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Abstract

The Core Language Engine (CLE) is a domain independent system for
translating natural language (English) sentences into formal representa-
tions of their literal meanings which are capable of supporting reasoning.
It is designed to be used as a major component of interactive advisor sys-
tems such as interfaces to database management systems and diagnostic
expert systems. The main contribution of the CLE is intended to be
substantial coverage of English constructions in both syntax and seman-
tics that i1s well motivated and hence extensible. Interactive facilities are
provided to allow users to extend the system vocabulary. The CLE has
a modular architecture with well defined interfaces between the various
stages of linguistic processing. Unification is used as the mechanism for
rule application and passing information in each of morphology, parsing,
interpretation, and selectional filtering, so the rules for these components
are expressed declaratively. A compact representation of local ambigu-
ities is applied systematically in syntax and semantics, allowing us to
adopt the modular staged approach without sacrificing computational
efficiency.
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1 Design Goals and Architecture

The CLE is a domain independent system for natural language processing which can
be used as the basis for building natural language applications. It is primarily aimed
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at interactive advisor systems such as interfaces to database management systems
and diagnostic expert systems. English sentences are translated by the CLE into
logical form expressions which represent their literal meaning. The motivation for
choosing such representations as the output of the system is that they are capable of
supporting reasoning which is necessary both for natural language disambiguation
and for the application task of typical advisor systems.

The main contribution of the CLE is intended to be substantial coverage of in
both syntax and semantics. This coverage is achieved by taking advantage of recent
advances in linguistics giving analyses that are well motivated and hence extensi-
ble. Transportability to new applications is also enhanced by providing interactive
facilities to allow users to extend the system vocabulary. Current CLE coverage of
English syntax and semantics can be summarized roughly as follows:

Major clause types: declaratives, imperatives, wh- and yes-no questions, rela-
tives, passives, clefts, there-clauses.

Verb phrases: complement subcategorization, control verbs, verb-particles,
auxiliaries, tense operators, some adverbials.

Noun phrases: prenominal and postnominal modifiers, lexical and phrasal
quantifiers/specifiers.

Coordination: conjunctions and disjunctions of a wide class of noun phrases,
verb phrases, and clauses; some common comparatives.

Morphology: inflectional morphology, simple productive cases of derivational
morphology.

Core lexicon: 1200 function words and content word stems, 1800 senses and
their selectional restrictions.

The CLE has a modular architecture. Sentence processing is performed in the
following stages:

— Morphological analysis and sense derivation.

— Syntactic parsing.

— Semantic interpretation and selectional filtering.
— Quantifier scoping.

— Reference resolution.

The current CLE prototype has development versions of components implement-
ing the first four phases as well as the various sets of rules and lexical entries encoding
the linguistic knowledge required by these components. Semantic interpretation re-
sults in a level of representation we call ‘quasi logical form’. This may be regarded
as the natural level of sentence representation resulting from linguistic analysis that
applies compositional semantic interpretation rules independently of the influence
of context. It differs from fully specified logical form in that it will typically con-
tain quantifiers and operators whose scope has not yet been determined, and also
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‘anaphoric terms’ which stand for entities and relations to be determined by refer-
ence resolution. Having quasi logical form as a well-defined level of representation
allows the problems of compositional semantics to be tackled separately from the
problems of scoping and reference resolution.

There are two important themes that recur throughout the design of the CLE.
One 1s that unification is used as the mechanism for passing information and rule
application in each of morphology, parsing, interpretation, and selectional filtering,
allowing the rules for these components to be expressed declaratively. (This reliance
on unification was the main reason for choosing Prolog as the CLE implementation
language.) The other theme is a technique for compact representation of local
ambiguities which is applied in a systematic way to arbitrarily complex syntactic
and semantic structures. This way of handling ambiguities means that we can adopt
the modular staged approach without sacrificing computational efficiency.

2 Category and Feature System

Information about the syntactic and semantic properties of linguistic constituents is
represented in the CLE using complex categories that include a principal category
symbol and specifications of constraints on the values of syntactic and semantic
features — cf. the feature systems of GPSG (Gazdar, et al, 1985) and PATR-II
(Shieber, 1986). Categories appear in syntax rules, semantic interpretation rules,
and lexical entries. Two categories can be unified if the constraints on their feature
values are compatible. Typically, categories appearing in a rule have shared variables
which are used to pass information between the categories and other rule components
(Sections 3 and 4).

