A Global Optimization Method, «BB, for
General Twice-Differentiable Constrained
NLPs: II — Implementation and
Computational Results

C.S. Adjiman, I.P. Androulakis, and C.A. Floudas'
Department of Chemical Engineering
Princeton University
Princeton, NJ 08544-5263

Abstract

Part I of this paper (Adjiman et al., 1997) described the theoretical foundations of
a global optimization algorithm, the aBB algorithm, which can be used to solve
problems belonging to the broad class of twice-differentiable NPLs. For any such
problem, the ability to automatically generate progressively tighter convex lower
bounding problems at each iteration guarantees the convergence of the branch-
and-bound aBB algorithm to within € of the global optimum solution. Several
methods were presented for the construction of convex valid underestimators for
general nonconvex functions. In this second part, the performance of the proposed
algorithm and its alternative underestimators is studied through their application
to a variety of problems. An implementation of the BB is described and a num-
ber of rules for branching variable selection and variable bound updates are shown
to enhance convergence rates. A user-friendly parser facilitates problem input and
provides flexibility in the selection of an underestimating strategy. In addition,
the package features both automatic differentiation and interval arithmetic capa-
bilities. Making use of all the available options, the BB algorithm successfully
identifies the global optimum solution of small literature problems, of small and
medium size chemical engineering problems in the areas of reactor network design,
heat exchanger network design, reactor-separator network design, of generalized
geometric programming problems for design and control, and of batch process
design problems with uncertainty.

I Author to whom all correspondence should be addressed.

1 Introduction

In the first part of this paper, Adjiman et al. (1997) presented an optimiza-
tion algorithm, the BB algorithm, whose theoretical properties guarantee
convergence to the global optimum solution of twice-differentiable NLPs of
the form

min f(x)

9t glz) <0
g <0 1)
r € XCR"

where f, g and h belong to C?, the set of functions with continuous second-
order derivatives, and x is a vector of size n.

The BB algorithm is based on a branch-and-bound approach, where
a lower bound on the optimal solution is obtained at each node through
the automatic generation of a valid convex underestimating problem. If the
functions contain any bilinear, trilinear, fractional, fractional trilinear or uni-
variate concave terms, these may be underestimated through their convex en-
velope. A valid convex underestimator L£,;(x) for a general nonconvex term
nt(x) is constructed by subtracting a sufficiently large positive quadratic
term from nt(x):

Lo(x) =nt(z) = > o;(a] —a;)(x; — xf). (2)
i=1

A necessary and sufficient condition for the convexity of L,;(x) is the positive
semidefiniteness of its Hessian matrix given by H,,(x) + 2diag(a;). H,(x)
is the Hessian matrix of nt(x).

Several methods were presented for the rigorous computation of a valid
diagonal shift matrix A = diag(«;) satisfying the convexity condition. All
procedures require the use of interval analysis to obtain an interval Hessian
matrix or an interval characteristic polynomial valid at the current node of
the branch-and-bound tree. The computational complexity and the accuracy
of the a calculations differ from scheme to scheme and one of the aims of the
present paper is to study the effect of these variations on the performance of
the algorithm.

Before the aBB algorithm is applied to a set of example problems, a cur-
rent implementation is presented. The main characteristics of the package,

such as branching schemes, variable bound update strategies, automatic dif-
ferentiation, interval arithmetic and a user-friendly parser, are outlined. An
extensive computational study is then carried out. The test problems chosen
vary in size and type. The first series of examples consists of small problems
often encountered in the literature. These are followed by chemical engineer-
ing problems representing reactor network design, heat exchanger design and
separation system design. Then, a number of generalized geometric program-
ming problems are addressed. Finally, some large batch scheduling problems
with uncertain parameters are solved.

2 Algorithmic Issues

Using the theoretical advances described in Part T of this paper (Adjiman
et al., 1997), a user-friendly implementation of the algorithm was developed.
The main objectives were to create an efficient optimization environment for
NLP problems involving twice-differentiable functions, while ensuring that
the user interface remains simple and flexible. The structure of the algorithm,
illustrated in Figure 1, requires the implementation to possess the following
features:

e several alternatives for the construction of the lower bounding problem,
depending on the mathematical characteristics of the terms appearing
in the problem,

e an interface with MINOPT (Schweiger et al., 1997), which contains a
collection of local NLP and MINLP solvers.

e the capability to derive Hessian matrices (second-order derivatives) or
characteristic polynomials via automatic differentiation,

e the ability to generate interval Hessian matrices and to perform interval
arithmetic,

e « calculation functions for each of the methods presented in Part I,
e several branching strategies,

e several variable bounds update strategies.

(__START)

/ Parse input file/
!
Pre-processing

Variable

_ YES Convexify congtraints
bound updates required _—~———

(o calculation)

by user ?
NO :
- - Solve min/ max X
Select branching variable s.t. convexified constraints
Create new nodes
in Branch and Bound tree

NO

| Convexify problem (a calculation) |

| Solve new lower bounding problems |

| Solve upper bounding problems |

¢

UBD = smallest upper bound
LBD = smallest lower bound

YES
BD-LBD<¢? STOP

Figure 1: Flowchart for the aBB algorithm

The following discussion outlines the branching and variable bounding
rules which are used in order to enhance the performance of the aBB algo-
rithm. It also gives the rationale for the design of the different components
of the current implementation of the BB algorithm.

2.1 Branching Strategies

Although it does not present any theoretical difficulties, the branching step
of any branch-and-bound algorithm often has a significant effect on the rate
of convergence. This is especially true of the BB algorithm as the quality of
the underestimator depends on the variable bounds in a variety of ways. For
instance, if a variable participates only linearly in the problem, branching
on it will not have any effect on the accuracy of the convex lower bounding
functions. On the other hand, reducing the range of a variable raised to
a high power is likely to result in much tighter underestimating problems.
To take advantage of these observations, the implementation of the aBB
algorithm offers some choice in the branching strategies. Four alternatives
are currently available:

1. Use k-section on all or some of the variables.

2. Use a measure of the quality of each term’s underestimator, based on
the maximum separation distance between term and underestimator.

3. Use a measure of the quality of each term’s underestimator, based on
the separation distance at the optimum point.

4. Use a measure of the overall influence of each variable on the quality
of the lower bounding problem.

2.1.1 Strategy 1

By default, bisection on all the variables is used. The user can however
specify a restricted list of variables on which to branch. The interval to be
bisected is determined through the ‘least reduced azis’ rule whose application
involves the calculation of a ‘current range to original range ratio’, r;, for
each variable:

poo o 3)

3

5

where z!, and x! are respectively the upper and lower bound on variable ;

at the first node of the branch-and-bound tree, and ! and z} are respectively
the upper and lower bound on variable x; at the current node of the tree.
The variable with the largest r; is selected for branching.

2.1.2 Strategy 2

While the second branching option requires additional computational effort,
it results in a significant improvement of the convergence time for difficult
problems. A different measure p is defined for each type of underestimator to
facilitate the assessment of the quality of the lower bounding function. The
maximum separation distance between the underestimator and the actual
term at the optimal solution of the lower bound problem is one possible
indicator of the degree of accuracy achieved in the construction of the convex
approximation. For a bilinear term xy, the maximum separation distance was
derived by Androulakis et al. (1995) so that puy is

(=" = 2")(y" = y")
For a fractional term, the maximum separation distance is derived in
Adjiman et al. (1998).
For a univariate concave term wut(z), the maximum separation distance
can be expressed as an optimization problem so that u, is given by

My =

. L
Py = — ILrSn;;U —ut(x) + ut”(x) (5)

where ut’(z) is the linearization of ut(z) around z*. Since ut(z) is con-

cave and ut”(x) is linear, the above optimization problem is convex and can

therefore be solved to global optimality.

For a general nonconvex term, the maximum separation distance was derived

by Maranas and Floudas (1994) and the term measure is

1
o = 7 L ailal — b’ ©
i
where the «;’s are defined by Equation (2).
Given a node to be partitioned, the values of py, p,, and u, are calculated
for each term in accordance with its type. The term which appears to have
the worst underestimator or, in other words, the largest p, is then used as a

basis for the selection of the branching variable. Out of the set of variables
that participate in that term, the one with the ‘least reduced axis’, as defined
by Equation (3), is chosen for k-section. With this strategy, the influence of
variable bounds on the quality of the underestimators is taken into account,
and hence this adaptive branching scheme ensures the effective tightening of
the lower bounding problem from iteration to iteration.

2.1.3 Strategy 3

This strategy is a variant of Strategy 2. Instead of computing the maximum
separation distance between a term and its underestimator, their separation
distance at the optimum solution of the lower bounding problem is used.
Thus, the bilinear term measure is now

= |oy* — (7)
where w is the variable which has been substituted for the bilinear term zy
in order to construct its convex envelope (Adjiman et al., 1997) and the *
superscript denotes the value of the variable at the solution of the current
lower bounding problem. The measures (i, jty and fi 5, for trilinear, fractional
and fractional trilinear terms, are obtained in a similar fashion.

The measure for univariate term ut(zx) is

fry = ut(x*) —ut”(z*). (8)

Finally, the general nonconvex term measure is
n
pa =iz —af)(a] — 7). (9)
i=1

2.1.4 Strategy 4

The fourth branching procedure takes the approach of Strategy 3 one step
further by considering the overall influence of each variable on the convex
problem. After the relevant measures ju, ft, ftf, pse, py and g, have been
calculated for every term, a measure pu, of each variable’s contribution may
be obtained as follows:

EDIEDWIED W EID WL DITED BTN

JEB; JjeT; JjeEF; JEFT; JeU; JEN;

where y! is the measure for the ith variable; B; is the index set of the
bilinear terms in which the sth variable participates, [LZ is the measure of the
jth bilinear term; 7; is the index set of the trilinear terms in which the ith
variable participates, p/ is the measure of the jth trilinear term; Fj is the
index set of the fractional terms in which the ith variable participates, ,ugc is
the measure of the jth fractional term; F'T; is the index set of the fractional
trilinear terms in which the ith variable participates, u;t is the measure of
the jth fractional trilinear term; U; is the index set of the univariate concave
terms in which the ith variable participates, p/ is the measure of the jth
univariate concave term; /N; is the index set of the general nonconvex terms
in which the ith variable participates, p/, is the measure of the jth general
nonconvex term.

