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Abstract

We review the concepts of field computation, a model of computation that
processes information represented as spatially continuous arrangements of con-
tinuous data. We show that many processes in the brain are described usefully
as field computation. Throughout we stress the connections between field com-
putation and quantum mechanics, especially including the important role of
information fields, which represent by virtue of their form rather than their
magnitude. We also show that field computation permits simultaneous nonlin-
ear computation in linear superposition.

1 Motivation for Field Computation

In this paper we discuss the applications of field computation to natural and artificial
intelligence. (More detailed discussions of field computation can be found in prior
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publications, e.g. MacLennan 1987, 1990, 1993b, 1997.) For this purpose, a field
is defined to be a spatially continuous arrangement of continuous data. Examples
of fields include two-dimensional visual images, one-dimensional continuous spectra,
two- or three-dimensional spatial maps, as well as ordinary physical fields, both scalar
and vector. A field transformation operates in parallel on one or more fields to yield
an output field. Examples include summations (linear superpositions), convolutions,
correlations, Laplacians, Fourier transforms and wavelet transforms. Field computa-
tion may be nonrecurrent (entirely feed-forward), in which a field passes through a
fixed series of transformations, or it may be recurrent (including feedback), in which
one or more fields are iteratively transformed, either continuously or in discrete steps.
Finally, in field computation, the topology of the field (that is, of the space over which
it is extended) is generally significant, either in terms of the information it represents
(e.g. the dimensions of the field correspond to significant dimensions of the stimulus),
or in terms of the permitted interactions (e.g. only local interactions).

Field computation is a theoretical model of certain information processing opera-
tions and processes that take place in natural and artificial systems. As a model, it is
useful for describing some natural systems and for designing some artificial systems.
The theory may be applied regardless of whether the system is actually discrete or
continuous in structure, so long as it is approximately continuous. We may make an
analogy to hydrodynamics: although we know that a fluid is composed of discrete
particles, it is nevertheless worthwhile for most purposes to treat it as a continuum.
So also in field computation, an array of data may be treated as a field so long as the
number of data elements is sufficiently large to be treated as a continuum, and the
quanta by which an element varies are small enough so that it can be treated as a
continuous variable.

Physicists sometimes distinguish between structural fields, which describe phenom-
ena that are physically continuous (such as gravitational fields), and phenomenological
fields, which are approximate descriptions of discontinuous phenomena (e.g. velocity
fields of fluids). Field computation deals with phenomenological fields in the sense
that it doesn’t matter whether their realizations are spatially discrete or continuous,
so long as the continuum limit is a good mathematical approximation to the compu-
tational process. Thus, we have a sort of “complementarity principle,” which permits
the computation to be treated as discrete or continuous as convenient to the situation
(MacLennan 1993a).

Neural computation follows different principles from conventional, digital com-
puting. Digital computation functions by long series of high-speed, high-precision
discrete operations. The degree of parallelism is quite modest, even in the latest
“massively paralle]” computers. We may say that conventional computation is deep
but narrow. Neural computation, in contrast, functions by the massively parallel ap-
plication of low-speed, low-precision continuous (analog) operations. The sequential
length of computations is typically short (the “100 Step Rule”), as dictated by the
real-time response requirements of animals. Thus, neural computation is shallow but



broad. As a consequence of these differences we find that neural computation typi-
cally requires very large numbers of neurons to fulfill its purpose. In most of these
cases the neural mass is sufficiently large — 15 million neurons/cm? (Changeux 1985,
p. b1) — that it is useful to treat it as a continuum.

To achieve by artificial intelligence the levels of skillful behavior that we observe in
animals, it is not unreasonable to suppose that we will need a similar computational
architecture, comprising very large numbers of comparatively slow, low precision ana-
log devices. Our current VLSI technology, which is oriented toward the fabrication of
only moderately large numbers of precisely-wired, fast, high-precision digital devices,
makes the wrong tradeoffs for efficient, economical neurocomputers; it is unlikely to
lead to neurocomputers approximating the 15 million neurons/cm? density of mam-
malian cortex. Fortunately, the brain shows what can be achieved with large num-
bers of slow, low-precision analog devices, which are (initially) imprecisely connected.
This style of computation opens up new computing technologies, which make different
tradeoffs from conventional VLSI. The theory of field computation shows us how to
exploit relatively homogeneous masses of computational materials (e.g. thin films),
such as may be produced by chemical manufacturing processes. The theory of field
computation aims to guide our design and use of such radically different computers.

2 Overview of Field Computation

A field is treated mathematically as a continuous function ¢ over a bounded set )
representing the spatial extent of the field. Typically, the value of the function is
restricted to some bounded subset of the real numbers, but complex- and vector-
valued fields are also useful. Thus we may write ¢ : Q@ — K for a K-valued field.
We write ¢(u) or ¢, for the value of a field ¢ at u € Q. If the field is time-varying,
we write t(¢) for the field, and t(u,t) or 1,(t) for its value at u € Q. Further, to
stress the connections between field computation and quantum mechanics, we may
denote real or complex fields with Dirac’s (1958) bracket notation, [¢) or |¢(1)), as
appropriate. With this notation, the value of |¢) at u is given by the inner product
(u | ), where (u| = (4,] is a Dirac delta function (unit impulse) located at u.*
Fields are required to be physically realizable, which places restrictions on the
allowable functions. I have already mentioned that fields are continuous functions
over a bounded domain that take their values in a bounded subset of a linear space.
Furthermore, it is generally reasonable to assume that fields are uniformly continuous
square-integrable (e.g. finite-energy) functions, |[¢]|* = (¢ | ¥) < oo, and therefore
that fields belong to a Hilbert space of functions. Thus Hilbert spaces provide the
vocabulary of field computation as they do of quantum mechanics. (To stress this