A category consists of a category symbol and a set of feature-value pairs (or
feature specifications) represented as a list. Each pair consists of an atomic feature
name and a value, which can be an arbitrary Prolog term. In particular, feature
values may contain lists or other categories recursively. For example, the category
shown below has category symbol s, a variable for the feature type, and a list
structure containing the category np: [whgap=W] as the value of gapsSoughtIn.

s: [type=Type,gapsSoughtIn=[np: [whgap=W]],
form=tnsd,agr=(\(third/\sing))]

Feature values can also be boolean combinations of elements from finite sets; an
example shown above is the value ‘not third person singular’ for the feature agr.
These values are compiled into terms which unify if and only if the expressions are
compatible (see Mellish, 1987). More generally, category compilation in the CLE
ensures that category unification is implemented efficiently as Prolog term unifica-
tion. The values of features not mentioned in a category are compiled according to
feature default declarations.



3 Syntactic Information

Lexical entries consist of a word form, optionally followed by its stem form (for irreg-
ular words), then a list of syntactic categories for the word. Regular morphological
variants are computed at parse time and cached.

Syntactic and morphological rules consist of an identifier, followed by a list of
categories or terminals, the first of which is the mother. Variables over whole cate-
gories (as well as category valued features) are allowed. Here is a sample rule:

syn(s_np_vp_Normal,...
[s: [agr=Ag, type=T,...
gapsSoughtIn=Gi, gapsSoughtOut=Go,...],
np: lagr=Ag, type=T, nform=Sfm,...],
vp: lagr=Ag, subcat=[], subjform=Sfm,
gapsSoughtIn=Gi, gapsSoughtOut=Go,...]]).

As can be seen, our formalism is a prototypical unification grammar consisting of a
context-free skeleton enriched with features.

There are three noteworthy features of the current syntactic description.

1. Subcategorisation by verbs or adjectives of their arguments is handled by
giving them a lexical entry in which the value of a subcat feature is a list of the
required complements in the order expected. The word is then combined into a
phrase with its complements by applications of a rule having roughly the structure:

vp: [subcat=Rest, ...] --> vp:[subcat=[First|Rest], ...] First

where First is a variable over a whole category. Thus a phrase like give a book to
me will have a structure like:

[[[give]upla booklp]up(to melpplup

2. Syntactically predictable alternations are handled by rules which capture the
effect of what in Standard Theory Transformational Grammar (Chomsky,
1965) were ‘lexically governed’ transformations. Thus a rule like:

vp: [subcat=[], subjform=it,...] -->
vp: [subcat=[], extraposes=y,...]

s:[...]

will allow verbs and adjectives like bother and obvious to appear in a frame like 4t
[bothers him / is obvious] that S as well as that S [bothers him / is obvious]. The
existence of the former is predictable from that of the latter.

3. Unbounded dependency constructions like wh-questions and relative clauses
are treated by list valued features which ‘thread’ the dependency through a tree (see
Pereira and Shieber, 1987). A rule introducing such a dependency will ‘push’ a ‘gap’
onto the head of the GapsSoughtIn list, and a rule discharging such a dependency
will ‘pop’ a gap present on the GapsSoughtIn list, resulting in a GapsSoughtOut
list with one fewer gap on it. All the gaps must be found for the sentence to be
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grammatical. For example, in the wh-question Who did John give a book to? the
gap is threaded through the constituents in the order shown below with numbered
brackets:

wholydid johnls[sgive[sa book]][5to[cd]]]]

The advantage of this treatment is that the same rules as are used for the normal
case can be used to build phrases with missing constituents.

The current grammar covers most of the subcategorisation types of English,
and handles all types of wh-constructions, (questions, relatives, clefts), passives,
existentials, ‘transformations’ like Dative, Particle movement, Extraposition etc,
nominal and verbal pre- and post-modification, and conjunctions, with about 50
rules.

4 Semantic Information

Sense entries, the semantic counterparts to the lexical entries in the syntactic com-
ponent of the CLE, link every basic word form to a featured category and a logical
form that translates the word. Here is a (considerably simplified) example:

sense(design,
vp: [arglist=[(B,comp:[1)],eventvar=E,
subj=A,gapValsIn=G,gapValsOut=G],
[designl,E,A,B]).