The variable with the largest measure p, is selected as the branching
variable, and k-section can be performed on it. If two or more variables have
the same pu,, the ‘least reduced azis’ test is performed to distinguish them.

As will become apparent in the computational studies, branching strate-
gies 2, 3 and 4 are particularly effective since they take into account the
sensitivity of the underestimators to the bounds used for each variable.

2.2 Variable Bound Updates

The quality of the convex lower bounding problem can also be improved by
ensuring that the variable bounds are as tight as possible. In the current
implementation of the aBB algorithm, variable bound updates can either be
performed at the onset of an aBB run or at each iteration.

In both cases, the same procedure is followed in order to construct the
bound update problem. Given a solution domain, the convex underestimator
for every constraint in the original problem is formulated. The bound problem
for variable z; is then expressed as

ma%n / max
wp M T =9 s gla) <0 (11)

zl <z <zl

where G(x) are the convex underestimators of the constraints, and the bounds
on the variables, " and &V are the best calculated bounds. Thus, once a new

LNEW . C .
lower bound z; on x; has been computed via a minimization, this value

is used in the formulation of the maximization problem for the generation of
an upper bound TZUNFW

Because of the computational expense incurred by an update of the
bounds on all variables, it is often desirable to define a smaller subset of the
variables on which this operation is to be performed. The criterion devised
for the selection of the branching variables can be used in this instance, since
it provides a measure of the sensitivity of the problem to each variable. An
option was therefore set up, in which bound updates are carried out only for

a fraction of the variables with a non-zero p,, as calculated in Equation (10).

2.3 Implementation Issues

The goal of the implementation of the BB algorithm is to produce a user-
friendly global optimization environment which is reliable and flexible. This
section describes the choices made in order to meet these objectives.

All the strategies for branching variable selection and variable bound
updates presented here, as well as the underestimation techniques proposed
in Part I of this paper (Adjiman et al., 1997) have been implemented as part
of the aBB package. In addition, an intuitive interface and a user’s manual
(Adjiman et al., 1997) have been designed.

2.3.1 Problem Input and Pre-Processing

To a large extent, the practical value of a general optimization package is
measured by its ability to solve a variety of problems. However, it must also
be easily adapted to different problem types so that no substantial transfor-
mations are required from the user. The need for the second-order deriva-
tives of the nonconvex functions in the problem raises practical difficulties
in terms of the implementation of the algorithm and the format of the input
file. Because the problems solved belong to a very broad class for which
no structural assumptions may be made a priori, these derivatives must ei-
ther be supplied by the user or generated automatically. The first option
would be very cumbersome and would render the use of the aBB algorithm
fastidious. In order to generate the derivatives automatically, the functions
must be available in a code list format (Rall, 1981) which allows systematic
differentiation based on elementary rules. Although the functions could be
provided by the user in this codified notation, such an approach would result
in counter-intuitive problem input. By designing an interface which accepts

input in standard mathematical notation, transforms it into the desired form
and automatically generates sparse Jacobian and Hessian matrices, both ease
of use and flexibility can be achieved. The front-end parser developed as part
of the aBB implementation creates this code list, while giving much freedom
of notation to the user. This parser can also be used to input user-provided
expressions for the second order derivatives when these cannot be obtained
automatically. During the parsing phase of an aBB run, the following tasks
are carried out:

e Identify variable, function, and parameter names.

e Define linear, bilinear, trilinear, fractional, fractional trilinear, con-
vex, univariate concave, and general nonconvex terms. This determines
what types of underestimators are to be used.

e Build code lists for the functions.
e Define bounds on the solution space.

e Gather optional information such as branching strategy, user-defined «
values if any, etc.

The choice of all names (variable, function, term, parameter) is left up to
the user, with the possibility to use index notation. Many index operations
are supported, such as summation, multiplication, enumeration and index
arithmetic. The input can therefore be made as explicit or as compact as
desired. A sample input file for the CSTR sequence design problem discussed
in Section 3.3.1 is listed in Appendix A. The formulation of this problem is
given in Appendix B.

Once the parsing phase is completed, a processing stage is initiated in
which the code list for each of the lower bounding functions is built using the
term information provided in the input file. Sparse Jacobians and Hessian
matrices are also generated in the code list format. The sparsity issue is
critical not only from the point of view of memory requirements, but also
with respect to the diagonal shift matrix computation: the speed of this
process is strongly dependent on the number of participating variables for all
the methods described in Part 1 of this paper (Adjiman et al., 1997).

Once all the necessary information has been gathered, the main iteration
loop can be started.

10

2.3.2 User-Specified Underestimators

In some instances, the problem to be solved may involve functions for which
no explicit formulation is available. The potential energy function for pro-
teins, for example, is typically calculated using force-field models such as
CHARMM (Brooks et al., 1983), AMBER (Weiner et al., 1986) or the
ECEPP/3 model (Némethy et al., 1992). The user can require that these be
used for function evaluations, as long as the Jacobian and a convex underes-
timator are also provided.

Some functions whose analytical form is entered in the input file may
exhibit a special structure for which a tight underestimator is known. This
tailored lower bounding function can then be entered in the input file and
replace the generic nonconvex term underestimator of Equation (2).

Similarly, if values or formulae have been derived for the « parameters,
this information can be used by the algorithm, thereby improving its perfor-
mance.

2.3.3 « Calculations

Two main options are available to the user for the determination of the «
values to be used in the lower bounding problem.

Option 1: User-specified expressions supplied in the input file for oz com-
putations.

Option 2: Calculation using one of the automatic computation methods
described in Part I (Adjiman et al., 1997).

The successful implementation of the second option requires the avail-
ability of a rigorous procedure for interval function evaluations. The aBB
algorithm is therefore connected to a C++ interval arithmetic library, PRO-
FIL/BIAS, developed by Kniippel (1993). All the interval calculations are
carried out using the natural extension form of the functions (Ratschek and
Rokne, 1988). The main feature of this form is its simplicity but more accu-
rate results can be obtained using the centered form or the remainder form
(Cornelius and Lohner, 1984), at increased computational expense. The
nested form is particularly suited for the special case of polynomial functions
because of the quality of its results and the ease of computation.

11

Most of the O(n*) methods for the computation of a uniform diagonal
shift matrix require the calculation of the minimum and/or maximum eigen-
value of real symmetric matrices. These matrices are usually dense and of
small size since only the variables that participate in the nonconvex term
to be underestimated are taken into consideration when building the Hes-
sian matrix. Some Netlib routines for the transformation of real symmet-
ric matrices into symmetric tridiagonal matrices using orthogonal similarity
transformations and the rational QR method with Newton corrections were
translated into C for this purpose. The code was also customized based on
the specific requirements of the aBB algorithm. For Method 1.5, based on
the Kharitonov theorem (Kharitonov, 1979), a symbolic expansion of the de-
terminant must be carried out and Leverrier’'s method (Wayland, 1945) was
therefore implemented. Although it is more computationally expensive than
Krylov’s method or Danielewsky’s method (Wayland, 1945), it is the only
approach which does not involve divisions by the Hessian elements. This
eliminates the risk of encountering singularities when interval arithmetic is
subsequently used.

Finally, the error in the a parameter calculations is closely monitored to
guarantee the global optimality of the final solution.

3 Computational Case Studies

The purpose of this section is to demonstrate the performance of the aBB al-
gorithm in identifying the global minimum of nonconvex optimization prob-
lems and to study the effects of the different underestimating methods of
Part I (Adjiman et al., 1997) and the various convergence-enhancing schemes
presented in the previous sections. First, some literature problems are tack-
led, giving insights into the suggested branching and variable range reduction
strategies. Larger examples are then employed to test the algorithm. All
computational results were obtained on a HP9000/730 with a convergence
tolerance of 0.001, unless specified otherwise.

3.1 Literature Problems

The first example is a bilinearly constrained problem which allows to ana-
lyze the effects of the different branching strategies. In the second example, a
family of concave problems with 20 variables shows that the proposed strate-

12

gies successfully address both the issue of branching variable selection and
variable bound quality. Finally, the third example illustrates the efficiency of
the methods presented in Part I of this paper for the calculation of diagonal
shift matrices in the case of a nonlinear problem.

3.1.1 Haverly’s Pooling Problem
This problem is taken from Floudas and Pardalos (1990).

max f = 92+ 15y — 64 — ;B —10(C, + C,)

st. P,+P,—A—-B=0
c—P,—C,=0
y—P,—Cy=0
pP, +2C, — 2.52 <0
pP, +2C, — 1.5y <0
pP,+pP,—3A-B=0
0<zx<¢y
0 <y <200
0<A B,C,,Cyp, Py, P, <500

Three instances of the problem, denoted H P, H P,, and H P;, have been
defined based on the values of the parameters (¢1, ¢2). These are (16, 100),
(16, 600), and (13, 100) respectively. The nonconvexities are entirely due
to the presence of bilinear terms, which can be underestimated using their
convex envelope as specified in Part I, or as general nonconvex terms, using
calculated « values.