f ¢, € ®(Q) are fields of the same type, we use (¢ | ¥) and (@, ¢) for the appropriate inner
product on these fields. If they are real- or complex-valued, then (¢ | ¥) = fﬂ ¢y hudu, where ¢
is the complex conjugate of ¢,. If the fields are vector-valued, then (¢ | ¢) = [, ¢y - ¥y du, where
¢y - Py 18 the ordinary scalar product of the vectors.



commonality, this paper will follow the notational conventions of quantum mechan-
ics.) Nevertheless, not all elements of a Hilbert space are physically realizable, so we
write @ (Q) for the set of all K-valued fields over € (the subscript K is omitted when
clear from context). (See Pribram 1991 and MacLennan 1990, 1993a, 1993b, 1994a,
1997 for more on Hilbert spaces as models of continuous knowledge representation in
the brain; see MacLennan 1990 for more on the physical realizability of fields.)

A field transformation is any continuous (linear or nonlinear) function that maps
one or more input fields into one or more output fields. Since a field comprises an
uncountable infinity of points, the elements of a field cannot be processed individually
in a finite number of discrete steps, but a field can be processed sequentially by a
continuous process, which sweeps over the input field and generates the corresponding
output sequentially in finite time. Normally, however, a field transformation operates
in parallel on the entire input field and generates all elements of the output at once.

One important class of linear field transformations are integral operators of Hilbert-
Schmidt type, which can be written

¢u = /Q](uvqbvdv (1)

where ¢ € ®()), ¢ € ®(Q) and K is a finite energy field in ®(Q' X Q). Equation (1)
may be abbreviated ¢» = K¢ or, as is common in quantum mechanics, [¢) = K|¢).
We also allow multilinear integral operators. If ¢, € ®(Qy),k =1,...,n and M €
PO XN, X -+ XQ2XQ), then v = My - - - ¢, abbreviates

= //Q /Q Moo yoy $1.(01)3(v3) - - - (w0 )dvrdvg - - - do.

Many useful information processing tasks can be implemented by a composition
of field transformations, which feeds the field(s) through a fixed series of processing
stages. (One might expect sensory systems to be implemented by such feed-forward
processes, but in fact we find feedback at almost every stage of sensory processing,
so they are better treated as recurrent computations, discussed next.)

In many cases we are interested in the dynamical properties of fields: how they
change in time. The changes are usually continuous, defined by differential equations,
but may also proceed by discrete steps. As with the fields treated in physics, we are
often most interested in dynamics defined by local interactions, although nonlocal
interactions are also used in field computation (several examples are considered later).
For example, Pribram (1991) has discussed a neural wave equation, i = (—§V2 +
U)y , which is formally identical to the Schrodinger equation.

One reason for dynamic fields is that the field may be converging to some solution
by a recurrent field computation; for example, the field might be relaxing into the
most coherent interpretation of perceptual data, or into an optimal solution of some
other problem. Alternately, the time-varying field may be used for some kind of
real-time control, such as motor control (MacLennan 1997).



An interesting question is whether there can be a universal field computer, that
is, a general purpose device (analogous to a universal Turing machine) that can be
programmed to compute any field transformation (in a large, important class of trans-
formations, analogous to the Turing-computable functions). In fact, we have shown
(Wolpert & MaclLennan submitted) that any Turing machine, including a universal
Turing machine, can be emulated by a corresponding field computer, but this does
not seem to be the concept of universality that is most relevant to field computation.
Another notion of universality is provided by an analog of Taylor’s theorem for Hilbert
spaces. It shows how arbitrary field transformations can be approximated by a kind
of “field polynomial” computed by a series of products between the input field and
fixed “coefficient” fields (MacLennan 1987, 1990). In particular, if F': ®(Q) — &(')
is a (possibly nonlinear) field transformation, then it can be expanded around a fixed
field @w € ®(Q) by:
= Dy
kL

Flw+¢) = F(w) +

k=1
where
D™ = Dy o+ -+ ¢,
N——’
k

and the fields Dy, € ®(V'x0) are the kernels of the (both Fréchet and Géteaux)
derivatives of F' evaluated at @, Dy = d*F(w). More generally, nonlinear field
transformations can be expanded as “field polynomials”:

F($) = Ko + K1¢ + K36 + K36 + ...

Adaptation and learning can be accomplished by field computation versions of
many of the common neural network learning algorithms, although some are more ap-
propriate to field computation than others. In particular, a field-computation version
of back-propagation is straight-forward, and Perus (1996, 1998) has investigated field-
computation versions of Hopfield networks. Learning typically operates by computing
or modifying “coefficient fields” or connection fields in a computational structure of
fixed architecture.

3 Field Computation in the Brain

There are a number of processes in the brain that may be described usefully as field
computation. In this section we discuss axonal fields, dendritic fields, projection fields
and synaptic fields. (There are, however, other possibilities, such as conformational
fields on the surfaces of dendritic microtubules, which we will not discuss.)



