
Clustered Graphs and C-planarityQing-Wen Feng Peter Eades Robert F. CohenDepartment of Computer ScienceThe University of NewcastleUniversity Drive { CallaghanNSW 2308, Australiaemail:fqwfeng,eades,rfcg@cs.newcastle.edu.auMarch 1995(Technical Report 04/95)AbstractIn this paper, we introduce a new graph model known as clustered graphs, i.e. graphswith recursive clustering structures. This graph model has many applications in informationaland mathematical sciences. In particular, we study C-planarity of clustered graphs. Given aclustered graph, the C-planarity testing problem is to determine whether the clustered graphcan be drawn without edge crossings, or edge-region crossings. In this paper, we present e�cientalgorithms for testing C-planarity and �nding C-planar embeddings of clustered graphs.1 IntroductionRepresenting information visually, or by drawing graphs can greatly improve the e�ectiveness ofuser interfaces in many relational information systems [12, 17, 18, 5]. Developing algorithms fordrawing graphs automatically and e�ciently has become the interest of research for many computerscientists. Research in this area has been very active for the last decade. A recent survey citela-bel13new of literature in this area includes over 250 references.As information systems become more and more complicated, classical graphs tend to be insuf-�cient for modeling the information. This has motivated the development of more powerful graphmodels, e.g. hypergraphs [2], compound digraphs [21], cigraphs [15] and higraphs [10]. Althoughthese graph models has provided us a high level of abstraction and can be applied to a wide rangeof applications, automatic layout facilities for these graphs seem hard to develop. Only heuristicalgorithms for hierarchical layout of compound digraphs have been developed [21, 20]. In this pa-per, we introduce a practical and simple model called clustered graphs, i.e. graphs with recursiveclustering structures (see Fig. 1). This clustering structure can be used to model information inmany areas, such as software engineering [23], knowledge representation [13], idea organization [14],software visualization [22] and VLSI design [10].Planarity is a much studied area for classical graphs. For example, the problem of minimizingedge crossings is proved to be NP-hard [9, 7]. However, e�cient algorithms for testing whethera graph is planar (i.e. can be drawn without edge crossings) exist [11, 16, 3, 6]. Planarity issuesrelating to the more powerful graph models mentioned above have not been studied. In this paper,we introduce C-planarity, the planarity of clustered graphs. In a drawing of a clustered graph,vertices and edges are drawn as points and curves as usual. Clusters are drawn as simple closed1

a

b
c

d

e

f

gh
ij

k

l

m

n

p

A

B

CD

E

ROOT

Figure 1: An Example of a Clustered Graph
Figure 2: A Non C-planar Clustered Graph with Planar Underlying Graphcurves that de�ne closed regions of the plane. The region for each cluster contains the drawingof the subgraph induced by its vertices and no other vertices. A region for a cluster contains theregions for all its subclusters and does not intersect the region for any other cluster. A clusteredgraph is C-planar if it has a drawing with no crossings between distinct edges, or crossings betweenan edge and a region. Note that the planarity of the underlying graph does not imply the existenceof a C-planar drawing of a clustered graph. For example, in Fig. 2, two edges cross a region towhich they do not belong.It appears that C-planarity testing is not a trivial extension of planarity testing of classicalgraphs. For example, consider the clustered graph in Fig. 3. Suppose that the vertices on threetriangles belong to three separate clusters. It is obvious that the graph is planar in the usualsense. The graph induced by the vertices of each cluster is planar; and the graph obtained bycollapsing any cluster to a vertex is also planar. However, this clustered graph is not C-planar.Based on analysis of other examples, it appears to us that the st-numbering based planarity testingalgorithms in [16] and [3] also cannot be easily adapted to C-planarity testing.In a clustered graph, the subgraph induced by the vertices of a cluster may not be connectedeven if the entire underlying graph is connected. This non-connectedness of clusters makes thingsmore complicated. There can be many possible ways to form the regions for clusters even witha �xed embedding of the underlying graph. Fig. 4 gives an example. In Fig. 4(a) and (b), theembeddings of the underlying graph are the same, while the formations of the regions are di�erent.Only the example in (b) gives a C-planar drawing. We concentrate on clustered graphs where the2