The global optimum solution and the values of the variables that par-
ticipate in bilinear terms are shown in Table 1 for each of the three cases.
The problems were first solved using different options for the variable bound
updates and the branching strategy and using the convex envelope for the
bilinear terms. The results are presented in Table 2. In addition, results
obtained using the GOP algorithm, a global optimization algorithm devel-
oped by Visweswaran and Floudas (1996a, 1996b) and designed specifically
to handle problems containing bilinear, quadratic and polynomial terms, are
listed.

13

Pooling

Case | ¢ p | Pp | Py | f*
HP, |16 {100 | 1.0 | 0 | 100 | -400
HP, | 16 | 600 | 3.0 | 300 | 0 | -600
HP; | 131100 | 1.5 | 0 | 200 |-750
Table 1: Optimal solutions of the three instances of the Haverly
Problem.
HP, HP, HP;
Run | N; | N, |CPU | N; | N, | CPU | N; | N, | CPU
A 731147 | 3.16 | 79 | 159 | 4.35 | 161 | 323 | 6.33
B 11 23 | 273 | 9 19 | 242 | 15 | 31 | 3.17
C) 11 | 1.22 | 2) 0.62 8 17 | 1.80
D 5 11 | 1.19 | 2 5 1059 | 8 17 | 1.84
E 2 5 | 061 | 2 5 1061 | 3 7 | 0.81
GOP | 12 0.22 | 12 0.21 | 14 0.26

Table 2: Comparison of computational results using various strategies.
Run A : No variables bounds update, branching strategy 1,

Run B : Variable bounds updates at each iteration, branching strategy 1,

Run C : Variable bounds updates at each iteration, branching strategy 2,

Run D : Variable bounds updates at each iteration, branching strategy 3,

Run E : Variable bounds updates at each iteration, branching strategy 4.

Note N; is the number of iterations and N,, is the number of expanded nodes.

As far as the BB algorithm is concerned, it is clear that Run E is the
most promising overall strategy. The addition of variable bounds updates
results in a significant improvement of the convergence rate as is revealed by
a comparison of Runs A and B. Important insight into the workings of the
algorithm can be gained by recording the variables on which branching is
performed when different strategies are used. In branching strategy 1 (Runs
A and B), each variable is branched on equally and the lower bounds remain
constant for several iterations as the variables participating linearly have lit-
tle effect on the tightness of the underestimating problem. In other runs,
branching depends on the term measure p,, either directly or through the

14

variable measure p,. Since the bilinear terms include three variables, p, P,
and P, they are the only branching candidates. This leads to another con-
siderable improvement in performance. With branching strategies 2 and 3,
each one of the three variables is branched on equally. With branching strat-
egy 4, however, p is branched on exclusively as it participates in all bilinear
terms and its p, is always greater than that of P, or P,. The performance of
the branch-and-bound search is therefore enhanced substantially by selecting
appropriately the branching variables.

Using the same branching and bounding options as in Run E, the prob-
lems were then solved by treating the bilinear terms as general nonconvex
terms. For bilinear terms, the Hessian matrix is independent of the variables
and no interval calculations are required. The minimum eigenvalue required
by all uniform diagonal shift matrix methods is therefore easily obtained.
Table 3 compares the performance of the algorithm using the convex enve-
lope (“Linear”) and a-based underestimation. The row labeled “Convex I”
reports results obtained using a uniform diagonal shift matrix (a single a
value per term), and “Convex II” was obtained using the scaled Gerschgorin
theorem method which generates one a per variable in a nonconvex term.
The use of « leads to looser lower bounding functions than the convex enve-
lope. Moreover, it requires the solution of a convex NLP for the generation
of a lower bound, whereas a linear program is constructed when the con-
vex envelope is used. As a result, both computation time and number of
iterations increase significantly. The exploitation of the special structure of
bilinear terms is thus expected to provide the best results in most cases. For
very large problems, however, the introduction of additional variables and
constraints may become prohibitive and a convex underestimator becomes
more appropriate (Harding and Floudas, 1997).

HP, HP, HP;
Underestimator | N; | N, | CPU | N; | N, | CPU | N; | N,, | CPU
Linear 215 06125 0613/ 7]0.81

Convex [24 1 49 | 5.66 | 27 | 55 | 7.23 | 18 | 37 | 4.53
Convex I 311 63 | 6.72 | 23 | 47 | 6.48 | 14 | 29 | 3.60

Table 3: Computational results using different underestimating schemes.

15

3.1.2 Linearly Constrained Concave Optimization Problems

This set of problems taken from Floudas and Pardalos (1990) will be used
to show the increased efficiency of the algorithm when appropriate strategies
are being employed to select the variables whose bounds will be updated.
The general form of the problems is as follows :

min f

20
— 0.5 3 Ai(w; — 51')2
i=1
st. reP={z: Az <bx >0} CR®
Five cases are defined for different values of (), 3) as shown in Table 4.

The global minima are also given in Table 4, while the values of the variables
at the optimal solutions are given in Table 5.

& Cs Cs Cy Cs
Ai 1 1 20 1 i
B 2) 0 2
*1-394.7506 | -884.7508 | -8695.011 | -754.7506 | -4150.410
Table 4: Parameter and optimal objective function values for the five in-
stances of the linearly constrained concave problems (i = 1,- -, 20).
Case T3 T T11 T3 L5 T16 T8 20
C; | 2880 |4.179 0 0 0.619 | 4.093 | 2.306 0
Cy | 28.80 | 4.179 0 0 0.619 | 4.093 | 2.306 0
Cs | 28.80 | 4.179 0 0 0.619 | 4.093 | 2.306 0
C, | 2880 |4.179 0 0 0.619 | 4.093 | 2.306 0
Cs | 1.043 0 1.747 | 0.431 0 4.433 | 15.858 | 16.487

Table 5: Optimal solutions of the five instances of the linearly constrained
concave problems Variables not shown here are equal to zero.

Since this problem involves only linear and univariate concave terms,
linear underestimators may be used to construct the lower bounding problem.
The computational requirements for the different strategies are summa-
rized in Table 6. Results obtained with the GOP algorithm are also provided.

16

A significant reduction of the number of iterations as well as the CPU time
requirements is achieved when an appropriate branching procedure is used
(Runs R3 and R4). Such a scheme repeatedly selects a few key variables
for branching from the entire pool of 20 variables. When variable bounds
updates are performed at every iteration (Runs R2 and R4), only a few vari-
ables bounds are actually optimized. This results in a significant decrease in
the required number of iterations. However the overall CPU time increases
by as much as a factor of 2. It was found that the construction of the lower
bounding problem in each domain represented on the order of 0.1% of the
overall computational expense when bound updates were performed at each
iteration, and 1% when bound updates took place at the first iteration only.

Iterations CPU

Case | R1 | R2 | R3 | R4 | GOP | R1 | R2 | R3 | R4 | GOP
C, 137 | 72 42 | 26 27 13.2 | 23.2 | 4.8 9.4 0.68

C, 116 | 71 38 | 23 4 11.6 | 229 | 4.5 8.2 3.57

Cy | 123 | 77 | 41 | 26 11 11.3 1242 | 46 | 85 | 10.91
Cy 115 79 | 38 | 24 5 11.9 | 25.2 | 44 | 8.3 5.07

Cs 544 | 221 | 134 | 63 229 | 51.0|67.0]12.0] 199 | 177.04

Table 6: Computational requirements for the five instances of the linearly
constrained concave problems.

R1: Branching strategy 1; Bounds updates at first iteration,
R2: Branching strategy 1; Bounds updates at every iteration,
R3: Branching strategy 3; Bounds updates at first iteration,
R4 : Branching strategy 3; Bounds updates at every iteration,

GOP : GOP algorithm.

When the univariate concave terms are treated as general nonconvex
terms and « values are calculated for each one of them, the computational
requirements for convergence to the global optimum solution are almost un-
changed, as can be seen in Table 7. Once again, the generation of the convex
underestimators makes up about 1% of the computational cost.

17

C1 C2 C3 C4 C5
Underes. | N; | CPU | N; | CPU | N; | CPU | N; | CPU | N; | CPU
Linear | 42| 48 | 38| 45 |41 | 46 |38 | 44 |134]| 12.0
Convex |42 | 42 | 38| 3.8 |41 | 3.8 |38 39 [134]| 9.3

Table 7: Computational results using different underestimators for the lin-
early constrained concave problems. Strategy R3 was used for all runs.

3.1.3 Constrained Nonlinear Optimization Example

This is a small but nevertheless difficult nonconvex problem from Murtagh
and Saunders (1983). The aBB algorithm is very well suited for this example
since it combines bilinear, univariate concave and general nonconvex terms.

min (J,‘l — 1)2 + (.ZEl — l‘2)2 + (1'2 — CE‘;)g + (.ZEg - JI4)4 + (1'4 - £E5)4

s.t.
T+ as = 3v2 + 2
Ty — 25+ 14 = 22 —2
1Ty = 2
x; € [=5,5],i=1,---,5
The global minimum as well as some local minima are presented in Ta-
ble 8.
obj T Ty T3 T4 Ts
Global | 0.0293 | 1.1166 | 1.2204 | 1.5378 | 1.9728 | 1.7911
Local 1 | 27.8719 | -1.2731 | 2.4104 | 1.1949 | -0.1542 | -1.5710
Local 2 | 44.0221 | -0.7034 | 2.6357 | -0.0963 | -1.7980 | -2.8434
Local 3 | 52.9026 | 0.7280 | -2.2452 | 0.7795 | 3.6813 | 2.7472
Local 4 | 64.8740 | 4.5695 | -1.2522 | 0.4718 | 2.3032 | 4.3770

Table 8: Global and local minima of example 3.1.3.

