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publications, e.g. MacLennan 1987, 1990, 1993b, 1997.) For this purpose, a �eldis de�ned to be a spatially continuous arrangement of continuous data. Examplesof �elds include two-dimensional visual images, one-dimensional continuous spectra,two- or three-dimensional spatial maps, as well as ordinary physical �elds, both scalarand vector. A �eld transformation operates in parallel on one or more �elds to yieldan output �eld. Examples include summations (linear superpositions), convolutions,correlations, Laplacians, Fourier transforms and wavelet transforms. Field computa-tion may be nonrecurrent (entirely feed-forward), in which a �eld passes through a�xed series of transformations, or it may be recurrent (including feedback), in whichone or more �elds are iteratively transformed, either continuously or in discrete steps.Finally, in �eld computation, the topology of the �eld (that is, of the space over whichit is extended) is generally signi�cant, either in terms of the information it represents(e.g. the dimensions of the �eld correspond to signi�cant dimensions of the stimulus),or in terms of the permitted interactions (e.g. only local interactions).Field computation is a theoretical model of certain information processing opera-tions and processes that take place in natural and arti�cial systems. As a model, it isuseful for describing some natural systems and for designing some arti�cial systems.The theory may be applied regardless of whether the system is actually discrete orcontinuous in structure, so long as it is approximately continuous. We may make ananalogy to hydrodynamics: although we know that a 
uid is composed of discreteparticles, it is nevertheless worthwhile for most purposes to treat it as a continuum.So also in �eld computation, an array of data may be treated as a �eld so long as thenumber of data elements is su�ciently large to be treated as a continuum, and thequanta by which an element varies are small enough so that it can be treated as acontinuous variable.Physicists sometimes distinguish between structural �elds, which describe phenom-ena that are physically continuous (such as gravitational �elds), and phenomenological�elds, which are approximate descriptions of discontinuous phenomena (e.g. velocity�elds of 
uids). Field computation deals with phenomenological �elds in the sensethat it doesn't matter whether their realizations are spatially discrete or continuous,so long as the continuum limit is a good mathematical approximation to the compu-tational process. Thus, we have a sort of \complementarity principle," which permitsthe computation to be treated as discrete or continuous as convenient to the situation(MacLennan 1993a).Neural computation follows di�erent principles from conventional, digital com-puting. Digital computation functions by long series of high-speed, high-precisiondiscrete operations. The degree of parallelism is quite modest, even in the latest\massively parallel" computers. We may say that conventional computation is deepbut narrow. Neural computation, in contrast, functions by the massively parallel ap-plication of low-speed, low-precision continuous (analog) operations. The sequentiallength of computations is typically short (the \100 Step Rule"), as dictated by thereal-time response requirements of animals. Thus, neural computation is shallow but2



broad. As a consequence of these di�erences we �nd that neural computation typi-cally requires very large numbers of neurons to ful�ll its purpose. In most of thesecases the neural mass is su�ciently large | 15 million neurons/cm2 (Changeux 1985,p. 51) | that it is useful to treat it as a continuum.To achieve by arti�cial intelligence the levels of skillful behavior that we observe inanimals, it is not unreasonable to suppose that we will need a similar computationalarchitecture, comprising very large numbers of comparatively slow, low precision ana-log devices. Our current VLSI technology, which is oriented toward the fabrication ofonly moderately large numbers of precisely-wired, fast, high-precision digital devices,makes the wrong tradeo�s for e�cient, economical neurocomputers; it is unlikely tolead to neurocomputers approximating the 15 million neurons/cm2 density of mam-malian cortex. Fortunately, the brain shows what can be achieved with large num-bers of slow, low-precision analog devices, which are (initially) imprecisely connected.This style of computation opens up new computing technologies, which make di�erenttradeo�s from conventional VLSI. The theory of �eld computation shows us how toexploit relatively homogeneous masses of computational materials (e.g. thin �lms),such as may be produced by chemical manufacturing processes. The theory of �eldcomputation aims to guide our design and use of such radically di�erent computers.2 Overview of Field ComputationA �eld is treated mathematically as a continuous function  over a bounded set 
representing the spatial extent of the �eld. Typically, the value of the function isrestricted to some bounded subset of the real numbers, but complex- and vector-valued �elds are also useful. Thus we may write  : 
! K for a K-valued �eld.We write  (u) or  u for the value of a �eld  at u 2 
. If the �eld is time-varying,we write  (t) for the �eld, and  (u; t) or  u(t) for its value at u 2 
. Further, tostress the connections between �eld computation and quantum mechanics, we maydenote real or complex �elds with Dirac's (1958) bracket notation, j i or j (t)i, asappropriate. With this notation, the value of j i at u is given by the inner producthu j  i, where huj = h�uj is a Dirac delta function (unit impulse) located at u.1Fields are required to be physically realizable, which places restrictions on theallowable functions. I have already mentioned that �elds are continuous functionsover a bounded domain that take their values in a bounded subset of a linear space.Furthermore, it is generally reasonable to assume that �elds are uniformly continuoussquare-integrable (e.g. �nite-energy) functions, k k2 = h j  i < 1, and thereforethat �elds belong to a Hilbert space of functions. Thus Hilbert spaces provide thevocabulary of �eld computation as they do of quantum mechanics. (To stress this1If �;  2 �(
) are �elds of the same type, we use h j  i and h�;  i for the appropriate innerproduct on these �elds. If they are real- or complex-valued, then h� j  i = R
 ��u udu, where ��uis the complex conjugate of �u. If the �elds are vector-valued, then h� j  i = R
 �u �  udu, where�u � u is the ordinary scalar product of the vectors.3



