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AbstractThis paper studies the following online replacement problem. There is a real function f(t),called the ow rate, de�ned over a �nite time horizon [0; T ]. It is known that m � f(t) �Mfor some reals 0 � m < M . At time 0 an online player starts to pay money at the ratef(0). At each time 0 < t � T the player may changeover and continue paying money at therate f(t). The complication is that each such changeover incurs some �xed penalty. Theplayer is called online as at each time t the player knows f only over the time interval [0; t].The goal of the player is to minimize the total cost comprised of cumulative payment owplus changeover costs. This formulation of the replacement problem has various interestingapplications among which are: equipment replacement, supplier replacement, the menu costproblem and mortgage re�nancing.With respect to the competitive ratio performance measure, this paper seeks to determinethe best possible competitive ratio achievable by an online replacement policy. Our resultsinclude the following: a general lower bound on the performance of any deterministic policy,a policy that is optimal in several special cases and a simple policy that is approximatelyoptimal.Key words: Replacement, equipment replacement, menu cost, mortgage re�nancing,online replacement, online algorithms, competitive analysis1



1 IntroductionThe replacement problem. A real function f(t), called the ow rate, is de�ned over some�nite time horizon [0; T ] where T is a positive real. It is given that for all t, m � f(t) �Mwhere m;M 2 < and 0 � m < M . A player is required to pay money throughout the timeinterval [0; T ] where the payment ow is determined in the following manner. At time 0the player starts to pay money at the rate f(0). At each time 0 < t � T the player canchangeover and continue paying money at the rate f(t). To perform any such changeoverthe player must pay some �xed positive amount C called the changeover cost. The playermay choose any number k of changeover times, 0 < t1 < t2 < � � � < tk < T . Thus, for eachsuch changeover time ti, the player pays a changeover cost C and throughout the interval[ti; ti+1), i = 0; 1; : : : ; k, his payment ow is at the rate f(ti). (By convention we de�net0 = 0 and tk+1 = T .) For each particular choice of changeover times the total cost incurredby the player, comprised of payment ows and changeover costs, iskC + kXi=0(ti+1 � ti)f(ti):Any choice of k and (k) changeover times is called a replacement policy. Of course we areinterested in replacement policies that minimize the total cost. Given f , it is straightfor-ward to compute an optimal replacement policy via (continuous) dynamic programming [1].Throughout this paper opt will denote this optimal policy and for each ow function f ,opt(f) is the (optimum) total cost obtained by opt with respect to f .Online replacement. In this paper we are concerned with online replacement; that is, theplayer must determine his changeover times online without knowledge of future values of theow rate function. Speci�cally, we consider an online player that at each time t knows fonly over the interval [0; t].Measuring the performance of online replacement. Following Sleator and Tarjan [13] wemeasure the performance of an online replacement policy by its competitive ratio de�ned asfollows. Let S be any online replacement policy and denote its total cost with respect to theow f by S(f). If there exist constants � and r such that for all fS(f)� r � opt(f) � �;then we say that S is r-competitive or that S attains a competitive ratio of r.1 The least rsuch that S is r-competitive is called the competitive ratio of S (or S's competitiveness). IfS is r-competitive and r is obtained with � = 0 then S is said to be strictly r-competitive.Thus, if S is r-competitive it will never pay more than r times the absolute optimum obtainedby opt (up to the additive constant �) and the smaller r is the better S performs comparedto opt (clearly r > 1 if S is online).1The \constants" r and � can be functions of the problem parameters (m;M;C and T ) but must beindependent of the ow rate function f . 2



