
Computers, reasoning and mathematicalpractice ?Ursula Martinum@dcs.st-and.ac.ukUniversity of St AndrewsComputer aided formal reasoning, mathematical assistants which check com-plex arguments and automated proofs of new and interesting mathematical res-ults have been part of the dream of computational logic for many years. Thisdream is in part being realised by the success of endeavours such as the Mizarproject [110], which has produced many volumes of formalised mathematics,and McCune's recent proof of the Robbins conjecture [79], cited, along withautonomous vehicle guidance and the chess program Deep Blue, as one of the�ve most signi�cant achievements of arti�cial intelligence [114]. Yet it is stillthe case that few mathematicians use such programs, and their impact outsidecertain specialised communities has been less than might have been hoped.The main impact of computation on mathematics has been through experi-ment and computations used as part of a traditional mathematical proof: tech-niques such as numerical computation, visualisation of complex topological sur-faces, the specialised algorithms used in the classi�cation of �nite simple groupsor the use of computers to perform case analyses such as in the proof of the fourcolour theorem. In addition general tools such as computer algebra systems andsoftware for mathematical typesetting and teaching are used very widely.Indeed this widespread use of computation for experimental work has leadto new journals such as Experimental Mathematics and claims from some thatthe nature of mathematics is being fundamentally changed with a paradigmshift from rigour to \semi-rigorous" or \speculative work". Most mathematicianswould question these claims: the discipline of proof remains unchanged and com-putation has attracted attention where it has been used precisely because thisis unusual. In the major achievements of 20th century mathematics, such as therecent proof of Fermat's theorem or the developments in topology and geometry,the role of computation has been slight. In the case of the classi�cation of �nitesimple groups, some were constructed computationally but could then be invest-igated theoretically, and the 5000 pages or so of the classi�cation theorem is,essentially, a hand proof that there are no others. Computation has transformedbiology, chemistry, neuroscience and physics: without computational mathemat-ics we would have no Mars path�nder robot, no human genome project and noCAT scans. We might still have the proof of Fermat's theorem.Nevertheless computational techniques are becoming increasingly importantin some areas of mathematics, and it is our purpose here to examine the oppor-tunities they create for computational logic research. We �rst analyse current? To appear, Computational Logic, (Marktoberdorf, 1997), NATO Adv. Sci. Inst. Ser.F Comput. Systems Sci., Springer, Berlin, 1998, ed H Schwichtenberg

mathematical practice, which we identify with producing conjectural mathem-atical knowledge by means of speculation, heuristic arguments, examples andexperiments, which may then be con�rmed as theorems by producing proofs inaccordance with a community standard of rigour, which may be read by thecommunity in a variety of ways. The goal may be individual theorems, suchas Fermat's conjecture, or more general bodies of knowledge such as topologyand geometry, addressing the structure of surfaces. We note that while notionsof rigour and quality (what makes a good proof) may have changed, practiceitself has remained remarkably robust over the centuries. We observe that com-putation has proved important for speculation and experiment in several areas,and that, despite vigorous debate over matters such as the four colour theorem,computation, particularly well understood domain speci�c algorithms, is regu-larly accepted as part of a proof. As with acceptance of other kinds of proof,community acceptance of the computation is often governed by matters such asthe perceived competence of the software developer or the public availability ofthe sources rather than line by line veri�cation of the code.We then consider computer aided reasoning, an academic endeavour that hasgrown up largely independently of research mathematics, and assess its applic-ation to research mathematics in the light of our description of practice. Weconsider two strands: automated proof by techniques such as resolution, and fullformal development of large bodies of mathematics. We argue that the formeris indeed useful for proving new theorems, somewhat comparable to domainspeci�c algorithms in its relation to practice, and should be regarded as a use-ful technique best pursued in collaboration with those mathematicians who canmake use of it. However the latter is at odds with mathematical practice: manymathematicians view formal proof development unsympathetically and it is hardto see it being incorporated except in expensive reworkings of well-understoodmaterial.In the light of the previous analysis we identify three main objectives forcomputer aided reasoning: enhancing the techniques available for mathematicalexperimentation, developing community standards for experiment and modellingand developing methods which will make computation more acceptable as partof a proof. We discuss three areas of research which address these: the use of the-orem proving techniques to enhance or extend mathematical software systems,support for formalmethods techniques to increase the reliability of such systems,and the use of computer aided formal reasoning in support of mathematical prac-tice. This last includes activities such as formalising systems for computationalmathematics or visualisation so that they can still be used informally but gen-erate a formal development, and developing techniques to provide assistance inthe initial stages of developing a new theory.By mathematics here we mean the activities of working research mathem-aticians, producing new results in pure or applied mathematics, although wetouch briey on some questions concerning the applications of computationalmathematics and simulation in research science and engineering. We have leftout several other related areas entirely: logical questions of decidability, sound-2

ness or completeness, theoretical computer science issues of semantics, comput-ability or complexity, foundational issues such as constructivity, computer aidedproofs about software and hardware, and the use of computers in mathemat-ical education at all levels and in heuristic discovery. In particular foundationalquestions about computation have transformed mathematical logic, computa-tion has made constructive proof feasible, and e�ective notions of practice forproofs about hardware and software are by no means well understood. Howeverthese matters fall outside the scope of this paper.1 Some twentieth century mathematical achievementsTo set the scene we provide the roughest of outlines of some recent mathem-atical achievements. Research mathematics is di�cult and requires specialisedknowledge: a precise statement of most of the theorems indicated below requiresconcepts treated at the graduate level of mathematical education: a full under-standing of the proofs is probably restricted, when they �rst appear, to a handfulof experts.1.1 Geometry, number theory and Fermat's theoremFermat conjectured in 1637 that the equationxn + yn = znhas no positive integer solution if n is an integer greater than 2, famously sug-gesting that he had a proof which the margin was too small to contain. In thenineteenth century mathematicians such as Hilbert developed number theory, al-gebraic geometry, Galois theory and the theory of ideals, investigating equations(i.e. curves and surfaces) in zero and non-zero characteristic by investigating thealgebraic structure and symmetries of the �elds generated by their solutions.Twentieth century mathematics, particularly the development by Grothen-dieck and his school of commutative algebra and cohomology, provided a unifyingframework for topology, di�erential geometry and algebraic geometry, replacingcomputations in speci�c curves or surfaces with very general homological andcategorical machinery. This enabled the translation of results from number the-ory into function �elds and led to a stream of extremely signi�cant results, suchas Deligne's proof of an analogue of the Riemann Hypothesis for certain vari-eties, and Falting's proof of Fermat's conjecture for all but �nitely many cases.Fermat's conjecture, in this terminology, concerns the Galois theory of certainelliptic curves. The Shimura-Taniyama conjecture asserted a link between mod-ular forms and elliptic curves, and it was Wiles's proof of certain cases of thisin 1992 (and subsequent corrections) that gave the proof of Fermat's theorem.See Wiles [118], and Singh [100] for an attempt at a popular account. Wiles'sproof draws on a vast and continuing body of di�cult mathematical material,developed over two centuries. 3

1.2 The classi�cation of �nite simple groupsA set of elements closed under a binary associative operation and inversionforms a group (for example the integers modulo n under addition, or the sym-metries of a cube under composition): a group with no proper quotient groupsis called simple (for example the integers modulo a prime). Groups derived fromsymmetries and equations were studied by Lagrange and Galois: by 1960 or somathematicians were aware of 16 in�nite families of �nite simple groups, and5 isolated \sporadic" simple groups discovered by Mathieu in the last century.By 1980 a further 21 sporadic groups had been predicted and then construc-ted, often by using a computer to search for certain matrices over �nite �elds:the largest, the \monster" has around 1054 elements. The classi�cation theoremstates that there are no other �nite simple groups.Little was known until mid-century about general �nite simple groups. In1954 Richard Brauer suggested a strategy for classifying simple groups of evenorder: Burnside had conjectured 50 years before that all �nite non-commutativesimple groups had even order. Feit and Thompson proved Burnside's conjecturein 1963 (in a 254 page paper) and in 1972 Gorenstein drew up a sixteen pointplan based on Brauer's ideas to prove the classi�cation theorem, executed by1983 by his coworkers in around �ve thousand journal pages. Solomon [104]observes that the output \simply overwhelmed the digestive system of the grouptheory community", and he remarks that a key unpublished eight hundred pagepaper by Mason, in which several errors were found and corrected in 1992 \isan extreme point on the spectrum of incompletely assimilated manuscripts fromthe later years of the classi�cation".Such concerns have led to the revision project, planned to appear in twelvevolumes, some of which are now complete. The classi�cation theorem has stim-ulated new areas of research: perhaps one of the most intriguing, a�ectionatelycalled \moonshine" by the experts, is John McKay's observation that the num-ber 196883, an invariant of the monster is also associated to a certain modularform. The consequence of this is a connection between this extraordinary com-binatorial object and deep results in number theory and quantum �eld theory.See Solomon's survey [104] for more details.1.3 Dynamical systemsNon-linear dynamical systems, in the guise of \chaos theory" accompanied byfractal images, have become a popular metaphor, although literary theoristswho equate chaos theory and post-modernism do not inspire con�dence thatthey have entirely understood the underlying mathematical concepts.Around one hundred years ago Poincar�e proved that in two dimensions \typ-ical" dynamical systems, for example objects in motion governed by di�erentialequations, have \essentially" two kinds of limitingbehaviour or attractors : eitherthey stop (like rocks or footballs) or they settle down into periodic motion (likethe planets or the tides). The words \typical" and \essential" here hide someelaborate topology and di�erential geometry. In three and higher dimensions4

however a third kind of attractor, the \strange attractor" appears. This is char-acterised by two things: we know that the particle settles down in a certainregion, generally a particularly complicated one topologically, and we cannotpredict its trajectory within that region, where it is subject to \extreme sensit-ivity to initial condition". This phenomenon was identi�ed by Poincar�e: it meansthat very small changes in the initial conditions can have very large e�ects onthe outcome, so that we would have to know the initial position of the particleexactly to predict it. The asteroid belt between Mars and Jupiter appears toexhibit such chaotic phenomena: claims about for example, the stock market,are rather harder to verify.Despite the popular attention \chaos theory" has not a�ected numerical com-putation as much as one might suppose, except to give a greater appreciationof the di�culties of things like long range weather forecasting. One reason forthis is that as yet we have nothing like a classi�cation of strange attractors, onlyan ever growing catalogue of examples which it would be very hard to studywithout the aid of computational simulations and investigations. See Stewart[105] for more details.1.4 The four colour theoremIn 1852 the British mathematician Francis Guthrie conjectured that any mapcould be coloured with four colours: the aw in a proof by Kempe in 1879remained undiscovered for 11 years and then the problem remained unsolveduntil Appel and Haken [2] announced their computer proof in 1976. The mainidea of the proof was to identify a set of 1478 con�gurations and show that eachthese occurred in a minimal counterexample (this was a mammoth hand proof)and then to use a computer to check that in fact none of these con�gurations didappear in a minimal counterexample. Robertson and Seymour [92], motivated bythe di�culty of understanding the hand part of the proof, have recently provideda new proof reducing the number of con�gurations to 633, providing a machinecheckable formalisation of the hand part of the proof and a new implementationfor the machine checked part. As yet no hand proof has been found, althoughthe 5 colour case is very easy. There is an admirable account of the history of theproof and the debate it generated in Mackenzie's survey \Slaying the Kraken"[76].This work is a little isolated from other areas of contemporary mathematics,and is more accessible to non-experts than the rest of the material we havedescribed above. However once we start to consider not just maps, that is graphsdrawn in the plane, but graphs drawn on more elaborate surfaces we come uponadvanced matters in geometry and topology. For example any map on a spherewith n handles (think of a doughnut with n holes) can be coloured with b7 +p(48n+ 1)c colours. 5