(a) (b)Figure 3: A Planar but Not C-Planar Clustered Graph
(a) (b)Figure 4: Di�erent Region Formations on the Same Graphgraph induced by each cluster is connected. We call such graphs connected clustered graphs.In this paper, we develop algorithms for testing C-planarity and �nding C-planar embeddingsof connected clustered graphs in O(n2) time. In Section 2, we present some terminology andsome useful characterizations of C-planar clustered graphs. In Section 3, we present an algorithmfor testing C-planarity in connected clustered graphs. We also extend the testing algorithm to aC-planar embedding algorithm. We conclude in Section 4 with some interesting open problems.2 PreliminariesA clustered graph C = (G; T) consists of an undirected graph G and a rooted tree T such thatthe leaves of T are exactly the vertices of G. Each node � of T represents a cluster V (�) of thevertices of G that are leaves of the subtree rooted at �. Note that the tree T describes an inclusionrelation between clusters. The tree T is called the inclusion tree of C. The graph G is called theunderlying graph of C. We let T (�) represent the subtree of T rooted at node � and G(�) denotethe subgraph of G induced by the cluster associated with node �. We de�ne C(�) = (G(�); T (�))to be the sub-clustered graph associated with node �. When necessary to avoid confusion, we referto edges of G as adjacency edges and edges of T as inclusion edges. For the purposes of this paper,we can assume that each node in T has at least two children except for leaf nodes.A drawing of a clustered graph C = (G; T) is a representation of the clustered graph in theplane. Each vertex of G is represented by a point. Each edge of G is represented by a simple curvebetween the drawing of its endpoints. For each node � of T , the cluster V (�) is drawn as a simpleclosed region R de�ned by a simple closed curve in the plane such that:3

� the regions for all sub-clusters of R are completely contained in the interior of R;� the regions for all other clusters are completely contained in the exterior of R;� if there is an edge e between two vertices of V (�) then the drawing of e is completely containedin R.Given a drawing D of C = (G; T), we produce a consistent drawing D0 of G by removing the regionboundary curves from D.We say that the drawing of edge e and region R have an edge-region crossing if the drawing of ecrosses the boundary of R more than once. A drawing of a clustered graph is C-planar if there areno edge crossings or edge-region crossings. If a clustered graph has a C-planar drawing then wesay it is C-planar (Fig. 1 gives an example of a C-planar clustered graph). Note that C = (G; T) isC-planar only if G is planar. A C-planar drawing also contains a planar drawing of the underlyinggraph.An edge is said to be incident with a cluster V (�) if one end of the edge is a vertex of V (�) butthe other end is not in V (�). An embedding of C = (G; T) includes an embedding of G plus thecircular ordering of edges crossing the boundary of the region of each non trivial cluster (a clusterwhich is not a single vertex). In other words, an embedding of a clustered graph consists of thecircular ordering of edges around each cluster which are incident to that cluster.A clustered graph C = (G; T) is a connected clustered graph if each cluster induces a connectedsubgraph of G. The following theorem gives a necessary and su�cient condition for the C-planarityof connected clustered graphs.Theorem 1 A connected clustered graph C = (G; T) is C-planar if and only if graph G is planarand there exists a planar drawing D of G, such that for each node � of T , all the vertices and edgesof G� G(�) are in the outer face of the drawing of G(�).Proof: Note that since each G(�) is connected, the boundary of its outer face in any planar drawingof G(�) consists of a connected cycle.Consider a clustered graph C = (G; T) with a C-planar drawing D, let D0 be the consistentdrawing of the underlying graph G. Suppose that there is a node � of T such that G � G(�) arenot all in the outer face of the drawing of G(�) in D0. Then there must exist a vertex v in G�G(�)which is drawn in the interior of the outer facial cycle of the drawing of G(�). Then any simpleregion that contains the drawing of G(�) must also contain v. This contradicts the assumptionthat D is a C-planar drawing of C.Now, consider a planar drawing D0 of the underlying graph G, such that for each node � of T ,G�G(�) is drawn in the outer face of the drawing of G(�). We produce a drawing D of clusteredgraph G = (C; T) by adding cluster boundaries to D0 recursively up tree T . For each node � of T , wemake the boundary for cluster of � by drawing a simple closed curve in the outer face of G(�) alongits outer facial cycle, � > 0 distance away from the outer facial cycle of G(�) or the boundary of theincluded regions. In this construction, each region is simple, and the region inclusion conventionis followed. There are no edge crossings, since D0 is a planar drawing of G. By construction, theonly edges that cross the boundary of the region for a node � of T are edges connecting verticesof G(�) with vertices of G � G(�). Consequently, there are no edge-region crossings. Clearly, thisconstruction produces a C-planar drawing of C. 2Next, we present a characterization of C-planarity of general clustered graphs. We need somemore terminology here. Suppose that C1 = (G1; T1) and C2 = (G2; T2) are two clustered graphs,T1 is a subtree of T2, and for each node � of T1, G1(�) is a subgraph of G2(�). Then we say C1 isa sub-clustered graph of C2, and C2 is a super-clustered graph of C1.4

