basis B for D. We �rst show that the continuous!-ccpo D is directed-complete, so let A be a directed subset of D. Let B0 be the set of basis elementswhich are below some element of A and, for simplicity, assume that B = B0. We construct an !-chainin A as follows: let a0 be an element of A which is above b0. Then let bn1 be the �rst basis elementnot below a0. It must be below some a01 2 A and we set a1 to be an upper bound of a0 and a01 in A.We proceed by induction. It does not follow that the resulting chain (an)n2Nis co�nal in A but it istrue that its supremum is also the supremum of A, because both subsets of D dominate the same setof basis elements.This construction also shows that !-approximation is the same as approximation in a continuous!-ccpo. The same basis B may then be used to show that D is a continuous domain. (The directednessof the sets Bx follows as in Proposition 2.2.4(1).)(2) follows from the proof of (1), so it remains to show (3). Monotonicity of the function f isimplied in the de�nition of !-continuity. Therefore a directed set A � D is mapped onto a directedset in E and also f(F"A) w F"f(A) holds. Let (an)n2Nbe an !-chain in A with F"A = F"n2Nan,as constructed in the proof of (1). Then we have f(F"A) = f(F"n2Nan) = F"n2Nf(an) v F"f(A).If we drop the crucial assumption about the countability of the basis then the two theories bifurcateand, in our opinion, the theory based on !-chains becomes rather bizarre. To give just one illustration,



14 Samson Abramsky and Achim Jungobserve that simple objects, such as powersets, may fail to be algebraic domains. There remains thequestion, however, whether in the realm of a mathematical theory of computation one should start with!-chains. Arguments in favor of this approach point to pedagogy and foundations. The pedagogicalaspect is somewhat weakened by the fact that even in a continuous !-ccpo the sets ##x happen to bedirected. Glossing over this fact would tend to mislead the student. In our eyes, the right middleground for a course on domain theory, then, would be to start with !-chains and motivations fromsemantics and then at some point (probably where the ideal completion of a poset is discussed) toswitch to directed sets as the more general concept. This suggestion is hardly original. It is in directanalogy with the way students are introduced to topological concepts.Turning to foundations, we feel that the necessity to choose chains where directed subsets arenaturally available (such as in function spaces) and thus to rely on the Axiom of Choice without need,is a serious stain on this approach. To take foundational questions seriously implies a much deeperre-working of the theory: some pointers to the literature will be found in Section 8.We do not feel the need to say much about the use of chains of arbitrary cardinality. This addsnothing in strength (because of Proposition 2.1.15) but has all the disadvantages pointed out for!-chains already.bases vs. intrinsic descriptions. The de�nition of a continuous domain given here di�ers from,and is in fact more complicated than the standard one (which we presented as Proposition 2.2.7(1)).We nevertheless preferred this approach to the concept of approximation for three reasons. Firstly, thestandard de�nition does not allow the restriction of the size of continuous domains. In this respect notthe cardinality of a domain but the minimal cardinality of a basis is of interest. Secondly, we wantedto point out the strong analogy between algebraic and continuous domains. And, indeed, the proofswe have given so far for continuous domains specialize directly to the algebraic case if one replaces `B'by `K(D)' throughout. Thus far at least, proofs for algebraic domains alone would not be any shorter.And, thirdly, we wanted to stress the idea of approximation by elements which are (for whateverreason) simpler than others. Such a notion of simplicity does often exist for continuous domains (suchas rational vs. real numbers), even though its justi�cation is not purely order-theoretical (see 8.1.1).algebraic vs. continuous. This brings up the question of why one bothers with continuousdomains at all. There are two important reasons but they depend on de�nitions introduced later inthis text. The �rst is the simpli�cation of the mathematical theory of domains stemming from thepossibility of freely using retracts (see Theorem 3.1.4 below). The second is the observation that inalgebraic domains two fundamental concepts of domain theory essentially coincide, namely, that of aScott-open set and that of a compact saturated set. We �nd it pedagogically advantageous to be ableto distinguish between the two.continuous dcpo vs. continuous domain. It is presently common practice to start a paper insemantics or domain theory by de�ning the subclass of dcpo's of interest and then assigning the name`domain' to these structures. We fully agree with this custom of using `domain' as a generic name.In this article, however, we will study a full range of possible de�nitions, the most general of which isthat of a dcpo. We have nevertheless avoided calling these domains. For us, `domain' refers to bothideas essential to the theory, namely, the idea of convergence and the idea of approximation.2.2.5 Useful propertiesLet us start right away with the single most important feature of the order of approximation, theinterpolation property .Lemma 2.2.15. Let D be a continuous domain and letM � D be a �nite set each of whose elementsapproximates y. Then there exists y0 2 D such that M � y0 � y holds. If B is a basis for D then y0may be chosen from B. (We say, y0 interpolates between M and y.)Proof. Given M � y in D we de�ne the setA = fa 2 D j 9a0 2 D : a� a0 � yg:It is clearly non-empty. It is directed because if a� a0 � y and b� b0 � y then by the directednessof ##y there is c0 2 D such that a0 v c0 � y and b0 v c0 � y and again by the directedness of ##c0there is c 2 D with a v c � c0 and b v c � c0. We calculate the supremum of A: let y0 be anyelement approximating y. Since ##y0 � A we have that F"A w F"##y0 = y0. This holds for all y0 � yso by continuity y = F"##y v F"A. All elements of A are less than y, so in fact equality holds:
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bbbb̀̀̀ba b bb@@��@@��Fig. 6. The meet of the compact elements a and b is not compact.F"##y = F"A. Remember that we started out with a set M whose elements approximate y. Byde�nition there is am 2 A with m v am for each m 2M . Let a be an upper bound of the am in A. Byde�nition, for some a0, a� a0 � y, and we can take a0 as an interpolating element between M and y.The proof remains the same if we allow only basis elements to enter A.Corollary 2.2.16. Let D be a continuous domain with a basis B and let A be a directed subset of D.If c is an element approximating F"A then c already approximates some a 2 A. As a formula:##G"A = [a2A ##a:Intersecting with the basis on both sides givesBF"A = [a2ABa:Next we will illustrate how in a domain we can restrict attention to principal ideals.Proposition 2.2.17.1. If D is a continuous domain and if x; y are elements in D, then x approximates y if and only iffor all directed sets A with F"A = y there is an a 2 A such that a w x.2. The order of approximation on a continuous domain is the union of the orders of approximationon all principal ideals.3. A dcpo is continuous if and only if each principal ideal is continuous.4. For a continuous domain D we have K(D) = Sx2D K(#x).5. A dcpo is algebraic if and only if each principal ideal is algebraic.Proposition 2.2.18.1. In a continuous domain minimal upper bounds of �nite sets of compact elements are againcompact.2. In a complete lattice the sets ##x are t-sub-semilattices.3. In a complete lattice the join of �nitely many compact elements is again compact.Corollary 2.2.19. A complete lattice is algebraic if and only if each element is the join of compactelements.The in�mum of compact elements need not be compact again, even in an algebraic lattice. Anexample is given in Figure 6.2.2.6 Bases as objectsIn Section 2.2.2 we have seen how we can use bases in order to express properties of the ambientdomain. We will now study the question of how far we can reduce domain theory to a theory of(abstract) bases. The resulting techniques will prove useful in later chapters but we hope that theywill also deepen the reader's understanding of the nature of domains.



16 Samson Abramsky and Achim JungWe start with the question of what additional information is necessary in order to reconstruct adomain from one of its bases. Somewhat surprisingly, it is just the order of approximation. Thus wede�ne:De�nition 2.2.20. An (abstract) basis is given by a set B together with a transitive relation � on B,such that(INT) M � x =) 9y 2 B: M � y � xholds for all elements x and �nite subsets M of B.Abstract bases were introduced in [Smyth, 1977] where they are called \R-structures". Examplesof abstract bases are concrete bases of continuous domains, of course, where the relation � is therestriction of the order of approximation. Axiom (INT) is satis�ed because of Lemma 2.2.15 andbecause we have required bases in domains to have directed sets of approximants for each element.Other examples are partially ordered sets, where (INT) is satis�ed because of re
exivity. We willshortly identify posets as being exactly the bases of compact elements of algebraic domains.In what follows we will use the terminology developed at the beginning of this chapter, even thoughthe relation � on an abstract basis need neither be re
exive nor antisymmetric. This is convenientbut in some instances looks more innocent than it is. An ideal A in a basis, for example, has theproperty (following from directedness) that for every x 2 A there is another element y 2 A with x � y.In posets this doesn't mean anything but here it becomes an important feature. Sometimes this isstressed by using the expression `A is a round ideal'. Note that a set of the form #x is always an idealbecause of (INT) but that it need not contain x itself. We will refrain from calling #x `principal' inthese circumstances.De�nition 2.2.21. For a basis hB;�i let Idl(B) be the set of all ideals ordered by inclusion. It iscalled the ideal completion of B. Furthermore, let i:B ! Idl(B) denote the function which mapsx 2 B to #x. If we want to stress the relation with which B is equipped then we write Idl(B;�) forthe ideal completion.Proposition 2.2.22. Let hB;�i be an abstract basis.1. The ideal completion of B is a dcpo.2. A� A0 holds in Idl(B) if and only if there are x � y in B such that A � i(x) � i(y) � A0.3. Idl(B) is a continuous domain and a basis of Idl(B) is given by i(B).4. If � is re
exive then Idl(B) is algebraic.5. If hB;�i is a poset then B, K(Idl(B)), and i(B) are all isomorphic.Proof. (1) holds because clearly the directed union of ideals is an ideal. Roundness implies that everyA 2 Idl(B) can be written as Sx2A #x. This union is directed because A is directed. This proves (2)and also (3). The fourth claim follows from the characterization of the order of approximation. Thelast clause holds because there is only one basis of compact elements for an algebraic domain.De�ning the product of two abstract bases as one does for partially ordered sets, we have thefollowing:Proposition 2.2.23. Idl(B �B0) �= Idl(B) � Idl(B0)Our `completion' has a weak universal property:Proposition 2.2.24. Let hB;�i be an abstract basis and let D be a dcpo. For every monotonefunction f :B ! D there is a largest continuous function f̂ : Idl(B) ! D such that f̂ � i is below f . Itis given by f̂ (A) = F"f(A). B @@@@@f RIdl(B)i? f̂ - DThe assignment f 7! f̂ is a Scott-continuous map from [B m�! D] to [Idl(B) �! D].If the relation � is re
exive then f̂ � i equals f .



Domain Theory 17Proof. Let us �rst check continuity of f̂ . To this end let (Ai)i2I be a directed collection of ideals.Using general associativity (Proposition 2.1.4(3)) we can calculate: f̂ (F"i2I Ai) = f̂ (Si2I Ai) =F"ff(x) j x 2 Si2I Aig = F"i2I F"ff(x) j x 2 Aig = F"i2I f̂ (Ai).Since f is assumed to be monotone, f(x) is an upper bound for f(#x). This proves that f̂ � i isbelow f . If, on the other hand, g: Idl(B) ! D is another continuous function with this property thenwe have g(A) = g(Sx2A #x) = F"x2A g(#x) = F"x2A g(i(x)) v F"x2A f(x) = f̂ (A).The claim about the continuity of the assignment f 7! f̂ is shown by the usual switch of directedsuprema.If � is a preorder then we can show that f̂ � i = f : f̂ (i(x)) = f̂ (#x) = F"f(#x) = f(x).A particular instance of this proposition is the case that B and B0 are two abstract bases andf :B ! B0 is monotone. By the extension of f to Idl(B) we mean the map [i0 � f : Idl(B) ! Idl(B0). Itmaps an ideal A � B to the ideal #f(A).Proposition 2.2.25. Let D be a continuous domain with basis B. Viewing hB;�i as an abstractbasis, we have the following:1. Idl(B) is isomorphic to D. The isomorphism �: Idl(B) ! D is the extension ê of the embeddingof B into D. Its inverse � maps elements x 2 D to Bx.2. For every dcpo E and continuous function f :D ! E we have f = ĝ�� where g is the restrictionof f to B.Proof. In a continuous domain we have x = F"Bx for all elements, so � � � = idD. Composing themaps the other way round we need to see that every c 2 B which approximates F"A, where A is anideal in hB;�i, actually belongs to A. We interpolate: c� d� F"A and using the de�ning propertyof the order of approximation, we �nd a 2 A above d. Therefore c approximates a and belongs to A.The calculation for (2) is straightforward: f(x) = f(F"Bx) =F"f(Bx) = ĝ(Bx) = ĝ(�(x)).Corollary 2.2.26. A continuous function from a continuous domain D to a dcpo E is completelydetermined by its behavior on a basis of D.As we now know how to reconstruct a continuous domain from its basis and how to recover acontinuous function from its restriction to the basis, we may wonder whether it is possible to workwith bases alone. There is one further problem to overcome, namely, the fact that continuous functionsdo not preserve the order of approximation. The only way out is to switch from functions to relations,where we relate a basis element c to all basis elements approximating f(c). This can be axiomatizedas follows.De�nition 2.2.27. A relation R between abstract bases B and C is called approximable if thefollowing conditions are satis�ed:1. 8x 2 B 8y; y0 2 C: (xRy � y0 =) xRy0);2. 8x 2 B 8M ��n C: (8y 2M: xRy =) (9z 2 C: xRz and z �M ));3. 8x; x0 2 B 8y 2 C: (x0 � xRy =) x0Ry);4. 8x 2 B 8y 2 C: (xRy =) (9z 2 B: x � zRy)).The following is then proved without di�culties.Theorem 2.2.28. The category of abstract bases and approximable relations is equivalent to CONT,the category of continuous dcpo's and continuous maps.The formulations we have chosen in this section allow us to immediately read o� the correspondingresults in the special case of algebraic domains. In particular:Theorem 2.2.29. The category of preorders and approximable relations is equivalent to ALG, thecategory of algebraic dcpo's and continuous maps.2.3 TopologyBy a topology on a space X we understand a system of subsets of X (called the open sets), which isclosed under �nite intersections and in�nite unions. It is an amazing fact that by a suitable choice of atopology we can encode all information about convergence, approximation, continuity of functions, andeven points of X themselves. To a student of Mathematics this appears to be an immense abstraction



18 Samson Abramsky and Achim Jungfrom the intuitive beginnings of analysis. In domain theory we are in the lucky situation that we cantie up open sets with the concrete idea of observable properties. This has been done in detail earlierin this handbook, [Smyth, 1992], and we may therefore proceed swiftly to the mathematical side ofthe subject.2.3.1 The Scott-topology on a dcpoDe�nition 2.3.1. Let D be a dcpo. A subset A is called (Scott-)closed if it is a lower set and isclosed under suprema of directed subsets. Complements of closed sets are called (Scott-)open; theyare the elements of �D, the Scott-topology on D.We shall use the notation Cl(A) for the smallest closed set containing A. Similarly, Int(A) willstand for the open kernel of A.A Scott-open set O is necessarily an upper set. By contraposition it is characterized by the propertythat every directed set whose supremum lies in O has a non-empty intersection with O.Basic examples of closed sets are principal ideals. This knowledge is enough to show the following:Proposition 2.3.2. Let D be a dcpo.1. For elements x; y 2 D the following are equivalent:(a) x v y,(b) Every Scott-open set which contains x also contains y,(c) x 2 Cl(fyg).2. The Scott-topology satis�es the T0 separation axiom.3. hD;�Di is a Hausdor� (= T2) topological space if and only if the order on D is trivial.Thus we can reconstruct the order between elements of a dcpo from the Scott-topology. The sameis true for limits of directed sets.Proposition 2.3.3. Let A be a directed set in a dcpo D. Then x 2 D is the supremum of A if andonly if it is an upper bound for A and every Scott-neighborhood of x contains an element of A.Proof. Indeed, the closed set #F"A separates the supremum from all other upper bounds of A.Proposition 2.3.4. For dcpo's D and E, a function f from D to E is Scott-continuous if and onlyif it is topologically continuous with respect to the Scott-topologies on D and E.Proof. Let f be a continuous function from D to E and let O be an open subset of E. It is clearthat f�1(O) is an upper set because continuous functions are monotone. If f maps the elementx = F"i2I xi 2 D into O then we have f(x) = f(F"i2I xi) = F"i2I f(xi) 2 O and by de�nition theremust be some xi which is mapped into O. Hence f�1(O) is open in D.For the converse assume that f is topologically continuous. We �rst show that f must be monotone:Let x v x0 be elements of D. The inverse image of the Scott-closed set #f(x0) contains x0. Henceit also contains x. Now let A � D be directed. Look at the inverse image of the Scott-closedset #(F"a2A f(a)). It contains A and is Scott-closed, too. So it must also contain F"A. Since bymonotonicity f(F"A) is an upper bound of f(A), it follows that f(F"A) is the supremum of f(A).So much for the theme of convergence. Let us now proceed to see in how far approximation isre
ected in the Scott-topology.2.3.2 The Scott-topology on domainsIn this subsection we work with the second-most primitive form of open sets, namely those which canbe written as ""x. We start by characterizing the order of approximation.Proposition 2.3.5. Let D be a continuous domain. Then the following are equivalent for all pairsx; y 2 D:1. x� y,2. y 2 Int("x),3. y 2 ""x.Proposition 2.3.6. Let D be a continuous domain with basis B. Then openness of a subset O of Dcan be characterized in the following two ways:1. O = Sx2O ""x,



Domain Theory 192. O = Sx2O\B ""x.This can be read as saying that every open set is supported by its members from the basis. Wemay therefore ask how the Scott-topology is derived from an abstract basis.Proposition 2.3.7. Let (B;�) be an abstract basis and let M be any subset of B. Then the setfA 2 Idl(B) jM \A 6= ;g is Scott-open in Idl(B) and all open sets on Idl(B) are of this form.This, �nally, nicely connects the theory up with the idea of an observable property. If we assumethat the elements of an abstract basis are �nitely describable and �nitely recognisable (and we stronglyapprove of this intuition) then it is clear how to observe a property in the completion: we have towait until we see an element from a given set of basis elements.We also have the following sharpening of Proposition 2.3.6:Lemma 2.3.8. Every Scott-open set in a continuous domain is a union of Scott-open �lters.Proof. Let x be an element in the open set O. By Proposition 2.3.6 there is an element y 2 O whichapproximates x. We repeatedly interpolate between y and x. This gives us a sequence y � : : : �yn � : : :� y1 � x. The union of all "yn is a Scott-open �lter containing x and contained in O.In this subsection we have laid the groundwork for a formulation of Domain Theory purely interms of the lattice of Scott-open sets. Since we construe open sets as properties we have also broughtlogic into the picture. This relationship will be looked at more closely in Chapter 7. There and inSection 4.2.3 we will also exhibit more properties of the Scott-topology on domains.Exercises 2.3.9.1. Formalize the passage from preorders to their quotient posets.2. Draw line diagrams of the powersets of a one, two, three, and four element set.3. Show that a poset which has all suprema also has all in�ma, and vice versa.4. Re�ne Proposition 2.1.7 by showing that the �xpoints of a monotone function on a completelattice form a complete lattice. Is it a sublattice?5. Show that �nite directed sets have a largest element. Characterize the class of posets in whichthis is true for every directed set.6. Show that the directed set of �nite subsets of real numbers does not contain a co�nal chain.7. Which of the following are dcpo's: R, [0; 1] (unit interval), Q,Z� (negative integers)?8. Let f be a monotone map between complete lattices L and M and let A be a subset of L. Prove:f(FA) w F f(A).9. Show that the category of posets and monotone functions forms a cartesian closed category.10. Draw the line diagram for the function space of the 
at booleans (see Figure 1).11. Show that an ideal in a (binary) product of posets can always be seen as the product of twoideals from the individual posets.12. Show that a map f between two dcpo's D and E is continuous if and only if for all directedsets A in D, f(F"A) = F f(A) holds.13. Give an example of a monotone map f on a pointed dcpo D for which F"n2Nfn(?) is not a�xpoint. (Some �xpoint must exist by Proposition 2.1.16.)14. Use �xpoint induction to prove the following. Let f; g:D ! D be continuous functions on apointed dcpo D with f(?) = g(?), and f � g = g � f . Then �x(f) = �x(g).15. (Dinaturality of �xpoints) Let D;E be pointed dcpo's and let f :D ! E; g:E ! D be continuousfunctions. Prove �x(g � f) = g(�x(f � g)) :16. Show that Lemma 2.1.21 uniquely characterizes �x among all �xpoint operators.17. Prove: Given pointed dcpo's D and E and a continuous function f :D � E ! E there is acontinuous function Y (f):D ! E such that Y (f) = f � hidD; Y (f)i holds. (This is the generalde�nition of a category having �xpoints.) How does Theorem 2.1.19 follow from this?18. Show that each version of the natural numbers as shown in Figure 2 is an example of a countabledcpo whose function space is uncountable.19. Characterize the order of approximation on the unit interval. What are the compact elements?20. Show that in �nite posets every element is compact.



20 Samson Abramsky and Achim Jung21. Let L be the lattice of open sets of Q, where Q is equipped with the ordinary metric topol-ogy. Show that no two non-empty open sets approximate each other. Conclude that L is notcontinuous.22. Prove Proposition 2.2.10.23. Extend Proposition 2.2.10 in the following way: For every �nite subset M of a continuous dcpo Dwith basis B there exists M 0 � B, such that x 7! x0 is an order-isomorphism between M and M 0and such that for all x 2M , the element x0 belongs to Bx.24. Prove Proposition 2.2.17.25. Show that elements of an abstract basis, which approximate no other element, may be deletedwithout changing the ideal completion.26. Show that if x is a non-compact element of a basis B for a continuous domain D then B n fxgis still a basis. (Hint: Use the interpolation property.)27. The preceding exercise shows that di�erent bases can generate the same domain. Show that fora �xed basis di�erent orders of approximation may also yield the same domain. Show that thiswill de�nitely be the case if the two orders �1 and �2 satisfy the equations �1 � �2=�1 and�2 � �1=�2.28. What is the ideal completion of hQ; <i?29. Let � be a relation on a set B such that � � �=� holds. Give an example showing thatAxiom (INT) (De�nition 2.2.20) need not be satis�ed. Nevertheless, Idl(B;�) is a continuousdomain. What is the advantage of our axiomatization over this simpler concept?30. Spell out the proof of Theorem 2.2.28.31. Prove that in a dcpo every upper set is the intersection of its Scott-neighborhoods.32. Show that in order to construct the Scott-closure of a lower set A of a continuous domain it issu�cient to add all suprema of directed subsets to #A. Give an example of a non-continuousdcpo where this fails.33. Given a subset X in a dcpo D let �X be the smallest superset of X which is closed against theformation of suprema of directed subsets. Show that the cardinality of �X can be no greaterthan 2jXj. (Hint: Construct a directed suprema closed superset of X by adding all existingsuprema to X.)3 Domains collectively3.1 Comparing domains3.1.1 RetractionsA reader with some background in universal algebra may already have missed a discussion of sub-dcpo's and quotient-dcpo's. The reason for this omission is quite simple: there is no fully satisfactorynotion of sub-object or quotient in domain theory based on general Scott-continuous functions. Andthis is because the formation of directed suprema is a partial operation of unbounded arity. Wetherefore cannot hope to be able to employ the tools of universal algebra. But if we combine the ideasof sub-object and quotient then the picture looks quite nice.De�nition 3.1.1. Let P and Q be posets. A pair s:P ! Q, r:Q ! P of monotone functions iscalled a monotone section retraction pair if r � s is the identity on P . In this situation we will call Pa monotone retract of Q.If P and Q are dcpo's and if both functions are continuous then we speak of a continuous sectionretraction pair .We will omit the qualifying adjective `monotone', respectively `continuous', if the properties of thefunctions are clear from the context. We will also use s-r-pair as a shorthand.One sees immediately that in an s-r-pair the retraction is surjective and the section is injective, soour intuition about P being both a sub-object and a quotient of Q is justi�ed. In such a situation Pinherits many properties from Q:Proposition 3.1.2. Let P and Q be posets and let s:P ! Q, r:Q ! P be a monotone sectionretraction pair.1. Let A be any subset of P . If s(A) has a supremum in Q then A has a supremum in P . It isgiven by r(F s(A)). Similarly for the in�mum.



Domain Theory 212. If Q is a (pointed) dcpo, a semilattice, a lattice or a complete lattice then so is P .Proof. Because of r � s = idP and the monotonicity of r it is clear that r(F s(A)) is an upper boundfor A. Let x be another such. Then by the monotonicity of s we have that s(x) is an upper bound ofs(A) and hence it is above F s(A). So we get x = r(s(x)) w r(F s(A)).The property of being a (pointed) dcpo, semilattice, etc., is de�ned through the existence ofsuprema or in�ma of certain subsets. The shape of these subsets is preserved by monotone functionsand so (2) follows from (1).Let us now turn to continuous section retraction pairs.Lemma 3.1.3. Let (s; r) be a continuous section retraction pair between dcpo's D and E and let Bbe a basis for E. Then r(B) is a basis for D.Proof. Let c 2 B be an approximant to s(x) for x 2 D. We show that r(c) approximates x. Tothis end let A be a directed subset of D with F"A w x. By the continuity of s we have F"s(A) =s(F"A) w s(x) and so for some a 2 A, s(a) w c must hold. This implies a = r(s(a)) w r(c). Thecontinuity of r gives us that x is the supremum of r(Bs(x)).Theorem 3.1.4. A retract of a continuous domain via a continuous s-r-pair is continuous.The analogous statement for algebraic domains does not hold in general. Instead of constructing aparticular counterexample, we use our knowledge about the ideal completion to get a general, positiveresult which implies this negative one.Theorem 3.1.5. Every (!-) continuous domain is the retract of an (!-) algebraic domain via acontinuous s-r-pair.In more detail, we have:Proposition3.1.6. Let D be a continuous domain with basis B. Then the maps s:D ! Idl(B;v); x 7!Bx and r: Idl(B;v) ! D;A 7! F"A constitute a continuous section retraction pair between Dand Idl(B;v).Proof. The continuity of r follows from general associativity, Proposition 2.1.4, and the fact thatdirected suprema in Idl(B) are directed unions. For the continuity of s we use the interpolationproperty in the form of Proposition 2.2.16(2).3.1.2 IdempotentsOften the section part of an s-r-pair is really a subset inclusion. In this case we can hide it and workwith the map s � r on E alone. It is idempotent, because (s � r) � (s � r) = s � (r � s) � r = s � r.Proposition 3.1.7.1. The image of a continuous idempotent map f on a dcpo D is a dcpo. The suprema of directedsubsets of im(f), calculated in im(f), coincide with those calculated in D. The inclusion im(f) !D is Scott-continuous.2. The set of all continuous idempotent functions on a dcpo is again a dcpo.Proof. (1) The �rst part follows from Proposition 3.1.2 because the inclusion is surely monotone.For the second part let A be a directed set contained in im(f). We need to see that F"A belongs toim(f) again. This holds because f is continuous: F"A = F"f(A) = f(F"A).(2) Let (fi)i2I be a directed family of continuous idempotents. For any x 2 D we can calculate(G"i2I fi) � (G"j2I fj)(x) = G"i2I fi(G"j2I fj(x))= G"i2I G"j2I fi(fj(x))= G"i2I fi(fi(x))= G"i2I fi(x):



22 Samson Abramsky and Achim Jungca cb cc ������ f�1(a)f�1(b)f�1(c)f?� -���� ����Fig. 7. The right inverse problem for a surjective functionHence the supremum of continuous idempotents is again an idempotent function. We have proved inProposition 2.1.18 that it is also continuous.If f is a continuous idempotent map on a continuous domainD then we know that its image is againcontinuous. But it is not true that the order of approximation on im(f) is the restriction of the orderof approximation on D. For example, every constant map is continuous and idempotent. Its image isan algebraic domain with one element, which is therefore compact. But surely not every element of acontinuous domain is compact. However, we can say something nice about the Scott-topology on theimage:Proposition 3.1.8. If f is a continuous idempotent function on a dcpo D then the Scott-topology onim(f) is the restriction of the Scott-topology on D to im(f).Proof. This follows immediately because a continuous idempotent function f gives rise to a contin-uous s-r-pair between im(f) and D.Useful examples of idempotent self-maps are retractions retx onto principal ideals. They are givenby retx(y) = � y; if y v x;x; otherwise:Their continuity follows from the fact that #x is always Scott-closed. Dually, we can de�ne a retractiononto a principal �lter "c. It is Scott-continuous if its generator c is compact.3.1.3 AdjunctionsAn easy way to avoid writing this subsection would be to refer to category theory and to translate thegeneral theory of adjoint functors into the poset setting. However, we feel that the right way to getused to the idea of adjointness is to start out with a relatively simple situation such as is presentedby domain theory. (In fact, we will use adjoint functors later on, but really in a descriptive fashiononly.)Let us start with the example of a surjective map f from a poset Q onto a poset P . It is naturalto ask whether there is a one-sided inverse e:P ! Q for f , i.e. a map such that f � e = idP holds.Figure 7 illustrates this situation. Such a map must pick out a representative from f�1(x) for eachx 2 P . Set-theoretically this can be done, but the point here is that we want e to be monotone. If wesucceed then e and f form a (monotone) section retraction pair. Even nicer would it be if we couldpick out a canonical representative from f�1(x), which in the realm of order theory means that wewant f�1(x) to have a least (or largest) element. If this is the case then how can we ensure that theassignment e:x 7! min(f�1(x)) is monotone? The solution is suggested by the observation that if eis monotone then e(x) is not only the least element of f�1(x) but also of f�1("x). This conditionis also su�cient. The switch from f�1(x) to f�1("x) (and this is a trick to remember) may allowus to construct a partial right inverse even if f is not surjective. Thus we arrive at a �rst, tentativede�nition of an adjunction.De�nition 3.1.9. (preliminary) Let P and Q be posets and let l:P ! Q and u:Q! P be monotonefunctions. We say that (l; u) is an adjunction between P and Q if for every x 2 P we have that l(x)is the least element of u�1("x).This de�nition is simple and easy to motivate. But it brings out just one aspect of adjoint pairs,namely, that l is uniquely determined by u. There is much more:Proposition 3.1.10. Let P and Q be posets and l:P ! Q and u:Q ! P be monotone functions.Then the following are equivalent:1. 8x 2 P: l(x) = min(u�1("x)),



Domain Theory 232. 8y 2 Q: u(y) = max(l�1(#y)),3. l � u v idQ and u � l w idP ,4. 8x 2 P 8y 2 Q: (x v u(y) , l(x) v y).(For (4)=)(1) the monotonicity of u and l is not needed.)Proof. (1)=)(2) Pick an element y 2 Q. Then because u(y) v u(y) we have from (1) that l(u(y)) v yholds. So u(y) belongs to l�1(#y). Now let x0 be any element of l�1(#y), or, equivalently, l(x0) v y.Using (1) again, we see that this can only happen if u(y) w x0 holds. So u(y) is indeed the largestelement of l�1(#y). The converse is proved analogously, of course.(1) and (2) together immediately give both (3) and (4).From (3) we get (4) by applying the monotone map l to the inequality x v u(y) and usingl � u v idQ.Assuming (4) we see immediately that l(x) is a lower bound for u�1("x). But because l(x) v l(x)and hence x v u(l(x)) we have that l(x) also belongs to u�1("x). We get the monotonicity of l asfollows: If x v x0 holds in P then because l(x0) v l(x0) we have x0 v u(l(x0)) and by transitivityx v u(l(x0)). Using (4) again, we get l(x) v l(x0).We conclude that despite the lopsided de�nition, the situation described by an adjunction iscompletely symmetric. And indeed, adjunctions are usually introduced using either (3) or (4).De�nition 3.1.11. (o�cial) Let P and Q be posets and let l:P ! Q and u:Q ! P be functions.We say that (l; u) is an adjunction between P and Q if for all x 2 P and y 2 Q we have x v u(y) ,l(x) v y. We call l the lower and u the upper adjoint and write l:P � Q :u.Proposition 3.1.12. Let l:P � Q :u be an adjunction between posets.1. u � l � u = u and l � u � l = l,2. The image of u and the image of l are order-isomorphic. The isomorphisms are given by therestrictions of u and l to im(l) and im(u), respectively.3. u is surjective , u � l = idP , l is injective,4. l is surjective , l � u = idQ , u is injective,5. l preserves existing suprema, u preserves existing in�ma.Proof. (1) We use Proposition 3.1.10(3) twice: u = idP � u v (u � l) � u = u � (l � u) v u � idQ = u.(2) The equations from (1) say precisely that on the images of u and l, u � l and l �u, respectively,act like identity functions.(3) If u is surjective then we can cancel u on the right in the equation u � l � u = u and getu � l = idP . From this it follows that l must be injective.(5) Let x = FA for A � P . By monotonicity, l(x) w l(a) for each a 2 A. Conversely, let y beany upper bound of l(A). Then u(y) is an upper bound for each u(l(a)) which in turn is above a. Sou(y) w FA = x holds and this is equivalent to y w l(x).The last property in the preceding proposition may be used to de�ne an adjunction in yet anotherway, the only prerequisite being that there are enough sets with an in�mum (or supremum). This isthe Adjoint Functor Theorem for posets.Proposition 3.1.13. Let f :L! P be a monotone function from a complete lattice to a poset. Thenthe following are equivalent:1. f preserves all in�ma,2. f has a lower adjoint.And similarly: f preserves all suprema if and only if f has an upper adjoint.Proof. We already know how to de�ne a candidate for a lower adjoint g; we try g(x) = d f�1("x).All that remains, is to show that g(x) belongs to f�1("x). This follows because f preserves meets:f(g(x)) = f(d f�1("x)) = df(f�1("x)) w d"x = x.This proposition gives us a way of recognizing an adjoint situation in cases where only one functionis explicitly given. It is then useful to have a notation for the missing mapping. We write f� for theupper and f� for the lower adjoint of f .Now it is high time to come back to domains and see what all this means in our setting.



24 Samson Abramsky and Achim JungProposition 3.1.14. Let l:D � E :u be an adjunction between dcpo's.1. l is Scott-continuous.2. If u is Scott-continuous then l preserves the order of approximation.3. If D is continuous then the converse of (2) is also true.Proof. Continuity of the lower adjoint follows from Proposition 3.1.12(5). So let x� y be elementsin D and let A be a directed subset of E such that l(y) v F"A holds. This implies y v u(F"A) andfrom the continuity of u we deduce y v F"u(A). Hence some u(a) is above x which, going back to E,means l(x) v a.(3) For the converse let A be any directed subset of E. Monotonicity of u yieldsF"u(A) v u(F"A).In order to show that the other inequality also holds, we prove thatF"u(A) is above every approximantto u(F"A). Indeed, if x� u(F"A) we have l(x) � l(u(F"A)) v F"A by assumption. So some a isabove l(x) and for this a we have x v u(a) v F"u(A).3.1.4 Projections and sub-domainsLet us now combine the ideas of Section 3.1.1 and 3.1.3.De�nition 3.1.15. Let D and E be dcpo's and let e:D! E and p:E ! D be continuous functions.We say that (e; p) is a continuous embedding projection pair (or e-p-pair) if p�e = idD and e�p v idE .We note that the section retraction pair between a continuous domain and its ideal completion asconstructed in Section 3.1.1 is really an embedding projection pair.From the general theory of adjunctions and retractions we already know quite a bit about e-p-pairs. The embedding is injective, p is surjective, e preserves existing suprema and the order ofapproximation, p preserves existing in�ma,D is continuous if E is continuous, and, �nally, embeddingsand projections uniquely determine each other. Because of this last property the term `embedding'has a well-de�ned meaning; it is an injective function which has a Scott-continuous upper adjoint.An injective lower adjoint also re
ects the order of approximation:Proposition 3.1.16. Let e:D � E :p be an e-p-pair between dcpo's and let x and y be elements of D.Then e(x) � e(y) holds in E if and only if x approximates y in D.Let us also look at the associated idempotent e � p on E. As it is below the identity, it makesgood sense to call such a function a kernel operator , but often such maps are just called projections.We denote the set of kernel operators on a dcpo D by [D #�! D]. It is important to note that whilea kernel operator preserves in�ma as a map from D to its image, it does not have any preservationproperties as a map from D to D besides Scott-continuity. What we can say is summarized in thefollowing proposition.Proposition 3.1.17. Let D be a dcpo.1. [D #�! D] is a dcpo.2. If p is a kernel operator on D then for all x 2 D we have that p(x) = maxfy 2 im(p) j y v xg.3. The image of a kernel operator is closed under existing suprema.4. �im(p)= (�D) \ (im(p)� im(p)).5. For kernel operators p; p0 on D we have p v p0 if and only if im(p) � im(p0).Proof. (1) is proved as Proposition 3.1.7 and (2) follows because p together with the inclusion ofim(p) into D form an adjunction. This also shows (4). Finally, (3) and (5) are direct consequencesof (2).In the introduction we explained the idea that the order on a semantic domain models the relationof some elements being better than others, where|at least in semantics|`better' may be replacedmore precisely by `better termination'. Thus we view elements at the bottom of a domain as being lessdesirable than those higher up; they are `proto-elements' from which fully developed elements evolveas we go up in the order. Now, the embedding part of an e-p-pair e:D � E :p places D at the bottomof E. Following the above line of thought, we may think of D as being a collection of proto-elementsfrom which the elements of E evolve. Because there is the projection part as well, every elementof E exists in some primitive form in D already. Also, D contains some information about the orderand the order of approximation on E. We may therefore think of D as a preliminary version of E,as an approximation to E on the domain level. This thought is made fruitful in Sections 4.2 and 5.