2 What is mathematical practice?In assessing the impact of computation on mathematical practice it is as well �rstto ask what mathematical practice is. After a hint at the philosophical issues weconcentrate on �ve aspects of the question which are important for the discussionof the role of computation: proof, rigour, taste, discovery and exposition. We willidentify mathematical practice withproducing conjectural mathematical knowledge by means of speculation,heuristic arguments, examples and experiments, which may then be con-�rmed as theorems by producing proofs in accordance with a communitystandard of rigour, which may be read by the community in a variety ofways.Mathematics is about developing concepts, de�nitions, theories, methods andconjectures, as well as verifying some of those conjectures by proving theorems.Mathematicians' understanding of this, and the way in which they go aboutit, has remained remarkably unchanged over several centuries, despite debatesabout foundation or the advent of computation. While notions of, for example,acceptable standards of rigour, have changed over time, the general notion ofmathematical practice has not. For Littlewood, a mathematician at Trinity Col-lege in Cambridge in mid-century, the Greek mathematicians \are not cleverschoolboys or `scholarship candidates', but `Fellows of another college'." Majorareas of mathematics such as topology, algebra or number theory have developedcontinuously and cumulatively over several centuries. Lakatos in his book Proofsand Refutations gives a detailed account of the history of Euler's theorem aboutpolyhedra that covers a hundred and �fty years of mathematical history: anaccount of other �elds would reveal the same pattern.While a hundred years ago Poincar�e or Hilbert could comprehend all that wassigni�cant in mathematics it is hard nowadays for someone to be an expert inmore than one �eld. Talking about mathematicians as one community is a littlelike talking about Europeans or sports players as one community: mathematicsis rather split into a number of disparate tight communities, so that for examplean active group theorist anywhere in the world might receive almost daily emailfrom the \group-pub" email list, while having no technical contact beyond anoccasional chat in the tea-room based on common knowledge of master's levelmaterial with the analyst in the o�ce across the hall. Indeed, it is very unusualto �nd a modern research paper that can be read from scratch by a researchmathematician from a di�erent �eld: the overhead of implicit knowledge anddependence on earlier work is just too great. Technical mathematics is extremelydi�cult, and little shame attaches to saying that one doesn't understand morethan a fraction of the published papers even in one's own �eld.2.1 A few philosophical pointersWhat is mathematical practice? Is its purpose to prove theorems, or more gener-ally to advance mathematical understanding or mathematical knowledge? Does6

mathematical achievement consist in the proof of particular theorems, like Fer-mat's theorem , or rather in the development of the underlying theories, likenumber theory. Indeed, what is \mathematics", \mathematical understanding"or \mathematical knowledge"? A full answer to this question involves not justFrege and G�odel but also Aristotle and Kant, and awaits the resolution of sev-eral millennia of debate in the philosophy and foundations of mathematics andscience.Science provides the best accredited knowledge we have of the world, yetwhat is the connection of theories and models to reality? How do we accountfor what Wigner has called the \unreasonable e�ectiveness of mathematics inthe natural sciences"? What is going on when we test or compare our theoriesand models through experiment or simulation: are we dealing with Kuhnianparadigm shifts, Popperian theory change or Mertonian social construction? Iswhat we are doing just empirical (it's true because it works) or cultural (it'strue because we have agreed it is) ? Or is there some more fundamental notionof truth involved?Philosophies of mathematics are sometimes characterised as `empiricism',`formalism', `intuitionism' and `Platonism'. Other philosophical accounts whichattempt to combine Platonism and empiricism, looking at mathematical practiceas well as questions of foundation, can be found in the `humanism' of Hersh [50]or the `realism' of Kitcher [63]. Russell caricatured mathematics as \the sciencein which we never know what we are talking about or if what we are sayingis true": yet a view of mathematics as only a formal game with symbols andaxioms seems to ignore the notion of meaning. Simpson suggests [99] that \mostmathematicians and mathematical logicians lean toward an uneasy mixture offormalism and Platonism". Some axiom systems are more interesting and usefulthan others: they are arrived at initially by trying to capture objects that seemto be \out there", like equations or groups or strange attractors, and seem tomodel some kind of reality, even if as a theory becomes more developed theguiding intuitions may become hard to pick out from the technical details.It is probably not unfair to say that this debate, particularly those aspectsconcerned with epistemology (what is mathematical knowledge) rather thanmethodology or practice, is viewed with detachment by most mathematicianstoday. Typically mathematicians spend rather little time thinking about found-ations, may well have read little mathematical philosophy, have no training informal logic beyond informal accounts of the Peano Axioms, quanti�ers and thework of G�odel and Turing, and be unaware of non-classical logic. This is incontrast to the early part of the century, when leading mathematicians such asHilbert and Poincar�e were actively engaged in foundational matters.2.2 Proof in mathematical practiceThe cartoon vision of a mathematician is of a dishevelled individual suitablyarmed with paper, pencils, and ca�eine whose sole occupation is that of produ-cing rigorous chains of formal deduction along the lines of Principia Mathemat-ica. The truth is perhaps closer to the leading geometer Thurston's description of7

current practice [109]: \Within any �eld there are certain theorems and certaintechniques that are generally known and generally accepted. When you write apaper you refer to these without proof. You look at other papers in the �eld,and you see what facts they quote without proof, and what they cite in theirbibliography. You learn from other people some idea of the proofs. Then you'refree to quote the same theorem and cite the same citations. You don't necessar-ily have to read the full papers or books that are in your bibliography. Manyof the things that are generally known are things for which there may be noknown written source. As long as people in the �eld are comfortable that theidea works, it doesn't need to have a formal written source". While some �eldsmay be more cavalier than others about using \ideas with no written source" aspart of a de�nitive proof, this approach is true of many areas of mathematics.Research papers are typically written for a community of experts, who arepresumed to share the prevailing assumptions: other mathematicians then takethe judgements of these experts on trust. So for example only a handful ofmathematicians were in a position to immediately understand Wiles's paper,and to �nd the aw in early versions. Rather than checking every line of anargument an expert \critical reader" will often accept or reject it on the basisof the general strategy of the proof and a good understanding of the domainand where potential aws might lie. Thus a journal referee might reject a paperbecause the argument is \unclear", \hard to follow" or \confused" even if noerror or counterexample has been found. The goal is rigorous proof, proofs aregenerally believed to be formalisable in principle, but the methods of checkingthe proof are social rather than formal. Thurston again \reliability does notcome primarily from mathematicians formally checking formal arguments; itcomes frommathematicians thinking carefully and critically about mathematicalideas". These considerations are part of the notion of \surveyability" in thephilosophy of mathematics.Thus \mathematical knowledge", or the things \generally known" by theexperts, is felt to be not just a list of theorems and conjectures, but rather a moregeneral understanding of mathematical structures, techniques and phenomena,experience of where errors are likely to be made in proofs and insight into arepertoire of examples which are likely sources of counter-examples to statementswhich seem suspicious. So statements like \Fermat's theorem is true", or \theonly �nite simple groups are . . . ", subsume a vast body of knowledge aboutnumber theory or �nite groups, all of which is brought into play by expertsjudging a proof.The experts may express doubts, or take some time to be convinced. I heardJohn Thompson point out in a seminar around 1980 that there might easily be amistake in the classi�cation of �nite simple groups, because so many of the proofswere proofs by contradiction, and an error in the argument might also give acontradiction. Gorenstein [37] discusses at some length whether the theorem canbe trusted \. . . it seems beyond human capacity to present a closely reasonedseveral hundred page argument with absolute accuracy. I am not speaking ofthe inevitable typographical errors, or the overall conceptual basis for the proof,8

but of \local" arguments which are not quite right | a misstatement, a gap,what have you." and concludes that, while a simple group has probably notbeen missed because many individuals with di�erent perspectives have beenworking on the problem for �fteen years, \it clearly indicates the strong needfor continual re-examination of the \proofs" . . . especially on that day when the�nal classi�cation is announced and the exodus to more fertile lands takes place.Some of the faithful must remain behind to improve the text."This understanding of mathematical practice is not new: consider Hume theempiricist [55] writing in 1739 \There is no ... mathematician so expert ... asto place entire con�dence in his proof immediately on his discovery of it, orregard it as anything, but a mere probability. Every time he runs over his proofshis con�dence encreases; but still more by the approbation of his friends; andis rais'd to its utmost perfection by the universal assent and applauses of thelearned world." orWhitehead [117] in 1926 \But when a piece of mathematics hasbeen revised, and has been before the expert world for some time, the chance ofa casual error is almost negligible." or the number theorist Hardy [44], writingin 1929 \proofs are what . . . I call gas, rhetorical ourishes designed to a�ectpsychology". Discussions of program proof in the 1970s echoed this point: in awidely cited paper entitled \Social processes and proofs of programs" DeMillo,Lipton and Perlis [26] suggest that formal proof of a program is not a substitutefor its being inspected by other people.2.3 Debates about rigourWhat some perceive as acceptable informality others may regard as unacceptablelack of rigour. There are well-known examples of incorrect proofs (of both falseand correct results), of standards of proof in a �eld changing, and of vigorousargument as to what is acceptable, for example in the eighteenth century overanalytic (Cartesian) and synthetic (Euclidean) geometrical proofs.A recent debate concerned speculative or heuristic arguments in mathemat-ical physics: for example an argument might assume the existence of a thresholdconstant or scaling factor which has been identi�ed in computations but notproved to exist analytically: a proof of its existence is likely to be extremelyhard. Ja�e and Quinn [57] suggested that such \speculative mathematics" beidenti�ed as such and due credit be given to those who eventually produceda rigorous proof. In response several of the world's most renowned mathem-aticians produced justi�cations of current mathematical practice, stressing thevalue of speculative or heuristic investigations in leading to signi�cant advances:for example the eminent topologist Atiyah [3], commenting on the interactionsbetween geometry and physics\My fundamental objection is that Ja�e and Quinn present a sanitizedview of mathematics which condemns the subject to an arthritic old age.They see an inexorable increase in standards of rigour and are embar-rassed by earlier periods of sloppy reasoning. But if mathematics is torejuvenate itself and break exciting new ground it will have to allow9

for the exploration of new ideas and techniques which, in their creativephase, are likely to be as dubious as in some of the great eras of thepast. Perhaps we now have high standards of proof to aim at but, in theearly stages of new developments, we must be prepared to act in morebuccaneering style.The history of mathematics is full of instances of happy inspiration tri-umphing over a lack of rigour. Euler's use of wildly divergent series orRamanujan's insights are among the more obvious, and mathematicswould have been poorer if the Ja�e-Quinn view had prevailed at thetime. The marvelous formulae emerging at present from heuristic phys-ical arguments are the modern counterparts of Euler and Ramanujan,and they should be accepted in the same spirit of gratitude temperedwith caution. . . .What is unusual about the current interaction is that it involves front-line ideas both in theoretical physics and in geometry. This greatly in-creases its interest to both parties, but Ja�e-Quinn want to emphasizethe dangers. They point out that geometers are inexperienced in dealingwith physicists and are perhaps being led astray. I think most geometers�nd this attitude a little patronizing: we feel we are perfectly capable ofdefending our virtue.What we are now witnessing on the geometry/physics frontier is, in myopinion, one of the most refreshing events in the mathematics of the20th century. The rami�cations are vast and the ultimate nature andscope of what is being developed can barely be glimpsed. It might wellcome to dominate the mathematics of the 2lst century. No wonder theyounger generation is being attracted, but Ja�e and Quinn are right toissue warning signs to potential students. For those who are looking fora solid, safe PhD thesis, this �eld is hazardous, but for those who wantexcitement and action it must be irresistible."Such concerns about an increase in rigour are also not new: Weyl [116] com-mented on the enervating e�ects of the formalist-intuitionist controversy of theearly part of the century \It has directed my interests to �elds I considered relat-ively \safe" and has been a constant drain on the enthusiasm and determinationwith which I pursued my research work.": criticising formalism in the sense ofCarnap's program the philosopher of mathematics Lakatos observed [69] \Onthose terms Newton had to wait four centuries until Peano, Russell, and Quinehelped him into heaven by formalising the calculus." Ja�e and Quinn, summar-ising the responses to their article, commented that \mathematics that has beensuccessfully rigorised is dead, and the real life is . . . in speculation."2.4 Mathematical discovery and researchThe mathematician Hadamard [43] observed in his book \The Psychology ofMathematical Invention" that practically all of the scientists he contacted \avoid10

not only the use of mental words, but also . . . the mental use of algebraic or pre-cise signs . . . they use vague images". (He also questioned them on the e�ects ofthe weather and frequent baths). Poincar�e [88] is one of many mathematicianswho have remarked on the importance of unconscious thought and sudden illu-mination in mathematical discovery. Wiles [42] described the process as follows\I start trying to �nd patterns. So I'm doing calculations which try to explainsome little piece of mathematics. I'm trying to �t it in with some previous broadconceptual understanding of some branch of mathematics. Sometimes that'll in-volve going and looking up in a book to see how it's done there; sometimes it'sa question of modifying things a bit, sometimes doing a little extra calculation;and sometimes you realize that nothing that's ever been done before is any useat all and you just have to �nd something that is completely new, and it's amystery where it comes from. . . . I decided that I really only had time for myproblem and my family. When I was concentrating very hard then I found thatyoung children provide the best possible way to relax. Talking to young chil-dren who simply aren't interested in Fermat, at this age; they want to hear achildren's story, and they're not going to let you do anything else."The practice of mathematical research is generally taken to be empirical,though personal styles may di�er: \For Maclane it meant getting and under-standing the needed de�nitions, working with them to see what could be calcu-lated and what might be true to �nally come up with new structure theorems. ForAtiyah it meant thinking hard about a somewhat vague and uncertain situation,trying to guess what might be true and only then �nally reaching de�nitionsand the de�nitive theorems and proofs."[3]. Maclane talks of intuition, trial, er-ror, speculation, conjecture and proof, Lakatos of the logic of conjectures andrefutations, Polya of formulating a conjecture but needing to give more precisemeanings to the terms to render it strictly correct.In `Proofs and Refutations' Lakatos provided a lengthy rational reconstruc-tion of the historical development of the proof of Euler's theorem that for allpolyhedra V �E +F = 2, where V;E; F are the numbers of vertices, edges andfaces respectively. The theorem was stated by Euler in 1750, but an acceptablede�nition of polyhedron was only arrived at by Poincar�e in 1895. As well as try-ing to prove conjectures Lakatos advocates attempting refutation by consideringpossible local and global counter-examples which if found can be used to guidemodi�cations: the technique of Thurston's critical reader.While one may not share his philosophical assumptions Lakatos's work isan admirable account of mathematical practice: the process of individuals ormathematical communities playing with de�nitions, examples and heuristic ar-guments to work out what might be true, of getting stuck, of identifying the keyexample or lemma, and working out an outline of the most signi�cant part ofa proof before going back and tidying up the details. In comparison very littletime is spent actually writing out proofs: just as a good programmer probablyspends very little time actually writing lines of code.As with Euler's result the statements of theorems, arrived at by specula-tion, heuristics, or generalisation from examples, are often regarded as a greater11