commonality, this paper will follow the notational conventions of quantum mechan-ics.) Nevertheless, not all elements of a Hilbert space are physically realizable, so wewrite �K(
) for the set of all K-valued �elds over 
 (the subscript K is omitted whenclear from context). (See Pribram 1991 and MacLennan 1990, 1993a, 1993b, 1994a,1997 for more on Hilbert spaces as models of continuous knowledge representation inthe brain; see MacLennan 1990 for more on the physical realizability of �elds.)A �eld transformation is any continuous (linear or nonlinear) function that mapsone or more input �elds into one or more output �elds. Since a �eld comprises anuncountable in�nity of points, the elements of a �eld cannot be processed individuallyin a �nite number of discrete steps, but a �eld can be processed sequentially by acontinuous process, which sweeps over the input �eld and generates the correspondingoutput sequentially in �nite time. Normally, however, a �eld transformation operatesin parallel on the entire input �eld and generates all elements of the output at once.One important class of linear �eld transformations are integral operators of Hilbert-Schmidt type, which can be written u = Z
Kuv�vdv (1)where  2 �(
0), � 2 �(
) and K is a �nite energy �eld in �(
0�
). Equation (1)may be abbreviated  = K� or, as is common in quantum mechanics, j i = Kj�i.We also allow multilinear integral operators. If �k 2 �(
k); k = 1; : : : ; n and M 2�(
0�
n� � � ��
2�
1), then  =M�1�2 � � � �n abbreviates u = Z
n � � � Z
2 Z
1 Muvn ���v2v1�1(v1)�2(v2) � � ��n(vn)dv1dv2 � � �dvn:Many useful information processing tasks can be implemented by a compositionof �eld transformations, which feeds the �eld(s) through a �xed series of processingstages. (One might expect sensory systems to be implemented by such feed-forwardprocesses, but in fact we �nd feedback at almost every stage of sensory processing,so they are better treated as recurrent computations, discussed next.)In many cases we are interested in the dynamical properties of �elds: how theychange in time. The changes are usually continuous, de�ned by di�erential equations,but may also proceed by discrete steps. As with the �elds treated in physics, we areoften most interested in dynamics de�ned by local interactions, although nonlocalinteractions are also used in �eld computation (several examples are considered later).For example, Pribram (1991) has discussed a neural wave equation, i� _ = (��22 r2+U) , which is formally identical to the Schr�odinger equation.One reason for dynamic �elds is that the �eld may be converging to some solutionby a recurrent �eld computation; for example, the �eld might be relaxing into themost coherent interpretation of perceptual data, or into an optimal solution of someother problem. Alternately, the time-varying �eld may be used for some kind ofreal-time control, such as motor control (MacLennan 1997).4



An interesting question is whether there can be a universal �eld computer, thatis, a general purpose device (analogous to a universal Turing machine) that can beprogrammed to compute any �eld transformation (in a large, important class of trans-formations, analogous to the Turing-computable functions). In fact, we have shown(Wolpert & MacLennan submitted) that any Turing machine, including a universalTuring machine, can be emulated by a corresponding �eld computer, but this doesnot seem to be the concept of universality that is most relevant to �eld computation.Another notion of universality is provided by an analog of Taylor's theorem for Hilbertspaces. It shows how arbitrary �eld transformations can be approximated by a kindof \�eld polynomial" computed by a series of products between the input �eld and�xed \coe�cient" �elds (MacLennan 1987, 1990). In particular, if F : �(
)! �(
0)is a (possibly nonlinear) �eld transformation, then it can be expanded around a �xed�eld $ 2 �(
) by: F ($ + �) = F ($) + 1Xk=1 Dk�(k)k! ;where Dk�(k) = Dk �� � � � �| {z }k ;and the �elds Dk 2 �(
0�
k) are the kernels of the (both Fr�echet and Gâteaux)derivatives of F evaluated at $, Dk = dkF ($). More generally, nonlinear �eldtransformations can be expanded as \�eld polynomials":F (�) = K0 +K1�+K2�(2) +K3�(3) + � � � :Adaptation and learning can be accomplished by �eld computation versions ofmany of the common neural network learning algorithms, although some are more ap-propriate to �eld computation than others. In particular, a �eld-computation versionof back-propagation is straight-forward, and Peru�s (1996, 1998) has investigated �eld-computation versions of Hop�eld networks. Learning typically operates by computingor modifying \coe�cient �elds" or connection �elds in a computational structure of�xed architecture.3 Field Computation in the BrainThere are a number of processes in the brain that may be described usefully as �eldcomputation. In this section we discuss axonal �elds, dendritic �elds, projection �eldsand synaptic �elds. (There are, however, other possibilities, such as conformational�elds on the surfaces of dendritic microtubules, which we will not discuss.)5