Domain Theory 25Although the word does not convey the whole fabric of ideas, we name D a sub-domain of E, just incase there is an e-p-pair e:D � E :p.3.1.5 Closures and quotient domainsThe sub-domain relation is preeminent in domain theory but, of course, we can also combine retractionsand adjunctions the other way around. Thus we arrive at continuous insertion closure pairs (i-c-pairs). Because adjunctions are not symmetric as far as the order of approximation is concerned,Proposition 3.1.14, the situation is not just the order dual of that of the previous subsection. Weknow that the insertion preserves existing in�ma and so on, but in addition we now have that thesurjective part preserves the order of approximation and therefore, D is algebraic if E is.The associated idempotent is called a closure operator . For closure operators the same caveatapplies as for kernel operators; they need not preserve suprema. Worse, such functions do no longerautomatically have a Scott-continuous (upper) adjoint. This is the price we have to pay for thealgebraicity of the image. Let us formulate this precisely.Proposition 3.1.18. Let D be an algebraic domain and let c:D ! D be a monotone idempotentfunction above idD. Then im(c) is again an algebraic domain if and only if it is closed under directedsuprema.The reader will no doubt recognize this statement as being a reformulation and generalization ofour example of inductive closure systems from Chapter 2, Proposition 2.2.9. It is only consequent tocall D a quotient domain of the continuous domain E if there exists an i-c-pair e:D 
 E: c.3.2 Finitary constructionsIn this section we will present a few basic ways of putting domains together so as to build up com-plicated structures from simple ones. There are three aspects of these constructions which we areinterested in. The �rst one is simply the order-theoretic de�nition and the proof that we stay withindcpo's and Scott-continuous functions. The second one is the question how the construction can bedescribed in terms of bases and whether the principle of approximation can be retained. The thirdone, �nally, is the question of what universal property the construction has. This is the categoricalviewpoint. Since this Handbook contains a chapter on category theory, [Poign�e, 1992] (in particular,Chapter 2), we need not repeat here the arguments for why this is a fruitful and enlightening way oflooking at these type constructors.There are, however, several categories that we are interested in and a construction may playdi�erent roles in di�erent settings. Let us therefore list the categories that, at this point, seem suitableas a universe of discourse. There is, �rst of all, DCPO, the category of dcpo's and Scott-continuousfunctions as introduced in Section 2.1. We can restrict the objects by taking only continuous or, morespecial, algebraic domains. Thus we arrive at the full subcategories CONT and ALG of DCPO.Each of these may be further restricted by requiring the objects to have a bottom element (andTheorem 2.1.19 tells us why one would be interested in doing so) resulting in the categories DCPO?,CONT?, and ALG?. The presence of a distinguished point in each object suggests that morphismsshould preserve them. But this is not really appropriate in semantics; strict functions are tied toa particular evaluation strategy. For us this means that there is yet another cascade of categories,DCPO?!, CONT?!, and ALG?!, where objects have bottom elements and morphisms are strictand Scott-continuous. Finally, we may bound the size of (minimal) bases for continuous and algebraicdomains to be countable. We indicate this by the pre�x `!-'.3.2.1 Cartesian productDe�nition 3.2.1. The cartesian product of two dcpo's D and E is given by the following data:D �E = fhx; yi j x 2 D; y 2 Eg;hx; yi v hx0; y0i if and only if x v x0 and y v y0:This is just the usual product of sets, augmented by the coordinatewise order. Through induction,we can de�ne the cartesian product for �nite non-empty collections of dcpo's. For the product overthe empty index set we de�ne the result to be a �xed one-element dcpo I.Proposition 3.2.2. The cartesian product of dcpo's is a dcpo. Suprema and in�ma are calculatedcoordinatewise.



26 Samson Abramsky and Achim JungWith each product D � E there are associated two projections:�1:D �E ! D and �2:D � E ! E:These projections are always surjective but they are upper adjoints only if D and E are pointed. Sothere is a slight mismatch with Section 3.1.4 here. Given a dcpo F and continuous functions f :F ! Dand g:F ! E, we denote the mediating morphism from F to D � E by hf; gi. It maps x 2 F tohf(x); g(x)i.Proposition 3.2.3. Projections and mediating morphisms are continuous.If f :D ! D0 and g:E ! E0 are Scott-continuous, then so is the mediating map hf � �1; g � �2i:D �E !D0 � E0. The common notation for it is f � g. Since our construction is completely explicit, we havethus de�ned a functor in two variables on DCPO.Proposition 3.2.4. Let D and E be dcpo's.1. A tuple hx; yi approximates a tuple hx0; y0i in D � E if and only if x approximates x0 in D andy approximates y0 in E.2. If B and B0 are bases for D and E, respectively, then B �B0 is a basis for D �E.3. D � E is continuous if and only if D and E are.4. K(D � E) = K(D) � K(E).The categorical aspect of the cartesian product is quite pleasing; it is a categorical product in eachcase. But we can say even more.Lemma 3.2.5. Let C be a full subcategory of DCPO or DCPO?! which has �nite products. Thenthese are isomorphic to the cartesian product.In a restricted setting this was �rst observed in [Smyth, 1983a]. The general proof may be foundin [Jung, 1989].A useful property which does not follow from general categorical or topological considerations, isthe following.Lemma 3.2.6. A function f :D � E ! F is continuous if and only if it is continuous in each variableseparately.Proof. Assume f :D � E ! F is separately continuous. Then f is monotone, because given (x; y) v(x0; y0) we can �ll in (x; y0) and use coordinatewise monotonicity twice. The same works for continuity:if A � D � E is directed then G"(x;y)2A f(x; y) = G"x2�1(A) G"y2�2(A) f(x; y)= G"x2�1(A) f(x; G"y2�2(A) y)= f( G"x2�1 (A)x; G"y2�2(A) y)= f(G"A):This proves the interesting direction.3.2.2 Function spaceWe have introduced the function space in Section 2.1.6 already. It consists of all continuous functionsbetween two dcpo's ordered pointwise. We know that this is again a dcpo. The �rst morphism which isconnected with this construction is apply: [D �! E]�D ! E, hf; xi 7! f(x). It is continuous becauseit is continuous in each argument separately: in the �rst because directed suprema of functions arecalculated pointwise, in the second, because [D �! E] contains only continuous functions.The second standard morphism is the operation which rearranges a function of two arguments intoa combination of two unary functions. That is, if f maps D�E to F , then Curry(f):D ! [E �! F ] isthe mapping which assigns to d 2 D the function which assigns to e 2 E the element f(d; e). Curry(f)is a continuous function because of Lemma 3.2.6. And for completely general reasons we have that



Domain Theory 27QQQQQQQQQ CCCCCC������ ���������Fig. 8. The coalesced sum of two pointed dcpo's.Curry itself is a continuous operation from [D � E �! F ] to [D �! [E �! F ]]. Another derivedoperation is composition which is a continuous operation from [D �! E]� [E �! F ] to [D �! F ].All this shows that the continuous function space is the exponential in DCPO. Taking cartesianproducts and function spaces together we have shown that DCPO is cartesian closed.We turn the function space construction into a functor from DCPOop �DCPO to DCPO bysetting [� �! �](f; g)(h) = g � h � f , where f :D0 ! D, g:E ! E0 and h is an element of [D �! E].As for the product we can show that the choice of the exponential object is more or less forcedupon us. This again was �rst noticed by Smyth in the above mentioned reference.Lemma 3.2.7. Let C be a cartesian closed full subcategory of DCPO. The exponential of two objectsD and E of C is isomorphic to [D �! E].Let us now turn to the theme of approximation in function spaces. The reader should bracehimself for a profound disappointment: Even for algebraic domains it may be the case that the orderof approximation on the function space is empty! (Exercise 3.3.12(11) discusses an example.) Thisfact together with Lemmas 3.2.5 and 3.2.7 implies that neither CONT nor ALG are cartesian closed.The only way to remedy this situation is to move to more restricted classes of domains. This will bethe topic of Chapter 4.3.2.3 Coalesced sumIn the category of sets the coproduct is given by disjoint union. This works equally well for dcpo'sand there isn't really anything interesting to prove about it. We denote it by D :[ E.Disjoint union, however, destroys the property of having a least element and this in turn is in-dispensable in proving that every function has a �xpoint, Theorem 2.1.19. One therefore looks forsubstitutes for disjoint union which retain pointedness, but, of course, one cannot expect a clean cate-gorical characterization such as for cartesian product or function space. (See also Exercise 3.3.12(12).)In fact, it has been shown in [Huwig and Poign�e, 1990] that we cannot have cartesian closure, the �x-point property and coproducts in a non-degenerate category.So let us now restrict attention to pointed dcpo's. One way of putting a family of them togetheris to identify their bottom elements. This is called the coalesced sum and denoted D � E. Figure 8illustrates this operation. Elements from D � E di�erent from ?D�E carry a label which indicateswhere they came from. We write them in the form (x: i), i 2 f1; 2g.Proposition 3.2.8. The coalesced sum of pointed dcpo's is a pointed dcpo.The individual dcpo's may be injected into the sum in the obvious way:inl(x) = � (x: 1); x 6= ?D;?D�E ; x = ?D ;and inr(x) = � (x: 2); x 6= ?E;?D�E; x = ?E :A universal property for the sum holds only in the realm of strict functions:Proposition 3.2.9. The coalesced sum of pointed dcpo's is the coproduct in DCPO?!, CONT?!,and ALG?!.Once we accept the restriction to bottom preserving functions it is clear how to turn the coalescedsum into a functor.



28 Samson Abramsky and Achim Jung3.2.4 Smash product and strict function spaceIt is clear that inside DCPO?! a candidate for the exponential is not the full function space butrather the set [D ?!�! E] of strict continuous functions from D to E. However, it does not harmonizewith the product in DCPO?!, which, as we have seen, must be the cartesian product. We do geta match if we consider the so-called smash product . It is de�ned like the cartesian product but alltuples which contain at least one bottom element are identi�ed. Common notation is D 
E.We leave it to the reader to check that smash product and strict function space turn DCPO?!into a monoidal closed category.3.2.5 LiftingSet-theoretically, lifting is the simple operation of adding a new bottom element to a dcpo. Appliedto D, the resulting structure is denoted by D?. Clearly, continuity or algebraicity don't su�er anyharm from this.Associated with it is the map up:D! D? which maps each x 2 D to its namesake in D?.The categorical signi�cance of lifting stems from the fact that it is left adjoint to the inclusionfunctor from DCPO?! into DCPO. (Where a morphism f :D ! E is lifted by mapping the newbottom element of D? to the new bottom element of E?.)3.2.6 SummaryFor quick reference let us compile a table of the constructions looked at so far. A `X' indicates thatthe category is closed under the respective construction, a `+' says that, in addition, the constructionplays the expected categorical role as a product, exponential or coproduct, respectively. Observethat for the constructions considered in this section it makes no di�erence if we restrict the size of a(minimal) basis. DCPO DCPO? DCPO?! CONTALG CONT?ALG? CONT?!ALG?!D �E + + + + + +[D �! E] + + XD :[ E + +D 
E X X X X[D ?!�! E] X +D �E X + X +D? X X X X X X3.3 In�nitary constructionsThe product and sum constructions from the previous section have in�nitary counterparts. Generally,these work nicely as long as we are only concerned with questions of convergence, but they causeproblems with respect to the order of approximation. This is exempli�ed by the fact that an in�nitepower of a �nite poset may fail to be algebraic. In any case, there is not much use of these operationsin semantics. Much more interesting is the idea of incrementally building up a domain in a limitprocess. This is the topic of this section.3.3.1 Limits and colimitsOur limit constructions are to be understood categorically and hence we refer once more to [Poign�e, 1992]for motivation and general results. Here are the basic de�nitions. A diagram in a category C is givenby a functor from a small category I to C. We can describe, somewhat sloppily but more concretely, adiagram by a pair h(Di)i2O ; (fj:Dd(j) ! Dc(j))j2M i of a family of objects and a family of connectingmorphisms. The shape of the diagram is thus encoded in the index sets O (which correspond to theobjects of I) and M (which correspond to the morphisms of I) and in the maps c; d:M ! O whichcorresponds to the dom and codom map on I. What is lost is the information about compositionin I. In the cases which interest us, this is not a problem. A cone over such a diagram is given by anobject D and a family (fi:D! Di)i2O of morphisms such that for all j 2M we have fj �fd(j) = fc(j).A cone is limiting if for every other cone hE; (gi)i2Oi there is exactly one morphism f :E ! D suchthat for all i 2 O, gi = fi � f . If hD; (fi)i2Oi is a limiting cone, then D is called limit and the fi arecalled limiting morphisms. The dual notions are cocone, colimit, and colimiting morphism.



Domain Theory 29b rb b rr rb b b bb b rr rr r r rr rb b bb b b bZZZZ���� @@HHAAPPP����������BBB���� @@HHAAPPP����������BBB ����AA ��TTDD ����Fig. 9. An expanding sequence of �nite domains.Theorem 3.3.1. DCPO has limits of arbitrary diagrams.Proof. The proof follows general category theoretic principles. We describe the limit of the diagramh(Di)i2O; (fj:Dd(j) ! Dc(j))j2M i as a set of particular elements of the product of allDi's, the so-calledcommuting tuples. D = fhxi : i 2 Oi 2Yi2ODi j 8j 2M: xc(j) = fj(xd(j))gThe order on the limit object is inherited from the product, that is, tuples are ordered coordinatewise.It is again a dcpo because the coordinatewise supremum of commuting tuples is commuting as allfj are Scott-continuous. This also proves that the projections �j:Qi2ODi ! Dj restricted to D arecontinuous. They give us the maps needed to complement D to a cone.Given any other cone hE; (gi:E ! Di)i2Oi, we de�ne the mediating morphism h:E ! D byh(x) = hgi(x) : i 2 Oi. Again, it is obvious that this is well-de�ned and continuous, and that it is theonly possible choice.We also have the dual:Theorem 3.3.2. DCPO has colimits of arbitrary diagrams.This was �rst noted in [Markowsky, 1977] and, for a somewhat di�erent setting, in [Meseguer, 1977].The simplest way to prove it is by reducing it to completeness �a la Theorem 23.14 of [Herrlich and Strecker, 1973].This appears in [Lehmann and Smyth, 1981]. A more detailed analysis of colimits appears in [Fiech, 1992].There the problem of retaining algebraicity is also addressed.Theorem 3.3.3. DCPO is cartesian closed, complete and cocomplete.Theorem 3.3.4. DCPO?! is monoidal closed, complete and cocomplete.How about DCPO?, where objects have least elements but morphisms need not preserve them?The truth is that both completeness and cocompleteness fail for this category. On the other hand, itis the right setting for denotational semantics in most cases. As a result of this mismatch, we quiteoften must resort to detailed proofs on the element level and cannot simply apply general categorytheoretic principles. Let us nevertheless write down the one good property of DCPO?:Theorem 3.3.5. DCPO? is cartesian closed.3.3.2 The limit-colimit coincidenceThe theorems of the previous subsection fall apart completely if we pass to domains, that is, to CONTor ALG. To get better results for limits and colimits we must restrict both the shape of the diagramsand the connecting morphisms used.For motivation let us look at a chain D1; D2; : : : of domains where each Dn is a sub-domain of Dn+1in the sense of Section 3.1.4. Taking up again the animated language from that section we may thinkof the points of Dn+1 as growing out of points of Dn, the latter being the buds which contain theleaves and 
owers to be seen at later stages. Figure 9 shows a, hopefully inspiring, example. Intuitionsuggests that in such a situation a well-structured limit can be found by adding limit points to theunion of the Dn, and that it will be algebraic if the Dn are.De�nition 3.3.6. A diagram h(Dn)n2N; (emn:Dn ! Dm)n�m2Ni in the category DCPO is calledan expanding sequence, if the following conditions are satis�ed:1. Each emn:Dn ! Dm is an embedding. (The associated projection e�mn we denote by pnm.)2. 8n 2 N: enn = idDn :



30 Samson Abramsky and Achim Jung3. 8n � m � k 2 N: ekn = ekm � emn :Note that because lower adjoints determine upper adjoints and vice versa, we have pnk = pnm�pmkwhenever n � m � k 2 N.It turns out that, in contrast to the general situation, the colimit of an expanding sequence canbe calculated easily via the associated projections.Theorem 3.3.7. Let h(Dn)n2N; (emn:Dn ! Dm)n�m2Ni be an expanding sequence in DCPO. De-�ne D = fhxn : n 2 Ni 2Qn2NDn j 8n � m 2 N: xn = pnm(xm)g;pm:D ! Dm; hxn : n 2 Ni 7! xm;m 2 N;em:Dm ! D;x 7! hF"kwn;m pnk � ekm(x) : n 2 Ni;m 2 N :Then1. The maps (em; pm), m 2 N, form embedding projection pairs and F"n2Nen � pn = idD holds.2. hD; (pn)n2Ni is a limit of the diagram h(Dn)n2N; (pnm)n�m2Ni. If hC; (gn)n2Ni is another cone,then the mediating map from C to D is given by g(x) = hgn(x) : n 2 Ni or g = F"n2Nen � gn.3. hD; (en)n2Ni is a colimit of the diagram h(Dn)n2N; (emn)n�m2Ni. If hE; (fn)n2Ni is anothercocone, then the mediating map from D to E is given by f(hxn : n 2 Ni) = F"n2Nfn(xn) orf = F"n2Nfn � pn.Proof. We have already shown in Theorem 3.3.1 that a limit of the diagram h(Dn); (pnm)i is givenby hD; (pn)i and that the mediating morphism has the (�rst) postulated form.For the rest, let us start by showing that the functions em are well-de�ned, i.e. that y = em(x)is a commuting tuple. Assume n � n0. Then we have pnn0(yn0 ) = pnn0(F"kwn0;m pn0k � ekm(x)) =F"kwn0;m pnn0 � pn0k � ekm(x) = F"kwn0;m pnk � ekm(x) = yn. The assignment x 7! em(x) is Scott-continuous because of general associativity and because only Scott-continuous maps are involved inthe de�nition.Next, let us now check that em and pm form an e-p-pair.em � pm(hxn : n 2 Ni) = em(xm)= hF"kwn;m pnk � ekm(xm) : n 2 Ni= hF"kwn;m pnk � ekm � pmk(xk) : n 2 Niv hF"kwn;m pnk(xk) : n 2 Ni= hxn : n 2 Niand pm � em(x) = pm(hF"kwn;m pnk � ekm(x) : n 2 Ni) = F"kwm pmk � ekm(x) = x:A closer analysis reveals that em � pm will leave all those elements of the tuple hxn : n 2 Ni un-changed for which n � m:pn(em � pm(hxn : n 2 Ni)) = : : : = G"k�n;mpnk � ekm � pmk(xk)= G"k�n;mpnm � pmk � ekm � pmk(xk)= G"k�n;mpnm � pmk(xk) = G"k�n;mxn = xnThis proves that the em � pm, m 2 N, add up to the identity, as stated in (1). Putting this to use,we easily get the second representation for the mediating map into D viewed as a limit: g = id � g =F"m2Nem � pm � g = F"m2Nem � gm.It remains to prove the universal property ofD as a colimit. To this end let hE; (fn)n2Ni be a coconeover the expanding sequence. We have to check that f = F"n2Nfn�pn is well-de�ned in the sense thatthe supremum is over a directed set. So let n � m. We get fn � pn = fm � emn � pnm � pm v fm � pm.It commutes with the colimiting maps becausef � em = G"n�m fn � pn � em



Domain Theory 31= G"n�m fn � pn � en � enm= G"n�m fn � enm = G"n�m fm = fmWe also have to show that there is no other choice for f . Again the equation in (1) comes inhandy: Let f 0 be any mediating morphism. It must satisfy f 0 �em = fm and so f 0 �em �pm = fm �pm.Forming the supremum on both sides gives f 0 = F"m2Nfm � pm which is the de�nition of f .This fact, that the colimit of an expanding sequence is canonically isomorphic to the limit of theassociated dual diagram, is called the limit-colimit coincidence. It is one of the fundamental toolsof domain theory and plays its most prominent role in the solution of recursive domain equations,Chapter 5. Because of this coincidence we will henceforth also speak of the bilimit of an expandingsequence and denote it by bilimh(Dn); (emn)i.We can generalize Theorem 3.3.7 in two ways; we can replace N by an arbitrary directed set (inwhich case we will speak of an expanding system) and we can use general Scott-continuous adjunctionsinstead of e-p-pairs. The �rst generalization is harmless and does not need any serious adjustmentsin the proofs. We will freely use it from now on. The second, on the other hand, is quite interesting.By the passage from embeddings to, no longer injective, lower adjoints, we allow domains not onlyto grow but also to shrink as we move on in the index set. Thus points, which at some stage lookeddi�erent, may at a later stage be recognised to be the same. The interested reader will �nd an outlineof the mathematical theory of this in the exercises. For the main text, we must remind ourselves thatthis generalization has so far not found any application in semantics.Part (1) of the preceding theorem gives a characterization of bilimits:Lemma 3.3.8. Let hE; (fn)n2Ni be a cocone for the expanding sequence h(Dn)n2N,(emn: Dn !Dm)n�m2Ni. It is colimiting if and only if, �rstly, there are Scott-continuous functions gn:E ! Dnsuch that each (fn; gn) is an e-p-pair and, secondly, F"n2Nfn � gn = idE holds.Proof. Necessity is Part (1) of Theorem 3.3.7. For su�ciency we show that the bilimit D as con-structed there, is isomorphic to E. We already have maps f :D ! E and g:E ! D because D is thebilimit. These commute with the limiting and the colimiting morphisms, respectively. So let us checkthat they compose to identities: f � g(x) = f(hgn(x) : n 2 Ni)= G"n2Nfn � gn(x)= xand g � f = (G"n2Nen � gn) � (G"m2Nfm � pm)= G"n2Nen � gn � fn � pn= G"n2Nen � pn = idD:We note that in the proof we have used the condition F"n2Nfn � gn = idE only for the �rstcalculation. Without it, we still get that f and g form an e-p-pair. Thus we have:Proposition 3.3.9. Let hE; (fn)n2Ni be a cocone over the expanding sequence h(Dn)n2N; (emn:Dn !Dm)n�m2Ni where the fn are embeddings. Then the bilimit of the sequence is a sub-domain of E.In other words:Corollary 3.3.10. The bilimit of an expanding sequence is also the colimit (limit) in the restrictedcategory of dcpo's with embeddings (projections) as morphisms.



32 Samson Abramsky and Achim Jung3.3.3 Bilimits of domainsTheorem 3.3.11. Let h(Dn)n2N; (emn:Dn ! Dm)n�m2Ni be an expanding sequence and hD; (en)n2Niits bilimit.1. If all Dn are (!-)continuous then so is D. If we are given bases Bn; n 2 N for each Dn then abasis for D is given by Sn2Nen(Bn).2. If all Dn are (!-)algebraic then so is D and K(D) = Sn2Nen(K(Dn)).Proof. Given an element x 2 D we �rst show that Sn2Nen(Bnpn(x)) is directed. To this end itis su�cient to show that for all n � m 2 N and for each y 2 Bnpn(x) there is y0 2 Bmpm(x) withen(y) v em(y0). Well, because y approximates pn(x) and because embeddings preserve the orderof approximation, we have emn(y) � emn(pn(x)) = emn(pnm � pm(x)) v pm(x). Since pm(x) =F"Bmpm(x), some y0 � pm(x) is above emn(y). This implies en(y) = em(emn(y)) v em(y0).The set Sn2Nen(Bnpn(x)) gives back x because x = F"n2Nen � pn(x) = F"n2Nen(F"Bnpn(x)) =F"n2NF"en(Bnpn(x)) = F" S en(Bnpn(x)). It consists solely of approximants to x because the en arelower adjoints.Exercises 3.3.12.1. Let D be a continuous domain and let f :D ! D be an idempotent Scott-continuous function.Show that f(x) � f(y) holds in the image of f if and only if there exists z � f(y) in D suchthat f(x) v f(z) v f(y). In the case that D is algebraic conclude that an element x of im(f) iscompact if and only if there is c 2 K(D)f(x) with f(c) = f(x).2. Let p be a kernel operator with �nite image. Show that im(p) is contained in K(D) and that pitself is compact in [D �! D].3. [Huth, 1992] A chain C is called order dense if for each pair x @ y there exists z 2 C such thatx @ z @ y.(a) Let C be an order dense chain in an algebraic domain D. Construct a continuous idempo-tent function f on D with im(f) � C and im(f) not algebraic (it must be continuous byTheorem 3.1.4).(b) Let, conversely, f be a continuous and idempotent function on an algebraic dcpo D suchthat its image is not algebraic. Show that K(D) contains an order dense chain.(c) An algebraic domain is called retraction stable if every idempotent on D has an algebraicimage. Prove that an algebraic domain is retraction stable if and only if K(D) does notcontain an order dense chain.(d) Formulate a similar result for projection stable domains.4. Let e:D � E :p be an embedding projection pair between u-semilattices. Show that im(e) is alower set in E if and only if for all x v y in E we have e(p(x)) = e(p(y)) u x.5. Formulate and prove a generalization of Proposition 3.1.13 for arbitrary posets.6. Formulate an analogue of Proposition 3.2.4 for in�nite products. Proceed as follows: Firstrestrict to pointed dcpo's. Next �nd an example of a (non-pointed) �nite poset which has anon-algebraic in�nite power. This should give you enough intuition to try the general case.7. A dcpo may be seen as a topological space with respect to the Scott-topology. Given two dcpo'swe can form their product in DCPO. Show that the Scott-topology on the product need not bethe product topology but that the two topologies coincide if one of the factors is a continuousdomain.8. Construct an example which shows that Lemma 3.2.6 does not hold for in�nite products.9. Derive Curry and composition as maps in an arbitrary cartesian closed category.10. Let C be a cartesian closed full subcategory of DCPO. Let R-C be the full subcategory ofDCPO whose objects are the retracts of objects of C. Show that R-C is cartesian closed.11. Let Z� be the negative integers with the usual ordering. Show that the order of approximationon [Z� �!Z�] is empty. Find a pointed algebraic dcpo in which a similar e�ect takes place.12. Show that DCPO? does not have coproducts.13. Show that CONT does not have equalizers for all pairs of morphisms. (Hint: First convinceyourself that limits in CONT, if they exist, have the same underlying dcpo as when they arecalculated in DCPO.)



Domain Theory 3314. Complement the table in Section 3.2.6 with the in�nitary counterparts of cartesian product,disjoint union, smash product and sum. Observe that for these the cardinality of the basis doesplay a role, so you have to add columns for !-CONT etc.15. Show that the embeddings into the bilimit of an expanding sequence are given more concretelyby em(x) = hxn : n 2 Ni with xn = � pnm(x); n < m;enm(x); n � m:Find a similar description for expanding systems.16. Redo Section 3.3.2 for directed index sets and Scott-continuous adjunctions. The following arethe interesting points:(a) The limit-colimit coincidence, Theorem 3.3.7, holds verbatim.(b) The characterization of bilimits given in Lemma 3.3.8 does not su�ce. It states that Emust not contain super
uous elements. Now we also need to say that E does not identifytoo many elements.(c) Given an expanding system h(Di); (lji)i with adjunctions, we can pass to quotient do-mains D0i by setting D0i = im(F"kwi uik � lki). Show that the original adjunctions whenrestricted and corestricted to the D0i become e-p-pairs and that these de�ne the samebilimit.17. Let RD be the space of Scott-continuous idempotents on a dcpo D. Apply the previous exerciseto show that F"i2I ri = r in RD implies bilim(im(ri)) �= im(r) (where the connecting adjunctionsare given by restricting the retractions to the respective image).18. Prove that the Scott-topology on a bilimit of continuous domains is the restriction of the producttopology on the product of the individual domains.4 Cartesian closed categories of domainsIn the last chapter we have seen that our big ambient categories DCPO and DCPO? are, amongother things, cartesian closed and we have already pointed out that for the natural classes of domains,CONT and ALG, this is no longer true. The problematic construction is the exponential, whichas we know by Lemma 3.2.7, must be the set of Scott-continuous functions ordered pointwise. If, onthe other hand, we �nd a full subcategory of CONT which is closed under terminal object, cartesianproduct and function space, then it is also cartesian closed, because the necessary universal propertiesare inherited from DCPO.Let us study more closely why function spaces may fail to be domains. The fact that the order ofapproximation may be empty tells us that there may be no natural candidates for basis elements ina function space. This we can better somewhat by requiring the image domain to contain a bottomelement.De�nition 4.0.1. For D and E dcpo's where E has a least element and d 2 D; e 2 E, we de�ne thestep function (d& e):D ! E by(d& e)(x) = � e; if d� x;?E; otherwise.More generally, we will use (O & e) for the function which maps the Scott-open set O to e andeverything else to ?.Proposition 4.0.2.1. Step functions are Scott-continuous.2. Let D and E be dcpo's where E is pointed and let f :D ! E be continuous. If e approximatesf(d) then (d& e) approximates f .3. If, in addition, D and E are continuous then f is a supremum of step functions.Proof. (1) Continuity follows from the openness of ""d, respectively O.(2) Let G be a directed family of functions with F"G w f . Suprema in [D �! E] are calculatedpointwise so we also have F"g2G g(d) w f(d). This implies that for some g 2 G, g(d) w e holds. Asimple case distinction then shows that g must be above (d& e) everywhere.



34 Samson Abramsky and Achim JungD : E :A B � f(A)c d1 c d2 cf(d1) c f(d2)ce1 c e2@@@@@@@������� @@@@@@@@��������@@@@����@@@��� @@@���@@@����� ��Fig. 10. Finding an upper bound for two step functions.(3) We show that for each d 2 D and each e� f(d) in E there is a step function approximating fwhich maps d to e. Indeed, from d = F"##d we get f(d) = f(F"y�d y) = F"y�d f(y) and so for somey � d we have f(y) w e. The desired step function is therefore given by (y & e). Continuity of Eimplies that we can get arbitrarily close to f(d) this way.Note that the supremum in (3) need not be directed, so we have not shown that [D �! E] is againcontinuous. Was it a mistake to require directedness for the set of approximants? The answer is no,because without it we could not have proved (3) in the �rst place.The problem of joining �nitely many step functions together, so as to build directed collectionsof approximants, comes up already in the case of two step functions (d1 & e1) and (d2 & e2) whichapproximate a given continuous function f . The situation is illustrated in Figure 10. The problem iswhere to map the (Scott-open but otherwise unstructured) set A = ""d1\""d2. It has to be done in sucha way that the resulting function still approximates f . As it will turn out, it su�ces to make specialassumptions about either the image domain E|the topic of Section 4.1| or about the pre-imagedomain D { the topic of Section 4.2. In both cases we restrict our attention to pointed domains, andwe work with step functions and joins of these. From these we can pass to more general domains inagain two ways. This will be outlined brie
y in Section 4.3.2. The question then arises whether wehave not missed out on some alternative way of building a cartesian closed category. This is not thecase as we will see in Section 4.3. The basic tool for this fundamental result, Lemma 4.3.1, will nicelyconnect up with the dichotomy distinguishing 4.1 and 4.2.4.1 Local uniqueness: Lattice-like domainsThe idea for adjusting the image domain is simple; we assume that e1 and e2 have a least upperbound e (if bounded at all). Mapping the intersection A to e (and ""d1 n A to e1 and ""d2 n A to e2)results in a continuous function h which is above (d1 & e1) and (d2 & e2) and still approximates f .This is seen as follows: Suppose G is a directed collection of functions with supremum above f . Someg1 2 G must be above (d1 & e1) and some g2 2 G must be above (d2 & e2). Then by constructionevery upper bound of fg1; g2g in G is above h.In fact, we do not need that the join of e1 and e2 exists globally in E. It su�ces to form the joinfor every a 2 A inside #f(a), because we have seen in Proposition 2.2.17 that all considerations aboutthe order of approximation can be performed inside principal ideals. We have the following list ofde�nitions.De�nition 4.1.1. Let E be a pointed continuous domain. We say that E is1. an L-domain, if each pair e1; e2 2 E bounded by e 2 E has a supremum in #e;2. a bounded-complete domain (or bc-domain), if each bounded pair e1; e2 2 E has a supremum;3. (repeated for comparison) a continuous lattice, if each pair e1; e2 2 E has a supremum.We denote the full subcategories of CONT? corresponding to these de�nitions by L, BC, andLAT. For the algebraic counterparts we use aL, aBC, and aLAT.All this still makes sense if we forget about approximation but, surely, at this point the reader doesnot su�er from a lack of variety as far as categories are concerned. We would like to point out thatcontinuous lattices are the main objects of study in [Gierz et al., 1980], a mathematically orientedtext, whereas the objects of !-aBC are often the domains of choice in semantics, where they appearunder the name Scott-domain. Typical examples are depicted in Figure 11. They even characterize
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c ?X 2 ALG n Lca c bcc1 c c2c >@@@���@@@���ZZZZZZ������ cC 2 L nBCc cc c���@@@ZZZZZZ������ cV 2 BC n LATc c@@@���Fig. 11. Separating examples for the categories of lattice-like domains.the corresponding categories, see Exercise 4.3.11(3).Since domains have directed joins anyway, we see that in L-domains every subset of a principal idealhas a supremum in that ideal. We also know that complete lattices can alternatively be characterizedby in�ma. The same game can be played for the other two de�nitions:Proposition 4.1.2. Let D be a pointed continuous domain. Then D is an L-domain, a bc-domain,or a continuous lattice if and only if it has in�ma for bounded non-empty, non-empty, or arbitrarysubsets, respectively.The consideration of in�ma may seem a side issue in the light of the problem of turning functionspaces into domains. Its relevance becomes clear when we remember that upper adjoints preservein�ma. The second half of the following is therefore a simple observation. The �rst half follows fromProposition 3.1.2 and Theorem 3.1.4.Proposition 4.1.3. Retracts and bilimits of L-domains (bc-domains, continuous lattices) are againL-domains (bc-domains, continuous lattices).We can treat continuous and algebraic lattice-like domains nicely in parallel because the idealcompletion respects these de�nitions:Proposition 4.1.4. Let D be an L-domain (bc-domain, continuous lattice). Then Idl(D;v) is analgebraic L-domain (bc-domain, lattice).Thus L, BC, and LAT contain precisely the retracts of objects of aL, aBC, and aLAT, respec-tively. We conclude this section by stating the desired closure property of lattice-like domains.Proposition 4.1.5. Let D be a continuous domain and E an L-domain (bc-domain, continuouslattice). Then [D �! E] is again an L-domain (bc-domain, continuous lattice).Corollary 4.1.6. The categories L, BC, LAT, and their algebraic counterparts are cartesian closed.4.2 Finite choice: Compact domainsLet us now turn our attention to the �rst argument of the function space construction, which meansby the general considerations from the beginning of this chapter, the study of open sets and their�nite intersections. Step functions are de�ned using basic open sets of the form ""d, and the factthat there is a single generator d was crucial in the proof that (d & e) approximates f whenevere approximates f(d). Arbitrary open sets are unions of such basic opens (Proposition 2.3.6) but ingeneral this is an in�nite union and so the proof of Proposition 4.0.2 will no longer work. For the �rsttime we have now reached a point in our exposition where the theory of algebraic domains is de�nitelysimpler and better understood than that of continuous domains. Let us therefore treat this case �rst.4.2.1 Bi�nite domainsStep functions (d& e) may in the algebraic case be de�ned using compact elements only, where thecharacteristic pre-image ""d is actually equal to "d. Taking up our line of thought from above, we wantfor the algebraicity of the function space that the intersection A = "d1 \ "d2 is itself generated by�nitely many compact points: A = "c1 [ : : : [ "cn. Note that the ci must be minimal upper boundsof fd1; d2g. For each ci we choose a compact element below f(ci) and above e1; e2. New intersections



