Computers, reasoning and mathematical
practice *

Ursula Martin

um@dcs.st-and.ac.uk
University of St Andrews

Computer aided formal reasoning, mathematical assistants which check com-
plex arguments and automated proofs of new and interesting mathematical res-
ults have been part of the dream of computational logic for many years. This
dream is in part being realised by the success of endeavours such as the Mizar
project [110], which has produced many volumes of formalised mathematics,
and McCune’s recent proof of the Robbins conjecture [79], cited, along with
autonomous vehicle guidance and the chess program Deep Blue, as one of the
five most significant achievements of artificial intelligence [114]. Yet it is still
the case that few mathematicians use such programs, and their impact outside
certain specialised communities has been less than might have been hoped.

The main impact of computation on mathematics has been through experi-
ment and computations used as part of a traditional mathematical proof: tech-
niques such as numerical computation, visualisation of complex topological sur-
faces, the specialised algorithms used in the classification of finite simple groups
or the use of computers to perform case analyses such as in the proof of the four
colour theorem. In addition general tools such as computer algebra systems and
software for mathematical typesetting and teaching are used very widely.

Indeed this widespread use of computation for experimental work has lead
to new journals such as Experimental Mathematics and claims from some that
the nature of mathematics is being fundamentally changed with a paradigm
shift from rigour to “semi-rigorous” or “speculative work”. Most mathematicians
would question these claims: the discipline of proof remains unchanged and com-
putation has attracted attention where it has been used precisely because this
is unusual. In the major achievements of 20th century mathematics, such as the
recent proof of Fermat’s theorem or the developments in topology and geometry,
the role of computation has been slight. In the case of the classification of finite
simple groups, some were constructed computationally but could then be invest-
igated theoretically, and the 5000 pages or so of the classification theorem is,
essentially, a hand proof that there are no others. Computation has transformed
biology, chemistry, neuroscience and physics: without computational mathemat-
ics we would have no Mars pathfinder robot, no human genome project and no
CAT scans. We might still have the proof of Fermat’s theorem.

Nevertheless computational techniques are becoming increasingly important
in some areas of mathematics, and it is our purpose here to examine the oppor-
tunities they create for computational logic research. We first analyse current

* To appear, Computational Logic, (Marktoberdorf, 1997), NATO Adv. Sci. Inst. Ser.
F Comput. Systems Sci., Springer, Berlin, 1998, ed H Schwichtenberg



mathematical practice, which we identify with producing conjectural mathem-
atical knowledge by means of speculation, heuristic arguments, examples and
experiments, which may then be confirmed as theorems by producing proofs in
accordance with a community standard of rigour, which may be read by the
community in a variety of ways. The goal may be individual theorems, such
as Fermat’s conjecture, or more general bodies of knowledge such as topology
and geometry, addressing the structure of surfaces. We note that while notions
of rigour and quality (what makes a good proof) may have changed, practice
itself has remained remarkably robust over the centuries. We observe that com-
putation has proved important for speculation and experiment in several areas,
and that, despite vigorous debate over matters such as the four colour theorem,
computation, particularly well understood domain specific algorithms, is regu-
larly accepted as part of a proof. As with acceptance of other kinds of proof,
community acceptance of the computation is often governed by matters such as
the perceived competence of the software developer or the public availability of
the sources rather than line by line verification of the code.

We then consider computer aided reasoning, an academic endeavour that has
grown up largely independently of research mathematics, and assess its applic-
ation to research mathematics in the light of our description of practice. We
consider two strands: automated proof by techniques such as resolution, and full
formal development of large bodies of mathematics. We argue that the former
i1s indeed useful for proving new theorems, somewhat comparable to domain
specific algorithms in its relation to practice, and should be regarded as a use-
ful technique best pursued in collaboration with those mathematicians who can
make use of it. However the latter is at odds with mathematical practice: many
mathematicians view formal proof development unsympathetically and it is hard
to see it being incorporated except in expensive reworkings of well-understood
material.

In the light of the previous analysis we identify three main objectives for
computer aided reasoning: enhancing the techniques available for mathematical
experimentation, developing community standards for experiment and modelling
and developing methods which will make computation more acceptable as part
of a proof. We discuss three areas of research which address these: the use of the-
orem proving techniques to enhance or extend mathematical software systems,
support for formal methods techniques to increase the reliability of such systems,
and the use of computer aided formal reasoning in support of mathematical prac-
tice. This last includes activities such as formalising systems for computational
mathematics or visualisation so that they can still be used informally but gen-
erate a formal development, and developing techniques to provide assistance in
the initial stages of developing a new theory.

By mathematics here we mean the activities of working research mathem-
aticians, producing new results in pure or applied mathematics, although we
touch briefly on some questions concerning the applications of computational
mathematics and simulation in research science and engineering. We have left
out several other related areas entirely: logical questions of decidability, sound-



ness or completeness, theoretical computer science issues of semantics, comput-
ability or complexity, foundational issues such as constructivity, computer aided
proofs about software and hardware, and the use of computers in mathemat-
ical education at all levels and in heuristic discovery. In particular foundational
questions about computation have transformed mathematical logic, computa-
tion has made constructive proof feasible, and effective notions of practice for
proofs about hardware and software are by no means well understood. However
these matters fall outside the scope of this paper.

1 Some twentieth century mathematical achievements

To set the scene we provide the roughest of outlines of some recent mathem-
atical achievements. Research mathematics is difficult and requires specialised
knowledge: a precise statement of most of the theorems indicated below requires
concepts treated at the graduate level of mathematical education: a full under-
standing of the proofs is probably restricted, when they first appear, to a handful
of experts.

1.1 Geometry, number theory and Fermat’s theorem

Fermat conjectured in 1637 that the equation

has no positive integer solution if n is an integer greater than 2, famously sug-
gesting that he had a proof which the margin was too small to contain. In the
nineteenth century mathematicians such as Hilbert developed number theory, al-
gebraic geometry, Galois theory and the theory of ideals, investigating equations
(i.e. curves and surfaces) in zero and non-zero characteristic by investigating the
algebraic structure and symmetries of the fields generated by their solutions.

Twentieth century mathematics, particularly the development by Grothen-
dieck and his school of commutative algebra and cohomology, provided a unifying
framework for topology, differential geometry and algebraic geometry, replacing
computations in specific curves or surfaces with very general homological and
categorical machinery. This enabled the translation of results from number the-
ory into function fields and led to a stream of extremely significant results, such
as Deligne’s proof of an analogue of the Riemann Hypothesis for certain vari-
eties, and Falting’s proof of Fermat’s conjecture for all but finitely many cases.
Fermat’s conjecture, in this terminology, concerns the Galois theory of certain
elliptic curves. The Shimura-Taniyama conjecture asserted a link between mod-
ular forms and elliptic curves, and it was Wiles’s proof of certain cases of this
in 1992 (and subsequent corrections) that gave the proof of Fermat’s theorem.
See Wiles [118], and Singh [100] for an attempt at a popular account. Wiles’s
proof draws on a vast and continuing body of difficult mathematical material,
developed over two centuries.



1.2 The classification of finite simple groups

A set of elements closed under a binary associative operation and inversion
forms a group (for example the integers modulo n under addition, or the sym-
metries of a cube under composition): a group with no proper quotient groups
is called simple (for example the integers modulo a prime). Groups derived from
symmetries and equations were studied by Lagrange and Galois: by 1960 or so
mathematicians were aware of 16 infinite families of finite simple groups, and
5 isolated “sporadic” simple groups discovered by Mathieu in the last century.
By 1980 a further 21 sporadic groups had been predicted and then construc-
ted, often by using a computer to search for certain matrices over finite fields:

054 elements. The classification theorem

the largest, the “monster” has around 1
states that there are no other finite simple groups.

Little was known until mid-century about general finite simple groups. In
1954 Richard Brauer suggested a strategy for classifying simple groups of even
order: Burnside had conjectured 50 years before that all finite non-commutative
simple groups had even order. Feit and Thompson proved Burnside’s conjecture
in 1963 (in a 254 page paper) and in 1972 Gorenstein drew up a sixteen point
plan based on Brauer’s ideas to prove the classification theorem, executed by
1983 by his coworkers in around five thousand journal pages. Solomon [104]
observes that the output “simply overwhelmed the digestive system of the group
theory community”, and he remarks that a key unpublished eight hundred page
paper by Mason, in which several errors were found and corrected in 1992 “is
an extreme point on the spectrum of incompletely assimilated manuscripts from
the later years of the classification”.

Such concerns have led to the revision project, planned to appear in twelve
volumes, some of which are now complete. The classification theorem has stim-
ulated new areas of research: perhaps one of the most intriguing, affectionately
called “moonshine” by the experts, is John McKay’s observation that the num-
ber 196883, an invariant of the monster is also associated to a certain modular
form. The consequence of this is a connection between this extraordinary com-
binatorial object and deep results in number theory and quantum field theory.
See Solomon’s survey [104] for more details.

1.3 Dynamical systems

Non-linear dynamical systems, in the guise of “chaos theory” accompanied by
fractal images, have become a popular metaphor, although literary theorists
who equate chaos theory and post-modernism do not inspire confidence that
they have entirely understood the underlying mathematical concepts.

Around one hundred years ago Poincaré proved that in two dimensions “typ-
ical” dynamical systems, for example objects in motion governed by differential
equations, have “essentially” two kinds of limiting behaviour or attractors : either
they stop (like rocks or footballs) or they settle down into periodic motion (like
the planets or the tides). The words “typical” and “essential” here hide some
elaborate topology and differential geometry. In three and higher dimensions



however a third kind of attractor, the “strange attractor” appears. This is char-
acterised by two things: we know that the particle settles down in a certain
region, generally a particularly complicated one topologically, and we cannot
predict its trajectory within that region, where it is subject to “extreme sensit-
1vity to initial condition”. This phenomenon was identified by Poincaré: it means
that very small changes in the initial conditions can have very large effects on
the outcome, so that we would have to know the initial position of the particle
exactly to predict it. The asteroid belt between Mars and Jupiter appears to
exhibit such chaotic phenomena: claims about for example, the stock market,
are rather harder to verify.

Despite the popular attention “chaos theory” has not affected numerical com-
putation as much as one might suppose, except to give a greater appreciation
of the difficulties of things like long range weather forecasting. One reason for
this 1s that as yet we have nothing like a classification of strange attractors, only
an ever growing catalogue of examples which it would be very hard to study
without the aid of computational simulations and investigations. See Stewart
[105] for more details.

1.4 The four colour theorem

In 1852 the British mathematician Francis Guthrie conjectured that any map
could be coloured with four colours: the flaw in a proof by Kempe in 1879
remained undiscovered for 11 years and then the problem remained unsolved
until Appel and Haken [2] announced their computer proof in 1976. The main
idea of the proof was to identify a set of 1478 configurations and show that each
these occurred in a minimal counterexample (this was a mammoth hand proof)
and then to use a computer to check that in fact none of these configurations did
appear in a minimal counterexample. Robertson and Seymour [92], motivated by
the difficulty of understanding the hand part of the proof, have recently provided
a new proof reducing the number of configurations to 633, providing a machine
checkable formalisation of the hand part of the proof and a new implementation
for the machine checked part. As yet no hand proof has been found, although
the 5 colour case is very easy. There is an admirable account of the history of the
proof and the debate 1t generated in Mackenzie’s survey “Slaying the Kraken”
[76].

This work is a little 1solated from other areas of contemporary mathematics,
and 1s more accessible to non-experts than the rest of the material we have
described above. However once we start to consider not just maps, that is graphs
drawn in the plane, but graphs drawn on more elaborate surfaces we come upon
advanced matters in geometry and topology. For example any map on a sphere
with n handles (think of a doughnut with n holes) can be coloured with |7 +
\/(4871 + 1)] colours.



2 What is mathematical practice?

In assessing the impact of computation on mathematical practice it is as well first
to ask what mathematical practice is. After a hint at the philosophical issues we
concentrate on five aspects of the question which are important for the discussion
of the role of computation: proof, rigour, taste, discovery and exposition. We will
identify mathematical practice with

producing conjectural mathematical knowledge by means of speculation,
heuristic arquments, examples and experiments, which may then be con-
firmed as theorems by producing proofs in accordance with a community
standard of rigour, which may be read by the community in a variety of
ways.

Mathematics is about developing concepts, definitions, theories, methods and
conjectures, as well as verifying some of those conjectures by proving theorems.
Mathematicians’ understanding of this, and the way in which they go about
it, has remained remarkably unchanged over several centuries, despite debates
about foundation or the advent of computation. While notions of, for example,
acceptable standards of rigour, have changed over time, the general notion of
mathematical practice has not. For Littlewood, a mathematician at Trinity Col-
lege in Cambridge in mid-century, the Greek mathematicians “are not clever
schoolboys or ‘scholarship candidates’, but ‘Fellows of another college’.” Major
areas of mathematics such as topology, algebra or number theory have developed
continuously and cumulatively over several centuries. Lakatos in his book Proofs
and Refutations gives a detailed account of the history of Euler’s theorem about
polyhedra that covers a hundred and fifty years of mathematical history: an
account of other fields would reveal the same pattern.