This entry shows that the logical form for the verb design is a functor with three
argument slots, [designl,E, A,B], where E is a variable for the event denoted by the
verb, and A and B are variables for the subject and direct object. The argument slots
are kept track of by means of verb phrase features. The entry specifies, for instance,
that the object argument slot B is unified with the meaning B of the VP complement.
The features gapValsIn and gapValsOut are used for gap filler threading.

Morphological derivation rules provide senses for regularly formed combinations
of basic word forms and one or more affixes. For regular verbs, the basic word form
is the infinitive, and the senses of the other verb forms are derived. Morphological
derivation also deals with simple cases of agentive er-nominalization. The meaning
of designer is derived from [designl,E,A,B] by filling two of the argument slots
with suitable forms, and leaving the subject argument slot open.

Semantic interpretation rules provide interpretations for phrases that are the
result of syntactic rule applications. Every syntax rule has one or more correspond-
ing semantic rules. Each semantic rule gives the name of the syntax rule that it
corresponds to, and specifies how the semantic features and the interpretation of
the mother node depend on features and interpretations of the daughter nodes.
Rather than using lambda expressions in the way they are traditionally employed
in compositional semantics (Montague 1974), we normally employ unification to
compress the work of functional application and lambda reduction into one step.
Thus arguments are immediately plugged into slots in the logical form that are
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marked by Prolog variables. The following (simplified) rule for the semantics of
S — NP VP illustrates this:

sem(s_np_vp_Normal,
[(Vp,s:[gapValsIn=Gin,gapValsOut=Gout]),
(Np,np:[1),
(Vp,vp: [subj=Np,gapValsIn=Gin,gapValsOut=Gout])]).

This says that the meaning of the mother is the meaning of the VP daughter with
the NP meaning plugged into its subject slot.

The application of the semantic interpretation rules results in logical form ex-
pressions that are unresolved as to quantifier scopes and anaphoric possibilities. The
unscoped LF that translates A bishop wanted to visit every college is:

[past,quant(exists,A, [event,A],
[want1,A,qterm(al,B, [bishopl,B]),
quant (exists,C, [event,C],
[visit1,C,B,
qterm(everyi ,D, [collegel ,D1)1)1)]

The two qterms in this LF appear in argument positions that in a scoped LF would
be occupied by quantified variables. Note that the qterm variable B occurs not only
inside the gterm but also in the subject slot of visit1. Only after scoping will this
variable be properly bound by a quantifier.

In the previous example no reference resolution as to the subject of wisit had to
take place: the subject of the matrix sentence is the only candidate. LFs for sen-
tences containing pronouns or definite descriptions, however, will contain unresolved
anaphora. Wren said that he would design a college will translate into a LF with

a_term(pro,C, [and, [human,C], [male,C]])

in the subject slot of design.

The semantics of long distance dependencies is handled by a mechanism anal-
ogous to the gap threading in syntax: the meaning of a displaced constituent is
put on a gap-values list and threaded until the gap component is encountered. The
interpretation rule for the gap pops this list, as follows:

sem(np_WhGap,
[(Np,np: [gapValsIn=[Np|Rest],gapValsOut=Rest])]).

The rule shows how the meaning of the phrase, Np, is taken from the top of the list
of gap values.

5 Sortal Restrictions

When a semantic rule or sense entry is used during the semantic interpretation

phase, sortal information is introduced into the logical form for the interpretation of

the constituent under analysis. This sortal information is attached to a component
¢

of the logical form with the operator ‘;’. For example, the logical form expression
[buildl,A,B,trinityl] might become



([(buildl; ([event ,human,object] ,proposition)),
(A;event),
(B;human),
(trinityl;object)];proposition)

where event, human, and object, are sorts associated with the arguments of the
predicate buildi. If B had already been given a sort restriction conflicting with
human, e.g., inanimate, then the attempted use of the semantic rule or sense entry
would fail, ruling out the interpretation with incompatible sorts.

The sort associated with a functor of arity n is an ordered pair consisting of a
list of sortal restrictions on the arguments and a sort for the expression resulting
from the application of the functor to its arguments:

([(sorty),...,(sort,)],(expression-sort))

Thus the sort ([event,human,object],proposition) is associated with the pred-
icate buildl in the example.