3.1 Axonal FieldsComputational maps are ubiquitous in the brain (Knudsen et al. 1987). For example,there are the well-known maps in somatosensory and motor cortex, in which theneurons form a topological image of the body. There are also the retinotopic mapsin the vision areas, in which locations in the map mirror locations on the retina, aswell as other properties, such as the orientation of edges. Auditory cortex containstonotopic maps, with locations in the map systematically representing frequenciesin the manner of a spectrum. Auditory areas in the bat's brain provide furtherexamples, with systematic representations of Doppler shift and time delay, amongother signi�cant quantities.We may describe a computational map as follows. We are given some abstractspace X, which often represents a class of microfeatures or stimuli (e.g. particularpitches, locations on the surface of the body, oriented edges at particular places in thevisual �eld). If these stimuli or microfeatures are represented spatially over a brainregion 
, then there is a piecewise continuous map � : X ! 
 giving the locationux = �(x) optimally tuned to microfeature value x 2 X. The presence of microfeaturex will typically lead to strong activity at �(x) and lesser activity at surroundinglocations; we may visualize it as an approximate (typically two-dimensional) Gaussiancentered at �(x). In general we will use the notation 
x or j
xi for a localized patternof activity resulting from a stimulus x. When the pattern of activity is especiallysharply de�ned, it may be approximated by �x (also written j�xi or jxi), a Diracdelta-function centered at the location corresponding to x. (We may write 
u or�u when the neural coordinates u = �(x) are more relevant than the microfeaturex 2 X.) The amplitude s of the peak s�x may encode the degree of presence of themicrofeature or stimulus x.In the presence of multiple stimuli, such maps typically represent a superpositionof all the stimuli. For example, if several frequencies are present in a sound, thena tonotopic map will show corresponding peaks of activity. Similarly, if there arepatches of light (or other visual microfeatures, such as oriented grating patches) atmany locations in the visual �eld, then a retinotopic map will have peaks of activitycorresponding to all of these microfeatures. Thus, if features x1; x2; : : : ; xn are allpresent, the corresponding computational map is 
x1 + 
x2 + � � �+ 
xn (possibly withcorresponding scale factors). In this way the form of the stimulus may be representedas a superposition of microfeatures.Computational maps such as these are reasonably treated as �elds, and it is use-ful to treat the information processing in them as �eld computation. Indeed, sincethe cortex is estimated to contain at least 146,000 neurons per square millimeter(Changeux 1985, p. 51), even a square millimeter has su�cient neurons to be treatedas a continuum, and in fact there are computational maps in the brain of this sizeand smaller (Knudsen et al. 1987). Even one tenth of a square millimeter containssu�cient neurons to be treated as a �eld for many purposes. The larger maps aredirectly observable by noninvasive imaging technique, such as fMRI.6
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-1Figure 1: Phase-encoding of Axonal SignalsWe refer to these �elds as axonal �elds, because the �eld's value at each locationcorresponds to the axonal spiking (e.g. rate and/or phase) of the neuron at thatlocation. If only the rate is signi�cant, then it is appropriate to treat the �eld asreal-valued. If both rate and phase are signi�cant (Hop�eld 1995), then it is moreappropriate to treat it as complex-valued.To see this, consider the relation between an axonal signal and a �xed \clocksignal" with period � (Fig. 1). Two pieces of information may be conveyed (e.g. to adendrite upon which both axons synapse). The �rst is the delay �(t) between the clockand the signal (at time t), which is represented by the phase angle �(t) = 2��(t)=� .(Such a delay might result from a di�erence in the integration times of a neuronrepresenting a �xed standard and one encoding some microfeature or other property.)Second, the average impulse rate r(t) may represent pragmatic factors such as theimportance, urgency or con�dence level of the information represented by the phase.(This dual representation of pragmatics and semantics is discussed further below,Section 5.) The two together constitute a time-varying complex-valued signal, whichcan be written as the complex exponential,z(t) = r(t)e2�i�(t)=� = r(t)ei�(t):More generally, if we have multiple signals, then the information may be encoded intheir relative phases, and the clock signal is unnecessary. This is especially the casefor complex-valued axonal �elds, in which the �eld value is represented in the rateand relative phase of the axonal impulses.3.2 Projection FieldsNext we can consider projection �elds (or connection �elds), which are determined bythe patterns of axonal connections between brain regions. Typically they operate onan axonal �eld and, in the process of transmitting it elsewhere in the brain, transformit to yield another axonal �eld. Projection �elds usually correspond to the kernel of7
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Figure 2: Projection Fielda linear operator. To see this, suppose that a bundle of axons projects from region 
to region 
0. For u 2 
0; v 2 
, let Kuv represent the connection to u from v (Fig.2). (Kuv could be a complex number representing the e�ect of the axon on the signal;it is 0 if there is no axon connecting v to u.) Then, the activity  u at destinationu is expressed in terms of the activities �v of source neurons v by  u = R
Kuv�vdv;that is,  = K� or j i = Kj�i. Thus the projection �eld K is a linear operator.Since K 2 �(
0�
), the projection �eld's topology is determined by 
 and 
0,the topologies of the source and destination regions. Projection �elds may be quitelarge (i.e. they are anatomically observable) and change quite slowly (e.g. throughdevelopment); their information processing role is discussed further below.A linear operator (of Hilbert-Schmidt type) can be resolved into a discrete neuralnetwork by methods familiar from quantum mechanics. Let j�ki be the eigen�elds(eigenstates) of a linear operator L with corresponding eigenvalues `k. Since theeigen�elds can be chosen to be orthonormal, an input �eld j�i can be representedby a discrete set of coordinates ck = h�k j �i. (The coordinates are discrete becausethere is no signi�cant topological relationship among them.) Then, j i = Lj�i canbe expanded: j i = Lj�i= LXk j�kih�k j �i= LXk j�kick= Xk Lj�kick= Xk `kj�kick:Only a �nite number of the eigenvalues are greater than any �xed bound, so the8
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Figure 5: Rate Scaling at Axon Terminal10
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ψφ Figure 6: Correlation Fieldis to multiply by a complex exponential, Kuv = suvei�uv , where suv and �uv are real,0 � suv � 1 and 0 � �uv < 2�.Two common kinds of projection �elds are correlation and convolution �elds; ineach of these the destination neurons have identical receptive �eld pro�les. For exam-ple, if the receptive �eld pro�le is approximately Gaussian, then the projection �eldcoarse codes (by Gaussian smoothing) an input represented in a computational map.More precisely, let � and  be input and output �elds de�ned over the same domain
 (i.e., the source and destination regions have the same shape). Each output neuronu has the same receptive �eld pro�le �, de�ned as a �eld over 
, but centered onthe corresponding location u in the input region (Fig. 6).2 The activity of outputneuron u is the sum of the activities of the neurons surrounding input location u, butweighted by the receptive �eld pro�le: u = Z
 ��(r)�(u+ r)dr:(We use the complex conjugate �� to accommodate complex-valued receptive �eldpro�les.) By letting s = u+ r we can see that  is the cross-correlation of � and �: u = Z
 ��(s� u)�(s)dsor  = � ? �. Equivalently, if, as is often the case, the receptive �eld pro�le issymmetric, �(�r) = �(r), we may write  as a convolution: u = Z
 ��(u� s)�(s)dsor  = �
? �. (Convolution is easier to manipulate than correlation, since its proper-ties are more like ordinary multiplication.) The complete projection �eld is given byRus = ��(s� u) so that  = R� or j i = Rj�i.2This presumes that 
 is a linear space (e.g. a two-dimensional Euclidean space), so that itmakes sense to translate the receptive �elds. 11



