
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 8, OCTOBER 1995 1371

An Empirical Evaluation of Virtual Circuit Holding
Time Policies in IP-Over-ATM Networks

Srinivasan Keshav, Carsten Lund, Steven Phillips, Nick Reingold, and Huzur Saran

Abstract— When carrying Internet Protocol (IP) traffic over
an Asynchronous Transfer Mode (ATM) network, the ATM
adaptation layer must determine how long to hold a virtual
circuit opened to carry an IP datagram. In this paper we present
a formal statement of the problem and carry out a detailed
empirical examination of various holding time policies taking into
account the issue of network pricing. We offer solutions for two
natural pricing models, the first being a likely pricing model of
future ATM networks, while the second is based on characteristics
of current networks. For each pricing model, we study a variety of
simple nonadaptive policies as well as easy to implement policies
that adapt to the characteristics of the IP traffic. We simulate our
policies on actual network traffic, and find that policies based on
LRU perform well, although the best adaptive policies provide a
significant improvement over LRU.

I. INTRODUCTION

I T IS GENERALLY accepted that, in the near future,
large computer networks will be connection-oriented, with

at least the data-link layer connectivity being provided by
Asynchronous Transfer Mode (ATM). These networks will
need to communicate with existing networks. The world’s
largest computer network, the Internet, with more than a
million computers, uses the connectionless Internet Protocol
(IP). For the huge existing investment in IP networks to remain
useful, we must devise mechanisms to carry IP traffic over
ATM networks. A fundamental issue is how to carry datagrams
over virtual circuits. It is clear that the arrival of an IP datagram
should cause a virtual circuit to be opened, if one is not open
already. However, it is not clear how to handle the open circuit
thereafter. It would be desirable to keep it open for some
time, to amortize the cost of opening the circuit over many
packets. On the other hand, if no more packets will arrive
soon, it is better to close the connection. The ATM adaptation
layer must decide heuristically how long to hold the circuit
open, since the IP datagrams do not contain information about
the length and rate of any higher layer conversations. Similar
problems arise in carrying IP traffic over other connection-
based networks, such as X.25. In this paper, we present an
empirical study of the arrival process of IP datagrams to the

Manuscript received August 31, 1994; revised April 20, 1995.
S. Keshav is with AT&T Bell Laboratories, Murray Hill, NJ 07974 USA,

and also with the Department of Computer Science and Engineering, Indian
Institute of Technology, Hauz Khas, New Delhi 110016, India.

C. Lund, S. Phillips, and N. Reingold are with AT&T Bell Laboratories,
Murray Hill, NJ 07974 USA.

H. Saran is with the Department of Computer Science and Engineering,
Indian Institute of Technology, Hauz Khas, New Delhi 110016, India.

IEEE Log Number 9414023.

ATM adaptation layer. We find that the data shows temporal
locality of reference, and therefore holding time policies based
on Least Recently Used (LRU) perform well. However, we
obtain a significant improvement over LRU by using adaptive
policies that conform to the inter-arrival time distribution of
each conversation.

In the next section we discuss previous work in this area.
Section III presents the necessary background and details of
the network pricing models. In Section IV we describe and
analyze the empirical data used in this study, while classes of
holding time policies are discussed in Section V. Section VI
presents the policies for a pricing model with holding costs,
together with a comprehensive comparison of the policies.
Section VII presents the holding policies for a pricing model
with a maximum number of connections, together with an
empirical evaluation of their performance. Finally, Section IX
closes with some discussion and conclusions.

II. PREVIOUS WORK

The holding time problem arises naturally in carrying con-
nectionless protocols such as IP over connection-oriented
networks such as X.25 and Datakit. While existing imple-
mentations embody several holding time policies such as
Least Recently Used [1], a formal statement of the holding
time problem and a comparative study of these policies was
presented by Saran and Keshav [2] and further studied by
Lund, Phillips, and Reingold [3].

Lund, Phillips, and Reingold [4] gave a theoretical treatment
of the pricing model with a maximum number of connections,
described below. Their theoretical algorithm is the basis of
one of the adaptive algorithms studied in this paper. Harita
and Leslie [5] studied the related problem of dynamically
allocating bandwidth when carrying ATM on a narrowband
ISDN network.

III. B ACKGROUND AND PRICING MODELS

The most important factor in determining a virtual circuit
holding time policy is the pricing model of the network. The
pricing model determines which parameters the VC holding
time policy should seek to minimize. We study two pricing
models: the first is a possible pricing model of future ATM
networks, while the second is based on characteristics of
current networks.

In both cases, we assume that IP packets are partitioned into
conversationsbased on their source and destination Internet
addresses. (The ATM adaptation layer may offer a finer grained

0733–8716/95$04.00 1995 IEEE

1372 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 8, OCTOBER 1995

connectivity by further partitioning conversations based on the
port number of the IP source and destination.) Throughout
the paper we will simplify the presentation by the following
slight abuse of terminology: we often refer to a conversation
as acircuit that can be repeatedly opened for transmission of
a packet, and closed sometime thereafter. In actuality a new
virtual circuit must be set up each time.

There are additional issues that might arise when carrying IP
traffic over an ATM network, such as deciding what bandwidth
to request when opening a VC to transmit an IP datagram
[5]. If insufficient bandwidth is requested or available from
the ATM network, queueing of IP datagrams at the IP-ATM
interface would become necessary. We do not consider such
issues in this paper, instead only focusing on the problem of
finding good holding time policies.

In the rest of this section we describe the two pricing
models.

A. A Pricing Model with Holding Costs

Future ATM networks are expected to support a large
number of virtual circuits that will be available to end-users
on a pay-per-use basis. The manner in which users are charged
is likely to be analogous to telephone billing, hence we study
the following pricing model: there is a call connect charge of

monetary units, and a holding cost of monetary units
per time unit that a circuit remains open. The holding cost
serves as an incentive for a user to return unused resources
to the network. For convenience we assume that monetary
units are scaled so that There may be other charges
associated with a circuit, such as a per-packet usage charge,
but these charges do not affect the choice of virtual circuit
holding policy.

Setting up a virtual circuit involves both a financial cost of
the call setup and a user delay waiting for the call connect. To
quantify the loss of utility to the user due to the call connect
delay we define anopen cost, measured in monetary units,
that is an estimate of the combined financial and user cost of
a call setup. A system manager can vary the value ofto
reach a satisfactory price/performance tradeoff.