While a hundred years ago Poincaré or Hilbert could comprehend all that was
significant in mathematics 1t is hard nowadays for someone to be an expert in
more than one field. Talking about mathematicians as one community is a little
like talking about Europeans or sports players as one community: mathematics
is rather split into a number of disparate tight communities, so that for example
an active group theorist anywhere in the world might receive almost daily email
from the “group-pub” email list, while having no technical contact beyond an
occasional chat in the tea-room based on common knowledge of master’s level
material with the analyst in the office across the hall. Indeed, it is very unusual
to find a modern research paper that can be read from scratch by a research
mathematician from a different field: the overhead of implicit knowledge and
dependence on earlier work is just too great. Technical mathematics is extremely
difficult, and little shame attaches to saying that one doesn’t understand more
than a fraction of the published papers even in one’s own field.

2.1 A few philosophical pointers

What is mathematical practice? Is its purpose to prove theorems, or more gener-
ally to advance mathematical understanding or mathematical knowledge? Does



mathematical achievement consist in the proof of particular theorems, like Fer-
mat’s theorem ;| or rather in the development of the underlying theories, like
number theory. Indeed, what is “mathematics”, “mathematical understanding”
or “mathematical knowledge”? A full answer to this question involves not just
Frege and Godel but also Aristotle and Kant, and awaits the resolution of sev-
eral millennia of debate in the philosophy and foundations of mathematics and
science.

Science provides the best accredited knowledge we have of the world, yet
what 1s the connection of theories and models to reality? How do we account
for what Wigner has called the “unreasonable effectiveness of mathematics in
the natural sciences”? What is going on when we test or compare our theories
and models through experiment or simulation: are we dealing with Kuhnian
paradigm shifts, Popperian theory change or Mertonian social construction? Is
what we are doing just empirical (it’s true because it works) or cultural (it’s
true because we have agreed it is) 7 Or is there some more fundamental notion
of truth involved?

Philosophies of mathematics are sometimes characterised as ‘empiricism’,
‘formalism’, ‘intuitionism’ and ‘Platonism’. Other philosophical accounts which
attempt to combine Platonism and empiricism, looking at mathematical practice
as well as questions of foundation, can be found in the ‘humanism’ of Hersh [50]
or the ‘realism’ of Kitcher [63]. Russell caricatured mathematics as “the science
in which we never know what we are talking about or if what we are saying
is true”: yet a view of mathematics as only a formal game with symbols and
axioms seems to ignore the notion of meaning. Simpson suggests [99] that “most
mathematicians and mathematical logicians lean toward an uneasy mixture of
formalism and Platonism”. Some axiom systems are more interesting and useful
than others: they are arrived at initially by trying to capture objects that seem
to be “out there”, like equations or groups or strange attractors, and seem to
model some kind of reality, even if as a theory becomes more developed the
guiding intuitions may become hard to pick out from the technical details.

It 1s probably not unfair to say that this debate, particularly those aspects
concerned with epistemology (what is mathematical knowledge) rather than
methodology or practice, is viewed with detachment by most mathematicians
today. Typically mathematicians spend rather little time thinking about found-
ations, may well have read little mathematical philosophy, have no training in
formal logic beyond informal accounts of the Peano Axioms, quantifiers and the
work of Godel and Turing, and be unaware of non-classical logic. This is in
contrast to the early part of the century, when leading mathematicians such as
Hilbert and Poincaré were actively engaged in foundational matters.

2.2 Proof in mathematical practice

The cartoon vision of a mathematician is of a dishevelled individual suitably
armed with paper, pencils, and caffeine whose sole occupation is that of produ-
cing rigorous chains of formal deduction along the lines of Principia Mathemat-
ica. The truth is perhaps closer to the leading geometer Thurston’s description of



current practice [109]: “Within any field there are certain theorems and certain
techniques that are generally known and generally accepted. When you write a
paper you refer to these without proof. You look at other papers in the field,
and you see what facts they quote without proof, and what they cite in their
bibliography. You learn from other people some idea of the proofs. Then you’re
free to quote the same theorem and cite the same citations. You don’t necessar-
ily have to read the full papers or books that are in your bibliography. Many
of the things that are generally known are things for which there may be no
known written source. As long as people in the field are comfortable that the
idea works, it doesn’t need to have a formal written source”. While some fields
may be more cavalier than others about using “ideas with no written source” as
part of a definitive proof, this approach is true of many areas of mathematics.

Research papers are typically written for a community of experts, who are
presumed to share the prevailing assumptions: other mathematicians then take
the judgements of these experts on trust. So for example only a handful of
mathematicians were in a position to immediately understand Wiles’s paper,
and to find the flaw in early versions. Rather than checking every line of an
argument an expert “critical reader” will often accept or reject it on the basis
of the general strategy of the proof and a good understanding of the domain
and where potential flaws might lie. Thus a journal referee might reject a paper
because the argument is “unclear”, “hard to follow” or “confused” even if no
error or counterexample has been found. The goal is rigorous proof, proofs are
generally believed to be formalisable in principle, but the methods of checking
the proof are social rather than formal. Thurston again “reliability does not
come primarily from mathematicians formally checking formal arguments; it
comes from mathematicians thinking carefully and critically about mathematical
ideas”. These considerations are part of the notion of “surveyability” in the
philosophy of mathematics.

Thus “mathematical knowledge”, or the things “generally known” by the
experts, 1s felt to be not just a list of theorems and conjectures, but rather a more
general understanding of mathematical structures, techniques and phenomena,
experience of where errors are likely to be made in proofs and insight into a
repertoire of examples which are likely sources of counter-examples to statements
which seem suspicious. So statements like “Fermat’s theorem is true”, or “the
only finite simple groups are ...”, subsume a vast body of knowledge about
number theory or finite groups, all of which is brought into play by experts
judging a proof.

The experts may express doubts, or take some time to be convinced. I heard
John Thompson point out in a seminar around 1980 that there might easily be a
mistake in the classification of finite simple groups, because so many of the proofs
were proofs by contradiction, and an error in the argument might also give a
contradiction. Gorenstein [37] discusses at some length whether the theorem can
be trusted “...it seems beyond human capacity to present a closely reasoned
several hundred page argument with absolute accuracy. I am not speaking of
the inevitable typographical errors, or the overall conceptual basis for the proof,



but of “local” arguments which are not quite right — a misstatement, a gap,
what have you.” and concludes that, while a simple group has probably not
been missed because many individuals with different perspectives have been
working on the problem for fifteen years, “it clearly indicates the strong need
for continual re-examination of the “proofs” ...especially on that day when the
final classification is announced and the exodus to more fertile lands takes place.
Some of the faithful must remain behind to improve the text.”

This understanding of mathematical practice is not new: consider Hume the
empiricist [55] writing in 1739 “There is no ... mathematician so expert ... as
to place entire confidence in his proof immediately on his discovery of it, or
regard it as anything, but a mere probability. Every time he runs over his proofs
his confidence encreases; but still more by the approbation of his friends; and
is rais’d to its utmost perfection by the universal assent and applauses of the
learned world.” or Whitehead [117] in 1926 “But when a piece of mathematics has
been revised, and has been before the expert world for some time, the chance of
a casual error is almost negligible.” or the number theorist Hardy [44], writing
in 1929 “proofs are what ...I call gas, rhetorical flourishes designed to affect
psychology”. Discussions of program proof in the 1970s echoed this point: in a
widely cited paper entitled “Social processes and proofs of programs” DeMillo,
Lipton and Perlis [26] suggest that formal proof of a program is not a substitute
for its being inspected by other people.

2.3 Debates about rigour

What some perceive as acceptable informality others may regard as unacceptable
lack of rigour. There are well-known examples of incorrect proofs (of both false
and correct results), of standards of proof in a field changing, and of vigorous
argument as to what i1s acceptable, for example in the eighteenth century over
analytic (Cartesian) and synthetic (Euclidean) geometrical proofs.

A recent debate concerned speculative or heuristic arguments in mathemat-
ical physics: for example an argument might assume the existence of a threshold
constant or scaling factor which has been identified in computations but not
proved to exist analytically: a proof of its existence is likely to be extremely
hard. Jaffe and Quinn [57] suggested that such “speculative mathematics” be
identified as such and due credit be given to those who eventually produced
a rigorous proof. In response several of the world’s most renowned mathem-
aticians produced justifications of current mathematical practice, stressing the
value of speculative or heuristic investigations in leading to significant advances:
for example the eminent topologist Atiyah [3], commenting on the interactions
between geometry and physics

“My fundamental objection is that Jaffe and Quinn present a sanitized
view of mathematics which condemns the subject to an arthritic old age.
They see an inexorable increase in standards of rigour and are embar-
rassed by earlier periods of sloppy reasoning. But if mathematics is to
rejuvenate itself and break exciting new ground it will have to allow



for the exploration of new ideas and techniques which, in their creative
phase, are likely to be as dubious as in some of the great eras of the
past. Perhaps we now have high standards of proof to aim at but, in the
early stages of new developments, we must be prepared to act in more
buccaneering style.

The history of mathematics is full of instances of happy inspiration tri-
umphing over a lack of rigour. Euler’s use of wildly divergent series or
Ramanujan’s insights are among the more obvious, and mathematics
would have been poorer if the Jaffe-Quinn view had prevailed at the
time. The marvelous formulae emerging at present from heuristic phys-
ical arguments are the modern counterparts of Euler and Ramanujan,
and they should be accepted in the same spirit of gratitude tempered
with caution. ...

What is unusual about the current interaction is that it involves front-
line ideas both in theoretical physics and in geometry. This greatly in-
creases its interest to both parties, but Jaffe-Quinn want to emphasize
the dangers. They point out that geometers are inexperienced in dealing
with physicists and are perhaps being led astray. I think most geometers
find this attitude a little patronizing: we feel we are perfectly capable of
defending our virtue.

What we are now witnessing on the geometry/physics frontier is; in my
opinion, one of the most refreshing events in the mathematics of the
20th century. The ramifications are vast and the ultimate nature and
scope of what i1s being developed can barely be glimpsed. It might well
come to dominate the mathematics of the 2lst century. No wonder the
younger generation is being attracted, but Jaffe and Quinn are right to
issue warning signs to potential students. For those who are looking for
a solid, safe PhD thesis, this field is hazardous, but for those who want
excitement and action it must be irresistible.”

Such concerns about an increase in rigour are also not new: Weyl [116] com-
mented on the enervating effects of the formalist-intuitionist controversy of the
early part of the century “It has directed my interests to fields I considered relat-
ively “safe” and has been a constant drain on the enthusiasm and determination
with which I pursued my research work.”: criticising formalism in the sense of
Carnap’s program the philosopher of mathematics Lakatos observed [69] “On
those terms Newton had to wait four centuries until Peano, Russell, and Quine
helped him into heaven by formalising the calculus.” Jaffe and Quinn, summar-
ising the responses to their article, commented that “mathematics that has been
successfully rigorised is dead, and the real life is ...in speculation.”

2.4 Mathematical discovery and research

The mathematician Hadamard [43] observed in his book “The Psychology of
Mathematical Invention” that practically all of the scientists he contacted “avoid

10



not only the use of mental words, but also . ..the mental use of algebraic or pre-
cise signs .. .they use vague images”. (He also questioned them on the effects of
the weather and frequent baths). Poincaré [88] is one of many mathematicians
who have remarked on the importance of unconscious thought and sudden illu-
mination in mathematical discovery. Wiles [42] described the process as follows
“I start trying to find patterns. So I'm doing calculations which try to explain
some little piece of mathematics. I'm trying to fit it in with some previous broad
conceptual understanding of some branch of mathematics. Sometimes that’ll in-
volve going and looking up in a book to see how it’s done there; sometimes it’s
a question of modifying things a bit, sometimes doing a little extra calculation;
and sometimes you realize that nothing that’s ever been done before is any use
at all and you just have to find something that is completely new, and it’s a
mystery where it comes from. ...I decided that I really only had time for my
problem and my family. When I was concentrating very hard then I found that
young children provide the best possible way to relax. Talking to young chil-
dren who simply aren’t interested in Fermat, at this age; they want to hear a
children’s story, and they’re not going to let you do anything else.”

The practice of mathematical research is generally taken to be empirical,
though personal styles may differ: “For Maclane it meant getting and under-
standing the needed definitions, working with them to see what could be calcu-
lated and what might be true to finally come up with new structure theorems. For
Atiyah it meant thinking hard about a somewhat vague and uncertain situation,
trying to guess what might be true and only then finally reaching definitions
and the definitive theorems and proofs.”[3]. Maclane talks of intuition, trial, er-
ror, speculation, conjecture and proof, Lakatos of the logic of conjectures and
refutations, Polya of formulating a conjecture but needing to give more precise
meanings to the terms to render 1t strictly correct.

In ‘Proofs and Refutations’ Lakatos provided a lengthy rational reconstruc-
tion of the historical development of the proof of Euler’s theorem that for all
polyhedra V — E + F = 2, where V| E, F' are the numbers of vertices, edges and
faces respectively. The theorem was stated by Euler in 1750, but an acceptable
definition of polyhedron was only arrived at by Poincaré in 1895. As well as try-
ing to prove conjectures Lakatos advocates attempting refutation by considering
possible local and global counter-examples which if found can be used to guide
modifications: the technique of Thurston’s critical reader.

While one may not share his philosophical assumptions Lakatos’s work is
an admirable account of mathematical practice: the process of individuals or
mathematical communities playing with definitions, examples and heuristic ar-
guments to work out what might be true, of getting stuck, of identifying the key
example or lemma, and working out an outline of the most significant part of
a proof before going back and tidying up the details. In comparison very little
time is spent actually writing out proofs: just as a good programmer probably
spends very little time actually writing lines of code.