All the « calculation methods proposed in Part I of this paper have been

used to solve this problem to global optimality. Strategies 2, 3 or 4 were
used for branching variable selection and bound updates were performed

18

on a subset of the variables at every iteration for all runs. All branching
strategies were tried for this problem and the most successful run is reported
in Table 9.

The percentage of total time spent generating convex underestimators, ¢/,
varies from method to method. For Method 1.5, the derivation of intervals
for the coefficients of the characteristic polynomial and the solution of the
real polynomials is quite time-consuming. In the case of Method II.3, the
increase in computational expense is due to the time spent solving semi-
definite programs. For all other methods, a low percentage of the overall
CPU time (about 2.5%) is needed to derive the lower bounding problem.

The best results are given by the E-matrix approach, the Hertz method
and the scaled Gerschgorin approach with d; = (x{ —z}). The minimization
of the maximum separation distance approach converges with the smallest
number of iterations but performs poorly in terms of CPU requirements.
Branching strategy 3 is especially well-suited for this problem. If the vari-
able bounds are updated only once at the beginning of the aBB run, the
scaled Gerschgorin method requires 2026 iterations and 224.2 CPU seconds.
The relatively high degree of nonlinearity of this example problem increases
the dependence of the quality of the lower bounding problem on the variable
bounds: while the « values were constant for the Haverly pooling prob-
lems and the linearly constrained concave problems, they are now computed
through interval arithmetic. Variable bound updates should therefore be
carried out preferentially on the most nonlinear variables.

For all the methods used, the quality of the lower bound increases sharply
from iteration to iteration at the beginning of a run. After a few levels of the
branch-and-bound tree have been explored, the rate of improvement tapers
off. Figure 2 shows the progress of the lower bound for the first 100 iterations
using Method II1.2 and one can clearly see the dramatic amelioration in the
quality of the underestimator.

The shape of the branch-and-bound tree also reflects the efficiency of the
underestimating techniques used in the BB algorithm: when using the Hertz
method, for example, all nodes on the first five levels are visited. Fathoming
becomes significant at subsequent levels as the lower bound approaches the
optimum solution. Level 6 is 95% full, level 7 is 69% full, level 8 is 36%
full and level 9 is only 25% full. Thereafter, the absolute number of visited
nodes on each level actually decreases as the algorithm zeroes in on the region
containing the solution and time is spent closing the small gap between the
lower and upper bounds.

19

Method Iter. | CPU sec. | ty (%) | Branch
Gerschgorin (I.1) 353 76.3 2.1 4
E-Matrix (1.2) E=0 337 | 707 2.8 3
E-Matrix (12) | E = diag(AH) | 339 | 729 2.3 2
Mori-Kokame (1.3) 611 137.5 2.3 3
Lower bounding Hessian (I.4) 346 72.8 2.4 3
Kharitonov (L5) 412 | 1159 | IL1 1
Hertz (1.6 334 | 722 2.9 3
Scaled Ger. (II.1) di =1 352 76.1 2.0 4
Scaled Ger. (I11.1) | d; = («V — 2F) | 330 69.7 2.0 3
H-Matrix (IL2) 347 | 79.6 3.1 3
Min. Max. distance (I1.3) 318 100.4 30.3 4

Table 9: Results for example 3.1.3. ty denotes the percentage of total CPU

time spent generating convex underestimators.

0.0

-10000.0 -

-20000.0

-30000.0

-40000.0
0

Figure 2: Progress of the lower bound for Example 3.1.3.

50

Number of Iterations

100

3.2 Chemical Engineering Design Problems

Having established the importance of branching variable selection and vari-
able bound updates, some results will now be presented for a set of optimiza-
tion formulations for chemical process design problems. The first problem
is a small reactor network design problem, the second example is a heat ex-
changer network design problem and the third is a separation network design
problem.

3.2.1 Reactor Network Design

The following example, taken from Ryoo and Sahinidis (1995), is a reactor
network design problem, describing the system shown in Figure 3.

Cez

Figure 3: Reactor Network Design Problem.

This problem is known to have caused difficulties for other global opti-
mization methods.

min —x4
s.t.

T+ ks =

Il
O = O =

To — X1 + kQJIQCEs
T3 + T + k3l‘3£175

Ty — Ty + To — X4 +k‘4.7)4.’1)6 =

21

0.5
Ts

+ g”®
k1
ko
ks
ks

(Oa 07 Oa 10757 1075) S (xla T, T3, T4, :I/‘S)

4

0.09755988
0.99%4

= 0.0391908

0.9

< (1,1,1,1,16,16)

A number of close local minima exist, as shown in Table 10.

Ob] T) I3 Ty Ty T
Global | -0.38881 | 0.772 | 0.517 | 0.204 | 0.388 | 3.036 | 5.097
Local 1 | -0.38808 | 1.0 | 0.393 | 0.0 |0.388| 1075 | 15.975
Local 2 | -0.37461 | 0.391 | 0.391 | 0.375 | 0.375 | 15.975 | 10°°

Table 10: Global and local minima of the small reactor network design prob-

lem.

If the univariate concave and bilinear terms are underestimated linearly,
the aBB algorithm identifies the global minimum after 33 iterations and 5.5
CPU seconds. When the bilinear terms are treated as general nonconvex
terms, the computational requirements increase to 157 iterations and 43.4
CPU seconds. In both situations, the generation of convex underestimators

requires about 0.4% of the overall CPU time.

3.2.2 Heat Exchanger Network Design

The following problem, from Floudas and Pardalos (1990), addresses the

design of a heat exchanger network as shown in Figure 4.

S.t.

min

f = JI1+CE2+JI3

0.0025(x4 + x6) — 1
0.0025(—z4 + x5 + x7) — 1
0.01(—x5 + z5) — 1
100z — z1726 + 833.3325224 — 83333.333

22

VAN VAN VANRVAN

o O O O

ToXy — Tox7 — 125024 + 125025 < O
T3x5 — x3Tg — 200025 + 1250000 < 0
100 <z < 10000
1000 < x9, 23 < 10000
10 < 4, x5, 6, x7, 25 < 1000
The optimal value of the objective function is f* = 7049.25, while the

optimal variable vector is

x* = (579.19,1360.13,5109.92, 182.01, 295.60, 217.99, 286.40, 395.60)".

300 400 600

Lo

X,

Y
Y

X3 +—— 500

¢ ¢ ¢

Xs X7 Xg

100— x4

Figure 4: Heat Exchanger Network Design Problem.

It takes the aBB algorithm 244 iterations and 54.4 seconds to identify
the global minimum when linear underestimators are used. With convex
underestimators, 558 iterations and 141.4 CPU seconds are required.

3.2.3 Separation network synthesis

In this problem taken from Floudas and Aggarwal (1990), the superstructure
for the separation of a three-component mixture into two products of differ-
ent compositions is considered. Two separators and a number of splitters
and mixers are available to complete the task, as shown in Figure 5. The
formulation of the cost minimization problem given in Floudas and Aggarwal
(1990) has been slightly modified to reduce the number of variables. It now
involves 22 variables and 16 equality constraints. It is expressed as

23

min 0.9979 + 0.00432F; + 0.00432F3 + 0.01517F, + 0.01517 Fy

S.t

F1+F2+F3+F4 = 300

Fs—Fs—F; = 0
Fs—Fy—Fig—Fp = 0
Fiy—Fi3—Fiu—Fs; = 0
Fig —Fiy —Fig = 0
Fizgrpa1o — F5+0.333%xFp = 0
Fizxpio — Fyopg +0.333«F; = 0
—Fyxog +0.333F, = 0
—Fiowa12 —0.333F, = 0
Forps — F120B,12+0.333F, = 0
Foxcg — Fig +0.333F, = 0
Fiaz g0 +0.333F3 + Fg = 30
Firpg + Flarpi: +0.333F; = 50
Fiozeg +0.333F5 + Fi7 = 30
rpgt+reg = 1
Taig+Tpiz = 1
0<F, < 150
0<z;,; <1

where F; denotes the total flowrate of the ith stream and z;; denotes the
fraction of component j in the ith stream.

The global optimal configuration is identified in Figure 6. The optimal
concentrations are xpg = xvcg = 0.5, v4,12 = 0 and 212 = 1. The optimal
non-zero flowrates are I} = 60, F3 = 90, F, = 150, F5 = F; = 20, Fy = Fy =
40, Fyo = Fi4 = 20 and Fig = Fig = 20.

24

Fs
F
Fg Fio \/
I = P1
. 11
1
A F15
B — Fo Fiq
C F, Fo |/F
be g 22 =~ P2
F g
17
Fis
F F,

(@R

Figure 6: Optimal configuration for example 3.2.3.

The algorithm converged to the global solution in 15.2 CPU seconds and
after 11 iterations, when the bilinear terms were underestimated linearly.
When they were treated as general nonconvex terms, 49 iterations and 220.1
CPU seconds were required.

25

3.3 Generalized Geometric Programming Problems

Many important design and control problems can be formulated as general-
ized geometric programming problems, a subclass of the twice-differentiable
problems that the BB algorithm can address. The main property of the
functions involved in the formulation is that they are the algebraic sum of

n
posynomials, terms of the form ¢ [] :rfl’ where ¢ is a positive real number,

the x;’s are positive real variable ;;né the d;’s are scalars. No restrictions of
integrality or positivity are imposed on the exponents. Maranas and Floudas
(1997) proposed a new approach to tackle such problems, based on a differ-
ence of convex functions transformation embedded in a branch-and-bound
framework. In this section, we show that the BB can be successfully used
on this class of problems and we report results for the example problems
treated in Maranas and Floudas (1997).