After each packet arrives on a circuit, we must decide how
long to keep the circuit open. This length of time is the
timeout—if no packet arrives before the timeout, the circuit is
closed and must be reopened when a packet eventually arrives.
Keeping a circuit open too long results in a large holding cost,
while closing it too early results in an unnecessary open cost.
Thus the problem that the ATM adaptation layer must solve is
to determine a timeout that incurs a low cost.

B. A Pricing Model with a Maximum Number of Connections

Some traditional virtual circuit oriented networks regard
virtual circuits as a valuable resource, and have a limit on
the number of virtual circuits that an end-user may have open
simultaneously. This is often true of X.25 networks [1], where
the limit is typically between 32 and 128. For these networks
we use the following pricing model: the user pays a fixed
charge for a block of connections to a site, and is then charged
for each call setup. Since there is no cost for holding a circuit

open, it makes sense for the user to keep the maximum number
of connections open all the time. As observed in [1] this
pricing model is closely related topaging: the connections are
analogous to page slots in memory, while the conversations
that are competing for the connections are analogous to the
pages of virtual memory. When a packet arrives on a virtual
circuit that is closed, the virtual circuit must be opened to
transmit the packet, and some other virtual circuit must be
closed to satisfy the bound on the number of connections.
This corresponds to a page fault in the paging problem.

The cost of a call setup might include a loss of utility to
the user due to the time delay in performing the call setup.
In any event, the quantity we wish to minimize is the number
of call setups.

IV. WORKLOAD ANALYSIS

We collected traces of packet arrivals from Ethernet net-
works, using the SunOSetherfind command. This com-
mand places the Ethernet interface in promiscuous mode and
collects all the Ethernet headers received on the board, along
with time-stamps. The command was run on Ethernets at
AT&T Bell Laboratories in Murray Hill, the University of
California at Berkeley, the University of Southern California
in Los Angeles, Yale University in New Haven, and the Indian
Institute of Technology in Delhi. We collected a total of 53
traces, each consisting of between 2000 and 20 000 packets,
with broadcast packets filtered out. The five networks all cater
to research communities, but offer widely varying computing
environments, ranging from primarily PC’s in Delhi to high-
performance workstations at Berkeley.

The five environments had quite distinct characteristics: the
data from UCB and USC were taken from LAN’s with a
large number of active workstations, and there were many
simultaneously active conversations. The data from IIT Delhi
were taken from a LAN that had a few workstations and
a number of PC’s using TCP/IP. The number of active
connections here was significantly lower and the data consisted
of a smaller number of connections being sampled for a larger
period of time. The AT&T Bell Labs and Yale data were taken
from networks with a small number of active workstations and
had somewhat similar characteristics to the IIT Delhi data.

In gathering traces from LAN’s, we are assuming that this
traffic will actually be carried over a WAN. This assumption
may seem surprising at first, since current LAN and WAN
traffic characteristics differ widely. However, we anticipate
that as high speed ATM WAN’s become available, higher
throughputs and lower delays will significantly alter wide area
traffic patterns. Given high speed wide area networks, it is
feasible to mount remote file systems (NFS), and run client
server applications (such as X) over a WAN, whereas these
options are not common today.

A. Data Analysis

Based on the application level characterization work by
Cacereset al. [6], our intuition was that conversations in the
traffic traces we collected would show behavior on widely
varying time-scales, including auser time-scaleand anetwork

KESHAV et al.: EMPIRICAL EVALUATION OF VIRTUAL CIRCUIT HOLDING TIME POLICIES IN IP-OVER-ATM NETWORKS 1373

Fig. 1. Conversations with different inter-arrival distributions.

time-scale. The idea is that some usage of the network must be
mediated by a human user, and thus shows somewhat larger
inter-arrival times, while other usage is mediated directly by
a computer, and so will have shorter inter-arrival times. As
an example, during an FTP session, a human user may type
“get filename,” where each keystroke is at the user time-scale.
However, the response, which (in an uncongested network) is
a stream of back-to-back packets, would be at the network
time-scale, since a user would usually not generate packets at
that speed. Similarly a Mosaic session may involve a burst of
activity when a user follows a hyper-link, followed by a period
of inactivity while the user digests the received information.

Results in Paxson and Floyd’s recent paper [7] empirically
confirm our intuition about the existence of user and network
time scales. Specifically, they found that both Telnet and FTP
data packet arrivals are bursty over multiple time scales. At
the slower time scales, these correspond to user interactions
(typing, or FTPget commands), and at faster time scales,
these reflect network dynamics.

These observations are reflected in the packet traces we
collected. Fig. 1 shows a representative trace from the data
we use. Each line is a simplex conversation between a pair of
Internet hosts, and each diamond represents a packet. Different
conversations have very different inter-arrival characteristics,
and there is also variation in inter-arrival times inside a
conversation. Incidentally, in Fig. 1, the reader may notice
that some pairs of conversations are correlated; such pairs
correspond to duplex conversations.

The observed inter-arrival distribution of conversation num-
ber 10 is shown in Fig. 2. This is a bursty distribution, that
displays the clustering phenomenon described above. Under
most reasonable pricing policies, the best way to handle such
a conversation is to hold its connection open while the inter-
arrival times are drawn from the faster time-scale and drop the
connection at the end of a burst, when we anticipate that the
next inter-arrival time will be drawn from the second-level
time scale.

On the other hand, conversation number 4 displays very
different characteristics. This conversation has a lot of traffic,
but does not display burstiness at this time scale, see Fig. 3.
(However, at a larger time scale this conversation may also
appear bursty.) Another nonbursty distribution is represented
by conversation 12, which has fairly regular inter-arrival times
on a much larger time scale than conversations 4 or 10.

Fig. 2. Inter-arrival time distribution for a bursty conversation (VC 10 from
Fig. 1).

Fig. 3. Inter-arrival time distribution for a less bursty conversation (number
4 from Fig. 1).

There are two observations to be made from examining
the data. Firstly, across all conversations in a trace there is
locality of reference, i.e., the next packet to arrive is likely to
be in a conversation that has recently had a packet. Secondly,
individual conversations have characteristics that remain fairly
consistent for periods of time. These two observations are
discussed in more depth in the following sections.