As with Euler’s result the statements of theorems, arrived at by specula-
tion, heuristics, or generalisation from examples, are often regarded as a greater

11



achievement than the proofs themselves: Lakatos [69] p.9 quotes Gauss “I have
had my results for a long time, but I do not yet know how to arrive at them”
and Riemann “If only T had the theorems! Then I should find the proofs easily
enough”.

2.5 Mathematical taste and style

Community standards of rigour determine what is acceptable in a proof. Com-
munity standards, often expressed in terms of taste or style, also affect what is
found significant, and are used as a justification of the direction which academic
leaders choose to take. The things “generally known” in a field will typically
include heuristic arguments as to why a conjecture, sub-area, theorem or proof
1s “worthwhile” | “deep”, “challenging”, “hard”, “uninteresting” or “routine”.

Hardy [44], writing in 1940, argued that “there is no place in the world for
ugly mathematics” and claimed that the mathematical aesthetic was not con-
fined to a few eccentrics but shared by anyone who played chess. Hardy combines
“beauty” with “seriousness” and “depth”, which he claims distinguishes math-
ematical theories from chess problems and make mathematics worthy of the
attention of “first-rate minds”. Fermat’s theorem or the classification of simple
groups would be “deep” because they relate to structures with an architectural
quality and have many ramifications and connections with other deep structures:
the four colour theorem as it stands lacks this architectural quality and is “shal-
low”, although opinions might change if, for example, it could be connected to
the theory of manifolds. Mathematicians sometimes draw on musical metaphors
to try and convey this notion: it corresponds to the difference between Beethoven
and lesser composers. The analyst Dieudonné [23], a member of the Bourbaki
group, wrote a book called “Mathematics, the music of reason” in which he clas-
sifies mathematical problems as untreatable, where no progress has ever been
made, sterile, such as the four-colour problem and many problems of elementary
geometry, whose solution has not led to new developments, and prolific. Deep
problems such as Fermat’s theorem, or the Poincaré conjectures, are the prolific
problems which continue to produce new, unexpected results and connections,
like McKay’s identification of the “moonshine” number.

Good theorems should have good proofs. To paraphrase von Neumann [112]
a “good” theorem should not just consist of an enumeration of special cases but
have some unifying element: a “good” proof will be elegant rather than a rote
computation (by hand or machine) and give some sense of why a result is true,
and the whole will exhibit some overall architectural structure which reduces
complexities to simple guiding notions. In particular a proof with these qualities
is more likely to be readily surveyable by the critical reader.

Notice that these notions of “good proof” are independent of, and may be
at odds with, the ideas of reductive proof theory, investigated by Feferman, [33]
who conjectured that his system W suffices for all of scientifically applicable
mathematics, or Simpson [99] who argues for the use of finitism for a partial
realisation of Hilbert’s program. A “good” proof in the above sense may well

12



involve abstraction from the original problem, obtaining the result as a con-
sequence of a more general theory, or structuring the argument using notions
which are higher order or more abstract, to make it more surveyable than a
different proof using more restricted foundational notions. Abstraction in itself
is not the goal: for Whitehead [117]“it is the large generalisation, limited by a
happy particularity, which is the fruitful conception.”

As an example consider the theorem in ring theory, which states that if R
is a ring, f(x) is a polynomial over R and f(r) = 0 for every element of » of

R then R is commutative. Special cases of this, for example f(z) is #? — z or

23 — 2, can be given a first order proof in a few lines of symbol manipulation.
The usual proof of the general result [20] (which takes a semester’s postgraduate
course to develop from scratch) is a corollary of other results: we prove that
rings satisfying the condition are semi-simple artinian, apply a theorem which
shows that all such rings are matrix rings over division rings, and eventually
obtain the result by showing that all finite division rings are fields, and hence
commutative. This displays von Neumann’s architectural qualities: it is “deep”
in a way in which the symbol manipulation is not.

As a more approachable example consider the proof of
1424+ ... +(n—=1)+n=n(n+1)/2.

This has a routine induction proof. It can also be proved by the “trick” of
rearranging

2x(1424+...+(n—1)+n
A+2+.. . 4n)+r+-1+... +2+1

Done formally this still involves induction: the informal argument hides the
induction in the “obviously true” rearrangement, leading to an apparently more
“intuitive” proof of the result. But the difference is that this informal argument
not only works out the answer, rather than requiring us to know it before we
start, but can also be said to explain why the answer is true. Similar examples are
used in developing an aesthetic and a repertoire of clever techniques in students
of mathematics: for example in the text Concrete Mathematics [38] Graham,
Knuth and Patashnik outline 8 ways of working out sums of the form

FQ) + ..+ f(n),

only one of which makes the induction explicit.

The eighth technique is Gosper’s algorithm, which requires no cleverness, just
accuracy, and will find closed form sums completely automatically for extremely
complicated terms: for example given

Eoen(5) 78

13



the algorithm returns
2n
(n + k) ’

In which case, the exasperated student might ask, why does one need the
other seven techniques? The reason is not just to keep students busy: the notion
of “good” proof will depend on the context. It may be the case that the exact
value of the sum doesn’t matter to us, if we are only using it to get an upper
bound on some quantity for example, or that finding this sum is a fairly incidental
piece of some much larger argument (a page in the 5000 or so about simple
groups), in which case application of routine technique is probably preferable to
the reader. On the other hand if (hypothetically) the series were to turn out to
be the key point in a new proof of the four colour theorem then a proof which
explained why i1t was true, somehow linking the terms in the series to colourings
of graphs, would, while not being “more correct” certainly be “better” in the
sense above. Qur first example of a series would be a routine computation in
support of a routine result, our second a routine computation in support of
a more significant result. There are of course infinitely many series summable
in this routine way by Gosper’s algorithm: it 1s the context which determines
whether the theorem thus proved is significant or not.

The choice of proof in, for example, a text-book exposition may bring other
factors into play such as the overall structure of the work or the expected back-
ground of the reader. For example in presenting linear algebra it may be prefer-
able for expository purposes to develop the explicit definition of a determinant
as a polynomial in the entries of a matrix rather than the implicit version which
associates an alternating bilinear form to a linear transformation. The former
would be judged by Hardy’s standards as “ugly” (and constructive), the latter
as a “better” (and non-constructive) exposition since it abstracts away from the
explicit formula for the determinant and provides a coordinate-free explanation
as to why determinants behave as they do. However experienced teachers know
that the former is comprehensible by the average student whereas the latter is
considerably more demanding! Lang [71] compares the expository style of a stu-
dent text and a more advanced work by saying “The purpose of the latter is
to jazz things up as much as possible. The purpose of the former is to educate
someone 1n the first steps which might eventually culminate in his knowing the
jazz too, if his tastes allow him that path.”

The early proofs of a result may be superseded by later “better” proofs in this
sense: an “ugly” valid proof will be accepted while recognising that the search for
a “better” one is worthwhile. Sometimes the “better” proof will be completely
different: the result might be shown to be a consequence of something far more
general which explains why it is true. For example it is conceivable that the
four colour theorem could turn out to be a consequence of a much more general
result about the embeddability of graphs on manifolds. Sometimes the “better”
proof will be broadly similar but manifest more insight, as in the reworking of
the classification of finite simple groups currently under way [104].

While a mathematical aesthetic, rather than notions of applicability or useful-
ness, has often been used to guide what areas are worthy of future investigation,

14



there has frequently been vigorous debate as to what does constitute “deep”
or “beautiful” mathematics. One might interpret eighteenth century arguments
about replacing geometrical arguments by algebraic manipulation as arguments
about style rather than acceptable rigour. In this reading Newton and Leibniz
argued that geometry provided insight and compactness of representation while
algebra provided quantities of output but obscured the sources of discovery,
others that algebra provided greater power and economy of thought [8].

Similar arguments surrounded twentieth century developments in number
theory and geometry, as described by Lang [71]. An integral part in this devel-
opment was played by Lang’s book Diophantine Geometry, published in 1962,
which gave an exposition of earlier work of Mordell, Siegel and others within the
new framework of Grothendick’s theory, which by then occupied about 10,000
published pages. The older Mordell in a savage review lamented what he regarded
as the quite unnecessary generalisation and abstraction of Lang’s approach “The
reviewer was reminded of Rip van Winkle . .. who woke up to a state of affairs and
a civilisation completely different from that to which he had been accustomed.”
In a widely read letter to Mordell Siegel remarked

Thank you for the copy of your review of Lang’s book. When I first saw
this book, about a year ago, I was disgusted with the way in which my
own contributions to the subject had been disfigured and made unin-
telligible. My feeling is very well expressed when you mention Rip van
Winkle!

The whole style of the author contradicts the sense for simplicity and
honesty which we admire in the works of the masters in number theory—
Lagrange, Gauss, or on a smaller scale, Hardy, Landau. Just now Lang
has published another book on algebraic numbers which, in my opinion,
is still worse than the former one. I see a pig broken into a beautiful
garden and rooting up all flowers and trees. ...

I am afraid that mathematics will perish before the end of this century
if the present trend for senseless abstraction—as I call it: theory of the
empty set—cannot be blocked up. Let us hope that your review may be

helpful...”.

For Siegel the flowers and trees were evidence of prolific conjectures, whereas
the abstraction rendered them sterile. Siegel’s concerns were unfounded: these
are the techniques that led to enormous developments in number theory includ-
ing Fermat’s theorem, and Lang observes that while Mordell and Siegel were
great mathematicians their lack of understanding obstructed the development
of mathematics in their own countries.

Further investigation of mathematical aesthetics again leads us to philosoph-
ical considerations. Von Neumann draws attention to the dangers of degener-
acy, of the “classical” turning into the “baroque” if a branch of mathematics
becomes governed entirely by an internal aesthetic without reference to an em-
pirical source. Others have been rather more harsh about the inward looking
tendencies of mathematicians: the computer scientist Dijkstra [24] observes “in-
formality is the hallmark of the Mathematical Guild, whose members - like poor

15



programmers - derive their intellectual excitement from not quite knowing what
they are doing and prefer to be thrilled by the marvel of the human mind (in
particular their own). For them, the dream of Leibniz is a nightmare”

For some mathematicians the progress of mathematics in the light of such
an aesthetic is regarded as “natural” or “inevitable”: others find this more prob-
lematic. One might analyse the mathematical aesthetic culturally in terms of
the power structures and negotiation of boundaries underlying bland terms like
“community culture”. One might also take into account the personal psycho-
logy of research mathematicians: an extraordinary collection of individuals, who
sometimes, like climbers, seem to choose their goals for the difficulties and chal-
lenges they offer, which may be unrelated to the flowers growing on the scree or
the view obtained from the top.

2.6 Mathematical exposition

We have described usual mathematical practice but mathematical exposition is
generally very different.

Mathematicians write and read a variety of texts. Working notes while think-
ing about a problem or conjecture may consist of a mixture of partially worked
out ideas, conjectures, definitions that weren’t quite right, proofs abandoned be-
cause the conjecture turned out to be wrong or the author couldn’t see how to
do the crucial step, blind alleys and illustrative examples and counter-examples
recorded in a form comprehensible to the author alone. These may be “written
down” to form a more permanent record, including the examples and blind al-
leys (in an attempt to avoid going down them again). The author may present
the results as a seminar or colloquium, or publish a research announcement or
working paper on the internet. At a suitable point (maybe the definitive result
has been proved, or maybe the author is reporting progress to date in response
to professional pressures or loss of time or enthusiasm) the work may be “written
up” in a form suitable for research journal publication. The working notes will
be reworked, probably abbreviated for reasons of length or style, to produce a
chain of argument of acceptable rigour from the hypotheses to the conclusion
shorn of blind alleys, motivation, examples or counter-examples. If the work has
attracted sufficient attention it may be reworked later with other results in the
field as part of a survey article or a text book giving more space to motivation
and background.

By the time the work reaches a wider audience of text-book readers or un-
dergraduates the experiments, false starts, and guesses will probably have dis-
appeared, giving the impression that the textbook contains a historical account
of what the mathematician did to prove the theorem. Lakatos’s presentation in
“Proofs and Refutations” is much closer to what actually happens, and he ar-
gues for more widespread use of his technique of “heuristic exposition” instead
of this deductivist style of “authoritarian mysticism” which presents only the
completed argument: Thurston [109] makes a similar suggestion.

Just as there is a variety of mathematical writings there is a variety of math-
ematical readers (I have not been able to find a source for the statement that a

16



mathematical paper is read on average by 3 people). For research papers these
might be close associates reading a draft of the work, or Thurston’s “critical
reader” (who might be a referee or reviewer) assessing the proof for correctness,
or a mathematician who is prepared to take the proof on trust but is reading
it to get an idea of the techniques used, or is only interested in the statements
of the theorems or the “big ideas”, or a casual reader flipping the pages in the
library, or a beginner wrestling with the work as a rite of passage. For seminars
the audience might be more eclectic: following closely or somewhat bemused.

Current sociological studies consider scientific texts and their role in the
“manufacture of knowledge”. A full account would consider not just what I have
outlined above but referees reports, papers that weren’t accepted, proofs that
were discredited, the reception in Mathematical Reviews or other commentaries
of a significant result: even grant proposals, letters and, today, email messages.

