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Abstract

This paper studies the following online replacement problem. There is a real function f(¢),
called the flow rate, defined over a finite time horizon [0, T']. It is known that m < f(t) < M
for some reals 0 < m < M. At time 0 an online player starts to pay money at the rate
f(0). At each time 0 < t < T the player may changeover and continue paying money at the
rate f(¢). The complication is that each such changeover incurs some fixed penalty. The
player is called online as at each time ¢ the player knows f only over the time interval [0, ¢].
The goal of the player is to minimize the total cost comprised of cumulative payment flow
plus changeover costs. This formulation of the replacement problem has various interesting
applications among which are: equipment replacement, supplier replacement, the menu cost
problem and mortgage refinancing.

With respect to the competitive ratio performance measure, this paper seeks to determine
the best possible competitive ratio achievable by an online replacement policy. Our results
include the following: a general lower bound on the performance of any deterministic policy,
a policy that is optimal in several special cases and a simple policy that is approximately
optimal.

Key words: Replacement, equipment replacement, menu cost, mortgage refinancing,
online replacement, online algorithms, competitive analysis



1 Introduction

The replacement problem. A real function f(t), called the flow rate, is defined over some
finite time horizon [0, T] where T is a positive real. It is given that for all t, m < f(t) < M
where m, M € R and 0 < m < M. A player is required to pay money throughout the time
interval [0,7] where the payment flow is determined in the following manner. At time 0
the player starts to pay money at the rate f(0). At each time 0 < ¢ < T the player can
changeover and continue paying money at the rate f(t¢). To perform any such changeover
the player must pay some fixed positive amount C' called the changeover cost. The player
may choose any number k of changeover times, 0 < t; <ty < --- < t;, <T. Thus, for each
such changeover time t;, the player pays a changeover cost C' and throughout the interval
[titiz1), © = 0,1,...,k, his payment flow is at the rate f(¢;). (By convention we define
to =0 and tx1 = T.) For each particular choice of changeover times the total cost incurred
by the player, comprised of payment flows and changeover costs, is

kC + i(tiﬂ — ;) f(t:).

1=0

Any choice of £ and (k) changeover times is called a replacement policy. Of course we are
interested in replacement policies that minimize the total cost. Given f, it is straightfor-
ward to compute an optimal replacement policy via (continuous) dynamic programming [1].
Throughout this paper oPT will denote this optimal policy and for each flow function f,
OoPT(f) is the (optimum) total cost obtained by OPT with respect to f.

Online replacement. In this paper we are concerned with online replacement; that is, the
player must determine his changeover times online without knowledge of future values of the
flow rate function. Specifically, we consider an online player that at each time ¢ knows f
only over the interval [0, #].

Measuring the performance of online replacement. Following Sleator and Tarjan [13] we
measure the performance of an online replacement policy by its competitive ratio defined as
follows. Let S be any online replacement policy and denote its total cost with respect to the
flow f by S(f). If there exist constants a and r such that for all f

S(f) —r-opT(f) < o

then we say that S is r-competitive or that S attains a competitive ratio of r.! The least r
such that S is r-competitive is called the competitive ratio of S (or S’s competitiveness). 1f
S is r-competitive and r is obtained with a = 0 then S is said to be strictly r-competitive.
Thus, if S is r-competitive it will never pay more than r times the absolute optimum obtained
by OPT (up to the additive constant o) and the smaller r is the better S performs compared
to OPT (clearly r > 1 if S is online).

!The “constants” r and a can be functions of the problem parameters (m,M,C and T) but must be
independent of the flow rate function f.



Using this performance measure we are interested in determining the optimal competitive
ratio for the online replacement problem in terms of the problem parameters m, M,C and
T. Optimality here is of course defined in a straightforward manner with respect to the
competitive ratio.

Viewing the problem as a two-player game. Using the above competitive ratio objective it
will be convenient to view the online replacement problem as the following two-player game.
The first player is the online player defined above. The second player is called the adversary
or the offline player. The online player chooses a strategy (or replacement policy) S and
makes it known to the adversary. Then, based on S, the adversary chooses a flow function
f so as to maximize the competitive ratio. The online player’s objective is to minimize the
competitive ratio (which means that this game is a zero-sum game).

1.1 Applications

The above replacement problem has various interesting applications. In all of these appli-
cations the basic question is when to switch from one activity, investment, or facility, to
another more rewarding one, when there is a cost associated with making the switch. More
specifically, it is assumed that the (online) player participates in exactly one activity at a
time. From time to time a new activity is offered as a possible replacement for the origi-
nal one. Associated with this new activity is a changeover cost and an operating cost per
unit time. This operating cost corresponds to our flow rate defined above.? Some striking
examples of particular applications are the following.

Equipment replacement. Here the player needs to use some piece of equipment throughout
the time horizon and from time to time, due to a priori unknown economic events and/or
technological improvements (or equipment deterioration) the player can and may wish to
switch to a different or newer equipment that incurs a lower operating cost (or higher payoff).
“Typical” examples of equipment for which this application is relevant are cars, computers,
industrial machinery, etc. The same formulation applies of course to more abstract types of
“equipment” such as jobs, etc. In all these examples the operating cost can be approximated
by a fixed rate payment flow (e.g. gasoline consumption rate, salary, etc)

Supplier replacement. A firm is purchasing goods at a constant rate from one supplier.
The cost of purchasing the same goods from other suppliers varies with time. The firm can
switch to another supplier but at a certain cost. The cost of this switchover can be approxi-
mated by some constant that accounts for the paperwork, the wasted time and possibly the
costs involved in breaking the contract that are associated with the switch.

The menu cost problem. Many firms are constantly faced with the problem of when to
adjust prices of the goods or services they offer. Due to inflationary markets (and/or other
economic events) the firm may wish to update its price menu to reflect their “real” values
in order to increase its overall payoff. Each of these price adjustments which correspond to
our (flow) changeovers, incurs some fixed cost (to physically update the “menu”, advertise,

2In many applications, this flow rate or operating cost should be viewed as a the rate of positive payoff.



etc.).

Mortgage refinancing. The zero-point fixed rate mortgage common in North America is
almost exactly modeled by our replacement problem. Here the flow rate corresponds to the
payment rate which is based on a fixed interest rate (and the principal).

Our formulation applies to all these situations with various degrees of accuracy. Never-
theless, it is our feeling that our model captures the essential problem in all of them.

1.2 Contextual background and relation to other work

The literature related to online replacement problems (or various of the above applications)
is quite extensive and it is beyond the scope of this paper to survey it all. Nevertheless,
we note that the common denominator of all previous theoretical work on the subject is
that it is based on the conventional “average case analysis”; that is, analyses are typically
made under the assumption that the flow rate function follows a particular (usually simple)
stochastic process that may or may not be known to the online player. Let us describe two
examples.

Derman [4] studies a simplified discrete time replacement problem where his analog of
our flow rate function is a piecewise constant function in which the next value is determined
via a simple one-stage Markov process.

Sheshinski and Weiss [12] study policies for price adjustments (described above as the
menu cost problem) under the assumption that “real” prices are determined by the following
two-state process. During each state the price level is changed at a fixed rate (in particular,
they assume that at one state the price is fixed and at the second state, the price increases at
a fixed rate). The duration of each state is an independent exponentially distributed random
variable.

Other examples of average case analyses of replacement problems can be found in [2, 14,
5, 9]. It is not surprising that in all these examples (and in most other analyses of this kind)
the optimal policy is heavily dependent on the stochastic assumptions.

Competitive analysis. The use of the competitive ratio performance measure for online
problems is called competitive analysis. The competitive ratio was first used by computer
scientists in the 70’s in connection with approximation algorithms for NP-complete problems
(e.g. bin-packing [8, 11, 10, 15]), and then was explicitly formulated in the 80’s in the
seminal work of Sleator and Tarjan [13] on list accessing and paging algorithms. Since
then, competitive analysis has been extensively used to analyze and design online algorithms
for many online problems naturally appearing in computer science and has gained much
recognition as a useful approach for the analysis of online problems.

This paper is the first to study the replacement problem based on the competitive ra-
tio performance measure. To the best of our knowledge our analyses are the first to study
replacement problems without relying on particular stochastic models of the flow rate func-
tion. Thus, in some sense the replacement policies derived in this paper trade performance
for robustness. It is clear that in applications where the nature of the flow rate function is
known our replacement policies will be inferior to those that are optimized with respect to



the known flow rate function. However, in many instances not much is known of the flow
rate function and a large investment of resources is required to gain adequate knowledge (if
this is at all possible) in order to devise a realistic stochastic analysis. In these situations
our approach to the replacement problem could be the model of choice. Further, a policy
that is good on average is not always the most desired one and one can envision situations
in which a smaller but almost certain payoff is preferable to a higher uncertain one.

