Clustered Graphs and C-planarity

Qing-Wen Feng Peter Eades Robert F. Cohen

Department of Computer Science
The University of Newcastle
University Drive — Callaghan

NSW 2308, Australia

email:{qwfeng,eades,rfc}@cs.newcastle.edu.au

March 1995

(Technical Report 04/95)
Abstract

In this paper, we introduce a new graph model known as clustered graphs, i.e. graphs
with recursive clustering structures. This graph model has many applications in informational
and mathematical sciences. In particular, we study C-planarity of clustered graphs. Given a
clustered graph, the C-planarity testing problem is to determine whether the clustered graph
can be drawn without edge crossings, or edge-region crossings. In this paper, we present efficient
algorithms for testing C-planarity and finding C-planar embeddings of clustered graphs.

1 Introduction

Representing information visually, or by drawing graphs can greatly improve the effectiveness of
user interfaces in many relational information systems [12, 17, 18, 5]. Developing algorithms for
drawing graphs automatically and efficiently has become the interest of research for many computer
scientists. Research in this area has been very active for the last decade. A recent survey citela-
bell3new of literature in this area includes over 250 references.

As information systems become more and more complicated, classical graphs tend to be insuf-
ficient for modeling the information. This has motivated the development of more powerful graph
models, e.g. hypergraphs [2], compound digraphs [21], cigraphs [15] and higraphs [10]. Although
these graph models has provided us a high level of abstraction and can be applied to a wide range
of applications, automatic layout facilities for these graphs seem hard to develop. Only heuristic
algorithms for hierarchical layout of compound digraphs have been developed [21, 20]. In this pa-
per, we introduce a practical and simple model called clustered graphs, i.e. graphs with recursive
clustering structures (see Fig. 1). This clustering structure can be used to model information in
many areas, such as software engineering [23], knowledge representation [13], idea organization [14],
software visualization [22] and VLSI design [10].

Planarity is a much studied area for classical graphs. For example, the problem of minimizing
edge crossings is proved to be NP-hard [9, 7]. However, efficient algorithms for testing whether
a graph is planar (i.e. can be drawn without edge crossings) exist [11, 16, 3, 6]. Planarity issues
relating to the more powerful graph models mentioned above have not been studied. In this paper,
we introduce C-planarity, the planarity of clustered graphs. In a drawing of a clustered graph,
vertices and edges are drawn as points and curves as usual. Clusters are drawn as simple closed

Figure 2: A Non C-planar Clustered Graph with Planar Underlying Graph

curves that define closed regions of the plane. The region for each cluster contains the drawing
of the subgraph induced by its vertices and no other vertices. A region for a cluster contains the
regions for all its subclusters and does not intersect the region for any other cluster. A clustered
graph is C-planarif it has a drawing with no crossings between distinct edges, or crossings between
an edge and a region. Note that the planarity of the underlying graph does not imply the existence
of a C-planar drawing of a clustered graph. For example, in Fig. 2, two edges cross a region to
which they do not belong.

It appears that C-planarity testing is not a trivial extension of planarity testing of classical
graphs. For example, consider the clustered graph in Fig. 3. Suppose that the vertices on three
triangles belong to three separate clusters. It is obvious that the graph is planar in the usual
sense. The graph induced by the vertices of each cluster is planar; and the graph obtained by
collapsing any cluster to a vertex is also planar. However, this clustered graph is not C-planar.
Based on analysis of other examples, it appears to us that the st-numbering based planarity testing
algorithms in [16] and [3] also cannot be easily adapted to C-planarity testing.

In a clustered graph, the subgraph induced by the vertices of a cluster may not be connected
even if the entire underlying graph is connected. This non-connectedness of clusters makes things
more complicated. There can be many possible ways to form the regions for clusters even with
a fixed embedding of the underlying graph. Fig. 4 gives an example. In Fig. 4(a) and (b), the
embeddings of the underlying graph are the same, while the formations of the regions are different.
Only the example in (b) gives a C-planar drawing. We concentrate on clustered graphs where the

(@ (b)

Figure 4: Different Region Formations on the Same Graph

graph induced by each cluster is connected. We call such graphs connected clustered graphs.

In this paper, we develop algorithms for testing C-planarity and finding C-planar embeddings
of connected clustered graphs in O(n?) time. In Section 2, we present some terminology and
some useful characterizations of C-planar clustered graphs. In Section 3, we present an algorithm
for testing C-planarity in connected clustered graphs. We also extend the testing algorithm to a
C-planar embedding algorithm. We conclude in Section 4 with some interesting open problems.