B. Temporal Locality

To look for temporal locality, we looked at the frequency
of reference to a least recently used stack corresponding to
a trace. We built a small simulator that looked at a trace,
and pulled each reference to a conversation to the top of a
stack. We also kept track of the number of references to each
level of the stack. If our hypothesis about temporal locality is
true, then the frequency of references to the top of the stack
would be much higher than the frequency of references to
the lower levels of the stack. Indeed, all our data show a
steep decline in the frequency of reference to a stack level as
the depth increases (see Fig. 4 for two sample traces), clearly
indicating the presence of temporal locality. So, if at some
time a conversation has been recently referenced, it is likely
that it will soon be referenced again.

C. Consistent Behavior of a Conversation
for Extended Time Periods

Different conversations can have widely different character-
istics, in terms of bandwidth, regularity, burstiness, or other
measures. For example, a telnet session involving a user

1374 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 8, OCTOBER 1995

Fig. 4. Cumulative references versus LRU stack depth.

entering text in an editor will have fairly regular inter-arrival
times, corresponding to user keystrokes, with occasional bursts
when the editor reformats the display. In contrast, an FTP
session will be much more bursty, with less activity at the
user time scale. If we plot a histogram of the inter-arrival
times between packets in such a session, we expect to see a
bursty distribution as depicted in Fig. 2.

However a single session typically has consistent behavior
over extended periods. For example, in our telnet example,
the conversation will remain consistent as long as the user
is entering text. Although the inter-arrival time distribution
does not capture aspects of a conversation such as correlations
between adjacent inter-arrival times, it provides a good method
for predicting future inter-arrival times.

How can we use this observed behavior? One possible ap-
proach to developing adaptive holding policies is to construct
a policy that works well against data generated according
to some model of network traffic. For a model to be use-
ful, it must allow for the wide variation in traffic observed
in practice. However traditional models tend to be over-
parameterized, while the self-similar stochastic model of [8]
has parameters that seem computationally difficult to estimate.

Instead of assuming a model for the data, our adaptive
policies make the single assumption that the inter-arrival time
till the next packet in a conversation is likely to be drawn
from the same distribution as the inter-arrival times that have
been observed so far in that conversation. Thus we can use
the observed inter-arrival distribution to make a good choice
of timeout (in the holding cost model) or of which circuit to
close (in the paging model). We make no assumptions about
the structure of the inter-arrival time distributions, so our work
is not based on any strict assumptions about the kind of traffic
that will appear on future networks.

V. HOLDING TIME POLICIES

The simplest holding policy is not to hold a VC at all. That
is, on every packet arrival, a VC is opened, and then closed.
Given the round-trip-time delay in opening a circuit and the
cost of call setup, this option is not particularly effective.

The optimal holding policy is one that is noncausal, that is, it
knows about the future. The specific optimal strategy depends
on the pricing policy and system constraints. For example, in
the paging model, the optimal strategy is to simply drop the VC
on which a packet will arrive the farthest in the future. While

the optimal policy is unachievable, it provides a benchmark
against which to compare all other policies.

In general, a holding policy gathers some statistics about the
inter-arrival times and uses these statistics to decide when each
VC should be closed. For each pricing model, we consider
several different holding policies. The policies differ in how
much, and what kind of information is gathered about the
inter-arrival time distributions for each VC.

In each pricing model the simplest policies we consider use
no information at all about the observed inter-arrival times. We
also consider a policy that maintains an exponentially averaged
mean and deviation for each VC. One would expect that such
a policy should be able to use this information to make better
decisions regarding the closing of virtual circuits. However,
our results indicate that this information is insufficient to
design good holding time policies.

The best policies in each pricing model are based on
gathering more complicated statistics for each VC. Essentially,
an approximation to the entire inter-arrival time distribution
is kept and updated each time a packet arrives. We call these
policies ADAPTIVE since the choice of holding time for a given
VC adapts to the inter-arrival time distribution for that VC.
We show how to maintain the approximate inter-arrival time
distributions with very little overhead.

Our adaptive policies were first developed and tuned to
optimize performance on data sets from Berkeley, USC, IITD,
and AT&T. Afterwards, to ensure that the policies would
perform well not only on the data for which they were tuned,
the policies were run on a second set of data from AT&T and
on the data from Yale. The simulation results for the new data
sets are consistent with the results of the original data sets (see
Sections VI-C and VII-C). It is therefore reasonable to expect
that our findings will remain true for general Internet traffic.

VI. THE HOLDING COST PRICING MODEL

In the first pricing model we study there is a holding cost
of 1 monetary unit per time unit that a circuit remains open.
Each time a circuit is opened there is anopen cost, that
includes both the financial cost of a call setup and an estimate
of the cost to the user of waiting for the call connect. A
system manager can vary the value ofto reach a satisfactory
price/performance tradeoff.

After each packet arrives on a circuit, we must decide how
long to keep the circuit open. This length of time is the
timeout—if no packet arrives before the timeout, the circuit is
closed and must be reopened when a packet eventually arrives.
Keeping a circuit open too long results in a large holding cost,
while closing it too early results in an unnecessary open cost.

Note that the charging of each circuit is independent of other
circuits. It is possible that packet arrivals on different circuits
will sometimes be correlated, but we make no use of such
possible correlations, and consider each circuit in isolation.

A. Holding Policies

In this section we consider several different holding policies
in detail. In the simplest policy, the same timeout is used
for each VC, while in the others some information about the

KESHAV et al.: EMPIRICAL EVALUATION OF VIRTUAL CIRCUIT HOLDING TIME POLICIES IN IP-OVER-ATM NETWORKS 1375

previously observed inter-arrival times is used to set a timeout
for each VC.

The (noncausal) optimal policy for this pricing model is
trivial—if the next arrival is more than time units in the
future, the VC is closed, else it is kept open. This policy
guarantees the smallest possible cost for each conversation.
Although this policy cannot be used in practice since it relies
information about the future, it is convenient to use as a basis
for comparison with other policies (see Section VI-C).

1) LRU-BASEDPolicies: The temporal locality in our data
motivated us to explore LRU-BASED policies for holding VC’s.
In the simplest version, if a conversation has been idle for time

then we predict that the next arrival will be time units
in the future, where is a constant. Notice that the relative
predicted arrival times correspond to relative depths in the
LRU stack. Applying this method of predicting future arrivals
we get a very simple policy: drop a conversation if it has
been idle for time units. Thus this policy sets the same
timeout, for all conversations. This policy has another
very nice property:

Lemma 1: The cost incurred when using the LRU-BASED

policy with parameter is no more than
times the optimal cost.

