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Abstract

Understanding program dependencies in a computer

program is essential for many software engineering ac-

tivities including program slicing, testing, debugging,

reverse engineering, and maintenance. In this paper,

we present a dependence-based representation called

multithreaded dependence graph, which extends previ-

ous dependence-based representations, to represent pro-

gram dependencies in a concurrent Java program. We

also discuss some important applications of a multi-

threaded dependence graph in a maintenance environ-

ment for concurrent Java programs.

1 Introduction

Java is a new object-oriented programming language

and has achieved widespread acceptance because it em-

phasizes portability. Java has multithreading capabili-

ties for concurrent programming. To provide synchro-

nization between asynchronously running threads, the

Java language and runtime system uses monitors. Be-

cause of the nondeterministic behaviors of concurrent

Java programs, predicting, understanding, and debug-

ging a concurrent Java program is more di�cult than a

sequential object-oriented program. As concurrent Java

applications are going to be accumulated, the develop-

ment of techniques and tools to support understanding,

debugging, testing, maintenance, complexity measure-

ment of concurrent Java software will become an im-

portant issue.

Program dependencies are dependence relationships

holding between program statements in a program that

are implicitly determined by the control 
ows and data


ows in the program. Intuitively, if the computation of

a statement directly or indirectly a�ects the computa-

tion of another statement in a program, there might ex-

ist some program dependence between the statements.

Program dependence analysis is the process to deter-

mine the program's dependencies by analyzing the con-

trol 
ows and data 
ows in the program.

Many compiler optimizations and program analysis and

testing techniques rely on program dependence infor-

mation, which is topically represented by a dependence-

based representation (DBR), for example, a program de-

pendence graph (PDG) [7, 13]. The PDG, although

originally proposed for compiler optimizations, has been

used for various software engineering activities including

program slicing, debugging, testing, maintenance, and

complexity measurements [1, 2, 6, 11, 16, 17]. For exam-

ple, program slicing, a decomposition technique that ex-

tracts program statements related to a particular com-

putation, is greatly bene�t from a PDG on which the

slicing problem can be reduced to a vertex reachabil-

ity problem [16] that is much simpler than its original

algorithm [23].

DBRs were originally constructed for procedural pro-

grams. Recently, as object-oriented software become

popular, researchers have applied DBRs to object-

oriented programs to represent various object-oriented

features such as classes and objects, class inheritance,

polymorphism and dynamic binding [4, 5, 12, 14, 15],

and concurrency [24, 26]. (for detailed discussions, see

related work section).

However, the existing DBRs for object-oriented soft-

ware can not be applied to concurrent Java programs

straightforwardly due to the speci�c features of Java

concurrency model. In order to represent the full range

of concurrent Java program, we must extend the exist-

ing DBRs for representing concurrent Java programs.

In this paper we present a DBR called multithreaded de-

pendence graph, which extends previous DBRs, to rep-

resent various types of dependencies in a concurrent

Java program. The multithreaded dependence graph

of a concurrent Java program consists of a collection

of thread dependence graphs each representing a single

thread in the program, and some special kinds of de-

pendence arcs to represent thread interactions between

di�erent threads. Finally, we discuss some important

applications of a multithreaded dependence graph in

a maintenance environment for concurrent Java pro-

grams.

The rest of the paper is organized as follows. Section 2

brie
y introduces the concurrency model of Java. Sec-

tion 3 discusses some related work and explains why

existing DBRs can not be used to represent concurrent

Java programs correctly. Section 4 presents the mul-



tithreaded dependence graph for concurrent Java pro-

grams. Section 5 discusses some applications of the

graph. Concluding remarks are given in Section 6.

2 Concurrency Model in Java

Java supports concurrent programming with threads

through the language and the runtime system. A thread

is a single sequential 
ow of control within a program.

It is similar to a sequential program in the sense that

each thread also has a start, a sequence of execution,

and a stop and at any given time during the runtime of

the thread, there is a single point of execution. How-

ever, a thread itself is not a program because it can not

run independently, rather, it can only run within a pro-

gram. Programs that has multiple synchronous threads

are called multithreaded programs topically. Java pro-

vides a Thread class library, that de�nes a set of op-

erations on one thread, like start(), stop(), join(),

suspend() and resume().