2 Preliminaries

A clustered graph C' = (G, T) consists of an undirected graph G and a rooted tree T' such that
the leaves of T are exactly the vertices of G. Each node v of T represents a cluster V(v) of the
vertices of G that are leaves of the subtree rooted at v. Note that the tree T describes an inclusion
relation between clusters. The tree T is called the inclusion tree of C'. The graph G is called the
underlying graph of C'. We let T'(v) represent the subtree of T rooted at node v and G/(v) denote
the subgraph of G induced by the cluster associated with node v. We define C(v) = (G(v),T(v))
to be the sub-clustered graph associated with node v. When necessary to avoid confusion, we refer
to edges of G as adjacency edges and edges of T as inclusion edges. For the purposes of this paper,
we can assume that each node in T has at least two children except for leaf nodes.

A drawing of a clustered graph C' = (G, T) is a representation of the clustered graph in the
plane. Each vertex of G is represented by a point. Each edge of G is represented by a simple curve
between the drawing of its endpoints. For each node v of T', the cluster V(v) is drawn as a simple
closed region R defined by a simple closed curve in the plane such that:

o the regions for all sub-clusters of R are completely contained in the interior of R;
o the regions for all other clusters are completely contained in the exterior of R;

o if there is an edge e between two vertices of V() then the drawing of e is completely contained
in R.
Given a drawing D of C' = (G, T'), we produce a consistent drawing D' of GG by removing the region
boundary curves from D.

We say that the drawing of edge e and region R have an edge-region crossing if the drawing of e
crosses the boundary of R more than once. A drawing of a clustered graph is C-planar if there are
no edge crossings or edge-region crossings. If a clustered graph has a C-planar drawing then we
say it is C-planar (Fig. 1 gives an example of a C-planar clustered graph). Note that C' = (G, T) is
C-planar only if G is planar. A C-planar drawing also contains a planar drawing of the underlying
graph.

An edge is said to be incident with a cluster V(v) if one end of the edge is a vertex of V(v) but
the other end is not in V(r). An embedding of C' = (G,T) includes an embedding of G plus the
circular ordering of edges crossing the boundary of the region of each non trivial cluster (a cluster
which is not a single vertex). In other words, an embedding of a clustered graph consists of the
circular ordering of edges around each cluster which are incident to that cluster.

A clustered graph C' = (G, T) is a connected clustered graph if each cluster induces a connected
subgraph of GG. The following theorem gives a necessary and sufficient condition for the C-planarity
of connected clustered graphs.

Theorem 1 A connected clustered graph C = (G,T) is C-planar if and only if graph G is planar
and there exists a planar drawing D of G, such that for each node v of T, all the vertices and edges

of G — G(v) are in the outer face of the drawing of G(v).

Proof: Note that since each G(v) is connected, the boundary of its outer face in any planar drawing
of G(v) consists of a connected cycle.

Consider a clustered graph C' = (G, T) with a C-planar drawing D, let D’ be the consistent
drawing of the underlying graph . Suppose that there is a node v of T" such that G — G(v) are
not all in the outer face of the drawing of G(v) in D’. Then there must exist a vertex v in G — G(v)
which is drawn in the interior of the outer facial cycle of the drawing of G(v). Then any simple
region that contains the drawing of G(v) must also contain v». This contradicts the assumption
that D is a C-planar drawing of C.

Now, consider a planar drawing D’ of the underlying graph (7, such that for each node v of T',
(' — G(v) is drawn in the outer face of the drawing of G(v). We produce a drawing D of clustered
graph ¢ = (C,T) by adding cluster boundaries to D’ recursively up tree T'. For each node v of T', we
make the boundary for cluster of v by drawing a simple closed curve in the outer face of G(v) along
its outer facial cycle, € > 0 distance away from the outer facial cycle of G(v) or the boundary of the
included regions. In this construction, each region is simple, and the region inclusion convention
is followed. There are no edge crossings, since D’ is a planar drawing of G. By construction, the
only edges that cross the boundary of the region for a node v of T are edges connecting vertices
of G(v) with vertices of G — G(v). Consequently, there are no edge-region crossings. Clearly, this
construction produces a C-planar drawing of C'. a

Next, we present a characterization of C-planarity of general clustered graphs. We need some
more terminology here. Suppose that C7 = (G1,71) and Cy = (G2, T3) are two clustered graphs,
Ty is a subtree of T3, and for each node v of Ty, Gi1(v) is a subgraph of G3(v). Then we say C7 is
a sub-clustered graph of Cy, and C5 is a super-clustered graph of C'y.