1.3 Problem reduction.

By suitably scaling the time and cost axes, we may assume, that C' =T = 1. Specifically,
given an initial problem set-up with parameters m', M', T' and C' we map each flow rate
e [m',M'] to x = 2'T"/C" and each time t' € [0,7"] to ¢'/T'. Thus, the new problem
set-up is given by M = M'T"/C', m = m'T"/C" and T = C = 1. Tt is not hard to see that
any choice of changeover times, t|,t,,... ¢, € [0, T'], has total cost A in the initial set-up, if
and only if, under the above mappings, the changeover times ¢, %, ..., € [0, 1] have total
cost A/C" in the new set-up. Therefore, the above scaling preserves the competitive ratio.
After scaling, we further assume that m +1 < M. For M < m 4+ 1 the problem is trivial in
the sense that the online player can always achieve a “perfect” competitive ratio of one.

For the rest of this paper we consider the reduced replacement problem with C' =T =1
so that the only relevant parameters are m and M.

1.4 Classes of replacement policies

Recall that the job of the (online) player is to choose a finite sequence ti,ty,...,t; of
changeover times. At each time, ¢t € [0, 1], the information available to the online player
for this purpose (aside from the parameters m and M) is ¢, and the “history” of the game
until time ¢. Notice that it does not make sense to changeover too many times. For instance,
it is easy to see that changing over more than [M] times, does not make any sense. Moti-
vated by these facts we now define online deterministic replacement policies. First we define
offline policies and then refine the definition to capture online policies.

Offtine replacement policies. Fix m and M. Let F be the set of all flow rate functions.
A replacement policy is a sequence {M;}*_, of changeover thresholds where k is any positive
integer, and for each ¢, the changeover threshold M, is a functional

M;:[0,1] x F — [m, M]U{-1}.

For each choice of f € F, each of the functionals, M;(¢, f), is a non-increasing function of ¢,
and for all i and ¢, M;(t, f) > M;y1(t, f). The interpretation is as follows: for a given flow
rate function, f(t¢), the policy will change over at the sequence of times t;, i = 1,2,... k',
k' < k, where t; is the least ¢ greater than ¢, ; such that f(¢) < M;(¢, f). (By convention,
we take tg = 0.) Notice that the range of M; includes the number —1. This provides the
policy with the possibility to ‘disable’ any threshold at any given time (or in other words, to



‘refuse’ to change over). Intuitively, for a fixed f, M;(¢, f) should be non-increasing, for the
player should become more reluctant to change over as time passes since the later the time
of the changeover, the less will he benefit from making the change.

Online replacement policies. We now define an online replacement policy. For each
f € Fandt € [0,1], let fo, denote the function f restricted to the subinterval [0,%].
Let Foy denote the set of all fjo, with f € F. For each ¢ € [0,1] denote by m,; any
mapping, my: Foq — [m, M| U {=1}. An online replacement policy is a replacement policy
with the following additional requirement. For each i, each f € F, and each t € [0,1],
M;(t. f) = my(fio,) for some m,. Intuitively, this simply means that the online policy
decides about the ith changeover based only on past and present flow rates (and the fact
that it already made 7 — 1 changeovers).

Time independent policies. Perhaps the simplest class of online replacement policies that
is still interesting is the following class of time-independent policies. A policy in this class
is a sequence of constant changeover thresholds (fixed over time and flow rate functions).
Thus, a time-independent policy is a decreasing sequence of real numbers,

M >M; > My >...> M, >m.

The interpretation is that the online player changes over for the ith time when the flow rate
decreases to the level of (or below) M,;.

Time-dependent (refusal) policies. A more sophisticated class of policies is the following
class of time-dependent or refusal policies (we may use either name). A refusal policy is
defined as a sequence {M;(t)}*_, of functions with domain [0, 1]. By definition, each of the
functions is non increasing and for all 7 and t, M;(t) > M;(¢). Thus, the online policy is
willing to make the ith changeover at time ¢ if f(¢) < M;(t). Otherwise, it refuses to change
over. Clearly, a time-independent policy is a rudimentary form of a refusal policy. However,
if a refusal policy is also a time-independent policy, it will not usually be called a refusal
policy.

In this paper we shall focus on time-independent and refusal policies. Nevertheless, for
completeness we mention the following class of replacement policies.

History-dependent policies. The most general class of policies is the class of history-
dependent policies, where the online player make use of the history of flow rates for making his
decisions. Here again, if a history-dependent policy can be represented as a time-independent
or a refusal policy it will not be called history-dependent.

As we shall see (and somewhat surprisingly), in all instances of the replacement problem
it is possible to obtain optimal or approximately optimal online performance with time-
independent and refusal policies (and without resorting to history-dependent policies).

1.5 Outline of results

For the statement of our results (and in the analyses that follow) we use the following
standard notational convention for asymptotic relations:

f(n)=0(g(n)) <= |f(n)] <clg(n)| for somec>0
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f(n) = Qg(n)) < |f(n)| > clg(n)| for some ¢ >0
f(n) =O(g(n)) < f(n) = O(g(n) and f(n) = Qg(n))

Let us now overview the results of this paper.

A lower bound. In Section 2 we prove a general lower bound on the competitive ra-
tio of any deterministic policy for the replacement problem; This lower bound is obtained
by considering a restricted class of adversaries (flow rate functions) against which we can
identify an optimal online policy and characterize its competitive ratio. In particular, the
restricted class of flow rate functions we consider includes functions that start at time zero
at the rate M and then drop “instantaneously” and continuously to some rate chosen by the
adversary. It turns out that against such functions the optimal online performance can be
attained by a time-independent policy. After establishing this fact we determine the optimal
time-independent policy (against such restricted functions) and characterize the asymptotic
behavior of its competitive ratio. For a fixed m we show that this competitive ratio is
r =0 (lﬂn%) The optimal policy is called S*. Since the competitive ratio of S* is optimal
only against a subclass of all flow rate functions it must be a lower bound on the competitive
ratio of any replacement policy against an unrestricted flow rate function.

A characterization theorem. In Section 3 we consider a simple but rich subclass of refusal
(time-dependent) policies of the following form. FEach policy in this subclass is a time-
independent policy equipped with “refusal times”; that is, a (decreasing) sequence of constant
changeover thresholds M > My > M, > ... > M, > m and for each 1 < i < k, the threshold
M; is coupled with a refusal time b;. The interpretation is that the policy refuses to change
over to the threshold M, if the flow rate function intersects M; after time b;. We consider
only policies in which the the refusal time sequence {b;} is decreasing. This means that once
the policy refuses to change over for the first time, it will refuse to change over for the rest
of the game.

We provide a characterization theorem that gives necessary and sufficient conditions for
establishing the competitive ratio of any policy in this subclass. Given any refusal policy
S (of the above subclass) with & changeover thresholds, and a number r > 1 the theorem
specifies a set of O(k?) inequalities such that they are all satisfied if and only if S is 7-
competitive. This characterization theorem proves to be a strong tool for proving upper
bounds and it also provides a computational tool for determining the competitive ratio of
any policy numerically.

Upper bounds. In Section 4 we apply the characterization theorem of Section 3 to establish
four upper bounds. First we construct in Section 4.1 a refusal policy based on the time-
independent policy S* by coupling it with an appropriate sequence of refusal times. We call
the resulting policy S**. We prove the following results:

e In Section 4.2 we prove that S** is optimal whenever \/M/(m +1) < (m+2)/(m+1).

e In section 4.3 we state (without a proof) a theorem that establishes the optimality of
S** whenever m = 0 (for all values of M). Both these results of optimality for S**



are established by showing that S** attains the ratio r* (i.e. the lower bound for the
restricted problem).

e In Section 4.4 we find that S*™ cannot always attain the ratio r*. Nevertheless, based
on numerical evidence we conjecture that S** is always optimal within a very small
constant factor.

e In Section 4.5 we prove that S** is (r*)%-competitive for almost all values of M when
m > 0. Of course, this bound appears to be weak based on our conjecture of Section 4.4.

e In Section 4.6 we take a different direction and construct a new time-independent
policy. This policy, called S** is proven to be approximately optimal for almost all
values of M when m > 0; that is, the competitive ratio attained by S*** is within a
constant factor of r*.

Finally, in Section 5 we conclude and indicate some directions for future work.