achievement than the proofs themselves: Lakatos [69] p.9 quotes Gauss \I havehad my results for a long time, but I do not yet know how to arrive at them"and Riemann \If only I had the theorems! Then I should �nd the proofs easilyenough".2.5 Mathematical taste and styleCommunity standards of rigour determine what is acceptable in a proof. Com-munity standards, often expressed in terms of taste or style, also a�ect what isfound signi�cant, and are used as a justi�cation of the direction which academicleaders choose to take. The things \generally known" in a �eld will typicallyinclude heuristic arguments as to why a conjecture, sub-area, theorem or proofis \worthwhile", \deep", \challenging", \hard", \uninteresting" or \routine".Hardy [44], writing in 1940, argued that \there is no place in the world forugly mathematics" and claimed that the mathematical aesthetic was not con-�ned to a few eccentrics but shared by anyone who played chess. Hardy combines\beauty" with \seriousness" and \depth", which he claims distinguishes math-ematical theories from chess problems and make mathematics worthy of theattention of \�rst-rate minds". Fermat's theorem or the classi�cation of simplegroups would be \deep" because they relate to structures with an architecturalquality and have many rami�cations and connections with other deep structures:the four colour theorem as it stands lacks this architectural quality and is \shal-low", although opinions might change if, for example, it could be connected tothe theory of manifolds. Mathematicians sometimes draw on musical metaphorsto try and convey this notion: it corresponds to the di�erence between Beethovenand lesser composers. The analyst Dieudonn�e [23], a member of the Bourbakigroup, wrote a book called \Mathematics, the music of reason" in which he clas-si�es mathematical problems as untreatable, where no progress has ever beenmade, sterile, such as the four-colour problem and many problems of elementarygeometry, whose solution has not led to new developments, and proli�c. Deepproblems such as Fermat's theorem, or the Poincar�e conjectures, are the proli�cproblems which continue to produce new, unexpected results and connections,like McKay's identi�cation of the \moonshine" number.Good theorems should have good proofs. To paraphrase von Neumann [112]a \good" theorem should not just consist of an enumeration of special cases buthave some unifying element: a \good" proof will be elegant rather than a rotecomputation (by hand or machine) and give some sense of why a result is true,and the whole will exhibit some overall architectural structure which reducescomplexities to simple guiding notions. In particular a proof with these qualitiesis more likely to be readily surveyable by the critical reader.Notice that these notions of \good proof" are independent of, and may beat odds with, the ideas of reductive proof theory, investigated by Feferman, [33]who conjectured that his system W su�ces for all of scienti�cally applicablemathematics, or Simpson [99] who argues for the use of �nitism for a partialrealisation of Hilbert's program. A \good" proof in the above sense may well12

involve abstraction from the original problem, obtaining the result as a con-sequence of a more general theory, or structuring the argument using notionswhich are higher order or more abstract, to make it more surveyable than adi�erent proof using more restricted foundational notions. Abstraction in itselfis not the goal: for Whitehead [117]\it is the large generalisation, limited by ahappy particularity, which is the fruitful conception."As an example consider the theorem in ring theory, which states that if Ris a ring, f(x) is a polynomial over R and f(r) = 0 for every element of r ofR then R is commutative. Special cases of this, for example f(x) is x2 � x orx3 � x, can be given a �rst order proof in a few lines of symbol manipulation.The usual proof of the general result [20] (which takes a semester's postgraduatecourse to develop from scratch) is a corollary of other results: we prove thatrings satisfying the condition are semi-simple artinian, apply a theorem whichshows that all such rings are matrix rings over division rings, and eventuallyobtain the result by showing that all �nite division rings are �elds, and hencecommutative. This displays von Neumann's architectural qualities: it is \deep"in a way in which the symbol manipulation is not.As a more approachable example consider the proof of1 + 2 + : : :+ (n� 1) + n = n(n+ 1)=2:This has a routine induction proof. It can also be proved by the \trick" ofrearranging 2 � (1 + 2 + : : :+ (n � 1) + n) =(1 + 2 + : : :+ n) + (n+ (n� 1) + : : :+ 2 + 1) =(1 + n) + (2 + n� 1) + : : :+ ((n� 1) + 2) + (n + 1) =n(n + 1)Done formally this still involves induction: the informal argument hides theinduction in the \obviously true" rearrangement, leading to an apparently more\intuitive" proof of the result. But the di�erence is that this informal argumentnot only works out the answer, rather than requiring us to know it before westart, but can also be said to explain why the answer is true. Similar examples areused in developing an aesthetic and a repertoire of clever techniques in studentsof mathematics: for example in the text Concrete Mathematics [38] Graham,Knuth and Patashnik outline 8 ways of working out sums of the formf(1) + : : :+ f(n);only one of which makes the induction explicit.The eighth technique is Gosper's algorithm,which requires no cleverness, justaccuracy, and will �nd closed form sums completely automatically for extremelycomplicated terms: for example givenj=nXj=0 2n�k�2j�nj ��n� jj + k�13

the algorithm returns � 2nn + k� :In which case, the exasperated student might ask, why does one need theother seven techniques? The reason is not just to keep students busy: the notionof \good" proof will depend on the context. It may be the case that the exactvalue of the sum doesn't matter to us, if we are only using it to get an upperbound on some quantity for example, or that �nding this sum is a fairly incidentalpiece of some much larger argument (a page in the 5000 or so about simplegroups), in which case application of routine technique is probably preferable tothe reader. On the other hand if (hypothetically) the series were to turn out tobe the key point in a new proof of the four colour theorem then a proof whichexplained why it was true, somehow linking the terms in the series to colouringsof graphs, would, while not being \more correct" certainly be \better" in thesense above. Our �rst example of a series would be a routine computation insupport of a routine result, our second a routine computation in support ofa more signi�cant result. There are of course in�nitely many series summablein this routine way by Gosper's algorithm: it is the context which determineswhether the theorem thus proved is signi�cant or not.The choice of proof in, for example, a text-book exposition may bring otherfactors into play such as the overall structure of the work or the expected back-ground of the reader. For example in presenting linear algebra it may be prefer-able for expository purposes to develop the explicit de�nition of a determinantas a polynomial in the entries of a matrix rather than the implicit version whichassociates an alternating bilinear form to a linear transformation. The formerwould be judged by Hardy's standards as \ugly" (and constructive), the latteras a \better" (and non-constructive) exposition since it abstracts away from theexplicit formula for the determinant and provides a coordinate-free explanationas to why determinants behave as they do. However experienced teachers knowthat the former is comprehensible by the average student whereas the latter isconsiderably more demanding! Lang [71] compares the expository style of a stu-dent text and a more advanced work by saying \The purpose of the latter isto jazz things up as much as possible. The purpose of the former is to educatesomeone in the �rst steps which might eventually culminate in his knowing thejazz too, if his tastes allow him that path."The early proofs of a result may be superseded by later \better" proofs in thissense: an \ugly" valid proof will be accepted while recognising that the search fora \better" one is worthwhile. Sometimes the \better" proof will be completelydi�erent: the result might be shown to be a consequence of something far moregeneral which explains why it is true. For example it is conceivable that thefour colour theorem could turn out to be a consequence of a much more generalresult about the embeddability of graphs on manifolds. Sometimes the \better"proof will be broadly similar but manifest more insight, as in the reworking ofthe classi�cation of �nite simple groups currently under way [104].While a mathematical aesthetic, rather than notions of applicability or useful-ness, has often been used to guide what areas are worthy of future investigation,14

there has frequently been vigorous debate as to what does constitute \deep"or \beautiful" mathematics. One might interpret eighteenth century argumentsabout replacing geometrical arguments by algebraic manipulation as argumentsabout style rather than acceptable rigour. In this reading Newton and Leibnizargued that geometry provided insight and compactness of representation whilealgebra provided quantities of output but obscured the sources of discovery,others that algebra provided greater power and economy of thought [8].Similar arguments surrounded twentieth century developments in numbertheory and geometry, as described by Lang [71]. An integral part in this devel-opment was played by Lang's book Diophantine Geometry, published in 1962,which gave an exposition of earlier work of Mordell, Siegel and others within thenew framework of Grothendick's theory, which by then occupied about 10,000published pages. The older Mordell in a savage review lamented what he regardedas the quite unnecessary generalisation and abstraction of Lang's approach \Thereviewer was reminded of Rip vanWinkle . . . who woke up to a state of a�airs anda civilisation completely di�erent from that to which he had been accustomed."In a widely read letter to Mordell Siegel remarkedThank you for the copy of your review of Lang's book. When I �rst sawthis book, about a year ago, I was disgusted with the way in which myown contributions to the subject had been dis�gured and made unin-telligible. My feeling is very well expressed when you mention Rip vanWinkle!The whole style of the author contradicts the sense for simplicity andhonesty which we admire in the works of the masters in number theory{Lagrange, Gauss, or on a smaller scale, Hardy, Landau. Just now Langhas published another book on algebraic numbers which, in my opinion,is still worse than the former one. I see a pig broken into a beautifulgarden and rooting up all owers and trees. . . .I am afraid that mathematics will perish before the end of this centuryif the present trend for senseless abstraction{as I call it: theory of theempty set{cannot be blocked up. Let us hope that your review may behelpful...".For Siegel the owers and trees were evidence of proli�c conjectures, whereasthe abstraction rendered them sterile. Siegel's concerns were unfounded: theseare the techniques that led to enormous developments in number theory includ-ing Fermat's theorem, and Lang observes that while Mordell and Siegel weregreat mathematicians their lack of understanding obstructed the developmentof mathematics in their own countries.Further investigation of mathematical aesthetics again leads us to philosoph-ical considerations. Von Neumann draws attention to the dangers of degener-acy, of the \classical" turning into the \baroque" if a branch of mathematicsbecomes governed entirely by an internal aesthetic without reference to an em-pirical source. Others have been rather more harsh about the inward lookingtendencies of mathematicians: the computer scientist Dijkstra [24] observes \in-formality is the hallmark of the Mathematical Guild, whose members - like poor15

programmers - derive their intellectual excitement from not quite knowing whatthey are doing and prefer to be thrilled by the marvel of the human mind (inparticular their own). For them, the dream of Leibniz is a nightmare"For some mathematicians the progress of mathematics in the light of suchan aesthetic is regarded as \natural" or \inevitable": others �nd this more prob-lematic. One might analyse the mathematical aesthetic culturally in terms ofthe power structures and negotiation of boundaries underlying bland terms like\community culture". One might also take into account the personal psycho-logy of research mathematicians: an extraordinary collection of individuals, whosometimes, like climbers, seem to choose their goals for the di�culties and chal-lenges they o�er, which may be unrelated to the owers growing on the scree orthe view obtained from the top.2.6 Mathematical expositionWe have described usual mathematical practice but mathematical exposition isgenerally very di�erent.Mathematicians write and read a variety of texts. Working notes while think-ing about a problem or conjecture may consist of a mixture of partially workedout ideas, conjectures, de�nitions that weren't quite right, proofs abandoned be-cause the conjecture turned out to be wrong or the author couldn't see how todo the crucial step, blind alleys and illustrative examples and counter-examplesrecorded in a form comprehensible to the author alone. These may be \writtendown" to form a more permanent record, including the examples and blind al-leys (in an attempt to avoid going down them again). The author may presentthe results as a seminar or colloquium, or publish a research announcement orworking paper on the internet. At a suitable point (maybe the de�nitive resulthas been proved, or maybe the author is reporting progress to date in responseto professional pressures or loss of time or enthusiasm) the work may be \writtenup" in a form suitable for research journal publication. The working notes willbe reworked, probably abbreviated for reasons of length or style, to produce achain of argument of acceptable rigour from the hypotheses to the conclusionshorn of blind alleys, motivation, examples or counter-examples. If the work hasattracted su�cient attention it may be reworked later with other results in the�eld as part of a survey article or a text book giving more space to motivationand background.By the time the work reaches a wider audience of text-book readers or un-dergraduates the experiments, false starts, and guesses will probably have dis-appeared, giving the impression that the textbook contains a historical accountof what the mathematician did to prove the theorem. Lakatos's presentation in\Proofs and Refutations" is much closer to what actually happens, and he ar-gues for more widespread use of his technique of \heuristic exposition" insteadof this deductivist style of \authoritarian mysticism" which presents only thecompleted argument: Thurston [109] makes a similar suggestion.Just as there is a variety of mathematical writings there is a variety of math-ematical readers (I have not been able to �nd a source for the statement that a16

mathematical paper is read on average by 3 people). For research papers thesemight be close associates reading a draft of the work, or Thurston's \criticalreader" (who might be a referee or reviewer) assessing the proof for correctness,or a mathematician who is prepared to take the proof on trust but is readingit to get an idea of the techniques used, or is only interested in the statementsof the theorems or the \big ideas", or a casual reader ipping the pages in thelibrary, or a beginner wrestling with the work as a rite of passage. For seminarsthe audience might be more eclectic: following closely or somewhat bemused.Current sociological studies consider scienti�c texts and their role in the\manufacture of knowledge". A full account would consider not just what I haveoutlined above but referees reports, papers that weren't accepted, proofs thatwere discredited, the reception in Mathematical Reviews or other commentariesof a signi�cant result: even grant proposals, letters and, today, email messages.Techniques of literary theory applied to mathematics are more contentious:for example Rotman [94] claims \Mathematics . . . is a process: an ongoing, open-ended, highly controlled, and speci�c form of written intersubjectivity." and\Mathematical reasoning is thus an irreducibly tripartite activity in which thePerson (Dreamer awake) observes the Subject (Dreamer) imagining a proxy-theAgent (Imago)-of him/herself, and, on the basis of the likeness between Subjectand Agent, comes to be persuaded that what the Agent experiences is what theSubject would experience were he or she to carry out the unidealized versions ofthe activities in question." Mathematicians who are tempted to give simplistic orironic accounts of their discipline may �nd their words appear to support sucharguments, however unsympathetic they �nd them, rather more readily thanthey support traditional philosophies of mathematics.3 Computation for mathematical researchIn this section we identify some themes in the use of computers in mathematicalpractice. We describe below utilities, numerical methods, symbolic computation,computer aided reasoning and the use of computation in constructions, in proofssuch as the four colour theorem and in support of speculative reasoning in geo-metry and combinatorics.3.1 UtilitiesOne might start, prosaically, by pointing out that the greatest impact of com-putation on the day to day work of the mathematician has been in tools for dayto day mathematical processes:{ mathematical type setting with associated standards for input and outputto other software such as computer algebra, graphics and statistical systems{ internet services such as email and newsgroups, giving immediate access tothe community and exchange of technical information. For example todaynearly every mathematical community will have an electronic mailing list,enabling rapid circulation of new results and response to queries.17