3.1 Axonal Fields

Computational maps are ubiquitous in the brain (Knudsen et al. 1987). For example,
there are the well-known maps in somatosensory and motor cortex, in which the
neurons form a topological image of the body. There are also the retinotopic maps
in the vision areas, in which locations in the map mirror locations on the retina, as
well as other properties, such as the orientation of edges. Auditory cortex contains
tonotopic maps, with locations in the map systematically representing frequencies
in the manner of a spectrum. Auditory areas in the bat’s brain provide further
examples, with systematic representations of Doppler shift and time delay, among
other significant quantities.

We may describe a computational map as follows. We are given some abstract
space X, which often represents a class of microfeatures or stimuli (e.g. particular
pitches, locations on the surface of the body, oriented edges at particular places in the
visual field). If these stimuli or microfeatures are represented spatially over a brain
region (), then there is a piecewise continuous map p : X — ) giving the location
u; = p(x) optimally tuned to microfeature value @ € X. The presence of microfeature
x will typically lead to strong activity at p(z) and lesser activity at surrounding
locations; we may visualize it as an approximate (typically two-dimensional) Gaussian
centered at u(x). In general we will use the notation v, or |v,) for a localized pattern
of activity resulting from a stimulus . When the pattern of activity is especially
sharply defined, it may be approximated by ¢, (also written |d,) or |)), a Dirac
delta-function centered at the location corresponding to x. (We may write v, or
9, when the neural coordinates u = u(x) are more relevant than the microfeature
x € X.) The amplitude s of the peak sé, may encode the degree of presence of the
microfeature or stimulus .

In the presence of multiple stimuli, such maps typically represent a superposition
of all the stimuli. For example, if several frequencies are present in a sound, then
a tonotopic map will show corresponding peaks of activity. Similarly, if there are
patches of light (or other visual microfeatures, such as oriented grating patches) at
many locations in the visual field, then a retinotopic map will have peaks of activity
corresponding to all of these microfeatures. Thus, if features xy,z9,..., 2, are all
present, the corresponding computational map is v, + Yz, + -+ - + Yz, (possibly with
corresponding scale factors). In this way the form of the stimulus may be represented
as a superposition of microfeatures.

Computational maps such as these are reasonably treated as fields, and it is use-
ful to treat the information processing in them as field computation. Indeed, since
the cortex is estimated to contain at least 146,000 neurons per square millimeter
(Changeux 1985, p. 51), even a square millimeter has sufficient neurons to be treated
as a continuum, and in fact there are computational maps in the brain of this size
and smaller (Knudsen et al. 1987). Even one tenth of a square millimeter contains
sufficient neurons to be treated as a field for many purposes. The larger maps are
directly observable by noninvasive imaging technique, such as fMRI.
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Figure 1: Phase-encoding of Axonal Signals

We refer to these fields as azonal fields, because the field’s value at each location
corresponds to the axonal spiking (e.g. rate and/or phase) of the neuron at that
location. If only the rate is significant, then it is appropriate to treat the field as
real-valued. If both rate and phase are significant (Hopfield 1995), then it is more
appropriate to treat it as complex-valued.

To see this, consider the relation between an axonal signal and a fixed “clock
signal” with period 7 (Fig. 1). Two pieces of information may be conveyed (e.g. to a
dendrite upon which both axons synapse). The first is the delay ¢(¢) between the clock
and the signal (at time ¢), which is represented by the phase angle 0(¢) = 2n¢(t)/.
(Such a delay might result from a difference in the integration times of a neuron
representing a fixed standard and one encoding some microfeature or other property.)
Second, the average impulse rate r(¢) may represent pragmatic factors such as the
importance, urgency or confidence level of the information represented by the phase.
(This dual representation of pragmatics and semantics is discussed further below,
Section 5.) The two together constitute a time-varying complex-valued signal, which
can be written as the complex exponential,

z(t) = r(t)ezmb(t)/T = r(t)ew(t).

More generally, if we have multiple signals, then the information may be encoded in
their relative phases, and the clock signal is unnecessary. This is especially the case
for complex-valued axonal fields, in which the field value is represented in the rate
and relative phase of the axonal impulses.

3.2 Projection Fields

Next we can consider projection fields (or connection fields), which are determined by
the patterns of axonal connections between brain regions. Typically they operate on
an axonal field and, in the process of transmitting it elsewhere in the brain, transform
it to yield another axonal field. Projection fields usually correspond to the kernel of



Figure 2: Projection Field

a linear operator. To see this, suppose that a bundle of axons projects from region 2
to region . For u € ' v € Q, let K, represent the connection to u from v (Fig.
2). (Kyy could be a complex number representing the effect of the axon on the signal;
it is 0 if there is no axon connecting v to u.) Then, the activity ¢, at destination
u is expressed in terms of the activities ¢, of source neurons v by ¥, = [ Ky, ¢,dv;
that is, ¢» = K¢ or |[¢v) = K|$). Thus the projection field K is a linear operator.
Since K € ®(Q'XQ), the projection field’s topology is determined by € and ',
the topologies of the source and destination regions. Projection fields may be quite
large (i.e. they are anatomically observable) and change quite slowly (e.g. through
development); their information processing role is discussed further below.