Java uses shared memory to support communication

among threads. Objects shared by two or more threads

are called condition variables, and the access on them

must be synchronized. The Java language and runtime

system support thread synchronization through the use

of monitors. In general, a monitor is associated with a

speci�c data item (a condition variable) and functions

as a lock on that data. When a thread holds the mon-

itor for some data item, other threads are locked out

and cannot inspect or modify the data. The code seg-

ments within a program that access the same data from

within separate, concurrent threads are known as crit-

ical sections. In Java, you may mark critical sections

in your program with the synchronized keyword. Java

provides some methods of Object class, like wait(),

notify(), and notifyall() to support synchronization

among di�erent threads. Using these operations and dif-

ferent mechanism, threads can cooperate to complete a

valid method sequence of the shared object.

Any Java program begins its execution from the main()

method. The thread of execution of the main method

is the only thread that is running when the program

is started. Execution of all other threads is started by

calling their start() methods, which begins execution

with their corresponding run() methods.

Figure 1 shows a simple concurrent Java program that

implements the Producer-Consumer problem. The pro-

gram creates two threads Producer and Consumer. The

Producer generates an integer between 0 and 9 and

stores it in a CubbyHole object. The Consumer con-

sumes all integers from the CubbyHole as quickly as they

become available. Threads Producer and Consumer in

this example share data through a common CubbyHole

object. However, to execute the program correctly, the

following condition must be satis�ed, i.e., the Producer

 ce1  class Producer extends Thread {

   2        private CubbyHole cubbyhole;

   3        private int number;

  e4        public Producer(CubbyHole c, int number) {

  s5            cubbyhole = c;

  s6            this.number = number;

   7        }

 te8        public void run() {

  s9          int i=0;

 s10          while (i<10) {

 s11            cubbyhole.put(i);

 s12            System.out.println("Producer #" + 

                            this.number + "put:" + i);

 s13            sleep((ubt)(Math.random()*100));

 s14            i=i+1;

  15          }

  16        } 

  17  }

ce18  class Consumer extends Thread {

  19       private CubbyHole cubbyhole;

  20       private int number;

 e21       public Consumer(CubbyHole c, int number) {

 s22           cubbyhole = c;

 s23           this.number = number;

  24       }

te25       public void run() {

 s26         int value = 0;

 s27         int i=0;

 s28         while (i<10) {

 s29           value = cubbyhole.get();

 s30           System.out.println("Consumer #" + 

                       this.number + "get:" + value);

 s31           sleep((int)(Math.random()*100));

 s32           i=i+1;

  33         }

  34       } 

  35  }

ce36  class CubbyHole {

  37        private int seq;

 s38        private boolean available = false;

me39        public synchronized int get() {

 s40           while (available == false) {

 s41                 wait();

  42           }

 s43            available = false;

 s44            notify();

 s45            return seq;

  46       }

me47       public synchronized int put(int value) {

 s48           while (available == true) {

 s49                 wait();

  50           }

 s51           seq = value;

 s52           available = true;

 s53           notify();

  54       }

  55  }

ce56  class ProducerConsumerTest {

me57        public static void main(string[] args) {

 s58           CubbyHole c = new CubbyHole();

 s59           Producer p1 = new Producer(c, 1);

 s60           Consumer c1 = new Consumer(c, 1);

 s61           p1.start();

 s62           c1.start();

  63        }

  64  }

Figure 1: A concurrent Java program.



can not put any new integer into the CubbyHole un-

less the previously put integer has been extracted by

the Consumer, while the Consumer must wait for the

Producer to put a new integer in the CubbyHole is

empty.

In order to satisfy the above condition, the activities of

the Producer and Consumer must be synchronized in

two ways. First, the two threads must not simultane-

ously access the CubbyHole. A Java thread can handle

this through the use of monitor to lock an object as

described previously. Second, the two threads must do

some simple cooperation. That is, the Producer must

have some way to inform the Consumer that the value is

ready and the Consumer must have some way to inform

the Producer that the value has been extracted. This

can be done by using a collection of methods: wait()

for helping threads wait for a condition, and notify()

and notifyAll() for notifying other threads of when

that condition changes.