Figure 5: The Example for the Proof of Theorem 2

Theorem 2 A clustered graph C = (G,T) is C-planar if and only if it is a sub-clustered graph of
a connected and C-planar clustered graph.

Proof: Suppose that clustered graph C' = (G,T) is C-planar, where G = (V, E); and D is a
C-planar drawing of C'. Let v be a node of T, and let wy,ws, ..., w; be the points in circular
order where edges cross the region boundary of cluster v. Let v; and v;41 be the vertices of G(v)
which connect to adjacent points w; and w;y; respectively. In this C-planar drawing D of O,
vertices w;, wiy1, v;41 and v; are on boundary of some face f (See Fig. 5(a)), since v; and v;1q
are on the same side of the region boundary of cluster v. We add edge (v;, v;41) to G(v) if v; and
V41 are not connected previously. We draw it by making a curve from »; to v;41 along the curve
(vi, Wi, Wit1,vi41) € > 0 distance away from it, inside face f. This does not produce any crossings
since the curve we draw is totally inside face f. Suppose that there is a connected component H
of G(v) which has no connection with G — G/(v). In the C-planar drawing D of C, let region R
be the smallest subregion of R(v) (the region for cluster v) which contains the drawing of H. Let
R be the subregion of R bounded by the the bounding cycle of R and the outer facial cycle of H.
Suppose that v is a vertex on the outer facial cycle of H and u is a vertex of G(v) on the boundary
of region R. Any straight line through v must contain a segment (x,y) which is contained in R,
with = on the outer facial cycle of H and y on the boundary of R (see Fig. 5(b)). We add an edge
(v,u) to G(v). We draw edge (v,u) in R in the following manner. First, we draw a curve from v to
z along the outer facial cycle of H. Then we continue along the segment (z,y) to point y. Finally,
we follow the boundary of R to w. This does not introduce any crossings since this curve is formed
all inside region R. By the operations above, a super-clustered graph C’'(G',T) of C' is obtained,
where G’ = (V, E'); a C-planar drawing of C” is formed; and €’ is a connected clustered graph.
Suppose that C' is a sub-clustered graph of C’, where C’ is connected and C-planar. A C-
planar drawing of C' can be obtained by restricting a C-planar drawing of C’ to C'. Therefore, C'is
C-planar. a

3 C-planarity Testing

In this section, we describe an efficient algorithm for testing C-planarity in connected clustered
graphs.

Our algorithm is based on Theorem 1. For a clustered graph C' = (G, T), we test whether there
is a planar embedding of G such that for each node v of T, G — G(v) is embedded in the same
face (the outer face) of G(v). We try to embed the subgraph induced by each cluster one by one,

following a traversal of 7' from bottom to top. For each node v of T, we test whether G/(v) has
any planar embeddings that satisfy the conditions of Theorem 1 for C(v). If we proceed to the
root cluster, and such embeddings exist for the root of T, then the clustered graph is C-planar,
otherwise it is not C-planar.

3.1 Background

We apply the well known PQ-tree technique [3] in our algorithm. The following is a brief definition
of the PQ-tree data structure.

The PQ-trees over a set U are trees whose leaves are elements of U and whose internal nodes
are distinguished as being either P-nodes or (J-nodes. Reading the leaves of a tree from left to right
yields its frontier. We can make two types of transformations on a PQ-tree:

1. arbitrarily permute the children of a P-node;
2. reverse the children of a Q-node.

By making such transformations on a PQ-tree, its frontiers form a set of permutations of the
leaves. We say the structure of a PQ-tree expresses a set of permutations of its leaves.

In the PQ-tree planarity testing algorithm, graphs are decomposed into biconnected compo-
nents, and each biconnected component is tested for planarity. FEach vertex of a biconnected
component is labeled by its st-number and added in the st-number order. The st-numbering is
calculated in the following manner. An st-numbering consists of a biconnected graph G with n
vertices and an arbitrary edge (s,t). The vertices of (¢ can be numbered from 1 to n such that
vertex s receives number 1, vertex ¢ receives number n, and every vertex except s and ¢ is adjacent
both to a lower-numbered and a higher-numbered vertex. Vertices s and ¢ are called the source
and the sink respectively.