{ services such as Mathematical Reviews on line through MathSciNet (bloatedbibliographies a breeze!), citation indices, electronic journals, the centralisedmathematics pre-print server [15] and repositories of papers, often searchableand with downloadable output in a variety of formats{ electronic sources of data for example� Sloane's Sequence Seeker [103]: given a positive integer sequence this willapply a collection of transformations and attempt to suggest a generatingfunction� Fateman's web database of integrals [31], which uses a sophisticated tablelook-up to account for degenerate and special cases� the Atlas [22] containing large datasets related to the �nite simple groups3.2 Numerical methodsThe most widespread computational techniques are those of numerical compu-tation, mathematical modelling and simulation. Numerical methods have beenpart of applied mathematics and the physical sciences for the past �fty years,widely available through standard libraries such as NAG [82] and providing thebasis for large software systems, usually written in FORTRAN or C and usedin chemical, physical or astronomical research as well as in practical �elds likeengineering, meteorology and aeronautics and increasingly today in visualisationand animation.While one can �nd horror stories of catastrophic bugs in numericcode (for example the military plane which turned over as it crossed the equator)matters such as testing, error analysis, and simulation are on the whole reliable:in part perhaps because such systems are largely developed by scientists with agood understanding of a mature body of technical material.Sometimes such software might be an implementation of a theory aboutphysical phenomena, with the results it produces from given inputs being testedagainst experiment or measurement. Today measurement itself is computer me-diated, though it was not always so: Michelson and Morley had no computers.With theory testing as with program testing Dijkstra's maxim [24] that \Testingcan prove the presence of bugs but never their absence" holds true: such testsprovide in a Popperian sense possible falsi�cations of the theory.In other contexts software might be an implementation of a generally ac-cepted theory and the output of the program regarded as a prediction, withestimates of error being provided by mathematical analysis in the light of thetheory and the reliability of the data. In some cases predictions be easy to check:like times of tides, where the mathematics is such as to make reliable predictionpossible, or weather, where the mathematics of dynamical systems theory tellsus reliable prediction is more di�cult. However in other cases it may be hardor impossible to check the predictions: for example safety thresholds for aircraftloads or discharge of pollutants.If trusted enough, the software may be relied upon as an implementationof the theory that is used in turn to stand for the physical reality in furtherexperiments or simulations, and thus itself to suggest possible further conjecturesor theories. A sequence of numerical results or a visualisation of the phase space18

of an equation may suggest a closed form solution or a new chaotic phenomenonfor example. The investigation of chaotic phenomena in the asteroid belt wascarried out using, not astronomical observation, but the \Digital Orrery", acustom built parallel computer which simulated 200 million years of the motionof the solar system [105].This is a simpli�ed account and there are many additional factors. We maybe testing rival theories which are not immediately comparable in the Popperiansense using the quality of their predictions. The same software may be used in onecontext to test a novel theory and in another as the standard implementation ofan accepted theory. It may be too simplistic to assume the software implementsone of our best guesses at a theory, as to test one part of a theory it may benecessary to make wildly simplifying assumptions about another: a programmaycombine quantum and classical mechanics for example.All the usual concerns about software correctness may be raised for such sys-tems. How do we know the software is a correct implementation of the underlyingtheory? Which aspects of its behaviour are artefacts of the implementation (forexample random number generation) rather than consequences of the theory?What hidden or explicit assumptions have been made at di�erent stages of theprocesses above and how do they a�ect the uses to which the system has beenput: for example, if the system is used in a new application and predicts thatx > 3, is this a consequence of the theory, or of some implementation decisionbeing called upon outside its domain of validity? A particular issue in numericalwork is correctness of oating point implementation and convergence criteria:is the implementation robust enough to produce the same answer again for thesame inputs? To make matters more complicated, often much of the softwarecomprises large legacy systems where the underlying assumptions may have var-ied over time, or where later implementors may not have fully understood theoriginal assumptions, or have incorporated variations based on new results. Forexample the consistent handling of oating point arithmetic or the translationbetween machines with di�erent word-lengths are recurring legacy problems.Additional questions arise if the output is used as input to further systems,for example visualisation, CAD/CAM or real-time. What does \correctness"mean in the context of a surgeon using a data glove and a CAT-scan to controla laser in an operation on a patient in a di�erent time-zone? Predictions maybe used in legal or governmental processes where issues are not as clearly under-stood as they might be: the epistemological issues surrounding \properties of amodel" and \reality" for example. An excellent account from the point of view ofenvironmental predictions is given in Oreskes [85]. Many of the issues involvingthe nature of computational models of reality are similar to those raised in thedebate following Fetzer's [34] notorious attack on program veri�cation.3.3 Symbolic computationGeneral purpose computer algebra systems (CAS), such as AXIOM [59], Maple[49], or Mathematica [113], as well as more specialised tools such as GAP [96]19

for computational discrete mathematics or the AXIOM/PoSSo library for high-performance polynomial system solving, are used by many di�erent communit-ies of users including educators, engineers, and researchers in both science andmathematics. The specialised systems in particular are extremely powerful. ThePoSSo library has been used to compute a single Gr�obner basis which (com-pressed) occupies more than 5GB of disk space, while GAP is routinely used tocompute with groups of permutations on millions of points.After pioneering work in the 1960s CAS have become mainstream commercialproducts: everyday tools not only for researchers but also for engineers and sci-entists: for example Aerospatiale [91] use a Maple-based system for motion plan-ning in satellite control. The systems have become more complicated, providinglanguages, graphics, programming environments and diverse sophisticated al-gorithms for integration, factorisation and so on, to meet the needs of a varietyof users, many not expert in mathematics. All the usual software engineering is-sues arise, such as modularity, re-use, interworking and HCI. For example NAG'sAXIOM [59] is a strongly typed CAS: user and system libraries are written inthe Aldor language which supports a hierarchy of built-in parameterised typesand algorithms for mathematical objects such as rings, �elds and polynomials.Aldor is interpreted in the AXIOM kernel which provides basic routines such assimpli�cation and evaluation: code developed in Aldor may be compiled to C forexport to other products.Such systems are widely used in mathematical research particularly for heur-istic investigations and trusted implementations of standard algorithms. For ex-ample the GAP [96] system, developed almost entirely by researchers in discretemathematics, contains a large library of built in examples and implementationsof procedures for computing the structure of given groups. Old papers involvinglengthy hand calculations are con�rmed in a few seconds by GAP: for examplethe nilpotency class of a topological group. GAP computations of this kind areaccepted in research papers: but such computations might not feature in the�nal deductive presentation of a result because they are investigations whichform part of the proof development but not of the �nal proof. A computationmay also suggest a more general proof: the author was told of a long GAP com-putation involving the number 7: on inspection it turned out that replacing 7by p throughout produced an argument valid for all primes p which was thenpublished: however GAP itself cannot handle arbitrary primes in this way, andwas not mentioned in the �nal publication.CAS have been used similarly in mathematical research: both for routinecomputations such as simplifying or factorisation accepted as part of a proof, andfor preliminary investigations and formulating conjectures. We cite for example{ Labelle's [68] investigation of new power series identities and asymptoticestimates, of the kind that might be used in complexity investigations, sub-sequently proved \by hand": the paper is part of a volume of the Journal ofSymbolic Computation devoted to these methods.{ Brown's [11] computation of homotopy groups in AXIOM, which automatescomplex computations in non-commutative algebra which it would be very20

time-consuming and di�cult to do by hand.{ Gosper's algorithm, and a number of variants due to Zeilberger and others[120], have been implemented in Maple. They allow the automatic identi�c-ation and veri�cation of closed form sums for a certain class of expressionsinvolving binomial and hypergeometric identities, and work by producinga \certi�cate" which represents each summand using a recurrence, so thatwhen the summands are summed the sum collapses to a closed form, orshowing that no such certi�cate exists. Thus they transform the \cleverness"typically required to solve identities like� 2nn + k� = j=nXj=0 2n�k�2j�nj ��n � jj + k�to a completely routine procedure.As before concerns about correctness, oating point and reproducibility arise.CAS can contain bugs: for example Clarke [17] notes that Mathematica handles00 incorrectly.However there are many more subtle problems which can be read as \fea-tures" rather than \bugs" but none-the-less cause confusion for the unwary.Fateman [31] has a survey. Some CAS are \cautious" only giving an answerwhen certain pre-conditions are satis�ed, others attempt to return an answerwhenever they can. Furthermore some of the problems are a consequence of im-plementation decisions driven by di�erent user expectations of CAS. Some userssee them as \intelligent paper" doing purely formal manipulation of expressions,and take upon themselves the responsibility of ensuring that those manipulationsare appropriate to the underlying problem: ignoring side-conditions in a specu-lative investigation for example. Others wish to clearly express the assumptionsof their work, and then expect the CAS to use only appropriate manipulations.Still others, naively, may not be aware that there is a problem, and dangerouslyassume that a system acting in the �rst mode is acting in the second. Theseconcerns mirror the debates about rigour in mathematical practice describedabove. To give some examples:{ There is no satisfactory canonical representation of elementary functionsover the reals, and the ad hoc methods used by some systems can mean thatexpressions like atan(x� b) + atan(1=(x� b)), which is unde�ned at b andsgn(x � b)�=2 otherwise, are not handled correctly.{ Type systems are not unproblematic: for example the consistent handling ofcoercions such as (2x+2)=2�1. AXIOM is strongly typed: it treats FLOATas a ring although it is obviously not one.{ Side conditions cause problems. A CASmay be able to compute an answer ona large class of inputs, be sound on only a subclass of those inputs and be ableto check soundness easily on a smaller subclass still. For example consider adeeply nested division by an expression (x�3). What value should the CASreturn, what explanation might it provide to the user of what it has done21

and what warnings should it ag? Most CAS ignore such side-conditions,leading to potentially incorrect output.{ The use of parameters adds to these di�culties: for example the matrix� 2 2a(a+ 1) 2a�over a �eld F has rank 0 if F has characteristic 2 and a = 1, rank 2 if Fdoes not have characteristic 2 and a 6= 0; 1 and rank 1 otherwise.{ More generally many computer algebra algorithms are only valid if precon-ditions are satis�ed which it is generally not possible to check at run-time:if the function is continuous for example. Again users may be misled if theyapply procedures inappropriately.We should not conclude from the above that all computer algebra systems areproblematic all of the time: there are many areas, especially where the machinesare doing straightforward symbol manipulation or relying on e�cient implement-ations of well-understood algorithms,where matters are fairly unproblematic andexperts use the systems with con�dence.3.4 Computation and mathematical experimentWe group together in this section three phenomena involving numerical compu-tation in support of mathematical endeavour: visualisation, computation as anaid to investigation and computations forming part of a proof.The Mandelbrot set is one of the best known computational visualisations:and although Poincar�e predicted chaotic phenomena more than a century agomodern dynamical systems theory has only been developed in the past thirtyyears or so. It is tempting to suppose that it would not have been possiblewithout the use of computer simulations and visualisations to investigate chaoticphenomena such as strange attractors. Since such phenomena are a manifestationof extreme sensitivity to initial conditions, great care is needed to ensure thatthey are \really there" and not subject to implementation bias. In fact Ruelle[95] suggests that there were other barriers: the necessary pure mathematicaltools of ergodic theory were not yet available to investigate extreme sensitivity,and developments in quantum theory meant that researchers looked there ratherthan to classical mathematics for explanations of chance and randomness.Modern geometry has bene�ted from the ability to visualise unusual surfaceswhose properties can then be investigated analytically: for example Ho�man [52]discovered a new surface this way in a class thought to have been well under-stood since the eighteenth century and Thurston's famous video `Outside In'[73] demonstrates how a sphere can be turned inside out. Such programs aregenerally a combination of computational geometry, symbolic and numeric com-putation, in some cases essentially performing geometric reasoning calculationswith variants of Gr�obner basis algorithms.Computation has long been used to explore ideas or to gather support forconjectures, or �nd counterexamples. The purpose may be to aid in developing22