2 A Lower bound

In this section we derive a lower bound on possible competitive ratios for the replacement
problem. To this end, we confine ourselves to a restricted class of adversaries, corresponding
to a restricted class of flow rate functions. The optimal competitive ratio for this restricted
version of the problem is a lower bound on the competitive ratio for the original problem.
Most of this section will then be devoted to identifying the optimal online policy for the
restricted problem and to characterizing its competitive ratio.

Fix m and M. For each 0 < 6 < 1/2, set 5g = —2—. For each 0 < & < 9 and p € [m, M],
consider a flow rate function, f, satisfying: (i) f(0) = M; (ii) f decreases continuously over
the time interval [0, ] to the value p; and (iii) f(t) = M for all ¢t € (=,1]. In other words, the
flow rate swoops down continuously to p at the initial time interval, and then jumps to its
maximum possible value and remains there. Let F}, . be the set of all such flow rate functions.
Let Fs be the union over all g € [m, M| and € € (0,2¢) of the sets F,.. An adversary is
called a 6-adversary if he is restricted to choose only one of the flow rate functions in Fj.

Notice that no sensible online policy will ever change over if u € (M — 1, M]; the savings
resulting from such a changeover never exceeds 1, which is the penalty incurred to perform
the replacement. Hence, without loss of generality, we shall further restrict our attention to
p € [m, M — 1], and update the above definitions accordingly.

Assume that the online player knows that he plays against a 6-adversary. We now seek
an optimal policy for the online player. We shall first argue that in the limit 6 — 0,
every deterministic online policy (and in particular, the optimal one) is captured by a time-
independent policy. More formally, it will be shown that there exists a constant ¢ such that
for every 0, if the online player confines himself to one of the best time-independent policies,
he can guarantee a competitive ratio smaller then r + ¢ - ¢ where 7 is the (general) optimal
competitive ratio against the ¢-adversary.
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Lemma 2.1 Let S be any online policy against the d-adversary and assume that r is its
competitive ratio. Then, there exists a time-independent policy, S, that is 7-competitive
against the 6-adversary and © < r + ¢ -6 where ¢ 1s a constant independent of 0.

Proof. Let S = {M;(-)}%_ |, an arbitrary replacement policy, be given. Choose g € Fs

such that % = 7. Hence, g € Fy . for some 0 < &’ < gg and m < p/ < M — 1. Choose

any £ with ¢’ < & < g9 and choose a flow rate function, f € F,,z, such that fm,g/] = g0,
That is, f is an “extension” of ¢ that decreases to the minimum possible rate. Clearly
f € Fs. We shall define S, a time-independent policy, as follows. Let 1,29, ..., e, (k' < k)
be the times S changes over when played against f. For 1 < i < &/, set M; = f(sl-), and
define $ < (M},

For each p € [m, M — 1], denote by =(x) the (unique) = such that f(z) = ., and let
fAN € F) - be a function such that (fAN)[U,E(H)] = f[oyg(uﬂ. It is evident, by the choice of S,
and since S is an online policy, that for each p, the performance of S and S against fAN is
identical; that is, S(f,) = S(f,.).

By the choice of r and g, it is clear that for each p,

Lf’ﬂ) <r. (1)

OPT(f,)

Fix pu. As e varies, the total cost of S with respect to a function in F, . does not vary by
much. Since S is time-independent, the number of changeovers it performs is independent
of the choice of e. Clearly, for £ € (0, 2g),

0< sup S(f)— ifnf S(f) < eo(M — ). (2)
fefFEuE fEI”E;;,s

From (2) and by the definition of 5 we obtain that for each choice of f € Fs with f € F}, .,
S(f) < S(fu) +20(M — p) < S(f,) +6. (3)

The bounds (2) are also true for OPT since sup; . OPT(f) (f € Fj.) is certainly not greater
than (M —pu)eg+p+1 and inf;. oPT(f) (f € F), ) is not smaller than min{M, p+1} > p+1.
Thus,

0 < sup opT(f)— inf OPT(f) < eo(M — p).

fef}?i;,s fef’Fil,E
Therefore, ) )
OPT(f) > OPT(f,) — eo(M — 1) > OPT(f,) — 6. (4)

Combining (1), (3) and (4), plus the facts that 7 < M always (a degenerate policy that never
changes over is clearly M-competitive), that opT(f,) > 1, and 6 < 1/2, we obtain

S() St e
orr(f] < orn(f,) 5
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- OPT(f,) + 6

OPT(f,) — 0
r+1
= 46—
OPT(fH) -0

< r+6-2(M+1).
|

Remark 2.1 Ultimately, we would like to consider a 6-adversary where ¢ is “infinitesimally
small”. Such a ¢ is, of course, non-existent. Hence, we should investigate this problem as ¢
approaches zero. Formally, one should obtain all results for a fixed 6 and then calculate the
appropriate limits. However, to simplify the analysis, we shall avoid this formality whenever
possible. We shall pretend that the flow rate function decreases continuously in “zero-time”
to its final value, u, and measure all the quantities that depend on 6 by their limits, as
6 — 0. For instance, we shall pretend that the optimal competitive ratio (for the restricted
replacement problem) is attained by a time-independent policy. This is not proven to be
true, of course, but as 6 — 0, by Lemma 2.1, the competitive ratio of the optimal time-
independent policy approaches the (general) optimal ratio against the limit behavior of the
o-adversary. It is to be understood that by taking this approach the only sacrifice we make
is that our final result, the lower bound, will not be a real number, but a limit.

In continuation to Remark 2.1, we shall consider for the rest of this section only time-
independent policies (that may be referred to simply as ‘policies’). For each p € [m, M — 1],
let f, denote the fictitious flow rate function that drops continuously in “zero-time” to the
rate ¢ and then jumps to M and remains constant. Formally, when we measure costs of
policies against such f,, we actually refer to the limit, ¢ — 0, of these costs against functions
in Fj,..

For each f, the cost of OPT against f, is characterized by the following lemma.

Lemma 2.2 For sufficiently small 0 < ¢ < g, for each p € [m, M — 1], and each f € F, .,
OPT(f) = min{M, p+ 1+ (M — p)}.

Proof. We argue that the two options OPT has are either to avoid change overs and keep
paying at the rate M, or to change over once, at time £, and to keep paying at the rate pu.
First we show that opT will change over at most once. Suppose OPT changes over exactly
once at time 0 < t < £, to the rate f(¢). An additional changeover at time t', 0 < ¢’ < ¢, will
cut the flow rate component of the total cost by (¢t — t')(M — f(t')) < (M —m) < 6 < 1.
However, the penalty to perform this changeover is 1. It follows that opT will change over
at most once.

Next, let us compare the cost of changing over once at time ¢ to the rate p, with the cost
of changing over once to some flow rate a > p, say, at time ¢’ < . By changing over once to
the rate a instead of changing over once to the rate p, OPT will gain G = (¢ —&')(M —a) but
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will lose L = (a — u)(1 — ). It is not hard to see that when ¢ — 0, either L > G or a — p.
Hence, we may assume that between these two alternatives, OPT will choose to change over

to u. |

Since im._opu+1+(M —p) = p+ 1 < M, a corollary of Lemma 2.2 is that for each
p € [m, M —1], opT(f,) = p+ 1.

Let S = {M,}* |, be any (time-independent) policy that achieves a competitive ratio 7.
As noted in a previous discussion, we may assume that M; < M — 1. Also, we may assume
that the last threshold, My, is strictly greater than m. The reason is that the adversary can
always choose i to be greater than m, but arbitrarily close to m. By convention, we set
My = M and if the smallest threshold of S is My, we set M, 1 = m. Thus,

m= M1 <My <--- <M <My—1=M—1.

If yo lies in the interval (M4, M,], the online player’s cost with respect to f, is M;+i and the
optimal offline cost is 1+ 1. A simple observation is that an optimal choice of pu € (M1, M;]
by the adversary is larger than but arbitrarily close to M;,,. Hence, we assume that the
optimal offline cost for such p is arbitrarily close to M, ; + 1. Putting all this together we
have

Corollary 2.1 S is r-competitive if and only if
Mi+i§T'(Mi+1+1), iZO,l,...,k. (5)

Lemma 2.3 [f the competitive ratio r is attainable by some policy, then it can be attained by
a policy {M;}¥_| such that M; +i=r(M;,+1),i=0,1,...,k—1, and My, +k < r(m+1).