36 Samson Abramsky and Achim Jungthen come up, this time between the di�erent "ci's. Let us therefore further assume that after �nitelymany iterations this process stops. It is an easy exercise to show that the function constructed in thisway is a compact element below f and above (d1 & e1) and (d2 & e2). We hope that this providessu�cient motivation for the following list of de�nitions.De�nition 4.2.1. Let P be a poset. (Think of P as the basis of an algebraic domain.)1. We say that P is mub-complete (or: has property m) if for every upper bound x of a �nitesubset M of P there is a minimal upper bound of M below x. Written as a formula: 8M ��nP: Tm2M "m = "mub(M ).2. For a subset A of P let its mub-closure mc(A) be the smallest superset of A which for every�nite M � mc(A) also contains mub(M ).3. We say that P has the �nite mub property if it is mub-complete and if every �nite subset has a�nite mub-closure. If, in addition, P has a least element, then we call it a Plotkin-order .4. An algebraic domain whose basis of compact elements is a Plotkin-order is called a bi�nitedomain. The full subcategory of ALG? of bi�nite domains we denote by B.With this terminology we can formulate precisely how �nitely many step functions combine todetermine a compact element in the function space [Abramsky, 1991b].De�nition 4.2.2. Let D be a bi�nite domain and let E be pointed and algebraic. A �nite subset Fof K(D) � K(E) is called joinable if8G � F 9H � F: (�1(H) = mub(�1(G)) ^ 8c 2 �2(G); d 2 �2(H): c v d):The function which we associate with a joinable family F isx 7!G fe j 9d 2 K(D): d v x ^ (d; e) 2 Fg:Lemma 4.2.3. If D is a bi�nite domain and E is pointed and algebraic, then every joinable subsetof K(D) � K(E) gives rise to a compact element of [D �! E].If F and G are joinable families then the corresponding functions are related if and only if8(d; e) 2 G 9(d0; e0) 2 F: d0 v d and e v e0:The expected result, dual to Proposition 4.1.5 above, then is:Proposition 4.2.4. If D is a bi�nite domain and E is pointed and algebraic, then [D �! E] isalgebraic. All compact elements of [D �! E] arise from joinable families.Note that this is strictly weaker than Proposition 4.1.5 and we do not immediately get that Bis cartesian closed. For this we have to �nd alternative descriptions. The fact that we can get analgebraic function space by making special assumptions about either the argument domain or thetarget domain was noted in a very restricted form in [Markowsky, 1981].The concept of �nite mub closure is best explained by illustrating what can go wrong. In Figure 12we have the three classical examples of algebraic domains which are not bi�nite; in the �rst one thebasis is not mub-complete, in the second one there is an in�nite mub-set for two compact elements,and in the third one, although all mub-sets are �nite, there occurs an in�nite mub-closure. On a morepositive note, it is clear that every �nite and pointed poset is a Plotkin-order and hence bi�nite. Thistrivial example contains the key to a true understanding of bi�niteness; we will now prove that bi�nitedomains are precisely the bilimits of �nite pointed posets.Proposition 4.2.5. Let D be an algebraic domain with mub-complete basis K(D) and let A be a setof compact elements. Then there is a least kernel operator pA on D which keeps A �xed. It is givenby pA(x) = F"fc 2 mc(A) j c v xg.Proof. First note that pA is well-de�ned because the supremum is indeed over a directed set. Thisfollows from mub-completeness. Continuity follows from Corollary 2.2.16. On the other hand, it isclear that a kernel operator which �xes A must also �x each element of the mub-closure mc(A), andso pA is clearly the least monotone function with the desired property.In a bi�nite domain �nite sets of compact elements have �nite mub-closures. By the precedingproposition this implies that there are many kernel operators on such a domain which have a �nite
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JJJJ����� cT :c cc cc cc`̀̀ `̀̀@@@���HHHHH����� HHHHH�����Fig. 12. Typical non-bi�nite domains.image. In fact, we get a directed family of them, because the order on kernel operators is completelydetermined by their images, Proposition 3.1.17. For the sake of brevity, let us call a kernel operatorwith �nite image an idempotent de
ation.Theorem 4.2.6. Let D be a pointed dcpo D. The following are equivalent1. D is a bi�nite domain.2. There exists a directed collection (fi)i2I of idempotent de
ations ofD whose supremum equals idD.3. The set of all idempotent de
ations is directed and yields idD as its join.Proof. What we have not yet said is how algebraicity of D follows from the existence of idempotentde
ations. For this observe that the inclusion of the image of a kernel operator is a lower adjointand as such preserves compactness. For the implication `2 =) 3' we use the fact that idempotentde
ations are in any case compact elements of the function space.It is now only a little step to the promised categorical characterization.Theorem 4.2.7. A dcpo is bi�nite if and only if it is a bilimit of an expanding system of �nite pointedposets.Proof. Let D be bi�nite and let (fi)i2I be a family of idempotent de
ations generating the identity.Construct an expanding system by taking as objects the images of the de
ations and as connectingembeddings the inclusion of images. The associated upper adjoint is given by fi restricted to im(fj).D is the bilimit of this system by Lemma 3.3.8.If, conversely, hD; (fi)i2Ii is a bilimit of �nite posets then clearly the compositions fi � gi, wheregi is the upper adjoint of fi, satisfy the requirements of Theorem 4.2.6.So we have three characterizations of bi�niteness, the original one, which may be called an internaldescription, a functional description by Theorem 4.2.6, and a categorical one by Theorem 4.2.7. Often,the functional characterization is the most handy one in proofs. We should also mention that bi�nitedomains were �rst de�ned by Gordon Plotkin in [Plotkin, 1976] using expanding sequences. (In ourtaxonomy these are precisely the countably based bi�nite domains.) The acronym he used for them,SFP, continues to be quite popular.Theorem 4.2.8. The category B of bi�nite domains is closed under cartesian product, function space,coalesced sum, and bilimits. In particular, B is cartesian closed.Proof. Only function space and bilimit are non-trivial. We leave the latter as an exercise. For thefunction space let D and E be bi�nite with families of idempotent de
ations (fi)i2I and (gj)j2J .A directed family of idempotent de
ations on [D �! E] is given by the maps Fij:h 7! gj � h � fi,hi; ji 2 I � J .4.2.2 FS-domainsLet us now look at continuous domains. The reasoning about what the structure of D should be inorder to ensure that [D �! E] is continuous is pretty much the same as for algebraic domains. But



38 Samson Abramsky and Achim Jungat the point where we there introduced the mub-closure of a �nite set of compact elements, we mustnow postulate the existence of some �nite and �nitely supported partitioning of D. This is clearlyan increase in the logical complexity of our de�nition and also of doubtful practical use. It is moresatisfactory to generalise the functional characterization.De�nition 4.2.9. Let D be a dcpo and f :D ! D be a Scott-continuous function. We say that fis �nitely separated from the identity on D, if there exists a �nite set M such that for any x 2 Dthere is m 2 M with f(x) v m v x. We speak of strong separation if for each x there are elementsm;m0 2M with f(x) v m� m0 v x.A pointed dcpo D is called an FS-domain if there is a directed collection (fi)i2I of continuousfunctions on D, each �nitely separated from idD, with the identity map as their supremum.It is relatively easy to see that FS-domains are indeed continuous. Thus it makes sense to speakof FS as the full subcategory of CONT where the objects are the FS-domains.We have exact parallels to the properties of bi�nite domains, but often the proofs are trickier.Proposition 4.2.10. If D is an FS-domain and E is pointed and continuous then [D �! E] iscontinuous.Theorem 4.2.11. The category FS is closed under the formation of products, function spaces, coa-lesced sums, and bilimits. It is cartesian closed.What we do not have are a categorical characterization or a description of FS-domains as retractsof bi�nite domains. All we can say is the following.Proposition 4.2.12.1. Every bi�nite domain is an FS-domain.2. A retract of an FS-domain is an FS-domain.3. An algebraic FS-domain is bi�nite.To fully expose our ignorance, we conclude this subsection with an example of a well-structuredFS-domain of which we do not know whether it is a retract of a bi�nite domain.Example. Let Disc be the collection of all closed discs in the plane plus the plane itself, orderedby reversed inclusion. One checks that the �ltered intersection of discs is again a disc, so Disc is apointed dcpo. A disc d1 approximates a disc d2 if and only if d1 is a neighborhood of d2. This provesthat Disc is continuous. For every � > 0 we de�ne a map f� on Disc as follows. All discs inside theopen disc with radius 1� are mapped to their closed �-neighborhood, all other discs are mapped to theplane which is the bottom element of Disc. Because the closed discs contained in some compact setform a compact space under the Hausdor� subspace topology, these functions are �nitely separatedfrom the identity map. This proves that Disc is a countably based FS-domain.4.2.3 CoherenceThis is a good opportunity to continue our exposition of the topological side of domain theory, whichwe began in Section 2.3. We need a second tool complementing the lattice �D of Scott-open sets,namely, the compact saturated sets. Here `compact' is to be understood in the classical topologicalsense of the word, i.e. a set A of a topological space is compact if every covering of A by open setscontains a �nite subcovering. Saturated are those sets which are intersections of their neighborhoods.In dcpo's equipped with the Scott-topology these are precisely the upper sets, as is easily seen usingopens of the form D n #x.Theorem 4.2.13. Let D be a continuous domain. The sets of open neighborhoods of compact satu-rated sets are precisely the Scott-open �lters in �D.By Proposition 7.2.27 this is a special case of the Hofmann-Mislove Theorem 7.2.9.Let us denote the set of compact saturated sets of a dcpo D, ordered by reverse inclusion, by �D.We will refer to families in �D which are directed with respect to reverse inclusion, more concretelyas �ltered families. The following, then, is only a re-formulation of Corollary 7.2.11.Proposition 4.2.14. Let D be a continuous domain.1. �D is a dcpo. Directed suprema are given by intersection.2. If the intersection of a �ltered family of compact saturated sets is contained in a Scott-open set Othen some element of it belongs to O already.



Domain Theory 393. �D n f;g is a dcpo.Proposition 4.2.15. Let D be a continuous domain.1. �D is a continuous domain.2. A� B holds in �D if and only if there is a Scott-open set O with B � O � A.3. O� U holds in �D if and only if there is a compact saturated set A with O � A � U .Proof. All three claims are shown easily using upper sets generated by �nitely many points: If O isan open neighborhood of a compact saturated set A then there exists a �nite set M of points of Owith A � ""M � "M � O.The interesting point about FS-domains then is, that their space of compact saturated sets isactually a continuous lattice. We already have directed suprema (in the form of �ltered intersections)and continuity, so this boils down to the property that the intersection of two compact saturated setsis again compact. Let us call domains for which this is true, coherent domains. Given the intimateconnection between �D and �D, it is no surprise that we can read o� coherence from the lattice ofopen sets.Proposition 4.2.16. A continuous domain D is coherent if and only if for all O;U1; U2 2 �D withO� U1 and O� U2 we also have O� U1 \U2.(In Figure 6 we gave an example showing that the condition is not true in arbitrary continuouslattices.)This result specializes for algebraic domains as follows:Proposition 4.2.17. An algebraic domain D is coherent if and only if K(D) is mub-complete and�nite sets of K(D) have �nite sets of minimal upper bounds.This proposition was named `2/3-SFP Theorem' in [Plotkin, 1981] because coherence rules outprecisely the �rst two non-examples of Plotkin-orders, Figure 12, but not the third. The only topolog-ical characterization of bi�nite domains we have at the moment, makes use of the continuous functionspace, see Lemma 4.3.2.We observe that for algebraic coherent domains, �D and �D have a common sublattice, namelythat of compact-open sets. These are precisely the sets of the form "c1[ : : :["cn with the ci compactelements. This lattice generates both �D and �D when we form arbitrary suprema. This pleasantcoincidence features prominently in Chapter 7.Theorem 4.2.18. FS-domains (bi�nite domains) are coherent.Let us reformulate the idea of coherence in yet another way.De�nition 4.2.19. The Lawson-topology on a dcpo D is the smallest topology containing all Scott-open sets and all sets of the form D n "x. It is denoted by �D .Proposition 4.2.20. Let D be a continuous domain.1. The Lawson-topology on D is Hausdor�. Every Lawson-open set has the form O nA where O isScott-open and A is Scott-compact saturated.2. The Lawson-topology on D is compact if and only if D is coherent.3. A Scott-continuous retract of a Lawson-compact continuous domain is Lawson-compact and con-tinuous.So we see that FS-domains and bi�nite domains carry a natural compact Hausdor� topology. Wewill make use of this in Chapter 6.4.3 The hierarchy of categories of domainsThe purpose of this section is to show that there are no other ways of constructing a cartesian closedfull subcategory of CONT or ALG than those exhibited in the previous two sections. The idea thatsuch a result could hold originated with Gordon Plotkin, [Plotkin, 1981]. For the particular class!-ALG? it was veri�ed by Mike Smyth in [Smyth, 1983a], for the other classes by Achim Jung in[Jung, 1988, Jung, 1989, Jung, 1990]. All these classi�cation results depend on the Axiom of Choice.



40 Samson Abramsky and Achim Jung4.3.1 Domains with least elementLet us start right away with the crucial bifurcation lemma on which everything else in this section isbased.Lemma 4.3.1. Let D and E be continuous domains, where E is pointed, such that [D �! E] iscontinuous. Then D is coherent or E is an L-domain.Proof. By contradiction. Assume D is not coherent and E is not an L-domain. By Proposition 4.2.16there exist open sets O;U1, and U2 in D such that O � U1 and O � U2 hold but not O � U1 \ U2.Therefore there is a directed collection (Vi)i2I of open sets covering U1 \U2, none of which covers O.We shall also need interpolating sets U 01 and U 02, that is, O� U 01 � U1 and O� U 02 � U2.The assumption about E not being an L-domain can be transformed into two special cases. EitherE contains the algebraic domain A from Figure 12 (where the descending chain in A may generallybe an ordinal) or X from Figure 11 as a retract. We have left the proof of this as Exercise 4.3.11(3).Note that if E0 is a retract of E then [D �! E0] is a retract of [D �! E] and hence the former iscontinuous if the latter is. Let us now prove for both cases that [D �! E] is not continuous.Case 1: E = A. Consider the step functions f1 = (U 01 & a) and f2 = (U 02 & b). They clearlyapproximate f , which is de�ned byf(x) = 8>><>>: c0; if x 2 U1 \ U2;a; if x 2 U1 n U2;b; if x 2 U2 n U1;?; otherwise.Since approximating sets are directed we ought to �nd an upper bound g for f1 and f2 approximatingf .But this impossible: Given an upper bound of ff1; f2g below f we have the directed collection (hi)i2Ide�ned by hi(x) = 8<: c0; if x 2 Vi;cn+1; if x 2 (U1 \ U2) n Vi and g(x) = cn;g(x); otherwise.No hi is above g because (U1 \ U2) n Vi must contain a non-empty piece of O and there hi is strictlybelow gi. The supremum of the hi, however, equals f . Contradiction.Case 2: E = X. We choose open sets in D as in the previous case. The various functions, givingthe contradiction, are now de�ned by f1 = (U 01 & a), f2 = (U 02 & b),f(x) = 8>><>>: c1; if x 2 U1 \ U2;a; if x 2 U1 n U2;b; if x 2 U2 n U1;?; otherwise.hi(x) = 8<: >; if x 2 Vi;c2; if x 2 (U1 \ U2) n Vi;g(x); otherwise.The remaining problem is that coherence does not imply that D is an FS-domain (nor, in thealgebraic case, that it is bi�nite). It is taken care of by passing to higher-order function spaces:Lemma 4.3.2. Let D be a continuous domain with bottom element. Then D is an FS-domain if andonly if both D and [D �! D] are coherent.(The proof may be found in [Jung, 1990].)Combining the preceding two lemmas with Lemmas 3.2.5 and 3.2.7 we get the promised classi�-cation result.Theorem 4.3.3. Every cartesian closed full subcategory of CONT? is contained in FS or L.Adding Proposition 4.2.12 we get the analogue for algebraic domains:Theorem 4.3.4. Every cartesian closed full subcategory of ALG? is contained in B or aL.



Domain Theory 41Forming the function space of an L-domain may in general increase the cardinality of the basis(Exercise 4.3.11(17)). If we restrict the cardinality, this case is ruled out:Theorem 4.3.5. Every cartesian closed full subcategory of !-CONT? (!-ALG?) is contained in!-FS (!-B).4.3.2 Domains without least elementThe classi�cation of pointed domains, as we have just seen, is governed by the dichotomy betweencoherent and lattice-like structures. Expressed at the element level, and at least for algebraic domainswe have given the necessary information, it is the distinction between �nite mub-closures and locallyunique suprema of �nite sets. It turns out that passing to domains which do not necessarily havebottom elements implies that we also have to study the mub-closure of the empty set. We get againthe same dichotomy. Coherence in this case means that D itself, that is, the largest element of �D,is a compact element. This is just the compactness of D as a topological space. And the propertythat E is lattice-like boils down to the requirement that each element of E is above a unique minimalelement, so E is really the disjoint union of pointed components.Lemma 4.3.6. Let D and E be continuous domains such that [D �! E] is continuous. Then D iscompact or E is a disjoint union of pointed domains.The proof is a cut-down version of that of Lemma 4.3.1 above. The surprising fact is that thischoice can be made independently from the choice between coherent domains and L-domains. Beforewe state the classi�cation, which because of this independence, will now involve 2 � 2 = 4 cases,we have to re�ne the notion of compactness, because just like coherence it is not the full conditionnecessary for cartesian closure.De�nition 4.3.7. A dcpo D is a �nite amalgam if it is the union of �nitely many pointed dcpo'sD1; : : : ; Dn such that every intersection of Di's is also a union of Di's. (Compare the de�nition ofmub-complete.)For categories whose objects are �nite amalgams of objects from another category C we use thenotation F-C. Similarly, we write U-C if the objects are disjoint unions of objects of C.Proposition 4.3.8. A mub-complete dcpo is a �nite amalgam if and only if the mub-closure of theempty set is �nite.Lemma 4.3.9. If both D and [D �! D] are compact and continuous then D is a �nite amalgam.Theorem 4.3.10.1. The maximal cartesian closed full subcategories of CONT are F-FS, U-FS, F-L, and U-L.2. The maximal cartesian closed full subcategories of ALG are F-B, U-B, F-aL, and U-aL.At this point we can answer a question that may have occurred to the diligent reader some timeago, namely, why we have de�ned bi�nite domains in terms of pointed �nite posets, where clearly wenever needed the bottom element in the characterizations of them. The answer is that we wanted toemphasize the uniform way of passing from pointed to general domains. The fact that the objects ofF-B can be represented as bilimits of �nite posets is then just a pleasant coincidence.Exercises 4.3.11.1. [Jung, 1989] Show that a dcpo D is continuous if the function space [D �! D] is continuous.2. Let D be a bounded-complete domain. Show that `u' is a Scott-continuous function from D�Dto D.3. Characterize the lattice-like (pointed) domains by forbidden substructures:(a) E is !-continuous but not mub-complete if and only if domain A in Figure 12 is a retractof E.(b) E is mub-complete but not an L-domain if and only if domain X in Figure 11 is a retractof E.(c) E is an L-domain but not bounded-complete if and only if domain C in Figure 11 is aretract of E.(d) E is a bounded-complete domain but not a lattice if and only if domain V in Figure 11 isa retract of E.4. Find a poset in which all pairs have �nite mub-closures but in which a triple of points exists



42 Samson Abramsky and Achim Jungwith in�nite mub-closure.5. Show that if for an algebraic domainD the basis is mub-complete then D itself is not necessarilymub-complete.6. Show that in a bi�nite domain �nite sets of non-compact elements may have in�nitely manyminimal upper bounds and, even if these are all �nite, may have in�nite mub-closures.7. Show that if A is a subset of an L-domain then A [mub(A) is mub-closed.8. Prove that bilimits of bi�nite domains are bi�nite.9. Prove the following statements about retracts of bi�nite domains.(a) A pointed dcpo D is a retract of a bi�nite domain if and only if there is a directed family(fi)i2I of functions on D such that each fi has a �nite image and such that F"i2I fi = idD.(You may want to do this for countably based domains �rst.)(b) The ideal completion of a retract of a bi�nite domain need not be bi�nite.(c) If D is a countably based retract of a bi�nite domain then it is also the image of a projectionfrom a bi�nite domain. (Without countability this is an open problem.)(d) The category of retracts of bi�nite domains is cartesian closed and closed under bilimits.10. Prove that FS-domains have in�ma for downward directed sets. As a consequence, an FS-domainwhich has binary in�ma, is a bc-domain.11. Show that in a continuous domain the Lawson-closed upper sets are precisely the Scott-compactsaturated sets.12. Characterize Lawson-continuous maps between bi�nite domains.13. We have seen that every bi�nite domain is the bilimit of �nite posets. As such, it can be thoughtof as a subset of the product of all these �nite posets. Prove that the Lawson-topology on thebi�nite domain is the restriction of the product topology if each �nite poset is equipped withthe discrete topology.14. Prove that a coherent L-domain is an FS-domain.15. Characterize those domains which are both L-domains and FS-domains.16. Characterize Scott-topology and Lawson-topology on both L-domains and FS-domains by theideal of functions approximating the identity.17. [Jung, 1989] Let E be an L-domain such that [E �! E] is countably based. Show that E is anFS-domain.5 Recursive domain equationsThe study of recursive domain equations is not easily motivated by reference to other mathematicalstructure theories. So we shall allow ourselves to deviate from our general philosophy and spend sometime on examples. Beyond motivation, our examples represent three di�erent (and almost disjoint)areas in which recursive domain equations arise, in which they serve a particular role, and in whichparticular aspects about solutions become prominent. It is an astonishing fact that within domaintheory all these aspects are dealt with in a uni�ed and indeed very satisfactory manner. This richnessand interconnectedness of the theory of recursive domain equations, beautiful as it is, may neverthelessappear quite confusing on a �rst encounter. As a general guideline we o�er the following: Recursivedomain equations and the domain theory for solving them comprise a technique that is worth learning.But in order to understand the meaning of a particular recursive domain equation, you have to knowthe context in which it came up.5.1 Examples5.1.1 Genuine equationsThe prime example here is X �= [X �! X]. Solving this equation in a cartesian closed category givesa model for the untyped �-calculus [Scott, 1980, Barendregt, 1984], in which, as we know, no typedistinction is made between functions and arguments. When setting up an interpretation of �-termswith values in D, where D solves this equation, we need the isomorphisms �:D ! [D �! D] and : [D �! D] ! D explicitly. We conclude that even in the case of a genuine equation we are lookingnot only for an object but an object plus an isomorphism. This is a �rst hint that we shall needto treat recursive domain equations in a categorical setting. However, the function space operator iscontravariant in its �rst and covariant in its second argument and so there is de�nitely an obstacle



Domain Theory 43to overcome. A second problem that this example illustrates is that there may be many solutions tochoose from. How do we recognize a canonical one? This will be the topic of Section 5.3.Besides this classical example, genuine equations are rare. They come up in semantics when oneis confronted with the ability of computers to treat information both as program text and as data.5.1.2 Recursive de�nitionsIn semantics we sometimes need to make recursive de�nitions, for very much the same reasons that weneed recursive function calls, namely, we sometimes do not know how often the body of a de�nition(resp. function) needs to be repeated. To give an example, take the following de�nition of a space ofso-called `resumptions': R �= [S �! (S � S � R)]:We read it as follows: A resumption is a map which assigns to a state either a �nal state or anintermediary state together with another resumption representing the remaining computation. Sucha recursive de�nition is therefore nothing but a shorthand for an in�nite (but regular) expression.Likewise, a while loop could be replaced by an in�nite repetition of its body. This analogy suggeststhat the way to give meaning to a recursive de�nition is to seek a limit of the repeated unwinding ofthe body of the de�nition starting from a trivial domain. No doubt this is in accordance with ourintuition, and indeed this is how we shall solve equations in general. But again, before we can do this,we need to be able to turn the right hand side of the speci�cation into a functor.5.1.3 Data typesData types are algebras, i.e. sets together with operations. The study of this notion is known as`Algebraic Speci�cation' [Ehrig and Mahr, 1985] or `Initial Algebra Semantics' [Goguen et al., 1978].We choose a formulation which �ts nicely into our general framework.De�nition 5.1.1. Let F be a functor on a category C. An F -algebra is given by an object A anda map f :F (A) ! A. A homomorphism between algebras f :F (A) ! A and f 0:F (A0) ! A0 is a mapg:A! A0 such that the following diagram commutes:F (A) F (g)- F (A0)Af? g - A0?f 0For example, if we let F be the functor over Set which assigns I :[ A � A to A, then F -algebrasare precisely the algebras with one nullary and one binary operation in the sense of universal algebra.Lehmann and Smyth [Lehmann and Smyth, 1981] discuss many examples. Many of the data typeswhich programming languages deal with are furthermore totally free algebras, or term algebras on nogenerators. These are distinguished by the fact that there is precisely one homomorphism from theminto any other algebra of the same signature. In our categorical language we express this by initiality.Term algebras (alias initial F -algebras) are connected with the topic of this chapter because of thefollowing observation:Lemma 5.1.2. If i:F (A) ! A is an initial F -algebra then i is an isomorphism.Proof. Consider the following composition of homomorphisms:F (A) F (f)- F 2(A) F (i)- F (A)Ai? f- F (A)F (i)? i - A?iwhere f is the unique homomorphism from i:F (A) ! A to F (i):F 2(A) ! F (A) guaranteed byinitiality. Again by initiality, i � f must be idA. And from the �rst quadrangle we get f � i =F (i) � F (f) = F (idA) = idF (A). So f and i are inverses of each other.



44 Samson Abramsky and Achim JungSo in order to �nd an initial F -algebra, we need to solve the equation X �= F (X). But once weget a solution, we still have to check initiality, that is, we must validate that the isomorphism fromF (X) to X is the right structure map.In category theory we habitually dualize all de�nitions. In this case we get (�nal) co-algebras.Luckily, this concept is equally meaningful. Where the map f :F (A) ! A describes the way hownew objects of type A are constructed from old ones, a map g:A ! F (A) stands for the oppositeprocess, the decomposition of an object into its constituents. Naturally, we want the two operationsto be inverses of each other. In other words, if i:F (A) ! A is an initial F -algebra, then we requirei�1:A! F (A) to be the �nal co-algebra.Peter Freyd [Freyd, 1991] makes this reasoning the basis of an axiomatic treatment of domaintheory. Beyond and above axiomatizing known results, he treats contravariant and mixed variantfunctors and o�ers a universal property encompassing both initiality and �nality. This will allow usto judge the solution of general recursive domain equations with respect to canonicity.5.2 Construction of solutionsSuppose we are given a recursive domain equation X �= F (X) where the right hand side de�nes afunctor on a suitable category of domains. As suggested by the example in Section 5.1.2, we want torepeat the trick which gave us �xpoints for Scott-continuous functions, namely, to take a (bi-)limitof the sequence I; F (I); F (F (I)); : : :. Remember that bilimits are de�ned in terms of e-p-pairs. Thismakes it necessary that we, at least temporarily, switch to a di�erent category. The convention thatwe adopt for this chapter is to let D stand for any category of pointed domains, closed under bilimits.All the cartesian closed categories of pointed domains mentioned in Chapter 4 qualify. We denotethe corresponding subcategory where the morphisms are embeddings by De. Some results will onlyhold for strict functions. Recall that our notation for these were f :D ?!�! E and D?! for categories.Despite this unhappy (but unavoidable) proliferation of categories, recall that the central limit-colimitTheorem 3.3.7 and Corollary 3.3.10 state a close connection: Colimits of expanding sequences in Deare also colimits in D and, furthermore, if the embeddings de�ning the sequence are replaced bytheir upper adjoints, the colimit coincides with the corresponding limit. This will bear fruit whenwe analyze the solutions we get in De from various angles as suggested by the examples in the lastsubsection.Let us now start by just assuming that our functor restricts to De.5.2.1 Continuous functorsDe�nition 5.2.1. A functor F :De ! De is called continuous, if for every expanding sequenceh(Dn)n2N; (emn:Dn ! Dm)nvm2Ni with colimit hD; (en)n2Ni we have that hF (D); (F (en))n2Ni is acolimit of the sequence h(F (Dn))n2N, (F (emn):F (Dn) ! F (Dm))nvm2Ni.This, obviously, is Scott-continuity expressed for functors. Whether we formulate it in terms ofexpanding sequences or expanding systems is immaterial. The question is not, what is allowed toenter the model, but rather, how much do I have to check before I can apply the theorems in thischapter. And sequences are all that is needed.This, then, is the central lemma on which our domain theoretic technique for solving recursivedomain equations is based (recall that f� is our notation for the upper adjoint of f):Lemma 5.2.2. Let F be a continuous functor on a category De of domains. For each embed-ding e:A ! F (A) consider the colimit hD; (en)n2Ni of the expanding sequence A e�! F (A) F (e)�!F (F (A)) F (F (e))�! � � � . Then D is isomorphic to F (D) via the mapsfold = F"n2Nen+1 � F (en)� : F (D) ! D; andunfold = F"n2NF (en) � e�n+1 : D ! F (D):For each n 2 N they satisfy the equationsF (en) = unfold � en+1F (en)� = e�n+1 � fold :Proof. We know that hD; (en)n2Nnf0gi is a colimit over the diagram



Domain Theory 45F (A) F (e)�! F (F (A)) F (F (e))�! � � �(clipping o� the �rst approximationmakes no di�erence), where there is also the cocone hF (D); (F (en))n2Ni.The latter is also colimiting by the continuity of F . In this situation Theorem 3.3.7 provides us withunique mediating morphisms which are precisely the stated fold and unfold. They are inverses ofeach other because both cocones are colimiting. The equations follow from the explicit description ofmediating morphisms in Theorem 3.3.7.Note that since we have restricted attention to pointed domains, we always have the initial embed-ding e:I! F (I). The solution to X �= F (X) based on this embedding we call canonical and denoteit by FIX(F ).5.2.2 Local continuityContinuity of a functor is a hard condition to verify. Luckily there is a property which is stronger butnevertheless much easier to check. It will also prove useful in the next section.De�nition 5.2.3. A functor F from D to E, where D and E are categories of domains, is calledlocally continuous, if the maps Hom(D;D0) �! Hom(F (D); F (D0)), f 7! F (f), are continuous for allobjects D and D0 from D.Proposition 5.2.4. A locally continuous functor F :D ! E restricts to a continuous functor fromDe to Ee.We will soon generalize this, so there is no need for a proof at this point.Typically, recursive domain equations are built from the basic constructions listed in Section 3.2.The strategy is to check local continuity for each of these individually and then rely on the fact thatcomposition of continuous functors yields a continuous functor. However, we must realize that thefunction space construction is contravariant in its �rst and covariant in its second variable, and so thetechnique from the preceding paragraph does not immediately apply. Luckily, it can be strengthenedto cover this case as well.De�nition 5.2.5. A functor F :Dop �D' ! E, contravariant in its �rst, covariant in its secondvariable, is called locally continuous, if for directed sets A � Hom(D2; D1) and A0 � Hom(D01; D02)(where D1; D2 are objects in D and D01; D02 are objects in D') we haveF (G"A;G"A0) = G"f2A;f 02A0 F (f; f 0)in Hom(F (D1; D01); F (D2; D02)).Proposition 5.2.6. If F :Dop �D' ! E is a mixed variant, locally continuous functor, then itde�nes a continuous covariant functor F̂ from De �D'e to Ee as follows:F̂ (D;D0) = F (D;D0) for objects, andF̂ (e; e0) = F (e�; e0) for embeddings.The upper adjoint to F̂ (e; e0) is given by F (e; e0�).Proof. Let (e; e�) and (e0; e0�) be e-p-pairs in D and D', respectively. We calculate F (e; e0�) �F̂ (e; e0) = F (e; e0�) � F (e�; e0) = F (e� � e; e0� � e0) = F (id; id) = id and F̂ (e; e0) � F (e; e0�) = F (e�; e0) �F (e; e0�) = F (e � e�; e0 � e0�) v F (id; id) = id, so F̂ maps indeed pairs of embeddings to embeddings.For continuity, let h(Dn); (emn)i and h(D0n); (e0mn)i be expanding sequences in D and D' withcolimits hD; (en)i and hD0; (e0n)i, respectively. By Lemma 3.3.8 this implies F"n2Nen � e�n = idD andF"n2Ne0n � e0�n = idD0 . By local continuity we have F"n2NF̂ (en; e0n) � F̂ (en; e0n)� = F"n2NF (e�n; e0n) �F (en; e0�n ) = F"n2NF (en � e�n; e0n � e0�n ) = F (F"n2Nen � e�n;F"n2Ne0n � e0�n ) = F (idD ; idD0 ) = idF (D;D0)and so hF̂ (D;D0); (F̂ (en; e0n))n2Ni is a colimit of h(F̂ (Dn; D0n))n2N; (F̂ (emn; e0mn))nvm2Ni.While it may seem harmless to restrict a covariant functor to embeddings in order to solve arecursive domain equation, it is nevertheless not clear what the philosophical justi�cation for this stepis. For mixed variant functors this question becomes even more pressing since we explicitly changethe functor. As already mentioned, a satisfactory answer has only recently been found, [Freyd, 1991,Pitts, 1993a]. We present Peter Freyd's solution in the next section.