Sorts used in the CLE are in fact more complex than the atomic ones such as
human shown above. In the general case, the sort of each argument in a predication
must unify (as a Prolog term) with the sortal restriction that the predicate imposes
on that argument. The term for an argument sort is an encoding of the sort of a
class of individuals according to a classification hierarchy (Mellish 1987).

Mutually exclusive classes are encoded as terms with different functors, ensuring
that they do not unify:

abstract(_) object(_,_,_)

Further instantiation of these terms gives finer degrees of classification: the term for
a ‘human animate object’ might be

object(animate(human,_),_,_).

Functors with more than one argument represent classes having non-exclusive sub-
classifications. For example, objects in the class ‘animate’ can be classified with
respect to sex or whether they are human. The two-argument functor animate has
human and animal as possible values for its first argument, and male and female
as possible values for its second argument. This allows the sort for ‘female animate
object’ to unify with the one shown above.

The sortal restriction for a word sense is not entered directly in the fixed-position
format shown above, but rather is compiled from constraints specified for that word
sense in the lexicon. The sort hierarchy used in this compilation process is gener-
ated from declarations stating subsumption and disjointness relations between entity
classes.

6 Lexical Acquisition Tool

The lexical acquisition tool VEX (Vocabulary EXpander) allows the creation of
CLE lexicon entries by users with knowledge both of English and of the application
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domain, but not of linguistic theory or of the way lexical entries are represented in
the CLE.

VEX is provided with pointers to entries in a ‘paradigm’ lexicon for a number
of representative word usages, and declarative knowledge of the range of sentential
contexts in which these usages can occur. It elicits grammaticality judgments from
the user to determine which paradigm (or set of paradigms) occurs in the same
contexts as the word being defined, and then constructs the new entries by making
substitutions in these paradigm entries.

An alternative to this copy and edit strategy would be to use knowledge of the
function of every feature and other construct in the representation, but this approach
would lead to lengthy interaction with the user and make it more difficult to keep up
with developments in the feature system. The ‘copy and edit’ approach, on the other
hand, makes VEX independent of most changes to the representation. Furthermore,
the fact that its knowledge is specified at the level of word behaviours, means that
as the CLE’s coverage increases, modifications to this knowledge are easy to make.
It also makes robust interaction with the user much easier to achieve.

The process of defining a new word or phrase specified by the user is as follows.
First, the user is asked for the gross syntactic category or categories of the new item
(noun, verb, etc; no further grammatical knowledge is assumed). The rest of the
definition process takes place separately for each category.

After eliciting any irregular inflectional forms, VEX uses its knowledge of the
category of the new item and the number of words it consists of to select a subset of
the sentence patterns it knows about. Redundancy in this subset is then removed
by eliminating patterns whose grammaticality can be deduced from that of other
patterns in the subset. The remaining sentences, with forms of the item being
defined substituted in, are presented to the user, who states which of them are
grammatical.

VEX then tries to find a minimal set of paradigms which, together, occur in all
and only the contexts the user has marked as grammatical. If no such set exists, the
user is asked to accept one of several additions to, or deletions from, the grammatical
set. Such negotiation is needed because it is quite common for users to ignore
sentences, to misread them, or simply to have different intuitions on them from
those embodied in the CLE’s data.

Thus if the user asks to define the phrasal verb ‘use up’, VEX selects the following
sentence patterns to be judged:

The thingummy used up.

The thingummy used the whatsit up.

The whatsit was used up by the thingummy.

The thingummy used the boojum up very good.

The boojum was used up the whatsit by the thingummy.

The whatsit was used up for the boojum by the thingummy.
The thingummy used up existing.

The thingummy used up the whatsit that the boojum existed.
The whatsit was used up by the thingummy to exist.
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(Content-free nouns such as ‘thingummy’ are used to prevent the user being side-
tracked into judging semantic acceptability). The user replies that sentences 2, 3
and 9 are grammatical. VEX then asks whether the ‘to’ in 9 must mean ‘in order to’;
since it must, sentence 9 can be treated merely as sentence 3 with an optional mod-
ifier. This information allows VEX to identify ‘use up’ as having a single paradigm,
that of transitive particle verb.

When, finally, a paradigm set is established, a number of senses of the user’s
word are derived from them (typically one per paradigm). The user is asked then
to provide sortal information, appropriate to the domain, for each such sense.