3.3 Synaptic and Dendritic FieldsA projection �eld typically terminates in a synaptic �eld, which denotes the mass ofsynapses forming the inputs to a group of related neurons. Synaptic �elds representthe interface between a projection �eld and a dendritic �eld (discussed next). Thetopology of a synaptic �eld is determined by the spatial arrangement of the synapsesrelative to the axon terminals and the dendrites that they connect. A synaptic �eld'svalue �u corresponds to the e�cacy of synapse u, which is determined by the numberof receptor sites and similar factors. In the case of synaptic �elds, the transmittedsignal is given by a pointwise product �(u) (u) between the synaptic �eld � and theinput �eld  . Frequently a projection �eld and its synaptic �eld can be treated as asingle linear operator,�u Z
Kuv�vdv = Z
 �uKuv�vdv = Z
 Luv�vdv;where Luv = �uKuv . Synaptic �elds change comparatively slowly under the controlof neurological development and learning (e.g. long-term potentiation).Another place where �eld computation occurs in the brain is in the dendritictrees of neurons (MacLennan 1993a). The tree of a single pyramidal cell may haveseveral hundred thousand inputs, and signals propagate down the tree by passiveelectrical processes (resistive and capacitive). Therefore, the dendritic tree acts as alarge, approximately linear analog �lter operating on the neuron's input �eld, whichmay be signi�cant in dendritic information processing. In this case, the �eld valuesare represented by neurotransmitter concentrations, electrical charges and currentsin the dendritic tree; such �elds are called dendritic �elds. Such a �eld may have acomplicated topology, since it is determined by the morphology of the dendritic treeover which it's spread.Analysis of the dendritic net suggests that the antidromic electrical impulse causedby the �ring of the neuron could trigger a simple adaptive process which would causethe dendritic net to tune itself to be a matched �lter for the recent input pattern(MacLennan 1993a, 1994a).4 Examples of Field Computation4.1 Gabor Wavelets and Coherent StatesDennis Gabor (1946) developed a theory of information by generalizing the Heisenberg-Weyl derivation of the Uncertainty Principle to arbitrary (�nite-energy) signals. Hepresented it in the context of scalar functions of time; I will discuss it more gen-erally (see MacLennan 1991 for further details). Let �(x) be a �eld de�ned overan n-dimensional Euclidean space. We may de�ne the uncertainty along the k-th12
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Figure 7: Minimum Uncertainty in \Gabor Space"dimension by the root mean square deviation of xk (assumed to have 0 mean):�xk = kxk�(x)k = sZ
 ��xx2k�xdx:Likewise, the uncertainty along the k-th conjugate axis is measured by the root meansquare deviation of uk for the Fourier transform �(u) of �(x):�uk = k(uk � �u)�(u)k = sZ
 ��uu2k�udu:As in quantum mechanics, we can show �xk�uk � 1=4� (Fig. 7). The minimumjoint uncertainty �xk�uk = 1=4� is achieved by the Gabor elementary functions,which are Gaussian-modulated complex exponentials and correspond to the coherentstates of quantum mechanics (Fig. 8):Gpu(x) = exp[��kS(x� p)k2] exp[2�iu � (x� p)]:The second, imaginary exponential de�nes a plane wave; the frequency and directionof the wave packet are determined by the wave vector u. The �rst, real exponentialde�nes a Gaussian envelope centered at p, which has a shape determined by thediagonal aspect matrix S = diag(�1; �2; : : : ; �n), which determines the spread in eachvariable and its conjugate, �xk = �k2p� ; �uk = ��1k2p�:13