Proof. Let S = {M;}¥ | be any r-competitive policy. By Corollary 2.1, M; + i <
(M4 + 1) for all 0 < i < k. Let j be the minimal index such that M; +j < r(M,41 +
1). In other words, M > M’fj — 1. Set M}, def @ — 1. The modified policy,
{My, ..., M, M}y, M5, ..., M}, must also attain a competitive ratio r since M}, +j+1 <
M1+ j+1<r(M;4+1). Similarly, we can continue to modify the policy, step by step,
replacing the thresholds M, o, M;,3, ..., etc. Since we replace each of these thresholds by a
lower threshold, we may end up with some thresholds smaller than m. As the final policy we
shall take all remaining thresholds that are still in (m, M —1]. Let S’ = {M!}*¥ | be this final
policy, where &' < k is the maximum index 7 such that M; was still replaced by a threshold
M} > m . By construction, Mj+i=r(M;, ,+1),i=0,1,... k' —1. Although M}, ,, (< m)

was not included in S', by construction, M/, + k' = r(Mp,+1),s0 My + k' < r(m+1).
Hence, by Corollary 2.1 S is r-competitive and the proof is completed. [

2.1 The sequence S(r,a) and time-independent policies

For any reals ¢ > 1 and » > 1, consider the following sequence:

{WU(T) =

mipi(r) = f -



Denote this infinite sequence, {m;(r)};, by S(r, ). The nature of the sequence S(r, a) is tied
with the nature of r-competitive time-independent policies. For instance, if there exists an
r-competitive refinancing policy, then, by Lemma 2.3, there exists an r-competitive policy
S = {M;}r | with M; = m;(r), 0 < i < k—1 and myy1(r) < m, where the m;(r)’s are
elements of S(r, M).

The following is a closed form formula for m;(r).

7 ; l r?
(1) = — | — : 7
min) = (o+ I 4 o "
This formula can be verified by induction on i.
The following two lemmata establish a few basic properties of the sequence S(r,a) that
will be used later.

Lemma 2.4 For any a > 1 and r > 1, the sequence S(r,a) = {m;(r)} is unimodal (that is,
it has a unique minimum).

Proof. Fix any ¢ > 1 and r > 1. Set m; = m;(r), i = 0,1,.... We shall prove
the following three claims. The lemma readily follows from the latter two. (i) for all 7,
m; > —1; (ii) {m;} is initially (strictly) decreasing and then stops decreasing; and (iii) once
the sequence {m;} stop decreasing it strictly increases forever.

We prove (i) by induction on i. By assumption, mg = a > 1. Assume for the induction
hypothesis that, m; > —1 for some i > 0. Then, m;; = 2 — 1 > =L 1 = 1,

We now prove that (ii) holds. It is not hard to see that initially, the sequence is strictly
decreasing. For example, m; = mg/r — 1 < mgy. Assume by way of contradiction that the
sequence is always decreasing. Hence, by (i), for all i, —1 < m; < my. Take large enough i
so that i/r > m;(1 —1/r)+ 1. Such an ¢ must exist since the m;’s are bounded. For this
i we obtain m;; = ™ : — 1+ my(1 — 1)+ 1 =m,;. This proves (ii). Finally,
to prove (iii) we show that for every i, if m; < m;yq, then m;; < mypo. But if m; < m;yq,
thenm,;+1:m"7“—1<mi%+i+l—1:mi+2. n

The next lemma describes the dependency of each element of S(r,a) in r.

Lemma 2.5 Fiza > 1. Then for all r > 1, S(r,a) has the property that for each i > 1, (i)
m;(r) is decreasing if and only if r is increasing; and (ii) m;(r) is increasing if and only if
r 18 decreasing.

Proof. We prove by induction on 7 that (i) holds. For the base case, consider the equation
my(r) = = — 1. Since my = a is ﬁxed (i) trivially holds. To complete the induction step,

consider the equation m;; (1) = ( T _ 1. We start with the ‘only if’ direction. If m, 1 (r)
decreases, it must be that r increases and/or m;(r) decreases. In the latter case, by the
induction hypothesis, r increases, so in either case the induction step is completed for this
case. To complete the induction case for the ‘if’ case, notice that if r increases then by the
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induction hypothesis, m;(r) decreases so it must be that m;,;(r) decreases. The statement
(ii) is proven similarly. N

Set « = M. For each r > 1, consider S(r, M) and set m(r) % min;{m;(r)}. By
Lemma 2.4, m(r) is well defined. For each r > 1 the initial decreasing segment of S(r, M),
mg, M1, ..., m(r), induces a time-independent replacement policy. Specifically, we define the
policy induced by S(r, M) with respect to m to be the decreasing part of the sequence from
the second element, up to, but not including, the first element that is less than or equal to
m. If m(r) > m, the induced policy consists of all elements from the second, up to (and
including) the minimum element, m(r).

Lemma 2.6 For each r > 1, let S = {M;}*_, be the policy induced by S(r, M). Then S is
r-competitive if and only if m > m(r).

Proof. If m > m(r), then by the construction of S(r, M), for any choice of 0 < i < k,
and any choice of x in the interval (M,;;, M;], S will pay M, +i against f,, and opT will pay
at least M; 1 +1. But M; +i =1r(M;;; + 1), so S attains the ratio r. For a choice i = k, for
each p € (m, M|, S will pay My +k and oPT, at least m+1. But since my1(r) = m(r) < m,
my(r) +k =r(mga(r)+1) <r(m+1). So here again, S attains the ratio r.

On the other hand, if m < m(r) then suppose, by contradiction, that S is r-competitive.
Choose any p greater than but very close to m. Then, against f,, S pays m(r) + k + 1,
and OPT incurs a cost arbitrarily close to m + 1. As S is r-competitive, it must be that
m(r)+k+1<r(m+1). Hence, m > w —1 = my2o(r). This contradicts the fact that
m(r) = myy1(r) is the minimum element of S(r, M). Therefore, S is not r-competitive. g

Example 2.1 Suppose M = 100, and r = 2. The resulting sequence, S(2,100), is:
100, 49,24, 12,6.5,4.25, 3.625, 3.813,4.406, 5.203, . ..
The minimum element of this sequence is 3.625. For m = 3.625 the induced policy is
S ={49,24,12,6.5,4.25}.
For any 6.5 < m < 12, the induced policy is
Sy = {49,24,12}.

By Lemma 2.6, the competitive ratio 2 is attainable by the induced policy if and only if
m > m(2) = 3.625. Therefore, both S; and S, are 2-competitive. However, for m < 3.625,
the induced policy, which is again S, cannot attain the ratio 2.

Lemma 2.7 Fixz any m > 0. For each M > m + 1, let r be the optimal competitive ratio.

Then, the minimum element of S(r, M), m(r), equals m, and the policy induced by S(r, M)
with respect to m is r-competitive.
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Proof. As there exists an r-competitive policy, Lemma 2.3 implies that the policy
induced by S(r, M) with respect to m, is r-competitive and that m(r) < m. Let [ denote
the index of the minimum element, m(r). Assume, by way of contradiction, that m > m(r).
Then it is possible to increase m;(r) (together with all elements m;(r), 1 < i <) to obtain
a new sequence S(r', M) with m(r) < m(r') < m. By Lemma 2.6, the policy induced by
S(r', M), S', is r'-competitive, and by Lemma 2.5, 7' < r. This contradicts the optimality
of r. Hence, m(r) = m. n

For each m > 0 and each M > m + 1, denote by r*(m, M) the optimal competitive ratio
for the restricted replacement problem. Denote by S*(m, M) = {M;}¥_, the policy induced
by S(r*(m, M), M). By Lemma 2.7, S*(m, M) is 7*(m, M )-competitive and m(r*(m, M)) =
my1(r*(m, M)) = m. Denote by k*(m, M) the number, k, of changeover thresholds in
S*(m, M).

Whenever there is no confusion we may interchange the m; = m;(r)’s with the M;’s, the
changeover thresholds of the policy induced by S(r, M). The next lemma characterizes the
number k*(m, M).

Lemma 2.8 Let r =r*(m, M) and k = k*(m, M). Then,
k=[(m+1)(r—1)].

Proof. Consider the policy S*(m, M) = {M,}*_,. We know that M, ; = m and m < M.
Also, My +k = r(My41 +1). Hence, m+k < My +k = r(My1 +1) = r(m+1). Therefore,

k<r(m+1)—m. (8)
By unimodality, m < my 9 = %’“H — 1. Thus,
E>rm+r—m—1, (9)

and, together with (8), and the fact the & is an integer, the proof is completed. E

We are now interested in characterizing, r*(m, M), the optimal competitive ratio. It is
not hard to obtain an explicit expression for sufficiently small optimal ratios.