To prove this, observe that the worst case input is one where
the packets arrive time units apart. The optimal cost of
serving this sequence is per packet whereas the
LRU-BASED policy spends Thus, we can guarantee
that the cost incurred is no more than times
optimum. In our study we examined a range of different values
for

2) The MEAN-VARIANCEPolicy: The next strategy we con-
sider is to predict the arrival time of a particular VC based
on a small amount of history. The estimation algorithm was
derived from Jacobson’s work on good estimators for round
trip times [9]. We measure the inter-arrival time for each
VC and compute an exponentially averaged mean and an
exponentially averaged mean deviation from the mean. For
a given VC, let be the th inter-arrival time. For some
fixed parameter (we used the estimate
of the mean inter-arrival time, and the deviation,
are computed as follows:

When a packet arrives, we use the current estimates
and to choose a timeout. It is very likely that

a packet will arrive to the VC in the interval
If then the VC should be closed immediately.
Similarly, if then the VC should certainly be
kept open, at least till If lies in the interval

then we have to make some assumptions about
how the probability mass is distributed within the interval

We assume that the probability mass is
concentrated around the mean and close the circuit if
and keep it open otherwise. Thus, if the timeout is set
to 0, otherwise it is set to where

is is a cutoff parameter that ensures that for very high rate
conversations we do keep the circuit open for a reasonable
time. In our work, we chose However, we have
seen that the results are insensitive to choice ofin the range

to
3) The ADAPTIVEPolicy: Our adaptive policy uses the sin-

gle assumption that the inter-arrival time till the next packet
in a conversation is drawn from the same distribution as the
inter-arrival times that have been observed so far. Thus we
can use the observed inter-arrival times to make a choice of
timeout that is suited to the individual conversation. To design
the best adaptive holding policy we need to decide first what
information to gather about the inter-arrival time distribution,
and second how to use that information to determine the best
timeout, assuming the next inter-arrival time is drawn from
the same distribution. The following sections describe the
solutions to these problems.

When is known: Assume that we know the distribution
on the next inter-arrival time. Suppose that has a

probability density function so that if is an inter-arrival
time drawn from then

We wish to set a timeout that minimizes the expected
cost of the next packet. This cost is the time the circuit is held
open before the next packet arrives, plusif the circuit must
be reopened for the next packet. If the timeout is set tothen
the expected cost of the next packet can be expressed as

The first term is due to inter-arrival times of at mostwhere
the cost is just the holding time (i.e., the inter-arrival time).
The second term results from inter-arrival times greater than
where the cost is the holding time plus the open-cost,

We seek to minimize the expected cost of the next packet,
so we merely choose the timeout to be the value of that
minimizes Notice that is a parameter of the distri-
bution function only, so the timeout is the same for each packet
in the conversation. However, different conversations have
different inter-arrival time distributions, so will have different
timeouts. The timeout is thus tuned to the characteristics
of the particular conversation. This derivation for the optimal
timeout has also been obtained in the context of spinning on
a lock in a shared-memory multiprocessor [10].

When must be learned:The previous section assumes
that the distribution of inter-arrival times is known. In
reality, is not known, and must be inferred by observation.
Hence we keep a histogram of observed inter-arrival times.
For each is the number of observed
inter-arrival times in the interval
where the parameter is the number of entries in and
is the maximum timeout we will use. Experiments suggest
that a good value for is between 10 and 100 (see Section

1376 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 8, OCTOBER 1995

VI-C). The value of is not critical, as long as it is at least
in our simulations we use

We would like to set a timeout that is a close approxima-
tion to Let be the number of inter-
arrival times observed so far. Using as an approximation
to we define the estimated cost of a timeoutanalogously
to

Notice that the true “cost” of samples in histogramis
between and depending on the
exact inter-arrival times that were placed together in the bin.
We have chosen in the above formula, simply
because this choice gave slightly better empirical results.

Let be the value of that minimizes A natural
strategy is to choose the timeout to be However,
is a biased estimator of and on many distributions in our
sample data, underestimates As an example, consider an
inter-arrival time distribution with the distribution function

pictured in Fig. 2.
The best timeout for is at the end of the peak, at time

1/2. However, the first few inter-arrival times drawn from
are likely to be around 1/4, so at first will be around 1/4.
This means that using as the timeout would have the costly
result of the circuit initially being reopened more often than
necessary.

There are standard methods to approximate the bias of
a biased estimator, for example using bootstrapping [11].
However, in our case a simpler method of countering the bias
of works well: to simply set the timeout to be plus a
small correction,

Experimentally we find that our results are quite insensitive to
the value of see Fig. 6. Using gives roughly a
5% improvement over when is large.

A last optimization is that, if then few small
inter-arrival times have been observed, so the underestimation
problem does not arise. In this case we do not want to increase

as the holding cost would increase unnecessarily. Hence
if we set Thus the formula for is

Computing is very efficient, and can be done in linear
time using a single pass through the histogram.

On the arrival of the first packet in a conversation, no data
are available about the distribution, but we must still set a
timeout. Experimentally we find that the best choice of initial
timeout is though again the results are insensitive to
the exact value, see Fig. 6. We have achieved some very small
improvements over the empirical results described below by
doing more detailed tuning. It is reasonable to expect that if

Fig. 5. Sensitivity of LRU-BASED policy to c in the holding cost model.

Fig. 6. Sensitivity of normalized performance to policy parameters in the
holding cost model.

Fig. 7. Sensitivity of normalized performance to histogram size in the
holding cost model.

necessary, further improvements could be achieved by careful
tuning on a collection of representative data.

B. Sensitivity Analysis

The LRU-BASED and ADAPTIVE policies have some param-
eters that need to be set. The LRU-BASED policy has the
parameter while the ADAPTIVE policy has parameters
the size of the histogram, the maximum timeout and the
initial timeout after the first packet in a conversation. To
determine the best values of these parameters, we varied each
one individually, running the policies on the data sets from
AT&T, UCB, USC and IIT Delhi. The average relative costs
normalized by the optimal cost from these locations are plotted
in Figs. 5–7.

KESHAV et al.: EMPIRICAL EVALUATION OF VIRTUAL CIRCUIT HOLDING TIME POLICIES IN IP-OVER-ATM NETWORKS 1377

Fig. 8. Normalized performance of policies in the holding cost model for
each of the original data sets.