a theory, or to convince a mathematician of the truth of a result before time isinvested in a hand proof. For example Wiles's proof of Fermat's theorem appearsnot to involve computation at all. However a related and still unproved conjecturedue to Birch and Swinnerton-Dyer [108] was subject to much computationalexperiment in the 1970s, giving mathematicians more con�dence that was worthpursuing the lines of enquiry that eventually led to Wiles's proof.Recent work on threshold functions in satis�ability problems [97] is a goodexample of computational experiment in support of a conjecture. Numerous sim-ulations have identi�ed an apparent threshold in the likelihood of satis�abilityof a problem expressed in clausal form with �xed clause length as the ratio ofclauses to variables varies, and similar techniques have been applied to manyrelated problems. It seems probable that it would be very hard to prove thisanalytically: similar problems in percolation theory have involved the develop-ment of an enormous amount of probability theory just to prove that the functionbeing analysed is de�ned and continuous at the appropriate point [39]. Howeverall the same questions arise as in the previous section: how can we trust the im-plementation, how can we be sure that what we observe is a consequence of thetheory rather than of bias in the implementation, how do we know our statisticalanalyses are correct (see Slaney [102] for a discussion of this) and how far arewe justi�ed in using the results of such computations in further work: we mightfor instance want to use the information about the threshold function in furtheralgorithm design.Computers can be used to construct discrete mathematical objects: all butthe smallest of the 26 sporadic �nite simple groups were �rst conjectured, thenconstructed computationally by Conway and others [22] using a combinationof brute force search and clever ideas to �nd certain matrices over �nite �elds.Brendan McKay has investigated various Ramsey numbers [81]: the Ramseynumber R(n; k) is the smallest number of vertices a graph must have to ensurethat either it contains a complete subgraph on n vertices or its complementcontains a complete subgraph on k vertices. It is useful to note the di�erencebetween establishing an upper and a lower bound for a Ramsey number. Theformer involves intense computational e�ort to �nd a graph containing a certaincon�guration of edges and non-edges which can be checked very easily oncefound, and the latter involves equally intense computational e�ort to show thatno suitable graph exists. In the former case the �nal proof, which consists ofexhibiting a graph with certain properties which can be readily checked by hand,can be presented independently from the computation: in the latter case one canregard the computation as a proof or as evidence for the truth of the results andthe existence of a non-computer proof. Similar remarks apply to Lam's [70]demonstration by exhaustive search that there no projective planes of order 10.The proof of the four colour theorem [2] by Appel and Haken in 1977 was theearliest and most famous use of a computer in a proof: scrutinised particularlybecause of the long history of failed proofs of the result and because it consistedof a large case analysis which was hard to check and gave little insight. We returnto this below. 23

4 The e�ect of computation on mathematical practiceThus far, ignoring epistemological di�culties, debates on foundational mattersand the temptations of an ironic post-modern account of \mathematics", wehave identi�ed mathematical practice with the business of producing conjecturalmathematical knowledge by means of speculation, heuristic arguments, examplesand experiments, which may then be con�rmed as theorems by producing proofsin accordance with a community standard of rigour, which may be read by thecommunity in a variety of ways, and we have noted that while notions of rigourand so on may have changed practice itself has remained remarkably robust overthe centuries.As we have seen computation is used both in speculative activities and, in theform of standard algorithms (either stand alone or in systems such as Maple) orexhaustive search, as part of proofs. Most of the work we describe has involvedsubstantial software development over a long period with attention to mattersat the forefront of computer science such as algorithms, data structures, graph-ics and memory management: the problems being addressed are often at thelimits of computational power. While little if any of the software involved hasbeen formally proved correct the community is on the whole well aware of thepossibility of error and much of it has been subject to intense scrutiny by otherscientists who understand the underlying mathematics and are quick to pointout bugs through, for example, internet newsgroups like sci.math.symbolic.Community acceptance has a lot to do with the perceived reliability of the soft-ware developers: for example GAP is trusted because it has been produced byleaders in the �eld who make sources freely available and adhere to strict pro-tocols about distributing material produced by others with the GAP software.Much of the lively debate over the merits of rival CAS concerns the perceivedmathematical competence and reliability of their implementors. In other wordstrust in software, like trust in proofs, is in part a social process.The speculative investigation of chaotic phenomena, threshold functions, sur-faces and the like, which provide evidence for the truth of theorems without beingproofs, can be described as experimental mathematics, de�ned by Borwein [10]as \that branch of mathematics which concerns itself ultimately with the codi-�cation and transmission of results in the mathematical community through theuse of experimental exploration of conjectures and more informal beliefs and acareful analysis of the data acquired in this pursuit". The new journal Exper-imental Mathematics encourages publication of accounts of such mathematicalexperiments, particularly computational ones, the editors observing in the spiritof Lakatos that \It is to our loss that most of the mathematical community arealmost always unaware of how new results are discovered . . . The early sharingof insights increases the possibility that they will lead to theorems", [30] whileacknowledging hostility from some quarters that the journal should be renamed\the Journal of Unproved Theorems" [28]. Borwein argues that the growth ofsuch experimentation requires also the development of community standards asto experimental methodology: matters such as correctness of the implementa-tion, implementation bias, reproducibility, statistical and simulation concerns24

and the presentation of such experimental results.The use of computation as part of a proof also raises debate: is it correct andeven if it is, is it a \good" proof. Perhaps the least problematic are computationswhere the results, once obtained, can be readily checked very quickly by hand oranother program. Thus a proposed inde�nite integral can be checked by di�eren-tiation, a proposed factorisation by multiplying the factors up again and proofsusing Gosper's algorithm can be checked by hand. Producing the matrices thatgenerated a sporadic simple group was a tremendous computational challengeat the time: a hand proof con�rmed that they did indeed generate the requiredgroup.Mackenzie's [76] study of the four colour theorem addresses the issues ofcorrectness and quality. Those questioning the correctness of the proof of thefour colour theorem raised concerns unsurprising to the automated reasoningcommunity: the hardware or software might have an error and the proof was(in this case) hard to repeat. The computer scientist David Gries, an expert inprogram correctness, inspected the code looking for an error: although he thoughtthe code was very ugly the only error he found was a \safe" one, that is theprogram considered an unnecessary extra case. Some easily corrected errors werefound in the hand part of the proof. Those questioning the quality argued thateven if printed out the proof was not surveyable: it could only be checked formallybut not by Thurston's critical reader, and it gave no insight into why the resultwas true [111, 77]. These were countered by the argument that such criticismscould be levelled at lengthy hand proofs (such as the hand part of Appel andHaken's proof), particularly those which were only accessible to a small groupof specialists [2]. Within ten years or so the debate had largely died down. Thenew proof by Robertson and Seymour, which automated both parts of the proof,required consideration of a smaller number of cases and, because computers hadgot much faster and programs more portable in the intervening years, could bere-run on a variety of machines. However as Robertson commented [76] \nobodylikes very much a proof that uses a computer".In other words a proof by a computation, whether hand or machine, may beaccepted as a rigorous proof, but, if the result is a signi�cant one, it is not a\good" proof. It may not be a good proof, but it may be a considerably morereliable one, involving much less e�ort for the author. Thus for a less signi�cantresult, like many of the computations done by computer algebra systems as partof a larger endeavour for example, the community seems to �nd no problem withadmitting a computation as part of a proof provided the authors are trusted tohave used the system properly. Thurston [109], who has considerable computingexperience, suggests, in a marked contrast to some of the mathematical hostilityto the very idea of computation, that \mathematics as we practice it is muchmore formally complete and precise than other sciences, but is much less formallycomplete and precise for its content than computer programs". Even if doubtsremain, the \social e�ect" of a widely accepted computer proof (particularlyone that is di�cult or costly to replicate) inside a �eld is, generally, that theattention of the community shifts to other problems.25

Yet if the objection to machine computations being part of a proof is thatthey provide no insight, what of pictures and simulations? Pictures or videoslike \Outside in", produced for exposition and making no claim to be a proof,provide far greater insight than the corresponding verbal proof: verbal argumentsinvolving stretching and cutting rubber sheets are already acceptable in certainbranches of geometry and topology and it will be interesting to see if conventionsevolve for making visualisations acceptable, perhaps by constructing a symbolicargument automatically in parallel with a visual argument.Some argue that computational activity will replace traditional mathematics:Zeilberger suggests \The computer has already started doing to mathematicswhat the telescope and microscope did to astronomy and biology. In the future,not all mathematicians will care about absolute certainty, since there will be somany exciting new facts to discover."[120], stimulating journalistic discussionof \The Death of Proof" [54]. Others, such as Krantz [65], regard such debatesas a distraction or indeed a serious threat to mathematical research, notingthat funding pressures, current fads and cultural relativism combine to favourcomputational over theoretical work.How do we analyse mathematical practice in the light of computation? Forthe many mathematicians who still use their computers only for Latex and in-ternet access one could argue that it has hardly changed at all! The impactof computation on most of the major areas of twentieth century mathematicalresearch has been slight (except logic, but that's another story). For examplecomputers were used to construct some of the sporadic simple groups, but onlyafter they had been conjectured theoretically, so that constructing them reducedto a search for a particular con�guration of matrices: the vast bulk of the classi-�cation theorem is essentially a hand proof that there are no other simple groups.Computation had little impact on the vast body of work in number theory andgeometry leading to Fermat's theorem, or on work in di�erential geometry ortopology which might lead to a proof of the Poincar�e conjecture or a classi�c-ation of three-manifolds. Indeed, one might argue that of all the sciences puremathematics has been a�ected least by twentieth century developments in com-putation.The computer has become a valuable tool in certain areas, particularly forspeculative work and automating routine calculations. Some areas, like dynam-ical systems or the study of threshold phenomena, would not have developed inthe same way without computational investigation and experiment, using numer-ical, symbolic and graphical techniques. Certain operations, whether speculativeor part of a proof, which used to involve complex hand calculations, such as ma-nipulating group presentations, summing series amenable to Gosper's algorithmor, as we shall see, �rst order resolution proofs in the style of OTTER, can beroutinely automated. Certain proofs like the four colour theorem or the non-existence of projective planes of order 10 would have been impossible without acomputer: the computation seems, albeit unwillingly to have been accepted.Even in those areas where computation has been used mathematical practicehas not changed, as we see by reading Mackenzie's account of the four colour26

theorem: as a result of speculation and experiment mathematicians come up withconjectures and proofs of their conjectures which are then assessed by communitystandards of rigour. Standards of rigour for computer proofs, as with hand ones,concern community judgements of the quality and reliability of the software andthe use made of it. Thus a claimed computer proof might be rejected because oflack of rigour, either because there was a bug in it or because the referees didnot have su�cient con�dence in the software or the account given of it.Computer science may yet transform mathematical practice entirely, as wediscuss below. However we might pick out from the above discussion three chal-lenges from current practice:{ can computers do more for speculation, modelling and experiment?{ can computers do more for proof?{ in both cases can we increase our trust in them or make them more reliable?5 Computer aided reasoningComputer aided reasoning means the use of computers to produce formal proofsin a given logical system { a practical version of Hilbert's programme. It rangesfrom implementations of decision procedures, semi-decision procedures, and col-lections of strategies for the machine to try which will not necessarily �nd aproof, to programs which check line by line whether or not the input generatedby the user or another program is a valid proof. It is not always clear whereto draw the line between theorem proving programs and other programs thatare used to generate mathematical results. A theorem proving program usuallyinvolves symbol manipulation rather than explicit calculation, allows the user togenerate a full listing of all the steps needed in a proof and is concerned withlogic rather than a speci�c application domain such as group theory, numbertheory or di�erential equations: there is some borderline activity as we shallindicate. Mackenzie [75] has given a valuable historical survey.The rise of formalism in computer science since the mid 1960s has led toparticular interest in, and development of, appropriate logics and type theories,and to many applications of reasoning in speci�cation and veri�cation, that isin proving that programs, distributed systems, hardware devices, or the descrip-tions of these in some formal system have certain properties.This work has necessitated the formalisationof relevant parts of mathematics,such as real numbers or oating point arithmetic, but the use of computer aidedreasoning techniques in mathematical research has been negligible, with a fewnotable exceptions that we refer to below. After describing the background weloosely categorise this activity as follows{ proof of new mathematical results using techniques such as resolution, re-writing, geometry theorem proving or constraint solving which are not thatfar from those domain speci�c techniques such as computer algebra systems27