A linear operator (of Hilbert-Schmidt type) can be resolved into a discrete neural
network by methods familiar from quantum mechanics. Let |ex) be the eigenfields
(eigenstates) of a linear operator L with corresponding eigenvalues (5. Since the
eigenfields can be chosen to be orthonormal, an input field |¢) can be represented
by a discrete set of coordinates ¢; = (€ | ¢). (The coordinates are discrete because
there is no significant topological relationship among them.) Then, [¢) = L|¢) can
be expanded:

) = L)
= sz:|6k><€k|¢>

= LZ|6k>Ck
k
= ZL|6k>Ck
k
= Z£k|6k>ck
k

Only a finite number of the eigenvalues are greater than any fixed bound, so the



Figure 3: Computation of Linear Operator Factored through Eigenfield Basis

operator can be approximated by a finite sum. In the first part of the computation,
the discrete set of coefficient ¢ are computed by a finite number of neurons with
receptive field profiles €. In the second stage, each of these neurons projects its
activity ¢, with a profile (¢, (Fig. 3).

It is not necessary to use the eigenfields of the operator, for we can resolve the
input field into any set of orthonormal base fields |e;) and the output field into any
set of orthonormal base fields |(;). Then,

V)= 1GNG 1) =D 1GNG [ L] ).

But
Llg) =Y Llex){exr | ¢)-

Hence,

¢>:Z|§J Z§]|L|6k (er | @) = Z|CJ (G| L | er)ler | 0).
7 k

Let ¢ = (er | ¢) be the representation of the input and Mz = ((; | L | €) the
representation of the operation. Then d; = ((; | ¢), the representation of the output,
is given by a discrete matrix product d = Mc (Fig. 4). When a linear operator is
factored in this way, it can be computed through a neural space of comparatively low
dimension. Such a representation might be used when the projection field (kernel) of
L would be too dense.

Generally speaking, axons introduce phase delays, but do not affect the amplitudes
or rates of the signals they transmit. Therefore the effect of a projection field can
be described by an imaginary exponential field, K, = e, However, since multiple
impulses are typically required to cause the exocytosis of neurotransmitter from an
axon terminal, the axon terminal has the effect of scaling the impulse rate by a factor

less than 1 (Fig. 5). Therefore, the combined effect of the axon and axon terminal



Figure 4: Computation of Linear Operator Factored through Arbitrary Bases

Figure 5: Rate Scaling at Axon Terminal

10



Figure 6: Correlation Field

0
Wue - where sy, and 8,, are real,

is to multiply by a complex exponential, K., = s,,¢
0<s,<land0<4, <2r.

Two common kinds of projection fields are correlation and convolution fields; in
each of these the destination neurons have identical receptive field profiles. For exam-
ple, if the receptive field profile is approximately Gaussian, then the projection field
coarse codes (by Gaussian smoothing) an input represented in a computational map.

More precisely, let ¢ and ¢ be input and output fields defined over the same domain
Q (i.e., the source and destination regions have the same shape). Each output neuron
u has the same receptive field profile p, defined as a field over €2, but centered on
the corresponding location u in the input region (Fig. 6).2 The activity of output
neuron u is the sum of the activities of the neurons surrounding input location u, but
weighted by the receptive field profile:

vu= [ p()dtu+r)dr.

(We use the complex conjugate p* to accommodate complex-valued receptive field
profiles.) By letting s = u + r we can see that ¢ is the cross-correlation of p and ¢:

= /Q,o*(s —u)p(s)ds

or ¥ = p* ¢. Equivalently, if, as is often the case, the receptive field profile is
symmetric, p(—r) = p(r), we may write ¢ as a convolution:

= /Q,o*(u — s)p(s)ds

or ¢ = pF¢. (Convolution is easier to manipulate than correlation, since its proper-
ties are more like ordinary multiplication.) The complete projection field is given by

Rys = p*(s — u) so that ¢» = R or [¢0) = R|¢).

2This presumes that  is a linear space (e.g. a two-dimensional Euclidean space), so that it
makes sense to translate the receptive fields.
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3.3 Synaptic and Dendritic Fields

A projection field typically terminates in a synaptic field, which denotes the mass of
synapses forming the inputs to a group of related neurons. Synaptic fields represent
the interface between a projection field and a dendritic field (discussed next). The
topology of a synaptic field is determined by the spatial arrangement of the synapses
relative to the axon terminals and the dendrites that they connect. A synaptic field’s
value o, corresponds to the efficacy of synapse u, which is determined by the number
of receptor sites and similar factors. In the case of synaptic fields, the transmitted
signal is given by a pointwise product o(u)i(u) between the synaptic field o and the
input field . Frequently a projection field and its synaptic field can be treated as a
single linear operator,

O'u/ I(uvqbvdvz/o-u[(uvqbvdvz/Luvqbvdvv
Q Q Q

where L,, = 0,K,,. Synaptic fields change comparatively slowly under the control
of neurological development and learning (e.g. long-term potentiation).

Another place where field computation occurs in the brain is in the dendritic
trees of neurons (MacLennan 1993a). The tree of a single pyramidal cell may have
several hundred thousand inputs, and signals propagate down the tree by passive
electrical processes (resistive and capacitive). Therefore, the dendritic tree acts as a
large, approximately linear analog filter operating on the neuron’s input field, which
may be significant in dendritic information processing. In this case, the field values
are represented by neurotransmitter concentrations, electrical charges and currents
in the dendritic tree; such fields are called dendritic fields. Such a field may have a
complicated topology, since it is determined by the morphology of the dendritic tree
over which it’s spread.