We need the following lemma to understand the PQ-tree planarity testing algorithm and also
to show the correctness of our algorithm.

Lemma 1 [19] Suppose that a graph G is a biconnected and st-numbered planar graph. Let
G = (Vi, Ex) be the subgraph of G induced by vertices Vi, = {1,2,...,k}, 1 <k <n. If edge (s,t)
s drawn on the boundary of the outer face in an embedding of G, then all the vertices and edges of
G — G are drawn in the outer face of the plane subgraph Gy of G.

Using the notation of the above Lemma, a planar drawing of G with all the vertices and edges of
G — G, drawn in the outer face of Gy, is called a planar st-drawing of G.

The PQ-tree planarity testing algorithm maintains a PQ-tree throughout the algorithm. When-
ever a vertex v; is added, an appropriate operation (called reduction) on the PQ-tree is made. After
each reduction step, the PQ-tree exactly expresses the set of possible permutations of the edges
that connect to G along the outer face of planar st-drawing of G'y.

The efficient implementation of the PQ-tree technique is fully described in [3].

We use the concept of virtual edge and virtual vertex in our algorithm. For a graph G(V, E)
with subgraph G'(V', E’), those edges with one end in V'’ and the other end in V — V' are called
virtual edges of G, and those ends of the virtual edges in V' — V' are called virtual vertices of GG'.

3.2 A Testing Algorithm

We test C-planarity based on Theorem 1. We determine whether there is a planar embedding of
G such that for each node v of T', G — Gi(v) is embedded in the same face (the outer face) of G(v).

We try to embed the subgraph induced by each cluster recursively, following a traversal of T
from bottom to top. For a node v of T' with children pq,..., p4, we test whether G(v) has any

O

Figure 6: Illustration of Choosing s and ¢ for Each Cluster

planar embeddings that satisfy the conditions of Theorem 1 for C'(v). We find such embeddings
for C'(v) by combining the possible embeddings of each child cluster p; which are found recursively.
Then we record such embeddings of G(v) for later testing of the parent cluster of v. We construct
a representative graph that represents all the possible orderings of edges that are incident to cluster
v around the outer face of G/(v); then replace G(v) in G with the representative graph. Graph G
is changed every time we process a node of tree 7. At the time when the algorithm proceeds to
cluster v, planar embeddings of G reflect all planar embeddings of the children of v that satisfy the
conditions of Theorem 1.

At cluster v, we not only test whether G(v) is planar, but also test whether the edges that
are incident to cluster v can be drawn in the outer face of G/(v). Therefore, we have to take into
account the virtual edges of G(v). We form a graph G’(v) by adding virtual edges to G(v), and
apply the PQ-tree planarity testing algorithm to G'(v). We add a vertex on each virtual edge of
G/(v) to distinguish them from each other; and let G’(v) be the graph resulted from connecting the
virtual edges of G(v) to a single virtual vertex (see Fig. 6).

The PQ-tree algorithm decomposes a graph into biconnected components and tests each of them

for planarity respectively. The following lemma facilitates the application of the PQ-tree algorithm
to G'(v).

Lemma 2 Suppose that F is a connected subgraph of G. Let F' be the graph constructed by adding
virtual edges to I, and connecting each virtual edge to a single virtual vertex. If there are at least
two virtual edges in F', then all the virtual edges belong to the same biconnected component of I,

We apply the PQ-tree testing algorithm to G’(v). For the biconnected component B that
contains the virtual edges, we compute the st-numbering by choosing the single virtual vertex as
the sink and any vertex of G/(v) that connects to the virtual vertex as the source. If the planarity
testing on G'(v) returns TRUE, then G'(v) is planar, and by Lemma 1, all the edges incident to
cluster v can be drawn in the outer face of G/(v). Let Tpg be the nonempty PQ-tree that results
when the planarity testing on biconnected component B is completed. The tree Tpg expresses all
the possible orderings of the edges that are incident to cluster of v along the outer face of G(v).
We associate Tpg with cluster of v.

At each cluster v, we need to determine whether we can combine the planar embeddings of each
of its child cluster u; that satisfy the conditions of Theorem 1 for C'(y;) into planar embeddings of
G/(v) that satisfy the conditions of Theorem 1 for C'(v). For each child cluster p; of cluster v, we
replace G/(y;) with a representative graph which is constructed from wheel graphs.