Lemma 2.9 Let r = v*(m, M), k= k*(m, M). Ifr <242 then r = ./mlﬂ and k = 1.

Proof. First, if 7 < 242 then r(m+1) —m < 2. By inequality (8), k < 2. On the other
hand, inequality (9) implies that & > 1. Therefore, S*(m, M) consists of one changeover

threshold, M. Set p = ,/miﬂ and consider the policy induced by S(p, M). By definition,

mo(p)/p—1=VMyVm+1-1.
_  VMyVm+1
my(p) = (ml(p)+1)/p—1_mf

3
=
P
ks
S~—

I
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Therefore, the policy {M;} achieves a competitive ratio p. By Lemma 2.5, if we take p’ < p
then m(p') > m(p) = m, so, it is implied, by Lemmas 2.3 and 2.6, that no policy can attain

the ratio p'. Hence, p is optimal. Thus, r = p = /. m

For small ratios, the following lemma proves some relationships between r, k, m, and M
that better characterize the lower bound at its small values.

Lemma 2.10 Set r = r*(m, M), k = k*(m, M). The following conditions are equivalent:
(a) 1 <282 (b)) r= /M (¢) k=1; and (d) M < 227

Proof. The following four statements easily derive the lemma:

e (a) = (b), (c) and (d): this is established by Lemma 2.9. Notice that /== < mﬁ iff
M < (s

e (c) = (a): if £ =1 then (a) follows by inequality (9).

e (b) = (c): set p= /== +1 and consider S(p, M). It is not hard to see that ms(p) = m.
Hence, the policy induced by S(p, M) with respect to m is p-competitive. But p = r
and is thus optimal, so k = 1.

e (d) = (a): suppose M < (m+2) . Consider S(p, M) where p is a variable. For a p that

solves my(p) = m, it must be that the policy induced by S(p, M) with respect to m is
(m+2)? m+2
p%(m+1) m+1

p-competitive. Hence, r < p. But m = my(p) = pMQ -1< —1,50 p< and

(a) holds.

By Lemma 2.10, an alternative way to state Lemma 2.9 is to say that for m +1 <
M < (1+ 5)(m + 2), it makes sense to change over at most once, and in this case

T*(m,M): m+1<1+m—+1
Set r = r*(m, M) and k = k*(m, M). Since S*(m, M) has the property that My, = m,
using the closed form (7) for my1(r) = M1 (with @ = M), we know that r is a real solution

of the system

r? (k1) k+1 r?
(r—1)2 r—1 (r—1)
ko= [m+1)(r—1)] (11)

m = (M+ (10)

This system implicitly defines the function r = r*(m, M), which we desire to characterize.
However, the functional dependency of the optimal ratio, r, in m and M is very complicated.
For example, when it is known that the optimal policy consists of exactly two changeover
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thresholds (k = 2), then the optimal competitive ratio is

M 1 VMAN2TMm? + 54 Mm + 27 M + 4/3\?
ro= + 3+ 3 +
20m+1) 27 (m+1) 18 (m+1)
M N 1 MM¢WAMﬂ+MAMH47M+4ﬁ§§+
2(m+1) 27 (m+1)° 18 (m +1)°
1
3(m+1)

Although it may be desirable to find a simple approximation for 7*(m, M), it seems that any
accurate approximation will be hard to find, rather complex, and not necessarily informative
(for our purposes). We therefore confine ourselves to the much simpler task of finding an
asymptotic approximation that will show the nature of 7*(m, M) as the ratio M/m grows.
(Then again, such an approximation will be useless for very small competitive ratios.)

Lemma 2.11 For a fized m, and sufficiently large M, the optimal competitive ratio (for this
In M )
InlnM /°

restricted version of the problem) is v = r*(m, M) = O (

Proof. By isolating M in (10), we obtain

M= 5 [+ r? _k+1y r? .
(r—1)° r—1 (r—1)°

(12)

Fix m. We assume that r > 24+ /2. We will use the following inequalities. The first follows

from r > 2 + /2:

7,,2

1<GTTF<2 (13)

Then from (11) we derive lower and upper bounds on the optimal k&
(m+1)r—-1)<k<(m+1)r—-1)+1=m(r—-1)+r. (14)

Using (12), it is not hard to derive the following bounds on M: r* ' —2 < M < k1 — 1.
Further, by applying the bounds on k, (14), we obtain

pr=m _ 9« M o< prOmAl)mmE

Then by applying the natural logarithm to both these inequalities we easily obtain r =
O(IMM)  Applying again the natural logarithm to this asymptotic bound we obtain r =

Inr

O(Inln M) and the proof is complete. B
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3 A characterization theorem for simple refusal poli-
cies

Having determined a general lower bound for the replacement problem using the restricted
adversary, we now step back and examine the general case, in which the flow rate function
is entirely unrestricted.

3.1 A subclass of simple refusal policies

We will be focusing on a subclass of refusal policies (see Section 1.4 for a definition). A
refusal policy in this new subclass has a particularly simple form and is specified by two
sequences of real numbers:

o {M;}¥ | - changeover thresholds;
o {b;}F_, - refusal times.

We require that the changeover threshold sequence is strictly decreasing within the open
interval (M, m) and that the refusal time sequence is non-increasing within the time horizon
[0,1]. Given these sequences of changeover thresholds and refusal times, the refusal policy
is defined as follows: M;(t) = M;, for t < b;, and M;(t) = —1, for t > b;. Thus, up to time b;
the threshold for making the sth changeover is the constant M;, but after time b, the online
policy refuses to change over for an ith time. By convention, we set My = M and by, = 0.
Here again (as in the discussion in page 11) we can assume that the last threshold, M, is
greater than m, and then we set My, = m.

3.2 A characterization theorem

We now introduce a characterization theorem that proves very useful for obtaining upper
and lower bounds. This theorem provides necessary and sufficient conditions for establishing
that a refusal policy ({M;},{b;}) as defined above attains a competitive ratio r. By this
theorem, to establish whether or not a particular refusal policy with & thresholds attains a
certain competitive ratio, all that is needed is to examine O(k?) inequalities. This means
in particular that given any parameters for the problem (i.e. m and M), one can compute
efficiently a numerical approximation of the best refusal policy.

Theorem 3.1 For each m > 0 and each M > m, let S = ({M;}*_ . {b;}}_ ) be a refusal
policy with {b;} non-increasing. Then S is r-competitive if and only if the following two
conditions hold:
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C1 foralli and j with 0 <1< j <k,

M[]a

M +1, .
Mgbj+1 + m(l — bj+1) + ]_, k
Miiabjr +m(1 —bjq) +2

Mibﬂ_l + M](l — bj_|_1) +7 S 7 - Min

C2 foralli and 7 with 0 <i < j <k,

M[]a

Mg +1,

Mgbj + m(l — b]) + 1,
Mi+lbj + m(l — b]) + 2

Mib]' + M](l — b]) +7 S T - Min

Proof. To prove the sufficiency of the above conditions, assume that they are satisfied.
Consider the behavior of S against a flow rate function f. For each 0 < ¢ < k, let I; be
the (possibly null) interval of time during which S is paying at the flow rate M;. Let j
be the largest index for which the associated interval is nonempty. Then, throughout the
interval I;, where i < j, f(f) > M,4y. Let the interval I; be partitioned into two parts,
I and I3, where I} = I; N [0,0;41] and I} = I; N (bj41,1]. Then, throughout the interval
Ij, f(t) > M;4, and throughout the interval I7, f(t) > m. For i =0,1,...5 =1, let a;
denote the length of the interval /;. Let a; denote the length of the interval Ijl and let a4
denote the length of the interval I; (note that a; + aj11 > 0). The cost of the online policy
with respect to f, S(f), is S o M; + aj1M; + j. Let g(t) be the function that is equal
to Miypon I, i =1,2,....5 =1, to Mj4y on I} and to m on I}. Clearly, g(t) < f(t) for
all ¢, so oPT(g) < OoPT(f). We shall prove that the hypotheses of the theorem imply that
S(f) < r-oPT(g).

Since ¢ is a non-increasing, piecewise-constant function, the optimal policy for the offline
player has the property that changeovers occur only at the boundary points between intervals
of constancy for ¢g. For each particular choice of changeover points, the offline cost is a linear
form, L(ap, ay, ..., a;41). It suffices to show that for every choice of j, for every choice of
the a;, and for every such linear form, S(f) < r-L(ag, on,...,a;41). For each fixed choice
of j, the quantities «; satisfy the following conditions:

a; >0, i=0,1,...,7

13 1—b]+1>04]+1>1—b

(11)
(12) ¥
(13)
(I4) ifa; > 0, then 1—b, 41 = aj4.