Analysis of the dendritic net suggests that the antidromic electrical impulse caused
by the firing of the neuron could trigger a simple adaptive process which would cause
the dendritic net to tune itself to be a matched filter for the recent input pattern
(MacLennan 1993a, 1994a).

4 Examples of Field Computation

4.1 Gabor Wavelets and Coherent States

Dennis Gabor (1946) developed a theory of information by generalizing the Heisenberg-
Weyl derivation of the Uncertainty Principle to arbitrary (finite-energy) signals. He
presented it in the context of scalar functions of time; I will discuss it more gen-
erally (see MacLennan 1991 for further details). Let ¢(x) be a field defined over

an n-dimensional Euclidean space. We may define the uncertainty along the k-th
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Figure 7: Minimum Uncertainty in “Gabor Space”

dimension by the root mean square deviation of ; (assumed to have 0 mean):

Aap = lleso(o)l| =/ [ dxatonax.

Likewise, the uncertainty along the k-th conjugate axis is measured by the root mean
square deviation of uy for the Fourier transform ®(u) of ¢(x):

Aup = ||(ugx — @) ()] = ,//Q O u2dydu.

As in quantum mechanics, we can show AxpAuy, > 1/47 (Fig. 7). The minimum
joint uncertainty AxpAug = 1/47 is achieved by the Gabor elementary functions,
which are Gaussian-modulated complex exponentials and correspond to the coherent
states of quantum mechanics (Fig. 8):

I*

Gpu(x) = exp[—7|[S(x — p)||*] exp[2miu - (x — p)].

The second, imaginary exponential defines a plane wave; the frequency and direction
of the wave packet are determined by the wave vector u. The first, real exponential
defines a Gaussian envelope centered at p, which has a shape determined by the
diagonal aspect matriz S = diag(aq, ag,. .., a,), which determines the spread in each
variable and its conjugate,

ap oz,?l

S ST g

Al‘k =
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Figure 8: Gabor Elementary Function (Coherent State). On the left is a (complex-
valued) Gabor elementary function of one dimension; on the right is the real part of
a Gabor elementary function of two dimensions.

Each Gabor elementary function occupies a cell in 2n-dimensional “Gabor space” of
volume

b
(4m)m

Each of these cells corresponds to an elementary unit of information, which Gabor

H Al’kAuk =

k=1

called a logon.

Now suppose we have a field ¢(x), finite in extent and bandwidth in all dimensions;
it occupies a bounded region in 2n-dimensional Gabor space. A given choice of
a1, Qa,. .., a, will divide this region into cells of minimum ssize. Corresponding to each
cell will be a Gabor elementary function; we may index them arbitrarily Gy (x),k =
1,2,...,N.

We may calculate N, the number of cells, as follows. Let X} be the extent of ¢
along the k-th axis and let Uy be its bandwidth in the k-th conjugate variable. Then
there are my, = X /Auxy cells along the k-th axis and ny = Uj/Auy along the k-th
conjugate axis. Therefore, the maximum number of cells is

n "X, n
N = H mrgnp = H A—UkAxk == H XkUk
k=1 k=1 2Tk k=1
That is, the maximum number of logons of information is given by the volume of the
signal in Gabor space.

Gabor showed that any finite-energy function could be represented as a superpo-

sition of such elementary functions scaled by complex coefficients:

N

19) = ck|Gr).

k=1

However, the Gabor elementary functions are not orthogonal, so the complex coef-
ficients are not given by ¢, = (Gy | ¢). Nevertheless, for appropriate choices of the

14



Gabor multiresolution

Figure 9: Fixed- versus Multiresolution Gabor Cells. In this example the field contains
15 logons of information.

parameters, the Gabor elementary functions constitute a tight frame (MacLennan

1991), for which
N

|6) = D 1Ge)(Gr | ).
k=1

The consequence of the foregoing for information theory is that the field ¢ has
exactly NV independent degrees of freedom, and thus can represent at most N logons
of information (ignoring noise etc.).

There is considerable evidence (reviewed in MacLennan 1991; see also Pribram
1991) that images in primary visual cortex (V1) are represented in terms of Gabor
wavelets, that is, hierarchically arranged, Gaussian-modulated sinusoids. Whereas
the Gabor elementary functions are all of the same shape (determined by 5), Gabor
wavelets scale Auy with frequency (and Az inversely with frequency) to maintain a
constant Awug/ug, thus giving a multiresolution representation. (Typically, they are
scaled by powers of 2; see Fig. 9.)

The Gabor-wavelet transform of a two-dimensional visual field generates a four-
dimensional field: two of the dimensions are spatial, the other two represent spatial
frequency and orientation. To represent this four-dimensional field in two-dimensional
cortex, it is necessary to “slice” the field, which gives rise to the columns and stripes
of striate cortex. The representation is nearly optimal, as defined by the Gabor
Uncertainty Principle (Daugman 1984). Time-varying two-dimensional visual im-
ages may be viewed as three-dimensional functions of space-time, and it is possi-
ble that time-varying images are represented in vision areas by a three-dimensional
Gabor-wavelet transform, which generates a time-varying five-dimensional field (rep-
resenting two spatial dimensions, spatial frequency, spatial orientation and temporal
frequency). The effect is to represent the “optic flow” of images in terms of spatially
fixed, oriented grating patches with moving gratings. (See MacLennan 1991 for more
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details.) Finally, Pribram provides evidence that Gabor representations are also used
for controlling the generation of motor fields (Pribram & al. 1984, Pribram 1991,
pp. 139-144).