A wheel graph consists of a vertex called the hub of the wheel and a cycle called the rim of the
wheel, such that the hub is connected to every vertex on the rim. (see Fig. 7). Every face of a
wheel is a triangle except the face bounded by the rim. We call this face the rim face. If the rim

Figure 7: A “Wheel” Graph

face of a wheel graph is drawn as the outer face, then we say the drawing is a canonical drawing of
the wheel.

The following lemma shows that wheel graphs have certain properties that can be exploited in
construction of representative graphs.

Lemma 3 Suppose that G is a planar graph with subgraph F. Let F' be the subgraph constructed
by adding virtual edges to F. Let Iy, Fy, ..., Iy be a collection of wheel subgraphs of F, such that
each wheel graph has a distinguished hub, the hubs only connect to vertices on the corresponding rim
in F, and every two wheel graphs have at most one common vertex. If there is a planar drawing D
of F' with virtual edges drawn in the outer face of F, then there must also exist a planar drawing
D' of F' such that :

o The circular ordering of the virtual edges along the outer face of I is preserved.
o Fvery wheel graph F; is drawn canonically.
o F'— F; is drawn in the outer face of F;.

In a PQ-tree, a P-node corresponds to a cut vertex in the graph the PQ-tree represents; a
Q-node corresponds to a biconnected component of the graph; and the leaves correspond to the
virtual edges. Given a PQ-tree associated with a graph G, we construct a representative graph
G pg in the following manner. For each Q-node, we construct a wheel graph; for each P-node, we
construct a vertex which serves as a cut vertex connecting the wheels (see Fig. 8). The constructed
G pg has the following properties:

e The ordering of the virtual edges is the same as the ordering of the leaves of the PQ-tree.

Biconnected components in G correspond to wheels in G'pg.

Cut vertices in (& correspond to cut vertices in Gpg.

o Every vertex in GGpg has its counterpart in & except the vertices constructed as the hubs of
wheels.

The algorithm for testing the C-planarity of a connected clustered graph contains a main loop

S

Figure 8: The Construction of Representative Graphs

which is a post order traversal of tree T'. For each node v of T, we test the planarity of G'(v),
construct a representative graph for G(v), and replace G(v) with the representative graph in G.

Algorithm 1 CPT
Input: a connected clustered graph C' = (G, T);
Qutput: a boolean value indicating whether C' is C-
planar.

(1) Use the PQ-tree planarity testing algorithm P7T to determine whether G is planar. If G is
not planar, then return FALSE and exit.

(2) We proceed on T' from bottom to top. For each non-leaf node v of 7', perform the following:
(2.1) Form graph G'(v) from G(v).
Apply the PQ-tree planarity testing algorithm P7 to G'(v). For the biconnected compo-
nent that contains the virtual edges, choose the single virtual vertex as the sink ¢; choose
any vertex of G(v) that connects to vertex ¢ as the source to compute st-numbering. Let
Tpg be the resulted PQ-tree when the testing of this component is completed.
If any biconnected component is non-planar, then return FALSE and exit.

(2.2) Construct representative graph G(v)pg based on Tpq.
(2.3) Replace subgraph G(v) in G with G(v)pg and update G.

(3) When we proceed to the root of T', test the planarity of the updated G using algorithm PT.
If graph G is not planar then return FALSE otherwise return TRUE.

a

The correctness of our algorithm follows immediately from Theorem 1 and Lemmas 1, 2, and 3.

It is shown in [3] that for a given graph G with n vertices and m edges, the PQ-tree planarity
testing algorithm requires at most O(n) steps. There are algorithms requiring O(n + m) steps to
find biconnected components of a graph [1], and to generate st-numbering for each biconnected
component [8]. Note that graph G is updated throughout our algorithm. At node v of T, the
vertices in (G that serve as hubs of wheels have no connection with the rest of the graph except
the vertices on the corresponding rim. Therefore, they do not appear in the updated G when the
algorithm proceeds to the parent node of v in T. Thus, the number of vertices of the updated &G
is always O(n) throughout the algorithm, where n is the number of vertices of the input clustered
graph. Since each of the steps 2.1, 2.2 and 2.3 takes linear time in terms of the size of G’'(v) which
is bounded above by O(n), and they are iterated |T’| times, step 2 takes O(|T'| - n) time in all. Both
of step 1 and step 3 take O(n) time. Hence algorithm CPT takes O(|T'|-n) time. We have assumed
that each node in T has at least two children except for leaf nodes. Thus 7" has at most 2n nodes.
Therefore algorithm CPT takes O(n?) time. The following theorem summarizes the performance
of algorithm CPT.