Figure 8: Gabor Elementary Function (Coherent State). On the left is a (complex-valued) Gabor elementary function of one dimension; on the right is the real part ofa Gabor elementary function of two dimensions.Each Gabor elementary function occupies a cell in 2n-dimensional \Gabor space" ofvolume nYk=1�xk�uk = 1(4�)n :Each of these cells corresponds to an elementary unit of information, which Gaborcalled a logon.Now suppose we have a �eld �(x), �nite in extent and bandwidth in all dimensions;it occupies a bounded region in 2n-dimensional Gabor space. A given choice of�1; �2; : : : ; �n will divide this region into cells of minimumsize. Corresponding to eachcell will be a Gabor elementary function; we may index them arbitrarily Gk(x); k =1; 2; : : : ; N .We may calculate N , the number of cells, as follows. Let Xk be the extent of �along the k-th axis and let Uk be its bandwidth in the k-th conjugate variable. Thenthere are mk = Xk=�xk cells along the k-th axis and nk = Uk=�uk along the k-thconjugate axis. Therefore, the maximum number of cells isN = nYk=1mknk = nYk=1 Xk�xkUk�xk = nYk=1XkUk:That is, the maximum number of logons of information is given by the volume of thesignal in Gabor space.Gabor showed that any �nite-energy function could be represented as a superpo-sition of such elementary functions scaled by complex coe�cients:j�i = NXk=1 ckjGki:However, the Gabor elementary functions are not orthogonal, so the complex coef-�cients are not given by ck = hGk j �i. Nevertheless, for appropriate choices of the14



Gabor multiresolutionFigure 9: Fixed- versus Multiresolution Gabor Cells. In this example the �eld contains15 logons of information.parameters, the Gabor elementary functions constitute a tight frame (MacLennan1991), for which j�i � NXk=1 jGkihGk j �i:The consequence of the foregoing for information theory is that the �eld � hasexactly N independent degrees of freedom, and thus can represent at most N logonsof information (ignoring noise etc.).There is considerable evidence (reviewed in MacLennan 1991; see also Pribram1991) that images in primary visual cortex (V1) are represented in terms of Gaborwavelets, that is, hierarchically arranged, Gaussian-modulated sinusoids. Whereasthe Gabor elementary functions are all of the same shape (determined by S), Gaborwavelets scale �uk with frequency (and �xk inversely with frequency) to maintain aconstant �uk=uk, thus giving a multiresolution representation. (Typically, they arescaled by powers of 2; see Fig. 9.)The Gabor-wavelet transform of a two-dimensional visual �eld generates a four-dimensional �eld: two of the dimensions are spatial, the other two represent spatialfrequency and orientation. To represent this four-dimensional �eld in two-dimensionalcortex, it is necessary to \slice" the �eld, which gives rise to the columns and stripesof striate cortex. The representation is nearly optimal, as de�ned by the GaborUncertainty Principle (Daugman 1984). Time-varying two-dimensional visual im-ages may be viewed as three-dimensional functions of space-time, and it is possi-ble that time-varying images are represented in vision areas by a three-dimensionalGabor-wavelet transform, which generates a time-varying �ve-dimensional �eld (rep-resenting two spatial dimensions, spatial frequency, spatial orientation and temporalfrequency). The e�ect is to represent the \optic 
ow" of images in terms of spatially�xed, oriented grating patches with moving gratings. (See MacLennan 1991 for more15