Regard the (j + 2)-tuple (ag,a1,...,@;j41) as a point of a (j + 2)-dimensional Euclidean
space. Then the set of feasible points (possible choices of the «;’s) is determined by the
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above conditions I1-I4. Since the (in)equalities in these conditions are linear each inequality
fixes a half-space and each equality fixes a hyperplane and the set of feasible points is the
intersection of these half spaces and hyperplanes. As this feasible set is a polytope it is
completely determined by its corner points and it is hence sufficient to prove that the linear
inequality

j

ZOQ'Mi_Fa‘j—HMj—I—l —|—j S T-L(Ozg,ozl,...,oz]-+1) (15)

i=0
is satisfied by the corner points of the feasible set. We now claim that in each corner point at
most one of the a;’s, 7 = 0,1, ..., 7, is non-zero. Consider the system of linear inequalities of
conditions I1 and I2. This system has j 41 variables. A corner point solution of a system of
linear inequalities in 7+ 1 variables has the property that it satisfies at least 7+ 1 inequalities
with equality. Hence in each corner point of the ((j + 2)-dimensional) feasible set at most
one of the a;’s (i = 0,...,7) is non-zero. By considering the additional conditions, I3 and
I4, we conclude that each corner-point a = (g, v, ..., a;4+1) of the feasible set satisfies one
of the following types of conditions:

1. for some i < j, a; = bj41 and a1 =1 — bj4q;

2. for some 7 < j, a; = b; and a;41 =1 —b;.

By the definition of the «;, for the first type of corner point solutions, the online cost is
M;bj 1+ M;(1 —bj41) + 7, with ¢ < j, and the corresponding optimal offline cost is

M07

M +1,

Mobj+1 + m(l — bj+1) + 1,
Mig1bjpr +m(1 —bjy) +2

Min

For the second type of corner point solutions, the online cost is M;b; + M;(1 — b;) + 7,
with 7 < 7, and the corresponding optimal offline cost is

M07
. M +1,
Min e m(1— by) + 1,
Mz+1b + m( b]) + 2

Therefore, by the hypotheses of the theorem, the linear inequality (15) holds for every
corner point of the feasible set and we have completed the proof of sufficiency.

To prove that the conditions C1 and C2 are necessary, we construct for each condition
a flow rate function for which the left-hand side of the condition corresponds to the online
cost and the right-hand side (not including the factor r), to the offline cost.

First consider the condition C1. Fix any 7 and ¢ < j. Let £ be a very small positive real
and define f to be the flow rate function such that f(0) = M; during the interval (0,z], f
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decreases continuously to the value M;;, + €, remains at this value until the time b;;; and
then, during the interval (b;1, ;41 + <], decreases continuously to m, and remains at m until
time 1. It is easy to see that when e approaches zero, S(f) approaches M;b; 1 +M;(1—b; 1)+
and oPT(f) approaches

M’

My +1,

Mbjiy +m(1—bj1) +1,
Mig1bjpr +m(1 —bjyq) +2

Min

Therefore, condition C1 must hold for S to attain a competitive ratio r.

The necessity of condition C2 is similarly justified. For any i,j with ¢ < 7, and &,
consider the flow rate function such that f(0) = M; during the interval (0,c], f decreases
continuously to the value M;;; + ¢, remains at this value until the time b; — ¢ and then,
during the interval (b; — ¢, b;], decreases continuously to m, and remains at m until time 1.
When e approaches zero, S(f) approaches M;b; + M;(1 —b;) + j and OPT(f) approaches

M,
. My +1,
Min Mbj—i-m(l—bj)—l-l,
M,;+1bj + m(l — b]) + 2
Hence, condition C2 must hold for S to attain a competitive ratio r. n

4 Upper bounds

Equipped with the characterization theorem of the previous section, we construct and analyze
in this section two replacement policies. The first, S**, is strictly optimal in some cases and
the second, S***, is approximately optimal.

4.1 Construction of the refusal policy S**(m, M)

We now construct a refusal policy and then calculate its competitive ratio. The basis for this
construction is the changeover threshold sequence {M;} of the policy S*(m, M), the optimal
policy against the restricted adversary (see Section 2). Recall that S*(m, M) = {M;}¥,
where k = £k*(m, M) and

MO = M,
My, = Mi“*l, 0<i<k,

where r = r*(m, M) is the lower bound for the problem (or alternatively, the competitive
ratio of S*(m, M) against the restricted adversary). For this r we already know that k& =
[((m+1)(r —1)] (Lemma 2.8) and that My, = m (Lemma 2.7).
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What would be a reasonable choice for the refusal times? A simple observation is that it
is worthwhile to change over only if the changeover will save the policy at least the penalty
it pays to perform it (1). To this end, we define the refusal time b; (associated with the
threshold M;, i = 1,2,... k) as the solution of the equation (1 — b;)(M; 1 — M;) = 1.
Clearly, the b;’s thus defined are meaningful if and only if b; lies in the time interval [0, 1],
and the sequence {b;} is non-increasing. Using the following two lemmata we establish these
facts.

Lemma 4.1 Foralll <i <k, M;  — M; > M; — M;,,.

Proof. Let C' = M + # Using formula (7) with @ = M and m;(r) = M; we obtain

C 1—1 r? C 7 r?
My —M;, = ——+ - - +
! rit =1 (r—12 7 r—1 (r—1)

1 1 1—1—1
pi=l gt r—1

—1 1
_ !

ri r—1

r? r—1 1
= M . — —
( +(7”—1)2> ri r—1

(M(r—1)2+7r%(r—1) 1

ri(r—1)2 r—1
B M(r—1)? +7r* =7 (16)
ri(r —1)
Hence,
My =M, v r—=1) M@E—172+r"—1'
Ml‘ — Mi—l—l - Ti(T — 1) M(?" - 1)2 + 7”2 - Ti+1
M(r— 1) +7r% 7
= 7r- — > 1,
M(r —1)2 4 r? — pit!
for every r > 1. |

Lemma 4.2 Foralll <i <k, M;_y — M; > 1.

Proof. By Lemma 4.1 the difference M; | — M; is decreasing with . It is thus sufficient
to prove the claim for ¢ = k; that is, to prove that My, ; — M, > 1.

Using the identities My 1 =r(My+1) —k+1and My = r(My 1 +1)—k=r(m+1)—k,
and the bound k < r(m + 1) —m (for k = k*(m, M)) we obtain

Mkfl—Mk = T(Mk—Fl)—k—l—l—Mk
= Mg(r—1)+r—Fk+1
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= (rim+1)—k)(r—1)+r—k+1
(m+1)—(m+1)—m))(r—1)+r—(r(m+1)—m)+1

v
—_
. =

From Lemma 4.2 it follows that b; € (0,1). Further, by Lemma 4.1 it follows that
the sequence {b;} is strictly decreasing. Hence, the b;’s are well defined refusal times. By
convention we take by, = 0 and thus we have

bl:{ 1*m7 0<i<k;
0, 1=k +1.

Denote this resulting refusal policy, comprised of the changeover threshold sequence {M;}
and the above refusal time sequence {b;}, by S**(m, M). Somewhat surprisingly (as will be
shown), S**(m, M) attains the competitive ratio r*(m, M), when m = 0 or M < %
As r*(m, M) is the lower bound for the problem, S**(m, M) is optimal in these cases. The
first result of this section will be devoted to proving one of these bounds. In this rest of this

section unless otherwise specified r and k will denote r*(m, M) and k*(m, M), respectively.

4.2 Optimality of S**(m, M) when k =1

In this section we prove that S**(m, M) is optimal when k& = k*(m, M) = 1; i.e. when

S**(m, M) consists of one threshold. An equivalent assumption to k = 1, is that miﬂ <
m+2

mot (see Lemma 2.10).

Theorem 4.1 For any m and M with 1/#“ < mA2 G (m, M) attains a competitive ratio

T
r*(m, M) = 47 and hence, it is optimal.
Proof. Asr =1r*(m, M) = ,/mlﬂ (see Lemma 2.9), S**(m, M) consists of one changeover

threshold M, with a corresponding refusal time b,. My = M, My = m, and we can write
S**(m, M) explicitly:
Ml = M()/T -1
= VM(m+1)-1;
bl — 1*1/(M0*M1>

= 1-1/(M —/M(m+1)+1)
M —/M(m+1)
M- /Mm+1)+1




We shall use theorem 3.1 to prove that S**(m, M) attains the ratio r. Since for these M
and m, r is also a lower bound for the problem, it will follow that S**(m, M) is optimal. Tt
remains to confirm that the conditions of the theorem hold.