46 Samson Abramsky and Achim JungLet us take stock of what we have achieved so far. Building blocks for recursive domain equationsare the constructors of Section 3.2, �;�;!, etc. , each of which is readily seen to de�ne a locallycontinuous functor. Translating them to embeddings via the preceding proposition, we get continuousfunctors of one or two variables. We further need the diagonal �:De ! De �De to deal withmultiple occurrences of X in the body of the equation. Then we note that colimits in a �nite powerof De are calculated coordinatewise and hence the diagonal and the tupling of continuous functorsare continuous. Finally, we include constant functors to allow for constants to occur in an equation.Two more operators will be added below: the bilimit in the next section and various powerdomainconstructions in Chapter 6.5.2.3 Parameterized equationsSuppose that we are given a locally continuous functor F in two variables. Given any domain D wecan solve the equation X �= F (D;X) using the techniques of the preceding sections. Remember thatby default we mean the solution according to Lemma 5.2.2 based on e:I! F (D;I), so there is noambiguity. Also, we have given a concrete representation for bilimits in Theorem 3.3.7, so FIX(F (D; �))is also well-de�ned in this respect. We want to show that it extends to a functor.Notation is a bit of a problem. Let F :D?! �E?! ! E?! be a functor in two variables. We setFD for the functor on E?! which maps E to F (D;E) for objects and g:E ?!�! E0 to F (idD ; g) formorphisms. Similarly for FD0 . The embeddings into the canonical �xpoint of FD, resp. FD0 , wedenote by e0; e1; : : : and e00; e01; : : : , and we use e and e0 for the unique strict function from I into Dand D0, respectively.Proposition 5.2.7. Let F :D?! � E?! ! E?! be a locally continuous functor. Then the followingde�nes a locally continuous functor from D?! to E?!:On objects : D 7! FIX(FD);on morphisms : (f :D ! D0) 7!G"n2Ne0n � fn � e�nwhere the sequence (fn)n2Nis de�ned recursively by f0 = idI; fn+1 = F (f; fn).Proof. Let D and D0 be objects of D?! and let f :D ?!�! D0 be a strict function. The solution toX �= F (D;X) is given by the bilimit FIX(FD)�����e0 � I@@@@@e2 : : :I e - FD(I)6e1 FD(e)- F 2D(I) - � � �and similarly for D0. Corresponding objects of the two expanding sequences are connected byfn:FnD(I) ?!�! FnD0(I). They commute with the embeddings of the expanding sequences: For n = 0 wehave F 0D0(e0) � f0 = e0 � idI= e0 = f1 � e = f1 � F 0D(e) because there is only one strict map from Ito F 1(D0). Higher indices follow by induction:Fn+1D0 (e0) � fn+1 = F (idD0 ; FnD0(e0)) � F (f; fn)= F (f; FnD0(e0) � fn)= F (f; fn+1 � FnD(e))= F (f; fn+1) � F (idD ; FnD(e))= fn+2 � Fn+1D (e):So we have a second cocone over the sequence de�ning FIX(FD) and using the fact that colimits inE?!e are also colimits in E?!, we get a (unique) mediating morphism from FIX(FD) to FIX(FD0). ByTheorem 3.3.7 it has the postulated representation.Functoriality comes for free from the uniqueness of mediating morphisms. It remains to checklocal continuity. So let A be a directed set of maps from D to D0. We easily get (F"A)n = F"f2A fn



Domain Theory 47by induction and the local continuity of F . The supremum can be brought to the very front by thecontinuity of composition and general associativity.Note that this proof works just as well for mixed variant functors. As an application, suppose weare given a system of simultaneous equationsX1 �= F1(X1; : : : ; Xn)... ...Xn �= Fn(X1; : : : ; Xn):We can solve these one after the other, viewing X2; : : : ; Xn as parameters for the �rst equation,substituting the result for X1 in the second equation and so on. It is more direct to pass from D toDn, for which Theorem 3.3.7 and the results of this chapter remain true, and then solve these equationssimultaneously with the tupling of the Fi. The fact that these two methods yield isomorphic resultsis known as Beki�c's rule [Beki�c, 1969].5.3 CanonicityWe have seen in the �rst section of this chapter that recursive domain equations arise in variouscontexts. After having demonstrated a technique for solving them, we must now check whether thesolutions match the particular requirements of these applications.5.3.1 Invariance and minimalityLet us begin with a technique of internalizing the expanding sequence I! F (I) ! F (F (I)) ! � � �into the canonical solution. This will allow us to do proofs about FIX(F ) without (explicit) use of thede�ning expanding sequence.Lemma 5.3.1. Let F be a locally continuous functor on a category of domains D and let i:F (A) ! Abe an isomorphism. Then there exists a least homomorphism hC;A from A to every other F -algebraf :F (C) ! C. It equals the least �xpoint of the functional �C;A on [A �! C] which is de�ned by�C;A(g) = f � F (g) � i�1 :Least homomorphisms compose: If j:F (B) ! B is also an isomorphism, then hC;A = hC;B �hB;A.Proof. The functional � = �C;A is clearly continuous because F is locally continuous and compositionis a continuous operation. Since we have globally assumed least elements, the function space [A �! C]contains c? as a least element. So the least �xpoint hC;A of �C;A calculated as the supremum of thechain c? v �(c?) v � � � exists. We show by induction that it is below every homomorphism h. Forc? this is obvious. For the induction step assume g v h. We calculate: �(g) = f � F (g) � i�1 vf � F (h) � i�1 = h. It follows that �x(�) = hC;A v h holds. On the other hand, every �xpoint of � isa homomorphism: h � i = �(h) � i = f � F (h) � i�1 � i = f � F (h).The claim about composition of least homomorphisms can also be shown by induction. But it issomewhat more elegant to use the invariance of least �xpoints, Lemma 2.1.21. Consider the diagram[B �! C] H- [A �! C][B �! C]�C;B? H- [A �! C]?�C;Awhere H is the strict operation which assigns g � hB;A to g 2 [B �! C]. The diagram commutes,because H ��C;B(g) = f �F (g)�j�1 �hB;A = f �F (g�hB;A)�i�1 (because hB;A is an homomorphism)= �C;A(H(g)). Lemma 2.1.21 then gives us the desired equality: hC;A = �x(�C;A) = H(�x(�C;B)) =�x(�C;B) � hB;A = hC;B � hB;A.Specializing the second algebra in this lemma to be i:F (A) ! A itself, we deduce that on every�xpoint of a locally continuous functor there exists a least endomorphism hA;A. Since the identity is



48 Samson Abramsky and Achim Jungalways an endomorphism, the least endomorphism must be below the identity and idempotent, i.e. akernel operator and in particular strict. This we will use frequently below.Theorem 5.3.2. (Invariance, Part 1) Let F be a locally continuous functor on a category of do-mains D and let i:F (A) ! A be an isomorphism. Then the following are equivalent:1. A is isomorphic to the canonical �xpoint FIX(F );2. idA is the least endomorphism of A;3. idA = �x(�A;A) where �A;A: [A �! A] ! [A �! A] is de�ned by �A;A(g) = i �F (g) � i�1;4. idA is the only strict endomorphism of A.Proof. (1 =)2) The least endomorphism on D = FIX(F ) is calculated as the least �xpoint of�D;D: g 7! fold�F (g)�unfold. With the usual notation for the embeddings of Fn(I) intoD we get (by in-duction): c? = e0�e�0 and �n(c?) = �(�n�1(c?)) = �(en�1�e�n�1) = fold�F (en�1)�F (e�n�1)�unfold =en�e�n, where the last equality follows because fold and unfold are mediating morphisms. Lemma 3.3.8entails that the supremum of the �n(c?) is the identity.The equivalence of (2) and (3) is a reformulation of Lemma 5.3.1.(3 =) 4) Suppose h:A ?!�! A de�nes an endomorphism of the algebra i:F (A) ! A. We apply theinvariance property of least �xpoints, Lemma 2.1.21, to the diagram (where � now stands for �A;A)[A �! A] H- [A �! A][A �! A]�? H- [A �! A]?�where H maps g 2 [A �! A] to h�g. This is a strict operation because h is assumed to be strict. Thediagram commutes: H ��(g) = H(i�F (g)� i�1) = h� i�F (g)� i�1 = i�F (h)�F (g)� i�1 = �(H(g)).By Lemma 2.1.21 we have idA = �x(�) = H(�x(�)) = h � idA = h.(4 =) 1) By the preceding lemma we have homomorphisms between A and FIX(F ). They composeto the least endomorphisms on A, resp. FIX(F ), which we know to be strict. But then they must beequal to the identity as we have just shown for FIX(F ) and assumed for A.If, in the last third of this proof, we do not assume that idA is the only strict endomorphism on A,then we still get an embedding-projection pair between FIX(F ) and A. Thus we have:Theorem 5.3.3. (Minimality, Part 1) The canonical �xpoint of a locally continuous functor is asub-domain of every other �xpoint.So we have shown that the canonical solution is the least �xpoint in a relevant sense. This is clearlya good canonicity result with respect to the �rst class of examples. For pedagogical reasons we haverestricted attention to the covariant case �rst, but, as we will see in section 5.3.3, this characterizationis also true for functors of mixed variance.5.3.2 Initiality and �nalityBy a little re�nement of the proofs of the preceding subsection we get the desired result that thecanonical �xpoint together with fold is an initial F -algebra. One of the adjustments is that we haveto pass completely to strict functions, because Lemma 5.3.1 does not guarantee the existence of stricthomomorphisms and only of these can we prove unicity.Theorem 5.3.4. (Initiality) Let F :D?! ! D?! be a locally continuous functor on a category ofdomains with strict functions. Then fold:F (D) ! D is an initial F -algebra where D is the canonicalsolution to X �= F (X).Proof. Let f :F (A) ?!�! A be a strict F -algebra. The homomorphismh:D! Awe get from Lemma 5.3.1is strict as we see by inspecting its de�nition. That there are no others is shown as in the proof ofTheorem 5.3.2, (2 =) 3). The relevant diagram for the application of Lemma 2.1.21 is now:



Domain Theory 49[D �! D] H- [D �! A][D �! D]�D;D? H- [D �! A]:?�A;DBy dualizing Lemma 5.3.1 and the proof of Theorem 5.3.2, (2 =)3), we get the �nal co-algebratheorem. It is slightly stronger than initiality since it holds for all co-algebras, not only the strictones.Theorem 5.3.5. (Finality) Let F :D ! D be a locally continuous functor with canonical �xpointD = FIX(F ). Then unfold:D ! F (D) is a �nal co-algebra.5.3.3 Mixed varianceLet us now tackle the case that we are given an equation in which the variableX occurs both positivelyand negatively in the body, as in our �rst example X �= [X �! X]. We assume that by separatingthe negative occurrences from the positive ones, we have a functor in two variables, contravariant inthe �rst and covariant in the second. As the reader will remember, solving such an equation requiredthe somewhat magical passage to adjoints in the �rst coordinate. We will now see in how far we canextend the results from the previous two subsections to this case. Note that for a mixed variant functorthe concept of F -algebra or co-algebra is no longer meaningful, as there are no homomorphisms. Theidea is to pass to pairs of mappings. Lemma 5.3.1 is replaced byLemma 5.3.6. Let F :Dop �D!D be a mixed variant, locally continuous functor and let i:F (A;A) !A and j:F (B;B) ! B be isomorphisms. Then there exists a least pair of functions h:A ! B andk:B ! A such that F (A;A) F (k; h)- F (B;B) F (B;B) F (h; k)- F (A;A)andAi? h - B?j Bj? k - A?icommute.The composition of two such least pairs gives another one.Proof. De�ne a Scott-continuous function � on [A �! B] � [B �! A] by �(f; g) = (j � F (g; f) �i�1; i �F (f; g) � j�1) and let (h; k) be its least �xpoint. Commutativity of the two diagrams is shownas in the proof of Lemma 5.3.1.By equating A and B in this lemma, we get a least endofunction h which satis�es h�f = f �F (h; h).Again, it must be below the identity. Let us call such endofunctions mixed endomorphisms.Theorem 5.3.7. (Invariance, Part 2) Let F :Dop �D!D be a mixed variant and locally continuousfunctor and let i:F (A;A) ! A be an isomorphism. Then the following are equivalent:1. A is isomorphic to the canonical �xpoint FIX(F );2. idA is the least mixed endomorphism of A;3. idA = �x(�A;A) where �A;A: [A �! A] ! [A �! A] is de�ned by �A;A(g) = i � F (g; g) � i�1;4. idA is the only strict mixed endomorphism of A.Proof. The proof is of course similar to that of Theorem 5.3.2, but let us spell out the parts wheremixed variance shows up. Recall from Section 5.2.2 how the expanding sequence de�ning D = FIX(F )looks like: I e- F (I;I) F (e�;e)- F (F (I;I); F (I;I)) - � � � . If e0; e1; : : : are the colimiting mapsinto D, then F (e�0; e0); F (e�1; e1); : : : form the cocone into F (D;D), which, by local continuity, isalso colimiting. The equations from Lemma 5.2.2 read: F (e�n; en) = unfold � en+1 and F (e�n; en)� =



50 Samson Abramsky and Achim JungF (en; e�n) = e�n+1 � fold. We show that the n-th approximation to the least mixed endomorphismequals en � e�n. For n = 0 we get c? = e0 � e�0, and for the induction step:�n+1(c?) = �(�n(c?))= �(en � e�n)= fold � F (en � e�n; en � e�n) � unfold= fold � F (e�n; en) � F (en; e�n) � unfold= en+1 � e�n+1:(Note how contravariance in the �rst argument of F shu�es en and e�n in just the right way.)(3 =) 4) The diagram to which Lemma 2.1.21 is applied is as before, but H: [A �! A] ! [A �! A]now maps g:A! A to h � g � h.The rest can safely be left to the reader.Theorem 5.3.8. (Minimality, Part 2) The canonical �xpoint of a mixed variant and locally continuousfunctor is a sub-domain of every other �xpoint.Now that we have some experience with mixed variance, it is pretty clear how to deal with initialityand �nality. The trick is to pass once more to pairs of (strict) functions.Theorem 5.3.9. (Free mixed variant algebra) Let F :D?!op �D?! !D?! be a mixed variant, locallycontinuous functor and let D be the canonical solution to X �= F (X;X). Then for every pair ofstrict continuous functions f :A ?!�! F (B;A) and g:F (A;B) ?!�! B there are unique strict functionsh:A ?!�! D and k:D ?!�! B such thatF (B;A) F (k; h)- F (D;D) F (D;D) F (h; k)- F (A;B)andAf6 h - D6unfold Dfold? k - B?gcommute.We should mention that the passage from covariant to mixed-variant functors, which we havecarried out here concretely, can be done on an abstract, categorical level as was demonstrated byPeter Freyd in [Freyd, 1991]. The feature of domain theory which Freyd uses as his sole axiom isthe existence and coincidence of initial algebras and �nal co-algebras for \all" endofunctors (\all" tobe interpreted in some suitable enriched sense, in our case as \all locally continuous endofunctors").Freyd's results are the most striking contribution to date towards Axiomatic Domain Theory, forwhich see 8.4 below.5.4 Analysis of solutionsWe have worked hard in the last section in order to show that our domain theoretic solutions arecanonical in various respects. Besides this being reassuring, the advantage of canonical solutions isthat we can establish proof rules for showing properties of them. This is the topic of this section.5.4.1 Structural induction on termsThis technique is in analogy with universal algebra. While one has no control over arbitrary algebras ofa certain signature, we feel quite comfortable with the initial or term algebra. There, every element isdescribed by a term and no identi�cations are made. The �rst property carries over to our setting quiteeasily. For each of the �nitary constructions of Section 3.2, we have introduced a notation for the basiselements of the constructed domain, to wit, tuples hd; ei, variants (d: i), one-element constant ? 2 I,and step-functions (d & e). Since our canonical solutions are built as bilimits, starting from I, andsince every basis element of a bilimit shows up at a �nite iteration already, Theorem 3.3.11, these canbe denoted by �nite expressions. The proof can then be based on structural induction on the lengthof these terms.Unicity, however, is hard to achieve and this is the fault of the function space. One has to de�ne



Domain Theory 51normal forms and prove conversion rules. A treatment along these lines, based on [Abramsky, 1991b],is given in Chapter 7.3.5.4.2 Admissible relationsThis is a more domain-theoretic formulation of structural induction, based on certain relations. Thesubject has recently been expanded and re-organized in an elegant way by Andrew Pitts [Pitts, 1993a,?]. We follow his treatment closely but do not seek the same generality. We start with admissiblerelations, which we have met shortly in Chapter 2 already.De�nition 5.4.1. A relation R � Dn on a pointed domain D is called admissible if it contains theconstantly-bottom tuple and if it is closed under suprema of !-chains. We write Rn(D) for the set ofall admissible n-ary relations on D, ordered by inclusion. Unary relations of this kind are also calledadmissible predicates.This is tailored to applications of the Fixpoint Theorem 2.1.19, whence we preferred the slightlymore inclusive concept of !-chain over directed sets. If we are given a strict continuous functionf :D ?!�! E, then we can apply it to relations pointwise in the usual way:frel(R) = fhf(x1); : : : ; f(xn)i j hx1; : : : ; xni 2 Rg:Proposition 5.4.2. For dcpo's D and E and admissible n-ary relations R on D and S on E the setff j frel(R) � Sg is an admissible predicate on [D ?!�! E].We also need to say how admissible relations may be transformed by our locally continuous func-tors. This is a matter of de�nition because there are several { and equally useful { possibilities.De�nition 5.4.3. Let F :D?!op �D?! !D?! be a mixed variant and locally continuous functor ona category of domains and strict functions. An admissible action on (n-ary) relations for F is givenby a function F rel which assigns to each pair hD;Ei a map F relhD;Ei fromR(D)�R(E) to R(F (D;E)).These maps have to be compatible with strict morphisms in D?! as follows: If f :D2 ?!�! D1 andg:E1 ?!�! E2 and if R1 2 R(D1) etc., such that frel(R2) � R1 and grel(S1) � S2, thenF (f; g)rel(F relhD1;E1i(R1; S1)) � F relhD2 ;E2i(R2; S2):(Admittedly, this is a bit heavy in terms of notation. But in our concrete examples it is simplynot the case that the behaviour of F relhD;Ei on R and S is the same as { or in a simple way related to {the result of applying the functor to R and S viewed as dcpo's.)Specializing f and g to identity mappings in this de�nition, we get:Proposition 5.4.4. The maps F relhD;Ei are antitone in the �rst and monotone in the second variable.Theorem 5.4.5. LetD?! be a category of domains and let F be a mixed variant and locally continuousfunctor from D?!op �D?! to D?! together with an admissible action on relations. Abbreviate FIX(F )by D. Given two admissible relations R;S 2 Rn(D) such thatunfoldrel(R) � F rel(S;R) and foldrel(F rel(R;S)) � Sthen R � S holds.Proof. We know from the invariance theorem that the identity on D is the least �xpoint of �, where�(g) = fold�F (g; g)�unfold. Let P = ff 2 [D ?!�! D] j frel(R) � Sg, which we know is an admissiblepredicate. We want that the identity on D belongs to P and for this it su�ces to show that � mapsP into itself. So suppose g 2 P :�(g)rel(R) = foldrel � F (g; g)rel � unfoldrel(R) by de�nition� foldrel � F (g; g)rel(F rel(S;R)) by assumption� foldrel(F rel(R;S)) because g 2 P� S by assumptionIndeed, �(g) belongs again to P .



52 Samson Abramsky and Achim JungIn order to understand the power of this theorem, we will study two particular actions in the nextsubsections. They, too, are taken from [Pitts, 1993a].5.4.3 Induction with admissible relationsDe�nition 5.4.6. Let F be a mixed variant functor as before. We call an admissible action on (n-ary)relations logical , if for all objects D and E and R 2 Rn(D) we have F relhD;Ei(R;En) = F (D;E)n.Specializing R to be the whole D in Theorem 5.4.5 and removing the assumption unfoldrel(R) �F rel(S;R), which for this choice of R is always satis�ed for a logical action, we get:Theorem 5.4.7. (Induction) Let D?! be a category of domains and let F :D?!op �D?! !D?! be amixed variant and locally continuous functor together with a logical action on admissible predicates.Let D be the canonical �xpoint of F . If S 2 R1(D) is an admissible predicate, for which x 2 F rel(D;S)implies fold(x) 2 S, then S must be equal to D.The reader should take the time to recognize in this the principle of structural induction on termalgebras.We exhibit a particular logical action on admissible predicates for functors which are built fromthe constructors of Section 3.2. If R;S are admissible predicates on the pointed domains D and E,then we set R? = up(R) [ f?g � D;R � S = fhx; yi 2 D �E j x 2 R; y 2 Sg;[R �! S] = ff 2 [D �! E] j f(R) � Sg;R � S = inl(R) [ inr(S) � D �E;and analogously for 
 and [� ?!�! �]. (This is not quite in accordance with our notational convention.For example, the correct expression for [R �! S] is [� �! �]relhD;Ei(R;S).) The de�nition of the actionfor the function space operator should make it clear why we chose the adjective `logical' for it.We get more complicated functors by composing the basic constructors. The actions also composein a straightforward way: If F ,G1, andG2 are mixed variant functors on a category of domains then wecan de�ne a mixed variant compositionH = F �hG1; G2i by setting H(X;Y ) = F (G1(Y;X); G2(X;Y ))for objects and similarly for morphisms. Given admissible actions for each of F , G1, and G2, we cande�ne an action for H by setting Hrel(R;S) = F rel(Grel1 (S;R); Grel2 (R;S)). It is an easy exercise toshow that this action is logical if all its constituents are.5.4.4 Co-induction with admissible relationsIn this subsection we work with another canonical relation on domains, namely the order relation. Weagain require that it is dominant if put in the covariant position.De�nition 5.4.8. Let F be a mixed variant functor. We call an admissible action on binary relationsextensional , if for all objects D and E and R 2 Rn(D) we have F relhD;Ei(R;vE) = vF (D;E).Theorem 5.4.9. (Co-induction) Let D?! be a category of domains and let F :D?!op �D?! !D?! bea mixed variant and locally continuous functor together with an extensional action on binary relations.Let D be the canonical �xpoint of F . If R 2 R1(D) is an admissible relation such that for all hx; yi 2 Rwe have hunfold(x); unfold(y)i 2 F rel(vD ; R), then R is contained in vD.If we call an admissible binary relation R on D a simulation, if it satis�es the hypothesis of thistheorem, then we can formulate quite concisely:Corollary 5.4.10. Two elements of the canonical �xpoint of a mixed variant and locally continuousfunctor are in the order relation if and only if they are related by a simulation.We still have to show that extensional actions exist. We proceed as in the last subsection and �rstgive extensional actions for the primitive constructors and then rely on the fact that these compose.So let R;S be admissible binary relations on D, resp. E. We set:R? = fhx; yi 2 D2 j x = ? or hx; yi 2 RgR� S = fhhx; yi; hx0; y0ii 2 (D �E)2 jhx; x0i 2 R and hy; y0i 2 Sg



Domain Theory 53[R �! S] = fhf; gi 2 [D �! E]2 j 8x 2 D: hf(x); g(x)i 2 SgR� S = fhx; yi 2 (D �E)2 j x = ? or(x = inl(x0); y = inl(y0) and hx0; y0i 2 R) or(x = inr(x0); y = inr(y0) and hx0; y0i 2 S)gand similarly for 
 and [� ?!�! �]. We call this family of actions `extensional' because the de�nition inthe case of the function space is the same as for the extensional order on functions.Exercises 5.4.11.1. Find recursive domain equations which characterize the three versions of the natural numbersfrom Figure 2.2. [Ern�e, 1985] Find an example which demonstrates that the ideal completion functor is not locallycontinuous. Characterize the solutions to X �= Idl(X;v).3. [Davies et al., 1971] Prove that only the one-point poset satis�es P �= [P m�! P ].4. Verify Beki�c's rule in the dcpo case. That is, let D;E be pointed dcpo's and let f :D � E ! Dand g:D � E ! E be continuous functions. We can solve the equationsx = f(x; y) y = g(x; y)directly by taking the simultaneous �xpoint (a; b) = �x(hf; gi). Or we can solve for one variableat a time by de�ning h(y) = �x(�x:f(x; y)) k(y) = g(h(y); y)and setting d = �x(k) c = h(d) :Verify that (a; b) = (c; d) holds by using �xpoint induction.5. Find an example which shows that the Initiality Theorem 5.3.4 may fail for non-strict algebras.6. Why does Theorem 5.3.5 hold for arbitrary (non-strict) co-algebras?7. What are initial algebra and �nal co-algebra for the functor X 7! I :[ X on the category of sets?Show that they are not isomorphic as algebras.8. (G. Plotkin) Let F be the functor which maps X to [X �! X]? and let D be its canoni-cal �xpoint. This gives rise to a model of the (lazy) lambda calculus (see [Barendregt, 1984,Abramsky, 1990c, Abramsky and Ong, 1993]). Prove that the denotation of the Y combinatorin this model is the least �xpoint function �x. Proceed as follows:(a) De�ne a multiplication on D by x � y = unfold(x)(y).(b) The interpretation yf of Yf is !f � !f where !f = fold(x 7! f(x � x)). Check that this is a�xpoint of f . It follows that �x(f) v yf holds.(c) De�ne a subset E of [D �! D]? byE = fe j e v idD and e(!f ) � !f v �x(f)g :(d) Use Theorem 5.3.7 to show that idD 2 E. Then yf v �x(f) is also valid.9. Given an action on relations for a functor in four variables, contravariant in the �rst two,covariant in the last two, de�ne an action for the functor (D;E) 7! FIX(F (D; �; E; �)). Provethat the resulting action is logical (extensional) if the original action was logical (extensional).6 Equational theoriesIn the last chapter we saw how we can build initial algebras over domains. It is a natural question toask whether we can also accommodate equations, i.e. construct free algebras with respect to equationaltheories. In universal algebra this is done by factoring the initial or term algebra with respect to thecongruence generated by the de�ning equations, and we will see that we can proceed in a similarfashion for domains. Bases will play a prominent role in this approach.The technique of the previous chapter, namely, to generate the desired algebra in an iterative pro-cess, is no longer applicable. A formalproof for this statement may be found in [Ad�amek and Trnkov�a, 1989],Section III.3, but the result is quite intuitive: Recall that an F -algebra �:F (A) ! A encodes the



54 Samson Abramsky and Achim Jungalgebraic structure on A by giving information about the basic operations on A, where F (A) is thesum of the input domains for each basic operation. Call an equation 
at if each of the equatedterms contains precisely one operation symbol. For example, commutativity of a binary operation isexpressed by a 
at equation while associativity is not. Flat equations can be incorporated into theconcept of F -algebras by including the input, on which the two operations agree, only once in F (A).For non-
at equations such a trick is not available. What we need instead of just the basic operationsis a description of all term operations over A. In this case, F (A) will have to be the free algebraover A, the object we wanted to construct!Thus F -algebras are not the appropriate categorical concept to model equational theories. Thecorrect formalization, rather, is that of monads and Eilenberg-Moore algebras.We will show the existence of free algebras for dcpo's and continuous domains in the �rst section ofthis chapter. For the former, we use the Adjoint Functor Theorem (see [Poign�e, 1992], for example),for the latter, we construct the basis of the free algebra as a quotient of the term algebra.Equational theories come up in semantics when non-deterministic languages are studied. Theytypically contain a commutative, associative, and idempotent binary operation, standing for the unionof two possible branches a program may take. The associated algebras are known under the name`powerdomains' and they have been the subject of detailed studies. We shall present some of theirtheory in the second section.6.1 General techniques6.1.1 Free dcpo-algebrasLet us recall the basic concepts of universal algebra so as to �x the notation for this chapter. Asignature � = h
; �i consists of a set 
 of operation symbols and a map �: 
 ! N, assigning toeach operation symbol a (�nite) arity. A �-algebra A = hA; Ii is given by a carrier set A and aninterpretation I of the operation symbols, in the sense that for f 2 
, I(f) is a map from A�(f) to A.We also write fA or even f for the interpreted operation symbol and speak of the operation f on A.A homomorphism between two �-algebras A and B is a map h:A ! B which commutes with theoperations: 8f 2 
: h(fA(a1; : : : ; a�(f))) = fB(h(a1); : : : ; h(a�(f)))We denote the term algebra over a set X with respect to a signature � by T�(X). It has the universalproperty that each map from X to A, where A = hA; Ii is a �-algebra, can be extended uniquelyto a homomorphism �h:T�(X) ! A. Let V be a �xed countable set whose elements we refer to as`variables'. Pairs of elements of T�(V ) are used to encode equations. An equation �1 = �2 is said tohold in an algebra A = hA; Ii if for each map h:V ! A we have �h(�1) = �h(�2). The pair h�h(�1); �h(�2)iis also called an instance of the equation �1 = �2. The class of �-algebras in which each equation froma set E � T�(V )� T�(V ) holds, is denoted by Set(�; E).Here we are interested in dcpo-algebras, characterized by the property that the carrier set isequipped with an order relation such that it becomes a dcpo, and such that each operation is Scott-continuous. Naturally, we also require the homomorphisms to be Scott-continuous. Because of theorder we also can incorporate inequalities. So from now on we let a pair h�1; �2i 2 E � T�(V )�T�(V )stand for the inequality �1 v �2. We use the notation DCPO(�; E) for the class of all dcpo-algebrasover the signature � which satisfy the inequalities in E . For these we have:Proposition 6.1.1. For every signature � and set E of inequalities, the class DCPO(�; E) withScott-continuous homomorphisms forms a complete category.Proof. It is checked without di�culties that DCPO(�; E) is closed under products and equalizers,which both are de�ned as in the ordinary case.This proves that we have one ingredient for the Adjoint Functor Theorem, namely, a completecategory DCPO(�; E) and a (forgetful) functor U :DCPO(�; E) !DCPO which preserves all limits.The other ingredient is the so-called solution set condition. For this setup it says that each dcpo cangenerate only set-many non-isomorphic dcpo-algebras. This is indeed the case: Given a dcpo D anda continuous map i:D ! A, where A is the carrier set of a dcpo-algebra A, we construct the dcpo-subalgebra of A generated by i(D) in two stages. In the �rst we let S be the (ordinary) subalgebra of Awhich is generated by i(D). Its cardinality is bounded by an expression depending on the cardinalityof D and 
. Then we add to S all suprema of directed subsets until we get a sub-dcpo �S of the dcpo A.Because we have required the operations on A to be Scott-continuous, �S remains to be a subalgebra.



Domain Theory 55The crucial step in this argument now is that the cardinality of �S is bounded by 2jSj as we asked youto show in Exercise 2.3.9(33). All in all, given �, the cardinality of �S has a bound depending on jDjand so there is only room for a set of di�erent dcpo-algebras. Thus we have shown:Theorem 6.1.2. For every signature � and set E of inequalities, the forgetful functor U :DCPO(�; E) !DCPO has a left adjoint.Equivalently: For each dcpo D the free dcpo-algebra over D with respect to � and E exists.The technique of this subsection is quite robust and has been used in [Nelson, 1981] for prov-ing the existence of free algebras under more general notions of convergence than that of directed-completeness. This, however, is not the direction we are interested in, and instead we shall now turnto continuous domains.6.1.2 Free continuous domain-algebrasNone of the categories of approximated dcpo's, or domains, we have met so far is complete. Bothin�nite products and equalizers may fail to exist. Hence we cannot rely on the Adjoint FunctorTheorem. While this will result in a more technical proof, there will also be a clear advantage: we willgain explicit information about the basis of the constructed free algebra, which may help us to �ndalternative descriptions. In the case of dcpo's, such concrete representations are quite complicated,see [Nelson, 1981, Ad�amek et al., 1982].We denote the category of dcpo-algebras, whose carriers form a continuous domain, byCONT(�; E)and speak of (continuous) domain-algebras. Again there is the obvious forgetful functor U :CONT(�; E) !CONT. To keep the notation manageable we shall try to suppress mention of U , in particular, wewill write A for U (A) on objects and make no distinction between h and U (h) on morphisms. Let uswrite down the condition for adjointness on which we will base our proof:D � - F (D) F (D)CONT ZZZZZZZg ~ Aext(g)? A9!ext(g)? CONT(�; E)In words: Suppose a signature � and a set E of inequalities has been �xed. Then given a continuousdomain D we must construct a dcpo-algebra F (D), whose carrier set F (D) is a continuous domain,and a Scott-continuous function �:D ! F (D) such that F (D) satis�es the inequalities in E andsuch that given any such domain-algebra A and Scott-continuous map g:D ! A there is a uniqueScott-continuous homomorphism ext(g):F (D) ! A for which ext(g) � � = g. (It may be instructiveto compare this with De�nition 3.1.9.)The idea for solving this problem is to work explicitly with bases (cf. Section 2.2.6). So assumethat we have �xed a basis hB;�i for the continuous domain D. We will construct an abstract basishFB;�i for the desired free domain-algebra F (D). The underlying set FB is given by the set T�(B)of all terms over B. On FB we have two natural order relations. The �rst, which we denote by @�,is induced by the de�ning set E of inequalities. We can give a precise de�nition in the form of adeduction scheme:Axioms:(A1) t @� t for all t 2 FB.(A2) s @� t if this is an instance of an inequality from E .Rules:(R1) If f 2 
 is an n-ary function symbol and if s1 @� t1; : : : ; sn @� tn then f(s1; : : : ; sn) @�f(t1; : : : ; tn).(R2) If s @� t and t @� u then s @� u.The relation @� is the `least substitutive preorder' in the terminology of [Stoughton, 1988]. It isthe obvious generalization of the concept of a congruence relation to the preordered case, and indeed,hFB;@�i is the free preordered algebra over B. The associated equivalence relation we denote by �.The factor set FB=� is ordered by @� and this is the free ordered algebra over B.



56 Samson Abramsky and Achim JungLet us now turn to the second relation on FB, namely, the one which arises from the order ofapproximation on B. We set t �s t0 if t and t0 have the same structure and corresponding constantsare related by �. Formally, �s is given through the deduction scheme:Axioms:(A) a �s b if a� b in B.Rules:(R) If f 2 
 is an n-ary function symbol and if s1 �s t1; : : : ; sn �s tn then f(s1; : : : ; sn) �sf(t1; : : : ; tn).Our �rst observation is that �s satis�es the interpolation axiom:Proposition 6.1.3. hFB;�si is an abstract basis.Proof. Since �s relates only terms of the same structure, it is quite obvious that it is a transitiverelation. For the interpolation axiom assume that s �s t holds for all elements s of a �nite setM � FB. For each occurrence of a constant a in t let Ma be the set of constants which occur in thesame location in one of the terms s 2M . Since Ma is �nite and since Ma � a holds by the de�nitionof �s, we �nd interpolating elements a0 between Ma and a. Let t0 be the term in which all constantsare replaced by the corresponding interpolating element. This is a term which interpolates betweenM and t in the relation �s.The question now is how to combine @� and �s. As a guideline we take Proposition 2.2.2(2). Ifthe inequalities tell us that t1 should be below s1 and s2 should be below t2 and if s1 approximatess2 then it should be the case that t1 approximates t2. Hence we de�ne �, the order of approximationon FB, to be the transitive closure of @� � �s � @�. The following, somewhat technical properties willbe instrumental for the free algebra theorem:Proposition 6.1.4.1. �s � @� is contained in �s � @� � �s.2. For every n � m 2 N we have (@� � �s � @�)n � (@� � �s � @�)m.Proof. (1) Assume s �s t @� u. Let C � B be the set of all constants which appear in the derivationof t @� u. For each c 2 C let Mc be the set of constants which appear in s at the same place as cappears in t. Of course, c may not occur in t at all; in this case Mc will be empty. If it occurs severaltimes then Mc can contain more than one element. In any case, Mc is �nite and Mc � c holds. Letc0 be an interpolating element between Mc and c. We now replace each constant c in the derivationof t @� u by the corresponding constant c0 and we get a valid derivation of a formula t0 @� u0. (Thecatch is that an instance of an inequality is transformed into an instance of the same inequality.) Itis immediate from the construction that s �s t0 @� u0 �s u holds.(2) Using (1) and the re
exivity of @� we get@� � �s � @� � @� �(�s � @� � �s) � @� � �s � @� � @� � �s � @� :The general case follows by induction.Lemma 6.1.5. hFB;�i is an abstract basis.Proof. Transitivity has been built in, so it remains to look at the interpolation axiom. Let M � tfor a �nite set M . From the de�nition of � we get for each s 2 M a sequence of terms s @� s1 �ss2 @� : : : @� sn(s)�1 �s sn(s) @� t. The last two steps may be replaced by sn(s)�1 �s s0 @� s00 �s t as wehave shown in the preceding proposition. The collection of all s00 is �nite and we �nd an interpolatingterm t0 between it and t according to Proposition 6.1.3. Because of the re
exivity of @� we haveM � t0 � t.So we can take as the carrier set of our free algebra over D the ideal completion of hFB;�i andfrom Proposition 2.2.22 we know that this is a continuous domain. The techniques of Section 2.2.6 alsohelp us to �ll in the remaining pieces. The operations on F (D) are de�ned pointwise: If A1; : : : ; Anare ideals and if f 2 
 is an n-ary function symbol then we let fF (D)(A1; : : : ; An) be the ideal which isgenerated by ff(t1; : : : ; tn) j t1 2 A1; : : : ; tn 2 Ang: We need to know that this set is directed. It willfollow if the operations on FB are monotone with respect to �. So assume we are given an operationsymbol f 2 
 and pairs s1 � t1; : : : ; sn � tn. By de�nition, each pair translates into a sequence



Domain Theory 57si @� s1i �s s2i @� : : : �s sm(i)i @� ti. Now we use Proposition 6.1.4(2) to extend all these sequences tothe same length m. Then we can apply f step by step, using Rules (R1) and (R) alternately:f(s1; : : : ; sn) @� f(s11; : : : ; s1n) �s f(s21; : : : ; s2n) @� : : :: : : �s f(sm1 ; : : : ; smn ) @� f(t1; : : : ; tn):Using the remark following Proposition 2.2.24 we infer that the operations fF (D) de�ned this way areScott-continuous functions. Thus F (D) is a continuous domain-algebra. The generating domain Dembeds into F (D) via the extension � of the monotone inclusion of B into FB.Theorem 6.1.6. F (D) is the free continuous domain-algebra over D with respect to � and E .Proof. We must show that F (D) satis�es the inequalities in E and that it has the universal property.For the inequalities let h�1; �2i 2 E and let h:V ! F (D) be a map. It assigns to each variable anideal in FB. We must show that �h(�1) is a subset of �h(�2). As we have just seen, the ideal �h(�1) isgenerated by terms of the form �k(�1) where k is a map from V to FB, such that for each variablex 2 V , k(x) 2 h(x). So suppose s � �k(�1) for such a k. Then �k(�1) @� �k(�2) is an instance of theinequality in the term algebra FB = T�(B) and so we know that s � �k(�2) also holds. The term�k(�2) belongs to �h(�2), again because the operations on F (D) are de�ned pointwise. So s 2 �h(�2) asdesired.For the universal property assume that we are given a continuous map g:D ! A for a dcpo-algebra A which satis�es the inequalities from E . The restriction of g to the set B � D has a uniquemonotone extension �g to the preordered algebra hFB;@�i. We want to show that �g also preserves �s.For an axiom a �s b this is clear because g is monotone on hB;�i. For the rules (R) we use that �gis a homomorphism and that the operations on A are monotone:�g(f(s1; : : : ; sn)) = fA(�g(s1); : : : ; �g(sn))v fA(�g(t1); : : : ; �g(tn))= �g(f(t1; : : : ; tn)) :Together this says that �g preserves the order of approximation � on FB and therefore it can beextended to a homomorphism ext(g) on the ideal completion F (D). Uniqueness of ext(g) is obvious.What we have to show is that ext(g), when restricted to B, equals g, because Proposition 2.2.24 doesnot give an extension but only a best approximation. We can nevertheless prove it here because garose as the restriction of a continuous map on D. An element d of D is represented in F (D) as theideal �(d) containing at least all of Bd = B\##d because of the axioms of our second deductive system.So we have: ext(g)(�(d)) = F"�g(�(d)) w F"�g(Bd) = F"g(Bd) = g(d).Theorem 6.1.7. For any signature � and set E of inequalities the forgetful functor U :CONT(�; E) !CONT has a left adjoint F . It is equivalent to the restriction and corestriction of the left adjointfrom Theorem 6.1.2 to CONT and CONT(�; E), respectively.In other words: Free continuous domain-algebras exist and they are also free with respect to dcpo-algebras.The action of the left adjoint functor on morphisms is obtained by assigning to a continuousfunction g:D! E the homomorphism which extends �E � g.D �D- F (D)Eg? �E- F (E)?F (g)We want to show that F is locally continuous (De�nition 5.2.3). To this end let us �rst look atthe passage from maps to their extension.Proposition 6.1.8. The assignment g 7! ext(g), as a map from [D �! A] to [F (D) �! A] is Scott-continuous.