3 Related Work

As an essential representation useful for compiler opti-

mization and program analysis, a DBR has been widely

studied in the literatures. In this section, we review

some related work on DBRs which directly or indirectly

in
uence our work, and explain why these DBRs can

not be applied to concurrent Java programs. Although

DBRs have been widely studied in the context of proce-

dural programming languages, it is the �rst time, to our

knowledge, to apply existing DBRs to concurrent Java

programs.

3.1 DBRs for Procedural Programs

Ferrante et al. [7] presented a DBR called program de-

pendence graph to explicitly represent control and data

dependencies in a sequential procedural program with

single procedure. Horwitz et al. [9] extended the pro-

gram dependence graph to introduce a DBR called sys-

tem dependence graph (SDG) to represent a sequential

procedural program with multiple procedures. Cheng

[6] presented a DBR called process dependence net which

is the generalization of the program dependence graph

to represent program dependencies in a concurrent pro-

cedural program with single procedure. Although these

DBRs can be used to represent many features of a proce-

dural program, they lack the ability to represent object-

oriented features in concurrent Java programs.

3.2 DBRs for Object-Oriented Programs

Larsen and Harrold [14] extended the SDG which was

�rst proposed to handle interprocedural slicing of se-

quential procedural programs [9] to the case of se-

quential object-oriented programs. Their SDGs can be

used to represent many object-oriented features such as

classes and objects, polymorphism, and dynamic bind-

ing. Since the SDGs they compute for sequential object-

oriented programs belong to a class of SDGs de�ned in

[9], they can use the two-pass slicing algorithm intro-

duced in [9, 18] for sequential procedural programs to

compute slices of sequential object-oriented programs.

Chan and Yang [4] adopted a similar way to extend

the SDGs for sequential procedural programs [9] to

sequential object-oriented programs, and use the ex-

tended SDG for computing static slices of sequential

object-oriented programs. On the other hand, Krish-

naswamy [12] proposed another DBR called the object-

oriented program dependency graph to represent sequen-

tial object-oriented programs and compute polymorphic

slices of sequential object-oriented programs based on

the object-oriented program dependency graph. Chen

et al. [5] also extended the program dependence graph

to the object-oriented dependency graph for modeling

sequential object-oriented programs. Although these

DBRs can be used to represent many features of se-

quential object-oriented programs, they lack the ability

to represent concurrency issues, and therefore can not

be used to represent concurrent Java programs.

Zhao et al. [24] presented a DBR called system depen-

dence net to represent concurrent object-riented pro-

grams, especially Compositional C++ (CC++) pro-

grams [3]. In CC++, synchronization between di�erent

threads is realized by using a single-assignment variable.

Threads that share access to a single-assignment vari-

able can use that variable as a synchronization element.

Their system dependence net for CC++ programs is

a straightforward extension of the SDG proposed by

Larsen and Harrold [14] for sequential object-oriented

programs, and therefore can be used to represent many

object-oriented features in a CC++ program. To han-

dle concurrency issues in CC++, they used a approach

proposed by Cheng [6] which originally used for rep-

resenting concurrent procedural programs with single

procedures. However, their approach, when applied to

concurrent Java programs, has some problems due to

the following reason. The concurrency models of CC++

and Java are essentially di�erent. While Java sup-

ports monitors and some low-level thread synchroniza-

tion primitives, CC++ uses a single-assignment variable

mechanism to realize thread synchronization. This dif-

ference leads to di�erent sets of concurrency constructs

in both languages, and therefore requires di�erent tech-

niques to handle.

4 A Dependence-Based Representation

for Concurrent Java Programs

Generally, a concurrent Java program has a number

of threads each having its own control 
ow and data


ow. These 
ows are not independent because inter-

thread synchronizations among multiple control 
ows

and inter-thread communications among multiple data
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Figure 2: The TDGs for threads Producer and Consumer.


ows may exist in the program. To represent concur-

rent Java programs, we present a dependence-based rep-

resentation called the multithreaded dependence graph.

The multithreaded dependence graph of a concurrent

Java program is composed of a collection of thread de-

pendence graphs each representing a single thread in the

program, and some special kinds of dependence arcs to

represent thread interactions between di�erent threads.