We find that for the LRU-BASED policy, works best,
i.e., drop a conversation if it has been idle for time units.
We notice that also performs well, so a value in the range
2–4 will be acceptable. This insensitivity to the precise value
of has a very nice consequence, namely that ifis known
only imprecisely, the LRU-BASED policy will work well.

For the ADAPTIVE policy, the cost is quite insensitive to the
precise values used for the parameters. There is remarkably
little variation with changing histogram size, and a small
histogram with 10 entries provides the full benefit of the policy
with a negligible computational overhead. The best values for
the other parameters are the initial timeout
is and these values are used in the evaluation below.

C. Evaluation of Policies

We simulated the LRU-BASED policy, the MEAN-VARIANCE

policy, and the ADAPTIVE policy on each of the traces. Each
policy was run for values of the open-cost ranging from
0.25–8. To be able to evaluate the policies across different
values of and different data sets, we normalize the cost by
dividing by the cost of the optimal offline strategy (OPT) on the
same data. The resulting normalized costs are plotted in Fig. 8
for each of the original data sets. Each plot contains three lines,
corresponding to the LRU-BASED policy, the MEAN-VARIANCE

policy, and the ADAPTIVE policy using a histogram of size 10.
Each line corresponds to an average over all traces from a site.

We observe that the MEAN-VARIANCE policy is almost

TABLE I
NORMALIZED COSTS OFPOLICIES IN THE HOLDING COST MODEL. EACH

NUMBER IS THE AVERAGE OF THE AVERAGE COST IN EACH DATA SET

Fig. 9. Normalized performance of policies in the holding cost model for
the new data sets.

always worse than the other two policies, while the ADAPTIVE

policy is consistently better than the LRU-BASED policy. The
only data point where ADAPTIVE is not doing better than LRU-
BASED and MEAN-VARIANCE is at USC for This can
be explained by noting that because of high traffic density,
the USC traces are very short. Thus many conversations have
only a few (2 or 3) packets, and the ADAPTIVE policy does not
have enough time to learn the inter-arrival time distributions
for such conversations.

To make a more comprehensive comparison of the policies,
we took averages of the averages from each location. The
result is shown in Table I. Each row corresponds to a value
of We note first that the LRU-BASED policy is consis-
tently better than the MEAN-VARIANCE policy. This result
was somewhat surprising, and we tried some variations in the
MEAN-VARIANCE policy’s use of the mean and deviation, but
without much improvement. Therefore it seems that the mean
and deviation alone do not give enough information about the
inter-arrival time distributions to design a good holding policy
in this model.

Secondly we see that even the ADAPTIVE policy is a
significant improvement over the LRU-BASED policy, and is
typically 35% closer to the optimal (noncausal) optimal than
the LRU-BASED policy.

After finding the best values for the parameter of LRU and
ADAPTIVE on some of the data sets, we ran the policies on
the rest of the data, namely the new data sets from AT&T
and Yale. This is necessary to ensure that the parameters are
good for all Internet data, not just on the data for which they
were tuned. In Fig. 9 we show the performance of the policies
on the new data. The MEAN-VARIANCE policy performed
significantly worse on these data, and these results are not

1378 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 8, OCTOBER 1995

shown. The performance of the LRU and ADAPTIVE policies on
this data is very similar to before, so we expect our conclusions
to hold in general.

VII. T HE PAGING PRICING MODEL

In the second pricing model we study, once the user has paid
for a block of connections to a site, there is a fixed charge for
each call setup (including both network cost and loss of user
utility during the call setup time). Our results are valid whether
or not there is also a per-packet charge. We assume that there
is no holding charge, so it makes sense to close a VC only
when the fixed upper limit has been reached. For example,
if a site is authorized to have at most 32 circuits open, and
is charged for 32 circuits (as opposed to a higher charge for
a site that is allowed 128 circuits), then the site would like
to have all 32 circuits open at all times. This type of pricing
model is common in X.25 networks.

A. Holding Policies

When a packet arrives on a virtual circuit that is closed, the
virtual circuit must be opened to transmit the packet. Since
in this pricing model there is a bound on the number of
connections, an open virtual circuit may need to be closed.
The holding policy must decide which of the currently open
circuits is to be closed.

We consider several different policies in detail. As in the
previous pricing model, there is great variation in the amount
of information about the observed inter-arrival times used by
the various policies.

The optimal (noncausal) strategy is to drop the conversation
which will be inactive for the longest period of time. This is
exactly the same as in the optimal page replacement algorithm
in virtual memory systems.

1) The RANDOM Policy: One simple policy that uses abso-
lutely no knowledge about the conversations themselves is to
close one of the open conversations at random when a new
one needs to be opened. We call this policy RANDOM.

2) The LRU Policy: Since our traces indicated the presence
of temporal locality of reference, it is natural to consider the
LRU policy. This policy maintains an LRU reference stack,
and closes the VC at the bottom of the stack when a new
VC is needed. This policy uses no information about the
inter-arrival time distributions, but does use information about
recent packet arrivals.

3) The MEAN-VARIANCEPolicy: The MEAN-VARIANCE pol-
icy, like the MEAN-VARIANCE policy for the holding cost
pricing model, uses an exponentially averaged mean, and
an exponentially averaged mean deviation from this mean.
Suppose the estimated average isand the current estimated
deviation is After each packet arrival on a VC, a timer is set
which is equal to If no reference has occurred to this
VC in this period, the VC is marked eligible to be dropped.
On a fault, we drop the eligible VC with the most elapsed
time since the last packet arrival. In the case that no eligible
VC’s are present, we drop the VC with the largest remaining
timer value.

4) The ADAPTIVEPolicy: Our ADAPTIVE policy is based on
the Median Algorithm of [4]. For each open circuit, our policy
estimates the waiting time until the next packet and drops the
open circuit with maximum estimate. The estimated waiting
time for a circuit is just the median of the tail of its inter-arrival
time distribution, defined precisely below. In [4], the Median
Algorithm was proved effective in the following theoretical
sense: if the inter-arrival time distributions remain unchanging
over time, and the conversations are independent of each other,
then the expected cost of the Median Algorithm is at most a
factor of 5 greater than the best adaptive algorithm, regardless
of the inter-arrival time distributions. Here we show that the
Median Algorithm works even better in practice.