4.2 Motion in Direction Fields

Another example of field computation in the brain is provided by direction fields,
in which a direction in space is encoded in the activity pattern over a brain region
(Georgopoulos 1995). Such a region is characterized by a vector field D in which the
vector value D, at each neural location u gives the preferred direction encoded by the
neuron at that location. The population code ¢ for a direction r is proportional to
the scalar field given by the inner product of r at each point of D, that is, ¢, o< r-D,.
Typically, it will have a peak at the location corresponding to r and will fall off as
the cosine of the angle between this vector and the surrounding neurons’ preferred
directions, which is precisely what is observed in cortex. (See MacLennan 1997,
section 6.2, for a more detailed discussion.)

Field computation is used in the brain for modifying direction fields. For example,
a direction field representing a remembered location, relative to the retina, must be
updated when the eye moves (Droulez & Berthoz 1991a, 1991b), and the peak of the
direction field must move like a particle in a direction determined by the velocity
vector of the eye motion. The change in the direction field is given by a differential
field equation, in which the change in the value of the direction field is given by
the inner product of the eye velocity vector and the gradient of the direction field:
d¢/dt = v - V¢. Each component (x and y) of the gradient is approximated by a
convolution between the direction field and a “derivative of Gaussian” (DoG) field,
which is implemented by the DoG shape of the receptive fields of the neurons. (See
MacLennan 1997, section 6.3, for a more detailed discussion.)

Other examples of field computation in motor control include the control of frog
leg position by the linear superposition of convergent force fields generated by spinal
neurons (Bizzi & Mussa-Ivaldi 1995), and the computation of convergent vector fields,
defining motions to positions in head-centered space, from positions in retina-centered
space, as represented by products of simple receptive fields and linear gain fields
(Andersen 1995). (See MacLennan 1997, section 6, for more details.)

4.3 Nonlinear Computation in Linear Superposition

One kind of field transformation, which is very useful and may be quite common in
the brain, is similar to a radial basis function (RBF) neural network (Fig. 10). The
input field ¢ is a computational map, which encodes significant stimulus values by
the location of peak activity within the field (similar to the direction fields already
discussed). The transformation has two stages. The first stage is a correlation y =
p * ¢ between the input field and a local “basis field” p (such as a Gaussian); this
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Figure 10: Field Computation Analogous to Radial Basis Function Network
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“coarse codes” the stimulus as a pattern of activity. (We do not require the basis
field to be strictly radial, p(r) = f(||r]|), although it commonly is.) This stage is
implemented by a projection field to a layer of neurons with identical receptive field
profiles given by the basis field p. The second stage is a linear transformation Ly
of the coarse-coded field, which yields the output field; it is also implemented by a
single layer of neurons. Thus the transformation is given by L(px ¢), where ¢ is the
input, p is the basis field, and L is the linear transformation.

Now we will carry out the construction in more detail. In an RBF network a
function F': X — Y is approximated by a linear combination of radial functions of
the form:

Flz) = kZ_: Lif(lle = zxl)-

For a given F', the coefficients Ly, centers zj and radial function f are all fixed. It
has been shown (Lowe 1991, Moody & Darken 1989, Wettscherick & Dietterich 1992)
that simple networks of this form are universal in an important sense, and can adapt
through a simple learning algorithm.

In transferring these ideas to field computation, we make three changes. First, as a
basis we use functions p(x—x) which need not be radial, although radial functions are
included as a special case. Second, we represent the input € X by a computational
map v, € ®(Q) or, more ideally, by d,; that is, the input will be encoded by a field
with a peak of activity at the location corresponding to the input. Finally, in accord
with the goals of field computation, we replace the summation with integration:

F(x) = /QLU,O(J} — x,)dv.

There are two parts to this operation, the coarse-coding y of the input by the basis
functions and the linear transformation of the result.

Because, in our continuous formulation, there is a radial function centered at each
possible location in the input space, the coarse-coded result y is defined over the same
space as the input, so we may write y, = p(z — y). However, because the input is
encoded by a map d,, the coarse coding can be accomplished by a correlation:

so x = p*d,.> The output is then computed as a linear function of the correlation

field:
U= [ Lydy = Ly = Lipx o).

(Note that the output ¢ is typically a field, so that ¢, = [ L., x,dy.)

3This is the sort of projection field correlation that we have already discussed. Observe, however,
that the computational map ¢ must preserve distances x — y in X. This restriction may be avoided
by using a slightly more complex projection field instead of the correlation (MacLennan 1997, 3.3.4).
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Figure 11: Nonlinear Computation in Linear Superposition

Observe that this transformation is linear in its input field (which does not imply,
however, that F'is a linear function of the stimulus values). Since, if there are several
significant stimuli, the input field will be a superposition of the fields representing the
individual stimuli, the output will likewise be a superposition of the corresponding
individual outputs. Thus this transformation supports a limited kind of parallel
computation in superposition. This is especially useful when the output, like the
input, is a computational map, so we will explain this nonlinear computation in
linear superposition in more detail.