R() υ

(a) (b)

w wi+1i

f

vi vi+1

u

v

y

x

R

HFigure 5: The Example for the Proof of Theorem 2Theorem 2 A clustered graph C = (G; T) is C-planar if and only if it is a sub-clustered graph ofa connected and C-planar clustered graph.Proof: Suppose that clustered graph C = (G; T) is C-planar, where G = (V;E); and D is aC-planar drawing of C. Let � be a node of T , and let w1; w2; : : : ; wk be the points in circularorder where edges cross the region boundary of cluster �. Let vi and vi+1 be the vertices of G(�)which connect to adjacent points wi and wi+1 respectively. In this C-planar drawing D of C,vertices wi, wi+1, vi+1 and vi are on boundary of some face f (See Fig. 5(a)), since vi and vi+1are on the same side of the region boundary of cluster �. We add edge (vi; vi+1) to G(�) if vi andvi+1 are not connected previously. We draw it by making a curve from vi to vi+1 along the curve(vi; wi; wi+1; vi+1) � > 0 distance away from it, inside face f . This does not produce any crossingssince the curve we draw is totally inside face f . Suppose that there is a connected component Hof G(�) which has no connection with G � G(�). In the C-planar drawing D of C, let region Rbe the smallest subregion of R(�) (the region for cluster �) which contains the drawing of H . Let�R be the subregion of R bounded by the the bounding cycle of R and the outer facial cycle of H .Suppose that v is a vertex on the outer facial cycle of H and u is a vertex of G(�) on the boundaryof region R. Any straight line through v must contain a segment (x; y) which is contained in �R,with x on the outer facial cycle of H and y on the boundary of R (see Fig. 5(b)). We add an edge(v; u) to G(�). We draw edge (v; u) in �R in the following manner. First, we draw a curve from v tox along the outer facial cycle of H . Then we continue along the segment (x; y) to point y. Finally,we follow the boundary of R to u. This does not introduce any crossings since this curve is formedall inside region �R. By the operations above, a super-clustered graph C 0(G0; T) of C is obtained,where G0 = (V;E 0); a C-planar drawing of C 0 is formed; and C 0 is a connected clustered graph.Suppose that C is a sub-clustered graph of C 0, where C 0 is connected and C-planar. A C-planar drawing of C can be obtained by restricting a C-planar drawing of C 0 to C. Therefore, C isC-planar. 23 C-planarity TestingIn this section, we describe an e�cient algorithm for testing C-planarity in connected clusteredgraphs.Our algorithm is based on Theorem 1. For a clustered graph C = (G; T), we test whether thereis a planar embedding of G such that for each node � of T , G � G(�) is embedded in the sameface (the outer face) of G(�). We try to embed the subgraph induced by each cluster one by one,5