When is known: Let be the presumed underlying dis-
tribution on inter-arrival times for some circuit, and suppose
that has probability density function For each circuit, we
compute the estimated waiting time for the next packet given
the amount of time, we have waited since the last packet.
This estimated time, is the median of the distribution
after i.e., the least value of such that

We close the open circuit with largest Note that
we use only the tail of the distribution, since the initial part
corresponds to time that has already passed since the last
packet arrived.

When must be learned:As in Section VI we need to
gather empirical information on each distribution For this
pricing model, there is no natural choice for the last interval of
inter-arrival times. Thus, instead of keeping a static histogram
we use a dynamic histogram, in which the intervals change
dynamically. A dynamic histogram consists of a collection
of disjoint intervals, where each interval consists of a
minimum inter-arrival time, a maximum inter-arrival
time, and a count, of the number of observed inter-
arrival times in the interval We will describe
how the intervals are maintained below.

Let be the set of intervals with We define the
estimated time to the next arrival as the minimum

such that

When is empty, and thus we have no data available about
the distribution, we use the following rule. If only one packet
has arrived on the conversation, we set to be
while if more than one packet has arrived on the conversation
we set to be This tends to quickly close circuits
where we have only observed a single packet. The value 25
for the initial median estimate multiplier was optimized for
the sample data, but its exact value is not very important, see
Fig. 11 below.

KESHAV et al.: EMPIRICAL EVALUATION OF VIRTUAL CIRCUIT HOLDING TIME POLICIES IN IP-OVER-ATM NETWORKS 1379

Fig. 10. Sensitivity of the ADAPTIVE policy to maximum histogram size in
the paging model.

Fig. 11. Sensitivity of the ADAPTIVE policy to initial median estimate mul-
tiplier in the paging model.

Our policy closes the open circuit with largest value of
The value of can be easily computed in

time linear in using a single pass through the histogram
Maintaining a Dynamic Histogram:Each time a new

packet arrives on a circuit, if the inter-arrival time belongs
to some interval in then is incremented. If no such
interval exists, a new intervalis created with and
equal to the inter-arrival time and When the number
of intervals exceeds some intervals are merged. The choice
of the parameter is not critical. Experiments suggest that a
good choice for is between 10 and 100 (see Section VII-C).

The merging of intervals is done as follows. Let be
the number of inter-arrival times observed so far. For each
interval such that we merge with its
closest neighboring interval. We continue merging until no
such interval exists.

B. Sensitivity Analysis

The ADAPTIVE policy has two parameters that need to
be set: the maximum histogram size, and the initial median
estimate multiplier. To determine the best values of these
parameters, we varied each one individually, running the
policies on the data sets from AT&T, UCB, USC, and IIT
Delhi. The average relative costs from these locations are
plotted in Figs. 10 and 11.

Notice that the performance of the ADAPTIVE algorithm is
relatively insensitive to choice of the maximum histogram
size, with the maximum size of 10 giving nearly as good
performance as 100. Notice also, that the performance of
ADAPTIVE is relatively insensitive to the precise value of the
initial median estimate multiplier, with values between 10
and 50 giving nearly identical performance. In the evaluation
below we have set the maximum histogram size to 100 and
the initial median estimate multiplier to 25.

C. Evaluation of Policies

We simulated the RANDOM policy, the MEAN-VARIANCE

policy, the LRU policy, and the ADAPTIVE policy on the

Fig. 12. Normalized performance of the strategies in the paging model for
each of the original data sets.

datasets. Each trace has packets from a number of connections.
However, some conversations may be active at different times
in the trace, so we define theactive conversation numberof a
trace to be the maximum overof the number of conversations
that have packets both before and afterin the trace. The
policies were simulated with the ratio of the maximum number
of open circuits to the active conversation number of the trace
ranging from 15–90%. We normalize the costs by dividing by
the cost of the optimal offline strategy (OPT) on the same data.
The resulting normalized costs are plotted in Fig. 12. Each line
corresponds to an average over all traces from a site.

As can be seen from Fig. 12, LRU is consistently better
than MEAN-VARIANCE and RANDOM. Surprisingly, the MEAN-
VARIANCE and RANDOM strategies are comparable in their
performance. The ADAPTIVE policy is consistently better than
LRU.

To make a more comprehensive comparison of the policies,
we took the average of all the location averages. The result
is shown in Table II. Each row corresponds to the number
of available virtual circuits as a percentage of the active
conversation number.

After setting the initial median estimate multiplier to 25 and
the maximum histogram size to 100, we ran the ADAPTIVE

policy on the new data sets from AT&T and Yale. In Fig. 13
we show the performance of the ADAPTIVE policy on the new
data. The ADAPTIVE policy has similar performance on this
data, so we expect the policy to work in general and not just
for the originally collected data.

1380 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 8, OCTOBER 1995

TABLE II
NORMALIZED COSTS OFPOLICIES IN THE PAGING MODEL. EACH NUMBER

IS THE AVERAGE OF THE AVERAGE COST IN EACH DATA SET

The extremely poor performance of MEAN-VARIANCE is
quite surprising. We investigated to check whether the pre-
diction strategy was doing a reasonable job. We found that
62–69% of the inter-arrival gaps lie in the interval
and 78–87% of the inter-arrival gaps lie in the interval

Thus, the packet-arrival pattern does seem
to fit the model assumed by MEAN-VARIANCE. The problem
is that while in a cluster of closely arriving packets, MEAN-
VARIANCE predicts successive arrivals well, but when a large
gap occurs, MEAN-VARIANCE does poorly, since it has tuned
its parameters to the preceding burst. As such, even a small
gap after a very high rate burst causes a timeout whereas a
larger gap after a medium-rate burst does not cause a timeout.

VIII. SYSTEM CONSIDERATIONS

In this section, we describe some system considerations in
implementing holding time policies. We expect a holding time
policy to be implemented in dual-ported routers that link IP
and ATM networks. In such routers, the arrival of an IP packet
triggers a search of a VCI cache, and if no VCI is found, a
signaling entity is invoked to establish a new virtual circuit.
The new VC, when established, is placed in the VCI cache.
Subsequent datagram arrivals result in VCI cache hits, and
the datagram is forwarded to the ATM device driver along
with the appropriate VCI. We now discuss how this picture is
modified by the LRU and ADAPTIVE holding time policies for
each of the two pricing schemes. We evaluate the additional
instruction and memory cost of the two policies.