7 Ambiguities and Packing

Local ambiguities arise from prepositional phrases, compound nominals, multiple
word senses, and so on. The CLE ‘packing’ technique for compact representation of
local ambiguities was used by Tomita (1985) and is also implicit in the Earley and
CKY parsing algorithms. We have generalised it, however, so that it can be used
with categories represented by arbitrary term structures containing variables and
we have applied it in the semantic phases of processing as well as parsing.

Each analysis of a constituent can be thought of as having three components:
the segment of input text spanned by the constituent, a category, and an internal
structure. The basis of the packed representation is that we can abstract away from
alternative internal structures of constituents that have the same category because
the application of our syntactic and semantic rules depends only on the categories
of constituents and not on their internal structures.

Thus the prepositional phrase attachment ambiguity in the sentence Wren de-
signed the library in Trinity yields two analyses for the verb phrase following Wren.
Instead of building explicit trees for these analyses during parsing, the CLE parser
maintains two types of record. ‘Constituent’ records state that a particular segment
of input has been analysed as a particular category, whereas ‘analysis’ records give
possible local syntactic structures of such constituents. In the above example, the
verb phrase will have two analysis records but only one constituent record; this
constituent record is then used to build a single analysis record for the sentence
category spanning the whole input.

Packed syntax records are translated directly into packed semantic structures
using two additional record types, ‘semantic-constituent’ records and ‘interpretation’
records. Interpretation records contain logical form templates with ‘references’ to
daughter constituents so that completed logical forms can be recovered by selecting
among the interpretation records for the daughter constituents. In the example
above, the alternative semantic interpretations of the verb phrase would be expressed
with multiple interpretation records.

In order to handle the more general case of CLE categories that contain arbi-
trary terms as feature values, we can no longer simply check that categories are
identical for packing to take place. Instead, we must check whether the category
in a constituent record subsumes the categories in the corresponding analysis or



interpretation records. The alternative syntactic analyses or logical forms can then
be recovered by unification rather than replacement.

8 Parsing and Interpretation

Morphological processing takes place in three subphases: word segmentation, word
structure analysis, and sense derivation. Segmentation applies spelling rules to a
morphologically complex word so that the stem and affixes can be identified. Word
structure analysis parses these word components using a simple left corner parser
(see below) in order to assign a category to the word. Sense derivation applies
another set of rules in order to derive new sense entries from the senses of the stem.
Word parsing and sense derivation are similar to the processes of sentence parsing
and interpretation, but simpler because packing is not used at the sub-lexical level
of analysis.

The parser in the CLE uses a ‘left-corner’ parsing strategy with top-down filtering
(Rosenkrantz and Lewis, 1970). This is primarily a bottom-up strategy, but it
does a limited amount of top-down processing in order to use the left context to
decide whether a particular constituent could occur at a given position in the input.
The idea is that, having parsed a constituent bottom-up, the system selects a rule
in which that constituent could be the left-most daughter, and it postulates that
this rule provides the analysis of the immediately following input, predicting the
remaining daughters in the rule top-down. In parsing the next segment of the input,
it considers only analyses that are consistent with the selected rule, by checking that
each constituent it builds bottom-up could be a ‘left corner’ of the next daughter
needed to satisfy the rule.

Pure top-down parsing has the problem that left-recursive rules lead to infinite
recursion. Pure bottom-up parsing has the disadvantage that every possible emp-
ty category (or ‘gap’) has to be proposed at each point in the input string, since
the parser cannot tell from the input string where gaps exist. A left-corner parser
avoids the left-recursion problem because it is fundamentally bottom-up, and it can
be made to solve the gap-proliferation problem by using the top-down filtering to
make sure that gaps are proposed only in places they can actually occur.

The information for testing whether one constituent can be a left corner of an-
other constituent is precomputed into the rule tables used in the prediction steps of
the parser. A well-formed substring table is also used to avoid re-analysis of already
parsed constituents after backtracking. The implementation of these elaborations
of the basic algorithm allows for the possibility of fully general CLE categories con-
taining variables (see Alshawi, et al, 1988).

Another parser based on Prolog unification and a bottom-up strategy is the BUP
system (Matsumoto, et al, 1983). Our parser is an extension of this in that its top-
down filtering uses feature values as well as major categories, and its well-formed
substring table construction is sound since it is based on subsumption checking.