following a traversal of T from bottom to top. For each node � of T , we test whether G(�) hasany planar embeddings that satisfy the conditions of Theorem 1 for C(�). If we proceed to theroot cluster, and such embeddings exist for the root of T , then the clustered graph is C-planar,otherwise it is not C-planar.3.1 BackgroundWe apply the well known PQ-tree technique [3] in our algorithm. The following is a brief de�nitionof the PQ-tree data structure.The PQ-trees over a set U are trees whose leaves are elements of U and whose internal nodesare distinguished as being either P-nodes or Q-nodes. Reading the leaves of a tree from left to rightyields its frontier. We can make two types of transformations on a PQ-tree:1. arbitrarily permute the children of a P-node;2. reverse the children of a Q-node.By making such transformations on a PQ-tree, its frontiers form a set of permutations of theleaves. We say the structure of a PQ-tree expresses a set of permutations of its leaves.In the PQ-tree planarity testing algorithm, graphs are decomposed into biconnected compo-nents, and each biconnected component is tested for planarity. Each vertex of a biconnectedcomponent is labeled by its st-number and added in the st-number order. The st-numbering iscalculated in the following manner. An st-numbering consists of a biconnected graph G with nvertices and an arbitrary edge (s; t). The vertices of G can be numbered from 1 to n such thatvertex s receives number 1, vertex t receives number n, and every vertex except s and t is adjacentboth to a lower-numbered and a higher-numbered vertex. Vertices s and t are called the sourceand the sink respectively.We need the following lemma to understand the PQ-tree planarity testing algorithm and alsoto show the correctness of our algorithm.Lemma 1 [19] Suppose that a graph G is a biconnected and st-numbered planar graph. LetGk = (Vk; Ek) be the subgraph of G induced by vertices Vk = f1; 2; : : : ; kg, 1 � k � n. If edge (s; t)is drawn on the boundary of the outer face in an embedding of G, then all the vertices and edges ofG�Gk are drawn in the outer face of the plane subgraph Gk of G.Using the notation of the above Lemma, a planar drawing of G with all the vertices and edges ofG�Gk drawn in the outer face of Gk is called a planar st-drawing of G.The PQ-tree planarity testing algorithm maintains a PQ-tree throughout the algorithm. When-ever a vertex vi is added, an appropriate operation (called reduction) on the PQ-tree is made. Aftereach reduction step, the PQ-tree exactly expresses the set of possible permutations of the edgesthat connect to Gk along the outer face of planar st-drawing of Gk.The e�cient implementation of the PQ-tree technique is fully described in [3].We use the concept of virtual edge and virtual vertex in our algorithm. For a graph G(V;E)with subgraph G0(V 0; E 0), those edges with one end in V 0 and the other end in V � V 0 are calledvirtual edges of G0, and those ends of the virtual edges in V � V 0 are called virtual vertices of G0.3.2 A Testing AlgorithmWe test C-planarity based on Theorem 1. We determine whether there is a planar embedding ofG such that for each node � of T , G�G(�) is embedded in the same face (the outer face) of G(�).We try to embed the subgraph induced by each cluster recursively, following a traversal of Tfrom bottom to top. For a node � of T with children �1; : : : ; �d, we test whether G(�) has any6

G(ν)
G (ν)

s

tFigure 6: Illustration of Choosing s and t for Each Clusterplanar embeddings that satisfy the conditions of Theorem 1 for C(�). We �nd such embeddingsfor C(�) by combining the possible embeddings of each child cluster �i which are found recursively.Then we record such embeddings of G(�) for later testing of the parent cluster of �. We constructa representative graph that represents all the possible orderings of edges that are incident to cluster� around the outer face of G(�); then replace G(�) in G with the representative graph. Graph Gis changed every time we process a node of tree T . At the time when the algorithm proceeds tocluster �, planar embeddings of G reect all planar embeddings of the children of � that satisfy theconditions of Theorem 1.At cluster �, we not only test whether G(�) is planar, but also test whether the edges thatare incident to cluster � can be drawn in the outer face of G(�). Therefore, we have to take intoaccount the virtual edges of G(�). We form a graph G0(�) by adding virtual edges to G(�), andapply the PQ-tree planarity testing algorithm to G0(�). We add a vertex on each virtual edge ofG(�) to distinguish them from each other; and let G0(�) be the graph resulted from connecting thevirtual edges of G(�) to a single virtual vertex (see Fig. 6).The PQ-tree algorithm decomposes a graph into biconnected components and tests each of themfor planarity respectively. The following lemma facilitates the application of the PQ-tree algorithmto G0(�).Lemma 2 Suppose that F is a connected subgraph of G. Let F 0 be the graph constructed by addingvirtual edges to F , and connecting each virtual edge to a single virtual vertex. If there are at leasttwo virtual edges in F 0, then all the virtual edges belong to the same biconnected component of F 0.We apply the PQ-tree testing algorithm to G0(�). For the biconnected component B thatcontains the virtual edges, we compute the st-numbering by choosing the single virtual vertex asthe sink and any vertex of G(�) that connects to the virtual vertex as the source. If the planaritytesting on G0(�) returns TRUE, then G0(�) is planar, and by Lemma 1, all the edges incident tocluster � can be drawn in the outer face of G(�). Let TPQ be the nonempty PQ-tree that resultswhen the planarity testing on biconnected component B is completed. The tree TPQ expresses allthe possible orderings of the edges that are incident to cluster of � along the outer face of G(�).We associate TPQ with cluster of �.At each cluster �, we need to determine whether we can combine the planar embeddings of eachof its child cluster �i that satisfy the conditions of Theorem 1 for C(�i) into planar embeddings ofG(�) that satisfy the conditions of Theorem 1 for C(�). For each child cluster �i of cluster �, wereplace G(�i) with a representative graph which is constructed from wheel graphs.A wheel graph consists of a vertex called the hub of the wheel and a cycle called the rim of thewheel, such that the hub is connected to every vertex on the rim. (see Fig. 7). Every face of awheel is a triangle except the face bounded by the rim. We call this face the rim face. If the rim7