58 Samson Abramsky and Achim JungProof. By Proposition 2.2.25 it is su�cient to show this for the restriction of g to the basis B of D.Let G be a directed collection of monotone maps from B to A and let t 2 FB be a term in which theconstants a1; : : : ; an 2 B occur. We calculate:G"G(t) = t[G"G(a1)=a1; : : : ;G"G(an)=an]= G"g2G t[g(a1)=a1; : : : ; g(an)=an]= G"g2G �g(t);where we have written t[b1=a1; : : : ; bn=an] for the term in which each occurrence of ai is replaced by bi.Restriction followed by homomorphic extension followed by extension to the ideal completion givesa sequence of continuous functions [D �! A] ! [B m�! A] ! [FB m�! A] ! [F (D) �! A] whichequals ext.Cartesian closed categories can be viewed as categories in which the Hom-functor can be inter-nalized. The preceding proposition formulates a similar closure property of the free construction:if the free construction can be cut down to a cartesian closed category then there the associatedmonad and the natural transformations that come with it can be internalized. This concept wasintroduced by Anders Kock [Kock, 1970, Kock, 1972]. It has recently found much interest under thename `computational monads' through the work of Eugenio Moggi [Moggi, 1991].Theorem 6.1.9. For any signature � and set E of inequalities the composition U � F is a locallycontinuous functor on CONT.Proof. The action of U � F on morphisms is the combination of composition with �E and ext.If e:D ! E is an embedding then we can describe the action of F , respectively U � F , quiteconcretely. A basis element of F (D) is the equivalence class of some term s. Its image under F (e) isthe equivalence class of the term s0, which we get from s by replacing all constants in s by their imageunder e.If we start out with an algebraic domainD then we can choose as its basis K(D), the set of compactelements. The order of approximation on K(D) is the order relation inherited from D, in particular, itis re
exive. From this it follows that the constructed order of approximation� on FB is also re
exive,whence the ideal completion of hFB;�i is an algebraic domain. This gives us:Theorem 6.1.10. For any signature � and set E of inequalities the forgetful functor from ALG(�; E)to ALG has a left adjoint.Finally, let us look at �, which maps the generating domain D into the free algebra, and let usstudy the question of when it is injective. What we can say is that if injectivity fails then it failscompletely:Proposition 6.1.11. For any in-equational theory the canonical map � from a dcpo D into the freealgebra F (D) over D is order-re
ecting if and only if there exists a dcpo-algebra A for this theory forwhich the carrier dcpo A is non-trivially ordered.Proof. Assume that there exists a dcpo-algebra A which contains two elements a @ b. Let D be anydcpo and x 6v y two distinct elements. We can de�ne a continuous map g from D to A, separatingx from y by setting g(d) = � a; if d v y;b; otherwise.Since g equals ext(g) � �, where ext(g) is the unique homomorphism from F (D) to A, it cannot bethat �(x) v �(y) holds.The converse is trivial, because � must be monotone.6.1.3 Least elements and strict algebrasWe have come across strict functions several times already. It therefore seems worthwhile to study theproblem of free algebras also in this context. But what should a strict algebra be? There are severalpossibilities as to what to require of the operations on such an algebra:



Domain Theory 591. An operation which is applied to arguments, one of which is bottom, returns bottom.2. An operation applied to the constantly bottom vector returns bottom.3. An operation of arity greater than 0 applied to the constantly bottom vector returns bottom.Luckily, we can leave this open as we shall see shortly. All we need is:De�nition 6.1.12. A strict dcpo-algebra is a dcpo-algebra for which the carrier set contains a leastelement. A strict homomorphism between strict algebras is a Scott-continuous homomorphism whichpreserves the least element.For pointed dcpo's the existence of free strict dcpo-algebras can be established as before throughthe Adjoint Functor Theorem. For pointed domains the construction of the previous subsection canbe adapted by adding a further axiom to the �rst deduction scheme:(A3) ? @� t for all t 2 FB.Thus we have:Theorem 6.1.13. Free strict dcpo- and domain-algebras exist, that is, the forgetful functorsDCPO?!(�; E) �! DCPO?!;CONT?!(�; E) �! CONT?!;and ALG?!(�; E) �! ALG?!have left adjoints.Let us return to the problem of strict operations. The solution is that we can add a nullaryoperation 0 to the signature and the inequality 0 v x to E without changing the free algebras. Becauseof axiom (A3) we have ? @� 0 and because of the new inequality we have 0 @� ?. Therefore the newoperation must be interpreted by the bottom element. The advantage of having bottom explicitly inthe signature is that we can now formulate equations about strictness of operations. For example, the�rst possibility mentioned at the beginning can be enforced by adding to E the inequalityf(x1; : : : ; xi�1; 0; xi+1; : : : ; x�(f)) v 0for all operation symbols f of positive arity and all 1 � i � �(f). The corresponding free algebrasthen exist by the general theorem.More problematic is the situation with DCPO? (respectively CONT? and ALG?). The ex-istence of a least element in the generating dcpo does not imply the existence of a least element inthe free algebra (Exercise 6.2.23(2)). Without it, we cannot make use of local continuity in domainequations. Furthermore, even if the free algebra has a least element, it need not be the case that� is strict (Exercise 6.2.23(3)). The same phenomena appears if we restrict attention to any of thecartesian closed categories exhibited in Chapter 4. The reason is that we require a special struc-ture of the objects of our category but allow morphisms which do not preserve this structure. Itis therefore always an interesting fact if the general construction for a particular algebraic theorycan be restricted and corestricted to one of these sub-categories. In the case that the general con-struction does not yield the right objects it may be that a di�erent construction is needed. Thishas been tried for the Plotkin powerdomain in several attempts by Karel Hrbacek but a satisfactorysolution was obtained only at the cost of changing the morphisms between continuous algebras, see[Hrbacek, 1987, Hrbacek, 1989, Hrbacek, 1988].On a more positive note, we can say:Proposition 6.1.14. If the free functor maps �nite pointed posets to �nite pointed posets then itrestricts and corestricts to bi�nite domains.6.2 Powerdomains6.2.1 The convex or Plotkin powerdomainDe�nition 6.2.1. The convex or Plotkin powertheory is de�ned by a signature with one binaryoperation [ and the equations1. x [ y = y [ x (Commutativity)2. (x [ y) [ z = x [ (y [ z) (Associativity)



60 Samson Abramsky and Achim Jung3. x [ x = x (Idempotence)The operation [ is called formal union.A dcpo-algebra with respect to this theory is called a dcpo-semilattice. The free dcpo-semilatticeover a dcpo D is called the Plotkin powerdomain of D and it is denoted by PP(D).Every semilattice can be equipped with an order by settingx � y if x [ y = y:Formal union then becomes the join in the resulting ordered set. On a dcpo-semilattice this order haslittle to do with the domain ordering and it is not in the focus of our interest.The free semilattice over a set X is given by the set of all non-empty �nite subsets of X, whereformal union is interpreted as actual union of sets. This gives us the �rst half of an alternativedescription of the Plotkin powerdomain over a continuous domain D with basis B. Its basis FB,which we constructed as the term algebra over B, is partitioned into equivalence classes by �, theequivalence relation derived from @�, that is, from the de�ning equations. These equivalence classesare in one-to-one correspondence with �nite subsets of B. Indeed, given a term from FB, we canre-arrange it because of associativity and commutativity, and because of idempotence we can makesure that each constant occurs just once.Remember that we have set up the order of approximation � on FB as the transitive closure of@� � �s � @�. This way we have ensured that an ideal in FB contains only full equivalence classeswith respect to �. We may therefore replace FB by Pf (B), the set of �nite subsets of B, where weassociate with a term t 2 FB the set [t] of constants appearing in t.Let us now also transfer the order of approximation to the new basis.De�nition 6.2.2. Two subsets M and N of a set equipped with a relation R are in the Egli-Milnerrelation, written as M REM N , if the following two conditions are satis�ed:8a 2M 9b 2 N: a R b8b 2 N 9a 2M: a R b:Here we are talking about �nite subsets of hB;�i, so we write �EM for the Egli-Milner relationbetween �nite subsets of B. Let us establish the connection between �EM on Pf (B) and � on FB.Firstly, if s �s t then by de�nition each constant in t is matched by a constant in s which approximatesit and vice versa. These are just the conditions for [s] �EM [t]. Since �EM is transitive, we �ndthat s � t implies [s] �EM [t] in general. Conversely, if two �nite subsets M = fa1; : : : ; amg andN = fb1; : : : ; bng of B are related by �EM then we can build terms s and t, such that [s] = M ,[t] = N , and s �s t hold. This is done as follows. For each ai 2M let bj(i) be an element of N suchthat ai � bj(i) and for each bj 2 N let ai(j) be an element of M such that ai(j) � bj . Then we canset s = (a1 [ : : : [ am) [ (ai(1) [ : : : [ ai(n))and t = (bj(1) [ : : : [ bj(m)) [ (b1 [ : : : [ bn):We have proved:Theorem 6.2.3. The Plotkin powerdomain of a continuous domain D with basis hB;�i is given bythe ideal completion of hPf (B);�EM i.An immediate consequence of this characterization is that the Plotkin powerdomain of a �nitepointed poset is again �nite and pointed. By Proposition 6.1.14, the Plotkin powerdomain of abi�nite domain is again bi�nite. This is almost the best result we can obtain. The Plotkin powerconstruction certainly destroys all properties of being lattice-like, see Exercise 6.2.23(8). It is, on theother hand, not completely haphazard, in the sense that not every �nite poset is a sub-domain of apowerdomain of some other poset. This was shown in [N�u�ler, 1992].The passage from terms to �nite sets has reduced the size of the basis for the powerdomaindrastically. Yet, it is still possible to get an even leaner representation. We present this for algebraicdomains only. For continuous domains a similar treatment is possible but it is less intuitive. Rememberthat abstract bases for algebraic domains are preordered sets.



Domain Theory 61De�nition 6.2.4. For a subset M of a preordered set hB;vi let the convex hull Cx(M ) be de�nedby fa 2 B j 9m;n 2M: m v a v ng:A set which coincides with its convex hull is called convex .The following properties are easily checked:Proposition 6.2.5. Let hB;vi be a preordered set and M;N be subsets of B.1. Cx(M ) = "M \ #M .2. M � Cx(M ).3. Cx(Cx(M )) = Cx(M ).4. M � N =) Cx(M ) � Cx(N ).5. M =EM Cx(M ).6. M =EM N if and only if Cx(M ) = Cx(N ).While hPf (K(D));vEM i is only a preordered set, parts (5) and (6) of the preceding propositionsuggests how to replace it with an ordered set. Writing PCx;f (K(D)) for the set of �nitely generatedconvex subsets of K(D), we have:Proposition 6.2.6. The Plotkin powerdomain of an algebraic domain D is isomorphic to the idealcompletion of hPCx;f (K(D));vEM i.This explains the alternative terminology `convex powerdomain'. We will sharpen this descriptionin 6.2.3 below.For examples of how the Plotkin powerdomain can be used in semantics, we refer to [Hennessy and Plotkin, 1979,Abramsky, 1991a].6.2.2 One-sided powerdomainsDe�nition 6.2.7. If the Plotkin powertheory is augmented by the inequalityx v x [ ythen we obtain the Hoare or lower powertheory . Algebras for this theory are called in
ationarysemilattices. The free in
ationary semilattice over a dcpo D is called the lower or Hoare powerdomainof D, and it is denoted by PH(D).Similarly, the terminology concerning the inequalityx w x [ yis upper or Smyth powerdomain, de
ationary semilattice, and PS(D).It is a consequence of the new inequality that the semilattice ordering and the domain orderingcoincide in the case of the Hoare powertheory. For the Smyth powertheory the semilattice ordering isthe reverse of the domain ordering. This forces these powerdomains to have additional structure.Proposition 6.2.8.1. The Hoare powerdomain of any dcpo is a lattice which has all non-empty suprema and boundedin�ma. The sup operation is given by formal union.2. The Smyth powerdomain of any dcpo has binary in�ma. They are given by formal union.Unfortunately, the existence of binary in�ma does not force a domain into one of the cartesianclosed categories of Chapter 4. We take up this question again in the next subsection.Let us also study the bases of these powerdomains as derived from a given basis hB;�i of acontinuous domain D. The development proceeds along the same lines as for the Plotkin powertheory.The equivalence relation induced by the equations and the new inequality has not changed, so we mayagain replace FB by the set Pf (B) of �nite subsets of B. The di�erence is wholly in the associatedpreorder on Pf (B).Proposition 6.2.9. For M and N �nite subsets of a basis hB;�i we haveM @� N if and only if M � #N



62 Samson Abramsky and Achim Jungin the case of the Hoare powertheory andM @� N if and only if N � "Mfor the Smyth powertheory.The restricted order of approximation �s is as before given by the Egli-Milner relation �EM . Asprescribed by the general theory we must combine it with inclusion (for the lower theory) and withreversed inclusion (for the upper theory), respectively. Without di�culties one obtains the followingconnection s �H t if and only if 8a 2 [s] 9b 2 [t]: a� band s �S t if and only if 8b 2 [t] 9a 2 [s]: a� b:So each of the one-sided theories is characterized by one half of the Egli-Milner ordering. Writing�H and �S for these we can formulate:Theorem 6.2.10. Let D be a continuous domain with basis hB;�i.1. The Hoare powerdomain of D is isomorphic to the ideal completion of hPf (B);�Hi.2. The Smyth powerdomain of D is isomorphic to the ideal completion of hPf (B);�Si.For algebraic domains we can replace the preorders on Pf (B) by an ordered set in both cases.Proposition 6.2.11. For subsets M and N of a preordered set hB;�i we have1. M =H #M ,2. M �H N if and only if #M � #N ,and3. M =S "M ,4. M �S N if and only if "M � "N .Writing PL;f (B) for the set of �nitely generated lower subsets of B and PU;f (B) for the set of�nitely generated upper subsets of B, we have:Proposition 6.2.12. Let D be an algebraic domain.1. The Hoare powerdomain PH(D) of D is isomorphic to the ideal completion of hPL;f (K(D));�i.2. The Smyth powerdomain PS(D) of D is isomorphic to the ideal completion of hPU;f (K(D));�i.From this description we can infer through Proposition 6.1.14 that the Smyth powerdomain ofa bi�nite domain is again bi�nite. Since a de
ationary semilattice has binary in�ma anyway, weconclude that the Smyth powerdomain of a bi�nite domain is actually a bc-domain. For a moregeneral statement see Corollary 6.2.15.6.2.3 Topological representation theoremsThe objective of this subsection is to describe the powerdomains we have seen so far directly as spacesof certain subsets of the given domain, without recourse to bases and the ideal completion. It willturn out that the characterizations of Proposition 6.2.6 and Proposition 6.2.12 can be extended nicelyonce we allow ourselves topological methods.Theorem 6.2.13. The Hoare powerdomain of a continuous domain D is isomorphic to the lattice ofall non-empty Scott-closed subsets of D. Formal union is interpreted by actual union.Proof. Let hB;�i be a basis for D. We establish an isomorphism with the representation of Theo-rem 6.2.10. Given an ideal I of �nite sets in PH(D) we map it to �H(I) = Cl(S I), the Scott-closure ofthe union of all these sets. Conversely, for a non-empty Scott-closed set A we let  H (A) = Pf (##A\B),the set of �nite sets of basis elements approximating some element in A. We �rst check that  H (A)is indeed an ideal with respect to �H . It is surely non-empty as A was assumed to contain elements.Given two �nite subsets M and N of ##A \B then we can apply the interpolation axiom to get �nitesubsets M 0 and N 0 with M �EM M 0 and N �EM N 0. An upper bound for M and N with respectto �H is then given by M 0 [N 0. It is also clear that the Scott closure of ##A \B gives A back againbecause every element of D is the directed supremum of basis elements. Hence �H � H = id. Starting



Domain Theory 63out with an ideal I, we must show that we get it back from �H(I). So let M 2 I. By the roundnessof I (see the discussion before De�nition 2.2.21) there is another �nite set M 0 2 I with M �H M 0.So for each a 2M there is b 2M 0 with a� b. Since all elements of I are contained in �H(I), we havethat a belongs to ##�(I) \ B. Conversely, if a is an element of ##�(I) \B then ""a \ �(I) is not emptyand therefore must meet S I as D n ""a is closed. The set fag is then below some element of I underthe �H-ordering. Monotonicity of the isomorphisms is trivial and the representation is proved.Formal union applied to two ideals returns the ideal of unions of the constituting sets. Under theisomorphism this operation is transformed into union of closed subsets.This theorem holds not just for continuous domains but also for all dcpo's and even all T0-spaces.See [Schalk, 1993] for this. We can also get the full complete lattice of all closed sets if we add to theHoare powertheory a nullary operation e and the equationse [ x = x [ e = x:Alternatively, we can take the strict free algebra with respect to the Hoare powertheory. If thedomain has a least element then these adjustments are not necessary, a least element for the Hoarepowerdomain is f?g. Homomorphisms, however, will only preserve non-empty suprema.The characterization of the Smyth powerdomain builds on the material laid out in Section 4.2.3.In particular, recall that a Scott-compact saturated set in a continuous domain has a Scott-open �lterof open neighborhoods and that each Scott-open �lter in �D arises in this way.Theorem 6.2.14. The Smyth powerdomain of a continuous domain D is isomorphic to the set �D nf;g of non-empty Scott-compact saturated subsets ordered by reversed inclusion. Formal union isinterpreted as union.Proof. Let hB;�i be a basis for D. We show that �Dnf;g is isomorphic to PS(D) = Idl(Pf (B);�S).Given an ideal I we let �S(I) be TM2I "M . This constitutes a monotone map from PS(D) to �D nf;gby Proposition 4.2.14. In the other direction, we assign to a compact saturated set A the set  S (A) ofall �nite sets M � B such that A � ""M . Why is this an ideal? For every open neighborhood O of Awe �nd a �nite set M of basis elements contained in O such that A � ""M because A is compact andO = Sb2O\B ""b (Proposition 2.3.6). Then given two �nite sets M and N in  S (A) an upper boundfor them is any such �nite set P with A � ""P � ""M \ ""N . Clearly,  S is monotone as �D n f;g isequipped with reversed inclusion.Let us show that  S � �S is the identity on PS(D). For M 2 I let M 0 2 I be above M inthe �S-ordering. Then �S(I) � "M 0 � ""M and so M belongs to  S � �S(I). Conversely, everyneighborhood of �S(I) contains some "M with M 2 I already as we saw in Proposition 4.2.14. So if�S(I) is contained in ""N for some �nite set N � B then there are M and M 0 in I with M � ""N andM �S M 0. Hence N �S M 0 and N belongs to I.The composition �S� S is clearly the identity as we just saw that every neighborhood of a compactset contains a �nitely generated one and as every saturated set is the intersection of its neighborhoods.The claim about formal union follows because on powersets union and intersection completelydistribute: �S(I [ J) = TM2I;N2J "(M [ N ) = TM2I;N2J ("M [ "N ) = TM2I "M [ TN2J "N =�S(I) [ �S(J).For this theorem continuity is indispensable. A characterization of the free de
ationary semi-lattice over an arbitrary dcpo is not known. The interested reader may consult [Heckmann, 1990,Heckmann, 1993a] and [Schalk, 1993] for a discussion of this open problem.Corollary 6.2.15. The Smyth powerdomain of a coherent domain with bottom is a bc-domain.Proof. That two compact saturated sets A and B are bounded by another one, C, simply meansC � A \ B. In this case A \ B is not empty. It is compact saturated by the very de�nition ofcoherence.Let us now turn to the Plotkin powerdomain. An ideal I of �nite sets ordered by �EM willgenerate ideals with respect to both coarser orders �H and �S . We can therefore associate with Ia Scott-closed set �H(I) = Cl(S I) and a compact saturated set �S(I) = TM2I "M . However, notevery such pair arises in this way; the Plotkin powerdomain is not simply the product of the twoone-sided powerdomains. We will be able to characterize them in two special cases: for countably



64 Samson Abramsky and Achim Jungbased domains and for coherent domains. The general situation is quite hopeless, as is illustratedby Exercise 6.2.23(11). In both special cases we do want to show that I is faithfully represented bythe intersection �(I) = �H(I) \ �S(I). In the �rst case we will need the following weakening of theEgli-Milner ordering:De�nition 6.2.16. For a dcpo D we let Lens(D) be the set of all non-empty subsets of D whicharise as the intersection of a Scott-closed and a compact saturated subset. The elements of Lens(D)we call lenses. On Lens(D) we de�ne the topological Egli-Milner ordering , vTEM , byK vTEM L if L � "K and K � Cl(L):Proposition 6.2.17. Let D be a dcpo.1. Every lens is convex and Scott-compact.2. A canonical representation for a lens L is given by "L \ Cl(L).3. The topological Egli-Milner ordering is anti-symmetric on Lens(D).Proof. Convexity is clear as every lens is the intersection of a lower and an upper set. An opencovering of a lens L = C \ U , where C is closed and U compact saturated, may be extended to acovering of U by adding the complement of C to the cover. This proves compactness. Since all Scott-open sets are upwards closed, compactness of a set A implies the compactness of "A. Using convexity,we get L = "L \ #L � "L \ Cl(L) and using boolean algebra we calculate "L = "(C \ U ) � "U = Uand Cl(L) = Cl(C \ U ) � Cl(C) = C, so "L \ Cl(L) � U \ C = L. Then if K =TEM L we have"K = "L and Cl(K) = Cl(L). Equality of K and L follows.Before we can prove the representation theorem we need yet another description of the lens �(I).Lemma 6.2.18. Let D be a continuous domain with basis B and let I be an ideal in hPf (B);�EM i.Then �(I) = fF"A j A � S I directed and A \M 6= ; for all M 2 Ig.Proof. The elements of the set on the right clearly belong to the Scott-closure of S I. They are alsocontained in �S(I) because F"A is above some element in A \M for each M 2 I.Conversely, let x 2 �(I) and let a 2 A = ##x \ B. The set ""a is Scott-open and must thereforemeet some M 2 I. From the roundness of I we get M 0 2 I with M �EM M 0. The set M [ fag alsoapproximates M 0 and so it is contained in I. Hence a 2 S I. Furthermore, given any M 2 I, let againM 0 2 I be such that M �EM M 0. Then x is above some element of M 0 as �(I) � "M 0 and thereforem� x holds for some m 2M .Theorem 6.2.19. Let D be an !-continuous domain. The Plotkin powerdomain PP(D) is isomorphicto hLens(D);vTEM i. Formal union is interpreted as union followed by topological convex closure.Proof. Let hB;�i be a countable basis of D. We have already de�ned the map �:PP(D) ! Lens(D).In the other direction we take the function  which assigns to a lens K the set  H (Cl(K))\ S ("K).Before we can prove that these maps constitute a pair of isomorphisms, we need the following infor-mation about reconstructing �H(I) and �S(I) from �(I).1. �S(I) = "�(I): Since �S(I) is an upper set which contains �(I), only one inclusion can be indoubt. Let x 2 �S(I) and I 0 = fM \ #x jM 2 Ig. Firstly, each set in I 0 is non-empty and, secondly,we have M \ #x �S N \ #x whenever M �EM N . Calculating �S(I0) in the continuous domain�H(I) gives us a non-empty set which is below x and contained in the lens �(I).2. �H(I) = Cl(�(I)): Again, only one inclusion needs an argument. We show that every elementof ##�H(I) \ B belongs to #�(I). Given a basis element a approximating some element of �H(I)then we already know that it belongs to S I. Let M 2 I be some set which contains a. Usingcountability of the basis we may assume that M extends to a co�nal chain in I (Proposition 2.2.13):M = M0 �EM M1 �EM M2 �EM : : : . K�onig's Lemma then tells us that we can �nd a chain ofelements a = a0 � a1 � a2 � : : : where an 2 An. The supremum x = F"n2Nan belongs to �(I) andis above a.3. � is monotone: Let I � I 0 be two ideals in hPf (B);�EMi. The larger ideal results in a biggerlower set �H(I0) and a smaller upper set �S(I0). Using 1 and 2 we can calculate for the correspondinglenses: �(I) � �H(I) � �H(I 0) = Cl(�(I 0));
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c ? c aca1ca2ca3cc1cc2cc3cc ``` ``` ���������@@@ AAAAAA����@@ @@@@@@���@@Fig. 13. An algebraic domain in which topological Egli-Milner ordering and ordinaryEgli-Milner ordering do not coincide.�(I 0) � �S(I 0) � �S(I) = "�(I):So �(I) vTEM �(I 0) as desired.4. The monotonicity of  follows by construction and one half of the topological Egli-Milnerordering: K � "M implies L � "M if we assume K vTEM L.5. � �  = id: Given a lens L = C \ U we clearly have �S( (L)) � L. Using the continuity of Dand the compactness of L we infer that �S( (L)) must equal "L. Every basis element approximatingsome element of L occurs in some set of  (L), so �H( (L)) = Cl(L) is clear. Proposition 6.2.17 abovethen implies that � �  (L) gives back L.6.  � � = id: Given an ideal I we know that each M 2 I covers the lens �(I) in the sense of""M � �(I). So M is contained in  S (�(I)). By (2), we also have that M is contained in  H (Cl(�(I))).Conversely, if ""M � �(I) for a �nite set M of basis elements contained in ##�(I), then for some N 2 Iwe have ""M � N by the Hofmann-Mislove Theorem 4.2.14. For this N we have M �S N . On theother hand, each element a of M approximates some x 2 �(I) and hence belongs to some Na 2 I. Anupper bound for N and all Na in I, therefore, is above M in �EM which shows that M must belongto I.7. In the representation theorems for the one-sided powerdomains we have shown that formalunion translates to actual union. We combine this for the convex setting: �(I [ J) = �H(I [J) \ �S(I [ J) = (�H(I) [ �H(J)) \ (�S(I) [ �S(J)) = (Cl(�(I)) [ Cl(�(J))) \ ("�(I) [ "�(J)) =Cl(�(I) [ �(J)) \ "(�(I) [ �(J)).Note that we used countability of the basis only for showing that �H(I) can be recovered from�(I). In general, this is wrong. Exercise 6.2.23(11) discusses an example.The substitution of topological closure for downward closure was also necessary, as the examplein Figure 13 shows. There, the set A = "a is a lens but its downward closure is not Scott-closed, cis missing. The set A [ fcg is also a lens. It is below A in the topological Egli-Milner order but notin the plain Egli-Milner order. The convex closure of the union of the two lenses f?g and A is not alens, c must be added.A better representation theorem is obtained if we pass to coherent domains (Section 4.2.3). (Notethat the example in Figure 13 is not coherent, because the set fc1; ag has in�nitely many minimalupper bounds, violating the condition in Proposition 4.2.17.) We �rst observe that lenses are alwaysLawson closed sets. If the domain is coherent then this implies that they are also Lawson-compact.Compactness will allow us to use downward closure instead of topological closure.Lemma 6.2.20. Let L be a Lawson-compact subset of a continuous domain D. Then #L is Scott-closed.Proof. Let x be an element of D which does not belong to #L. For each y 2 L there exists by � xsuch that by 6v y. The set D n"by is Lawson-open and contains y. By compactness, �nitely many suchsets cover L. Let b be an upper bound for the associated basis elements approximating x. Then ""b isan open neighborhood of x which does not intersect L. Hence #L is closed.Corollary 6.2.21. The lenses of a coherent domain are precisely the convex Lawson-compact subsets.For these, topological Egli-Milner ordering and Egli-Milner ordering coincide.



66 Samson Abramsky and Achim JungTheorem 6.2.22. Let D be a coherent domain. The Plotkin powerdomain of D is isomorphic tohLens(D);vEM i. Formal union is interpreted as union followed by convex closure.Proof. The di�erences to the proof of Theorem 6.2.19, which are not taken care of by the precedingcorollary, concern part 2. We must show that Cl(�(I)) = #�(I) contains all of ##�H(I) \ B. In thepresence of coherence this can be done through the Hofmann-Mislove Theorem 4.2.14. The lower set�H(I) is a continuous domain in itself. For an element a of ##�H(I)\B we look at the �ltered collectionof upper sets J = f"a \ "M jM 2 Ig. Each of these is non-empty, because a belongs to some M 2 I,and compact saturated because of coherence. Hence T J is non-empty. It is also contained in �(I)and above a.6.2.4 Hyperspaces and probabilistic powerdomainsIn our presentation of powerdomains we have emphasized the feature that they are free algebras withrespect to certain (in-)equational theories. From the general existence theorem for such algebras wederived concrete representations as sets of subsets. This is the approach which in the realm of domaintheory was suggested �rst by Matthew Hennessy and Gordon Plotkin in [Hennessy and Plotkin, 1979]but it has a rather long tradition in algebraic semantics (see e.g. [Nivat and Reynolds, 1985]).However, it is not the only viewpoint one can take. One may also study certain sets of sub-sets of domains in their own right. In topology, this study of `hyperspaces', as they are called,is a long-standing tradition, starting with Felix Hausdor� [Hausdor�, 1914] and Leopold Vietoris[Vietoris, 1921, Vietoris, 1922]. It is also how the subject started in semantics and, indeed, continuesto be developed. A hyperspace can be interesting even if an equational characterization cannot befound or can be found only in restricted settings. Recent examples of this are the set-domains intro-duced by Peter Buneman [Buneman et al., 1988, Gunter, 1992a, Heckmann, 1990, Puhlmann, 1993,Heckmann, 1991, Heckmann, 1993b] in connection with a general theory of relational databases. Whilethese are quite natural from a domain-theoretic point of view, their equational characterizations (whichdo exist for some of them) are rather bizarre and do not give us much insight. The hyperspace approachis developed in logical form in Section 7.3.We should also mention the various attempts to de�ne a probabilistic version of the powerdo-main construction, see [Saheb-Djahromi, 1980, Main, 1985, Graham, 1988, Jones and Plotkin, 1989,Jones, 1990]. (As an aside, these cannot be restricted to algebraic domains; the wider concept ofcontinuous domain is forced upon us through the necessary use of the unit interval [0; 1].) They dohave an equational description in some sense but this goes beyond the techniques of this chapter.One can then ask abstractly what constitutes a powerdomain construction and build a theory uponsuch a de�nition. This approach was taken in [Heckmann, 1990, Heckmann, 1991]. The most notablefeature of this work is that under this perspective, too, many of the known powerdomains turn out tobe canonical in a precise sense. How this (very natural) formulation of canonicity is connected withconcerns in semantics, however, is as yet unclear.Exercises 6.2.23.1. For the proof of Theorem 6.1.6 we can equip FB also with the transitive closure of �s � @�.Show:(a) This relation �0 satis�es the interpolation axiom.(b) In general, �0 is di�erent from �.(c) The ideal completions of hFB;�i and hFB;�0i are isomorphic. (Use Exercise 2.3.9(27).)(d) What is the advantage of � over �0?2. Describe the free domain algebra for an arbitrary domain D and an arbitrary signature � in thecase that E is empty.3. Set up an algebraic theory such that all its dcpo-algebras have least elements but the embed-dings � are not strict.4. Let h�; Ei be the usual equational theory of groups (or boolean algebras). Show that any dcpo-algebra with respect to this theory is trivially ordered. Conclude that the free constructioncollapses each connected component of the generating dcpo into a single point.5. Given signatures � and �0 and sets of inequalities E and E 0 we call the pair h�; Ei a reduct ofh�0; E 0i if � � �0 and E � E 0. In this case there is an obvious forgetful functor from C(�0; E 0)to C(�; E), where C is any of the categories considered in this chapter. Show that the generaltechniques of Theorem 6.1.2 and 6.1.7 su�ce to prove that this functor has a left adjoint.
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Fig. 14. Part of an algebraic domain where Theorem 6.2.19 fails.6. Likewise, show that partial domain algebras can be completed freely.7. Let A be a free domain-algebra over an algebraic domain. Is it true that every operation, ifapplied to compact elements of A, returns a compact element?8. Let D = f? v a; b v >g be the four-element lattice (Figure 1) and let E = D � D. The setsfh?; ai; h?; big and fha;?i; hb;?ig are elements of the Plotkin powerdomain of E. Show thatthey have two minimalupper bounds. Since fh>;>ig is a top element, PP(E) is not an L-domain.9. Is the Plotkin powerdomain closed on F-B, the category whose objects are bilimits of �nite (butnot necessarily pointed) posets?10. De�ne a natural isomorphism between PH(D)?��E and [D �! E] where D is any continuousdomain, E is a complete lattice, and ���� stands for the set of functions which preserve allsuprema (ordered pointwise).11. We want to construct an algebraic domain D to which Theorem 6.2.19 cannot be extended.The compact elements of D are arranged in �nite sets already such that they form a directedcollection in the Egli-Milner ordering, generating the ideal I. We take one �nite set for eachelement of Pf (R), the �nite powerset of the reals (or any other uncountable set), and we willhave M� �EM M� if � � � � R. So we can arrange the M� in layers according to thecardinality of �. Each M� contains one `white' and j�j! many `black' elements. If � $ � thenthe white element of M� is below every element of M� . For the order between black elementslook at adjacent layers. There are j�j many subsets of � with cardinality j�j� 1. The j�j! manyblack elements of M� we partition into j�jmany classes of cardinality (j�j�1)!. So we can let theblack elements of a lower neighbor of M� be just below the equally many black elements of oneof these classes. (The idea being that no two black elements have an upper bound.) Figure 14shows a tiny fraction of the resulting ordered set K(D). Establish the following facts about thisdomain:(a) Above a black element there are only black, below a white element there are only whiteelements.(b) i. An ideal in K(D) can contain at most one black element from each set.ii. An ideal can contain at most one black element in each layer.iii. An ideal can contain at most countably many black elements.(c) i. An ideal meeting all sets must contain all white elements.ii. If an ideal contains a black element, then it contains the least black element a.iii. If an ideal meeting all sets contains a then it must contain upper bounds for a and theuncountably many white elements of the �rst layer. These upper bounds must forman uncountable set and consist solely of black elements.(d) From the contradiction between b-iii and c-iii conclude that only one ideal in KD meets allsets, the ideal W of white elements. Therefore, �(I) contains precisely one element, say b.Show that #b equals W [fbg and that it is Scott-closed. Hence it is far from containing allelements of S I = KD.(e) Go a step farther and prove that the lenses of D are not even directed-complete by showingthat the ideal I we started out with does not have an upper bound.12. (R. Heckmann) Remove idempotence from the Hoare powertheory and study free domain alge-bras with respect to this theory. These are no longer �nite if the generating domain is �nite.Show that the free algebra over the four-element lattice (Figure 1) is neither bi�nite nor anL-domain.