The process of applying semantic interpretation rules to produce unscoped logical
forms is much simpler than parsing. The system merely traces the syntactic analysis
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records down from the start symbol to look up the word senses of all the lexical
items and apply the semantic interpretation rules to all the complex constituents
that appear in complete sentence analyses.

To process a constituent, the system finds a syntactic analysis record for the con-
stituent and recursively computes an interpretation for all the daughter constituents
in that analysis. It then looks for a semantic rule that corresponds to the syntax rule
for the analysis and is compatible with the interpretations chosen for the daughter
constituents. After unification, the relevant instance of the mother logical form is
extracted from the rule and a sorted version of the form is built, making sure that
it does not violate any sortal restrictions.

9 Quantifier Scoping

An algorithm for generating the possible quantifier scopings for a sentence, in or-
der of preference, has been developed and implemented (Moran, 1988). Quantifier
scoping generates the two possible readings for A bishop wanted to visit every col-
lege from the unscoped LF (given in Section 4 above) by replacing the qterms with
quant expressions corresponding to generalized quantifiers. In this case, the pre-
ferred scoping preserves surface order:

quant (exists,A, [bishopl,A],
quant (forall,B, [collegel,B],
[past,quant (exists,C, [event,C],
[want1,C,A,
quant (exists,D, [event,D],
[visit1,D,A,B]1)1)1)).

The scoping assigned to a quantifier is determined by its interactions with other
quantifiers, logical operators (e.g., modals and negation), and boundaries of certain
syntactic constituents (e.g., major clauses and relative clauses). When a potential
scoping is logically equivalent to another, one is discarded.

The algorithm is intended as the first stage of a two-stage process for determin-
ing the preferred quantifier scoping for a sentence. The first stage generates the
scopings and orders them using linguistic criteria; the second stage (future work)
would use pragmatic information (e.g., functional dependencies and discourse cri-
teria) to modify the initial ordering. The motivation for this division can be seen
in the two closely related sentences John wvisited every house on a street and John
wsited every house on a square; both have a preferred quantifier scoping of on a
particular street/square. However, the latter has a secondary scoping (any house on
any square) which is very hard to get for the former. We attribute this difference to
an application of pragmatic information: the typical house is on a street, but not
on a square.

Our algorithm, which is an extension of the one described by Hobbs and Shieber
(1987), traverses the unscoped logical form, collecting the quantifier terms into a
‘store’; then as the scoping for each quantifier term is determined, it is ‘pulled’
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out of the store, producing a scoped logical form. Unlike the flat stores of Cooper
(1983) and the LUNAR system (Woods, 1977), our algorithm uses a store in which
the structure of the quantifier terms reflects their relative positions in the unscoped
logical form, so we can apply order-dependent linguistic preferences.

The selection of a preferred quantifier scoping for the whole sentence is the
result of a sequence of pairwise comparisons between the individual quantifier terms,
logical operators, and constituent boundaries. The relative scoping preferences of the
individual quantifiers are not embedded in the algorithm, but are specified by a set of
rules. Many of these rules have appeared in the linguistics literature and have been
used in various natural language processing systems. However, the coordination of
these rules and the resulting coverage represents a significant contribution. Because
experimental data on human quantifier-scoping preferences are still fragmentary, we
chose to design a system in which the set of preference rules could be easily modified
and expanded.

An improved scoping algorithm has recently been included into the CLE by
Fernando Pereira. The format of binding operators can now be specified declara-
tively, and cases not handled in previous work, such as conjoined quantified noun
phrases, are now treated. For example, for sentences involving noun phrases such
as most doctors and some engineers the algorithm produces distributive readings
which respect the constraint that both quantifiers must have ‘parallel’ scopes.

10 Further Research

We intend to extend the treatment of tense, aspect, events and temporal reference,
and of collective readings of noun phrases. Work has started on the design of the
reference resolution component and on a more detailed treatment of noun subcate-
gorization, including acquisition of words formed by nonproductive derivations. In
the longer term, we would like to develop the CLE in a number of directions includ-
ing the provision of capabilities for language generation, for the interpretation of
abbreviated and elliptical expressions, and for using reasoning to aid interpretation
and application interfacing.
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