Two design problems were studied in the area of chemical process engi-
neering: an alkylation design problem and the design of a CSTR sequence
subject to some capital cost constraints. The objective was to minimize
cost or to maximize production. The aim of the six control problems was
to carry out the stability analysis of some nonlinear systems with uncertain
parameters. These examples were therefore formulated as the minimization
of the stability margin, k£, and the system was deemed unstable if the opti-
mal solution was found to be less than unity. Two approaches can be used
to treat such problems, the first relying on the identification of the smallest
possible value of k£, and the second testing the feasibility of the problem with
k €]0,1]. The alkylation problem was discussed in detail in Part I of this
paper. All other problem formulations are given in Appendix B.

3.3.1 CSTR Sequence Design

Following the reformulation proposed in Maranas and Floudas (1997) for
example 3.2.1, the objective function is expressed as a ratio of polynomials
and is subject to a single nonlinear constraint. The reactor volumes are the
only two variables. The problem is solved for two sets of reaction constants.

Since there is only one constraint, which relates the two reactor vol-
umes, variable bound updates are very fast. Yet, as is apparent in Table 11,
the reduction in overall iteration number achieved when bound updates are
performed at each iteration results in an increase in the computational re-
quirements. This example and the alkylation problem (Adjiman et al., 1997)

26

seem to indicate that problems belonging to the class of generalized geomet-
ric programming can be treated using a single bound update before the first
iteration.

For this problem the use of a single o per term or of one « per variable
does not have much influence on the performance of the algorithm. Upon
examining the functions in the problem, it appears that the variables partic-
ipate in very similar ways, therefore contributing to the nonconvexity to the
same degree.

Finally, the performance of the algorithm for this highly nonlinear formu-
lation is better, in terms of CPU time, than for the simpler formulation of
example 3.2.1 which involves only bilinear terms. It therefore seems worth-
while to reduce the number of variables, even at the expense of functional
simplicity.

3.3.2 Stability Analysis of Nonlinear Systems

Example 1 This problem involves 4 variables and 4 constraints, one of
which is nonlinear. The system is found to be unstable with £ = 0.3417. The
results shown in Table 12 were obtained with the third branching strategy,
using a single bound update. They correspond to the solution of the global
optimality problem, in which wide bounds on k are used to try and identify
the smallest possible value. If the actual value of the stability margin is of
no interest, the feasibility problem can be solved, in which the value of k is
restricted to [0, 1]. In such a case, the algorithm can terminate when an upper
bound on & has been found within this interval (the system is unstable), or
when infeasibility has been asserted (the system is stable). For this example,
an upper bound below 1 is obtained in less than 1 CPU sec.

Example 2 Contrary to the previous example, this 4 variable system is
stable, with a stability margin of £ = 1.089. In order to prove that the
system is stable, one must show that the feasibility problem has no solution.
Alternatively, the minimum stability margin can be identified using wider
bounds on k. Clearly, global optimality runs are more time demanding as
they span a larger solution space. The results are shown in Table 13.

Example 3 The global optimum solution of £ = 0.8175 is identified using
the fourth branching strategy and a single bound update. The fact that the

27

First set of reaction rate constants

Single Update One Update/Tter

Method Iter. | CPU | ¢ty | Iter. | CPU | ty

sec. | (%) sec. | (%)

Gerschgorin (I.1) 101 4.5 | 289 | 67 71 | 158
E-Matrix (1.2) E=0 94 4.4 | 286 | 67 7.0]16.3
E-Matrix (1L2) | E = diag(AH) | 105 | 4.6 |30.2| 68 | 7.2 | 17.0
Mori-Kokame (I.3) 137 | 6.1 |39.1| 89 8.9 | 179
Lower bounding Hessian (I.4) 94 | 43 |31.6| 67 | 6.7 |16.5
Kharitonov (I1.5) 123 | 21.3 | 66.6 | 81 24.4 | b1.7
Hertz (1.6) 94 4.4 1414 | 67 6.8 | 21.2
Scaled G. (II.1) d; =1 101 | 4.5 | 27.8 | 66 6.6 | 20.2
Scaled G. (IL1) | d; = (xV —2) | 92 | 4.2 [21.9]| 63 | 65 |15.3
H-Matrix (I1.2) 04 | 42 169 65 | 6.7 |17.7
Min. Max. distance (I1.3) 93 | 6.3 |40.1| 62 | 8.0 |29.1

Second set of reaction rate constants
Single Update One Update/Tter

Method Iter. | CPU | ¢ty | Iter. | CPU | ty

sec. | (%) sec. | (%)

Gerschgorin (I.1) 111 | 49 (241 | 75 | 7.7 | 181
E-Matrix (1.2) E=0 109 | 4.7 [29.0] 67 | 7.0 |18.2
E-Matrix (1.2) | E = diag(AH) | 114 | 5.1 [24.1] 79 | 8.0 | 21.1
Mori-Kokame (I.3) 150 | 6.4 | 259 | 95 9.8 | 17.8
Lower bounding Hessian (I.4) 109 | 47 | 268 74 | 7.5 |15.2
Kharitonov (I1.5) 135 | 15.6 | 61.5 | 84 | 16.8 | 46.7
Hertz (1.6) 109 | 47 | 230 74 | 75 | 17.9
Scaled G. (II.1) di=1 109 | 46 | 262 | 74 7.5 | 18.9
Scaled G. (IL1) | di = (+¥ — %) | 105 | 4.6 |24.2| 72 | 7.3 |17.8
H-Matrix (IL.2) 109 | 4.6 |17.7] 74 | 7.6 | 151
Min. Max. distance (I1.3) 107 | 6.8 | 434 | 73 | 9.2 | 30.0

Table 11: Results for Example 3.3.1. ¢;; denotes the percentage of total CPU
time spent generating convex underestimators.

28

Method Iter. | CPU sec. | ty (%)

Gerschgorin (I.1) 24 1.4 26.5

E-Matrix (1.2) E=0 20 1.4 28.9

E-Matrix (1.2) | £ = diag(AH) | 20 1.3 15.4
Mori-Kokame (I.3) 20 1.2 23.1
Lower bounding Hessian (1.4) 20 1.4 16.2
Kharitonov (L.5) 20 3.3 705
Hertz (1.6 20 1.4 20.5
Scaled Ger. (II.1) di =1 22 1.6 11.1
Scaled Ger. (I1.1) | d; = (2V —2F) | 21 1.3 15.2
H-Matrix (1L.2) o1 1.4 19.3
Min. Max. distance (I1.3) 18 8.6 85.0

Table 12: Results for Example 1 of Section 3.3.2. t; denotes the percentage
of total CPU time spent generating convex underestimators.

Global Optimality Feasibility

Method Iter. | CPU | ¢ty | Iter. | CPU | ty

sec. | (%) sec. | (%)

Gerschgorin (I.1) 8 | 3.0 | 35 | 31 1.1 | 79
F-Matrix (1.2) E=0 77 | 28 | 55 | 29 | 1.8 | 25
E-Matrix (1.2) | B = diag(AH) | 74 | 26 | 45 | 20 | 1.2 | 2.1
Mori-Kokame (1.3) 08 | 13 | 36 | 34 | 13 | 7.3
Lower bounding Hessian (1.4) 77| 28 | 5.5 | 29 1.2 | 2.7
Kharitonov (1.5) 8 | 54 | 576 | 32 | 2.1 | 5.5
Hertz (1.6) 7 2.3 4.7 29 1.2 | 11.1
Scaled G. (IL1) 4 =1 3 [15 |17 | 13 | 08 | 56
Scaled G. (IL.1) | d; = (zV — zF) | 35 1.2 | 20 | 13 | 0.7 | 5.6
H-Matrix (IL.2) 76 | 33 | 5.2 | 29 | 1.6 | 2.8
Min. Max. distance (11.3) 34 5.1 | 86.1 | 11 2.9 | 75.1

Table 13: Results for Example 2 of Section 3.3.2. ty denotes the percentage
of total CPU time spent generating convex underestimators.

29

system is unstable is identified in under 1 CPU sec. The results of the global
optimality problem are shown in Table 14.

Method Iter. | CPU sec. | tyy (%)

Gerschgorin (I.1) 20 1.0 4.3

E-Matrix (1.2) E=0 18 0.9 12

E-Matrix (1.2) | B = diag(AH) | 17 0.9 3.7
Mori-Kokame (I.3) 17 0.8 4.2
Lower bounding Hessian (I.4) 20 1.0 4.0
Kharitonov (1.5) 18 1.1 31.0
Hertz (1.6 18 0.8 12
Scaled Ger. (II.1) di =1 17 0.8 4.2
Scaled Ger. (I1.1) | d; = (zV —zF) | 12 0.6 5.3
H-Matrix (IL.2) 17 0.9 14
Min. Max. distance (IL.3) 26 2.1 37.6

Table 14: Results for Example 3 of Section 3.3.2. t;; denotes the percentage
of total CPU time spent generating convex underestimators.

Example 4 With a minimum stability margin of 6.27, this system is stable.
The perturbation frequency w, which was eliminated from previous formu-
lations, is kept in this example. At the global optimum solution, the value
of w is 0.986. The bounds used for this variable have a significant effect on
the convergence rate of the algorithm. To illustrate this point, the feasibility
problem was solved with w € [0,1] and w € [0,10]. The fourth branching
strategy was used and a single variable bound update was performed. The
results are shown in Table 15.

Example 5 This formulation is used to determine the stability of Daimler
Benz bus. It involves 4 variables and the exponent values range from 1 to 8.
The minimum stability margin is £ = 1.2069 and the problem is treated as
a feasibility problem. The results are shown in Table 16.