In this section, we show how to construct the thread

dependence graph for a single thread and the multi-

threaded dependence graph for a complete concurrent

Java program.

4.1 Thread Dependence Graphs for Single

Threads

The thread dependence graph (TDG) is used to repre-

sent a single thread in a concurrent Java program. It

is similar to the SDG presented by Larsen and Har-

rold [14] for modeling a sequential object-oriented pro-

gram. Since execution behavior of a thread in a con-

current Java program is similar to that of a sequential

object-oriented program. We can use the technique pre-

sented by Larsen and Harrold for constructing the SDG

of sequential object-oriented programs to construct the

thread dependence graph. The detailed information for

building the SDG of a sequential object-oriented pro-

gram can be found in [14]. In the following we brie
y

describe our construction method.



The TDG of a thread is an arc-classi�ed digraph that

consists of a number of method dependence graphs each

representing a method that contributes to the imple-

mentation of the thread, and some special kinds of de-

pendence arcs to represent direct dependencies between

a call and the called method and transitive interproce-

dural data dependencies in the thread. Each TDG has

a unique vertex called thread entry vertex to represent

the entry into the thread.

The method dependence graph of a method is an arc-

classi�ed digraph whose vertices represent statements

or control predicates of conditional branch statements

in the method, and arcs represent two types of depen-

dencies: control dependence and data dependence. Con-

trol dependence represents control conditions on which

the execution of a statement or expression depends in

the method. Data dependence represents the data 
ow

between statements in the method. For each method de-

pendence graph, there is a unique vertex called method

entry vertex to represent the entry into the method. For

example, me39 and me47 in Figure 2 are method entry

vertices for methods get() and put().

In order to model parameter passing between meth-

ods in a thread, each method dependence graph also

includes formal parameter vertices and actual parame-

ter vertices. At each method entry there is a formal-in

vertex for each formal parameter of the method and a

formal-out vertex for each formal parameter that may

be modi�ed by the method. At each call site in the

method, a call vertex is created for connecting the called

method, and there is an actual-in vertex for each actual

parameter and an actual-out vertex for each actual pa-

rameter that may be modi�ed by the called method.

Each formal parameter vertex is control-dependent on

the method entry vertex, and each actual parameter

vertex is control-dependent on the call vertex.

Some special kinds of dependence arcs are created for

combining method dependence graphs for all methods

in a thread to form the whole TDG of the thread.

� A call dependence arc represents call relationships

between a call method and the called method, and

is created from the call site of a method to the entry

vertex of the called method.

� A parameter-in dependence arc represents parame-

ter passing between actual parameters and formal

input parameter (only if the formal parameter is at

all used by the called method).

� A parameter-out dependence arc represents param-

eter passing between formal output parameters and

actual parameters (only if the formal parameter is

at all de�ned by the called method). In addition,

for methods, parameter-out dependence arcs also

represent the data 
ow of the return value between

the method exit and the call site.

Figure 2 shows two TDGs for threads Producer and

Consumer. Each TDG has an entry vertex that corre-

sponds to the �rst statement in its run() method. For

example, in Figure 2 the entry vertex of the TDG for

thread Producer is te8, and the entry vertex of the

TDG for thread Consumer is te25.

4.2 Multithreaded Dependence Graphs for

Concurrent Java Programs

The multithreaded dependence graph (MDG) of a con-

current Java program is an arc-classi�ed digraph which

consists of a collection of TDGs each representing a sin-

gle thread, and some special kinds of dependence arcs

to model thread interactions between di�erent threads

in the program.

To capture the synchronization between thread synchro-

nization statements and communication between shared

objects in di�erent threads, we de�ne some special kinds

of dependence arcs in the MDG.

4.2.1 Synchronization Dependencies

We use synchronization dependence to capture depen-

dence relationships between di�erent threads due to

inter-thread synchronization.

� Informally, a statement u in one thread is

synchronization-dependent on a statement v in an-

other thread if the start or termination of the exe-

cution of u directly determinates the start or termi-

nation of the execution of v through an inter-thread

synchronization.

In Java synchronization dependencies among di�erent

threads may be caused in several ways. We show how

to create synchronization dependence arc for each of

them.