Theorem 3 Algorithm CPT tests C-planarity of an n vertex, connected clustered graph C = (G, T))
in O(n?) time.

3.3 An Embedding Algorithm

In this section, we show how to extend the C-planarity testing algorithm CPT to a C-planar
embedding algorithm CPFEmbed. The input to algorithm CPFEmbed is a connected clustered graph.
The algorithm returns a C-planar embedding if the input clustered graph is C-planar; otherwise,
returns an empty embedding.

The algorithm PFEmbed [4] replaces algorithm PT in our algorithm CPFEmbed. The algorithm
PFEmbed tests the planarity of a graph and finds a planar embedding if the graph is planar. It uses
the same PQ-tree technique as algorithm P7T. If a graph is planar, PEmbed records a partial planar
embedding of the graph and returns a PQ-tree associated with each biconnected component of the
graph. By choosing an ordering of the leaves of each PQ-tree that the PQ-tree accepts, together
with the partial planar embedding, a complete planar embedding of the graph can be obtained in
linear time [4].

In our algorithm CPEmbed, we find a circular ordering of the edges incident to each cluster
recursively, following a traversal of tree T' from top to bottom. We modify algorithm CPT to CPT”’
by replacing the primitive PQ-tree planarity testing algorithm P7T with algorithm PFEmbed. We use
a stack 5 to record the partial embeddings and the PQ-trees obtained by algorithm CPT’ at each
node v of T'. Visiting the stack from top to bottom forms a traversal of the inclusion tree T’ from
top to bottom.

The algorithm CPFEmbed is described as follows.

Algorithm 2 CPEmbed
Input: a connected clustered graph C' = (G, T);
Output: an C-planar embedding & of ' which consists
of a circular ordering of edges incident to each
cluster of C.

(1) Perform algorithm CPT’ on clustered graph C' = (G,T). At node v of T, push the partial
planar embedding and the PQ-tree associated with cluster of v onto a stack S. If CPT”
returns FALSE, then return an empty C-planar embedding and exit.

(2) £€=0.

While 5 is not empty, perform the following;:

(2.1) Pop the partial embedding and the PQ-tree from stack S which corresponds to node v
of T.
Let ORD(v) be the circular ordering of edges incident to cluster v in embedding &.
Choose ORD(v) as the ordering of the leaves of the PQ-tree associated with G'(v).
Find a complete planar embedding H, of G(v) according to ORD(v) and the partial
embedding popped from the stack.

(2.2) Call procedure Formalize(H,) (below) to modify H,, such that for each wheel subgraph
Fof G(v), Fis embedded canonically, and the vertices and edges of G — F' are embedded
in the outer face (the rim face) of F'.

(2.3) For each child y; of v, find the circular ordering O RD(y;) of the edges incident to cluster
;i according to H,; and let & be £ UORD(u;).

O

Procedure Formalize changes a planar embedding of graph (G, such that each wheel subgraph F; is
embedded canonically, and G — F} is embedded in the outer face (the rim face) of F;. By Lemma 3,
this kind of embedding exists. We formalize the embedding of G by moving the part of G — F;
which are not embedded in the rim face of F; to the other side of the rim of F;. The following
description of procedure Formalize completes our description of algorithm CPFEmbed.

Procedure Formalize(H,)
For each wheel subgraph F; of G(v) updated in CPT":

For each vertex x on the rim of the wheel F;:

10

Suppose that h is the hub of the wheel, 1, ry are the two vertices on the rim adjacent
to z, and (h,v1,v2,. .., 0p, 1, Upg1s - -, Vgs T2 Vg1, - - -, U, 1) 18 the circular order of
the vertices which connect to x defined by H,. We change this circular ordering to
(RyT1,01, 025« ooy Vpy Upgdy « + oy Ugy Vgl -« -5 V1, T2,).

O

The correctness of this algorithm follows from the correctness of Plmbed and CPT.