{ formalising mathematical de�nitions, theorems and proofs in a suitable lo-gical system{ hybrid systems which combine computer aided reasoning with other techno-logies, in particular� embedded veri�cation techniques, which increase the power of computeralgebra systems and numerical software by the incorporation of newtechniques drawn from automated reasoning, particularly for speculativeor experimental work, but do not necessarily address the underlyingrigour of such systems� formal methods for mathematical software, which increase the reliabilitycomputer algebra systems and numerical software, and help to developcommunity standards for modelling and experiment� focused formalisation techniques, which address concerns that mathem-atical software is unreliable and not rigorous enough to include in a proofby producing a more formal development to support informal computa-tion, and also make formalised mathematics available to mathematiciansin a way that supports current mathematical practiceFor each area we describe the work that has been done, assess it against ourmodel of mathematical practice and set out grounds for future development inthe light of this.5.1 BackgroundW S Jevons, a Manchester economist, built a \Reasoning piano" in the 1870'swhich looked like an old-fashioned mechanical cash register, and could be usedto determine whether a Boolean expression was a tautology by pressing down asuitable combination of keys. The machine is in the Oxford Science Museum.With the advent of electronic computers several logicians experimented withdecision procedures: Martin Davis implemented Presburger's decision procedurefor additive number theory in 1954, and a few years later Hao Wang imple-mented a decision procedure for the `89 predicate calculus with equality' whichwas able to prove many such theorems from Whitehead and Russell's PrincipiaMathematica.There has always been an interest in programs which produce proofs bymodelling human thought processes in some way, or are claimed to do so. Newell,Shaw and Simon's `Logic Theorist' [84] was an early (1956) program of thisnature. A critique and analysis of this approach can be found in [41] but weshall not pursue it here.Several approaches to general �rst order theorem proving were tried in theearly years, based on various semi-decision procedures, but the problem with allof them was that of dealing with substitutions for quanti�ed variables. An auto-matic procedure which enumerates all possible ground substitutions in some waywill soon lead to combinatorial explosion. The resolution method of Robinson[93], gave one solution to this problem, and became the main area of researchin automated theorem proving for some time. Today theorem provers based on28

resolution, particularly OTTER [119] have been among the most successful inproducing proofs of unsolved mathematical results. Resolution is, of course, onlya semi-decision procedure and the prover is essentially engaged on a potentiallynon-terminating search. Much attention has been paid to e�cient data struc-tures and the constraining of search by the use of a sophisticated user-controlledweighting strategy.Most interesting mathematics is neither �rst order nor semi-decidable, and analternative approach was the development of proof checkers, such as de Bruijn'sAUTOMATH [12], developed in 1967, which was used by Jutting to check theproofs from Landau's Grundlagen der Analysis. Theorem provers in the LCFtradition automated this notion, using tactics to build up proofs automatically,and the development of these ideas using various logics and type theories has ledto widely used systems such as HOL[36], Isabelle [87], NuPrl [56] and Coq [6].There has been much research also into particular aspects such as type sys-tems, induction, rewriting, equational reasoning and matching. Hardware veri-�cation has proved a particularly important application, leading to interest inmodel checking techniques based on BDDs, e�cient data-structures for Booleanfunctions. More recently systems such as PVS [86] have combined various tech-niques in one platform: we describe below some hybrid systems which combinetheorem provers with other applications such as Maple.For any such system to be widely used on anything but small examples it isalso important that it address systems issues such as e�ciency, data structures,memorymanagement, and so on. Reasoning systems are not easy to use and oftenrequire a good deal of insight and experience from the user, whether in tuning theparameters to constrain search in an OTTER-like system or in developing exactlythe right chain of lemmas in an LCF-like one. Thus attention to user interfacequestions and to matters such as proof management and re-use, the organisationof a database of lemmas, parameterisation of theories and the manipulation ofpartial or un�nished proofs is important.And how do you trust the theorem prover? The more features are built into help the user the more bugs are likely to creep in, but also the more suchfeatures the less amenable the prover becomes to formal veri�cation. Pollack[89] develops the suggestions of Cohn [19] and Slaney [101] for independentchecks via a trusted (perhaps fully veri�ed) simple proof checker, building upshared repositories of accepted material and replacing community acceptance ofthe proof by community acceptance of the checker. A similar idea for veri�cationis suggested in the JAVA community: write once/run anywhere becomes proveonce/check anywhere. Foundational matters might turn out to be less importantthan con�dence in a mature technology: for example trusting the developers,having access to the code, or being able to combine the formal developmentwith an informal account.5.2 Mathematical applicationsProving new theorems, with a long term aim of becoming more widely used bymathematicians, is an obvious goal of automated reasoning research. As well as29

the bene�t to the mathematical community, these challenge problems provide asigni�cant test of our systems and techniques and, incorporated into collectionsof standard examples such as TPTP [107] and events such as the CADE theoremproving competitions, provide valuable benchmarks for developers.In principle any of the systems we have described could be used for provingnew theorems, but in practice the most impressive results in classical logic havecome from systems using decision or semi-decision procedures such as resolutionor rewriting. As examples we cite:{ McCune's proof in 1997 of the Robbins conjectures [80] using EQP, a vari-ant of the resolution theorem prover OTTER, made the front page of theNew York Times, and has been cited as one of the top �ve achievements inAI [114]. The result, conjectured by Robbins in the 1930s, states that theequation n(n(x) + y) + n(n(x) + n(y)) = xfollows from the equations x+ y = y + x(x+ y) + z = x+ (y + z)n(n(x+ y) + n(x+ n(y))) = x:The automated proof took 8 days on an RS/6000 processor and used about30 megabytes of memory: one can extract from the output the �nal proofwhich is 15 lines long and easily checked by hand.{ Similarly McCune and Padmanabhan's [79] work on cubic curves used OT-TER, and Fujita and Slaney's [101] work on the existence of certain quasig-roups used OTTER together with model elimination and constraint pro-gramming techniques: both involved complex search over enormous searchspaces.{ Equational reasoning based on rewriting and completion is a technique usedboth by algebraists and in theorem provers such as LP [40]: the �rst paperon completion, by Knuth and Bendix [64] was published in a group theoryconference proceedings, and the group theorist Holt [29] has implementeda fast completion engine for strings. In recent studies Martin, Shand andLinton [74, 78] compared this with various theorem provers and concludedthat while the former was often several orders of magnitude faster, becauseof various built in enhancements, the latter o�ered the bene�ts of a moreexible object language which allowed some automation that the group the-ory community had not considered before, such as completion over terms,rather than strings, and proofs by induction.{ An early challenge problem was the construction of single axiomatisationsfor groups, in answer to a question of Tarski. Neumann [51] constructed the�rst such example by hand: subsequent work of Kunen [67] constructed alarge number of examples by running completion on candidates generatedautomatically. Completion has also been used by Kapur [121] to show thata ring satisfying a law of the form x2n = x is commutative for certain valuesof n. 30

{ Geometry theorem proving [16], using various combinations of axiomatisa-tions, Gr�obner basis techniques, and quanti�er elimination by Collin's al-gorithm has been particularly successful in proving new results and in applic-ations to problems in graphics and robotics. Euclidean geometry statementsabout lines, ellipses and so on which are true in a general case sometimesfail for certain degenerate cases (for example if the ellipse is a point): thesetechniques identi�ed several such missed cases in the usual statements ofwell-known results.{ The automation of induction proofs has received much attention, particularlythe automated choice of induction hypotheses. A powerful theory has beendeveloped by Bundy [13] and applied for example to proofs similar to thoseobtained with Gosper's algorithm.These achievements are impressive. A variety of �rst order, equational and induc-tion proofs can be produced, sometimes completely automatically and sometimeswith user guidance in the form of weights or orderings. The output is a proofwhich can be checked, in principle at least, using other software or, in somecases, like the Robbins proof, distilled to produce output which can be checkedby hand. Large examples like this, or Slaney's work, often stretch our systems totheir limits (that is why they are unsolved!) in terms of size, speed and search,requiring high-quality implementations of specialised decision or semi-decisionprocedures, which may not be that far from standard techniques of mathematicalcomputation.Perhaps the best comparison is with techniques of computational group the-ory, or McKay's graph algorithms: comparable sophisticated implementationswhich run completely automatically on small examples and have been run forweeks on large examples, where the search is controlled by subtle user settings.Such automated reasoning techniques can be used in speculative or exper-imental work: for rapidly checking many di�erent versions of a conjecture forexample. Their use in proofs can again be assessed in terms of rigour and quality.In cases where the output can be readily checked, by hand or another program,such as in the proof of Robbins' result, rigour is unproblematic. One might sup-pose that in general the use of such systems would be regarded as more rigorousthan the use of, for example, a computer algebra system. However the underlyinglogical system of a theorem prover is often combined with many other featureswhose correctness may be no more certain than that of a CAS, with, in the eyesof a specialist user community, less sense of ownership or community checkingof the code.The debates about quality are no di�erent in kind from those outlined whendiscussing Gosper's algorithm above: much depends on the context as to whetheran automatic proof is considered a \good" proof or not. A particularly strikingexample is given by the results about rings satisfying x2n = x. The �rst orderproof lacks the insight of the higher order proof involving division rings. In thecase of the Robbins result, as with the four colour theorem, a di�erent proofmight have more explanatory power, but as yet no-one has managed to �nd one.Such systems are powerful and e�ective when used on the right problems, but31

they are not yet much used by mathematicians. We conjecture that the reasonsare largely historical: as we have seen computation is any case not widely usedin mathematical research, and where it is the programs are likely to have beendeveloped over the years by academics in a particular research area develop-ing domain speci�c algorithms, with a particular emphasis on e�ciency. Thusfor example our own work on automating inductive proofs in group theory wasan eye-opener to this community, despite its impressive record in computationalmethods. In general mathematicians do not seem to know very much about auto-mated reasoning techniques, or have judged them to be irrelevant on the basisof over-enthusiastic reports of proofs of very simple results or sterile conjectures.Few papers on automated reasoning appear in general mathematical journals,or are reviewed in Mathematical Reviews.Even if such programs were more widely known one should be realistic aboutthe possible scope for their application. First order, equational or induction prob-lems of the kind that can be successfully automated form a very small part ofthe repertoire of techniques used in most research areas. So, as with Gosper's al-gorithm or computer algebra algorithms, these should be regarded as specialisedtechniques for particular situations, although ones independent of applicationdomain. Enthusiasts for automated reasoning are not likely to �nd these poten-tial applications unaided: matters are not as simple as opening a mathematicaljournal at random or asking the nearest mathematician for an unsolved prob-lem, then typing some hypotheses and conclusions into our favourite theoremprover! Even when we �nd such a candidate problem we should remember thatnot every conjecture is interesting: conjectures may remain unproved becauseno-one capable of proving them has judged them worth trying to prove.Thus such endeavours are most pro�tably pursued in collaboration withmathematicians who can provide context, insights and new undocumented prob-lems. Crucially also mathematical collaborators can provide the introduction tothe mathematical community which is necessary if these techniques are to betaken up by them in any serious way.5.3 Formalised mathematicsThere has been much work in the theorem proving community on the develop-ment of formalised mathematics, with computational assistance in the form ofproof checking or development of proofs through high level tactics and plans inthe LCF tradition.For example Mizar [110] uses natural deduction and Tarski-Grothendieckset theory, and has been used to formalise a large cumulative body of mater-ial at text-book and research journal level recorded over the past ten years inthe journal Formalised Mathematics [61]. This is impressive: more formalisedmathematics than has ever been produced by mathematicians. Other examplesinclude foundational material in analysis and algebra such as analysis in AUTO-MATH [12], computer algebra algorithms in NuPrl [56] and constructive reals inLEGO [60], and achievements such as Harrison's development of integration [46]in HOL or Shankar's proof of G�odel's theorem in Boyer and Moore's NQTHM32