Example 6 This final problem was developed to study the stability of
the Fiat Dedra spark ignition engine. It involves 9 variables and is highly
nonlinear. The solution of the stability problem shows that this system is

30

w € [0,1] w € [0,10]

Method Iter. | CPU | ¢ty | Iter. | CPU | ty

sec. | (%) sec. | (%)
Gerschgorin (I.1) 11 1.7 1226 32 | 41 | 184
E-Matrix (1.2) E=0 9 1.2 1227 29 3.2 | 138
BE-Matrix (1.2) | B =diag(AH) | 9 | 1.3 |205] 29 | 3.2 |23.9

Mori-Kokame (I1.3) 12 | 1.7 | 245 | 34 | 4.2 | 237
Lower bounding Hessian (I.4) 1.0 {30.0] 25 | 2.9 |21.0
Kharitonov (I1.5) 207 198.1 1 23 | 63.1 | 98.3
Hertz (1.6) 1.7 1418 29 4.6 | 46.7
Scaled G. (II.1) di=1 0.6 | 188 | 8 1.3 | 21.2
Scaled G. (I1.1) | d; = (2! — zF) 04 |142] 5 0.8 |21.2
H-Matrix (I1.2) 1.3 }16.1] 28 3.4 | 15.6
Min. Max. distance (I1.3) 26 1912 8 16.5 | 58.4

=] O = = 00| | Ot

Table 15: Results for Example 4 of Section 3.3.2. t;; denotes the percentage
of total CPU time spent generating convex underestimators.

w e [0,1] w € [0,10]

Method Iter. | CPU | ty | Iter. | CPU | ty

sec. | (%) sec. | (%)

Gerschgorin (I.1) 23 | 3.8 |20.8]2997 | 784 | 18.9
E-Matrix (1.2) E=0 18 2.9 2311|2559 | 392 | 22.6
E-Matrix (L2) | E = diag(AH) | 20 | 3.4 |26.3]2563 | 351 | 20.4
Mori-Kokame (I.3) 35 5.5 | 21.7| 5328 | 1874 | 14.4
Lower bounding Hessian (I.4) 18 | 2.7 | 21.1|2695 | 111 | 22.1
Kharitonov (I1.5) 38 | 20.3 | 79.6 | 2872 | 1406 | 80.7
Hertz (1.6) 16 2.7 12432403 | 328 | 22.8
Scaled G. (II.1) di=1 18 25 1224|1013 | 255 | 224
Scaled G. (IL.1) | d; = (2 —aF) | 7 1.1 [26.7| 81 | 107 | 13.9
H-Matrix (I1.2) 18 3.1 | 14.0 | 2457 | 385 | 124
Min. Max. distance (I1.3) 14 | 54 |69.8|1011 | 514 | 72.5

Table 16: Results for Example 5 of Section 3.3.2. t;; denotes the percentage
of total CPU time spent generating convex underestimators.

31

stable and computational results, obtained with w € [0, 10], are reported in
Table 17. Method 1.5 failed to solve this problem because the nonconvex
terms are unusually complex expressions which depend on many variables.
The storage requirements for the analytical expressions of the coefficients
of the characteristic polynomials thus become excessive. The complexity
of this problem also results in an increase in the time requirements for the
underestimator generation, regardless of the method used.

w € [0, 10]
Method Iter. | CPU sec. | ty (%)
Gerschgorin (I.1) 148 42.3 63.4
E-Matrix (12) E=0 140 | 444 64.4
E-Matrix (12) | E = diag(AH) | 186 | 520 | 62.9
Mori-Kokame (I.3) 261 74.5 65.7
Lower bounding Hessian (1.4) 130 38.6 60.9
Kharitonov (L.5) — —
Hertz (.6) 135 | 76.9 771
Scaled Ger. (II1.1) di=1 163 48.9 63.7
Scaled Ger. (IL.1) | d; = (¥ — zF) | 3944 | 1129.2 64.0
H-Matrix (IL.2) 143 | 451 71.3
Min. Max. distance (I1.3) 246 1528.4 96.5

Table 17: Results for Example 6 of Section 3.3.2.

3.3.3 Summary of Generalized Geometric Programming Results

The results for the set of generalized geometric programming problems show
that no single method for the generation of a diagonal shift matrix systemati-
cally outperforms the others. A relative performance index can be computed
for each method in terms of CPU time or number of iterations. For a given
problem, the worst performance is denoted t* and N/, when considering
CPU time and iteration number respectively. The performance indices of
method M are then py, = ty/t" and pariter = Nasiter/Njje,- An overall
performance index for any method is then obtained by averaging its per-
formance index over all example problems. According to this definition, the
performance index is always less than or equal to one, and small performance

indices indicate relatively successful methods. The histograms in Figure 7

32

show the average performance indices for each method. They do not account
for the failure of Method 1.5 to solve Example 6.

10

o
e}
T
|

o
=
T
I

Average Performance Index (Iterations)

04 ot
o]

<8 &] o] 2 ln e 2] 3]]2

w2lollgllollo - sl sllsllsllsl
BB B|B||B 8|82 B BB
5| 8|5 3| 38| 8| 3|8 8 B|lS
s|is||s||=| 2| =|l=|=|2|l=]|=

0.0

\DILI R

Zost]

S}

W0.0\ B

g

Q

[}

=

Mo.b\ 1

= o

gozf || S |8 eallx/la|le| 2] |2,

< slizllzsllzllzllsllsllallall slls
ellelglielie|le|e|lallel ge
| 5| 8|5 B 8 5| 8| 8| B S

===z]|3]|3]|=2] 3] 35]|=

Figure 7. Comparison of « calculation methods for Section 3.3.2 examples

These graphs reveal that the scaled Gerschgorin theorem approach (Method
I1.1) is on average significantly better than others. At the other end of the

33

spectrum, the Kharitonov theorem approach (Method 1.5) and the Mori and
Kokame approach (Method 1.3) give comparatively poor results. The mini-
mization of maximum separation distance approach (Method I1.3) is unique
in that it performs well in terms of number of iterations but does poorly in
terms of CPU time. The additional time requirement arises from the need to
solve a semi-definite programming problem for each nonconvex term at each
node. Thus ¢y, the percentage of time spent generating convex underestima-
tors, is much larger for Method I1.3 than for all other approaches, with the
exception of Method I.5.

3.4 Batch Process Design and Scheduling under Un-
certainty

This class of problems addresses the design of multiproduct batch plants
given uncertain demands and processing parameters. The aim of the problem
is the identification of the equipment sizes, batch sizes and production rates
which maximize profit, given a fixed number of stages. The uncertainties
are taken into account in two ways: the demands are assigned probability
distributions, while the size factors and the processing times are assigned a
set of discrete values. Each of the P potential combinations of these values
gives rise to a different scenario and optimization must be carried out over
all P possibilities. The derivation of the NLP formulation used to represent
batch design problems is presented in detail by Harding and Floudas (1997).
Its final form is given by

v7 b
P Q N
— Y S WY piQYF
p=1 g=1 i=1
st.ow; — b > In(Sh) Vi,V Vp (12)

where the parameters are defined as follows: § is the coefficient used for
capital cost annualization, M denotes the number of stages, N is the number
of products, N; is the number of identical pieces of equipment in stage j, o
and 3; are the fixed charge cost coefficients for the equipment in stage j, p;
is the market price of product 7, w” is the weighting factor for scenario p, Slpj
is the equipment volume used to produce one mass unit of product 7 in stage
j and for scenario p, t}, is the natural logarithm of the longest processing
time for product 7 over all stages in scenario p, H is the time horizon for
the campaign, 67 is the lower bound for the uncertain demand for product
i, V" and V" are the lower and upper bounds on the equipment size for
stage 7. The second term in the objective function is an approximation of
the expected revenue based on a Gaussian quadrature formula. @ is the total
number of quadrature points and .J9 is the probability of quadrature point
q, w! is its weighting factor, 67 is the upper bound on the uncertain demand
of product 7 associated with quadrature point ¢ in scenario p. The variables
are @Y, the amount of product 7 produced in scenario p and associated with
quadrature point ¢, v;, the natural logarithm of the equipment size for stage
j, and b;, the natural logarithm of the size of the batch for product i.

The size of the problem increases dramatically with the number of scenar-
ios, stages, products and quadrature points. The presence in the constraints

of nonconvex terms involving many of the variables renders these problems
difficult.

3.4.1 Example 1

This example consists of a two-product plant with one period and uncertainty
in the demands, for which five quadrature points were used. There are there-
fore 55 variables and 31 constraints. The results reported in Table 18 were
obtained with a relative tolerance of 0.003.

In all instances, each term in the summation Y0, Q% - exp(t], — b))
was underestimated independently. When the summation was considered as
a single nonconvex term, only two methods (I.6 and I1.1) converged to the
global solution after a reasonable number of iterations. Even when each term
was treated separately, some of the a computation techniques generated un-
derestimators that were too loose for fast convergence. Significant variations
in performance were observed for the successful approaches. In particular,
Method I1.1 with d; = 2V — 2/ enabled very fast convergence, while many of

the uniform diagonal shift techniques required CPU times larger by two order

35

of magnitudes. Finally, very similar procedures such as the two instances of
Method 1.2 or Method II.1 led to a drastically different outcome.

Method Iter. | CPU sec. | Relative error
after 1000 iter.
Gerschgorin (I.1) — — 0.0650
E-Matrix (1.2) E=0 303 | 1018 -
E-Matrix (1.2) | E = diag(AH) | — — 0.0284
Mori-Kokame (I.3) — — 0.2441
Lower bounding Hessian (1.4) 393 1041 —
Kharitonov (L.5) 0.2456
Hertz (1.6) 8 17
Scaled Ger. (I1.1) di=1 0.0331
Scaled Ger. (IL.1) | d; = (2 —aF) | 4 10
H-Matrix (11.2) 303 | 906
Min. Max. distance (IL.3) 652 1164

Table 18: Results for Example 3.4.1.