details.) Finally, Pribram provides evidence that Gabor representations are also usedfor controlling the generation of motor �elds (Pribram & al. 1984, Pribram 1991,pp. 139{144).4.2 Motion in Direction FieldsAnother example of �eld computation in the brain is provided by direction �elds,in which a direction in space is encoded in the activity pattern over a brain region(Georgopoulos 1995). Such a region is characterized by a vector �eld D in which thevector value Du at each neural location u gives the preferred direction encoded by theneuron at that location. The population code � for a direction r is proportional tothe scalar �eld given by the inner product of r at each point of D, that is, �u / r �Du.Typically, it will have a peak at the location corresponding to r and will fall o� asthe cosine of the angle between this vector and the surrounding neurons' preferreddirections, which is precisely what is observed in cortex. (See MacLennan 1997,section 6.2, for a more detailed discussion.)Field computation is used in the brain for modifying direction �elds. For example,a direction �eld representing a remembered location, relative to the retina, must beupdated when the eye moves (Droulez & Berthoz 1991a, 1991b), and the peak of thedirection �eld must move like a particle in a direction determined by the velocityvector of the eye motion. The change in the direction �eld is given by a di�erential�eld equation, in which the change in the value of the direction �eld is given bythe inner product of the eye velocity vector and the gradient of the direction �eld:d�=dt = v � r�. Each component (x and y) of the gradient is approximated by aconvolution between the direction �eld and a \derivative of Gaussian" (DoG) �eld,which is implemented by the DoG shape of the receptive �elds of the neurons. (SeeMacLennan 1997, section 6.3, for a more detailed discussion.)Other examples of �eld computation in motor control include the control of frogleg position by the linear superposition of convergent force �elds generated by spinalneurons (Bizzi & Mussa-Ivaldi 1995), and the computation of convergent vector �elds,de�ning motions to positions in head-centered space, from positions in retina-centeredspace, as represented by products of simple receptive �elds and linear gain �elds(Andersen 1995). (See MacLennan 1997, section 6, for more details.)4.3 Nonlinear Computation in Linear SuperpositionOne kind of �eld transformation, which is very useful and may be quite common inthe brain, is similar to a radial basis function (RBF) neural network (Fig. 10). Theinput �eld � is a computational map, which encodes signi�cant stimulus values bythe location of peak activity within the �eld (similar to the direction �elds alreadydiscussed). The transformation has two stages. The �rst stage is a correlation � =� ? � between the input �eld and a local \basis �eld" � (such as a Gaussian); this16



x

y

φ

χ

ψ

ρ ∗

L

topographic input
representation

RBF transformation
(by correlation)

RBF representation

linear transformation

topographic output
representationFigure 10: Field Computation Analogous to Radial Basis Function Network

17



\coarse codes" the stimulus as a pattern of activity. (We do not require the basis�eld to be strictly radial, �(r) = f(krk), although it commonly is.) This stage isimplemented by a projection �eld to a layer of neurons with identical receptive �eldpro�les given by the basis �eld �. The second stage is a linear transformation L�of the coarse-coded �eld, which yields the output �eld; it is also implemented by asingle layer of neurons. Thus the transformation is given by L(� ? �), where � is theinput, � is the basis �eld, and L is the linear transformation.Now we will carry out the construction in more detail. In an RBF network afunction F : X ! Y is approximated by a linear combination of radial functions ofthe form: F (x) = NXk=1Lkf(kx� xkk):For a given F , the coe�cients Lk, centers xk and radial function f are all �xed. Ithas been shown (Lowe 1991, Moody & Darken 1989, Wettscherick & Dietterich 1992)that simple networks of this form are universal in an important sense, and can adaptthrough a simple learning algorithm.In transferring these ideas to �eld computation, we make three changes. First, as abasis we use functions �(x�xk) which need not be radial, although radial functions areincluded as a special case. Second, we represent the input x 2 X by a computationalmap 
x 2 �(
) or, more ideally, by �x; that is, the input will be encoded by a �eldwith a peak of activity at the location corresponding to the input. Finally, in accordwith the goals of �eld computation, we replace the summation with integration:F (x) = Z
 Lv�(x� xv)dv:There are two parts to this operation, the coarse-coding � of the input by the basisfunctions and the linear transformation of the result.Because, in our continuous formulation, there is a radial function centered at eachpossible location in the input space, the coarse-coded result � is de�ned over the samespace as the input, so we may write �y = �(x � y). However, because the input isencoded by a map �x, the coarse coding can be accomplished by a correlation:�y = �(x� y) = Z
 �(z � y)�x(z)dz;so � = � ? �x.3 The output is then computed as a linear function of the correlation�eld:  = Z
 Ly�ydy = L� = L(� ? �):(Note that the output  is typically a �eld, so that  z = R
 Lzy�ydy.)3This is the sort of projection �eld correlation that we have already discussed. Observe, however,that the computational map � must preserve distances x� y in X. This restriction may be avoidedby using a slightly more complex projection �eld instead of the correlation (MacLennan 1997, 3.3.4).18
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 is de�ned 
(y � x) = 
x(y)(Fig. 12). We may use the identityj
xi = Z
 jyihy j 
xidyto compute the output of the network:j i = L(� ? j
xi)= L�� ? Z
 jyihy j 
xidy�= L Z
 � ? jyihy j 
xidy20