[98]. Constructive proofs may improve on the classical version: unlike the clas-sical proof, Murthy's [21] version of Higman's Lemma gives an estimate of howfar along a sequence of words we must look to �nd a self-embedding. There arebig di�erences in both the logical foundations and capabilities of these systems,but these need not concern us here. In principle such systems could be used forproving new results, and indeed they routinely are in, for example, the hardwareveri�cation community.It would seem to be the case that with enough work (as a rough guide manyof the automated proofs we have mentioned have occupied a beginning PhDstudent for a couple of years, or an experienced one for several months) it ispossible to mechanise just about any piece of su�ciently developed existingmathematics, �lling in the details of whatever outline is provided, assumingthat that outline is consistent with the logical foundation of the system we areusing. The di�culties come in the sheer amount of work involved, in managingthe size, scale and e�ciency of the operation, in developing the theory in such away that precisely the right lemmas are available when needed, in \bending" thetheory to �t a logical foundation which may not be ideally suited to it, in beingcertain we have indeed implemented the hand proof we intended to implement,in going back, sometimes a long way, when the proof doesn't work because ofsome subtle mis-phrasing, and in getting e�cient implementations of generalprocedures such as factorisation or real arithmetic.Just about any piece of su�ciently well-developed piece of mathematics canbe formalised, but unlike logicians and automated reasoning researchers, fewpractising mathematicians seem to be interested in doing so.One reason is that, as with the techniques we described in the previous sec-tion, very few mathematicians know about such systems. Even the terminologyand concepts that form part of the most basic computer education in the subjectare unfamiliar: types, lambda calculus or the subtleties of partial functions arenot part of mathematical education even at graduate level, and I know of nopart of classical mathematics outside mathematical logic where the concepts aremade explicit. But this cannot be the whole answer: even theoretical computerscientists whose output is mathematical, and who know the concepts and workalongside theorem proving experts, do not generally use these tools, althoughthey might employ a researcher to verify parts of an algorithm for example.Constable's account of automata theory in this volume is a pleasing exceptionrather than the norm.We suggest that the main reason they are not used, and are not likely tobe used in their present form, is because the contribution of this endeavour tocurrent mathematical practice is marginal. Recall that we identi�ed mathem-atical practice with \producing conjectural mathematical knowledge by meansof speculation, heuristic arguments, examples and experiments, which may thenbe con�rmed as theorems by producing proofs in accordance with a communitystandard of rigour, which may be read by the community in a variety of ways."and we noted that it had remained relatively una�ected by computation. Com-puter aided formalised mathematics has at present little to o�er speculation,33

heuristic arguments, examples and experiments. For a piece of mathematics tobe \su�ciently well developed" to formalise it needs to be fairly close to a \proofin accordance with a community standard of rigour": in other words we need tohave something pretty close to a traditional hand proof already. Thus if math-ematical practice is not to change, and it seems extremely resistant to change,an expensive and di�cult formalised proof needs to be produced in addition toall the work that is currently been done, with the bene�t that, depending on ourdegree of trust in the prover, it gives us more certainty of freedom from error.Suppose for example that Gorenstein's reworking of the classi�cation of �nitesimple groups were to be automated, as it no doubt could be with su�cientresource made available to the task. We would be somewhat more certain of theclassi�cation, in particular meeting Gorenstein's concern that some special caseshad not been missed. However the communitywould still want something similarto the twelve volumes of hand proof currently being produced, even if only as acommentary on the machine checked proof, for reading in the various ways thatmathematical texts are read: as a reference, for teaching, for explanation and forunderstanding. And it might prefer to spend the enormous cost of formalisingthe endeavour on creating some new mathematics: Atiyah's \excitement andaction".Bob Boyer [9], developer of the ACL2 prover, goes further and advocatesbuilding a library of veri�ed results as a cultural object \Like the great pyr-amids, the e�ort required (especially early on) may be great; but the rewardscan be even more staggering than this e�ort." Kreisel [66] is characteristicallytrenchant \Let us remember that Hilbert's programme, as he originally inten-ded it, has failed, though it appeared plausible to someone with his insight. Inview of the obvious connection with automatic proof procedures, we must guardagainst similar misjudgements here since, with all due respect, people workingin automatic proof theory cannot be expected to be superior to Hilbert."Harrison [45], who has considerable experience of formalising mathematics inthe HOL system, outlines some of the challenges in embarking on such a program:choosing a foundational system, how to handle de�nitions or partial functions,how much automation, what kind of user interface and how to handle largedatabases of lemmas or the propagation of apparently minor changes through alarge body of formalised material. Thurston [109], one of the few mathematicianswho has considered computer aided formal reasoning, has a full appreciation ofthese di�culties, and while foreseeing the routine use of theorem provers in-the-small echoes similar concerns about the number of choices that would have tobe made in establishing a de�nitive and widely used large body of material, thedi�culty of reconciling this activity with current mathematical practice and thetime that would be spent in standardisation activities and resolving controversy.The diversity of approaches being studied in the formal reasoning communitysuggests we are not yet ready to commit either to a technology or a logicalfoundation. A further barrier is that, unlike much automated reasoning research,mathematical practice is universally based on classical logic, although the impactof computation is causing a few mathematicians to rethink this position [72].34

Amere glance at an account of signi�cant areas of 20th century mathematics,such as the classi�cation of �nite simple groups or the proof of Fermat's The-orem, is a humbling reminder of the enormous size of the task: a task for whichthe mathematical community has neither the interest, the inclination or the re-sources. Many of the same questions are being addressed in the computer sciencecommunity with the more modest aims of building shared libraries of standardlemmas about common data-types for use in hardware or software veri�cation.5.4 Combination of systemsWe outline below three approaches which use a combination of theorem prov-ing and mathematical software in an attempt to improve the contribution ofcomputation to current mathematical practice. We refer the reader to Calmet[53] for a discussion of general issues such as possible architectures for com-bined systems, and to endeavours such as OpenMath [1] for clari�cation of thepractical di�culties involved in matters such as common interchange formatsand interoperability, particularly for systems with di�erent semantics or typesystems.Embedded veri�cation techniques We may extend computational math-ematics systems used for experiment or speculation using automated reasoningtechniques. As we have seen computer algebra systems are notorious for givingresults which are wrong or unexpected, particularly when singularities or branchcuts are involved. Thus such extensions should be regarded as extending thefunctionality available to the user for speculative work rather than necessarilyimproving the rigour of the system.We might add to our computer algebra system facilities for induction, quan-ti�er elimination, constraint solving, Boolean or �rst order reasoning, case splits,user de�ned inference rules or techniques for handling in�nite sums and series.Current work in this area includes quanti�er elimination in REDUCE [115] andinduction in Mathematica [4]. Experiments at St Andrews involve a unifyingapproach to some of the problems involving side conditions, singularities andcontinuity by using proof planning to reorganise the existing somewhat ad-hocmethods. Notice that such experiments do not necessarily repair any unsound-ness present in the underlying CAS.A particularly successful application is Clarke's Analytica system [17, 18]. Heextended Mathematica with a collection of inference rules, implemented usingthe built in matching, simpli�cation and rewriting algorithms. The rules com-prised natural deduction with quanti�ers handled by Skolemisation, togetherwith simple induction schema and standard identities involving inequalities,sums and series. These were used to derive automatically a collection of res-ults in analysis [17], including a proof that1Xn=0 bncos(an�x);35

with 0 < b < 1, a odd and positive and ab > 1+3�=2, is continuous and nowheredi�erentiable. An extension with harmonic numbers and trigonometric functionswas used to prove identities involving �nite and in�nite sums from Ramanujan'snotebooks [18]. The latter are described as \elementary" but would probablychallenge the average graduate student.Formal methods for computational mathematics Light formal methods[40] aim to provide assistance with design and documentation, particularly ofinterfaces, and obtain consistency of typing, avoid degenerate cases, and provideprecise analysis of conditions at the speci�cation stage without the overhead offull veri�cation. They are valuable in addressing some of the concerns aboutdeveloping a reliable discipline for mathematical experiment and modelling.Systems like GAP and AXIOM comprise a kernel together with librariesof data and applications often contributed by advanced users. While the corecode is often reliable it is hardly surprising that problems arise with interfaces,documentation and later users determining exactly what the code does. Thealgorithms being implemented in such systems are often complex and rely onelaborate mathematics, with many choices being possible as to the exact versionof an algorithm to choose a�ecting, for example, the inputs on which it is valid.And machine checking that inputs are indeed valid may be infeasible if, for ex-ample, the precondition is that a function is continuous or di�erentiable at somepoint or that the underlying type is a ring with certain properties. A possiblyapocryphal story concerns the six implementations of Gaussian elimination ina version of Macsyma: not that the six implementation were essentially di�er-ent, but that users felt more con�dent developing their own than relying on theversion provided being exactly applicable in their circumstances.Modern computer algebra systems like AXIOM with advanced type systemsalready provide some security: Dunstan [27] addresses these issues further de-veloping light formal methods for AXIOM in the Larch tradition [40]. They relyon annotations in a behavioural interface speci�cation language, Larch-AXIOM,which can be manipulated using theorem proving techniques. The annotationsform a partial speci�cation which also aids reuse, debugging and checking forsoundness. A veri�cation condition generator shows the user the preconditionsfor a module without attempting to verify them, thus alerting the user to, forexample, complex side conditions while giving them the freedom to decide what,if anything, to do about them. A static analyser similar to Nelson's [83] ESCsystem also uses the annotations to provide low level checks on array boundsand the like.Formal methods techniques also have a role to play in elucidating the di�-culties in mathematical modelling outlined above. As well as testing an imple-mentation one might attempt to prove properties either directly or by provingproperties of the partial speci�cations provided by annotations. Such proofs,while still only serving as further possible falsi�cations of the theory (or code),would be a further step in increasing con�dence in the theory (or code). Simpletechniques that kept track of assumptions, or combined existing theories in a36

reliable way, might also make rather clearer the relationships between di�erentassumptions and theories.Such techniques can also be useful in understanding and controlling leg-acy code or large subroutine libraries. For example the Amphion project [106]involved the use of formal methods techniques to plan and interpret space sci-ence observations by constructing FORTRAN code from a collection of standardsubroutines, each of which has been provided, post-implementation, with a �rstorder speci�cation. A graphical interface is used to pose the problem, then thisis translated into �rst order logic and passed to a resolution based prover whichderives a suitable speci�cation in terms of the subroutines, and proves it correct.The required code can then be synthesised automatically.The OpenMath [1] project addresses the interoperability of mathematicalsystems and provides a further application for formal methods techniques inproviding precise semantics for interchange formats and addressing issues suchas speci�cation matching and type reconstruction.Formalising computational mathematics While a full formal developmentof large areas of mathematics may not be feasible for some time, work on formal-ising existing computational mathematics, with the aim of getting more reliable,repeatable and checkable output and making such computationsmore acceptablein the mathematical community as part of a proof looks more promising.The use of formalmethods in debugging designs suggests developing their usein debugging de�nitions: proving well-formedness conditions, de�nedness and soon in developing a mathematical theory. Getting de�nitions right and consistentwith each other is often time consuming and error prone, especially when aminor change is necessary perhaps for stylistic reasons and has to be propagatedthrough a body of material. When the de�nitions are correct however checkingthese things is routine, and is generally glossed over in printed accounts. It wouldbe useful to develop a methodology for using theorem provers to help in suchdevelopments.For numerical software correctness of oating point arithmetic, formal ana-lysis of error conditions and exact real computation are all active research areas.There have been various approaches to implementing computer algebra insidetheorem provers: to do this properly requires formalising large amounts of math-ematics, with a great loss in e�ciency if standard algorithms such as factorisationare implemented from �rst principles. A 5GB Gr�obner basis is a daunting pro-spect for any theorem prover! The resulting increase in precision, for examplerequiring side-conditions to be handled correctly at every stage, may be unwel-come to mathematicians who want to use the system in a fairly informal way.Various hybrid systems have been proposed, where theorem provers call com-puter algebra systems [53]. The theorem prover can trust the algebra systemfully, using it as an oracle that acts as a special purpose decision procedure: or itcan trust it not at all [48], merely using it as a suggestion for lemmas which arethen proved in the theorem prover. Thus for example if the computer algebrasystem factorises a term this can be checked by the theorem prover proving37

that the product of the factors is indeed the given term. There are a number ofintermediate approaches such as arranging for the computer algebra system toprovide hints or plans towards proofs of its results [62], or to trust the imple-mentation of computer algebra algorithms while making the theorem prover dothe book-keeping of checking interface de�nitions and so on [5].A longer term goal is the use of theorem provers to provide the infrastruc-ture and organisation of mathematical systems, guaranteeing secure and reliableoutput while providing the user with a familiar front end which can be usedinformally and calling on other specialised procedures as necessary. For exampleHarrison [47] has coded standard numerical routines in a small imperative lan-guage deeply embedded (that is via an embedding of the semantics) in HOL. TheCabri-Geometry system [14] allows the user to draw a geometrical con�gurationof lines and curves, apply geometrical transformations by point and click andthen request a cartesian proof. Beeson's MathPert [7] system uses non-standardanalysis techniques to handle some of the problems caused by continuity andparameters in computer algebra systems. Jamnik [58] has experimented withthe use of the
�rule to generalise from diagrammatic proofs.More generally one can conceive a mathematical software system producingplans for execution by a theorem prover, for example a visualisation system pro-ducing input to a geometric reasoning system, or an exhaustive search producinginput for a proof checker. As with other areas of arti�cial intelligence, usabilitymay well come from hiding the technology rather than making it explicit.6 ConclusionsWidespread use by research mathematicians is not and should not be the onlyor main goal of computational logic research 2. However in so far as it is anobjective we should be aware of the extraordinary power of current mathemat-ical software systems, and of the nature of current mathematical practice, andaddress mathematical speculation and conjecture and the discipline of mathem-atical experiment. While there is debate in the mathematical community aboutthe status of computation as part of a proof, mathematicians do routinely usecomputational techniques where appropriate: they are subject to communitystandards of rigour just as other proofs are.We should investigate how our techniques can help, working with mathem-aticians rather than preaching at them or making mathematically naive claimsabout what our systems can do, starting with those who might already be sym-pathetic to our endeavours: computer inclined mathematicians and mathematic-ally inclined computer scientists. As well as developing our systems and present-ing our results in our own conferences and journals we should consider accessiblesurvey articles, presentations at relevant mathematical and scienti�c conferencesand representation in Mathematical Reviews.2 A cynic might observe that research mathematicians are neither numerous nor rich!38