(1) Wait-notify Relations

A synchronization can be realized by using wait()

and notify()/notifyall() method calls in di�erent

threads. For such a case, a synchronization dependence

arc is created from a vertex u to a vertex v if u denoted

a notify() or notifyall() call in thread t1 and v

denotes a wait() call in thread t2 for some thread ob-

ject o, where threads t1 and t2 are di�erent. A special

case is that there are more than one threads waiting for

the noti�cation from a thread t. For such a case, we

create synchronization dependence arcs from the ver-

tex denoted notify() call of t to each vertex denoted

wait() call of the other threads respectively.

For example, in the program of Figure 1, methods put()

and get() use Java Object's notify() and wait()

methods to cooperate their activities. This means
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that there exists synchronization dependencies between

wait() method call in Producer and notify() method

call in Comsumer, and between notify() method call

in Producer and wait() method call in Consumer. So

we can create synchronization dependence arcs between

s53 and s41, and between s44 and s49 as showed in

Figure 3.

(2) Stop-join Relations

Another case that may cause inter-thread synchroniza-

tion is the stop-join relationship, that is, a thread calling

the join() method of another thread may proceed only

after this target thread terminates. For such a case, a

synchronization dependence arc is created from a ver-

tex u to a vertex v if u denotes the last statement in

thread t1 and v denotes a join() call in thread t2,

where threads t1 and t2 are di�erent.

4.2.2 Communication Dependencies

We use communication dependence to capture depen-

dence relationships between di�erent threads due to

inter-thread communication.

� Informally a statement u in one thread is directly

communication-dependent on a statement v in an-

other thread if the value of a variable computed

at u has direct in
uence on the value of a variable

computed at v through an inter-thread communi-

cation.

Java uses shared memory to support communication

among threads. Communications may occur when two

parallel executed threads exchange their data via shared

variables. In such a case, a communication dependence

arc is created from a vertex u to a vertex v if u denotes a

statement s

1

in thread t1 and v denotes a statement s

2

in thread t2 for some thread object o, where s

1

and s

2

shares a common variable and t1 and t2 are di�erent. A

special case is that there is more than one thread waiting

for the noti�cation from some thread t, and there is an

attribute a shared by these threads as a communication

element. In such a case, we create communication de-

pendence arcs from each statement containing variable

a of the threads to the statement containing variable a

in thread t respectively.

For example, in the program of Figure 1, methods put()

and get() use Java Object's notify() and wait()

methods to cooperate their activities. In this way, each

seq placed in the CubbyHole by the Producer is ex-

tracted once and only once by the Consumer. By ana-

lyzing the source code we know that there exist inter-

thread communication between statement s51 in thread

Producer and statement s45 in Comsumer which share

variable seq. Similarly, inter-thread communications

may also occur between statements s52 and s40 and

between s43 and s48 due to shared variable available.

As a result, communication dependence arcs can be cre-

ated from s52 to s40, s51 to s45, and s43 to s48 as

showed in Figure 3.

4.2.3 Constructing the MDG

The construction of the MDG for a complete concur-

rent Java program can be done by combining the TDGs

for all threads in the program at synchronization and

communication points by adding synchronization and

communication dependence arcs between these points.

For this purpose, we create an entry vertex for the

MDG that represents the entry into the program, and

construct a method dependence graph for the main()

method. There are control dependence arcs to con-

nect the entry vertex to each statement vertex in the

method dependence graph of the main class. Moreover,

a start arc is created from each start() method call

in the main() method to the corresponding thread en-

try vertex. Finally, synchronization and communica-

tion dependence arcs are created between statements

related to thread interaction in di�erent threads. Note

that in this paper, since we focus on concurrency issues

in Java, many sequential object-oriented features that

may also exist in a concurrent Java program are not

discussed. However, how to represent these features in

sequential object-oriented programs using dependence

graphs has already been discussed by some researchers

[4, 5, 12, 14]. Their techniques can be directly integrated

into our MDG for concurrent Java programs. Moreover,

in order to develop a practical MDG for concurrent Java

programs, some speci�c features in Java such as inter-

faces and packages must be considered. In [27], we pre-

sented a technique for constructing a dependence graph

for representing interfaces and packages in sequential

Java programs. Such a technique can also be integrated

directly with our MDG for representing interfaces and

packages in a concurrent Java program.