Since by is set to zero, proving that condition C1 holds reduces to proving that the
following three inequalities hold, corresponding to the three possible values of the pair (i, j)
(i.e. (0,0), (0,1) and (1,1)).

Mgrm1n{M,M1+1,Mb1—I-m(l—bl)—l-l,Mlbl—l-m(l—b1)+2}, (17)
My +1 <7 -min{M,M; +1,m+1,m+ 2}. (18)
My +1<r-min{M,m+1,m+ 2}. (19)

Consider first inequalities (18) and (19). In both these inequalities m + 1 is the minimum of
the right-hand side (by assumption, m+1 < M) so it remains to prove that M;+1 < r(m+1).
But since m = M, both inequalities follow by the identity M, = 2l — 1.

Next we prove that inequality (17) holds. We will consider four cases, that correspond
to the four expressions inside the “min” operator in (17). The first inequality, M < rM,
trivially holds. The second inequality, M < r(M;+1), follows by the identity M; = My/r—1.
Next we want to check that the following inequality holds:

M<r-(Mb +m(1—-01)+1). (20)

Substituting ~ with M/(M; + 1) and by with 1 — 1/(M — M), inequality (20) becomes
(M — My)* > M —m. Then, by substituting M; with /M (m + 1) — 1 it becomes equivalent
to

M+1—yMm+1)—vVM—m>0.

The left hand side is a non-increasing function of m and thus attains its minimum value,
zero, when m = M — 1.
The last inequality from (17) to check is

M§T<M161+m(1—b1)+2>

Using again the substitutions r = M/(M; + 1) and by = 1 — 1/(M — M1) this inequality
becomes

(M — My)(My —m —1) < (M — M; — 1)(M; —m),
which is equivalent to M — M; > M; — m that clearly holds (see Lemma 4.1).

Lastly, we have to verify that condition C2 holds. Since 0 <7 < 7 < 1, we want to show
that Mby +M;(1 —by)+1 < r-min{M, My +1, Mby +m(1 —by) + 1, Myby + m(1 —by) +2}
holds. Consider the left hand side. Using the identity by = 1 — 1/(M — M;), we will show
that it is exactly M.

1 M
M — M,

Mb1+M1(1—b1)+1 == M(l—
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Thus, C2 is identical to (17), and the proof is therefore complete. n

4.3 Optimality of S**(m, M) when m = 0

Similar to the proof of Theorem 4.1, we can prove optimality of S**(m, M) for all values
of M whenever m = 0. As in the proof of Theorem 4.1, the idea is to verify that the two
conditions of Theorem 3.1 hold with respect to S**(m, M). Nevertheless, in this case the
proof we know of is extremely laborious and and involves lengthy “bookkeeping”. We state
the following theorem without a proof.?

Theorem 4.2 Let m = 0. For each M > 1, S**(m, M) is r*(m, M)-competitive and hence
optimal.

4.4 1Is S*(m, M) always optimal?

In the previous sections we learned that S**(m, M) is optimal in two special cases. This
was established by showing that S**(m, M) attains the lower bound in these special cases.
Unfortunately, S**(m, M) does not attain the lower bound ratio 7*(m, M) for all values of m
and M. For example, for M = 100, m = 3.625, with r*(3.625,100) = 2 (see Example 2.1),
it can be verified that S**(3.625,100) violates some of the conditions of Theorem 3.1, and
therefore, by the ‘only if’ direction of this theorem, it cannot attain a competitive ratio
of 2. However, for this example it can be shown (using Theorem 3.1) that S**(3.625,100)
is approximately 2.0351-competitive. Similarly, we worked out various numerical examples
in which S**(m, M) cannot attain a competitive ratio 7*(m, M). For each such example,
using theorem 3.1, we also calculated a number a > 1 such that S**(m, M) is [a - r*(m, M)]-
competitive. Table 1 summarizes some of these examples. The table shows a as a function of
M, with a fixed m = 2. We conjecture that limy, ., a(M) = 1. In other words, we conjecture
that 7*(m, M) is indeed the optimal competitive ratio for the replacement problem and that
S**(m, M) is near-optimal.

4.5 A weak upper bound for S**(m, M) when m > 0

For the case m > 0, we now prove that for sufficiently large r» = r*(m, M), S**(m, M) is
r?-competitive. In fact, we shall prove what appears to be a stronger statement - that a
time-independent version of S**(m, M) is r*-competitive. In contrast to a refusal policy, a

3A proof of Theorem 4.2 can be found in [6].
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M |10 20 30 50 100 1000 107 10%°
o |1 1 1.00341 1.01065 1.00812 1.00281 1.0000105 1+ .668 x 10~*

Table 1: a as a function of M for a fixed m = 2

time-independent policy makes its changeovers without considering the time remaining (see
Section 1.4). Intuitively, time-independent policies should be weaker than refusal policies.
Given m and M, we construct a time-independent version of S**(m, M) by modifying the
refusal times such that b; = 1,7 = 1,...,k (as before, b7 = 0). The performance of this
resulting policy is, in fact, identical to the policy S*(m, M) from section 2, so we denote it
by S*(m, M). The reason that we would like to view S*(m, M) as a (degenerate) refusal
policy is that we shall use theorem 3.1 (that assumes a refusal policy) to derive an upper
bound on its competitive ratio. The proof of the following theorem appears in Appendix A

Theorem 4.3 Let m > 0 and M > m+1 be any numbers such that r = r*(m, M) > 1.619.
Then, S*(m, M) is [r - min{r, m + 2}|-competitive.

For any flow rate function f, S*(m, M)(f) < S*(m,M)(f). This easily follows from
the choice of the b;’s: if for some j, at time ¢ > b; S™ refuses to change over to the
threshold M; but S* does, the penalty (1) paid by S* is greater than the savings in flow
payments corresponding to this changeover. Further, since the b;’s are non-increasing, the
same argument applies to any subsequent changeovers that may be performed by S* (and
will be “refused” by S**). Hence, we have

Corollary 4.4 For sufficiently large r = r*(m, M), S**(m, M) is [r-min{r, m+2}|-competitive.

4.6 Approximately optimal policy for m > 0

We now present a stronger upper bound for the general case where m is positive. We shall
identify a policy that for every positive m achieves a competitive ratio that for sufficiently
large M, is within a constant factor of 7*(m, M) (the constant is independent of M).

The policy we consider is a time-independent policy, {M,}* |, where the sequence of
changeover thresholds, {M;}, is defined by the following recurrence relation. For each p > 1,
set k = |p]. Then we define

My %M (21)
def .
My = M},Jrk -1

integer ¢ > 1.

The following lemma states that for every positive m, the sequence defined by (21)
decreases below m after a finite (possibly more than k) number of steps.

Lemma 4.3 Fixm > 0. Then, there exists j such that M; < m.
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Proof. It can be shown (for example, by induction on j) that

M p—k k—p

P (p—1)p  p—1

J

(22)

Since k < p and p > 1, for every non-negative j,

p=k L k=r
(p—1p?  p—1

¢’ increases with j so M; decreases with j. Further, since lim;_, % =0,lim; o M; <0. n

In fact, by a straightforward refinement of the proof of Lemma 4.3, we can obtain the
following, stronger statement.

Lemma 4.4 For sufficiently large p, the sequence {M;} strictly decreases below m within
kE+1 steps.

Call a p for which My, < m and M, > m good. Having Lemma 4.4 it is easy to see
that good p exist. For each p, each m > 0 and each M > m + 1, let S;**(m, M) denote
the policy {M;} (as defined by (21)). Now, by considering S***(m, M) as a (degenerate)
time-dependent policy, we can apply Theorem 3.1 to prove that S**(m, M) is p-competitive
for all good p and almost all values of M.

Lemma 4.5 For any good p, any m > 0, and any M > max{m + 1, %}, S;**(m, M) is
p-competitive.

Proof. First we note that the assumption M > pb'% = %, implies that My +1—M <0,
which means that min{M;+1, M} = M;+1. We will use this fact later. Let us now specialize
the three conditions of Theorem 3.1 to the case where b,y =0and b, =1,1=1,2,... k.
That is, when the (degenerate) refusal policy is a time-independent policy. For r = p, the
two conditions of Theorem 3.1 reduce to the following condition.