A. Holding Cost Pricing Model

For both LRU and ADAPTIVE, after mapping a datagram to
a VCI, the current timer for that VCI must be cleared and a
new timer set. This timer is based either on a system wide
timeout (LRU-BASED), or on per-VC information (ADAPTIVE).
For ADAPTIVE, the inter-arrival histogram also needs to be
updated. On a timeout, the signaling entity has to be notified,
and the corresponding virtual circuit torn down.

An efficient way to implement a timeout is using a calendar
queue [12], a data structure that consists of an array ofdays
where each day is a doubly linked list of events. On a clock
tick, a pointer advances to the next day and the associated
actions are taken. To set a timer, an event is added to the
corresponding day queue. By rounding off timeout values
to one day, the cost of setting or clearing a timer is a
small constant number of instructions, since the operations
are simply to unlink and link elements from the list. Thus, we
believe that setting and clearing timeouts has little overhead.

Fig. 13. Normalized performance of the strategies in the paging model for
each of the new data sets.

The ADAPTIVE policy has the additional overhead of up-
dating a histogram. This involves a comparison and addition
step, followed by a scan through the array to calculate the
new timeout value. For a histogram of size 10, which we
have found to be adequate, this cost is around 50 instructions.
However, note that these actions do not need to be in the
packet forwarding path: they can be initiated after handing
the datagram over to the ATM device driver. This minimizes
the effect of the holding time policy on the packet forwarding
delay.

The LRU-BASED and ADAPTIVE schemes require differing
amounts of state space. Let there be at mostactive virtual
circuits. Then, for both schemes, the calendar queue should
be large enough to accommodate events, where anevent
consists of a function pointer, anext and apreviouspointer,
typically 32 bits each. For the LRU-BASED scheme, we need an
additional bits per VC to point to the the corresponding
timer event, so that clearing the timeout can be done in
constant time. For the adaptive scheme, we need an additional

bits per VC, where is the number of buckets in
the histogram, and is the largest number of packets in a
bucket. In order to adapt to changing conditions on a larger
time scale, we should allow the histogram to change with time.
The simplest method is simply to occasionally divide each
histogram entry by two, say when the histogram contains 256
packets. An alternative would be to keep two histograms
and for each VCI, as described for the paging model
below.

To summarize, the state overhead for the LRU-BASED policy
is bits, and for ADAPTIVE is

bits. Using typical values of as 2K VCI’s, as
10 and as 256, the corresponding state requirement for the
LRU-BASED scheme (including the calendar queue overhead)
is 26.8 KBytes, and for the adaptive scheme is 46.8 KBytes.
Given the consistent gains from the ADAPTIVE scheme, we
feel that the extra memory overhead is insignificant.

B. Paging Model

For the LRU scheme, on a packet arrival, the corresponding
VCI has to be pulled to the top of the LRU stack. When a page
fault occurs, the bottom element of the LRU stack has to be

KESHAV et al.: EMPIRICAL EVALUATION OF VIRTUAL CIRCUIT HOLDING TIME POLICIES IN IP-OVER-ATM NETWORKS 1381

dequeued. These are both constant time operations that take
less than 10 instructions on typical RISC machines. If the stack
is implemented as a doubly linked list, it requires
bits of state, where is the maximum allowed number of open
circuits. For this amounts to 1.1 KBytes.

For the ADAPTIVE scheme, on a packet arrival, we simply
update the histogram. On a page fault, we need to compute
the next packet’s median expected arrival time for each VCI
to determine the largest such value. The computation involves
scanning the per-VCI histogram, as before, and when
we expect it to take around 100 instructions per VCI for
every open VCI. This takes about instructions (about
0.5 ms on a 30 MIPS machine, for). This is too
long a time, since in the worst case, page faults could occur
more closely spaced than 0.5 ms. This is unacceptable even
if the computation is not on the packet forwarding path. This
problem can be solved using the following variation. When
ADAPTIVE has computed the median for each VCI, it can
keep ahit list of VCI’s in decreasing order of median. Each
time there is a page fault, the VCI at the head of the list
is closed. When a packet arrives, its VCI should be removed
from the list. Thus the computed medians can be used to make
a number of decisions about which VCI’s to close, during the
time that the next set of medians is being computed. Using
this method, the number of instructions which occurs on the
packet forwarding path for each page fault is similar to the
LRU scheme.

Note that the packet forwarding path on a page fault can be
shortened, both for the LRU-BASED scheme and for ADAPTIVE,
by keeping a single VCI unused, so that when a page fault
occurs, the unused VCI can immediately be assigned to that
conversation. After the packet is forwarded, a VC can then be
torn down in order to set aside the next unused VCI.

Since ADAPTIVE keeps information about circuits for some
time after they have been closed, there is an additional
parameter of the number of semi-active circuits, where the
semi-active circuits are the most recently used circuits.
There is garbage collection on these circuits such that the
number of semi-active circuits is bounded by using an
LRU scheme. As in the holding cost model, the histograms
should adapt to changing conditions on a larger time scale.
We prefer to keep two histograms and for each VCI.
The histogram is the one used to compute the median.
When a packet arrives, the inter-arrival time is put into both
histograms. When contains say 256 packets, we swap
the names and and empty the new This way
the median will be computed using data that is not too old. By
using this scheme, is at most 512, and the holding policy
is made adaptive over longer time scales.

The state information per VCI is a thus a pair of histograms,
where each bin consists of the max and min element in the
bin and a counter of the number of elements in the bin.
ADAPTIVE also needs to store the ordering for thehit list
of open circuits. Thus we find that the ADAPTIVE scheme
uses bits of
state, where is the precision of the inter-arrival times. For

and this
amounts to 413.3 KBytes.

IX. CONCLUSIONS

We have studied the problem of how long to keep open a
VCI opened to carry an IP datagram over an ATM network.
We proposed a formal model for this problem and investigated
two pricing schemes. For both pricing schemes we described
the noncausal optimal holding policy and studied a number
of nonadaptive and adaptive policies. In order to evaluate the
policies we collected empirical data sets from Ethernet LAN’s
located at sites around the world. We trained the policies on
4 data sets and evaluated them on 2 others.