3.4.2 Example 2

If uncertainty in the size factors and processing times is introduced in Exam-
ple 1, resulting in three possible scenarios, the size of the problem increases to
155 variables and 93 constraints. For this problem, only two of the o compu-
tation techniques result in successful runs without excessive computational
expense. The Hertz method (1.6) identifies the global optimum solution after
197 iterations and 7711 CPU seconds. Using the scaled Gerschgorin theorem
(Method I1.1) with d; = (2 — x!), the BB algorithm converges after only
6 iterations and 255 CPU seconds.

3.4.3 Example 3

This larger example is a four-product plant with six stages and a single unit
per stage. There is a single scenario since only the demands are considered
uncertain. Once again, five quadrature points are used for each demand
with a normal distribution. As a result, the problem involves 2510 variables
and 649 constraints. There are 1250 nonconvex terms to be underestimated.

36

The algorithm converges to the optimum solution after 3 iterations and 3055
CPU seconds with the scaled Gerschgorin theorem (Method II.1) and d; =

(=).

4 Conclusions

The theoretical developments presented by Adjiman et al. (1997) were used
to implement a user-friendly version of the aBB global optimization algo-
rithm. The current version incorporates the different « calculation methods,
some special underestimators as well as some branching and variable bound-
ing rules which greatly enhance the rate of convergence. These rely on an
analysis of the quality of the lower bounding problem at each node. A wide
variety of problems have been studied to gain a better understanding of
the many available options and to test the performance of the algorithm.
The examples used in this paper were taken from various categories, such
as pooling problems, concave problems, chemical engineering design, gener-
alized geometric programming and batch process design under uncertainty.
In all instances, the algorithm identified the global optimum solution in sat-
isfactory time and the scaled Gerschgorin theorem approach (Method 11.1)
was found especially successful at generating tight underestimators.

Acknowledgments

The authors gratefully acknowledge financial support from the National
Science Foundation, the Air Force Office of Scientific Research, the National
Institutes of Health, Exxon Foundation and Mobil Technology Company.

References

C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. An Implementation of
the aBB Global Optimization Algorithm: User’s Guide. Computer Aided
Systems Laboratory, Dept. of Chemical Engineering, Princeton University,

NJ, 1997.

C. S. Adjiman, I.P. Androulakis, and C. A. Floudas. Global Optimization
of Mixed-Integer Nonlinear Problems. in preparation, 1998.

37

C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A Global
Optimization Method, aBB, for General Twice-Differentiable NLPs — 1.
Theoretical Advances. accepted for publication, 1997.

I.LP. Androulakis, C. D. Maranas, and C. A. Floudas. aBB : A Global
Optimization Method for General Constrained Nonconvex Problems. J. of
Glob. Opt., 7:337 363, 1995.

B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, and
M. Karplus. CHARMM: A Program for Macromolecular Energy, Mini-
mization and Dynamics Calculations. J. Comput. Chem., 4(2):187 217,
1983.

H. Cornelius and R. Lohner. Computing the Range of Values of Real Func-
tions with Accuracy Higher Than Second Order. Computing, 33:331 347,
1984.

C. A. Floudas and P. M. Pardalos. A Collection of Test Problems for Con-
strained Global Optimization Algorithms, volume 455 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Germany, 1990.

C.A. Floudas and A. Aggarwal. A Decomposition Strategy for Global Op-
timum Search in the Pooling Problem. OSRA Journal on Computing, 2(3),
1990.

S. T. Harding and C. A. Floudas. Global Optimization in Multiproduct
and Multipurpose Batch Design under Uncertainty. I&/EC Res., 36(5):1644—
1664, 1997.

V.L. Kharitonov. Asymptotic Stability of an Equilibrium Position of a
Family of Systems of Linear Differential Equations. Differential Equations,
78:1483-1485, 1979.

O. Kniippel. PROFIL - Programmer’s Runtime Optimized Fast Interval Li-
brary. Technische Informatik III, Technische Universitat Hamburg-Harburg,
1993.

C. D. Maranas and C.A. Floudas. Global Minimum Potential Energy Con-
formations of Small Molecules. J. of Glob. Opt., 4:135-170, 1994.

38

C. D. Maranas and C.A. Floudas. Global Optimization in Generalized
Geometric Programming. Computers chem. Engng., 21(4):351-370, 1997.

B. A. Murtagh and M. A. Saunders. MINOS 5.4 User’s Guide. Systems Op-
timization Laboratory, Dept. of Operations Research, Stanford University,
CA., 1983.

G. Némethy, K.D. Gibson, K.A. Palmer, C.N. Yoon, G. Paterlini, A. Zagari,
S. Rumsey, and H.A. Scheraga. Engergy Parameters in Polypeptides. 10.
Improved Geometrical Parameters and Nonbonded Interactions for use in
the ECEPP/3 Algorithm, with Application to Proline-containing Peptides.
J. Phys. Chem., 96:6472—-6484, 1992.

L. B. Rall. Automatic Differentiation : Techniques and Applications. Lec-
ture Notes in Computer Science. Springer-Verlag, 1981.

H. Ratschek and J. Rokne. Computer Methods for the Range of Functions.
Ellis Horwood Series in Mathematics and its Applications. Halsted Press,
1988.

H. S. Ryoo and N. V. Sahinidis. Global Optimization of Nonconvex NLPs
and MINLPs with Applications in Process Design. Computers chem. Engng,
19(5):551-566, 1995.

C. A. Schweiger, A. Rojnuckarin, and C. A. Floudas. MINOPT : A Soft-
ware Package for Mixzed Integer Nonlinear Optimization, User’s Guide.
Computer Aided Systems Laboratory, Dept. of Chemical Engineering,
Princeton University, NJ, 1997.

V. Visweswaran and C. A. Floudas. New Formulations and Branching
Strategies for the GOP Algorithm. In I. E. Grossmann, editor, Global Op-
timization in Engineering Design, Kluwer Book Series in Nonconvex Opti-
mization and its Applications, 1996a. Chapter 3.

V. Visweswaran and C. A. Floudas. Computational Results for an Efficient
Implementation of the GOP Algorithm and its Variants. In I. E. Grossmann,
editor, Global Optimization in Engineering Design, Kluwer Book Series in
Nonconvex Optimization and its Applications, 1996b. Chapter 4.

H. Wayland. Expansion of Determinantal Equations into Polynomial Form.
Quarterly of Applied Mathematics, 2:277-306, 1945.

39

S.J. Weiner, P.A. Kollman, D.T. Nguyen, and D.A. Case. An All Atom
Force Field for Simulations of Proteins and Nucleic Acids. J. Comput.
Chem., 7(2):230 252, 1986.

A Sample Input File

#

Geometric programming example
CSTR sequence design

#

#Hit S R S S R S R S S
Data
it G S RS R S S R RS RS S S

nxvar 2 # Number of variables
nfun 2 # Number of functions
nuterm 2 # Number of univariate concave terms
nnterm 1 # Number of general nonconvex terms
epsr le-3 # Relative tolerance

it S S S S S S S S S S S S S S S
Name declaration
###HH R R R RS R R R R R S S R R SR S S S

Parameters : First set of rate constants and

initial concentration

param kal = 9.6540e-2, kbl
ka2 = 9.7515e-2, kb2
ca0 = 1

3.5272e-2, \
3.9191e-2, \

Variable names
xvar Vi, V2

Function names
fun f, g

40

Term names
uterm uta, utb # Univariate concave terms
nterm nt # General nonconvex terms

HHAHHH AR HHARHH AR HHAGHHEGHH AR R B RS HREHHBRH R AR H G HREFH R R AR H RS

Options
HHARBHHH AR R H AR R R R R R R R R R R R R R R
funcalc standard # Function evaluations using code list
acalc standard # alpha calculations using one of the

methods presented in Part I
Note that other options are specified on the command line.

HUHHHH AR HHERHHERHHERHHBRAHARH RS HERHH RS HREHH G H R AR H B H B HHEHH

Terms
HHSHHHHS S HH SSRGS ARG SRS S RS R S S R 88
uta = V1°70.5
utb = V270.5
nt = -cal0 * (ka2*V2x(1+kb1*V1) + kalxVix(1+ka2*V2)) / \

((1+ka1xV1)*(1+kb1*V1)* (1+ka2*V2) * (1+kb2*V2))

HEHGHEHGHEHGHGHG GGG RS ARG HEH GRS H R ARG R GRS H GRS H SRR GRS H GRS SR H
Functions

HEHGHEH R R S A R R SR R R R SRR RS

f .. nt

g .. uta + utb <= 4

i S R S S S S S S S R S S
Bounds

###HH R R R SR RS R R R R S R R SR S S S

Vi 1bd = 1e-6

V1l ubd = 16
V2 1bd = le-6
V2 ubd = 16

41

B Generalized Programming Formulations

B.1 CSTR Sequence Design

p kaaVa (1 4+ kpy Vi) + ka1 Vi (1 + ka2 Va)
“0 (14 ka1V1) (14 kn Vi) (1 + ka2 Va) (1 + kpaVa)

min —cp =

4
16

subject to V" 4 V)°

<
10°° <V, <

The two sets of reaction rate coeflicients shown in Table 19 are used.

Set 1 Set 2

kg1 | 9.6540 1072 571 | 9.755988 10 2 5!
ky | 3.5272 1072 s | 3.919080 102 s~ !
koo | 9.7515 1072 57! | 9.658428 1072 57!
kpo | 3.9191 1072 571 | 3.527172 1072 57!

Table 19: Reaction rate coefficients for the CSTR sequence design

Global optimum solution: The solution for the first set of rate constants is
f* = —0.38802, V;* = 15.992 and V,; = 10°% For the second set, it is
fr=—0.38881, V;* = 3.037, V,' = 5.096.