hub

rimFigure 7: A \Wheel" Graphface of a wheel graph is drawn as the outer face, then we say the drawing is a canonical drawing ofthe wheel.The following lemma shows that wheel graphs have certain properties that can be exploited inconstruction of representative graphs.Lemma 3 Suppose that G is a planar graph with subgraph F . Let F 0 be the subgraph constructedby adding virtual edges to F . Let F1, F2, : : :, Fk be a collection of wheel subgraphs of F , such thateach wheel graph has a distinguished hub, the hubs only connect to vertices on the corresponding rimin F , and every two wheel graphs have at most one common vertex. If there is a planar drawing Dof F 0 with virtual edges drawn in the outer face of F , then there must also exist a planar drawingD0 of F 0 such that :� The circular ordering of the virtual edges along the outer face of F is preserved.� Every wheel graph Fi is drawn canonically.� F � Fi is drawn in the outer face of Fi.In a PQ-tree, a P-node corresponds to a cut vertex in the graph the PQ-tree represents; aQ-node corresponds to a biconnected component of the graph; and the leaves correspond to thevirtual edges. Given a PQ-tree associated with a graph G, we construct a representative graphGPQ in the following manner. For each Q-node, we construct a wheel graph; for each P-node, weconstruct a vertex which serves as a cut vertex connecting the wheels (see Fig. 8). The constructedGPQ has the following properties:� The ordering of the virtual edges is the same as the ordering of the leaves of the PQ-tree.� Biconnected components in G correspond to wheels in GPQ.� Cut vertices in G correspond to cut vertices in GPQ.� Every vertex in GPQ has its counterpart in G except the vertices constructed as the hubs ofwheels.The algorithm for testing the C-planarity of a connected clustered graph contains a main loop
Figure 8: The Construction of Representative Graphs8

which is a post order traversal of tree T . For each node � of T , we test the planarity of G0(�),construct a representative graph for G(�), and replace G(�) with the representative graph in G.Algorithm 1 CPTInput: a connected clustered graph C = (G; T);Output: a boolean value indicating whether C is C-planar.(1) Use the PQ-tree planarity testing algorithm PT to determine whether G is planar. If G isnot planar, then return FALSE and exit.(2) We proceed on T from bottom to top. For each non-leaf node � of T , perform the following:(2.1) Form graph G0(�) from G(�).Apply the PQ-tree planarity testing algorithm PT to G0(�). For the biconnected compo-nent that contains the virtual edges, choose the single virtual vertex as the sink t; chooseany vertex of G(�) that connects to vertex t as the source to compute st-numbering. LetTPQ be the resulted PQ-tree when the testing of this component is completed.If any biconnected component is non-planar, then return FALSE and exit.(2.2) Construct representative graph G(�)PQ based on TPQ.(2.3) Replace subgraph G(�) in G with G(�)PQ and update G.(3) When we proceed to the root of T , test the planarity of the updated G using algorithm PT.If graph G is not planar then return FALSE otherwise return TRUE. 2The correctness of our algorithm follows immediately from Theorem 1 and Lemmas 1, 2, and 3.It is shown in [3] that for a given graph G with n vertices and m edges, the PQ-tree planaritytesting algorithm requires at most O(n) steps. There are algorithms requiring O(n +m) steps to�nd biconnected components of a graph [1], and to generate st-numbering for each biconnectedcomponent [8]. Note that graph G is updated throughout our algorithm. At node � of T , thevertices in G that serve as hubs of wheels have no connection with the rest of the graph exceptthe vertices on the corresponding rim. Therefore, they do not appear in the updated G when thealgorithm proceeds to the parent node of � in T . Thus, the number of vertices of the updated Gis always O(n) throughout the algorithm, where n is the number of vertices of the input clusteredgraph. Since each of the steps 2.1, 2.2 and 2.3 takes linear time in terms of the size of G0(�) whichis bounded above by O(n), and they are iterated jT j times, step 2 takes O(jT j �n) time in all. Bothof step 1 and step 3 take O(n) time. Hence algorithm CPT takes O(jT j �n) time. We have assumedthat each node in T has at least two children except for leaf nodes. Thus T has at most 2n nodes.Therefore algorithm CPT takes O(n2) time. The following theorem summarizes the performanceof algorithm CPT.Theorem 3 Algorithm CPT tests C-planarity of an n vertex, connected clustered graph C = (G; T)in O(n2) time.3.3 An Embedding AlgorithmIn this section, we show how to extend the C-planarity testing algorithm CPT to a C-planarembedding algorithm CPEmbed. The input to algorithm CPEmbed is a connected clustered graph.The algorithm returns a C-planar embedding if the input clustered graph is C-planar; otherwise,returns an empty embedding. 9