68 Samson Abramsky and Achim Jung7 Domains and logicThere are at least three ways in which the idea of a function can be formalized. The �rst is viaalgorithms, which is the Computer Science viewpoint. The second is via value tables or, in morelearned words, via graphs. This is the { rather recent { invention of Mathematics. The third, �nally,is via propositions: We can either take propositions about the function itself or view a function assomething which maps arguments which satisfy � to values which satisfy  . The encoding in thelatter case is by the set of all such pairs (�;  ). The beauty of the subject, then, lies in the interplaybetween these notions.The passage from algorithms (programs) to the extensional description via graphs is called deno-tational semantics. It requires sophisticated structures, precisely domains in the sense of this text,because of, for example, recursive de�nitions in programs. The passage from algorithms to propo-sitions about functions is called program logics. If we take the computer scientist's point of viewas primary then denotational semantics and program logics are two di�erent ways of describing thebehaviour of programs. It is the purpose of this chapter to lay out the connection between thesetwo forms of semantics. As propositions we allow all those formulae whose extensions in the domainunder consideration are (compact) Scott-open sets. This choice is well justi�ed because it can beargued that such propositions correspond to properties which can be detected in a �nite amount oftime [Abramsky, 1987]. The reader will �nd lucid explications of this point in [Smyth, 1992] and[Vickers, 1989].Mathematically, then, we have to study the relation between domains and their complete latticesof Scott-open sets. Stated for general topological spaces, this is the famous Stone duality. We treatit in Section 7.1. The restriction to domains introduces several extra features which we discuss ina one by one fashion in Section 7.2. The actual domain logic, as a syntactical theory, is laid out inSection 7.3.The whole open-set lattice, however, is too big to be syntactically represented. We must, on thishigher level, once more employ ideas of approximation and bases. There is a wide range of possibilitieshere, which can be grouped under the heading of information systems. We concentrate on one of these,namely, the logic of compact open subsets. This is well motivated by the general framework of Stoneduality and also gives the richest logic.7.1 Stone duality7.1.1 Approximation and distributivityWe start out with a few observations concerning distributivity. So far, this didn't play a role due tothe poor order theoretic properties of domains. Now, in the context of open set lattices, it becomes acentral theme, because, as we shall see, it is closely related with the concept of approximation. Theearliest account of this connection is probably [Raney, 1953].A word on notation: We shall try to keep a clear distinction between spaces, which in the end willbe our domains, and their open-set lattices. We shall emphasize this by using � for the less-than-or-equal-to relation whenever we speak of lattices, even though these do form a special class of domains,too, as you may remember from Section 4.1.Recall that a lattice L is said to be distributive if for all x; y; z 2 L the equalityx ^ (y _ z) = (x ^ y) _ (x ^ z)holds. The dual of this axiom is then satis�ed as well. For the in�nitary version of distributivity,we introduce the following notation for choice functions: If (Ai)i2I is a family of sets then we writef : I ��! SAi if f(i) takes its value in Ai for every i 2 I . Complete distributivity can then be expressedby the equation î2I_Ai = _f :I ��![Ai î2I f(i):It, too, implies its order dual, see Exercise 7.3.19(1). There is a lot of room for variations of this andwe shall meet a few of them in this section. Here comes the �rst:Theorem 7.1.1. A complete lattice L is continuous if and only if



Domain Theory 69î2I_"Ai = _"f :I ��![Ai î2I f(i)holds for all families (Ai)i2I of directed subsets of L.Proof. The reader should check for himself that the supremum on the right hand side is indeed overa directed set. Let now x be an element approximating the left hand side of the equation. Then foreach i 2 I we have x � W"Ai and so there is ai 2 Ai with x � ai. Let f be the choice functionwhich selects these ai. Then x � Vi2I f(i) and x is below the right hand side as well. Assuming L tobe continuous, this proves Vi2I W"Ai � W"f :I ��![Ai Vi2I f(i). The reverse inequality holds in everycomplete lattice.For the converse �x an element x 2 L and let (Ai)i2I be the family of all directed sets A for whichx � W"A. From the equality, which we now assume to hold, we get that x = W"f :I ��![Ai Vf(i). Weclaim that for each choice function f : I ��! SAi, the corresponding element Vi2I f(i) is approximat-ing x. Indeed, if A is a directed set with x � W"A then A = Ai0 for some i 2 I and so x � f(i0) 2 A.Let us now look at completely distributive lattices which, by the preceding theorem, are guaranteedto be continuous. We can go further and express this stronger distributivity by an approximationaxiom, too.De�nition 7.1.2. For a complete lattice L de�ne a relation n on L byxn y if 8A � L: (y �_A =) 9a 2 A: x � a):Call L prime-continuous if for every x 2 L, x = Wfy j yn xg holds.Note that the relationn is de�ned in just the same way as the order of approximation, except thatdirected sets are replaced by arbitrary subsets. All our fundamental results about the order of approx-imation hold, mutatis mutandis, forn as well. In particular, we shall make use of Proposition 2.2.10and Lemma 2.2.15. Adapting the previous theorem we get George N. Raney's characterization ofcomplete distributivity [Raney, 1953].Theorem 7.1.3. A complete lattice is prime-continuous if and only if it is completely distributive.Let us now turn our attention to `approximation' from above. The right concept for this is:De�nition 7.1.4. A complete lattice L is said to be ^-generated by a subset A if for every x 2 L,x = V("x \A) holds. (Dually, we can speak of _-generation.)We will study ^-generation by certain elements only, which we now introduce in somewhat greatergenerality than actually needed for our purposes.De�nition 7.1.5. An element x of a lattice L is called ^-irreducible if whenever x = VM for a �niteset M � L then it must be the case that x = m for some m 2M . We say x is ^-prime if x � VMimplies x � m for some m 2M , where M is again �nite. Stating these conditions for arbitrary M � Lgives rise to the notions of completely ^-irreducible and completely ^-prime element. The dual notionsare obtained by exchanging supremum for in�mum.Note that neither ^-irreducible nor ^-prime elements are ever equal to the top element of thelattice, because that is the in�mum of the empty set.Proposition 7.1.6. A ^-prime element is also ^-irreducible. The converse holds if the lattice isdistributive.Theorem 7.1.7. A continuous (algebraic) lattice L is ^-generated by its set of (completely) ^-irreducible elements.Proof. If x and y are elements of L such that x is not below y then there is a Scott-open �lter Fwhich contains x but not y, because #y is closed and the Scott-topology is generated by open �lters,Lemma 2.3.8. Employing the Axiom of Choice in the form of Zorn's Lemma, we �nd a maximalelement above y in the inductive set L n F . It is clearly ^-irreducible. In an algebraic lattice wecan choose F to be a principal �lter generated by a compact element. The maximal elements in thecomplement are then completely ^-irreducible.



70 Samson Abramsky and Achim JungTheorem 7.1.8. If L is a complete lattice which is ^-generated by ^-prime elements, then L satis�esthe equations m̂2M_Am = _f :M ��![Am m̂2M f(m)and _i2I^Mi = ^f :I ��![Mi_i2I f(i)where the sets M and Mi are �nite.A dual statement holds for lattices which are _-generated by _-prime elements.Proof. The right hand side is certainly below the left hand side, so assume that p is a ^-prime elementabove Wf :M ��![Am Vm2M f(m). Surely, p is above Vm2M f(m) for every f :M ��! [Am and becauseit is ^-prime it is above f(mf ) for some Mf 2 M . We claim that the set B of all f(mf ) covers atleast one Am. Assume the contrary. Then for each m 2 M there exists am 2 Am n B and we cande�ne a choice function f0:m 7! am. Then f0(mf0 ) 2 B contradicts our construction of f0. So weknow that for some m 2 M all elements of Am are below p and hence p is also above Vm2M WAm.The proof for the second equation is similar and simpler.Note that the two equations are not derivable from each other because of the side condition on�niteness. The �rst equation is equivalent tox ^_i2I yi = _i2I(x ^ yi)which can be stated without choice functions. In this latter form it is known as the frame distributivitylaw and complete lattices, which satisfy it, are called frames. The basic operations on a frame arethose which appear in this equation, namely, arbitrary join and �nite meet.7.1.2 From spaces to latticesGiven a topology � on a set X then � consists of certain subsets of X. We may think of � as anordered set where the order relation is set inclusion. This ordered set is a complete lattice becausearbitrary joins exist. Let us also look at continuous functions. In connection with open-set lattices itseems right to take the inverse image operation which, for a continuous function, is required to mapopens to opens. Set-theoretically, it preserves all unions and intersections of subsets, and hence alljoins and �nite meets of opens. This motivates the following de�nition.De�nition 7.1.9. A frame-homomorphism between complete lattices K and L is a map which pre-serves arbitrary suprema and �nite in�ma.We let CLat stand for the category of complete lattices and frame-homomorphisms. We want torelate it to Top, the category of topological spaces and continuous functions. The �rst half of thisrelation is given by the contravariant functor 
, which assigns to a topological space its lattice of opensubsets and to a continuous map the inverse image function.For an alternative description let 2 be the two-element chain ? � > equipped with the Scott-topology. The open sets of a space X are in one-to-one correspondence with continuous functionsfrom X to 2, if for each open set O � X we set �O to be the map which assigns > to an element x ifand only if x 2 O. The action of 
 on morphisms can then be expressed by 
(f)(�O) = �O � f .7.1.3 From lattices to topological spacesFor motivation, let us look at topological spaces �rst. An element of a topological space X is naturallyequipped with the following three pieces of information. We can associate with it its �lter Fx of openneighborhoods, the complement of its closure, or a map from 1, the one-element topological space,to X. Taking the �lter, for example, we observe that it has the additional property that if a union ofopen sets belongs to it then so does one of the opens. Also, the closure of a point has the property thatit cannot be contained in a union of closed sets without being contained in one of them already. Themap 1 ! X, which singles out the point, translates to a frame-homomorphism from 
(X) to 
(1) = 2.Let us �x this new piece of notation:
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L F 2c x c ?c >������@@@@@@������@@@������@@@ -�FFig. 15. A `point' in a complete lattice.De�nition 7.1.10. A �lter F � L is called prime if WM 2 F implies F \M 6= ; for all �nite M � L.Allowing M to be an arbitrary subset we arrive at the notion of completely prime �lter . Dually, wespeak of (completely) prime ideals.Proposition 7.1.11. Let L be a complete lattice and let F be a subset of L. The following areequivalent:1. F is a completely prime �lter.2. F is a �lter and L n F = #x for some x 2 L.3. L n F = #x for a ^-prime element x 2 L.4. �F is a frame-homomorphism from L to 2.This proposition shows that all three ways of characterizing points through opens coincide (seealso Figure 15). Each of them has its own virtues and we will take advantage of the coincidence. Asour o�cial de�nition we choose the variant which is closest to our treatment of topological spaces.De�nition 7.1.12. Let L be a complete lattice. The points of L are the completely prime �ltersof L. The collection pt(L) of all points is turned into a topological space by requiring all those subsetsof pt(L) to be open which are of the formOx = fF 2 pt(L) j x 2 Fg; x 2 L :Proposition 7.1.13. The sets Ox, x 2 L, form a topology on pt(L).Proof. We haveTm2M Oxm = O^m2Mxm , M �nite, because points are �lters andSi2I Oxi = O_i2Ixibecause they are completely prime.Observe the perfect symmetry of our setup. In a topological space an element x belongs to anopen set O if x 2 O; in a complete lattice a point F belongs to an open set Ox if x 2 F .By assigning to a complete lattice L the topological space of all points, and to a frame-homomorphismh:K ! L the map pt(h) which assigns to a point F the point h�1(F ) (which is readily seen to be acompletely prime �lter), we get a contravariant functor, also denoted by pt, from CLat to Top.Again, we give the alternative description based on characteristic functions. The fact is that wecan use the same object 2 for this purpose, because it is a complete lattice as well. One speaks of aschizophrenic object in such a situation. As we saw in Proposition 7.1.11, a completely prime �lter Fgives rise to a frame-homomorphism �F :L! 2. The action of the functor pt on morphisms can thenbe expressed, as before, by pt(h)(�F ) = �F � h.7.1.4 The basic adjunctionA topological space X can be mapped into the space of points of its open set lattice, simply mapx 2 X to the completely prime �lter Fx of its open neighborhoods. This assignment, which we denoteby �X :X ! pt(
(X)), is continuous and open: Let U be an open set in X. Then we get by simplyunwinding the de�nitions: Fx 2 OU () U 2 Fx () x 2 U . It also commutes with continuousfunctions f :X ! Y : pt(
(f))(�X (x)) = 
(f)�1(Fx) = Ff(x) = �Y � f(x). So the family of all �Xconstitutes a natural transformation from the identity functor to pt �
.



72 Samson Abramsky and Achim JungThe same holds for complete lattices. We let "L:L ! 
(pt(L)) be the map which assigns Ox tox 2 L. It is a frame-homomorphismas we have seen in the proof of Proposition 7.1.13. To see that this,too, is a natural transformation, we check that it commutes with frame-homomorphisms h:K ! L:
(pt(h))("K (x)) = pt(h)�1(Ox) = Oh(x) = "L�h(x), which is essentially the same calculation as for �.We have all the ingredients to formulate the Stone Duality Theorem:Theorem 7.1.14. The functors 
:Top ! CLat and pt:CLat ! Top are dual adjoints of eachother. The units are � and ".Proof. It remains to check the triangle equalities
(X) "
(X)- 
(pt(
(X))) and pt(L) �pt(L)- pt(
(pt(L)))ZZZZZZZid ~ ZZZZZZZid ~
(X)?
(�X) pt(L)?pt("L)For the left diagram let O be an open set in X.
(�X )("
(X)(O)) = ��1X (OO) = fx 2 X j �X(x) 2 OOg= fx 2 X j Fx 2 OOg= fx 2 X j O 2 Fxg= fx 2 X j x 2 Og = O:The calculation for the right diagram is verbatim the same if we exchange � and ", 
 and pt, X andL, and O and F .While our concrete representation through open sets and completely prime �lters, respectively,allowed us a very concise proof of this theorem, it is nevertheless instructive to see how the unitsbehave in terms of characteristic functions. Their type is from X to (X ! 2) ! 2 and from L to(L ! 2) ! 2, whereby the right hand sides are revealed to be second duals. The canonical mappinginto a second dual is, of course, point evaluation: x 7! evx, where evx(�) = �(x). This is indeed whatboth � and " do.7.2 Some equivalences7.2.1 Sober spaces and spatial latticesIn this subsection we look more closely at the units � and �. We will need the following concept:De�nition 7.2.1. A closed subset of a topological space is called irreducible if it is non-empty andcannot be written as the union of two closed proper subsets.Clearly, an irreducible closed set corresponds via complementation to a ^-irreducible (and hence^-prime) element in the lattice of all open sets.Proposition 7.2.2. Let X be a topological space. Then �X :X ! pt(
(X)) is injective if and onlyif X satis�es the T0-separation axiom. It is surjective if and only if every irreducible closed set is theclosure of an element of X.Proof. The �rst half is just one of the various equivalent de�nitions of T0-separation: di�erent ele-ments have di�erent sets of open neighborhoods.For the second statement observe that the ^-prime elements of 
(X) are in one-to-one correspon-dence with completely prime �lters of open sets. The condition then simply says that every such �lterarises as the neighborhood �lter of an element of X.De�nition 7.2.3. A topological space X is called sober if �X is bijective.Note that if �X is bijective then it must be a homeomorphism because we know from Section 7.1.4that it is always continuous and open. By the preceding proposition, a space is sober if and only ifit is T0 and every irreducible closed set is the closure of a point. The intuitive meaning is, of course,that a space is sober if it can be recovered from its lattice of open sets.



Domain Theory 73Proposition 7.2.4. For any complete lattice L the unit "L:L! 
(pt(L)) is surjective and monotone.Furthermore, the following are equivalent:1. "L is injective.2. The elements of L are separated by completely prime �lters.3. L is ^-generated by ^-prime elements.4. If x 6� y then there exists a completely prime �lter F such that x 2 F and y 62 F .5. "L is order-re
ecting.Proof. We have seen in Proposition 7.1.13 that all open sets on pt(L) are of the form Ox for somex 2 L. This proves surjectivity. Monotonicity is clear because �lters are upper sets.Turning to the equivalent conditions for injectivity, we note that Ox = Oy is equivalent to x 2F () y 2 F for all completely prime �lters F . In other words, "L is injective if and only if theelements of L are separated by completely prime �lters. Given x 2 L let x0 be the in�mum of all^-primes above x. We want to show that x = x0. If x0 is strictly above x then there exists a completelyprime �lter containing x0 but not x. Using the equivalence of Proposition 7.1.11, we see that this isthe same as the existence of a ^-prime element in "x n "x0, a contradiction. From (3) the last twostatements follow easily. They, in turn, imply injectivity (which, in a general order-theoretic setting,is strictly weaker than order-re
ection).De�nition 7.2.5. A complete lattice L is called spatial if "L is bijective.The intuitive meaning in this case is that a spatial lattice can be thought of as a lattice of opensets for some topological space. A direct consequence of Theorem 7.1.8 is the following:Theorem 7.2.6. A spatial lattice is a frame. In particular, it is distributive.Theorem 7.2.7. For any complete lattice L the topological space pt(L) is sober. For any topologicalspace X the lattice 
(X) is spatial.Proof. The space of points of a lattice L is certainly T0, because if we are given di�erent completelyprime �lters then there is x 2 L which belongs to one of them but not the other. Hence, Ox containsone but not the other. For surjectivity of �pt(L) let A be an irreducible closed set of �lters. First of all,the union A of all �lters in A is a non-empty upper set in L which is unreachable by joins. Hence thecomplement of A is a principal ideal #x. Also, the complement of A in pt(L) certainly contains Ox.We claim that x must be ^-prime. Indeed, if y ^ z � x then A is covered by the complements of Oyand Oz, whence it is covered by one of them, say the complement of Oy, which means nothing elsethan y � x. It follows that A is contained in the closure of the point Ln#x. On the other hand, Ln#xbelongs to the closed set A as each of its open neighborhoods contains an element of A.The second statement is rather easier to argue for. If O and O0 are di�erent open sets then thereis an element x of X contained in one but not the other. Hence the neighborhood �lter of x, which isalways completely prime, separates O and O0.Corollary 7.2.8. The functors 
 and pt form a dual equivalence between the category of sober spacesand the category of spatial lattices.This result may suggest that a reasonable universe of topological spaces ought to consist of soberspaces, or, if one prefers the lattice-theoretic side, of spatial lattices. This is indeed true as far asspaces are concerned. For the lattice side, however, it has been argued forcefully that the right choiceis the larger category of frames (which are de�ned to be those complete lattices which satisfy theframe distributivity law, Section 7.1.1). The basis of these arguments is the fact that free framesexist, see [Johnstone, 1982], Theorem II.1.2, a property which holds neither for complete lattices norfor spatial lattices. (More information on this is in [Isbell, 1972, Johnstone, 1982, Johnstone, 1983].)The choice of using frames for doing topology has more recently found support from theoreticalcomputer science, because it is precisely the frame distributivity law which can be expected to holdfor observable properties of processes. Even though this connection is to a large extent the raison d'êtrefor this chapter, we must refer to [Abramsky, 1987, Abramsky, 1991b, Vickers, 1989, Smyth, 1992] foran in-depth discussion.7.2.2 Properties of sober spacesBecause application of pt � 
 to a space X is an essentially idempotent operation, it is best to thinkof pt(
(X)) as a completion of X. It is commonly called the soberi�cation of X. Completeness of



74 Samson Abramsky and Achim Jungthis particular kind is also at the heart of the Hofmann-Mislove Theorem, which we have met inSection 4.2.3 already and which we are now able to state in its full generality.Theorem 7.2.9. Let X be a sober space. The sets of open neighborhoods of compact saturated setsare precisely the Scott-open �lters in 
(X).Proof. It is pretty obvious that the neighborhoods of compact subsets are Scott-open �lters in 
(X).We are interested in the other direction. Given a Scott-open �lter F � 
(X) then the candidate forthe corresponding compact set is K = TF . We must show that each open neighborhood of A belongsto F already. For the sake of contradiction assume that there exists an open neighborhood O 62 F .By Zorn's Lemma we may further assume that O is maximal with this property. Because F is a�lter, O is ^-prime as an element of 
(X) and this is tantamount to saying that its complement Ais irreducible as a closed set. By sobriety it must be the closure of a single point x 2 X. The opensets which do not contain x are precisely those which are contained in O. Hence every open set fromthe �lter F contains x and so x belongs to K. This, �nally, contradicts our assumption that O is aneighborhood of K.This appeared �rst in [Hofmann and Mislove, 1981]. Our proof is taken from [Keimel and Paseka, to appear].Note that it relies, like almost everything else in this chapter, on the Axiom of Choice.Saturated sets are uniquely determined by their open neighborhoods, so we can reformulate thepreceding theorem as follows:Corollary 7.2.10. Let X be a sober space. The poset of compact saturated sets ordered by inclusionis dually isomorphic to the poset of Scott-open �lters in 
(X) (also ordered by inclusion).Corollary 7.2.11. Let X be a sober space. The �ltered intersection of a family of (non-empty)compact saturated subsets is compact (and non-empty). If such a �ltered intersection is contained inan open set O then some element of the family belongs to O already.Proof. By the Hofmann-Mislove Theorem we can switch freely between compact saturated sets andopen �lters in 
(X). Clearly, the directed union of open �lters is another such. This proves the �rststatement. For the intersection of a �ltered family to be contained in O means that O belongs to thedirected union of the corresponding �lters. Then O must be contained in one of these already. Theclaim about the intersection of non-empty sets follows from this directly because we can take O = ;.Every T0-space can be equipped with an order relation, called the specialization order , by settingx v y if for all open sets O, x 2 O implies y 2 O. We may then compare the given topology withtopologies de�ned on ordered sets. One of these which plays a role in this context, is the weak uppertopology . It is de�ned as the coarsest topology for which all sets of the form #x are closed.Proposition 7.2.12. For an T0-space X the topology on X is �ner than the weak upper topologyderived from the specialization order.Proposition 7.2.13. A sober space is a dcpo in its specialization order and its topology is coarserthan the Scott-topology derived from this order.Proof. By the equivalence between sober spaces and spatial lattices we may think of X as the pointsof a complete lattice L. It is seen without di�culties that the specialization order on X then translatesto the inclusion order of completely prime �lters. That a directed union of completely prime �lters isagain a completely prime �lter is immediate.Let S"i2I Fi be such a directed union. It belongs to an open set Ox if and only if x 2 Fi for somei 2 I. This shows that each Ox is Scott-open.A dcpo equipped with the Scott-topology, on the other hand, is not necessarily sober, see Exer-cise 7.3.19(7). We also record the following fact although we shall not make use of it.Theorem 7.2.14. The category of sober spaces is complete and cocomplete. It is also closed underretracts formed in the ambient category Top.For the reader's convenience we sum up our considerations in a table comparing concepts intopological spaces to concepts in pt(L) for L a complete lattice.



Domain Theory 75space pt(L)point completely prime �lter (c. p. �lter)specialization order inclusion orderopen set c. p. �lters containing some x 2 Lsaturated set c. p. �lters containing some upper setcompact saturated set c. p. �lters containing a Scott-open �lter7.2.3 Locally compact spaces and continuous latticesWe already know that sober spaces may be seen as dcpo's with an order-consistent topology. We moveon to more special kinds of spaces with the aim to characterize our various kinds of domains throughtheir open-set lattices. Our �rst step in this direction is to introduce local compactness. We have:Lemma 7.2.15. Distributive continuous lattices are spatial.Proof. We have shown in Theorem 7.1.7 that continuous lattices are ^-generated by ^-irreducibleelements. In a distributive lattice these are also ^-prime.Now recall that a topological space is called locally compact if every element has a fundamentalsystem of compact neighborhoods. This alone does not imply sobriety, as the ascending chain ofnatural numbers, equipped with the weak upper topology, shows. But in combination with sobrietywe get the following beautiful result:Theorem 7.2.16. The functors 
 and pt restrict to a dual equivalence between the category of soberlocally compact spaces and the category of distributive continuous lattices.Proof. We have seen in Section 4.2.3 already that O � O0 holds in 
(X) if there is a compact setbetween O and O0. This proves that the open-set lattice of a locally compact space is continuous.For the converse, let F be a point in an open set Ox, that is, x 2 F . A completely prime �lter isScott-open, therefore there is a further element y 2 F with y � x. Lemma 2.3.8 tells us that thereis a Scott-open �lter G contained in ""y which contains x. We know by the previous lemma that adistributive continuous lattice can be thought of as the open-set lattice of its space of points, which,furthermore, is guaranteed to be sober. So we can apply the Hofmann-Mislove Theorem 7.2.9 andget that the set A of points of L, which are supersets of G, is compact saturated. In summary, F iscontained in Oy which is a subset of A and this is a subset of Ox.From now on, all our spaces are locally compact and sober. The three properties introduced inthe next three subsections, however, are independent of each other.7.2.4 CoherenceWe have introduced coherence in Section 4.2.3 for the special case of continuous domains. The generalde�nition reads as follows:De�nition 7.2.17. A topological space is called coherent , if it is sober, locally compact, and theintersection of two compact saturated subsets is compact.De�nition 7.2.18. The order of approximation on a complete lattice is called multiplicative if x� yand x� z imply x� y ^ z. A distributive continuous lattice for which the order of approximation ismultiplicative is called arithmetic.As a generalization of Proposition 4.2.16 we have:Theorem 7.2.19. The functors 
 and pt restrict to a dual equivalence between the category of co-herent spaces and the category of arithmetic lattices.Proof. The same arguments as in Proposition 4.2.15 apply, so it is clear that the open-set lattice of acoherent space is arithmetic. For the converse we may, just as in the proof of Theorem 7.2.19, invokethe Hofmann-Mislove Theorem. It tells us that compact saturated sets of pt(L) are in one-to-onecorrespondence with Scott-open �lters. Multiplicativity of the order of approximation is just what weneed to prove that the pointwise in�mum of two Scott-open �lters is again Scott-open.7.2.5 Compact-open sets and spectral spacesBy passing from continuous lattices to algebraic ones we get:



76 Samson Abramsky and Achim JungTheorem 7.2.20. The functors 
 and pt restrict to a dual equivalence between the category of soberspaces, in which every element has a fundamental system of compact-open neighborhoods, and thecategory of distributive algebraic lattices.The proof is the same as for distributive continuous lattices, Theorem 7.2.16. We now combinethis with coherence.De�nition 7.2.21. A topological space, which is coherent and in which every element has a funda-mental system of compact-open neighborhoods, is called a spectral space.Theorem 7.2.22. The functors 
 and pt restrict to a dual equivalence between the category of spectralspaces and the category of algebraic arithmetic lattices.Having arrived at this level, we can replace the open-set lattice with the sublattice of compact-open subsets. Our next task then is to reformulate Stone-duality with bases of open-set lattices. Forobjects we have:Proposition 7.2.23. Let L be an algebraic arithmetic lattice. The completely prime �lters of L arein one-to-one correspondence with the prime �lters of K(L). The topology on pt(L) is generated bythe set of all Ox, where x is compact in L.Proof. Given a completely prime �lter F in L, we let F \ K(L) be the set of compact elementscontained in it. This is clearly an upwards closed set in K(L). It is a �lter, because L is arithmetic.Primeness, �nally, follows from the fact that F is Scott-open and hence equal to "(F \ K(L)). Con-versely, a �lter G in K(L) generates a �lter "G in L. For complete primeness let A be a subset of Lwith join in "G. L is algebraic. So we may replace A by B = #A\K(L) and WB 2 "G will still hold.Because "G is Scott-open, there is a �nite subset M of B with WM 2 "G. Some element of G mustbe below WM and primeness then gives us that some element of M belongs to G already.The statement about the topology on pt(L) follows from the fact that every element of L is a joinof compact elements.A frame-homomorphism between algebraic arithmetic lattices need not preserve compact elements,so in order to represent it through bases we need to resort to relations, as in Section 2.2.6, De�ni-tion 2.2.27. Two additional axioms are needed, however, because frame-homomorphisms are morespecial than Scott-continuous functions.De�nition 7.2.24. A relationR between lattices V and W is called join-approximable if the followingconditions are satis�ed:1. 8x; x0 2 V 8y; y0 2 W: (x0 � x R y � y0 =) x0 R y0);2. 8x 2 V 8N ��n W: (8y 2 N: x R y =) x R (WN ));3. 8M ��n V 8y 2W: (8x 2M: x R y =) (VM ) R y);4. 8M ��n V 8x 2W: ((WM ) R x =) 9N ��n W:(x = WN ^ 8n 2 N9m 2M: m R n)).The following is then easily established:Proposition 7.2.25. The category of algebraic arithmetic lattices and frame-homomorphisms isequivalent to the category of distributive lattices and join-approximable relations.By Proposition 7.2.23 we can replace the compound functor pt � Idl by a direct construction ofa topological space out of a distributive lattice. We denote this functor by spec, standing for thespectrum of a distributive lattice. We also contract K �
 to K
. Then we can say:Theorem 7.2.26. The category of spectral spaces and continuous functions is dually equivalent tothe category of distributive lattices and join-approximable relations via the contravariant functors K
and spec.We supplement the table in Section 7.2.2 with the following comparison of concepts in a topologicalspace and concepts in the spectrum of a distributive lattice.



Domain Theory 77space spec(L)point prime �lterspecialization order inclusion ordercompact-open set prime �lters containing some x 2 Lopen set union of compact open setssaturated set prime �lters containing some upper setcompact saturated set prime �lters containing a �lterIt has been argued that the category of spectral spaces is the right setting for denotational se-mantics, precisely because these have a �nitary `logical' description through their distributive latticesof compact-open subsets, see [Smyth, 1992], for example. However, this category is neither cartesianclosed, nor does it have �xpoints for endofunctions, and hence does not provide an adequate universefor the semantics of computation. An intriguing question arises, of how the kinds of spaces tradi-tionally studied in topology and analysis can best be reconciled with the computational intuitionsre
ected in the very di�erent kinds of spaces which arise in Domain Theory. An interesting recentdevelopment is Abbas Edalat's use of Domain Theory as the basis for a novel approach to the theoryof integration [Edalat, 1993a].7.2.6 DomainsLet us now see how continuous domains come into the picture. First we note that sobriety no longerneeds to be assumed:Proposition 7.2.27. Continuous domains eqipped with the Scott-topology are sober spaces.Proof. Let A be an irreducible closed set in a continuous domain D and let B = ##A. We showthat B is directed. Indeed, given x and y in B, then neither D n ""x nor D n ""y contain all of A. Byirreducibility, then, they can't cover A. Hence there is a 2 A\""x\""y. But since ""x\""y is Scott-open,there is also some b � a in this set. This gives us the desired upper bound for x and y. It is plainfrom Proposition 2.2.10 that A is the closure of F"B.The following result of Jimmie Lawson and Rudolf-Eberhard Ho�mann, [Lawson, 1979, Ho�mann, 1981],demonstrates once again the central role played by continuous domains.Theorem 7.2.28. The functors 
 and pt restrict to a dual equivalence between CONT and thecategory of completely distributive lattices.Proof. A Scott-open set O in a continuous domain D is a union of sets of the form ""x where x 2 O.For each of these we have ""xn O in �D. This proves complete distributivity, as we have seen inTheorem 7.1.3.For the converse, let L be completely distributive. We already know that the points of L forma dcpo (where the order is given by inclusion of �lters) and that the topology on pt(L) is containedin the Scott-topology of this dcpo. Now we show that every completely prime �lter F has enoughapproximants. Observe that F 0 � F certainly holds in all those cases where VF 0 is an element of Fas directed suprema of points are unions of �lters. Now given x 2 F we get from prime-continuity thatx = W fy j yn xg and so there must be some y 2 F with yn x. Successively interpolating betweeny and x gives us a sequence of elements such that yn : : :n yn n : : :n y1 n x, just as in theproof of Lemma 2.3.8. The set Sn2N"yn then is a completely prime �lter containing x with in�mumin F . The directedness of these approximants is clear because F is �ltered. As a consequence, wehave that F 0� F holds if and only if VF 0 belongs to F .We are not quite �nished, though, because we also need to show that we get the Scott-topologyback. To this end let O be a Scott-open set of points, that is, F � F 0 2 O implies F 2 O andS"i2I Fi 2 O implies Fi 2 O for some i 2 I . Let x be the supremum of all elements of the form VF ,F 2 O. We claim that O = Ox. First of all, for each F 2 O there is F 0 2 O with F 0 � F , which, aswe have just seen, is tantamount to VF 0 2 F , hence x belongs to all F and O � Ox is proved.Conversely, if a point G contains x then it must contain someVF , F 2 O, because it is completelyprime. Hence G belongs to O, too, and we have shown Ox � O.To this we can add coherence and we get a dual equivalence between coherent domains andcompletely distributive arithmetic lattices. Or we can add algebraicity and get a dual equivalencebetween algebraic domains and algebraic completely distributive lattices. Adding both properties