C1’ Oforall <1< j <k,
M; + 5 < p-min{My, M; 1 + 1};

However, by the definition of the M;’s, for all i, M;+k = p(M;,1+1), so under the assumption
that M, +1 < M, condition C1” readily holds. Hence, by Theorem 3.1, S3**(m, M) is p-
competitive. B

Fix m > 0. For each (sufficiently large) M define p(M) to be the minimum (infimum)
good p. The next lemma establishes that the growth of p(M) with M is asymptotically the
same as the growth of 7*(m, M).

Lemma 4.6 For a fized m, p(M) = © (lﬂrf\/[M)
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Proof. The proof is very similar to the proof of Lemma 2.11 and hence will only be
sketched. For the analysis below abbreviate p = p(M). We first isolate M in the inequality
My > m (p is good) to obtain

k—p p—k
M>,0k<m+ + ) 23
pp—1) p—1 (23)

Assuming that p is greater than, say 2, it can be easily verified that the sum of the two
right most terms inside the parentheses is always in (0,1). In addition, we have the bounds

p—1<k < p. Hence, M > mp* > mp"~", SOP:O(I?HA;[

(p is good) we have M < (m + 1)p**" < (m + 1)p?T'. Therefore, p = Q (lfln]\g). Hence, a

bootstrap derivation such as the one used in the proof of Lemma 2.11 completes the proof.
|

). Similarly, from My, < m

By considering the lower bound from Section 2 we therefore obtain that for sufficiently
large M, S;‘E*]’(J)(m, M) is approximately optimal; that is, S*** is p(M)-competitive and there
exists a constant ¢ such that and p(M) < ¢-r*(m, M).

Example 4.1 It can be shown that for M = 100, m = 3.625, p(M) = 2.905. This means
that S5%0-(3.625,100), with two changeover thresholds (k = 2), attains a competitive ratio
of 2.905. For comparison, recall from previous examples that the lower bound for such m
and M is 7*(3.625,100) = 2, and that S**(3.625,100) is 2.035-competitive.

5 Future work

This work is the first that studies the online replacement problem from the perspective of
competitive analysis. Not surprisingly, we leave many unresolved questions. In this section
we shall mention a few.

An intriguing question is whether or not one can obtain strictly tight bounds for this
problem. A sensible starting point to investigate this question would be to try refining the
time-independent policy S3*(m, M) (e.g. consider a refusal policy based on S;**(m, M)).
Also, it would be of interest to obtain tighter bounds on the performance of S**(m, M) for
m>0and M > (14 —L5)(m +2).

Our problem formulation is still somewhat simplistic to accurately model various real-
life applications. We now point out several possible extensions that will lead towards more
realistic models. A relatively simple extension (but probably, quite technical) would be
the introduction of interest rates (or discount factors); i.e. to measure all costs by their
present value. In our model, we assume that the changeover penalty is the same for all flow
changeovers. It would be of interest to extend our results to the case where each flow rate is
offered with a possibly different changeover penalty.

It is reasonable that one could obtain strictly better performance by allowing only discrete
flow rate sequences. For example, instead of considering the continuous time horizon [0, T,
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one could formulate the problem in terms of n, the length of the flow rate sequence. In this
case, the sequence cannot vary (and in particular, drop) in an arbitrarily small time interval.
It is probably the case that the lower bound for this discrete problem variant is an increasing
function of n (approaching the lower bound in this paper). However, for practical purposes,
n is bounded from above and is typically rather small.

There are various examples of online problems in which one obtains a dramatic improve-
ment of the competitive ratio by allowing the online player to use randomization (e.g. [3, 7]).
A further intriguing question is whether or not randomized replacement policies can improve
the (optimal) deterministic performance obtained here.
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A  Proof of Theorem 4.3

We apply Theorem 3.1 to calculate an upper bound on the competitive ratio of S*(m, M).
In particular we show that it attains a competitive ratio ar, where « is a constant smaller
than min(r, m + 2) to be determined later. In other words, we show that the inequalities of
conditions C1 and C2 of Theorem 3.1 hold (but with a competitive ratio ar instead of r).
The way we go about this task is to assume that the inequalities in C1 and C2 hold, and
from each inequality we derive some constraints (lower bounds) on «.

Throughout the analysis, recall that S*(m, M) has a degenerate refusal time sequence;
that is, for all 1 < i <k, b; = 1, and by, = 0.

Consider first condition C1 for the case j = k. In this case, since bj1; = by = 0, the
minimum of the four operands of the min operator on the right hand side of C1 is m + 1.
Hence we should prove that M + k£ < r(m + 1) which surely holds with equality since
m = My, and My, equals, by definition, (M}, + k)/r — 1.

For all 0 < j < k — 1, since bj;; = 1, the minimum on the right hand side of C1 is
M; 1 + 1 and the left hand side of C1 reduces to M; 4+ j. Similarly, for all 1 < j < k, since
b; =1, the minimum on the right hand side of C2 is M;;; +1. Therefore, since the left hand
side of C2 reduces to M; + 7, for any j < k — 1, C1 is identical to C2.

Therefore, it remains to calculate the minimal o > 1 for which

G1 fOI‘OSZ'SjSk—l,Mi+j§OéT<Mi+1+1>;
G2 for0<i<k—1,M;+k<ar(My +1).

Notice that when i = j, the inequality G2 follows immediately (with o = 1) by the
identity M,y = M’f] — 1.

For the rest of the analysis we need a few identities that will now be derived. First, using
the identity k£ = [(m + 1)(r — 1)]| we write k = (m + 1)(r — 1) + 2z, with 0 < 2 < 1. Using
this representation of k, the fact that M, = m and the identity M; = r(M;1 + 1) — i,
it is not hard to verify the following identities that express a few of the smaller changeover

thresholds in terms of m,r and x.

M, = m+1—ux
Myy = m4r+2—z(r+1);
My o = m+1*+2r+3—a(r®+r+1);
My o = m+71>+2r" +3r+4 —a(r® +7° +7r +1);

Consider G1 (with i < j). j <k — 1< (m+1)(r — 1). Using the identity M;; = 2+ — 1
we have

M; +1
arM; ., — M; = ar( T 1) — M,
r

= M;(a—1)+ «ai—ar.
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Therefore, together with the upper bound on j we learn that it is sufficient to find (the
minimal) « that satisfies (m +1)(r — 1) < (o — 1) M, + a.
Since o and ¢ are nonnegative, it is sufficient to find an « that satisfies

(m=+1)(r—1) < (a—1)M,. (24)

Since the M; are decreasing, it is sufficient to consider the minimum M, which is Mj_,.
Using the above identity for M;_, we have M;_o > m + r 4+ 2. Then, for

e )+ 1)(r — 1
aldzf1+(m+)(7“ )
m+r+ 2

we have an equality in (24). It is easy to check that a; < min(r,m + 2).
Consider G2. By the same argument as above we obtain that it is sufficient to find (the
minimal) « that satisfies

3

k< (a—1)M;+ ai. (25)

We cannot solve this inequality in the same way we solved G1; that is, we cannot “sacrifice”

the term a7 in the right hand side of (25). The reason is that this time ¢ can take values

as large as £ — 1 and the right hand side can be very small. Therefore, we “pump-out” of

(25) more constraints that correspond to large values of 7, and then, after ensuring that M;
cannot be too small, we solve (25) exactly as we solved G1.

First, for the case i = k — 1 we solve the equation k = (o — 1)My_; + a(k — 1) for a to

obtain +9 +1
of MT + 21 — 13
a>a(r) ¥

mr 4+ 2r —rx
It is easy to see that o'(x) is positive, and therefore, a(1) = ™4 maximizes o(x). But it
is also evident that a(1) < ay, and therefore, it is included in the previous constraint.

for i = k — 2, the same procedure results in a new constraint:

def M1 + 27 + 2
g — ——————.
mr + 2r

It can be verified that oy < r, for each » > 1.619, and that ay < m + 2.
Lastly, we can assume that i < k£ —3. This time we solve k = (a—1)M,,_3 for a to obtain
of M+ 47 + 3470 + 207 —2(r® + 2 41
a>fz) ( )
mr3 +2r24+3r+4 —x(rP+r2+r+1)

By differentiation, it can be shown that ((z) is increasing with x. Therefore, our last
constraint ag, is simply the value 5(1); namely,

def mr + 3r + 3 + r?
 omA42r 43412
It is easy to check that a3 < m + 2, and that a3 < r for any r» > 1.175.

Therefore, for r > 1.619, max o; < min(r,m + 2), and the proof is complete. Note that
in general, we have actually proven that S*(m, M) attains a competitive ratio ar where
a = max(aq, @y, a3). B

Q3
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