The algorithm PEmbed [4] replaces algorithm PT in our algorithm CPEmbed. The algorithmPEmbed tests the planarity of a graph and �nds a planar embedding if the graph is planar. It usesthe same PQ-tree technique as algorithm PT. If a graph is planar, PEmbed records a partial planarembedding of the graph and returns a PQ-tree associated with each biconnected component of thegraph. By choosing an ordering of the leaves of each PQ-tree that the PQ-tree accepts, togetherwith the partial planar embedding, a complete planar embedding of the graph can be obtained inlinear time [4].In our algorithm CPEmbed, we �nd a circular ordering of the edges incident to each clusterrecursively, following a traversal of tree T from top to bottom. We modify algorithm CPT to CPT'by replacing the primitive PQ-tree planarity testing algorithm PT with algorithm PEmbed. We usea stack S to record the partial embeddings and the PQ-trees obtained by algorithm CPT' at eachnode � of T . Visiting the stack from top to bottom forms a traversal of the inclusion tree T fromtop to bottom.The algorithm CPEmbed is described as follows.Algorithm 2 CPEmbedInput: a connected clustered graph C = (G; T);Output: an C-planar embedding E of C which consistsof a circular ordering of edges incident to eachcluster of C.(1) Perform algorithm CPT' on clustered graph C = (G; T). At node � of T , push the partialplanar embedding and the PQ-tree associated with cluster of � onto a stack S. If CPT'returns FALSE, then return an empty C-planar embedding and exit.(2) E = ;.While S is not empty, perform the following:(2.1) Pop the partial embedding and the PQ-tree from stack S which corresponds to node �of T .Let ORD(�) be the circular ordering of edges incident to cluster � in embedding E .Choose ORD(�) as the ordering of the leaves of the PQ-tree associated with G0(�).Find a complete planar embedding H� of G(�) according to ORD(�) and the partialembedding popped from the stack.(2.2) Call procedure Formalize(H�) (below) to modify H� , such that for each wheel subgraphF of G(�), F is embedded canonically, and the vertices and edges of G�F are embeddedin the outer face (the rim face) of F .(2.3) For each child �i of �, �nd the circular ordering ORD(�i) of the edges incident to cluster�i according to H� ; and let E be E [ORD(�i). 2Procedure Formalize changes a planar embedding of graph G, such that each wheel subgraph Fi isembedded canonically, and G�Fi is embedded in the outer face (the rim face) of Fi. By Lemma 3,this kind of embedding exists. We formalize the embedding of G by moving the part of G � Fiwhich are not embedded in the rim face of Fi to the other side of the rim of Fi. The followingdescription of procedure Formalize completes our description of algorithm CPEmbed.Procedure Formalize(H�)For each wheel subgraph Fi of G(�) updated in CPT':For each vertex x on the rim of the wheel Fi:10