To compute the running time of algorithm CPT’, we first note that algorithm PFEmbed takes
linear time (see [4]). Then, by a similar argument as for algorithm CPT, algorithm CPT’ takes
O(n?) time. Consequently, step 1 of algorithm CPEmbed takes O(n?) time. According to [4], step
2.1 takes linear time in terms of the size of G’(v). Step 2.2, and 2.3 also take linear time in terms
of the size of G(v). Therefore, step 2 requires time O(n - |T'|) = O(n?) in all. Thus, algorithm
CPEmbed require O(n?) time. The following theorem summarizes the performance of algorithm

CPEmbed.

Theorem 4 Algorithm CPEmbed finds a C-planar embedding of an n vertex, connected clustered
graph C' = (G, T) in O(n?) time.

4 Conclusion and Open Problems

In this paper, we have introduced a graph model known as clustered graphs and investigated the
planarity of clustered graphs. We have presented an efficient algorithm for testing C-planarity
in connected clustered graphs, and also extend the C-planarity testing algorithm to a C-planar
embedding algorithm.

Some interesting open problems include:

e Can we improve the performance of the proposed algorithms to linear time?

e For non-connected clustered graphs, with a given embedding of the underlying graph, how

do we test whether the embedding admits a C-planar drawing?

e Can we find a polynomial time algorithm that tests C-planarity of non-connected clustered
graphs, or show that the problem is NP-hard?

References

[1] A.V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass., 1974.

[2] Claude Berge. Hypergraphs. North-Holland, 1989.

[3] K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs, and graph
planarity using PQ-tree algorithms. Journal of Computer and System Sciences, 13:335-379,
1976.

[4] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding planar graphs
using PQ-trees. J. of Computer and Sytem Sciences, 30(1):54-76, 1985.

[65] M. Consens, A. Mendelzon, and A. Ryman. Visualizing and querying software structures. In
14th International Conference on Software Engineering (Melbourne), pages 11 — 15, 1992.

[6] H. de Fraysseix and P. Rosenstiehl. A depth-first-search characterization of planarity. Annals
of Discrete Mathematics, 13:75-80, 1982.

11

[7] P. Eades, B. McKay, and N. Wormald. On an edge crossing problem. In Proc. 9th Australian
Computer Science Conf., pages 327-334, 1986.

[8] S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Computer Science, 2:339—
344, 1976.

[9] M.R. Garey and D.S. Johnson. Crossing number is NP-complete. SIAM J. Algebraic and
Discrete Methods, 4(3):312-316, 1983.

[10] D. Harel. On visual formalisms. Communications of the ACM, 31(5):514-530, 1988.

[11] J. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of ACM, 21(4):549-568,
1974.

[12] Silicon Graphics Inc. CASEVision/workshop user’s guide. Silicon Graphics Inc, 1992. Volumes
I and II.

[13] T. Kamada. Visualizing Abstract Objects and Relations. World Scientific Series in Computer
Science, 1989.

[14] J. Kawakita. The KJ method — a scientific approach to problem solving. Technical report,
Kawakita Research Institute, Tokyo, 1975.

[15] Wei Lai. Building Interactive Digram Applications. PhD thesis, Department of Computer
Science, University of Newcastle, Callaghan, New South Wales, Australia, 2308, June 1993.

[16] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs. In Theory
of Graphs, International Symposium (Rome 1966), pages 215-232. Gordon and Breach, New
York, 1967.

[17] K. Misue and K. Sugiyama. An overview of diagram based idea organizer: D-abductor. Tech-
nical Report ITAS-RR-93-3E, ISIS, Fujitsu Laboratories, 1993.

[18] H.A. Muller. Rigi - A Model for Software System Construction, Integration, and FEvalution
based on Module Interface Specifications. PhD thesis, Rice University, 1986.

[19] T. Nishizeki and N. Chiba. Planar Graphs: Theory and Algorithms, Annals of Discrete Math-
ematics 32. North-Holland, 1988.

[20] S. C. North. Drawing ranked digraphs with recursive clusters. preprint, 1993. Software Systems
and Research Center, AT & T Laboratories.

[21] K. Sugiyama and K. Misue. Visualization of structural information: Automatic drawing of
compound digraphs. IFEE Transactions on Systems, Man and Cybernetics, 21(4):876-892,
1991.

[22] C. Williams, J. Rasure, and C. Hansen. The state of the art of visual languages for visualization.
In Visualization 92, pages 202 — 209, 1992.

[23] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-Oriented Soft-
ware. P T R Prentics Hall, Englewood Cliffs, NJ 07632, 1990.

12