Techniques of literary theory applied to mathematics are more contentious:
for example Rotman [94] claims “Mathematics . . .is a process: an ongoing, open-
ended, highly controlled, and specific form of written intersubjectivity.” and
“Mathematical reasoning is thus an irreducibly tripartite activity in which the
Person (Dreamer awake) observes the Subject (Dreamer) imagining a proxy-the
Agent (Imago)-of him/herself, and, on the basis of the likeness between Subject
and Agent, comes to be persuaded that what the Agent experiences is what the
Subject would experience were he or she to carry out the unidealized versions of
the activities in question.” Mathematicians who are tempted to give simplistic or
ironic accounts of their discipline may find their words appear to support such
arguments, however unsympathetic they find them, rather more readily than
they support traditional philosophies of mathematics.

3 Computation for mathematical research

In this section we identify some themes in the use of computers in mathematical
practice. We describe below utilities, numerical methods, symbolic computation,
computer aided reasoning and the use of computation in constructions,; in proofs
such as the four colour theorem and in support of speculative reasoning in geo-
metry and combinatorics.

3.1 Utilities

One might start, prosaically, by pointing out that the greatest impact of com-
putation on the day to day work of the mathematician has been in tools for day
to day mathematical processes:

— mathematical type setting with associated standards for input and output
to other software such as computer algebra, graphics and statistical systems

— internet services such as email and newsgroups, giving immediate access to
the community and exchange of technical information. For example today
nearly every mathematical community will have an electronic mailing list,
enabling rapid circulation of new results and response to queries.

17



— services such as Mathematical Reviews on line through MathSciNet (bloated
bibliographies a breeze!), citation indices, electronic journals, the centralised
mathematics pre-print server [15] and repositories of papers, often searchable
and with downloadable output in a variety of formats

— electronic sources of data for example

e Sloane’s Sequence Seeker [103]: given a positive integer sequence this will
apply a collection of transformations and attempt to suggest a generating
function

e Fateman’s web database of integrals [31], which uses a sophisticated table
look-up to account for degenerate and special cases

o the Atlas [22] containing large datasets related to the finite simple groups

3.2 Numerical methods

The most widespread computational techniques are those of numerical compu-
tation, mathematical modelling and simulation. Numerical methods have been
part of applied mathematics and the physical sciences for the past fifty years,
widely available through standard libraries such as NAG [82] and providing the
basis for large software systems, usually written in FORTRAN or C and used
in chemical, physical or astronomical research as well as in practical fields like
engineering, meteorology and aeronautics and increasingly today in visualisation
and animation. While one can find horror stories of catastrophic bugs in numeric
code (for example the military plane which turned over as it crossed the equator)
matters such as testing, error analysis, and simulation are on the whole reliable:
in part perhaps because such systems are largely developed by scientists with a
good understanding of a mature body of technical material.

Sometimes such software might be an implementation of a theory about
physical phenomena, with the results it produces from given inputs being tested
against experiment or measurement. Today measurement itself is computer me-
diated, though it was not always so: Michelson and Morley had no computers.
With theory testing as with program testing Dijkstra’s maxim [24] that “Testing
can prove the presence of bugs but never their absence” holds true: such tests
provide in a Popperian sense possible falsifications of the theory.

In other contexts software might be an implementation of a generally ac-
cepted theory and the output of the program regarded as a prediction, with
estimates of error being provided by mathematical analysis in the light of the
theory and the reliability of the data. In some cases predictions be easy to check:
like times of tides, where the mathematics is such as to make reliable prediction
possible, or weather, where the mathematics of dynamical systems theory tells
us reliable prediction is more difficult. However in other cases it may be hard
or impossible to check the predictions: for example safety thresholds for aircraft
loads or discharge of pollutants.

If trusted enough, the software may be relied upon as an implementation
of the theory that is used in turn to stand for the physical reality in further
experiments or simulations, and thus itself to suggest possible further conjectures
or theories. A sequence of numerical results or a visualisation of the phase space

18



of an equation may suggest a closed form solution or a new chaotic phenomenon
for example. The investigation of chaotic phenomena in the asteroid belt was
carried out using, not astronomical observation, but the “Digital Orrery”, a
custom built parallel computer which simulated 200 million years of the motion
of the solar system [105].

This is a simplified account and there are many additional factors. We may
be testing rival theories which are not immediately comparable in the Popperian
sense using the quality of their predictions. The same software may be used in one
context to test a novel theory and in another as the standard implementation of
an accepted theory. It may be too simplistic to assume the software implements
one of our best guesses at a theory, as to test one part of a theory it may be
necessary to make wildly simplifying assumptions about another: a program may
combine quantum and classical mechanics for example.

All the usual concerns about software correctness may be raised for such sys-
tems. How do we know the software is a correct implementation of the underlying
theory? Which aspects of its behaviour are artefacts of the implementation (for
example random number generation) rather than consequences of the theory?
What hidden or explicit assumptions have been made at different stages of the
processes above and how do they affect the uses to which the system has been
put: for example, if the system 1s used in a new application and predicts that
xz > 3, is this a consequence of the theory, or of some implementation decision
being called upon outside its domain of validity? A particular issue in numerical
work is correctness of floating point implementation and convergence criteria:
is the implementation robust enough to produce the same answer again for the
same 1nputs? To make matters more complicated, often much of the software
comprises large legacy systems where the underlying assumptions may have var-
ied over time, or where later implementors may not have fully understood the
original assumptions, or have incorporated variations based on new results. For
example the consistent handling of floating point arithmetic or the translation
between machines with different word-lengths are recurring legacy problems.

Additional questions arise if the output is used as input to further systems,
for example visualisation, CAD/CAM or real-time. What does “correctness”
mean in the context of a surgeon using a data glove and a CAT-scan to control
a laser in an operation on a patient in a different time-zone? Predictions may
be used in legal or governmental processes where issues are not as clearly under-
stood as they might be: the epistemological issues surrounding “properties of a
model” and “reality” for example. An excellent account from the point of view of
environmental predictions is given in Oreskes [85]. Many of the issues involving
the nature of computational models of reality are similar to those raised in the
debate following Fetzer’s [34] notorious attack on program verification.

3.3 Symbolic computation

General purpose computer algebra systems (CAS), such as AXIOM [59], Maple
[49], or Mathematica [113], as well as more specialised tools such as GAP [96]

19



for computational discrete mathematics or the AXIOM /PoSSo library for high-
performance polynomial system solving, are used by many different communit-
ies of users including educators, engineers, and researchers in both science and
mathematics. The specialised systems in particular are extremely powerful. The
PoSSo library has been used to compute a single Grobner basis which (com-
pressed) occupies more than 5GB of disk space, while GAP is routinely used to
compute with groups of permutations on millions of points.

After pioneering work in the 1960s CAS have become mainstream commercial
products: everyday tools not only for researchers but also for engineers and sci-
entists: for example Aerospatiale [91] use a Maple-based system for motion plan-
ning in satellite control. The systems have become more complicated, providing
languages, graphics, programming environments and diverse sophisticated al-
gorithms for integration, factorisation and so on, to meet the needs of a variety
of users, many not expert in mathematics. All the usual software engineering is-
sues arise, such as modularity, re-use, interworking and HCI. For example NAG’s
AXIOM [59] is a strongly typed CAS: user and system libraries are written in
the Aldor language which supports a hierarchy of built-in parameterised types
and algorithms for mathematical objects such as rings, fields and polynomials.
Aldor is interpreted in the AXIOM kernel which provides basic routines such as
simplification and evaluation: code developed in Aldor may be compiled to C for
export to other products.

Such systems are widely used in mathematical research particularly for heur-
istic investigations and trusted implementations of standard algorithms. For ex-
ample the GAP [96] system, developed almost entirely by researchers in discrete
mathematics, contains a large library of built in examples and implementations
of procedures for computing the structure of given groups. Old papers involving
lengthy hand calculations are confirmed in a few seconds by GAP: for example
the nilpotency class of a topological group. GAP computations of this kind are
accepted in research papers: but such computations might not feature in the
final deductive presentation of a result because they are investigations which
form part of the proof development but not of the final proof. A computation
may also suggest a more general proof: the author was told of a long GAP com-
putation involving the number 7: on inspection it turned out that replacing 7
by p throughout produced an argument valid for all primes p which was then
published: however GAP itself cannot handle arbitrary primes in this way, and
was not mentioned in the final publication.

CAS have been used similarly in mathematical research: both for routine
computations such as simplifying or factorisation accepted as part of a proof, and
for preliminary investigations and formulating conjectures. We cite for example

— Labelle’s [68] investigation of new power series identities and asymptotic
estimates, of the kind that might be used in complexity investigations, sub-
sequently proved “by hand”: the paper is part of a volume of the Journal of
Symbolic Computation devoted to these methods.

— Brown’s [11] computation of homotopy groups in AXIOM, which automates
complex computations in non-commutative algebra which it would be very

20



time-consuming and difficult to do by hand.

— Gosper’s algorithm, and a number of variants due to Zeilberger and others
[120], have been implemented in Maple. They allow the automatic identific-
ation and verification of closed form sums for a certain class of expressions
involving binomial and hypergeometric identities, and work by producing
a “certificate” which represents each summand using a recurrence, so that
when the summands are summed the sum collapses to a closed form, or
showing that no such certificate exists. Thus they transform the “cleverness”
typically required to solve identities like

() == (1) (550)

7=0
to a completely routine procedure.

As before concerns about correctness, floating point and reproducibility arise.
CAS can contain bugs: for example Clarke [17] notes that Mathematica handles
0% incorrectly.

However there are many more subtle problems which can be read as “fea-
tures” rather than “bugs” but none-the-less cause confusion for the unwary.
Fateman [31] has a survey. Some CAS are “cautious” only giving an answer
when certain pre-conditions are satisfied, others attempt to return an answer
whenever they can. Furthermore some of the problems are a consequence of im-
plementation decisions driven by different user expectations of CAS. Some users
see them as “intelligent paper” doing purely formal manipulation of expressions,
and take upon themselves the responsibility of ensuring that those manipulations
are appropriate to the underlying problem: ignoring side-conditions in a specu-
lative investigation for example. Others wish to clearly express the assumptions
of their work, and then expect the CAS to use only appropriate manipulations.
Still others, naively, may not be aware that there is a problem, and dangerously
assume that a system acting in the first mode is acting in the second. These
concerns mirror the debates about rigour in mathematical practice described
above. To give some examples:

— There 1s no satisfactory canonical representation of elementary functions
over the reals, and the ad hoc methods used by some systems can mean that
expressions like atan(x — b) + atan(1/(x — b)), which is undefined at b and
sgn(x — b)m/2 otherwise, are not handled correctly.

— Type systems are not unproblematic: for example the consistent handling of
coercions such as (22 +2)/2 — 1. AXIOM is strongly typed: it treats FLOAT
as a ring although it is obviously not one.

— Side conditions cause problems. A CAS may be able to compute an answer on
a large class of inputs, be sound on only a subclass of those inputs and be able
to check soundness easily on a smaller subclass still. For example consider a
deeply nested division by an expression (¢ —3). What value should the CAS
return, what explanation might it provide to the user of what it has done

21



and what warnings should it flag? Most CAS ignore such side-conditions,
leading to potentially incorrect output.
— The use of parameters adds to these difficulties: for example the matrix

2 2a
((a +1) Qa)
over a field F' has rank 0 if F' has characteristic 2 and ¢ = 1, rank 2 if F
does not have characteristic 2 and a # 0,1 and rank 1 otherwise.
— More generally many computer algebra algorithms are only valid if precon-
ditions are satisfied which it is generally not possible to check at run-time:

if the function is continuous for example. Again users may be misled if they
apply procedures inappropriately.

We should not conclude from the above that all computer algebra systems are
problematic all of the time: there are many areas, especially where the machines
are doing straightforward symbol manipulation or relying on efficient implement-
ations of well-understood algorithms, where matters are fairly unproblematic and
experts use the systems with confidence.

3.4 Computation and mathematical experiment

We group together in this section three phenomena involving numerical compu-
tation in support of mathematical endeavour: visualisation, computation as an
aid to investigation and computations forming part of a proof.

The Mandelbrot set 1s one of the best known computational visualisations:
and although Poincaré predicted chaotic phenomena more than a century ago
modern dynamical systems theory has only been developed in the past thirty
years or so. It is tempting to suppose that it would not have been possible
without the use of computer simulations and visualisations to investigate chaotic
phenomena such as strange attractors. Since such phenomena are a manifestation
of extreme sensitivity to initial conditions, great care is needed to ensure that
they are “really there” and not subject to implementation bias. In fact Ruelle
[95] suggests that there were other barriers: the necessary pure mathematical
tools of ergodic theory were not yet available to investigate extreme sensitivity,
and developments in quantum theory meant that researchers looked there rather
than to classical mathematics for explanations of chance and randomness.

Modern geometry has benefited from the ability to visualise unusual surfaces
whose properties can then be investigated analytically: for example Hoffman [52]
discovered a new surface this way in a class thought to have been well under-
stood since the eighteenth century and Thurston’s famous video ‘Outside In’
[73] demonstrates how a sphere can be turned inside out. Such programs are
generally a combination of computational geometry, symbolic and numeric com-
putation, in some cases essentially performing geometric reasoning calculations
with variants of Grobner basis algorithms.