Suppose that h is the hub of the wheel, r1, r2 are the two vertices on the rim adjacentto x, and (h; v1; v2; : : : ; vp; r1; vp+1; : : : ; vq; r2; vq+1; : : : ; vl; h) is the circular order ofthe vertices which connect to x de�ned by H� . We change this circular ordering to(h; r1; v1; v2; : : : ; vp; vp+1; : : : ; vq; vq+1; : : : ; vl; r2; h). 2The correctness of this algorithm follows from the correctness of PEmbed and CPT.To compute the running time of algorithm CPT', we �rst note that algorithm PEmbed takeslinear time (see [4]). Then, by a similar argument as for algorithm CPT, algorithm CPT' takesO(n2) time. Consequently, step 1 of algorithm CPEmbed takes O(n2) time. According to [4], step2.1 takes linear time in terms of the size of G0(�). Step 2.2, and 2.3 also take linear time in termsof the size of G(�). Therefore, step 2 requires time O(n � jT j) = O(n2) in all. Thus, algorithmCPEmbed require O(n2) time. The following theorem summarizes the performance of algorithmCPEmbed.Theorem 4 Algorithm CPEmbed �nds a C-planar embedding of an n vertex, connected clusteredgraph C = (G; T) in O(n2) time.4 Conclusion and Open ProblemsIn this paper, we have introduced a graph model known as clustered graphs and investigated theplanarity of clustered graphs. We have presented an e�cient algorithm for testing C-planarityin connected clustered graphs, and also extend the C-planarity testing algorithm to a C-planarembedding algorithm.Some interesting open problems include:� Can we improve the performance of the proposed algorithms to linear time?� For non-connected clustered graphs, with a given embedding of the underlying graph, howdo we test whether the embedding admits a C-planar drawing?� Can we �nd a polynomial time algorithm that tests C-planarity of non-connected clusteredgraphs, or show that the problem is NP-hard?References[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.Addison-Wesley, Reading, Mass., 1974.[2] Claude Berge. Hypergraphs. North-Holland, 1989.[3] K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs, and graphplanarity using PQ-tree algorithms. Journal of Computer and System Sciences, 13:335{379,1976.[4] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding planar graphsusing PQ-trees. J. of Computer and Sytem Sciences, 30(1):54{76, 1985.[5] M. Consens, A. Mendelzon, and A. Ryman. Visualizing and querying software structures. In14th International Conference on Software Engineering (Melbourne), pages 11 { 15, 1992.[6] H. de Fraysseix and P. Rosenstiehl. A depth-�rst-search characterization of planarity. Annalsof Discrete Mathematics, 13:75{80, 1982. 11

[7] P. Eades, B. McKay, and N. Wormald. On an edge crossing problem. In Proc. 9th AustralianComputer Science Conf., pages 327{334, 1986.[8] S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Computer Science, 2:339{344, 1976.[9] M.R. Garey and D.S. Johnson. Crossing number is NP-complete. SIAM J. Algebraic andDiscrete Methods, 4(3):312{316, 1983.[10] D. Harel. On visual formalisms. Communications of the ACM, 31(5):514{530, 1988.[11] J. Hopcroft and R. E. Tarjan. E�cient planarity testing. Journal of ACM, 21(4):549{568,1974.[12] Silicon Graphics Inc. CASEVision/workshop user's guide. Silicon Graphics Inc, 1992. VolumesI and II.[13] T. Kamada. Visualizing Abstract Objects and Relations. World Scienti�c Series in ComputerScience, 1989.[14] J. Kawakita. The KJ method { a scienti�c approach to problem solving. Technical report,Kawakita Research Institute, Tokyo, 1975.[15] Wei Lai. Building Interactive Digram Applications. PhD thesis, Department of ComputerScience, University of Newcastle, Callaghan, New South Wales, Australia, 2308, June 1993.[16] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs. In Theoryof Graphs, International Symposium (Rome 1966), pages 215{232. Gordon and Breach, NewYork, 1967.[17] K. Misue and K. Sugiyama. An overview of diagram based idea organizer: D-abductor. Tech-nical Report IIAS-RR-93-3E, ISIS, Fujitsu Laboratories, 1993.[18] H.A. Muller. Rigi - A Model for Software System Construction, Integration, and Evalutionbased on Module Interface Speci�cations. PhD thesis, Rice University, 1986.[19] T. Nishizeki and N. Chiba. Planar Graphs: Theory and Algorithms, Annals of Discrete Math-ematics 32. North-Holland, 1988.[20] S. C. North. Drawing ranked digraphs with recursive clusters. preprint, 1993. Software Systemsand Research Center, AT & T Laboratories.[21] K. Sugiyama and K. Misue. Visualization of structural information: Automatic drawing ofcompound digraphs. IEEE Transactions on Systems, Man and Cybernetics, 21(4):876{892,1991.[22] C. Williams, J. Rasure, and C. Hansen. The state of the art of visual languages for visualization.In Visualization 92, pages 202 { 209, 1992.[23] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-Oriented Soft-ware. P T R Prentics Hall, Englewood Cli�s, NJ 07632, 1990.
12