Using this performance measure we are interested in determining the optimal competitiveratio for the online replacement problem in terms of the problem parameters m;M;C andT . Optimality here is of course de�ned in a straightforward manner with respect to thecompetitive ratio.Viewing the problem as a two-player game. Using the above competitive ratio objective itwill be convenient to view the online replacement problem as the following two-player game.The �rst player is the online player de�ned above. The second player is called the adversaryor the o�ine player. The online player chooses a strategy (or replacement policy) S andmakes it known to the adversary. Then, based on S, the adversary chooses a ow functionf so as to maximize the competitive ratio. The online player's objective is to minimize thecompetitive ratio (which means that this game is a zero-sum game).1.1 ApplicationsThe above replacement problem has various interesting applications. In all of these appli-cations the basic question is when to switch from one activity, investment, or facility, toanother more rewarding one, when there is a cost associated with making the switch. Morespeci�cally, it is assumed that the (online) player participates in exactly one activity at atime. From time to time a new activity is o�ered as a possible replacement for the origi-nal one. Associated with this new activity is a changeover cost and an operating cost perunit time. This operating cost corresponds to our ow rate de�ned above.2 Some strikingexamples of particular applications are the following.Equipment replacement. Here the player needs to use some piece of equipment throughoutthe time horizon and from time to time, due to a priori unknown economic events and/ortechnological improvements (or equipment deterioration) the player can and may wish toswitch to a di�erent or newer equipment that incurs a lower operating cost (or higher payo�).\Typical" examples of equipment for which this application is relevant are cars, computers,industrial machinery, etc. The same formulation applies of course to more abstract types of\equipment" such as jobs, etc. In all these examples the operating cost can be approximatedby a �xed rate payment ow (e.g. gasoline consumption rate, salary, etc)Supplier replacement. A �rm is purchasing goods at a constant rate from one supplier.The cost of purchasing the same goods from other suppliers varies with time. The �rm canswitch to another supplier but at a certain cost. The cost of this switchover can be approxi-mated by some constant that accounts for the paperwork, the wasted time and possibly thecosts involved in breaking the contract that are associated with the switch.The menu cost problem. Many �rms are constantly faced with the problem of when toadjust prices of the goods or services they o�er. Due to inationary markets (and/or othereconomic events) the �rm may wish to update its price menu to reect their \real" valuesin order to increase its overall payo�. Each of these price adjustments which correspond toour (ow) changeovers, incurs some �xed cost (to physically update the \menu", advertise,2In many applications, this ow rate or operating cost should be viewed as a the rate of positive payo�.3



etc.).Mortgage re�nancing. The zero-point �xed rate mortgage common in North America isalmost exactly modeled by our replacement problem. Here the ow rate corresponds to thepayment rate which is based on a �xed interest rate (and the principal).Our formulation applies to all these situations with various degrees of accuracy. Never-theless, it is our feeling that our model captures the essential problem in all of them.1.2 Contextual background and relation to other workThe literature related to online replacement problems (or various of the above applications)is quite extensive and it is beyond the scope of this paper to survey it all. Nevertheless,we note that the common denominator of all previous theoretical work on the subject isthat it is based on the conventional \average case analysis"; that is, analyses are typicallymade under the assumption that the ow rate function follows a particular (usually simple)stochastic process that may or may not be known to the online player. Let us describe twoexamples.Derman [4] studies a simpli�ed discrete time replacement problem where his analog ofour ow rate function is a piecewise constant function in which the next value is determinedvia a simple one-stage Markov process.Sheshinski and Weiss [12] study policies for price adjustments (described above as themenu cost problem) under the assumption that \real" prices are determined by the followingtwo-state process. During each state the price level is changed at a �xed rate (in particular,they assume that at one state the price is �xed and at the second state, the price increases ata �xed rate). The duration of each state is an independent exponentially distributed randomvariable.Other examples of average case analyses of replacement problems can be found in [2, 14,5, 9]. It is not surprising that in all these examples (and in most other analyses of this kind)the optimal policy is heavily dependent on the stochastic assumptions.Competitive analysis. The use of the competitive ratio performance measure for onlineproblems is called competitive analysis. The competitive ratio was �rst used by computerscientists in the 70's in connection with approximation algorithms for NP-complete problems(e.g. bin-packing [8, 11, 10, 15]), and then was explicitly formulated in the 80's in theseminal work of Sleator and Tarjan [13] on list accessing and paging algorithms. Sincethen, competitive analysis has been extensively used to analyze and design online algorithmsfor many online problems naturally appearing in computer science and has gained muchrecognition as a useful approach for the analysis of online problems.This paper is the �rst to study the replacement problem based on the competitive ra-tio performance measure. To the best of our knowledge our analyses are the �rst to studyreplacement problems without relying on particular stochastic models of the ow rate func-tion. Thus, in some sense the replacement policies derived in this paper trade performancefor robustness. It is clear that in applications where the nature of the ow rate function isknown our replacement policies will be inferior to those that are optimized with respect to4