78 Samson Abramsky and Achim Jungcharacterizes what can be called 2/3-bi�nite domains in the light of Proposition 4.2.17. We prefer tospeak of coherent algebraic domains. As these are spectral spaces, we may also ask how they can becharacterized through the lattice of compact open subsets. The answer is rather simple: A compactopen set in an algebraic domain D is a �nite union of sets of the form "c for c 2 K(D). These, inturn, are characterized by being _-irreducible and also _-prime.Theorem 7.2.29. The dual equivalence of Theorem 7.2.26 cuts down to a dual equivalence of coherentalgebraic domains and lattices in which every element is the join of �nitely many _-primes.Proof. We only need to show that if a lattice satis�es the condition stated in the theorem, then itsideal completion is completely distributive. But this is trivial because a principal ideal generated by a_-prime is completely _-prime in the ideal completion and so the result follows from Theorem 7.1.3.All the combined strength of complete distributivity, algebraicity and multiplicativity of the orderof approximation, however, does still not restrict the corresponding spaces far enough so as to bringus into one of our cartesian closed categories of domains. Let us therefore see what we have to add inorder to characterize bi�nite domains. The only solution in this setting appears to be a translation ofmub-closures into the lattice of compact-open subsets, that is to say, the subset of _-primes has theupside-down �nite mub property (De�nition 4.2.1). Let us sum up these considerations in a theorem:Theorem 7.2.30. A lattice V is isomorphic to the lattice of compact-open subsets of an F-B-domain(De�nition 4.3.7) if and only if, �rstly, V has a least element, secondly, each element of V is thesupremum of �nitely many _-primes and, thirdly, for every �nite set M of _-primes there is a �nitesuperset N of _-primes such that 8A �M 9B � N: ^A =_B:The additional requirement that there be a largest element which is also _-prime, characterizes thelattices of compact-open subsets of bi�nite domains.The extra condition about �nite mub-closures is not a �rst-order axiom and cannot be replacedby one as was shown by Carl Gunter in [Gunter, 1986]. The smaller class of algebraic bc-domains hasa rather nicer description:Theorem 7.2.31. A lattice V is isomorphic to the lattice of compact-open subsets of an algebraicbc-domain if and only if it has a least element, each element of V is the supremum of �nitely many_-primes and the set of _-primes plus least element is closed under �nite in�ma.7.2.7 SummaryWe have summarized the results of this section in Figure 16 and Table 1. As labels we have inventeda few mnemonic names for categories. We won't use them outside this subsection. The �lled dotscorrespond to categories for which there is also a characterization in terms of compact-open subsets(spectral spaces). A similar diagram appears in [Gierz et al., 1980] but there not everything, whichappears to be an intersection of categories, really is one.7.3 The logical viewpointThis material is based on [Abramsky, 1991b].7.3.1 Working with lattices of compact-open subsetsHaving established the duality between algebraic domains and their lattices of compact-open subsetswe can now ask to what extent we can do domain theory through these lattices. We have alreadyindicated that such an approach o�ers many new insights but for the moment our motivation couldsimply be that working with lattices is a lot easier than working with dcpo's. `Doing domain the-ory' refers to performing the domain constructions of Sections 3.2, 3.3, 5 and 6, at least in a �rstapproximation.Let us try this out. Suppose you know K
(D) for some bi�nite domain D, how do you constructK
(D?), the lattice of compact-open subsets of the lifted domain? The answer is simple, just add anew top element: K
(D?) = K
(D)>. Coalesced sum also works �ne:K
(D �E) = (K
(D) n fDg)� (K
(E) n fEg) [ fD �Eg:
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Fig. 16. An overview of Stone-dualities in domain theory.We encounter the �rst problems when we look at the cartesian product. While it is clear that everycompact-open subset of D � E is a �nite union of products of compact-open subsets in the factors,there seems to be no simple criterion on such unions which would guarantee unique representation.The moral then is that we must allow for multiple representations of compact-open subsets. Insteadof lattices we shall study certain preordered structures. At �rst glance this may seem as an unwantedcomplication but we will soon see that it really makes the whole programme work much more smoothly.Lattices are determined by either their order structure or their algebraic structure but this equiv-alence no longer holds in the preordered case. Instead we must mention both preorder and latticeoperations. We also make _-primeness explicit in our axiomatization. The reason for this is that wewant to keep all our de�nitions inductive. This point will become clearer when we discuss the functionspace construction below.De�nition 7.3.1. A coherent algebraic prelocale A is a preordered algebra with two binary operations_ and ^, two nullary operations 0 and 1, and a unary predicate C on A, such that a_ b is a supremumfor fa; bg, a ^ b is an in�mum for fa; bg, 0 is a least, and 1 is a largest element. The preorder on A isdenoted by ., the corresponding equivalence relation by �. The predicate C(a) is required to hold ifand only if a is _-prime. Finally, every element of A must be equivalent to a �nite join of _-primes.We will not distinguish between a prelocale and its underlying set. The set fa 2 A j C(a)g isabbreviated as C(A).This is essentially the de�nition which appears in [Abramsky, 1991b]. There another predicateis included. We can omit this because we will not look at the coalesced sum construction. Theexpressions `a supremum', `an in�mum', etc., may seem contradictory but they are exactly appropriatein the preordered universe. It is seen without di�culties that every coherent algebraic prelocale Agives rise to a lattice A=� which is _-generated by _-primes and hence distributive.A domain prelocale is gotten by incorporating the two extra conditions from Theorem 7.2.30:



80 Samson Abramsky and Achim JungTOP Topological spaces. No Stone-dual.SOB Sober spaces vs. spatial lattices.L-C Locally-compact sober spaces vs. continuous distributivelattices.COH Coherent spaces (= locally compact, sober, and intersectionof compact saturated is compact) vs. arithmetic lattices(= distributive, continuous, and order of approximation ismultiplicative).C-O Sober spaces with a base of compact-open sets vs. distribu-tive algebraic lattices.CONT Continuous domains with Scott-topology vs. completelydistributive lattices.SPEC Spectral spaces vs. algebraic arithmetic lattices vs. distribu-tive lattices.C-CONT Coherent domains vs. arithmetic completely distributivelattices.ALG Algebraic domains vs. algebraic completely distributivelattices.C-ALG Coherent algebraic domains vs. algebraic arithmetic com-pletely distributive lattices vs. distributive lattices in whichevery element is the �nite join of _-primes.F-B F-B-domains (De�nition 4.3.7) (= bilimits of �nite posets).Stone-dual only described through the basis (or base) ofcompact-open subsets, which is a distributive lattice withextra properties as stated in Theorem 7.2.30.B Bi�nite domains. Stone-dual only described through thebasis of compact-open subsets, which is a distributive lat-tice with extra properties as stated in Theorem 7.2.30.aBC Algebraic bounded-complete domains. Stone-dual only de-scribed through the basis of compact-open subsets, whichis a distributive lattice with extra properties as stated inTheorem 7.2.31.Table 1. The categories and their Stone-duals.� 8u ��n C(A) 9v ��n C(A): u � v and (8w � v 9z � v: Vw = W z);� C(1).De�nition 7.3.2. Let A and B be domain prelocales. A function �:A ! B is called a pre-isomorphism if it is surjective, order-preserving and order-re
ecting. If A is a domain prelocaleand D is a bi�nite domain and if further there is a pre-isomorphism J�K:A! K
(D) then we say thatA is a localic description of D via J�K.A pre-isomorphism �:A! B must preserve suprema, in�ma, and least and largest element (up toequivalence). Furthermore, it restricts and corestricts to a surjective map �0:C(A) ! C(B). Let uslook more closely at the case of a pre-isomorphism J�K:A! K
(D). A diagram may be quite helpful:



Domain Theory 81C(A) � - AK(D) �=dual C(K
(D))J�K0? � - K
(D)?J�KRemember that C(K
(D)) are just those compact-open subsets which are of the form "c forc 2 K(D). The inclusion order between such principal �lters is dual to the usual order on K(D).Let us now lift the pre-isomorphism to the domain level. In the previous chapters, the naturalapproach would have been to apply the ideal completion functor to the pre-isomorphism betweenC(A)op and K(D). Here we use Stone-duality and apply spec to J�K. This yields an isomorphism be-tween spec(A) and spec(K
(D)). Composed with the inverse of the unit � it gives us the isomorphism� : spec(A) ! D. spec(A) @@@@@� Rspec(K
(D))spec(J�K)�1? ��1 - DIt will be good to have a concrete idea of the behaviour of � , at least for compact elements of spec(A).These are �lters in A which are generated by _-prime elements. So let F = "a with a 2 C(A). Itis easily checked that � (F ) equals that compact element c of D which is least in the compact-opensubset JaK0.Proposition 7.3.3. There exists a map J�K:A! K
(D) such that the domain prelocale A is a localicdescription of the bi�nite domain D if and only if spec(A) and D are isomorphic.Proof. We have just described how to derive an isomorphism from a pre-isomorphism. For theconverse observe that the unit ":A! K
(spec(A)) is surjective, order-preserving and order-re
ecting(Proposition 7.2.4).For more general functions between domains, we can translate join-approximable relations into thelanguage of domain prelocales. The following is then just a slight extension of Theorem 7.2.30.Theorem 7.3.4. The category of domain prelocales and join-approximable relations is dually equiv-alent to the category of bi�nite domains and Scott-continuous functions.Our attempt to mimic the cartesian product construction forced us to pass to preordered structuresbut once we have accepted this we can go one step farther and make the prelocales syntactic objectsin which no identi�cations are made at all. More precisely, it is no loss of generality to assume thatthe underlying algebra is a term algebra with respect to the operations _;^; 0, and 1. As an example,let us describe the one-point domain I in this fashion. We take the term algebra on no generators,that is, every term is a combination of 0's and 1's. The preorder is the smallest relation compatiblewith the requirements in De�nition 7.3.1. The e�ect of this is that there are exactly two equivalenceclasses with respect to �, the terms equivalent to 1 and the terms equivalent to 0. The former areprecisely the _-prime terms. We denote the resulting domain prelocale by 1.The syntactic approach also suggests that we look at the following relation between domain pre-locales:De�nition 7.3.5. Let A and B be domain prelocales. We say that A is a sub-prelocale of B if thefollowing conditions are satis�ed:1. A is a subalgebra of B with respect to _;^; 0 and 1.2. The preorder on A is the restriction of the preorder on B to A.3. C(A) equals A \ C(B).We write A P B if A is a sub-prelocale of B.Proposition 7.3.6. If A is a sub-prelocale of B then the following de�nes an embedding projectionpair between spec(A) and spec(B):e: spec(A) ! spec(B); e(F ) = "B(F );



82 Samson Abramsky and Achim Jungp: spec(B) ! spec(A); p(F ) = F \A:Proof. It is clear that both e and p are continuous because directed joins of elements in spec(A),resp. spec(B), are just directed unions of prime �lters. We have p � e = id because the preorder on Ais the restriction of that on B. For e � p v id we don't need any special assumptions.The crucial point is that the two functions are well-de�ned in the sense that they indeed produceprime �lters. The �lter part follows again from the fact that both operations and preorder on A arethe restrictions of those on B. For primeness assume that WM 2 "B(F ) for some �nite M � B. Thismeans x . WM for some x 2 F . This element itself is a supremum of _-primes of A and because Fis a prime �lter in A we have some _-prime element x0 below WM in F . But we have also requiredthat the _-prime elements of A are precisely those _-prime elements of B which lie in A and thereforesome m 2M must be above x0.Primeness of F \ A, on the other hand, follows easily because suprema in A are also supremain B.Corollary 7.3.7. Assume that A is a localic description of D via J�KA, that B describes E via J�KB,and that A P B. Then the following de�nes an embedding e of D into E:If c 2 K(D), a 2 C(A), JaK0A = "c, JaK0B = "d, then e(c) = d.Proof. If we denote by e0 the embedding from spec(A) into spec(B) as de�ned in the precedingproposition, then the embedding e:D! E is nothing else but �B � e0 � ��1A .Of course, it happens more often that spec(A) is a sub-domain of spec(B) than that A is a sub-prelocale of B but the fact is that it will be fully su�cient and even advantageous to work with thestronger relation when it comes to solving recursive domain equations.7.3.2 Constructions: The general techniqueBefore we demonstrate how function space and Plotkin powerdomain can be constructed throughprelocales, let us outline the general technique. The overall picture is in the following diagram. Weexplain how to get its ingredients step by step below.C(T (A;A0)) � - T (A;A0)K(FT (D;D0)) �=dual C(K
(FT (D;D0)))J�K0? � - K
(FT (D;D0))?J�K1. The set-up. We want to study a construction T on (bi�nite) domains. This could be any onefrom the table in Section 3.2.6 or a bilimit or one of the powerdomain constructions from Section 6.2.The diagram illustrates a binary construction. We can assume that we understand the action ofthe associated functor FT on bi�nite domains. In particular, we know what the compact elementsof FT (D;D0) are, how they compare and how FT acts on embeddings (Proposition 5.2.6). Thus weshould have a clear understanding of the bottom row of the diagram, in detail:� FT (D;D0) is the e�ect of the functor FT on objects D and D0.� K(FT (D;D0)) are the compact elements of FT (D;D0).� K
(FT (D;D0)) are the compact-open subsets of FT (D;D0) and these are precisely those uppersets which are of the form "u for a �nite set u of compact elements.� C(K
(FT (D;D0))) are the _-prime elements of K
(FT (D;D0)) and these are precisely thosesubsets of FT (D;D0) which are of the form "c for c a compact element. The order is inclusionwhich is dual to the usual order on compact elements.Furthermore, we assume that we are given domain prelocales A and A0 which describe the bi�nitedomainsD andD0, respectively. These descriptions are encoded in pre-isomorphisms J�KA:A! K
(D)and J�KA0 :A0 ! K
(D0).2.The goal. We want to de�ne a domain prelocale T (A;A0) which is a localic description ofFT (D;D0). This is achieved in the following series of steps.



Domain Theory 833. De�nition of T (A;A0). This is the creative part of the enterprise. We search for a descriptionof compact-open subsets of FT (D;D0) based on our knowledge of the compact-open subsets of Dand D0. The point is to do this directly, not via the compact elements of D, D0, and FT (D;D0).There will be an immediate payo�, as we will gain an understanding of the construction in terms ofproperties rather than points. Our treatment of the Plotkin powerdomain below illustrates this mostconvincingly.The de�nition of T (A;A0) will proceed uniformly in all concrete instances. First a set GT ofgenerators is de�ned and then T (A;A0) is taken to be the term algebra over GT with respect to _;^; 0,and 1. An interpretation function J�K:GT ! K
(FT (D;D0)) is de�ned based on the interpretationsJ�KA and J�KA0 . It is extended to all of T (A;A0) as a lattice homomorphism: Ja _ bK = JaK [ JbK, etc.Finally, axioms and rules are given which govern the preorder and _-primeness predicate.Next we have to check that our de�nitions work. This task is also broken into a series of steps asfollows.4. Soundness. We check that axioms and rules translate via J�K into valid statements aboutcompact-open subsets of FT (D;D0). This is usually quite easy. From soundness we infer that J�K ismonotone and can be restricted and corestricted to a map J�K0:C(T (A;A0)) ! C(K
(FT (D;D0))).5. Prime generation. Using the axioms and rules, we prove that every element of T (A;A0) canbe transformed (e�ectively) into an equivalent term which is a �nite supremum of expressions whichare asserted to be _-prime. This is the crucial step and usually contains the main technical work.It allows us to prove the remaining properties of J�K through J�K0 and for the latter we can use ourknowledge of the basis of FT (D;D0).6. Completeness for _-primes. We show that J�K0 is order re
ecting.7. De�nability for _-primes. We show that J�K0 is surjective.At this point we can �ll in the remaining pieces without reference to the concrete constructionunder consideration.8. Completeness. The interpretation function J�K itself is order-re
ecting.Proof. Let a; b 2 T (A;A0) be such that JaK � JbK. By 5 we can replace these expressions by formaljoins of _-primes: a � a1 _ : : :_ an and b � b1_ : : :_ bm. Soundness ensures that the value under theinterpretation function remains unchanged and that each JaiK (resp. JbjK) is of the form "ci (resp. "dj)for ci; dj compact elements in FT (D;D0). The inclusion order on K
(FT (D;D0)) translates into theformula 8i 9j: "ci � "dj which by the completeness for _-primes can be pulled back into T (A;A0):8i 9j: ai . bj . In every preordered lattice it must follow that a . b holds.9. De�nability. The surjectivity of J�K is an easy consequence of the surjectivity of J�K0 becausewe know that compact-open subsets in an algebraic domain are �nite unions of compactly generatedprincipal �lters.10. Well-de�nedness. Of course, K
(FT (D;D0)) is a domain prelocale and we have just shownthat preorder and primeness predicate on T (A;A0) are preserved and re
ected by J�K. This constitutesa semantic proof that T (A;A0) satis�es the two extra conditions for domain prelocales. In other words,T is a well-de�ned operation on domain prelocales.11. Stone-duality. At this point we have shown that J�K is a pre-isomorphism. As in the previoussubsection we lift it to an isomorphism � between spec(T (A;A0)) and FT (D;D0) via Stone duality:spec(T (A;A0)) @@@@@� Rspec(K
(FT (D;D0)))spec(J�K)�1? ��1- FT (D;D0)So much for the correspondence on the object level. We also want to see how the construction Tharmonizes with the sub-prelocale relation, one the one hand, and the isomorphism � , on the otherhand. Thus we assume that we are given two more prelocales, B and B0, which are localic descriptionsof bi�nite domains E and E0, such that A P B and A0 P B0 hold. In Corollary 7.3.7 we have seen howto de�ne from this embeddings e:D ! E and e0:D0 ! E0. In Proposition 5.2.6 we have shown howthe functors associated with di�erent constructions act on embeddings, hence we may unambiguouslywrite FT (e; e0) for the result of this action, which is an embedding from FT (D;D0) to FT (E;E0).Embeddings preserve compact elements so FT (e; e0) restricts and corestricts to a monotone function



84 Samson Abramsky and Achim JungFT (e; e0)0:K(FT (D;D0)) ! K(FT (E;E0)). Now for both T (A;A0) and T (B;B0) we have a diagramsuch as depicted at the beginning of this subsection. We connect the lower left corners of these byFT (e; e0)0. This gives rise also to a map i from C(K
(FT (D;D0))) to C(K
(FT (E;E0))). Our way ofde�ning T (A;A0) will be such that it is immediate that C(T (A;A0)) is a subset of C(T (B;B0)) andhence there is an inclusion map connecting the upper left corners. Our next technical step then is thefollowing.12. Naturality. We show that the diagramC(T (A;A0)) � - C(T (B;B0))C(K
(FT (D;D0)))?J�K0T (A;A0) i- C(K
(FT (E;E0)))?J�K0T (B;B0)commutes. On the element level this reads: If a 2 C(T (A;A0)) and JaK0T (A;A0) = "c and JaK0T (B;B0) = "dthen FT (e; e0)0(c) = d. Now we can again get the remaining missing information in a general manner.13. Monotonicity. We show that T (A;A0) P T (B;B0). From the form of our construction itwill be clear that T (A;A0) is a subset of T (B;B0) and the axioms and rules will be such that whatevercan be derived in T (A;A0) can also be derived in T (B;B0). We must show that in the larger prelocalenothing extra can be proved for elements of T (A;A0). The argument is a semantic one.Proof. Let a; a0 2 C(T (A;A0)) such that a . a0 holds in T (B;B0). Let JaK0T (A;A0) = "c, JaK0T (B;B0) ="d and similarly for a0. Correctness says that "d � "d0 and hence d w d0. By naturality we haveFT (e; e0)0(c) = d w d0 = FT (e; e0)0(c0). Embeddings are order re
ecting so c w c0 follows. Complete-ness then allows us to conclude that a . a0 holds in T (A;A0) as well.In the same way it is seen that the predicate C on T (A;A0) is the restriction of that on T (B;B0).14. Least prelocale. It follows from the correctness of the construction that 1 P T (A;A0) holds.15. Naturality of � . Having established the relation T (A;A0) P T (B;B0) we can look at theembedding I: spec(T (A;A0)) ! spec(T (B;B0)) which we de�ned in Proposition 7.3.6. We claim thatthe following diagram commutes:spec(T (A;A0)) I - spec(T (B;B0))FT (D;D0)�A? FT (e; e0)- FT (E;E0)?�BIn other words, FT (e; e0) equals the embedding which can be derived from T (A;A0) P T (B;B0) in thegeneral manner of Corollary 7.3.7.Proof. This is a diagram of bi�nite domains and Scott-continuous functions. It therefore su�cesto check commutativity for compact elements. A compact element in spec(T (A;A0)) is a �lter Fgenerated by a term a 2 C(T (A;A0)). Its image under �A is the compact element c which generatesthe compact-open subset JaK0T (A;A0). The �lter I(F ) is generated by the same term a. Applying �Bto it gives us a compact element d which is least in JaK0T (A;A0). Step 12 ensures that FT (e; e0) mapsc to d.7.3.3 The function space constructionWe start out with two preparatory lemmas. The following notation will be helpful. We write (A) B)for the set of functions which map all of A into B.Lemma 7.3.8. The Scott-topology on the function space [D �! D0] for bi�nite domains D and D0equals the compact-open topology.Proof. Let A � D be compact and O � D0 be open and let F � [D �! D0] be a directed set ofcontinuous functions for which F"F maps A into O. For every x 2 A we have (F"F )(x) 2 O and



Domain Theory 85because O is open, there is fx 2 F with fx(x) 2 O. The collection of open sets of the form f�1x (O),x 2 A, covers A. By compactness, this is true for �nitely many f�1x (O) already. If we let f be anupper bound in F for these fx, then A � f�1(O) holds which is equivalent to f(A) � O. Hence(A) O) is a Scott-open set in [D �! D0].If, on the other hand, f belongs to a Scott-open open set O � [D �! D0] then this is truealso for some approximation g0m � f � gn with gn an idempotent de
ation on D, g0m an idempotentde
ation on D0. For each element x in the image of gn we have the set ("x) (""g0m � f � gn(x))). Theintersection of all these belongs to the compact-open topology, contains f , and is contained in O.Lemma 7.3.9. Let D and D0 be bi�nite and let A � D and A0 � D0 be compact-open. Then (A) A0)is compact-open in [D �! D0].Proof. We know that (A ) A0) de�nes an open set by the previous lemma. From bi�niteness weget idempotent de
ations gn on D and g0m on D0 such that A = "gn(A) and A0 = "g0m(A0). It followsthat (A ) A0) = "Gnm(A ) A0) for the idempotent de
ation Gnm on [D �! D0] which maps f tog0m � f � gn.Now let A and A0 be domain prelocales describing bi�nite domains D and D0, as outlined in thegeneral scheme in the previous subsection. The two lemmas justify the following choice of generatorsand interpretation function for our localic function space construction:G! = f(a! a0) j a 2 A; a0 2 A0g;J(a! a0)K = (JaKA ) Ja0KA0)Note that the elements (a! a0) are just syntactic expressions. Here are axioms and rules for thepreorder and C-predicate.Axioms.(!� ^) (a! Vi2I a0i) � Vi2I(a! a0i).(!� _ � l) (Wi2I ai ! a0) � Vi2I(ai ! a0).(dist) a ^ (b _ c) � (a ^ b) _ (a ^ c).Rules.(!� _ � r) If C(a) then (a! Wi2I a0i) � Wi2I(a! a0i).(!� .) If b . a and a0 . b0 then (a! a0) . (b! b0).(!� C) If 8i 2 I: (C(ai) and C(a0i)) and if 8K � I 9L � I:(Vk2K ak � Wl2L al and (8k 2 K; l 2 L: a0k . a0l))then C(Vi2I(ai ! a0i)).A few comments about these formulae are in place. First a convention: we assume that all indexsets are �nite, so that the expressions Vi2I ai, etc., do indeed belong to the term algebra over G!.Observe the use of the C-predicate in the rule (!� _ � r). Without it, it would be very di�cult toexpress this property. Also note that we enforce distributivity. This will be a prerequisite to proveprime generation below.It is clear that the rules are sound for the given interpretation, in particular, (! � C) is the exactmirror image of our de�nition of joinable families of step functions, De�nition 4.2.2. Let us thereforeimmediately turn to the crucial step 5. We cannot use Lemma 7.3.9 directly because we have notencoded the idempotent de
ations. We must �nd the minimal elements of a compact-open subsetexplicitly. We illustrate the general technique in an example.Suppose JaKA is of the form "c["d and Ja0KA0 is of the form "c0["d0. We get a minimal element of(("c [ "d) ) ("c0 [ "d0)) by choosing a value f(c) and a value f(d) from fc0; d0g. Then we must lookat the intersection "c\"d which again is of the form "e1[ : : :["en by coherence. For each ei we mustchoose a value from mubff(c); f(d)g = fe01; : : : ; e0mg. And so on. Bi�niteness of the argument domainensures that this process stops after a �nite number of iterations and that the result is a joinablefamily of pairs hx; f(x)i. Coherence of the result domain guarantees that all in all only �nitely manychoices are possible. (Note that it can happen that a set of minimal upper bounds in the image domainis empty. In this case we have just been unlucky with our choices. If Ja0KA0 is not empty then someminimal function exists.)



86 Samson Abramsky and Achim JungWe can mimic this procedure in the prelocale as follows. For simplicity and to make the analogyapparent, we let c; d stand for terms such that C(c);C(d) and a � c _ d. Similarly for a0. We get:(a! a0) �� ((c _ d) ! (c0 _ d0)) (!� .)� (c! (c0 _ d0)) ^ (d! (c0 _ d0)) (!� _ � l)� ((c! c0) _ (c! d0)) ^ ((d! c0) _ (d! d0)) (!� _ � r)� ((c! c0) ^ (d! d0)) _ : : : (3 more terms) (dist)We follow up only the �rst of these four terms. The trick is to smuggle in the _-prime terms e1; : : : ; enwhose join equals c ^ d.(c! c0) ^ (d! d0) �� ((c _ e1 _ : : :_ en) ! c0) ^ ((d _ e1 _ : : :_ en) ! d0) (!� .)� (c! c0) ^ (d! d0) ^ ((e1 _ : : :_ en) ! (c0 ^ d0)) (!� _ � l)� (c! c0) ^ (d! d0) ^ ((e1 _ : : :_ en) ! (e01 _ : : :_ e0m))and now induction may do its job. Eventually we will have transformed (a! a0) into a disjunction ofjoinable families. For these, _-primeness may be inferred through rule (!� C). Note that distribu-tivity allows us to replace every term by an equivalent term of the form W(V(ai ! a0i)) and for eachterm of the form V(ai ! a0i) the transformation works as illustrated.Next we show completeness for _-primes. So assume a and b are terms for which the C-predicateholds and for which JaK � JbK. It must be the case that a and b are equivalent to joinable familiesVi2I (ai ! a0i) and Vj2J (bj ! b0j) as there is no other way of deriving _-primeness in [A �! A0].The order relation between joinable families has been characterized in Lemma 4.2.3. Here it says:8i 2 I 9j 2 J: (JbjK � JaiK and Ja0iK � Jb0jK). Since we assume completeness for the constitutingprelocales A and A0, we may infer 8i 2 I 9j 2 J: (bj . ai and a0i . b0j). The relation a . b is noweasily derived from (!� .).De�nability for _-primes is immediate because we know that all compact functions arise fromjoinable families (Lemma 4.2.3 and Proposition 4.2.4).Properties 8 through 11 follow for all constructions uniformly. We are left with proving Naturality,Property 12. To this end, let us �rst see how the embedding [e �! e0] transforms a step function(a& a0). We have: [e �! e0]((a& a0)) = (a& e0(a0)) � e� and (a& e0(a0)) � e�(x) = e0(a0) () a ve�(x) () e(a) v x. We get the step function (e(a) & e0(a0)).Now let a � Vi2I(ai ! a0i) be an element of [A �! A0] for which C(a) holds. The interpretationJaK0[A �! A0] of a is the upper set generated by the joinable family of step functions (ci & c0i), whereJaiK0A = "ci and Ja0iK0A0 = "c0i for all i 2 I . Applying the embedding [e �! e0] to these gives us the stepfunctions (e(ci) & e0(c0i)) as we have just seen. By Corollary 7.3.7 we can rewrite these as (di & d0i),where JaiK0B = "di and Ja0iK0B0 = "d0i. The supremum of the joinable family ((di & d0i))i2I is least inJaK0[B �! B0]. This was to be proved.Taking D to be spec(A) and E to be spec(B) we can express the faithfulness of our localic con-struction quite concisely as follows:Theorem 7.3.10. Let A and B be domain prelocales. Then[spec(A) �! spec(B)] �= spec([A �! B])and this isomorphism is natural with respect to the sub-prelocale relation.7.3.4 The Plotkin powerlocaleNext we want to describe the lattice of compact-open subsets of the Plotkin powerdomain of a bi�nitedomainD. By Theorem 6.2.22 we know that PP(D) is concretely represented as the set of lenses in D,ordered by the Egli-Milner ordering (De�nition 6.2.2). The compact elements in PP(D) are thoselenses which are convex closures of �nite non-empty subsets of K(D) (Proposition 6.2.6). Idempotentde
ations d on D can be lifted to PP(D) because PP is a functor. They map a lens L to the convexclosure of d(L).The compact-open subsets of PP(D), however, are not so readily described. The problem is thatone half of the Egli-Milner ordering refers to closed lower sets rather than upper sets. We do not



Domain Theory 87follow this up as there is no logical pathway from the order theory to the axiomatization we areaiming for. It is much more e�cient to either consult the mathematical literature on hyperspaces(see [Vietoris, 1921, Vietoris, 1922, Smyth, 1983b]) or to remind ourselves that powerdomains wereintroduced to model non-deterministic behaviour. If we think of the compact-open subsets in D asobservations that can be made about outcomes of a computation, then it is pretty clear that there aretwo ways of using these to make statements about non-deterministic programs: It could be the casethat all runs of the program satisfy the property or it could be that at least one run satis�es it. Letus check the mathematics:Lemma 7.3.11. If D is a bi�nite domain and O is compact-open in D, then the following arecompact-open subsets in PP(D):A(O) = fL 2 Lens(D) j L � Og;E(O) = fL 2 Lens(D) j L \O 6= ;g;Furthermore, if we let O range over all compact-open subsets in D then the collection of all A(O)and E(O) forms a base for the Scott-topology on PP(D).Proof. Let O be compact-open. Then O is the upper set of �nitely many compact elements and we�nd an idempotent de
ation d such that O = "d(O). It is clear that for d̂ = PP(d) we have bothA(O) = "d̂(A(O)) and E(O) = "d̂(E(O)). Hence these sets are compact-open, too.Let K be a compact lens, that is, of the form Cx(u) for u ��n K(D). The upper set of K in PP(D)can be written as A("u) \Tc2u E("c).The following de�nition then comes as no surprise:De�nition7.3.12. Let A be a domain prelocale which is a localic description of the bi�nite domainD.We de�ne the Plotkin powerlocale PP(A) over A as the term algebra over the generatorsGP = f�a j a 2 Ag [ f�a j a 2 Agwith the interpretation function J�K:PP(A) ! K
(PP(D)) de�ned byJ�aK = A(JaK); J�aK = E(JaK)on the generators and extended to PP(A) as a lattice homomorphism.Preorder and C-predicate are de�ned as followsAxioms.(� � ^) �(Vi2I ai) = Vi2I �ai,(� � 0) �0 = 0,(� � _) �(Wi2I ai) = Wi2I �ai,(� � 1) �1 = 1,(� � _) �(a _ b) . �a _ �b,(� � ^) �a ^�b . �(a ^ b),(dist) a ^ (b _ c) � (a ^ b) _ (a ^ c).Rules.(P � .) If a . b then �a . �b and �a . �b,(P � C) If C(ai) holds for all i 2 I and I is non-empty, thenC(�(Wi2I ai) ^Vi2I �ai).Note that we again require distributivity explicitly. The derivation scheme is almost minimal (incombination with the rest, (� � 0) and (� � 1) are equivalent). The following derived axioms aremore useful than (� � _) and (� � ^):(D1) �(a _ b) � �a _ (�(a _ b) ^�b),(D2) �a ^ �b � �a ^ �(a ^ b).We leave it to the interested reader to check soundness and pass straight on to the central Step 5,which is generation by _-prime elements.



88 Samson Abramsky and Achim JungProof. Given an expression in PP(A) we �rst transform it into a disjunction of conjunctions by usingthe distributivity axiom. Thus it su�ces to represent a term of the formî2I�ai ^ ĵ2J �bjas a disjunction of _-primes. But we can simplify further. Using (� � ^) we can pack all�-generatorsinto a single term �a and by (D2) we can assume that for each j 2 J we have bj . a. We representeach bj as a disjunction of _-primes of A and applying (� � _) and distributivity again we arrive ata disjunction of terms of the form �a ^ m̂j=1�djwhere each dj 2 C(A). Now we write a as a disjunction of _-primes ci. Since each dj is below a, itdoesn't hurt to add these, too. We get:�(c1 _ : : :_ cn _ d1 _ : : :_ dm) ^ m̂j=1�dj:As yet we can not apply the _-primeness rule (P � C) because the two sets fc1; : : : ; cn; d1; : : : ; dmgand fd1; : : : ; dmg may fail to coincide. Looking at the semantics for a moment, we see that in thecompact-open subset thus described the minimal lenses are (the convex closures of) the least elementsfrom each JdjK0A plus some of the generators of the JciK0A. We therefore take our term further apart soas to have a _-prime expression for each subset of fc1; : : : ; cng. For this we use (D1). One application(plus some distributivity) yields��(c2 _ : : :_ cn _ d1 _ : : :_ dm) ^ m̂j=1�dj� _��(c1 _ : : :_ cn _ d1 _ : : :_ dm) ^ �c1 ^ m̂j=1�dj�and the picture becomes obvious.Next we check that J�K0 is order-re
ecting.Proof. Assume J�(Wi2I ai) ^Vi2I �aiK0 � J�(Wi2I bj) ^Vj2J �bjK0 and let ci and dj be the leastcompact elements in JaiK0A, respectively JbjK0A. Then we have fdj j j 2 Jg vEM fci j i 2 Ig, that is,8i 2 I 9j 2 J: "ci � "dj;8j 2 J 9i 2 I: "ci � "dj:Since we assume that J�K0A is order-re
ecting, we get from the �rst equation Wi2I ai . Wj2J bj andfrom the second Vi2I �ai . Vj2J �bj.The de�nability for _-primes was shown in Lemma 7.3.11 already. Hence we are left with checkingNaturality, which is Step 12.Proof. Let t = �(Wi2I ai) ^Vi2I �ai be a _-prime element in PP(A) and let A be a sub-prelocaleof B. Let e be the associated embedding from D to E. The least element in JtK0PP(A) is the convexclosure of the set of minimal elements ci in JaiK0A. Applying PP(e) to it gives the convex closure offe(ci) j i 2 Ig, as we have argued in the remark following Theorem 6.1.9. Corollary 7.3.7 tells us thatthis is the least element in JtK0PP(B).As in the case of the function space construction we summarize:Theorem 7.3.13. Let A be a domain prelocale. ThenPP(spec(A)) �= spec(PP(A))and this isomorphism is natural with respect to the sub-prelocale relation.