= Z
 L(� ? jyi)hy j 
xidy= Z
 F (y)hy j 
xidy= Z
 F (x+ r)hx + r j 
xidr= Z
 F (x+ r)
(r)dr:Therefore we get a superposition of the outputs F (x+ r) weighted by the strengths
(r) of the deviations r of the input. Alternately, since = Z
 F (y)
x(y)dy;we might write j i = F j
xi, although it must be recalled that F need not be linear.4.4 Di�usion ProcessesDi�usion processes can be implemented by the spreading activation of neurons, andthey can be used for important tasks, such as path planning (Steinbeck & al. 1995)and other kinds of optimization (Miller & al. 1991, Ting & Iltis 1994). In a di�usionprocess the rate of change of a �eld is directly proportional to the Laplacian of the�eld, d =dt / r2 . The Laplacian can be approximated in terms of the convolutionof a Gaussian with the �eld, which is implemented by a simple pattern of connectionswith nearby neurons: d =dt / 
 ?  �  , where 
 is a Gaussian �eld of appropriatedimension. (See MacLennan 1997 for more details.)5 Information FieldsAs previously remarked, Hop�eld (1995) has proposed that in some cases the infor-mation content of a spike train is encoded in the phase of the impulses relative tosome global or local clock, whereas the impulse rate re
ects pragmatic factors, suchas the importance of the information. Phase-encoded �elds of this sort are typicalof the separation of semantics and pragmatics that we �nd in the nervous system.Information is inherently idempotent: repeating a signal does not a�ect its seman-tics, although it may a�ect its reliability, urgency and other pragmatic factors; theidempotency of information was recognized already by Boole in his Laws of Thought.This characteristic of information may be illustrated as follows:YES NOYES NO 21



The horizontal distinction is semantic, the vertical is pragmatic. The information isconveyed by the di�erence of form, `YES' versus `NO'. The di�erence of size maya�ect the urgency, con�dence or strength with which the signal is processed. We maysay that the form of the signal guides the resulting action, whereas its magnitudedetermines the amount of action (Bohm & Hiley 1993, pp. 35{36).Likewise, an information �eld represents by virtue of its form, that is, the relativemagnitude and disposition of its parts; its signi�cance is a holistic property of the�eld. The overall magnitude of the �eld does not contribute to its meaning, but mayre
ect the strength of the signal and thereby in
uence the con�dence or urgency withwhich it is used. Thus a physical �eld  may be factored  = s�, where s = jj jj isits magnitude and � is the (normalized) information �eld, representing its meaning.Information �elds can be identi�ed in the brain wherever we �nd processes thatdepend on the form of a �eld, but not on its absolute magnitude, or where the formis processed di�erently from the magnitude. Information �elds are idempotent, sincerepetition and scaling a�ect the strength but not the form of the �eld: +  = 2 = (2s)�:Therefore entropy is an information property, since it is depends only on the form ofthe �eld, independent of magnitude:S( ) = Z
  uk k log  uk k!du = Z
 �u log �udu = tr(� log �) = S(�):In the foregoing we have been vague about the norm k k we have used. In manycases it will be the familiar L2 norm, k k = ph j  i, but when we are dealing withinformation �elds we should select the norm appropriate to the measure of \action"resulting from the �eld.Information �elds are also central to quantum mechanics. For example, the quan-tum mechanical state j i is considered undetermined with respect to magnitude (e.g.Dirac 1958, p. 17), so zj i is the same state as j i for any (nonzero) complex z.That is, quantum mechanical states are idempotent. Conventionally, the state is nor-malized k k2 = h j  i = 1, so that its square is a probability density function,%x = j xj2.Of course, this independence of magnitude is also characteristic of the quantumpotential, which has led Bohm & Hiley (1993) to characterize this �eld as activeinformation. Thus (following Bohm& Hiley, pp. 28{29), if we write the wave functionin polar form,  x = RxeiSx=�h, then the motion of a single particle is described@Sx@t + (rSx)22m + Vx +Qx = 0;where the quantum potential is de�nedQx = � �h22mr2RxRx :22