Computation has long been used to explore ideas or to gather support for
conjectures, or find counterexamples. The purpose may be to aid in developing

22



a theory, or to convince a mathematician of the truth of a result before time is
invested in a hand proof. For example Wiles’s proof of Fermat’s theorem appears
not to involve computation at all. However a related and still unproved conjecture
due to Birch and Swinnerton-Dyer [108] was subject to much computational
experiment in the 1970s, giving mathematicians more confidence that was worth
pursuing the lines of enquiry that eventually led to Wiles’s proof.

Recent work on threshold functions in satisfiability problems [97] is a good
example of computational experiment in support of a conjecture. Numerous sim-
ulations have identified an apparent threshold in the likelihood of satisfiability
of a problem expressed in clausal form with fixed clause length as the ratio of
clauses to variables varies, and similar techniques have been applied to many
related problems. It seems probable that it would be very hard to prove this
analytically: similar problems in percolation theory have involved the develop-
ment of an enormous amount of probability theory just to prove that the function
being analysed is defined and continuous at the appropriate point [39]. However
all the same questions arise as in the previous section: how can we trust the im-
plementation, how can we be sure that what we observe is a consequence of the
theory rather than of bias in the implementation, how do we know our statistical
analyses are correct (see Slaney [102] for a discussion of this) and how far are
we justified in using the results of such computations in further work: we might
for instance want to use the information about the threshold function in further
algorithm design.

Computers can be used to construct discrete mathematical objects: all but
the smallest of the 26 sporadic finite simple groups were first conjectured, then
constructed computationally by Conway and others [22] using a combination
of brute force search and clever ideas to find certain matrices over finite fields.
Brendan McKay has investigated various Ramsey numbers [81]: the Ramsey
number R(n, k) is the smallest number of vertices a graph must have to ensure
that either it contains a complete subgraph on n vertices or its complement
contains a complete subgraph on k vertices. It is useful to note the difference
between establishing an upper and a lower bound for a Ramsey number. The
former involves intense computational effort to find a graph containing a certain
configuration of edges and non-edges which can be checked very easily once
found, and the latter involves equally intense computational effort to show that
no suitable graph exists. In the former case the final proof, which consists of
exhibiting a graph with certain properties which can be readily checked by hand,
can be presented independently from the computation: in the latter case one can
regard the computation as a proof or as evidence for the truth of the results and
the existence of a non-computer proof. Similar remarks apply to Lam’s [70]
demonstration by exhaustive search that there no projective planes of order 10.

The proof of the four colour theorem [2] by Appel and Haken in 1977 was the
earliest and most famous use of a computer in a proof: scrutinised particularly
because of the long history of failed proofs of the result and because it consisted
of a large case analysis which was hard to check and gave little insight. We return
to this below.

23



4 The effect of computation on mathematical practice

Thus far, ignoring epistemological difficulties, debates on foundational matters
and the temptations of an ironic post-modern account of “mathematics”, we
have identified mathematical practice with the business of producing conjectural
mathematical knowledge by means of speculation, heuristic arguments, examples
and experiments, which may then be confirmed as theorems by producing proofs
in accordance with a community standard of rigour, which may be read by the
community in a variety of ways, and we have noted that while notions of rigour
and so on may have changed practice itself has remained remarkably robust over
the centuries.

As we have seen computation is used both in speculative activities and, in the
form of standard algorithms (either stand alone or in systems such as Maple) or
exhaustive search, as part of proofs. Most of the work we describe has involved
substantial software development over a long period with attention to matters
at the forefront of computer science such as algorithms, data structures, graph-
ics and memory management: the problems being addressed are often at the
limits of computational power. While little if any of the software involved has
been formally proved correct the community is on the whole well aware of the
possibility of error and much of it has been subject to intense scrutiny by other
scientists who understand the underlying mathematics and are quick to point
out bugs through, for example, internet newsgroups like sci.math.symbolic.
Community acceptance has a lot to do with the perceived reliability of the soft-
ware developers: for example GAP is trusted because it has been produced by
leaders in the field who make sources freely available and adhere to strict pro-
tocols about distributing material produced by others with the GAP software.
Much of the lively debate over the merits of rival CAS concerns the perceived
mathematical competence and reliability of their implementors. In other words
trust in software, like trust in proofs, is in part a social process.

The speculative investigation of chaotic phenomena, threshold functions, sur-
faces and the like, which provide evidence for the truth of theorems without being
proofs, can be described as experimental mathematics, defined by Borwein [10]
as “that branch of mathematics which concerns itself ultimately with the codi-
fication and transmission of results in the mathematical community through the
use of experimental exploration of conjectures and more informal beliefs and a
careful analysis of the data acquired in this pursuit”. The new journal Exper-
imental Mathematics encourages publication of accounts of such mathematical
experiments, particularly computational ones, the editors observing in the spirit
of Lakatos that “It is to our loss that most of the mathematical community are
almost always unaware of how new results are discovered ... The early sharing
of insights increases the possibility that they will lead to theorems”, [30] while
acknowledging hostility from some quarters that the journal should be renamed
“the Journal of Unproved Theorems” [28]. Borwein argues that the growth of
such experimentation requires also the development of community standards as
to experimental methodology: matters such as correctness of the implementa-
tion, implementation bias, reproducibility, statistical and simulation concerns

24



and the presentation of such experimental results.

The use of computation as part of a proof also raises debate: is it correct and
even if it is, 18 it a “good” proof. Perhaps the least problematic are computations
where the results, once obtained, can be readily checked very quickly by hand or
another program. Thus a proposed indefinite integral can be checked by differen-
tiation, a proposed factorisation by multiplying the factors up again and proofs
using Gosper’s algorithm can be checked by hand. Producing the matrices that
generated a sporadic simple group was a tremendous computational challenge
at the time: a hand proof confirmed that they did indeed generate the required
group.

Mackenzie’s [76] study of the four colour theorem addresses the issues of
correctness and quality. Those questioning the correctness of the proof of the
four colour theorem raised concerns unsurprising to the automated reasoning
community: the hardware or software might have an error and the proof was
(in this case) hard to repeat. The computer scientist David Gries, an expert in
program correctness, inspected the code looking for an error: although he thought
the code was very ugly the only error he found was a “safe” one, that is the
program considered an unnecessary extra case. Some easily corrected errors were
found in the hand part of the proof. Those questioning the quality argued that
even if printed out the proof was not surveyable: it could only be checked formally
but not by Thurston’s critical reader, and it gave no insight into why the result
was true [111, 77]. These were countered by the argument that such criticisms
could be levelled at lengthy hand proofs (such as the hand part of Appel and
Haken’s proof), particularly those which were only accessible to a small group
of specialists [2]. Within ten years or so the debate had largely died down. The
new proof by Robertson and Seymour, which automated both parts of the proof,
required consideration of a smaller number of cases and, because computers had
got much faster and programs more portable in the intervening years, could be
re-run on a variety of machines. However as Robertson commented [76] “nobody
likes very much a proof that uses a computer”.

In other words a proof by a computation, whether hand or machine, may be
accepted as a rigorous proof, but, if the result is a significant one, it is not a
“good” proof. It may not be a good proof, but it may be a considerably more
reliable one, involving much less effort for the author. Thus for a less significant
result, like many of the computations done by computer algebra systems as part
of a larger endeavour for example, the community seems to find no problem with
admitting a computation as part of a proof provided the authors are trusted to
have used the system properly. Thurston [109], who has considerable computing
experience, suggests, in a marked contrast to some of the mathematical hostility
to the very idea of computation, that “mathematics as we practice it 1s much
more formally complete and precise than other sciences, but is much less formally
complete and precise for its content than computer programs”. Even if doubts
remain, the “social effect” of a widely accepted computer proof (particularly
one that is difficult or costly to replicate) inside a field is, generally, that the
attention of the community shifts to other problems.

25



Yet if the objection to machine computations being part of a proof is that
they provide no insight, what of pictures and simulations? Pictures or videos
like “Outside in”, produced for exposition and making no claim to be a proof,
provide far greater insight than the corresponding verbal proof: verbal arguments
involving stretching and cutting rubber sheets are already acceptable in certain
branches of geometry and topology and i1t will be interesting to see if conventions
evolve for making visualisations acceptable, perhaps by constructing a symbolic
argument automatically in parallel with a visual argument.

Some argue that computational activity will replace traditional mathematics:
Zeilberger suggests “The computer has already started doing to mathematics
what the telescope and microscope did to astronomy and biology. In the future,
not all mathematicians will care about absolute certainty, since there will be so
many exciting new facts to discover.”[120], stimulating journalistic discussion
of “The Death of Proof” [54]. Others, such as Krantz [65], regard such debates
as a distraction or indeed a serious threat to mathematical research, noting
that funding pressures, current fads and cultural relativism combine to favour
computational over theoretical work.

How do we analyse mathematical practice in the light of computation? For
the many mathematicians who still use their computers only for Latex and in-
ternet access one could argue that it has hardly changed at all! The impact
of computation on most of the major areas of twentieth century mathematical
research has been slight (except logic, but that’s another story). For example
computers were used to construct some of the sporadic simple groups, but only
after they had been conjectured theoretically, so that constructing them reduced
to a search for a particular configuration of matrices: the vast bulk of the classi-
fication theorem is essentially a hand proof that there are no other simple groups.
Computation had little impact on the vast body of work in number theory and
geometry leading to Fermat’s theorem, or on work in differential geometry or
topology which might lead to a proof of the Poincaré conjecture or a classific-
ation of three-manifolds. Indeed, one might argue that of all the sciences pure
mathematics has been affected least by twentieth century developments in com-
putation.

The computer has become a valuable tool in certain areas, particularly for
speculative work and automating routine calculations. Some areas, like dynam-
ical systems or the study of threshold phenomena, would not have developed in
the same way without computational investigation and experiment, using numer-
ical, symbolic and graphical techniques. Certain operations, whether speculative
or part of a proof, which used to involve complex hand calculations, such as ma-
nipulating group presentations, summing series amenable to Gosper’s algorithm
or, as we shall see, first order resolution proofs in the style of OTTER, can be
routinely automated. Certain proofs like the four colour theorem or the non-
existence of projective planes of order 10 would have been impossible without a
computer: the computation seems, albeit unwillingly to have been accepted.

Even in those areas where computation has been used mathematical practice
has not changed, as we see by reading Mackenzie’s account of the four colour

26



theorem: as a result of speculation and experiment mathematicians come up with
conjectures and proofs of their conjectures which are then assessed by community
standards of rigour. Standards of rigour for computer proofs, as with hand ones,
concern community judgements of the quality and reliability of the software and
the use made of it. Thus a claimed computer proof might be rejected because of
lack of rigour, either because there was a bug in it or because the referees did
not have sufficient confidence in the software or the account given of it.

Computer science may yet transform mathematical practice entirely, as we
discuss below. However we might pick out from the above discussion three chal-
lenges from current practice:

— can computers do more for speculation, modelling and experiment?
— can computers do more for proof?
— in both cases can we increase our trust in them or make them more reliable?

5 Computer aided reasoning

Computer aided reasoning means the use of computers to produce formal proofs
in a given logical system — a practical version of Hilbert’s programme. It ranges
from implementations of decision procedures, semi-decision procedures, and col-
lections of strategies for the machine to try which will not necessarily find a
proof, to programs which check line by line whether or not the input generated
by the user or another program is a valid proof. It is not always clear where
to draw the line between theorem proving programs and other programs that
are used to generate mathematical results. A theorem proving program usually
involves symbol manipulation rather than explicit calculation, allows the user to
generate a full listing of all the steps needed in a proof and is concerned with
logic rather than a specific application domain such as group theory, number
theory or differential equations: there is some borderline activity as we shall
indicate. Mackenzie [75] has given a valuable historical survey.

The rise of formalism in computer science since the mid 1960s has led to
particular interest in, and development of, appropriate logics and type theories,
and to many applications of reasoning in specification and verification, that is
in proving that programs, distributed systems, hardware devices, or the descrip-
tions of these in some formal system have certain properties.

This work has necessitated the formalisation of relevant parts of mathematics,
such as real numbers or floating point arithmetic, but the use of computer aided
reasoning techniques in mathematical research has been negligible, with a few
notable exceptions that we refer to below. After describing the background we
loosely categorise this activity as follows

— proof of new mathematical results using techniques such as resolution, re-
writing, geometry theorem proving or constraint solving which are not that
far from those domain specific techniques such as computer algebra systems

27



— formalising mathematical definitions, theorems and proofs in a suitable lo-
gical system
— hybrid systems which combine computer aided reasoning with other techno-
logies, in particular
e embedded verification techniques, which increase the power of computer
algebra systems and numerical software by the incorporation of new
techniques drawn from automated reasoning, particularly for speculative
or experimental work, but do not necessarily address the underlying
rigour of such systems
e formal methods for mathematical software, which increase the reliability
computer algebra systems and numerical software, and help to develop
community standards for modelling and experiment
e focused formalisation techniques, which address concerns that mathem-
atical software is unreliable and not rigorous enough to include in a proof
by producing a more formal development to support informal computa-
tion, and also make formalised mathematics available to mathematicians
in a way that supports current mathematical practice

For each area we describe the work that has been done, assess it against our
model of mathematical practice and set out grounds for future development in

the light of this.