Suppose that the input field is a superposition 6, + .+ of two sharp peaks repre-
senting distinct inputs « and 2’ (Fig. 11). Since the computation is linear we have
Lip*(0:+6x)] = F(a)+ F(2') in spite of the fact that F' need not be linear. Further,
if, as is often the case, ' has been defined to produce a computational map (. for
some (possibly nonlinear) f, then the network computes both (nonlinear) results in
superposition:

Lip* (8 + 001)] = O () + O 5(ar)-
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Figure 12: Fuzzy Computation

Further, due to linearity, if the input maps are weighted by s and s, perhaps reflecting
pragmatic factors, such as the importance of the inputs, then the outputs are similarly
weighted:

L[p‘k (S(Sls + S/(Sl,/)] = Séf(x) + S/(Sf(x’)'

Finally, we can consider the case in which the input is a field ~,, such as a Gaussian,
representing a fuzzy estimate of x. The fuzzy envelope v is defined v(y — ) = v.(y)
(Fig. 12). We may use the identity

) = [ )y | 22)dy

to compute the output of the network:
) = Lip*|r))
= Lo+ [ Iy |2y

= L [ pxly)ly )y
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Lipxy)){y | 7:)dy
W)y | 72)dy

(x4 r){a4r|~)dr

I
S5~ 5

F
F
= /Q F(x+r)y(r)dr.

Therefore we get a superposition of the outputs F'(x 4 r) weighted by the strengths
v(r) of the deviations r of the input. Alternately, since

= /QF(y)%(y)dy,

we might write [¢0) = F|v,), although it must be recalled that F' need not be linear.

4.4 Diffusion Processes

Diffusion processes can be implemented by the spreading activation of neurons, and
they can be used for important tasks, such as path planning (Steinbeck & al. 1995)
and other kinds of optimization (Miller & al. 1991, Ting & Iltis 1994). In a diffusion
process the rate of change of a field is directly proportional to the Laplacian of the
field, d¢p/dt oc V2¢b. The Laplacian can be approximated in terms of the convolution
of a Gaussian with the field, which is implemented by a simple pattern of connections
with nearby neurons: di/dt o< v % ¢ — ¢, where v is a Gaussian field of appropriate
dimension. (See MacLennan 1997 for more details.)

5 Information Fields

As previously remarked, Hopfield (1995) has proposed that in some cases the infor-
mation content of a spike train is encoded in the phase of the impulses relative to
some global or local clock, whereas the impulse rate reflects pragmatic factors, such
as the importance of the information. Phase-encoded fields of this sort are typical
of the separation of semantics and pragmatics that we find in the nervous system.
Information is inherently idempotent: repeating a signal does not affect its seman-
tics, although it may affect its reliability, urgency and other pragmatic factors; the
idempotency of information was recognized already by Boole in his Laws of Thought.
This characteristic of information may be illustrated as follows:

YES NO

YES NO
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The horizontal distinction is semantic, the vertical is pragmatic. The information is
conveyed by the difference of form, ‘YES’ versus ‘NO’. The difference of size may
affect the urgency, confidence or strength with which the signal is processed. We may
say that the form of the signal guides the resulting action, whereas its magnitude
determines the amount of action (Bohm & Hiley 1993, pp. 35-36).

Likewise, an information field represents by virtue of its form, that is, the relative
magnitude and disposition of its parts; its significance is a holistic property of the
field. The overall magnitude of the field does not contribute to its meaning, but may
reflect the strength of the signal and thereby influence the confidence or urgency with
which it is used. Thus a physical field ¢» may be factored @) = sv, where s = |[1)]] is
its magnitude and v is the (normalized) information field, representing its meaning.
Information fields can be identified in the brain wherever we find processes that
depend on the form of a field, but not on its absolute magnitude, or where the form
is processed differently from the magnitude. Information fields are idempotent, since
repetition and scaling affect the strength but not the form of the field:

4 =2 = (2s)v.

Therefore entropy is an information property, since it is depends only on the form of
the field, independent of magnitude:

S(yp) = ; ’;Z)uH log (’@u”) du = /Ql/u log v, du = tr(vlogr) = S(v).

In the foregoing we have been vague about the norm ||¢|| we have used. In many
cases it will be the familiar Ly norm, ||| = /(¢ | ¥), but when we are dealing with
information fields we should select the norm appropriate to the measure of “action”
resulting from the field.

Information fields are also central to quantum mechanics. For example, the quan-
tum mechanical state [¢) is considered undetermined with respect to magnitude (e.g.
Dirac 1958, p. 17), so z|i) is the same state as |¢) for any (nonzero) complex z.
That is, quantum mechanical states are idempotent. Conventionally, the state is nor-
malized ||¢]|? = (¢ | ) = 1, so that its square is a probability density function,
0r = ||

Of course, this independence of magnitude is also characteristic of the quantum
potential, which has led Bohm & Hiley (1993) to characterize this field as active
information. Thus (following Bohm & Hiley, pp. 28-29), if we write the wave function
in polar form, 1, = R,e*>*/" then the motion of a single particle is described

05, (VS,)?
‘/x r = 07
ot + 2m Vet @
where the quantum potential is defined
R V2R,
Qu =~ M
2m R,
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Notice that because the Laplacian V2R, is scaled by R,, the quantum potential
depends only on the local form of the wave function. Further, since scaling the wave
function does not affect the quantum potential, Q(z¢) = Q(v), we see that the
quantum potential depends only on the form of the wave function. As with many
fields in the brain, the strength and form affect the action in different ways: the
particle moves under its own energy but the quantum potential controls the energy.