Notice that because the Laplacian r2Rx is scaled by Rx, the quantum potentialdepends only on the local form of the wave function. Further, since scaling the wavefunction does not a�ect the quantum potential, Q(z ) = Q( ), we see that thequantum potential depends only on the form of the wave function. As with many�elds in the brain, the strength and form a�ect the action in di�erent ways: theparticle moves under its own energy but the quantum potential controls the energy.6 Discrete Symbols as Field ExcitationsIn quantum �eld theory discrete particles are treated as quantized excitations of the�eld. Similarly, we have seen particle-like motion of direction �elds in the brain (Sec-tion 4.2). Therefore it will be worthwhile to see if �eld computation can illuminatethe emergence of discrete symbols from continuous neurological processes. Althoughtraditional, symbolic arti�cial intelligence takes discrete symbols as givens, under-standing their emergence from continuous �elds may help to explain the 
exibility ofhuman cognition (MacLennan 1994a, 1994b, 1995).Mathematically, atomic symbols have a discrete topology, which means there areonly two possible distances between symbols: 0 if they are the same and 1 if theyare di�erent. This property also characterizes orthonormal �elds (base states), whichmeans that orthonormal �elds are a discrete set. To see this, observe that if w;w0 aredistinct orthonormal �elds, then hw j w0i = 0 and hw j wi = 1. Therefore, we de�nethe discrete metric, d(w;w0) = 12kw � w0k2 = 1.The simplest examples of such orthonormal �elds are localized patterns of activityapproximating Dirac delta functions. Thus distinct symbols w;w0 might be repre-sented by �elds �w; �w0; h�w j �w0i = 0 and h�w j �wi = 1. More realistically we mayhave broader patterns of activity 
w; 
w0 , so long as they are su�ciently separated,h
w j 
w0i � 0. (If this seems to be a very ine�cient way of representing symbols,it is worth recalling that cortical density is approximately 146 thousand neurons persquare millimeter.) Such localized patterns of activity may behave like particles, butthey also may be created or destroyed or exhibit wave-like properties. However, thediscrete topology is not restricted to localized patterns of activity. Nonlocal orthonor-mal �elds �w have exactly the same discrete properties: h�w j �w0i = 0; h�w j �wi = 1.(Such patterns are less easily detected through imaging, however.)Further, wave packets, such as coherent states (Gabor elementary functions), canemerge from the superposition of a number of nonlocal oscillators of similar frequency.(A coherent state results from a Gaussian distribution of frequencies.) The positionof the particle is controlled by the relative phase of the oscillators (recall Section 3.1)and its compactness by the bandwidth of the oscillators. (The frequency of the wavepacket could encode the role �lled by the symbol or establish symbol binding.)The �eld approach allows discrete symbols to be treated as special cases of con-tinuous �eld computation. This illuminates both how discrete symbols may be repre-sented by continuous neural processes and how discrete symbol processing may merge23



with more 
exible analog information processing.7 Field Computing HardwareField computation can, of course, be performed by conventional digital computers orby special-purpose, but conventional digital hardware. However, as noted previously,neural computation and �eld computation are based on very di�erent tradeo�s fromtraditional computation, which creates the opportunity for new computing technolo-gies better suited for neural computation and �eld computation (which is broad butshallow). The ability to use slow, low precision analog devices, imprecisely connected,compensates for the need for very large numbers of computing elements. These char-acteristics suggest optical information transmission and processing, in which �elds arerepresented by optical wavefronts. They also suggest molecular processes, in which�elds are represented by spatial distributions of molecules of di�erent kinds or indi�erent states (e.g. bacteriorhodopsin). Practical �eld computers of this kind willprobably combine optical, molecular and electrical processes for various computingpurposes.For example, Mills (1995) has designed and implementedKirkho� machines, whichoperate by di�usion of charge carriers in bulk silicon. This is a special purpose �eldcomputer which �nds the steady state de�ned by the di�usion equation with givenboundary conditions. Mills has applied it to a number of problems, but its full rangeof application remains to be discovered.Further, Skinner & al. (1995) have explored optical implementations of �eld com-puters corresponding to feed-forward neural nets trained by back-propagation. The�elds are represented in \self-lensing" media, which respond nonlinearly to applied ir-radiance. The concept has been demonstrated by means of both computer simulationand an optical table prototype.To date, much of the work on quantum computing has focused on quantum me-chanical implementation of binary digital computing. However, �eld computationseems to be a more natural model for quantum computation, since it makes betteruse of the full representational potential of the wave function. Indeed, �eld computa-tion is expressed in terms of Hilbert spaces, which also provide the basic vocabularyof quantum mechanics. Therefore, since many �eld computations are described bythe same mathematics as quantum phenomena, we expect that quantum computersmay provide direct, e�cient implementations of these computations. Conversely, themathematics of some quantum-mechanical processes (such as computation in linearsuperposition) can be transferred to classical systems, where they can be implementedwithout resorting to quantum phenomena. This can be called quantum-like comput-ing, and it may be quite important in the brain (Pribram 1991).24
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