Figure 3 shows the MDG for the program in Figure

1. It consists of two TDGs for threads Producer

and Consumer, and some additional synchronization

and communication dependence arc to model synchro-

nization and communication between Producer and

Consumer.

4.3 Cost of Constructing the MDG

The size of the MDG is critical for applying it to the

practical development environment for concurrent Java

programs. In this section we try to predicate the size

of the MDG based on the work of Larsen and Har-

rold [14] who give an estimate of the size of the SDG

for a sequential object-oriented program. Since each

TDG in an MDG is similar to the SDG of a sequential

object-oriented program, we can apply their approxima-

tion here to estimate the size of the TDG for a single

thread in a concurrent Java program. The whole cost



Table 1 Parameters which contribute to the size of a TDG.

Vertices Large number of statements in a single method

Arcs Large number of arcs in a single method

Params Largest number of formal parameters for any method

ClassVar Largest number of class variables in a class

ObjectVar Largest number of instance variables in a class

CallSites Largest number of call sites in any method

TreeDepth Depth of inheritance tree determining number of possible indirect call destinations

Method Number of methods

of the MDG for the program can be got by combining

the sizes of all TDGs in the program.

Table 1 lists the variables that contribute to the size of a

TDG. We give a bound on the number of parameters for

any method (ParamVertices(m)), and use this bound to

compute upper bound on the size of a method (Size(m)).

Based on the Size(m) and the number of methods Meth-

ods in a single thread, we can compute the upper bound

Size(TDG) on the number of vertices in a TDG including

all classes that contribute to the size of the thread.

ParamVertices(m) = Params+ObjectVar+ClassVar.

Size(m) = O(Vertices*CallSites*(1+TreeDepth*

(2*ParamVertices))+2*ParamVertices).

Size(TDG) = O(Size(m) * Methods).

Based on the above result of a single thread, we can

compute the upper bound on the number of vertices

Size(MDG) in an MDG for a complete concurrent Java

program including all threads.

Size(MDG) =

P

k

i=1

Size(TDG

i

):

Note that Size(TDG) and Size(MDG) give only a rough

upper bound on the number of vertices in a TDG and

an MDG. In practice we believe that a TDG and an

MDG may be considerably more space e�cient.

5 Applications of the MDG

Having MDG as a DBR for concurrent Java programs,

we discuss some important applications based on the

MDG in a maintenance environment for concurrent Java

programs.

5.1 Slicing Concurrent Java Programs

One of our purpose for constructing the MDG of a con-

current Java program is to use it for computing static

slices of the program. In this section, we de�ne some

notions about statically slicing of a concurrent Java pro-

gram, and show how to compute static slices of a con-

current Java program based on its MDG.

A static slicing criterion for a concurrent Java program

is a tuple (s; v), where s is a statement in the program

and v is a variable used at s, or a method call called

at s. A static slice SS(s; v) of a concurrent Java pro-

gram on a given static slicing criterion (s; v) consists of

all statements in the program that possibly a�ect the

value of the variable v at s or the value returned by the

method call v at s.

Since the MDG proposed for a concurrent Java pro-

gram can be regarded as an extension of the SDGs for

sequential object-oriented programs in [14] and proce-

dural programs in [9], we can use the two-pass slicing

algorithm proposed in [9, 18] to compute static slices of

a concurrent Java program based on the MDG. In the

�rst step, the algorithm traverses backward along all

arcs except parameter-out arcs, and set marks to those

vertices reached in the MDG, and then in the second

step, the algorithm traverses backward from all vertices

having marks during the �rst step along all arcs except

call and parameter-in arcs, and sets marks to reached

vertices in the MDG. The slice is the union of the ver-

tices of the MDG have marks during the �rst and second

steps. Similar to the backward slicing described above,

we can also apply the forward slicing algorithm [9, 18] to

the MDG to compute forward slices of concurrent Java

programs. Figure 4 shows a backward slice which is rep-

resented in shaded vertices and computed with respect

to the slicing criterion (s45, seq).

In addition to slicing a complete concurrent Java pro-

gram, we can also perform slicing on a single Java thread

independently based on its TDG. This may be helpful

for analyzing a single thread which is not involved in

inter-thread synchronization and communication.