5.1 Background

W S Jevons, a Manchester economist, built a “Reasoning piano” in the 1870’s
which looked like an old-fashioned mechanical cash register, and could be used
to determine whether a Boolean expression was a tautology by pressing down a
suitable combination of keys. The machine is in the Oxford Science Museum.

With the advent of electronic computers several logicians experimented with
decision procedures: Martin Davis implemented Presburger’s decision procedure
for additive number theory in 1954, and a few years later Hao Wang imple-
mented a decision procedure for the V3 predicate calculus with equality’ which
was able to prove many such theorems from Whitehead and Russell’s Principia
Mathematica.

There has always been an interest in programs which produce proofs by
modelling human thought processes in some way, or are claimed to do so. Newell,
Shaw and Simon’s ‘Logic Theorist’ [84] was an early (1956) program of this
nature. A critique and analysis of this approach can be found in [41] but we
shall not pursue it here.

Several approaches to general first order theorem proving were tried in the
early years, based on various semi-decision procedures, but the problem with all
of them was that of dealing with substitutions for quantified variables. An auto-
matic procedure which enumerates all possible ground substitutions in some way
will soon lead to combinatorial explosion. The resolution method of Robinson
[93], gave one solution to this problem, and became the main area of research
in automated theorem proving for some time. Today theorem provers based on

28



resolution, particularly OTTER [119] have been among the most successful in
producing proofs of unsolved mathematical results. Resolution is, of course, only
a semi-decision procedure and the prover is essentially engaged on a potentially
non-terminating search. Much attention has been paid to efficient data struc-
tures and the constraining of search by the use of a sophisticated user-controlled
weighting strategy.

Most interesting mathematicsis neither first order nor semi-decidable, and an
alternative approach was the development of proof checkers, such as de Bruijn’s
AUTOMATH [12], developed in 1967, which was used by Jutting to check the
proofs from Landau’s Grundlagen der Analysis. Theorem provers in the LCF
tradition automated this notion, using tactics to build up proofs automatically,
and the development of these ideas using various logics and type theories has led
to widely used systems such as HOL[36], Isabelle [87], NuPrl [56] and Coq [6].

There has been much research also into particular aspects such as type sys-
tems, induction, rewriting, equational reasoning and matching. Hardware veri-
fication has proved a particularly important application, leading to interest in
model checking techniques based on BDDs, efficient data-structures for Boolean
functions. More recently systems such as PVS [86] have combined various tech-
niques in one platform: we describe below some hybrid systems which combine
theorem provers with other applications such as Maple.

For any such system to be widely used on anything but small examples it is
also important that 1t address systems issues such as efficiency, data structures,
memory management, and so on. Reasoning systems are not easy to use and often
require a good deal of insight and experience from the user, whether in tuning the
parameters to constrain search in an OTTER-like system or in developing exactly
the right chain of lemmas in an LCF-like one. Thus attention to user interface
questions and to matters such as proof management and re-use, the organisation
of a database of lemmas, parameterisation of theories and the manipulation of
partial or unfinished proofs is important.

And how do you trust the theorem prover? The more features are built in
to help the user the more bugs are likely to creep in, but also the more such
features the less amenable the prover becomes to formal verification. Pollack
[89] develops the suggestions of Cohn [19] and Slaney [101] for independent
checks via a trusted (perhaps fully verified) simple proof checker, building up
shared repositories of accepted material and replacing community acceptance of
the proof by community acceptance of the checker. A similar idea for verification
is suggested in the JAVA community: write once/run anywhere becomes prove
once/check anywhere. Foundational matters might turn out to be less important
than confidence in a mature technology: for example trusting the developers,
having access to the code, or being able to combine the formal development
with an informal account.

5.2 Mathematical applications

Proving new theorems, with a long term aim of becoming more widely used by
mathematicians, is an obvious goal of automated reasoning research. As well as

29



the benefit to the mathematical community, these challenge problems provide a
significant test of our systems and techniques and, incorporated into collections
of standard examples such as TPTP [107] and events such as the CADE theorem
proving competitions, provide valuable benchmarks for developers.

In principle any of the systems we have described could be used for proving
new theorems, but in practice the most impressive results in classical logic have
come from systems using decision or semi-decision procedures such as resolution
or rewriting. As examples we cite:

— McCune’s proof in 1997 of the Robbins conjectures [80] using EQP, a vari-
ant of the resolution theorem prover OTTER, made the front page of the
New York Times, and has been cited as one of the top five achievements in
AT [114]. The result, conjectured by Robbins in the 1930s, states that the
equation

n(n(z) +y) +n(n(x) + n(y)) ==

follows from the equations

r+y=y+«x
(z4+y)+z=z+(y+2)
n(n(z +y) +nlz+n(y))) = .

The automated proof took 8 days on an RS/6000 processor and used about
30 megabytes of memory: one can extract from the output the final proof
which is 15 lines long and easily checked by hand.

— Similarly McCune and Padmanabhan’s [79] work on cubic curves used OT-
TER, and Fujita and Slaney’s [101] work on the existence of certain quasig-
roups used OTTER together with model elimination and constraint pro-
gramming techniques: both involved complex search over enormous search
spaces.

— Equational reasoning based on rewriting and completion is a technique used
both by algebraists and in theorem provers such as LP [40]: the first paper
on completion, by Knuth and Bendix [64] was published in a group theory
conference proceedings, and the group theorist Holt [29] has implemented
a fast completion engine for strings. In recent studies Martin, Shand and
Linton [74, 78] compared this with various theorem provers and concluded
that while the former was often several orders of magnitude faster, because
of various built in enhancements, the latter offered the benefits of a more
flexible object language which allowed some automation that the group the-
ory community had not considered before, such as completion over terms,
rather than strings, and proofs by induction.

— An early challenge problem was the construction of single axiomatisations
for groups, in answer to a question of Tarski. Neumann [51] constructed the
first such example by hand: subsequent work of Kunen [67] constructed a
large number of examples by running completion on candidates generated
automatically. Completion has also been used by Kapur [121] to show that
a ring satisfying a law of the form z?" = & is commutative for certain values
of n.

30



— Geometry theorem proving [16], using various combinations of axiomatisa-
tions, Grobner basis techniques, and quantifier elimination by Collin’s al-
gorithm has been particularly successful in proving new results and in applic-
ations to problems in graphics and robotics. Euclidean geometry statements
about lines, ellipses and so on which are true in a general case sometimes
fail for certain degenerate cases (for example if the ellipse is a point): these
techniques identified several such missed cases in the usual statements of
well-known results.

— The automation of induction proofs has received much attention, particularly
the automated choice of induction hypotheses. A powerful theory has been
developed by Bundy [13] and applied for example to proofs similar to those
obtained with Gosper’s algorithm.

These achievements are impressive. A variety of first order, equational and induc-
tion proofs can be produced, sometimes completely automatically and sometimes
with user guidance in the form of weights or orderings. The output is a proof
which can be checked, in principle at least, using other software or, in some
cases, like the Robbins proof, distilled to produce output which can be checked
by hand. Large examples like this, or Slaney’s work, often stretch our systems to
their limits (that is why they are unsolved!) in terms of size, speed and search,
requiring high-quality implementations of specialised decision or semi-decision
procedures, which may not be that far from standard techniques of mathematical
computation.

Perhaps the best comparison is with techniques of computational group the-
ory, or McKay’s graph algorithms: comparable sophisticated implementations
which run completely automatically on small examples and have been run for
weeks on large examples, where the search is controlled by subtle user settings.

Such automated reasoning techniques can be used in speculative or exper-
imental work: for rapidly checking many different versions of a conjecture for
example. Their use in proofs can again be assessed in terms of rigour and quality.
In cases where the output can be readily checked, by hand or another program,
such as in the proof of Robbins’ result, rigour is unproblematic. One might sup-
pose that in general the use of such systems would be regarded as more rigorous
than the use of, for example, a computer algebra system. However the underlying
logical system of a theorem prover is often combined with many other features
whose correctness may be no more certain than that of a CAS, with, in the eyes
of a specialist user community, less sense of ownership or community checking
of the code.

The debates about quality are no different in kind from those outlined when
discussing Gosper’s algorithm above: much depends on the context as to whether
an automatic proof is considered a “good” proof or not. A particularly striking
example is given by the results about rings satisfying 22" = z. The first order
proof lacks the insight of the higher order proof involving division rings. In the
case of the Robbins result, as with the four colour theorem, a different proof
might have more explanatory power, but as yet no-one has managed to find one.

Such systems are powerful and effective when used on the right problems, but

31



they are not yet much used by mathematicians. We conjecture that the reasons
are largely historical: as we have seen computation is any case not widely used
in mathematical research, and where it is the programs are likely to have been
developed over the years by academics in a particular research area develop-
ing domain specific algorithms, with a particular emphasis on efficiency. Thus
for example our own work on automating inductive proofs in group theory was
an eye-opener to this community, despite its impressive record in computational
methods. In general mathematicians do not seem to know very much about auto-
mated reasoning techniques, or have judged them to be irrelevant on the basis
of over-enthusiastic reports of proofs of very simple results or sterile conjectures.
Few papers on automated reasoning appear in general mathematical journals,
or are reviewed in Mathematical Reviews.

Even if such programs were more widely known one should be realistic about
the possible scope for their application. First order, equational or induction prob-
lems of the kind that can be successfully automated form a very small part of
the repertoire of techniques used in most research areas. So, as with Gosper’s al-
gorithm or computer algebra algorithms, these should be regarded as specialised
techniques for particular situations, although ones independent of application
domain. Enthusiasts for automated reasoning are not likely to find these poten-
tial applications unaided: matters are not as simple as opening a mathematical
journal at random or asking the nearest mathematician for an unsolved prob-
lem, then typing some hypotheses and conclusions into our favourite theorem
prover! Even when we find such a candidate problem we should remember that
not every conjecture is interesting: conjectures may remain unproved because
no-one capable of proving them has judged them worth trying to prove.

Thus such endeavours are most profitably pursued in collaboration with
mathematicians who can provide context, insights and new undocumented prob-
lems. Crucially also mathematical collaborators can provide the introduction to
the mathematical community which 1s necessary if these techniques are to be
taken up by them in any serious way.

5.3 Formalised mathematics

There has been much work in the theorem proving community on the develop-
ment of formalised mathematics, with computational assistance in the form of
proof checking or development of proofs through high level tactics and plans in
the LCF tradition.

For example Mizar [110] uses natural deduction and Tarski-Grothendieck
set theory, and has been used to formalise a large cumulative body of mater-
1al at text-book and research journal level recorded over the past ten years in
the journal Formalised Mathematics [61]. This is impressive: more formalised
mathematics than has ever been produced by mathematicians. Other examples
include foundational material in analysis and algebra such as analysis in AUTO-
MATH [12], computer algebra algorithms in NuPrl [56] and constructive reals in
LEGO [60], and achievements such as Harrison’s development of integration [46]
in HOL or Shankar’s proof of Godel’s theorem in Boyer and Moore’s NQTHM

32



[98]. Constructive proofs may improve on the classical version: unlike the clas-
sical proof, Murthy’s [21] version of Higman’s Lemma gives an estimate of how
far along a sequence of words we must look to find a self-embedding. There are
big differences in both the logical foundations and capabilities of these systems,
but these need not concern us here. In principle such systems could be used for
proving new results, and indeed they routinely are in, for example, the hardware
verification community.

It would seem to be the case that with enough work (as a rough guide many
of the automated proofs we have mentioned have occupied a beginning PhD
student for a couple of years, or an experienced one for several months) it is
possible to mechanise just about any piece of sufficiently developed existing
mathematics, filling in the details of whatever outline is provided, assuming
that that outline is consistent with the logical foundation of the system we are
using. The difficulties come in the sheer amount of work involved, in managing
the size, scale and efficiency of the operation, in developing the theory in such a
way that precisely the right lemmas are available when needed, in “bending” the
theory to fit a logical foundation which may not be ideally suited to it, in being
certain we have indeed implemented the hand proof we intended to implement,
in going back, sometimes a long way, when the proof doesn’t work because of
some subtle mis-phrasing, and in getting efficient implementations of general
procedures such as factorisation or real arithmetic.

Just about any piece of sufficiently well-developed piece of mathematics can
be formalised, but unlike logicians and automated reasoning researchers, few
practising mathematicians seem to be interested in doing so.

One reason 1is that, as with the techniques we described in the previous sec-
tion, very few mathematicians know about such systems. Even the terminology
and concepts that form part of the most basic computer education in the subject
are unfamiliar: types, lambda calculus or the subtleties of partial functions are
not part of mathematical education even at graduate level, and I know of no
part of classical mathematics outside mathematical logic where the concepts are
made explicit. But this cannot be the whole answer: even theoretical computer
scientists whose output 1s mathematical, and who know the concepts and work
alongside theorem proving experts, do not generally use these tools, although
they might employ a researcher to verify parts of an algorithm for example.
Constable’s account of automata theory in this volume 1s a pleasing exception
rather than the norm.