6 Discrete Symbols as Field Excitations

In quantum field theory discrete particles are treated as quantized excitations of the
field. Similarly, we have seen particle-like motion of direction fields in the brain (Sec-
tion 4.2). Therefore it will be worthwhile to see if field computation can illuminate
the emergence of discrete symbols from continuous neurological processes. Although
traditional, symbolic artificial intelligence takes discrete symbols as givens, under-
standing their emergence from continuous fields may help to explain the flexibility of
human cognition (MacLennan 1994a, 1994b, 1995).

Mathematically, atomic symbols have a discrete topology, which means there are
only two possible distances between symbols: 0 if they are the same and 1 if they
are different. This property also characterizes orthonormal fields (base states), which
means that orthonormal fields are a discrete set. To see this, observe that if w, w’ are
distinct orthonormal fields, then (w | w') = 0 and (w | w) = 1. Therefore, we define
the discrete metric, d(w,w’) = $|lw — w'||* = 1.

The simplest examples of such orthonormal fields are localized patterns of activity
approximating Dirac delta functions. Thus distinct symbols w,w" might be repre-
sented by fields ., 0,5 (0 | dur) = 0 and (d,, | d,,) = 1. More realistically we may
have broader patterns of activity 7, Y., so long as they are sufficiently separated,
(Vw | ) & 0. (If this seems to be a very inefficient way of representing symbols,
it is worth recalling that cortical density is approximately 146 thousand neurons per
square millimeter.) Such localized patterns of activity may behave like particles, but
they also may be created or destroyed or exhibit wave-like properties. However, the
discrete topology is not restricted to localized patterns of activity. Nonlocal orthonor-
mal fields v,, have exactly the same discrete properties: (v, | vy) = 0,(vy | VW) = 1.
(Such patterns are less easily detected through imaging, however.)

Further, wave packets, such as coherent states (Gabor elementary functions), can
emerge from the superposition of a number of nonlocal oscillators of similar frequency.
(A coherent state results from a Gaussian distribution of frequencies.) The position
of the particle is controlled by the relative phase of the oscillators (recall Section 3.1)
and its compactness by the bandwidth of the oscillators. (The frequency of the wave
packet could encode the role filled by the symbol or establish symbol binding.)

The field approach allows discrete symbols to be treated as special cases of con-
tinuous field computation. This illuminates both how discrete symbols may be repre-
sented by continuous neural processes and how discrete symbol processing may merge
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with more flexible analog information processing.

7 Field Computing Hardware

Field computation can, of course, be performed by conventional digital computers or
by special-purpose, but conventional digital hardware. However, as noted previously,
neural computation and field computation are based on very different tradeoffs from
traditional computation, which creates the opportunity for new computing technolo-
gies better suited for neural computation and field computation (which is broad but
shallow). The ability to use slow, low precision analog devices, imprecisely connected,
compensates for the need for very large numbers of computing elements. These char-
acteristics suggest optical information transmission and processing, in which fields are
represented by optical wavefronts. They also suggest molecular processes, in which
fields are represented by spatial distributions of molecules of different kinds or in
different states (e.g. bacteriorhodopsin). Practical field computers of this kind will
probably combine optical, molecular and electrical processes for various computing
purposes.

For example, Mills (1995) has designed and implemented Kirkhoff machines, which
operate by diffusion of charge carriers in bulk silicon. This is a special purpose field
computer which finds the steady state defined by the diffusion equation with given
boundary conditions. Mills has applied it to a number of problems, but its full range
of application remains to be discovered.

Further, Skinner & al. (1995) have explored optical implementations of field com-
puters corresponding to feed-forward neural nets trained by back-propagation. The
fields are represented in “self-lensing” media, which respond nonlinearly to applied ir-
radiance. The concept has been demonstrated by means of both computer simulation
and an optical table prototype.

To date, much of the work on quantum computing has focused on quantum me-
chanical implementation of binary digital computing. However, field computation
seems to be a more natural model for quantum computation, since it makes better
use of the full representational potential of the wave function. Indeed, field computa-
tion is expressed in terms of Hilbert spaces, which also provide the basic vocabulary
of quantum mechanics. Therefore, since many field computations are described by
the same mathematics as quantum phenomena, we expect that quantum computers
may provide direct, efficient implementations of these computations. Conversely, the
mathematics of some quantum-mechanical processes (such as computation in linear
superposition) can be transferred to classical systems, where they can be implemented
without resorting to quantum phenomena. This can be called quantum-like comput-
ing, and it may be quite important in the brain (Pribram 1991).
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8 Concluding Remarks

In this article I have attempted to provide a brief overview of field computation, pre-
senting it as a model of massively parallel analog computation, which can be applied
to natural intelligence, implemented by brains, as well as to artificial intelligence,
implemented by suitable field computers. Along the way we have seen many parallels
with quantum mechanics, so each may illuminate the other. In particular, we have
seen that (1) field computation takes parallel computation to the continuum limit, (2)
much information processing in the brain is usefully described as field computation,
(3) the mathematics of field computation has much in common with the mathematics
of quantum mechanics, (4) computational maps permit nonlinear computation in lin-
ear superposition, and (5) information fields are important in both neurocomputation
and quantum mechanics. It is my hope that this overview of field computation will
entice the reader to look at the more detailed presentations listed in the references
and perhaps to explore the field computation perspective.
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