B.2 Stability Analysis of Nonlinear Systems
B.2.1 Example 1

min k&

subject to 10¢2¢s + 10g3qs + 20053 + 100¢5qs

+100g2¢5 + q19245 + 1593 + 1000¢2¢3
+8¢1¢5 + 1000¢5g3 + 8¢145 + 6¢1¢2q3
+60q1q3 + 60q1q2 — CI12 —200¢; < 0

42

800 — 800k <
4-2 <
6-—3k <

Global optimum solution: k = 0.3417, ¢}

g3 = 4.975. The system is unstable.

B.2.2 Example 2

q1
q2
qs3

<
<
<

800 + 800k
4+ 2k
6 + 3k

= 1073.4, ¢ = 3.318,

min k&

subject to qfqé1 — q‘f — q%qg =0

1.4 —-0.25k <
1.5 - 0.20k <
0.8 —0.20k <

q1
q2
qs3

<
<
<

1.4 4+ 0.25k
1.5+ 0.20k
0.8 4+ 0.20%

Global optimum solution: ky,, = 1.089, ¢f = 1.1275, ¢; = 1.2820, ¢5 = 1.0179.

The system is stable.

B.2.3 Example 3

min k&

subject to ¢34+ 9.625¢1w + 16¢gow + 16w? + 12 — 4¢; — g2 — 78w
161w + 44 — 191 — 8¢ — q3 — 24w =

2.25 - 0.25k <
1.5 - 0.50k <
1.5 - 1.50k <

Global optimum solution: k., = 0.8175, ¢

q1
q2
q3

<

<
<

2.25 4 0.25k
1.5+ 0.50k
1.5+ 1.50k

= 2.4544, ¢}

2.7263, w* = 1.3510. The system is unstable.

43

1.9085, ¢

B.2.4 Example 4
min k&

subject to a4(q)w4 — ag(q)w2 +ao(q) =

a3(9‘l)w2 —ai(q) =

100 — 1.0k < ¢ < 10.0+ 1.0k
1.0—-01k < ¢ < 1.0+0.1%
1.0—-01k < ¢35 < 1.0+0.1%k
0.2—0.01k < ¢ < 0.240.01k
0.05 —0.005k < ¢5 < 0.05+0.005k
where a4(q) = q§q2 (4gs + Tq1)
as(q) = Tqqsqy — 64.918¢5¢2 + 380.067¢3q> + 3q5q2 + 3qs¢

ax(q) = 3(-9.81gsq3 — 9.81gsq1q2 — 431230,
+264.89603q2 + q105 — 9.274s)

1
ai(q) = R (—147.15¢4q3q2 + 1364.67¢3q2 — 27.72¢5)
a,o(q) = 54387Q3QQ

Global optimum solution: k = 6.2746, ¢q; = 16.2746, ¢; = 1.6275, ¢; =
1.6275, q5 = 0.1373, ¢i = 0.0186, w* = 0.9864. The system is stable.

B.2.5 Example 5
min k&

subject to ag(q)w® — as(q)w® + as(q)w’ — as(q)w® + ao(q) =

a7(q)w’ — as(q)w’ + as(q)w’® — a1(q) =

17.5 + 14.5k
20.0 4+ 15.0%

17.5 - 145k < ¢
20.0 — 15.0k < gy

44

(q1,02) = 45310%;
(01, q2) 528 10%7 + 3640 10%,
(g1, 42) 5.7210%2qs + 113 10%2 + 4250 10°¢,
(q1. ¢2) 6.9310%2¢, 4 911 10%, + 4220 10°
as(q1,q2) = 1.4510%7 gy + 16.8 10%, g5 + 338 10°
(91, ¢2)
(41, g2)
(41, g2)
(91, ¢2)

15.6 10%¢2¢2 + 840¢3qy + 1.3510%1q, + 13.5 10°
1.2510%¢; g3 4 16.8¢7¢2 + 53.910°q1¢5 + 270 10°
= 50q%q3 + 10801 ¢.

= q¢lq}

By imposing an upper bound of 1 on k, the problem is determined to be
infeasible, and the problem is therefore stable.

B.2.6 Example 6

subject to — ag(q)w’ + as(q)w’ — as(q)w® +ao(q) =
a7(q)w’ — as(@)w’ + az(@)w® — ai(q) =

3.4329 — 1.2721k < ¢; < 3.4329
0.1627 — 0.06k < ¢y < 0.1627
0.1139 — 0.0782k < g3 < 0.1139

0.2539 < g4 < 0.2539 + 0.3068k
0.0208 — 0.0108%k < ¢5 < 0.0208

2.0247 < g5 < 2.0247 4+ 2.4715k

1.0000 < g7 < 1.0000 + 9.0000k

where ag(q) = 6.82079 10 °q1q3qF + 6.82079 10 °q1¢2q4q5

ai(q) = T7.61760 10 *¢3q2 + 7.61760 10 ‘¢32q;

+4.02141 10 *q1g2g2 + 0.00336706¢:143q;

45

CLQ(CI)

a3(¢1)

+6.82079 10 °¢1qaqs + 5.16120 1074613615(]6
4+0.00336706¢192q4q5 + 6.82079 1075QIQQCI4Q7
+6.28987 10 °q1gagsqe + 4.02141 10 *q13¢445
+6.28987 10 °q1¢3q4qs + 0.00152352¢5G3G4 G5
+5.16120 10~ 4203446

4.02141 10 *q1¢2 + 0.00152352¢2¢2 + 0.0552¢3¢7
+0.0552¢3q% + 0.0189477¢1q2q2 + 0.034862¢1 ¢3¢
+0.00336706¢1q4q5 + 6.82079 10 °q1q4q7
+6.28987 10 °q1q5q5 + 0.00152352¢3¢475
+5.16120 10 *g3q4q5 — 0.00234048¢3q4qs
+0.034862¢1¢2q4g5 + 0.0237398¢5¢5 s
+0.00152352¢2¢5¢7 + 5.16120 10~ ¢2¢sq
+0.0033670641¢9294q7 + 0.00287416¢1¢2959s
+8.04282 10~ *q1q2¢5q7 + 6.28987 10™°q1 q2q6q7
+0.0189477¢1¢3q4q5 + 0.0028741641¢3q4qs
+4.02141 10~ *q1¢3q4q7 + 0.1104¢2¢5¢4 45
+0.0237398¢293¢496 + 0.00152352¢2q3q4q7
—0.00234048g2q3q5q¢ + 0.001032242q5¢s

0.0189477¢1q2 + 0.1104q5¢2 + 5.16120 10 *gsq6 + ¢2¢>
+7.61760 10~ ¢2¢2 + ¢2q% + 0.1586¢1 2>
+4.02141 10 *q1g2¢7 + 0.0872¢1¢3q> + 0.034862¢1q4qs5
+0.00336706¢1¢4g7 + 0.00287416¢1¢54s
+6.28987 10 °q1g6q7 + 0.00103224¢2¢5q7 + 0.110443q4qs5
+0.0237398¢5¢4¢6 + 0.00152352¢3q4q7 — 0.00234048¢3¢5qs
+0.1826¢5¢5q + 0.1104¢5¢5¢7 + 0.0237398¢5geq7
—0.084843q4qs + 0.0872¢1¢2q4q5 + 0.034862¢1¢2q4q7
40.0215658¢142g5qs + 0.0378954¢1 42547
4+0.00287416¢192g6q7 + 0.1586¢1¢39475
+0.0215658¢1G3q4g6 + 0.0189477q1G3q4G7 + 2G2q3G4qs
+0.1826¢2¢3q446 + 0.1104G2q394q7 — 0.0848¢2¢3q54s

46

—0.00234048q2q3q¢q7 + 7.61760 10’4q§ + 0.0474795¢2q5q5
+8.04282 10~ *q1¢5¢7 + 0.00304704¢2g5¢7

as(q) = 0.1586¢1¢2 + 4.02141 10 *q1¢2 + 2¢2q2 + 0.00152352¢,¢2
+0.0237398¢5¢6 + 0.00152352¢5q7 + 5.16120 10 *¢4qz
40.0552¢2¢% 4 0.0189477¢1¢2¢2 + 0.0872¢1q4s5
+0.034862¢1 q4q7 + 0.0215658¢;¢5qs + 0.00287416¢1¢sq7
4+0.0474795¢2q6q7 + 2q3q4q5 + 0.1826¢3q4q¢ + 0.1104q5q4q7
—0.0848¢3q5q5 — 0.00234048¢3q6q7 + 2¢5q5q7 + 0.1826¢5q5q7
+0.0872¢1G2q4g7 + 0.3172q192q5q97 + 0.02156584¢1 G246 q7
+0.158641 439447 + 242G3q4q7 — 0.0848¢5¢3q6q7 + 0.0552¢3
+0.3652¢2q5q96 + 0.0378954q1q5q7 + 0.2208¢2q5q7

as(q) = 0.0189477¢1¢% + 0.1104¢5¢2 + 0.1826¢5q6 + 0.1104¢5q;
10.0237398¢6q7 + ¢2q2 + 0.1586¢1g2q2 + 0.0872¢1q4q7
+0.0215658¢146g7 + 0.3652¢2¢697 + 2q39497 — 0.0848¢3¢647
+q2 + 7.61760 10~"¢2 + 0.3172q145¢7

+4q205q7
ag(q) = 0.1586q1¢7 + 2¢2q5 + 2¢5q7 + 0.1826¢5q; + 0.0552¢7
az(q) = ¢

By imposing an upper bound of 1 on k, the problem is determined to be
infeasible, and the problem is therefore stable.

47