We conclude that LRU/LRU-BASED policies do well in both
pricing models. On the data we collected these policies have
only 41.5% higher cost than the noncausal optimum in the
holding cost model and 58.3% higher cost in the paging model.
Further we found that the system costs for implementation
are small; on the scale of 10 instruction per packet and the
memory overhead is 1–27 KBytes for typical cases. On the
other hand, the MEAN-VARIANCE policies that use information
about the mean and standard deviation of the inter-arrival time
distribution do surprisingly poorly (55.3% worse than optimal
in the holding cost model and 85.7% worse than optimal in
the paging model) in all the many variations that we tried.
On the other hand the ADAPTIVE policies, that gather more
information about the inter-arrival time distributions, do the
best of the policies that we considered. They have only 25.8%
higher cost than noncausal optimal in the holding cost model
and only 34% higher cost in the paging model. The system
costs for the ADAPTIVE policies are reasonable; in the holding
cost model there are roughly 10 instruction per packet on the
packet forwarding path and 100 off this path. In the paging
model a page fault requires a longer computation outside the
packet forwarding path; in typical cases this amounts to 1/2 ms
on a 30 MIPS machine. This means that the scheme may not be
as useful in situations where the average interval between page
faults is very small. However the overhead may be alleviated
by sharing the computation among a number of page faults.
In both models the memory requirements are reasonable but
somewhat larger than the LRU/LRU-BASED policies. In typical
cases the ADAPTIVE policies uses 47–413 KBytes of memory.

Based on performance and systems cost we propose that
the ADAPTIVE policies be used, except when memory is very
scarce or in the paging model if page faults occur very
frequently, in which case the LRU/LRU-BASED policies are
good alternatives.

Lastly, we note that our policies for both pricing models may
be useful in a wider context. In general terms, the holding cost
model involves a resource that is intermittently used, and must
be “open” to be used. There is a cost for opening it, and a cost
for each time unit it remains open. This scenario describes
many specific problems, for example disk management in
portable computers: the “open cost” is the loss of utility to
the user while spinning up the disk, while the holding cost
corresponds to depletion of battery power. Similarly the paging
model can be phrased more generally: a large number of
entities are competing for the use of a scarce resource. This
general model is also interesting in a variety of contexts. It is
an interesting direction for further study to determine whether

1382 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 8, OCTOBER 1995

our adaptive methods can provide a performance benefit for
related applications.

ACKNOWLEDGMENT

The authors wish to thank B. Mah at UC Berkeley, P.
Danzig at the University of Southern California, P. Abra-
hamsen at AT&T Bell Laboratories, and M. Long at Yale
University for help in collecting the datasets. Thanks also to
R. Caceres for many helpful discussions and for good advice.

REFERENCES

[1] R. Caceres, “The pyramid IP to X.25 protocol interface: Merging DDN
and PDN approaches,” inProc. Uniform,Washington, DC, 1987.

[2] H. Saran and S. Keshav, “An empirical evaluation of virtual circuit
holding times in IP-over-ATM networks,” inProc. Infocom,1994, to
be published.

[3] C. Lund, N. Reingold, and S. J. Phillips, “Adaptive holding poli-
cies for IP over ATM networks,” AT&T Bell Laboratories, Technical
Memorandum 11272-940215-08TM, 1994.

[4] , “IP over connection-oriented networks and distributional pag-
ing,” in Proc. Foundations of Computer Sci.,Santa Fe, NM, 1994, to
be published.

[5] B. R. Harita and I. M. Leslie, “Dynamic bandwidth management of
primary rate ISDN to support ATM access,” inProc. ACM SigComm,
1989, pp. 197–210.

[6] R. Caceres, P. B. Danzig, S. Jamin, and D. J. Mitzel, “Characteristics of
application conversations in TCP/IP wide-area internetworks,” inProc.
ACM SigComm,Sept. 1991.

[7] V. Paxson and S. Floyd, “Wide-area traffic: The failure of poisson
modeling,” in Proc. ACM Sigcomm,1994, pp. 257–268.

[8] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the
self-similar nature of ethernet traffic,” inProc. ACM SigComm,Sept.
1993.

[9] V. Jacobson, “Congestion avoidance and control,” inProc. ACM Sig-
Comm,Aug. 1988.

[10] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki, “Empirical studies
of competitive spinning for a shared-memory muliprocessor,” inProc.
Thirteenth ACM Symp. Operating System Principles,Pacific Grove, CA,
Oct. 1991, p. 41.

[11] B. Efron and R. J. Tibshirani,An Introduction to the Bootstrap.New
York: Chapman and Hall, 1993.

[12] A. R. Brown, “Calendar queues: A fastO(1) priority queue implemen-
tation for the simulation event set problem,”Commun. ACM,vol. 31,
pp. 1220–1227, Oct. 1988.

Srinivasan Keshavreceived the Bachelor’s degree from the Indian Institute
of Technology, Delhi, in 1986, and the Ph.D. degree from the University of
California at Berkeley in 1991, both in computer science.

He has been with the Computer Science Research Center at AT&T Bell
Laboratories, Murray Hill, NJ, since 1991. His research interests are in
flow and congestion control, Quality of Service in multimedia networks and
native-mode ATM protocol stacks.

Carsten Lund was born in Aarhus, Denmark, on July 1, 1963. He received the
“kandidat” degree in 1988 from the University of Aarhus and the Ph.D. degree
from the University of Chicago in computer science. His thesis, entitledThe
Power of Interaction,was chosen as an ACM “Distinguished Dissertation.”

He has been working for AT&T Laboratories, Murray Hill, NJ, since
August of 1991 in the Computing Principles Research Department. His
areas of interest include algorithm design, ATM networks, and computational
complexity.

Steven Phillipswas born in Pietermaritzburg, South Africa. He received the
B.Sc. in 1986 and the B.Sc. Honors in mathematics and computer science
in 1988 at the University of Natal, South Africa, and the Ph.D. degree in
computer science at Stanford University, Stanford, CA, in 1993.

He is now a member of technical staff at AT&T Bell Labs, Murray Hill, NJ.

Nick Reingold received the B.A. degree in mathematics from the University
of Chicago and the Ph.D. degree in computer science from Yale University.

He is currently a member of the Computing Principles Research Department
of AT&T Bell Laboratories, Murray Hill, NJ. His research interests include
ATM networks and algorithm design.

Huzur Saran received the Bachelor’s degree in electrical engineering from
the Indian Institute of Technology, Delhi, in 1983, and the Ph.D. degree in
computer science from the University of California at Berkeley in 1989.

He is an Assistant Professor at the Indian Institute of Technology, New
Delhi. His research interests are in high speed real-time communication net-
works and he is currently building IDLINET, an experimental low-cost ATM
network based on Personal Computers and Ethernet. He is also investigating
improved approximation algorithms for graph partitioning problems.