the known ow rate function. However, in many instances not much is known of the owrate function and a large investment of resources is required to gain adequate knowledge (ifthis is at all possible) in order to devise a realistic stochastic analysis. In these situationsour approach to the replacement problem could be the model of choice. Further, a policythat is good on average is not always the most desired one and one can envision situationsin which a smaller but almost certain payo� is preferable to a higher uncertain one.1.3 Problem reduction.By suitably scaling the time and cost axes, we may assume, that C = T = 1. Speci�cally,given an initial problem set-up with parameters m0;M 0; T 0 and C 0 we map each ow ratex0 2 [m0;M 0] to x = x0T 0=C 0 and each time t0 2 [0; T 0] to t0=T 0. Thus, the new problemset-up is given by M = M 0T 0=C 0, m = m0T 0=C 0 and T = C = 1. It is not hard to see thatany choice of changeover times, t01; t02; : : : ; t0k 2 [0; T 0], has total cost A in the initial set-up, ifand only if, under the above mappings, the changeover times t1; t2; : : : ; tk 2 [0; 1] have totalcost A=C 0 in the new set-up. Therefore, the above scaling preserves the competitive ratio.After scaling, we further assume that m + 1 < M . For M � m + 1 the problem is trivial inthe sense that the online player can always achieve a \perfect" competitive ratio of one.For the rest of this paper we consider the reduced replacement problem with C = T = 1so that the only relevant parameters are m and M .1.4 Classes of replacement policiesRecall that the job of the (online) player is to choose a �nite sequence t1; t2; : : : ; tk ofchangeover times. At each time, t 2 [0; 1], the information available to the online playerfor this purpose (aside from the parameters m and M) is t, and the \history" of the gameuntil time t. Notice that it does not make sense to changeover too many times. For instance,it is easy to see that changing over more than dMe times, does not make any sense. Moti-vated by these facts we now de�ne online deterministic replacement policies. First we de�neo�ine policies and then re�ne the de�nition to capture online policies.O�ine replacement policies. Fix m and M . Let F be the set of all ow rate functions.A replacement policy is a sequence fMigki=1 of changeover thresholds where k is any positiveinteger, and for each i, the changeover threshold Mi is a functionalMi: [0; 1]� F ! [m;M ] [ f�1g:For each choice of f 2 F , each of the functionals, Mi(t; f), is a non-increasing function of t,and for all i and t, Mi(t; f) � Mi+1(t; f). The interpretation is as follows: for a given owrate function, f(t), the policy will change over at the sequence of times ti, i = 1; 2; : : : ; k0,k0 � k, where ti is the least t greater than ti�1 such that f(t) � Mi(t; f). (By convention,we take t0 = 0.) Notice that the range of Mi includes the number �1. This provides thepolicy with the possibility to `disable' any threshold at any given time (or in other words, to5



`refuse' to change over). Intuitively, for a �xed f , Mi(t; f) should be non-increasing, for theplayer should become more reluctant to change over as time passes since the later the timeof the changeover, the less will he bene�t from making the change.Online replacement policies. We now de�ne an online replacement policy. For eachf 2 F and t 2 [0; 1], let f[0;t] denote the function f restricted to the subinterval [0; t].Let F[0;t] denote the set of all f[0;t] with f 2 F . For each t 2 [0; 1] denote by mt anymapping, mt:F[0;t] ! [m;M ] [ f�1g. An online replacement policy is a replacement policywith the following additional requirement. For each i, each f 2 F , and each t 2 [0; 1],Mi(t; f) � mt(f[0;t]) for some mt. Intuitively, this simply means that the online policydecides about the ith changeover based only on past and present ow rates (and the factthat it already made i� 1 changeovers).Time independent policies. Perhaps the simplest class of online replacement policies thatis still interesting is the following class of time-independent policies. A policy in this classis a sequence of constant changeover thresholds (�xed over time and ow rate functions).Thus, a time-independent policy is a decreasing sequence of real numbers,M �M1 > M2 > : : : > Mk � m:The interpretation is that the online player changes over for the ith time when the ow ratedecreases to the level of (or below) Mi.Time-dependent (refusal) policies. A more sophisticated class of policies is the followingclass of time-dependent or refusal policies (we may use either name). A refusal policy isde�ned as a sequence fMi(t)gki=1 of functions with domain [0; 1]. By de�nition, each of thefunctions is non increasing and for all i and t, Mi(t) � Mi+1(t). Thus, the online policy iswilling to make the ith changeover at time t if f(t) �Mi(t). Otherwise, it refuses to changeover. Clearly, a time-independent policy is a rudimentary form of a refusal policy. However,if a refusal policy is also a time-independent policy, it will not usually be called a refusalpolicy.In this paper we shall focus on time-independent and refusal policies. Nevertheless, forcompleteness we mention the following class of replacement policies.History-dependent policies. The most general class of policies is the class of history-dependent policies, where the online player make use of the history of ow rates for making hisdecisions. Here again, if a history-dependent policy can be represented as a time-independentor a refusal policy it will not be called history-dependent.As we shall see (and somewhat surprisingly), in all instances of the replacement problemit is possible to obtain optimal or approximately optimal online performance with time-independent and refusal policies (and without resorting to history-dependent policies).1.5 Outline of resultsFor the statement of our results (and in the analyses that follow) we use the followingstandard notational convention for asymptotic relations:f(n) = O(g(n)) () jf(n)j � cjg(n)j for some c > 06