A static slicing criterion for a thread in a concurrent

Java program is a tuple (s; v), where s is a statement

in the thread and v is a variable used at s, or a method

call called at s. A static thread slice SS(s; v) of a con-

current Java program on a given static slicing criterion

(s; v) consists of all statements in the thread that pos-

sibly a�ect the value of the variable v at s or the value

returned by the method call v at s.

Similarly, we can use the two-pass slicing algorithm pro-

posed in [9] to compute static thread slices of a thread

in a concurrent Java program.

5.2 Understanding and Maintenance

When we attempt to understand the behavior of a con-

current Java program, we usually want to know which

variables in which statements might a�ect a variable of
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interest, and which variables in which statements might

be a�ected by the execution of a variable of interest

in the program. As discussed above, the slicing and

forward-slicing based on the MDG of a concurrent Java

program can satisfy these requirements. On the other

hand, one of the problems in software maintenance is

that of the ripple e�ect, i.e., whether a code change in

a program will a�ect the behavior of other codes of the

program. To maintain a concurrent Java program, it is

necessary to know which variables in which statements

will be a�ected by a modi�ed variable, and which vari-

ables in which statements will a�ect a modi�ed variable.

The needs can be satis�ed by slicing and forward-slicing

the program being maintained.

5.3 Complexity Measurement

Software metrics have many applications in software

engineering activities including program understand-

ing, debugging, testing, analysis, and maintenance, and

project management. One could imagine that once some

complexity metrics could be proposed for concurrent

Java programs, they should be helpful in the develop-

ment of concurrent Java programs. Because the MDG of

a concurrent Java program represents data 
ows proper-

ties in the program, based on the MDG, we can de�ne

some metrics for measuring the complexity of concur-

rent Java programs from di�erent viewpoints. For in-

stance, the metric de�ned by the sum of all program de-

pendencies in a concurrent Java program can be used to

measure the total complexity of the program, the metric

de�ned by the number of all synchronization and com-

munication dependencies in a concurrent Java program

can be used to measure the complexity of concurrency

in the program, and the proportion of those program

dependencies concerning concurrency (i.e, synchroniza-

tion and communication dependencies) to all program

dependencies in a concurrent Java program can be used

to measure the degree of concurrency in the program.

6 Concluding Remarks

In this paper we presented the multithreaded depen-

dence graph (MDG) which extends previous DBRs to

represent various types of dependencies in a concur-

rent Java program. The MDG of a concurrent Java

program consists of a collection of thread dependence

graphs each representing a single thread in the program,

and some special kinds of dependence arcs to represent

inter-thread synchronization and communication. We

also discussed some important applications of the MDG

in a maintenance environment for concurrent Java pro-

grams. Although here we presented the approach in

term of Java, we believe that many aspects of our ap-

proach are more widely applicable and could be applied

to slicing of programs with a monitor-like synchroniza-

tion primitive, i.e., Ada95's protected types.

The MDG introduced in this paper can only represent

dependencies in a concurrent Java program at the state-

ment level. For large-scale software systems developed

in Java, such dependencies may not be e�cient because

the system usually contains numerous components and

we are more interested in high-level dependence rela-

tions such as dependencies between components. For

such a case, a new dependence analysis technique called

architectural dependence analysis [25, 19] can be used

to determine dependencies between components at the

system's architectural level. In contrast to traditional

dependence analysis, architectural dependence analysis

is designed to operate on an architectural speci�cation

of the system, rather than the source code of a conven-

tional program. Architectural dependence analysis pro-

vides knowledge of dependencies for the high-level archi-

tecture of a software system, rather than the low-level

implementation details of a conventional program. We

are now considering to integrate the architectural de-

pendence analysis into our traditional dependence anal-

ysis framework to support dependence analysis of large-

scale software systems developed in Java not only at the

statement level but also at the architectural level. We

believe that such a approach can be helpful in devel-

oping and understanding large-scale software systems

developed in Java.

Now we are developing a dependence analysis tool us-

ing JavaCC [21], a Java parser generator developed by

Sun Microsystems, to automatically construct the mul-

tithreaded dependence graph for concurrent Java pro-

grams.
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