We suggest that the main reason they are not used, and are not likely to
be used in their present form, is because the contribution of this endeavour to
current mathematical practice is marginal. Recall that we identified mathem-
atical practice with “producing conjectural mathematical knowledge by means
of speculation, heuristic arguments, examples and experiments; which may then
be confirmed as theorems by producing proofs in accordance with a community
standard of rigour, which may be read by the community in a variety of ways.”
and we noted that it had remained relatively unaffected by computation. Com-
puter aided formalised mathematics has at present little to offer speculation,

33



heuristic arguments, examples and experiments. For a piece of mathematics to
be “sufficiently well developed” to formalise it needs to be fairly close to a “proof
in accordance with a community standard of rigour”: in other words we need to
have something pretty close to a traditional hand proof already. Thus if math-
ematical practice is not to change, and it seems extremely resistant to change,
an expensive and difficult formalised proof needs to be produced in addition to
all the work that is currently been done, with the benefit that, depending on our
degree of trust in the prover, it gives us more certainty of freedom from error.

Suppose for example that Gorenstein’s reworking of the classification of finite
simple groups were to be automated, as it no doubt could be with sufficient
resource made available to the task. We would be somewhat more certain of the
classification, in particular meeting Gorenstein’s concern that some special cases
had not been missed. However the community would still want something similar
to the twelve volumes of hand proof currently being produced, even if only as a
commentary on the machine checked proof, for reading in the various ways that
mathematical texts are read: as a reference, for teaching, for explanation and for
understanding. And it might prefer to spend the enormous cost of formalising
the endeavour on creating some new mathematics: Atiyah’s “excitement and
action” .

Bob Boyer [9], developer of the ACL2 prover, goes further and advocates
building a library of verified results as a cultural object “Like the great pyr-
amids, the effort required (especially early on) may be great; but the rewards
can be even more staggering than this effort.” Kreisel [66] is characteristically
trenchant “Let us remember that Hilbert’s programme, as he originally inten-
ded it, has failed, though it appeared plausible to someone with his insight. In
view of the obvious connection with automatic proof procedures, we must guard
against similar misjudgements here since, with all due respect, people working
in automatic proof theory cannot be expected to be superior to Hilbert.”

Harrison [45], who has considerable experience of formalising mathematics in
the HOL system, outlines some of the challenges in embarking on such a program:
choosing a foundational system, how to handle definitions or partial functions,
how much automation, what kind of user interface and how to handle large
databases of lemmas or the propagation of apparently minor changes through a
large body of formalised material. Thurston [109], one of the few mathematicians
who has considered computer aided formal reasoning, has a full appreciation of
these difficulties, and while foreseeing the routine use of theorem provers in-the-
small echoes similar concerns about the number of choices that would have to
be made in establishing a definitive and widely used large body of material, the
difficulty of reconciling this activity with current mathematical practice and the
time that would be spent in standardisation activities and resolving controversy.

The diversity of approaches being studied in the formal reasoning community
suggests we are not yet ready to commit either to a technology or a logical
foundation. A further barrier is that, unlike much automated reasoning research,
mathematical practice is universally based on classical logic, although the impact
of computation is causing a few mathematicians to rethink this position [72].

34



A mere glance at an account of significant areas of 20th century mathematics,
such as the classification of finite simple groups or the proof of Fermat’s The-
orem, is a humbling reminder of the enormous size of the task: a task for which
the mathematical community has neither the interest, the inclination or the re-
sources. Many of the same questions are being addressed in the computer science
community with the more modest aims of building shared libraries of standard
lemmas about common data-types for use in hardware or software verification.

5.4 Combination of systems

We outline below three approaches which use a combination of theorem prov-
ing and mathematical software in an attempt to improve the contribution of
computation to current mathematical practice. We refer the reader to Calmet
[53] for a discussion of general issues such as possible architectures for com-
bined systems, and to endeavours such as OpenMath [1] for clarification of the
practical difficulties involved in matters such as common interchange formats
and interoperability, particularly for systems with different semantics or type
systems.

Embedded verification techniques We may extend computational math-
ematics systems used for experiment or speculation using automated reasoning
techniques. As we have seen computer algebra systems are notorious for giving
results which are wrong or unexpected, particularly when singularities or branch
cuts are involved. Thus such extensions should be regarded as extending the
functionality available to the user for speculative work rather than necessarily
improving the rigour of the system.

We might add to our computer algebra system facilities for induction, quan-
tifier elimination, constraint solving, Boolean or first order reasoning, case splits,
user defined inference rules or techniques for handling infinite sums and series.
Current work in this area includes quantifier elimination in REDUCE [115] and
induction in Mathematica [4]. Experiments at St Andrews involve a unifying
approach to some of the problems involving side conditions, singularities and
continuity by using proof planning to reorganise the existing somewhat ad-hoc
methods. Notice that such experiments do not necessarily repair any unsound-
ness present in the underlying CAS.

A particularly successful application is Clarke’s Analytica system [17, 18]. He
extended Mathematica with a collection of inference rules, implemented using
the built in matching, simplification and rewriting algorithms. The rules com-
prised natural deduction with quantifiers handled by Skolemisation, together
with simple induction schema and standard identities involving inequalities,
sums and series. These were used to derive automatically a collection of res-
ults in analysis [17], including a proof that

(o]
Z b cos(a"nx),
n=0

35



with 0 < b < 1, @ odd and positive and ab > 1+37/2, is continuous and nowhere
differentiable. An extension with harmonic numbers and trigonometric functions
was used to prove identities involving finite and infinite sums from Ramanujan’s
notebooks [18]. The latter are described as “elementary” but would probably
challenge the average graduate student.

Formal methods for computational mathematics Light formal methods
[40] aim to provide assistance with design and documentation, particularly of
interfaces, and obtain consistency of typing, avoid degenerate cases, and provide
precise analysis of conditions at the specification stage without the overhead of
full verification. They are valuable in addressing some of the concerns about
developing a reliable discipline for mathematical experiment and modelling.

Systems like GAP and AXIOM comprise a kernel together with libraries
of data and applications often contributed by advanced users. While the core
code is often reliable it is hardly surprising that problems arise with interfaces,
documentation and later users determining exactly what the code does. The
algorithms being implemented in such systems are often complex and rely on
elaborate mathematics, with many choices being possible as to the exact version
of an algorithm to choose affecting, for example, the inputs on which it is valid.
And machine checking that inputs are indeed valid may be infeasible if, for ex-
ample, the precondition is that a function is continuous or differentiable at some
point or that the underlying type is a ring with certain properties. A possibly
apocryphal story concerns the six implementations of Gaussian elimination in
a version of Macsyma: not that the six implementation were essentially differ-
ent, but that users felt more confident developing their own than relying on the
version provided being exactly applicable in their circumstances.

Modern computer algebra systems like AXTIOM with advanced type systems
already provide some security: Dunstan [27] addresses these issues further de-
veloping light formal methods for AXTIOM in the Larch tradition [40]. They rely
on annotations in a behavioural interface specification language, Larch-AXIOM,
which can be manipulated using theorem proving techniques. The annotations
form a partial specification which also aids reuse, debugging and checking for
soundness. A verification condition generator shows the user the preconditions
for a module without attempting to verify them, thus alerting the user to, for
example, complex side conditions while giving them the freedom to decide what,
if anything, to do about them. A static analyser similar to Nelson’s [83] ESC
system also uses the annotations to provide low level checks on array bounds
and the like.

Formal methods techniques also have a role to play in elucidating the diffi-
culties in mathematical modelling outlined above. As well as testing an imple-
mentation one might attempt to prove properties either directly or by proving
properties of the partial specifications provided by annotations. Such proofs,
while still only serving as further possible falsifications of the theory (or code),
would be a further step in increasing confidence in the theory (or code). Simple
techniques that kept track of assumptions, or combined existing theories in a

36



reliable way, might also make rather clearer the relationships between different
assumptions and theories.

Such techniques can also be useful in understanding and controlling leg-
acy code or large subroutine libraries. For example the Amphion project [106]
involved the use of formal methods techniques to plan and interpret space sci-
ence observations by constructing FORTRAN code from a collection of standard
subroutines, each of which has been provided, post-implementation, with a first
order specification. A graphical interface is used to pose the problem, then this
is translated into first order logic and passed to a resolution based prover which
derives a suitable specification in terms of the subroutines, and proves it correct.
The required code can then be synthesised automatically.

The OpenMath [1] project addresses the interoperability of mathematical
systems and provides a further application for formal methods techniques in
providing precise semantics for interchange formats and addressing issues such
as specification matching and type reconstruction.

Formalising computational mathematics While a full formal development
of large areas of mathematics may not be feasible for some time, work on formal-
1sing existing computational mathematics, with the aim of getting more reliable,
repeatable and checkable output and making such computations more acceptable
in the mathematical community as part of a proof looks more promising.

The use of formal methods in debugging designs suggests developing their use
in debugging definitions: proving well-formedness conditions, definedness and so
on in developing a mathematical theory. Getting definitions right and consistent
with each other is often time consuming and error prone, especially when a
minor change is necessary perhaps for stylistic reasons and has to be propagated
through a body of material. When the definitions are correct however checking
these things is routine, and is generally glossed over in printed accounts. It would
be useful to develop a methodology for using theorem provers to help in such
developments.

For numerical software correctness of floating point arithmetic, formal ana-
lysis of error conditions and exact real computation are all active research areas.
There have been various approaches to implementing computer algebra inside
theorem provers: to do this properly requires formalising large amounts of math-
ematics, with a great loss in efficiency if standard algorithms such as factorisation
are implemented from first principles. A 5GB Grobner basis is a daunting pro-
spect for any theorem prover! The resulting increase in precision, for example
requiring side-conditions to be handled correctly at every stage, may be unwel-
come to mathematicians who want to use the system in a fairly informal way.
Various hybrid systems have been proposed, where theorem provers call com-
puter algebra systems [53]. The theorem prover can trust the algebra system
fully, using it as an oracle that acts as a special purpose decision procedure: or it
can trust it not at all [48], merely using it as a suggestion for lemmas which are
then proved in the theorem prover. Thus for example if the computer algebra
system factorises a term this can be checked by the theorem prover proving

37



that the product of the factors is indeed the given term. There are a number of
intermediate approaches such as arranging for the computer algebra system to
provide hints or plans towards proofs of its results [62], or to trust the imple-
mentation of computer algebra algorithms while making the theorem prover do
the book-keeping of checking interface definitions and so on [5].

A longer term goal is the use of theorem provers to provide the infrastruc-
ture and organisation of mathematical systems, guaranteeing secure and reliable
output while providing the user with a familiar front end which can be used
informally and calling on other specialised procedures as necessary. For example
Harrison [47] has coded standard numerical routines in a small imperative lan-
guage deeply embedded (that is via an embedding of the semantics) in HOL. The
Cabri-Geometry system [14] allows the user to draw a geometrical configuration
of lines and curves, apply geometrical transformations by point and click and
then request a cartesian proof. Beeson’s MathPert [7] system uses non-standard
analysis techniques to handle some of the problems caused by continuity and
parameters in computer algebra systems. Jamnik [58] has experimented with
the use of the {2—rule to generalise from diagrammatic proofs.

More generally one can conceive a mathematical software system producing
plans for execution by a theorem prover, for example a visualisation system pro-
ducing input to a geometric reasoning system, or an exhaustive search producing
input for a proof checker. As with other areas of artificial intelligence, usability
may well come from hiding the technology rather than making it explicit.

6 Conclusions

Widespread use by research mathematicians is not and should not be the only
or main goal of computational logic research 2. However in so far as it is an
objective we should be aware of the extraordinary power of current mathemat-
ical software systems, and of the nature of current mathematical practice, and
address mathematical speculation and conjecture and the discipline of mathem-
atical experiment. While there 1s debate in the mathematical community about
the status of computation as part of a proof, mathematicians do routinely use
computational techniques where appropriate: they are subject to community
standards of rigour just as other proofs are.

We should investigate how our techniques can help, working with mathem-
aticians rather than preaching at them or making mathematically naive claims
about what our systems can do, starting with those who might already be sym-
pathetic to our endeavours: computer inclined mathematicians and mathematic-
ally inclined computer scientists. As well as developing our systems and present-
ing our results in our own conferences and journals we should consider accessible
survey articles, presentations at relevant mathematical and scientific conferences
and representation in Mathematical Reviews.

2 . . .. . .
A cynic might observe that research mathematicians are neither numerous nor rich!

38



7

Acknowledgments

This paper grew out of lively discussions with members of the Marktoberdorf
Summer School in August 1997: T thank them and the organisers for an enjoyable
and stimulating meeting, and Mike Atkinson, Alan Bundy, Wilfrid Hodges, Paul
Jackson, Tony Hoare, Steve Linton, Tom Melham, Jose Meseguer, Alice Miller,
Duncan Shand, Jan von Plato and Lincoln Wallen for helpful comments on
earlier drafts of this paper.