7 AcknowledgmentsThis paper grew out of lively discussions with members of the MarktoberdorfSummer School in August 1997: I thank them and the organisers for an enjoyableand stimulating meeting, and Mike Atkinson, Alan Bundy, Wilfrid Hodges, PaulJackson, Tony Hoare, Steve Linton, Tom Melham, Jose Meseguer, Alice Miller,Duncan Shand, Jan von Plato and Lincoln Wallen for helpful comments onearlier drafts of this paper.References1. J Abbott et al, Objectives of OpenMath, RIACA TU Eindhoven,Technical Report12 (1996)2. K Appel and W Haken, The four color proof su�ces, Math. Intelligencer 8 (1986)10{203. M Atiyah et al, Responses to: A Ja�e and F Quinn, Bull. Amer. Math. Soc. 29(1993) 1{134. B Buchberger, Symbolic computation: computer algebra and logic, Appl. Log. Ser.3 (1996) 193{219, Kluwer Acad. Publ5. C Ballarin et al, Theorems and Algorithms: An Interface between Isabelle andMaple International Symposium on Symbolic and Algebraic Computation, 150-157, ACM Press, 19956. B Barras,et al, The Coq Proof Assistant Reference Manual (Version 6.1), 1996,available from ftp.inria.fr7. M Beeson, Mathpert: Computer support for learning algebra, trigonometry, andcalculus, Logic Programming and Automated Reasoning, LNCS 624, Springer 1992,see also www.mathpert.com8. C Boyer, A history of mathematics, John Wiley 19899. R S Boyer, The QED manifesto, CADE 12, LNCS 814, Springer 199410. J Borwein et al, Making sense of mathematics, Math. Intelligencer 18:4 (1996)12{1811. R Brown et al, Calculations with simplicial and cubical groups in AXIOM, J Sym-bolic Computation 17 (1994) 159-17912. N de Bruijn, The mathematical Language AUTOMATH, its usage, and some ofits extensions, Symposium on Automatic Demonstration, Lecture Notes in Math-ematics 125, Springer 196813. A Bundy et al, Rippling: a heuristic for guiding inductive proofs, Arti�cial Intelli-gence 62 (1993) 185{25314. Cabri-geometry, Texas Instruments see www.ti.com/calc/docs/cabri.htm15. Centralised mathematical pre-print repository front.math.ucdavis.edu16. S Chou, Mechanical geometry theorem proving, Reidel, 198817. E Clarke and X Zhao, Combining symbolic computation and theorem proving:some problems of Ramanujan, CADE 12, LNCS 814, Springer 199418. E Clarke and X Zhao, Analytica - A Theorem Prover for Mathematica, CarnegieMellon University, School of Computer Science, CS-92-117, 199219. A Cohn, The notion of proof in hardware veri�cation, J Automated Reasoning 5(1989) 127-14020. P Cohn, Algebra volume 3, Wiley 199139

21. C Murthy et al, A constructive proof of Higman's lemma, Fifth Annual IEEESymposium on Logic in Computer Science (Philadelphia, PA, 1990) 257{26722. J Conway et al, Atlas of �nite groups, Oxford University Press, Oxford, 1985, seealso for.mat.bham.ac.uk/atlas/23. J Dieudonn�e, Mathematics|the music of reason, Springer 199224. E Dijkstra, A discipline of programming, Prentice-Hall 197625. E Dijkstra, The tide not the waves, in Beyond computation, ed Denning, Springer199726. R DeMillo et al, Social processes and proofs of programs CACM 22 (1979) 271-28027. M Dunstan, The design and implementation of Larch-axiom, Ph D, University ofSt Andrews, forthcoming 199828. David Epstein, quoted in [54]29. D Epstein et al, The use of Knuth-Bendix methods to solve the word problem inautomatic groups, J Symbolic Computation 12 (1991) 397{41430. Journal of Experimental Mathematics, available at www.expmath.org31. R Fateman, Why Computer Algebra Systems Can't Solve Simple Equations, ACMSIGSAM Bull 30 (1996) 8-1132. R Fateman, TILU Table of Integrals Look Up, www.cs.Berkeley.edu/ fateman33. S Feferman, What rests on what? The proof-theoretic analysis of mathematics,Philosophy of mathematics (Kirchberg am Wechsel, 1992) 147{17134. J Fetzer, Program Veri�cation: The Very Idea CACM 31 (1988) 1048-106335. S Garland and J Guttag, An Overview of LP, The Larch Prover, RTA3, LNCS 355137{151, Springer 198936. M Gordon and T Melham, Introduction to HOL: A theorem proving environmentfor higher order logic, Cambridge University Press, 199337. D Gorenstein, Classifying the �nite simple groups, Bull. Amer. Math. Soc. 14(1986) 1{9838. R Graham et al, Concrete Mathematics, Addison-Wesley, 198939. G Grimmett, Percolation, Springer 198940. J V Guttag and J J Horning, Larch: languages and tools for formal speci�cation,Springer 199341. J Grabiner, Computers and the nature of man: a historian's perspective on con-troversies about arti�cial intelligence, Bull. Amer. Math. Soc. 15 (1986) 113{12642. A Granville, Review of BBC Horizon Program, \Fermat's Last Theorem", NoticesAmer. Math. Soc. 44 (1997) 15-1643. J Hadamard, An essay on the psychology of invention in the mathematical �eld,Dover 195444. G H Hardy, Mathematical Proof, Mind 38 (1929)45. J Harrison, Formalized Mathematics, TUCS TR 36, 199646. J Harrison, Constructing the Real Numbers in HOL, Formal Methods in SystemDesign 5 (1994) 35-5947. J Harrison, Floating point veri�cation in HOL, HOL 95, LNCS 971, Springer 199548. J Harrison and L Thery, Extending the HOL Theorem Prover with a ComputerAlgebra System to Reason About the Reals, in HOL 93, LNCS 780, Springer 1993,49. A Heck, Introduction to Maple, Springer 199350. R Hersh, What is mathematics, really? Oxford University Press 199751. G Higman, B Neumann, Groups as groupoids with one law, Publ. Math. Debrecen2 (1952) 215{22152. D Ho�man, Computer-aided discovery of new embedded minimal surfaces, Math.Intelligencer 9 (1987) 8{21 40

53. K Homann et al, Combining theorem proving and symbolic mathematical comput-ing, LNCS 958, Springer 199454. J Horgan, The death of proof, Sci. Amer. 269 (1993), 92{10355. D Hume, Treatise on human nature, (ed Mossner), Penguin 1969, p23156. P Jackson, Exploring Abstract Algebra in Constructive Type Theory, CADE 12,LNCS 814, Springer 199457. A Ja�e and F Quinn, \Theoretical mathematics": toward a cultural synthesis ofmathematics and theoretical physics, Bull. Amer. Math. Soc. 29 (1993), 1{1358. M Jamnik et al, Automation of diagrammatic reasoning, Proceedings of the 15thIJCAI (1997) 528-533, Morgan Kaufmann59. R D Jenks and R S Sutor, axiom: The Scienti�c Computation System, Springer199260. C Jones, Completing the Rationals and Metric Spaces in LEGO, in Logical Envir-onments, Cambridge University Press 199361. Journal of Formalised Mathematics, see mizar.uw.bialystok.pl62. M Kerber et al, Integrating Computer Algebra with Proof Planning, LNCS 1128,Springer 199663. P Kitcher, The nature of mathematical knowledge, Oxford University Press 198364. D Knuth,P Bendix, Simple word problems in universal algebras, ComputationalProblems in Abstract Algebra, 263{297, Pergamon 196765. S Krantz, The immortality of proof, Notices Amer. Math. Soc. 41 (1994) 10{1366. G Kreisel, Hilbert's Programme and the search for automatic proof procedures,Symposium on Automatic Demonstration, Lecture Notes in Mathematics 125,Springer 196867. K Kunen, Single axioms for groups, J. Automated Reasoning 9 (1992) 291{30868. G Labelle, Some combinatorial results �rst found using computer algebra, J Sym-bolic Computation 20 (1995) 567-59469. I Lakatos, Proofs and refutations, The logic of mathematical discovery, CambridgeUniversity Press 197670. C Lam, How reliable is a computer-based proof? Math. Intelligencer 12 (1990)8{1271. S Lang: Mordell's review, Siegel's letter to Mordell, Diophantine geometry, and20th century mathematics, Notices Amer. Math. Soc. 42 (1995) 339{35072. D Epstein, S Levy: Experimentation and proof in mathematics, Notices Amer.Math. Soc. 42 (1995) 670{67473. S Levy, Making waves, A guide to the ideas behind Outside in, A K Peters, 199574. S Linton et al, Some group-theoretic examples with completion theorem provers,J Automated Reasoning 17 (1996)145{16975. D Mackenzie, Knowing machines, MIT Press 199776. D Mackenzie, Slaying the cracken: the socio-history of a mathematical proof, Pre-print 199777. Ju Manin et al, How convincing is a proof? Math. Intelligencer 2 (1979) 17{2478. U Martin et al, Algebra and Automated Reasoning, CADE 13, LNCS 1102,Springer 199679. W McCune and R Padmanabhan, Automated deduction in equational logic, LNCS1095, Springer 199680. W McCune, Solution of the Robbins Problem, J. Automated Reasoning 19 (1997)263-27681. B McKay and S Radziszowski, Subgraph counting identities and Ramsey numbers,J. Combin. Theory Ser. B 69 (1997) 193{20941

82. The NAG Fortran library, www.nag.co.uk83. G Nelson et al, Network objects, Software Practice and Experience, 25 (1995)87-13084. A Newell et al, Empirical explorations of the Logic Theory Machine: a case studyin heuristics, in Computers and Thought, McGraw Hill 196385. N Oreskes et al, Veri�cation, validation and con�rmation of numerical models inthe earth sciences, Science 263 (Feb 1994) 641{64686. S Owre et al, PVS: A Prototype Veri�cation System, LNCS 607, Springer 199287. L Paulson, Logic and Computation, Cambridge University Press, 198788. H Poincar�e, Mathematical creativity, reprinted in The world of mathematics edNewman, volume 4, Microsoft Press, 198889. R Pollack, How to believe a machine checked proof, Twenty �ve years of construct-ive type theory, ed G Sambin, Oxford University Press 199790. K Popper, Conjectures and refutations: The growth of scienti�c knowledge, BasicBooks 196291. P Rideau, Computer algebra and mechanics: the JAMES software, in ComputerAlgebra in Industry, (ed A M Cohen), Wiley 1993, 143{15892. N Robertson et al, The four-colour theorem, J. Combin. Theory Ser. B 70 (1997)2{4493. J Robinson, A machine oriented logic based on the resolution principle, JACM 12(1964), 23-4194. B Rotman, Thinking dia-grams: mathematics, writing and virtual reality, SouthAtlantic Quarterly 94 (1995) 389-41695. D Ruelle, Chance and chaos, Penguin 199196. Martin Sch�onert et.al. GAP- Groups, Algorithms, and Programming, Lehrstuhl Df�or Mathematik, Rheinisch Westf�alische Technische Hochschule, Aachen, Germany,1995, or at www-gap.st-and.ac.uk97. B Selman and S Kirkpatrick, Critical behavior in the computational cost of satis-�ability testing, Arti�cial Intelligence 81 (1996) 273{29598. N Shankar, Metamathematics, machines, and G�odel's proof, Cambridge UniversityPress 199499. S Simpson, Partial realizations of Hilbert's Program, J. Symbolic Logic 53 (1988)349{363100. S Singh, Fermat's Enigma: The Epic Quest to Solve the World's Greatest Math-ematical Problem, Walker and Company 1997101. J Slaney et al, Automated reasoning and exhaustive search: quasigroup existenceproblems, Comput. Math. Appl. 29 (1995) 115{132102. J Slaney, S Thiebaux, Phase transitions and optimality: sense and nonsense Pre-print 1997103. N Sloane, S Plou�e: The encyclopedia of integer sequences, Academic Press 1995,www.research.att.com/ njas/sequences/104. R Solomon, On �nite simple groups and their classi�cation, Notices Amer. Math.Soc. 42 (1995) 231{239105. I Stewart, Does god play dice? The mathematics of chaos, Blackwell 1989106. M Stickel et al, The deductive composition of astronomical software from sub-routine libraries, CADE 12, LNAI 814, Springer 1994 341{355107. G Sutcli�e et al, The TPTP Problem Library, CADE 12, LNAI 814, Springer1994 252-266108. H P F Swinnerton-Dyer and B Birch, Elliptic curves and modular functions,Lecture Notes in Math, 476 (1975) 2-3242

109. W Thurston, On proof and progress in mathematics, Bull. Amer. Math. Soc. 30(1994) 161{177110. A Trybulec, The Mizar-QC 6000 logic information language, ALCC bulletin 6(1978) 136-140111. T Tymoczko, A philosophical investigation of the four-color proof, Math. Mag.53 (1980) 131{138112. J von Neumann, The mathematician, in The Works of the Mind (1947) 180{196,University of Chicago Press113. S Wolfram, The Mathematica book, Cambridge University Press 1996114. D Waltz, Arti�cial intelligence: realizing the ultimate promises of computing, AImagazine 18 (1997) 49-52115. V Weispfenning, Simulation and optimization by quanti�er elimination, Applica-tions of quanti�er elimination, J. Symbolic Computation 24 (1997)189{208116. H Weyl, Mathematics and logic, Amer Math Monthly 53 (1946) 2-13117. A Whitehead, Science and the modern world, Cambridge University Press 1926118. A Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2)141 (1995) 443{551119. L Wos, The Automation of Reasoning: An Experimenter's Notebook with OtterTutorial, Academic Press (1996)120. D Zeilberger, Theorems for a price: tomorrow's semirigorous mathematical cul-ture, Notices Amer. Math. Soc. 40 (1993) 978{981121. H Zhang and D Kapur, Consider only General Superpositions in CompletionProcedures, RTA 3, LNCS 355 513-527, Springer 1989
This article was processed using the LATEX macro package with LLNCS style43