Domain Theory 89The prelocales for Hoare and Smyth powerdomain are much easier to describe. All we have to dois to elide all generators and rules which refer to �, respectively �.7.3.5 Recursive domain equationsIn this subsection we will treat bilimits in the same fashion as we have studied �nitary constructions.We assume that we are given domain prelocales A0 P A1 P A2 P : : : such that each An describessome bi�nite domain Dn. Corollary 7.3.7 states how the sub-prelocale relation between An and Am,for n � m, translates into an embedding emn:Dn ! Dm. It is seen easily that h(Dn)n2N; (emn)n�mi isan expanding system, that is, for n � m � k, ekn = ekm �emn holds. We claim that the directed unionA = Sn2NAn is a domain prelocale which describes D = bilimDn. The �rst claim is fairly obvious asall requirements about prelocales refer to �nitely many elements only and hence a property of A canbe inferred from its validity in some An. For the second claim we need to specify the interpretationfunction. To this end let lm be the embedding of Dm into the bilimit (as de�ned in Theorem 3.3.7).Then we can set JaK = lm(JaKAm) where m 2 N is such that a is contained in Am. The exact choiceof m does not matter; if m � k then by Corollary 7.3.7 we have: JaKAk = ekm(JaKAm) and applyinglk to this yields lk(JaKAk) = lk � ekm(JaKAm ) = lm(JaKAm). The interpretation function is well-de�nedbecause embeddings preserve the order of approximation (Proposition 3.1.14), hence compact elementsand compact-open subsets are also preserved.In order to see that J�K is a pre-isomorphism we proceed as before, checking Steps 4, 5, 6, 7,and 12. It is, actually, rather simple. Soundness holds because the lm are monotone and map compactelements to compact elements. Prime generation holds because it holds in each Am. Since the lm arealso order-re
ecting we get completeness from the completeness of the J�KAm . De�nability follows fromTheorem 3.3.11; the only compact elements in D are the images (under ln) of compact elements in theapproximating Dn. If we are given a second sequence B0 P B1 P B2 P : : : of prelocales (describingE0; E1; : : :) such that for each n 2 N we have An P Bn then it is clear that A P B = Sn2NBn holds,too. For Naturality (Step 12) we must relate this to the embedding e from D to E = bilimEn. Theexact form of the latter can be extracted from Theorem 3.3.7: e = Fn2Nkn � en � l�n, where kn is theembedding of En into E and en:Dn ! En is the embedding derived from An P Bn. Now let a be_-prime in A. We have e(JaK0A) = (Gn2Nkn � en � l�n)(lm(JaK0Am))= Gn�mkn � en(JaK0Am)= Gn�mkn(JaK0Bm)= JaK0B ;and our proof is complete.Theorem 7.3.14. If A0 P A1 P A2 P : : : is a chain of domain prelocales, thenspec([n2NAn) �= bilim(spec(An))n2N:Observe how simple the limit operation for prelocales is if compared with a bilimit. This comesto full 
ower if we look at recursive domain equations. If T is a construction built from those whichcan be treated localically (we have seen function space, Plotkin powerdomain, and bilimit, but all theothers from Section 3.2 can also be included) then we can �nd the initial �xpoint of the functor FTon the localic side by simply taking the union of 1 P T (1) P T (T (1)) P : : : . Why does this work andwhy does the result describe the canonical �xpoint of FT ? First of all, we have 1 P T (1) by Step 14.Successively applying T to this relation gives us Tn(1) P Tn+1(1) by Monotonicity (Step 13). Hencewe do have a chain 1 P T (1) P T (T (1)) P : : : as stated and we can form its union A. It obviouslyis a �xpoint of the construction T and therefore the domain D described by it is a �xpoint of thefunctor FT . But notice that we have T (A) = A rather than merely T (A) �= A. This is not so surprisingas it may seem at �rst sight. Domain prelocales are only representations of domains and what we areexploiting here is the simple idea that we can let A represent both D and FT (D) via two di�erent



90 Samson Abramsky and Achim Junginterpretation functions. Let us now address the question about canonicity. It su�ces to check thatthe embedding corresponding to T (1) P T 2(1) is equal to FT (e) where e:I! FT (I) corresponds to1 P T (1). This is precisely the naturality of � which we listed as Step 15. It follows that the bilimitis the same as the one constructed in Chapter 5.7.3.6 Languages for types, properties, and pointsWe de�ne a formal language of type expressions by the following grammar:� :: = 1 j X j (�!�) j (���) j (���) j (�)? j PP(�) j recX:�where X ranges over a set TV of type variables. More constructions can be added to this list, ofcourse, such as strict function space, smash product, Hoare powerdomain, and Smyth powerdomain.On the other hand, we do not include expressions for basic types, such as integers and booleans, asthese can be encoded in our language by simple formulae.We have seen two ways to interpret type expressions. The �rst interpretation takes values directlyin B, the category of bi�nite domains, and is based on the constructions in Sections 3.2, 3.3, 5.1,and 6.2. Since a type expression may contain free variables, the interpretation can be de�ned onlyrelative to an environment �D:TV ! B, which assigns to each type variable a bi�nite domain. Thesemantic clauses corresponding to the individual rules of the grammar are as follows:ID(1; �D) = I;ID(X; �D) = �D(X);ID((� ! � ); �D) = [ID(�; �D) �! ID(� ; �D)];etc.ID(recX:�; �D) = FIX(FT );where FT (D) = ID(�; �D[X 7! D]):The expression �D [X 7! D] denotes the environment which maps X to D and coincides with �D atall other variables .Our work in the preceding subsections suggests that we can also interpret type expressions inthe category DomPreloc of domain prelocales. Call the corresponding mappings IL and �L. Thesemantic clauses for this localic interpretation are:IL(1; �L) = 1;IL(X; �L) = �L(X);IL((� ! � ); �L) = [IL(�; �L) ! IL(� ; �L)];etc.IL(recX:�; �L) = [Tn(1);where T (A) = IL(�; �L[X 7! A]):The preceding subsections were meant to convince the reader of the following:Theorem 7.3.15. If �L and �D are environments such that for each X 2 TV the domain prelocale�L(X) is a localic description of �D(X), then for every type expression � it holds that IL(�; �L) is alocalic description of ID(�; �D). As a formula:spec(IL(�; �L)) �= ID(�; �D) :The next step is to de�ne for each type expression � a formal language L(�) of (computational orobservational) properties. This is done through the following inductive de�nition:=) true; false 2 L(�);�;  2 L(�) =) � ^ ; � _  2 L(�);� 2 L(�);  2 L(� ) =) (�! ) 2 L(�!� );� 2 L(�);  2 L(� ) =) (�� ) 2 L(��� );



Domain Theory 91� 2 L(�) =) (��false) 2 L(��� ); 2 L(� ) =) (false� ) 2 L(��� );� 2 L(�) =) (�)? 2 L((�)?);� 2 L(�) =) ��;�� 2 L(PP(�));� 2 L(�[recX:�=X]) =) � 2 L(�):Here we have used the expression �[�=X] to denote the substitution of � for X in �. The usualcaveat about capture of free variables applies but let us not dwell on this. The rules exhibited abovewill generate for each � the carrier set of a (syntactical) domain prelocale in the style of the previoussubsections. Note that we don't need special properties for a recursively de�ned type as these are justthe properties of the approximating domains bundled together (Theorem 7.3.14).On each L(�) we de�ne a preorder . and predicates C and T (the latter is needed for the coalescedsum construction) through yet another inductive de�nition. For example, the following axioms andrules enforce that each L(�) is a preordered distributive lattice.=) � . �;� .  ;  . � =) � . �;=) � . true;� .  1; � .  2 =) � .  1 ^  2;=) � ^  . �;=) � ^  .  ;=) false . �;�1 .  ; �2 .  =) �1 _ �2 .  ;=) � . � _  ;=)  . � _  ;=) � ^ ( _ �) . (� ^  ) _ (� ^ �);We have seen some type speci�c axioms and rules in the de�nition of the function space prelocale andthe Plotkin powerlocale. For the full list we refer to [Abramsky, 1991b], p. 49�. If � is a closed typeexpression then the domain prelocale L(�) describes the intended bi�nite domain:Theorem 7.3.16. If � is a closed type expression thenspec(L(�)) �= ID(�) :(Note that this is a special case of Theorem 7.3.15.)The whole scheme for deriving ., C, and T is designed carefully so as to have �nite positiveinformation in the premise of each rule only. Hence the whole system can be seen as a monotoneinductive de�nition (in the technical sense of e.g. [Aczel, 1977]). Furthermore, we have alreadyestablished close connections between the syntactical rules and properties of the described domains.This is the basis of the following result.Theorem 7.3.17. The language of properties is decidable.Proof. The statement is trivial for the domain prelocale 1 because only combinations of true and falseoccur in L(1). For composite types we rely on the general development in Section 7.3.2, which at leastfor three concrete instances we have veri�ed in Sections 7.3.3{5. First of all, every expression in L(�)can be e�ectively transformed into a �nite disjunction of _-primes (i.e. expressions satisfying the C-predicate); this is Step 5, `prime generation'. Soundness and completeness ensure that the expressionssatisfying the C-predicate are precisely the _-primes in the preordered lattice L(�). Hence we candecide the preorder between arbitrary expressions if we can decide the preorder between _-primes. Forthe latter we note that our constructions accomplish more than we have stated so far. All _-primes,which are produced by the transformation algorithms, are of the explicit form occuring in the rules forderiving the C-predicate; rather than merely expressions which happen to be equivalent to _-primes.The preorder between these explicit _-primes is (for each construction) easily characterized through



92 Samson Abramsky and Achim Jungthe semantic interpretation function J�K0. The task of establishing the preorder between these primesis then reduced to establishing some formula de�ned by structural induction on the type �. Sinceevery expression in L(�) is derived from true and false in �nitely many steps, we will eventually havereduced our task to checking the preorder between certain expressions in L(1).Finally, we introduce a formal language to speak about points of domains. So far, we have donethis in a rather roundabout way, trusting in the reader's experience with sets and functions. Do-ing it formally will allow us to establish a precise relationship between (expressions for) points and(expressions for) properties.We assume that for each (closed) type expression � we have a denumerable set V (�) = fx�; y� ; z�; : : :gof typed variables. The terms are de�ned as follows (where M : � stands for `M is a term of type �'):=) �� : �;=) x� : �;M : � =) �x�:M : (�!� );M : (�!� ); N : � =) (MN ) : � ;M : �;N : � =) hM;N i : (��� );M : (��� ); N : � =) let M be hx� ; y� i:N : �;M : � =) inl(M ) : (��� ) and inr(M ) : (���);M : (��� ); N1 : �;N2 : � =) cases M of inl(x�):N1 else inr(y� ):N2 : �;M : � =) up(M ) : (�)?;M : (�)?; N : � =) lift M to up(x�):N : � ;M : � =) fjM jg : PP(�);M : PP(�); N : PP(� ) =) over M extend fjx�jg:N : PP(� );M : PP(�); N : PP(�) =) M [ N : PP(�);M : PP(�); N : PP(� ) =) M 
N : PP(� � � );M : �[recX:�=X] =) fold(M ) : recX:�;M : recX:� =) unfold(M ) : �[recX:�=X];M : � =) �x�:M : �:In the same fashion as for type expressions we have two alternatives for interpreting a term M oftype �. We can either give a direct denotational semantics in the bi�nite domain ID(�) or we canspecify a prime �lter in the corresponding domain prelocale L(�). The denotational semantics su�ersfrom the fact that in order to single out a particular element in a domain we use a mathematicallanguage which looks embarrassingly similar to the formal language we intend to interpret. Some ofthe semantic clauses to follow will therefore appear to be circular.Again we need environments to deal with free variables. They are maps �:S� V (�) ! :S� ID(�)which we assume to respect the typing. In the following clauses we will also suppress the typeinformation. J��K� = ?; the least element in ID(�);JxK� = �(x);J�x:MK� = (d 7! JMK�[x7!d]);J(MN )K� = JMK�(JNK�);JhM;N iK� = hJMK�; JNK�i;Jlet M be hx; yi:NK� = JNK�[x7!d; y 7!e];where d = �1(JMK�);e = �2(JMK�);Jinl(M )K� = inl(JMK�);Jinr(M )K� = inr(JMK�);



Domain Theory 93Jcases M of inl(x):N1 else inr(y):N2K� = 8<:JN1K�[x7!d]; JMK� = (d: 1);JN2K�[y 7!e]; JMK� = (e: 2);?; JMK� = ?;Jup(M )K� = up(JMK�);Jlift M to up(x�):NK� = � JNK�[x7!d]; JMK� = up(d);?; JMK� = ?;JfjM jgK� = fJMK�g;Jover M extend fjx�jg:NK� = "X \ Cl(X);where X = [ fJNK�[x7!d] j d 2 JMK�g;JM [ NK� = JMK� [ JNK�;JM 
NK� = fhd; ei j d 2 JMK�; e 2 JNK�g;Jfold(M )K� = fold(JMK�);Junfold(M )K� = unfold(JMK�);J�x:MK� = �x(f);where f(d) = JMK�[x7!d]:Now let us give the localic, or, as we are now justi�ed in saying, logical interpretation. We usea sequent calculus style of presenting this domain logic. The problem of free variables is dealt withthis time by including a �nite list � of assumptions on variables. We write them in the form x7!�and assume that � contains at most one of these for each variable x. A sequent then takes the form� `M : � and should be read as `M satis�es � under the assumptions in �'.f� `M : �igi2I =) � `M : î2I �;�0 . �;  .  0;(�; x7!� `M :  ) =) �; x7!�0 `M :  0;f�; x7!�i `M :  gi2I =) �; x7!_i2I �i `M :  ;� `M :  =) �; x7!� `M :  ;=) x7!� ` x : �;�; x7!� `M :  =) � ` �x:M : (�! );� `M : (�! ); � ` N : � =) � ` (MN ) :  ;� `M : �; � ` N :  =) � ` hM;N i : (��  );� `M : (�� );�; x7!�; y 7! ` N : � =) � ` let M be hx; yi:N : �;� `M : � =) � ` inl(M ) : (��false);� `M : � =) � ` inr(M ) : (false��);� `M : (��false);T(�);�; x7!� ` N1 :  =) � ` casesM of inl(x):N1else inr(y):N2 :  ;� `M : (false��); T (�);�; y 7!� ` N2 :  =) � ` casesM of inl(x):N1else inr(y):N2 :  ;� `M : � =) � ` up(M ) : (�)?;� `M : (�)?; �; x7!� ` N :  =) � ` lift M to up(x�):N :  ;� `M : � =) � ` fjM jg : ��;� `M : � =) � ` fjM jg : ��;� `M : ��; �; x7!� ` N : � =) � ` over M extend fjx�jg:N : � ;



94 Samson Abramsky and Achim Jung� `M : ��; �; x7!� ` N : � =) � ` over M extend fjx�jg:N : � ;� `M : ��; � ` N : �� =) � `M [ N : ��;� `M : �� =) � `M [ N : ��;� ` N : �� =) � `M [ N : ��;� `M : ��; � ` N : � =) � `M
N : �(�� );� `M : ��; � ` N : � =) � `M
N : �(�� );� `M : � =) � ` fold(M ) : �;� `M : � =) � ` unfold(M ) : �;� ` �x:M : �; �; x7!� `M :  =) � ` �x:M :  :A few comments may help in reading these clauses. The �rst two rules guarantee that the set ofproperties which can be deduced for a term M forms a �lter in the domain prelocale. The third ruleexpresses the fact that every particular x will satisfy properties from a prime �lter. In particular, itentails that �; x7!false ` M : � is always true. The fourth rule (which is the last of the structuralrules) is ordinary weakening. We need it to get started in a derivation. In the two rules for the cases-construct the predicate T shows up. Instead of T(�) we could have written � 6� false but as we saidbefore, we want to keep the whole logic positive, that is to say, we want to use inductive de�nitionsonly. The two rules for fold and unfold may seem a bit boring, but it is precisely at this point wherewe take advantage of the fact that in the world of domain prelocales we solve domain equation up toequality. The last rule, �nally, has to be applied �nitely many times, starting from � ` �x:M : true,in order to yield something interesting. Here we may note with regret that our whole system isbased on the logic of observable properties. A standard proof principle such as �xpoint inductionfor admissible predicates, Lemma 2.1.20, does not �t into the framework. On the other hand, it ishopefully apparent how canonical the whole approach is. For applications, see [Abramsky, 1990c,Abramsky, 1991a, Boudol, 1991, Hennessy, 1993, Ong, 1993, Jensen, 1991, Jensen, 1992].Let us now compare denotational and logical semantics. We need to say how environments �and assumptions � �t together. First of all, we assume that � maps each variable x� into spec(L(�)).Secondly, we want that �(x) belongs to the compact-open subset described by the corresponding entryin �. But since environments are functions de�ned on the whole set of variables while assumptionsare �nite lists, the following de�nition is a bit delicate. We write � � � if for all entries x7!� in � wehave �(x) 2 J�K. Using this convention, we can formulate validity for assertions about terms:� �M : � if and only if 8�:(� � � =) JMK� 2 J�K) :The �nal tie-up between the two interpretations of type expressions and terms then is the following:Theorem 7.3.18. The domain logic is sound and complete. As a formula:8M;�; �: � `M : � if and only if � �M : � :Exercises 7.3.19.1. Prove that a completely distributive lattice also satis�es the dual distributivity axiom: Wi2I VAi =Vf :I ��![Ai Wi2I f(i):2. [Raney, 1960] Prove that a complete lattice L is completely distributive if and only if the followingholds for all x 2 L: x = _a6�x b̂6�a b :(Hint: Use Theorem 7.1.3.)3. Show that a topological space is sober if and only if every irreducible closed set is the closure ofa unique point.4. Find a complete lattice L for which pt(L) is empty.5. Show that every Hausdor� space is sober. Find a T1-space which is not sober. The converse, asober space, which is not T1, ought to be easy to �nd.



Domain Theory 956. Find a dcpo which is not sober in the Scott-topology. (Reference: [Johnstone, 1981]. For anexample which is a complete lattice, see [Isbell, 1982]. There is no known example which is adistributive lattice.)7. Describe the topological space pt(L) in terms of ^-prime elements of the complete lattice L.8. Let D be a continuous domain. Identify D with the set of ^-prime elements in 
(D). Provethat the Lawson-topology on D is the restriction of the Lawson-topology on 
(D) to D.9. Suppose f :V ! W is a lattice homomorphism. Show that R de�ned by xRy if y � f(x) isa join-approximable relation. Characterize the continuous functions between spectral spaceswhich arise from these particular join-approximable relations.10. Extend Lemma 7.3.8 to other classes of domains.11. Try to give a localic description of the coalesced sum construction.8 Further DirectionsOur coverage of Domain Theory is by no means comprehensive. Twenty-�ve years after its inception,the �eld remains extremely active and vital. We shall try in this Section to give a map of the partsof the subject we have not covered.8.1 Further topics in \Classical Domain Theory"We mention four topics which the reader is likely to encounter elsewhere in the literature.8.1.1 E�ectively given domainsAs we mentioned in the Introduction, domain-theoretic continuity provides a qualitative substitutefor explicit computability considerations. In order to evaluate this claim rigorously, one should givean e�ective version of Domain Theory, and check that the key constructions on domains such asproduct, function space, least �xpoints, and solutions of recursive domain equations, all \lift" tothis e�ective setting. For this purpose, the use of abstract bases becomes quite crucial; we say(simplifying a little for this thumbnail sketch) that an !-continuous domain is e�ectively given if ithas an abstract basis (B;�) which is numbered as B = fbngn2! in such a way that � is recursive inthe indices. Similarly, a continuous function f :D ! E between e�ectively given domains is e�ectiveif the corresponding approximable mapping is recursively enumerable. We refer to [Smyth, 1977,Kanda, 1979, Weihrauch and Deil, 1980] and the chapter on E�ective Structures in this Handbookfor developments of e�ective domain theory on these lines.There have also been some more sophisticated approaches which aim at making e�ectivity \in-trinsic" by working inside a constructive universe for set theory based on recursive realizability[McCarty, 1984, Rosolini, 1986, Phoa, 1991]. We shall return to this idea in sub-section 8.5.8.1.2 Universal DomainsLet C be a cartesian closed category of domains, and U a domain in C. We say that U is universalfor C if, for every D in C, there is an embedding e:D ! U . Thus universality means that we can, ine�ect, replace the category C by the single domain U . More precisely, we can regard the domain Das represented by the idempotent eD = e � p, where p is the projection corresponding to e. SinceeD :U ! U , and [U �! U ] is again in C and hence embeddable in U , we can ultimately identify Dwith an element uD 2 U , which we can think of as a \code" for D. Moreover, constructions such asproduct and function space induce continuous functionsfun; prod : U2 �! Uwhich act on these codes, so that e.g.fun(uD; uE) = u[D �! E] :In this way, the whole functorial level of Domain Theory which we developed as a basis for the solutionof recursive domain equations in Section 5 can be eliminated, and we can solve domain equations upto equality on the codes by �nding �xpoints of continuous functions over U .This approach was introduced by Scott in [Scott, 1976], and followed in the �rst textbook on de-notational semantics [Stoy, 1977]. However, it must be said that, as regards applications, universal



96 Samson Abramsky and Achim Jungdomains have almost fallen into disuse. The main reason is probably that the coding involved in thetransition from D to uD is confusing and unappealing; while more attractive ways of simplifying thetreatment of domain equations, based on information systems, have been found (see 8.1.4). However,there have been two recent developments of interest. Firstly, a general approach to the construction ofuniversal domains, using tools from Model Theory, has been developed by Gunter and Jung and Drosteand G�obel, and used to construct universal domains for many categories, and to prove their non-existence in some cases [Gunter and Jung, 1988, Droste and G�obel, 1990, Droste and G�obel, 1991,Droste and G�obel, 1993].Secondly, there is one application where universal domains do play an important rôle: to providemodels for type theories with a type of all types. Again, the original idea goes back to [Scott, 1976].We say that a univeral domain U admits a universal type if the subdomain V of all uD for D in C isitself a domain in C|and hence admits a representation uV 2 U . We can think of uV as a code forthe type of all types. In [Scott, 1976], Scott studied the powerset P(!) as a univeral domain for twocategories: the category of !-continuous lattices (for which domains are taken to be represented byidempotents on P(!)), and the category of !-algebraic lattices (for which domains are represented byclosures). Ershov [Ershov, 1975] and Hosono and Sato [Hosono and Sato, 1977] independently provedthat P(!) does not admit a universe for the former category; Hancock and Martin-L�of proved that itdoes for the latter (reported in [Scott, 1976]). For recent examples of the use of universal domains tomodel a type of all types see [Taylor, 1987, Coquand, 1989, Berardi, 1991].8.1.3 Domain-theoretic semantics of polymorphismWe have seen the use of continuity in Domain Theory to circumvent cardinality problems in �ndingsolutions to domain equations such as D �= [D �! D] :A much more recent development makes equally impressive use of continuity to give a �nitary se-mantics for impredicative polymorphism, as in the second-order lambda-calculus (Girard's \SystemF") [Girard, 1986, Coquand et al., 1987, Coquand, 1989]. This semantics makes essential use of thefunctorial aspects of Domain Theory. There have also been semantics for implicit polymorphismbased on ideals [MacQueen et al., 1986] and partial equivalence relations [Abadi and Plotkin, 1990]over domains. We refer to the chapter in this volume of the Handbook on Semantics of Types forcomprehensive coverage and references.8.1.4 Information SystemsScott introduced information systems for bounded-complete !-algebraic dcpo's (\Scott domains") in[Scott, 1982]. The idea is, roughly, to represent a category of domains by a category of abstractbases and approximable mappings as in Theorems 2.2.28 and 2.2.29. One can then de�ne construc-tions on domains in terms of the bases, as in Propositions 3.2.4 and 4.2.4. This gives a naturalsetting for e�ective domain theory as in 8.1.1 above. Moreover, bilimits are given by unions ofinformation systems, and domain equations solved up to equality, much as in 7.3.5. More gener-ally, information systems correspond to presenting just the coprime elements from the domain pre-locales of 7.3. Information system representations of various categories of domains can be found in[Winskel, 1988, Zhang, 1991, Curien, 1993]. A general theory of information systems applicable to awide class of topological and metric structures can be found in [Edalat and Smyth, 1993].8.2 Stability and SequentialityRecall the �-� style de�nition of continuity given in Proposition 2.2.11: given e 2 Cf(x) it providesd 2 Bx with f(d) v e. However, there is no canonical choice of d from e. In an order-theoretic setting,it is natural to ask for there to be a least such d. This leads to the idea of the modulus of stability:M (f; x; e), where f(x) w e, is the least such d, if it exists. We say that a continuous function is stableif the modulus always exists, and de�ne the stable ordering on such functions byf vs g () f v g ^ 8x; e: e 2 Cf(x): M (f; x; e) = M (g; x; e):We can think of the modulus as specifying the minimum information actually required of a giveninput x in order that the function f yields a given information y on the output; the stable orderingre�nes the usual pointwise order by taking this intensional information into account.



Domain Theory 97It turns out that these de�nitions are equivalent to elegant algebraic notions in the setting ofthe lattice-like domains introduced (for completely di�erent purposes!) in Section 4.1. Let D, E bedomains in L. Then a continuous function f :D ! E is stable i� it preserves bounded non-emptyin�ma (which always exist in L; cf. Proposition 4.1.2), and f vs g i� for all x v y, f(x) = f(y)ug(x).This is the �rst step in an extensive development of \Stable Domain Theory" in which stable functionsunder the stable ordering take the place which continuous functions play in standard Domain Theory.Stable Domain theory was introduced by Berry [Berry, 1978, Berry, 1979]. Some more recent referencesare [Girard, 1986, Coquand et al., 1987, Taylor, 1990, Ehrhard, 1993].Berry's motivation in introducing stable functions was actually to try to capture the notion ofsequentially computable function at higher types. For the theory of sequential functions on concretedomains, we refer to [Kahn and Plotkin, 1993, Curien, 1993].8.3 Reformulations of Domain TheoryAt various points in our development of Domain Theory (see e.g. Section 3.2), we have referred tothe need to switch between di�erent versions C, C?, C?! of some category of domains, dependingon whether bottom elements are required, and if so whether functions are required to preserve them.In some sense C and C?! are the mathematically natural categories, since what the morphisms mustpreserve matches the structure that the objects are required to have; whileC? is the preferred categoryfor semantics, since endomorphisms f :D ! D need not have �xpoints at all in C, while least �xpointsin C?! are necessarily trivial.All this suggests that something is lacking from the mathematical framework in order to get areally satisfactory tie-up with the applications. We shall describe a number of attempts to makegood this de�ciency. While no de�nitive solution has yet emerged, these proposals have contributedimportant insights to Domain Theory and its applications.8.3.1 Predomains and partial functionsThe �rst proposal is due to Gordon Plotkin [Plotkin, 1985]. The idea is to use the objects of C (\predo-mains", i.e. domains without any requirement of bottom elements), but to change the notion of mor-phism to partial continuous function: where we say that a partial function f :D * E is continuous if itsdomain of de�nition is a Scott-open subset of D, and its restriction to this subset is a (total) continuousfunction. The resulting category is denoted by C@ . This switch to partial continuous functions carrieswith it a change in the type structure we can expect to have in our categories of domains: they shouldbe partial cartesian closed categories, as de�ned e.g. in [Robinson and Rosolini, 1988, Rosolini, 1986].One advantage of this approach is that it brings the usage of Domain Theory closer to that ofrecursion theory. For example, the hierarchy of (strict) partial continuous functionals over the naturalnumbers will be given by N; [N* N]; [[N* N]* N]; : : :rather than N?; [N? ?!�! N?]; [[N? ?!�! N?] ?!�! N?]; : : : :This avoidance of bottom elements also leads to a simpler presentation of product and sum types. Forexample, there is just one notion of sum, the disjoint union D :[ E, which is indeed the coproductin C@ .An important point is that there is a good correspondence between the operational behaviour offunctions with a call-by-value parameter-passing mechanism and the partial function type [ * ].For example, there is a good �t between [ * ] and the function type constructor in Standard ML[Milner and Tofte, 1991, Milner et al., 1990].To balance these advantages, we have the complication of dealing with partially de�ned expressionsand partial cartesian closure; and also a less straightforward treatment of �xpoints. It is not the casethat an arbitrary partial continuous function f :D * D has a well-de�ned least �xpoint. However, ifD itself is a partial function type, e.g. D = [E * E], then f does have a well-de�ned least �xpoint.This is in accord with computational intuition for call-by-value programming languages, but not sopleasant mathematically.As a �nal remark, note that in fact C@ is equivalent to C?!! Thus, in a sense, this approach bringsnothing new. However, there is a distinct conceptual di�erence, and also C@ is more amenable toconstructive proof and categorical axiomatization [Rosolini, 1986].



98 Samson Abramsky and Achim Jung8.3.2 Computational MonadsComputational monads have been proposed by Eugenio Moggi as a general structuring mechanism fordenotational semantics [Moggi, 1991]. A computational monad on a cartesian category C is a monad(T; �; �) together with a \tensorial strength", i.e. a natural transformationtA;B : A� TB ! T (A� B)satisfying some equational axioms. The import of the strength is that the monad can be internalisedalong the lines mentioned after Proposition 6.1.8. Now let C be a category of (pre)domains and totalcontinuous functions. Moggi's proposal is to make a distinction between values and (denotations of)computations. An element of A is a value, an element of TA is a computation. A (call-by-value)procedure will denote a morphism A ! TB which accepts an input value of type A and producesa computation over B. Composition of such morphisms is by Kleisli extension: if f :A ! TB,g:B ! TC, then composition is de�ned byA f�! TB Tg�! TTC �C�! TC;with identities given by the unit �A : A! TA.In particular, partiality can be captured in this way using the lifting monad, for which see 3.2.5.Note that this particular example is really just another way of presenting the category C@ of theprevious subsection; there is a natural isomorphism[D �! E?] �= [D * E] :The value of the monadic approach lies in its generality and in the type distinction it introducesbetween values and computations. To illustrate the �rst point, note that the various powerdomainconstructions presented in Section 7.2 all have a natural structure as strong monads, with the monadunit and multiplication given by suitable versions of the singleton and big union operations. For thesecond point, we refer to the elegant axiomatization of general recursion in terms of �xpoint objectsgiven by Crole and Pitts [Crole and Pitts, 1992], which makes strong use of the monadic approach.This work really belongs to Axiomatic Domain Theory, to which we will return in subsection 4 below.8.3.3 Linear TypesAnother proposal by Gordon Plotkin is to use Linear Types (in the sense of Linear Logic [Girard, 1987])as a metalanguage for Domain Theory [Plotkin, 1993]. This is based on the following observation.Consider a category C?! of domains with bottom elements and strict continuous functions. Thiscategory has products and coproducts, given by cartesian products and coalesced sums. It also hasa monoidal closed structure given by smash product and strict function space, as mentioned in 3.2.4.Now lifting, which is a monad on C by virtue of the adjunction mentioned in 3.2.5, is dually a comonadon C?!; and the co-Kelisli category for this comonad is C?.Indeed, Linear Logic has broader connections with Domain Theory. A key idea of Linear Logic isthe linear decomposition of the function space:[A �! B] �= [!A( B] :One of the cardinal principles of Domain Theory, as we have seen, is to look for cartesian closedcategories of domains as convenient universes for the semantics of computation. Linear Logic leadsus to look for linear decompositions of these cartesian closed structures. For example, the cartesianclosed category of complete lattices and continuous maps has a linear decomposition via the categoryof complete lattices and sup-lattice homomorphisms|i.e. maps preserving all joins, with !L = PH(L),the Hoare powerdomain of L. There are many other examples [Hoofman, 1992, Ehrhard, 1993,Huth, 1994].8.4 Axiomatic Domain TheoryWe began our account of Domain Theory with requirements to interpret certain forms of recursivede�nitions, and to abstract some key structural features of computable partial functions. We thenintroduced some quite speci�c structures for convergence and approximation. The elaboration of



Domain Theory 99the resulting theory showed that these structures do indeed work; they meet the requirements withwhich we began. The question remains whether another class of structures might have served as wellor better. To address this question, we should try to axiomatize the key features of a category ofdomains which make it suitable to serve as a universe for the semantics of computation. Such anexercise may be expected to yield the following bene�ts:� By making it clearer what the essential structure is, it should lead to an improved meta-languageand logic, a re�nement of Scott's Logic of Computable Functions [Scott, 1993].� Having a clear axiomatization might lead to the discovery of di�erent models, which mightperhaps be more convenient for certain purposes, or suggest new applications. On the otherhand, it might lead to a representation theorem, to the e�ect that every model of our axiomsfor a \category of domains" can in fact be embedded in one of the concrete categories we havebeen studying in this Chapter.Thus far, only a limited amount of progress has been made on this programme. One step thatcan be made relatively cheaply is to generalize from concrete categories of domains to categoriesenriched over some suitable subcategory of DCPO. Much of the force of Domain Theory carriesover directly to this more general setting [Smyth and Plotkin, 1982, Freyd, 1992]. Moreover, thisadditional generality is not spurious. A recent development in the semantics of computation has beentowards a re�nement of the traditional denotational paradigm, to re
ect more intensional aspectsof computational behaviour. This has led to considering as semantic universes certain categories inwhich the morphisms are not functions but sequential algorithms [Curien, 1993], information 
ows[Abramsky and Jagadeesan, 1994b], game-theoretic strategies [Abramsky and Jagadeesan, 1994a], orconcurrent processes [Abramsky, 1994]. These are quite di�erent from the \concrete" categories ofdomains we have been considering, in which the morphisms are always functions. Nevertheless, theyhave many of the relevant properties of categories of domains, notably the existence of �xpoints andof canonical solutions of recursive domain equations. The promise of axiomatic domain theory is toallow the rich theory we have developed in this Chapter to be transposed to such settings with aminimum of e�ort.The most impressive step towards Axiomatic Domain Theory to date has been Peter Freyd's workon algebraically compact categories [Freyd, 1991, Freyd, 1992]. This goes considerably beyond whatwe covered in Section 5. The work by Crole and Pitts on FIX-categories should also be mentioned[Crole and Pitts, 1992].In another direction, there are limitative results which show that certain kinds of structures cannotserve as categories of domains. One such result appeared as Exercise 5.4.11(3). For another, see[Hofmann and Mislove, 1993].8.5 Synthetic Domain TheoryA more radical conceptual step is to try to absorb all the structure of convergence and approxima-tion, indeed of computability itself, into the ambient universe of sets, by working inside a suitableconstructive set theory or topos. The slogan is: \Domains are Sets". This leads to a programme of\Synthetic Domain Theory", by analogy with Synthetic Di�erential Geometry [Kock, 1981], in whichsmoothness rather than e�ectivity is the structure absorbed into the ambient topos.The programme of Synthetic Domain Theory was �rst adumbrated by Dana Scott around 1980.First substantial steps on this programme were taken by Rosolini [Rosolini, 1986], and subsequentlyby Phoa [Phoa, 1991], and Freyd, Mulry, Rosolini and Scott [Freyd et al., 1990]. Axioms for SyntheticDomain Theory have been investigated by Hyland [Hyland, 1991] and Taylor [Taylor, 1991], and thesubject is currently under active development.9 Guide to the literatureAs mentioned in the Introduction, there is no book on Domain Theory. For systematic accounts by thetwo leading contributors to the subject, we refer to the lecture notes of Scott [Scott, 1981] and Plotkin[Plotkin, 1981]. There is also an introductory exposition by Gunter and Scott in [Gunter and Scott, 1990].An exhaustive account of the theory of continuous lattices can be found in [Gierz et al., 1980]; a superbaccount of Stone duality, with a good chapter on continuous lattices, is given in [Johnstone, 1982];while [Davey and Priestley, 1990] is an excellent and quite gentle introduction to the theory of partialorders.



100 Samson Abramsky and Achim JungSome further reading on the material covered in this Chapter:Section 2: [Davey and Priestley, 1990, Johnstone, 1982];Section 3: [Plotkin, 1981, Gunter, 1992b, Winskel, 1993];Section 4: [Jung, 1989, Jung, 1990];Section 5: [Smyth and Plotkin, 1982, Freyd, 1991, Freyd, 1992, Pitts, 1993a, Pitts, 1993b];Section 6: [Plotkin, 1976, Smyth, 1978, Winskel, 1983, Heckmann, 1991, Schalk, 1993];Section 7: [Abramsky, 1990c, Abramsky, 1991a, Abramsky and Ong, 1993, Ong, 1993, Hennessy, 1993,?, Jensen, 1992, Jensen, 1991, Smyth, 1983b].Applications of Domain TheoryThere is by now an enormous literature on the semantics of programming languages, much of itusing substantial amounts of Domain Theory. We will simply list a number of useful textbooks:[Schmidt, 1986, Tennent, 1991, Gunter, 1992b, Winskel, 1993].In addition, a number of other applications of Domain Theory have arisen: in Abstract Interpre-tation and static program analysis [Abramsky, 1990a, Burn et al., 1986, Abramsky and Jensen, 1991](see also the article on Abstract Interpretation in this Handbook); databases [Buneman et al., 1988,Buneman et al., 1991]; computational linguistics [Pereira and Shieber, 1984, Pollard and Moshier, 1990];arti�cial intelligence [Rounds and Zhang, 1994]; fractal image generation [Edalat, 1993b]; and foun-dations of analysis [Edalat, 1993a].Finally, the central importance of Domain Theory is well indicated by the number of other chaptersof this Handbook which make substantial reference to Domain-theoretic ideas: Topology, AlgebraicSemantics, Semantics of Types, Correspondence between Operational and Denotational Semantics,Abstract Interpretation, E�ective Structures.References[Abadi and Plotkin, 1990] M. Abadi and G. D. Plotkin. A Per model of polymorphism and recursivetypes. In Fifth Annual IEEE Symposium on Logic in Computer Science, pages 355{365. IEEEComputer Society Press, 1990.[Abramsky and Jagadeesan, 1994a] S. Abramsky and R. Jagadeesan. Games and full completenessfor multiplicative linear logic. Journal of Symbolic Logic, 1994. To appear.[Abramsky and Jagadeesan, 1994b] S. Abramsky and R. Jagadeesan. New foundations for the geom-etry of interaction. Information and Computation, 1994. To appear.[Abramsky and Jensen, 1991] S. Abramsky and T. Jensen. A relational approach to strictness analysisfor polymorphic functions. In Conference Record of the 18th Annual ACM Symposium on Principlesof Programming Languages, pages 49{54. ACM Press, 1991.[Abramsky and Ong, 1993] S. Abramsky and L. Ong. Full abstraction in the lazy lambda calculus.Information and Computation, 105:159{267, 1993.[Abramsky, 1987] S. Abramsky. Domain Theory and the Logic of Observable Properties. PhD thesis,University of London, 1987.[Abramsky, 1990a] S. Abramsky. Abstract interpretation, logical relations and Kan extensions. Jour-nal of Logic and Computation, 1(1):5{40, 1990.[Abramsky, 1990b] S. Abramsky. A generalized Kahn principle for abstract asynchronous networks. InM. Main, A. Melton, M. Mislove, and D. Schmidt, editors, Mathematical Foundations of Program-ming Semantics, volume 442 of Lecture Notes in Computer Science, pages 1{21. Springer Verlag,1990.[Abramsky, 1990c] S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Research Topics inFunctional Programming, pages 65{117. Addison Wesley, 1990.[Abramsky, 1991a] S. Abramsky. A domain equation for bisimulation. Information and Computation,92:161{218, 1991.[Abramsky, 1991b] S. Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic,51:1{77, 1991.[Abramsky, 1994] S. Abramsky. Interaction categories and communicating sequential processes. InA. W. Roscoe, editor, A Classical Mind: essays in honour of C. A. R. Hoare, chapter 1, pages 1{16.Prentice Hall International, 1994.
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