References
1. J Abbott et al, Objectives of OpenMath, RIACA TU Eindhoven,Technical Report
12 (1996)
2. K Appel and W Haken, The four color proof suffices, Math. Intelligencer 8 (1986)
10-20
3. M Atiyah et al, Responses to: A Jaffe and F Quinn, Bull. Amer. Math. Soc. 29
(1993) 1-13
4. B Buchberger, Symbolic computation: computer algebra and logic, Appl. Log. Ser.
3 (1996) 193-219, Kluwer Acad. Publ
5. C Ballarin et al, Theorems and Algorithms: An Interface between Isabelle and
Maple International Symposium on Symbolic and Algebraic Computation, 150-
157, ACM Press, 1995
6. B Barras,et al, The Coq Proof Assistant Reference Manual (Version 6.1), 1996,
available from ftp.inria.fr
7. M Beeson, Mathpert: Computer support for learning algebra, trigonometry, and
calculus, Logic Programming and Automated Reasoning, LNCS 624, Springer 1992,
see also www.mathpert.com
8. C Boyer, A history of mathematics, John Wiley 1989
9. R S Boyer, The QED manifesto, CADE 12, LNCS 814, Springer 1994
10. J Borwein et al, Making sense of mathematics, Math. Intelligencer 18:4 (1996)
12-18
11. R Brown et al, Calculations with simplicial and cubical groups in AXIOM, J Sym-
bolic Computation 17 (1994) 159-179
12. N de Bruijn, The mathematical Language AUTOMATH, its usage, and some of
its extensions, Symposium on Automatic Demonstration, Lecture Notes in Math-
ematics 125, Springer 1968
13. A Bundy et al, Ripphing: a heuristic for guiding inductive proofs, Artificial Intelli-
gence 62 (1993) 185-253
14. Cabri-geometry, Texas Instruments see www.ti.com/calc/docs/cabri.htm
15. Centralised mathematical pre-print repository front.math.ucdavis.edu
16. S Chou, Mechanical geometry theorem proving, Reidel, 1988
17. E Clarke and X Zhao, Combining symbolic computation and theorem proving:
some problems of Ramanujan, CADE 12, LNCS 814, Springer 1994
18. E Clarke and X Zhao, Analytica - A Theorem Prover for Mathematica, Carnegie
Mellon University, School of Computer Science, CS-92-117, 1992
19. A Cohn, The notion of proof in hardware verification, J Automated Reasoning 5
(1989) 127-140
20. P Cohn, Algebra volume 3, Wiley 1991

39



21.
22.
23.
24.
25.

26.
27.

28.
29.

30.
31.

32.
33.

34.
35.

36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

46.

47.
48.

49.
50.
51.

52.

C Murthy et al, A constructive proof of Higman’s lemma, Fifth Annual TEEE
Symposium on Logic in Computer Science (Philadelphia, PA, 1990) 257-267

J Conway et al, Atlas of finite groups, Oxford University Press, Oxford, 1985, see
also for.mat.bham.ac.uk/atlas/

J Dieudonné, Mathematics—the music of reason, Springer 1992

E Dijkstra, A discipline of programming, Prentice-Hall 1976

E Dijkstra, The tide not the waves, in Beyond computation, ed Denning, Springer
1997

R DeMillo et al, Social processes and proofs of programs CACM 22 (1979) 271-280
M Dunstan, The design and implementation of Larch-axiom, Ph D, University of
St Andrews, forthcoming 1998

David Epstein, quoted in [54]

D Epstein et al, The use of Knuth-Bendix methods to solve the word problem in
automatic groups, J Symbolic Computation 12 (1991) 397-414

Journal of Experimental Mathematics, available at www.expmath.org

R Fateman, Why Computer Algebra Systems Can’t Solve Simple Equations, ACM
SIGSAM Bull 30 (1996) 8-11

R Fateman, TILU Table of Integrals Look Up, www.cs.Berkeley.edu/ fateman
S Feferman, What rests on what? The proof-theoretic analysis of mathematics,
Philosophy of mathematics (Kirchberg am Wechsel, 1992) 147-171

J Fetzer, Program Verification: The Very Idea CACM 31 (1988) 1048-1063

S Garland and J Guttag, An Overview of LLP, The Larch Prover, RTA3, LNCS 355
137-151, Springer 1989

M Gordon and T Melham, Introduction to HOL: A theorem proving environment
for higher order logic, Cambridge University Press, 1993

D Gorenstein, Classifying the finite simple groups, Bull. Amer. Math. Soc. 14
(1986) 1-98

R Graham et al, Concrete Mathematics, Addison-Wesley, 1989

G Grimmett, Percolation, Springer 1989

J V Guttag and J J Horning, Larch: languages and tools for formal specification,
Springer 1993

J Grabiner, Computers and the nature of man: a historian’s perspective on con-
troversies about artificial intelligence, Bull. Amer. Math. Soc. 15 (1986) 113-126
A Granville, Review of BBC Horizon Program, “Fermat’s Last Theorem”, Notices
Amer. Math. Soc. 44 (1997) 15-16

J Hadamard, An essay on the psychology of invention in the mathematical field,
Dover 1954

G H Hardy, Mathematical Proof, Mind 38 (1929)

J Harrison, Formalized Mathematics, TUCS TR 36, 1996

J Harrison, Constructing the Real Numbers in HOL, Formal Methods in System
Design 5 (1994) 35-59

J Harrison, Floating point verification in HOL, HOL 95, LNCS 971, Springer 1995
J Harrison and 1. Thery, Extending the HOL Theorem Prover with a Computer
Algebra System to Reason About the Reals, in HOL 93, LNCS 780, Springer 1993,
A Heck, Introduction to Maple, Springer 1993

R Hersh, What is mathematics, really? Oxford University Press 1997

G Higman, B Neumann, Groups as groupoids with one law, Publ. Math. Debrecen
2 (1952) 215-221

D Hoffman, Computer-aided discovery of new embedded minimal surfaces, Math.
Intelligencer 9 (1987) 8-21

40



53.

54.

55.

56.

57.

58.

59.

60.

61.
62.

63.
64.

65.

66.

67.

68.

69.

70.

71.

72.

73.
74.

75.
76.

77.
78.

79.

80.

81.

K Homann et al, Combining theorem proving and symbolic mathematical comput-
ing, LNCS 958, Springer 1994

J Horgan, The death of proof, Sci. Amer. 269 (1993), 92-103

D Hume, Treatise on human nature, (ed Mossner), Penguin 1969, p231

P Jackson, Exploring Abstract Algebra in Constructive Type Theory, CADE 12,
LNCS 814, Springer 1994

A Jaffe and F Quinn, “Theoretical mathematics”: toward a cultural synthesis of
mathematics and theoretical physics, Bull. Amer. Math. Soc. 29 (1993), 1-13

M Jamnik et al, Automation of diagrammatic reasoning, Proceedings of the 15th
IJCAT (1997) 528-533, Morgan Kaufmann

R D Jenks and R S Sutor, axiom: The Scientific Computation System, Springer
1992

C Jones, Completing the Rationals and Metric Spaces in LEGO, in Logical Envir-
onments, Cambridge University Press 1993

Journal of Formalised Mathematics, see mizar.uw.bialystok.pl

M Kerber et al, Integrating Computer Algebra with Proof Planning, LNCS 1128,
Springer 1996

P Kitcher, The nature of mathematical knowledge, Oxford University Press 1983
D Knuth,P Bendix, Simple word problems in universal algebras, Computational
Problems in Abstract Algebra, 263-297, Pergamon 1967

S Krantz, The immortality of proof, Notices Amer. Math. Soc. 41 (1994) 10-13
G Kreisel, Hilbert’s Programme and the search for automatic proof procedures,
Symposium on Automatic Demonstration, Lecture Notes in Mathematics 125,
Springer 1968

K Kunen, Single axioms for groups, J. Automated Reasoning 9 (1992) 291-308
G Labelle, Some combinatorial results first found using computer algebra, J Sym-
bolic Computation 20 (1995) 567-594

I Lakatos, Proofs and refutations, The logic of mathematical discovery, Cambridge
University Press 1976

C Lam, How reliable is a computer-based proof? Math. Intelligencer 12 (1990)
8-12

S Lang: Mordell’s review, Siegel’s letter to Mordell, Diophantine geometry, and
20th century mathematics, Notices Amer. Math. Soc. 42 (1995) 339-350

D Epstein, S Levy: Experimentation and proof in mathematics, Notices Amer.
Math. Soc. 42 (1995) 670-674

S Levy, Making waves, A guide to the ideas behind Outside in, A K Peters, 1995
S Linton et al, Some group-theoretic examples with completion theorem provers,
J Automated Reasoning 17 (1996)145-169

D Mackenzie, Knowing machines, MIT Press 1997

D Mackenzie, Slaying the cracken: the socio-history of a mathematical proof, Pre-
print 1997

Ju Manin et al, How convincing is a proof? Math. Intelligencer 2 (1979) 17-24

U Martin et al, Algebra and Automated Reasoning, CADE 13, LNCS 1102,
Springer 1996

W McCune and R Padmanabhan, Automated deduction in equational logic, LNCS
1095, Springer 1996

W McCune, Solution of the Robbins Problem, J. Automated Reasoning 19 (1997)
263-276

B McKay and S Radziszowski, Subgraph counting identities and Ramsey numbers,
J. Combin. Theory Ser. B 69 (1997) 193-209

41



82. The NAG Fortran library, wuw.nag.co.uk

83. G Nelson et al, Network objects, Software Practice and Experience, 25 (1995)
87-130

84. A Newell et al, Empirical explorations of the Logic Theory Machine: a case study
in heuristics, in Computers and Thought, McGraw Hill 1963

85. N Oreskes et al, Verification, validation and confirmation of numerical models in
the earth sciences, Science 263 (Feb 1994) 641-646

86. S Owre et al, PVS: A Prototype Verification System, LNCS 607, Springer 1992

87. L Paulson, Logic and Computation, Cambridge University Press, 1987

88. H Poincaré, Mathematical creativity, reprinted in The world of mathematics ed
Newman, volume 4, Microsoft Press, 1988

89. R Pollack, How to believe a machine checked proof, Twenty five years of construct-
ive type theory, ed G Sambin, Oxford University Press 1997

90. K Popper, Conjectures and refutations: The growth of scientific knowledge, Basic
Books 1962

91. P Rideau, Computer algebra and mechanics: the JAMES software, in Computer
Algebra in Industry, (ed A M Cohen), Wiley 1993, 143-158

92. N Robertson et al, The four-colour theorem, J. Combin. Theory Ser. B 70 (1997)
2-44

93. J Robinson, A machine oriented logic based on the resolution principle, JACM 12
(1964), 23-41

94. B Rotman, Thinking dia-grams: mathematics, writing and virtual reality, South
Atlantic Quarterly 94 (1995) 389-416

95. D Ruelle, Chance and chaos, Penguin 1991

96. Martin Schonert et.al. GAP- Groups, Algorithms, and Programming, Lehrstuhl D
for Mathematik, Rheinisch Westfalische Technische Hochschule, Aachen, Germany,
1995, or at www-gap.st-and.ac.uk

97. B Selman and S Kirkpatrick, Critical behavior in the computational cost of satis-
fiability testing, Artificial Intelligence 81 (1996) 273-295

98. N Shankar, Metamathematics, machines, and Gédel’s proof, Cambridge University
Press 1994

99. S Simpson, Partial realizations of Hilbert’s Program, J. Symbolic Logic 53 (1988)
349-363

100. S Singh, Fermat’s Enigma: The Epic Quest to Solve the World’s Greatest Math-
ematical Problem, Walker and Company 1997

101. J Slaney et al, Automated reasoning and exhaustive search: quasigroup existence
problems, Comput. Math. Appl. 29 (1995) 115-132

102. J Slaney, S Thiebaux, Phase transitions and optimality: sense and nonsense Pre-
print 1997

103. N Sloane, S Plouffe: The encyclopedia of integer sequences, Academic Press 1995,
wuw.research.att.com/ njas/sequences/

104. R Solomon, On finite simple groups and their classification, Notices Amer. Math.
Soc. 42 (1995) 231-239

105. 1 Stewart, Does god play dice? The mathematics of chaos, Blackwell 1989

106. M Stickel et al, The deductive composition of astronomical software from sub-
routine libraries, CADE 12, LNAT 814, Springer 1994 341-355

107. G Sutcliffe et al, The TPTP Problem Library, CADE 12, LNAI 814, Springer
1994 252-266

108. H P F Swinnerton-Dyer and B Birch, Elliptic curves and modular functions,
Lecture Notes in Math, 476 (1975) 2-32

42



109. W Thurston, On proof and progress in mathematics, Bull. Amer. Math. Soc. 30
(1994) 161-177

110. A Trybulec, The Mizar-QC 6000 logic information language, ALCC bulletin 6
(1978) 136-140

111. T Tymoczko, A philosophical investigation of the four-color proof, Math. Mag.
53 (1980) 131-138

112. J von Neumann, The mathematician, in The Works of the Mind (1947) 180-196,
University of Chicago Press

113. S Wolfram, The Mathematica book, Cambridge University Press 1996

114. D Waltz, Artificial intelligence: realizing the ultimate promises of computing, Al
magazine 18 (1997) 49-52

115. V Weispfenning, Simulation and optimization by quantifier elimination, Applica-
tions of quantifier elimination, J. Symbolic Computation 24 (1997)189-208

116. H Weyl, Mathematics and logic, Amer Math Monthly 53 (1946) 2-13

117. A Whitehead, Science and the modern world, Cambridge University Press 1926

118. A Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2)
141 (1995) 443-551

119. L. Wos, The Automation of Reasoning: An Experimenter’s Notebook with Otter
Tutorial, Academic Press (1996)

120. D Zeilberger, Theorems for a price: tomorrow’s semirigorous mathematical cul-
ture, Notices Amer. Math. Soc. 40 (1993) 978-981

121. H Zhang and D Kapur, Consider only General Superpositions in Completion
Procedures, RTA 3, LNCS 355 513-527, Springer 1989

This article was processed using the ATEX macro package with LLNCS style

43