f(n) = 
(g(n)) () jf(n)j � cjg(n)j for some c > 0f(n) = �(g(n)) () f(n) = O(g(n)) and f(n) = 
(g(n))Let us now overview the results of this paper.A lower bound. In Section 2 we prove a general lower bound on the competitive ra-tio of any deterministic policy for the replacement problem; This lower bound is obtainedby considering a restricted class of adversaries (ow rate functions) against which we canidentify an optimal online policy and characterize its competitive ratio. In particular, therestricted class of ow rate functions we consider includes functions that start at time zeroat the rate M and then drop \instantaneously" and continuously to some rate chosen by theadversary. It turns out that against such functions the optimal online performance can beattained by a time-independent policy. After establishing this fact we determine the optimaltime-independent policy (against such restricted functions) and characterize the asymptoticbehavior of its competitive ratio. For a �xed m we show that this competitive ratio isr� = � � lnMln lnM �. The optimal policy is called S�. Since the competitive ratio of S� is optimalonly against a subclass of all ow rate functions it must be a lower bound on the competitiveratio of any replacement policy against an unrestricted ow rate function.A characterization theorem. In Section 3 we consider a simple but rich subclass of refusal(time-dependent) policies of the following form. Each policy in this subclass is a time-independent policy equipped with \refusal times"; that is, a (decreasing) sequence of constantchangeover thresholds M �M1 > M2 > : : : > Mk � m and for each 1 � i � k, the thresholdMi is coupled with a refusal time bi. The interpretation is that the policy refuses to changeover to the threshold Mi if the ow rate function intersects Mi after time bi. We consideronly policies in which the the refusal time sequence fbig is decreasing. This means that oncethe policy refuses to change over for the �rst time, it will refuse to change over for the restof the game.We provide a characterization theorem that gives necessary and su�cient conditions forestablishing the competitive ratio of any policy in this subclass. Given any refusal policyS (of the above subclass) with k changeover thresholds, and a number r > 1 the theoremspeci�es a set of O(k2) inequalities such that they are all satis�ed if and only if S is r-competitive. This characterization theorem proves to be a strong tool for proving upperbounds and it also provides a computational tool for determining the competitive ratio ofany policy numerically.Upper bounds. In Section 4 we apply the characterization theorem of Section 3 to establishfour upper bounds. First we construct in Section 4.1 a refusal policy based on the time-independent policy S� by coupling it with an appropriate sequence of refusal times. We callthe resulting policy S��. We prove the following results:� In Section 4.2 we prove that S�� is optimal whenever qM=(m + 1) � (m+2)=(m+1).� In section 4.3 we state (without a proof) a theorem that establishes the optimality ofS�� whenever m = 0 (for all values of M). Both these results of optimality for S��7



are established by showing that S�� attains the ratio r� (i.e. the lower bound for therestricted problem).� In Section 4.4 we �nd that S�� cannot always attain the ratio r�. Nevertheless, basedon numerical evidence we conjecture that S�� is always optimal within a very smallconstant factor.� In Section 4.5 we prove that S�� is (r�)2-competitive for almost all values of M whenm > 0. Of course, this bound appears to be weak based on our conjecture of Section 4.4.� In Section 4.6 we take a di�erent direction and construct a new time-independentpolicy. This policy, called S��� is proven to be approximately optimal for almost allvalues of M when m > 0; that is, the competitive ratio attained by S��� is within aconstant factor of r�.Finally, in Section 5 we conclude and indicate some directions for future work.2 A Lower boundIn this section we derive a lower bound on possible competitive ratios for the replacementproblem. To this end, we con�ne ourselves to a restricted class of adversaries, correspondingto a restricted class of ow rate functions. The optimal competitive ratio for this restrictedversion of the problem is a lower bound on the competitive ratio for the original problem.Most of this section will then be devoted to identifying the optimal online policy for therestricted problem and to characterizing its competitive ratio.Fix m andM . For each 0 < � < 1=2, set "0 = �M�m . For each 0 < " < "0 and � 2 [m;M ],consider a ow rate function, f , satisfying: (i) f(0) = M ; (ii) f decreases continuously overthe time interval [0; "] to the value �; and (iii) f(t) =M for all t 2 ("; 1]. In other words, theow rate swoops down continuously to � at the initial time interval, and then jumps to itsmaximum possible value and remains there. Let F�;" be the set of all such ow rate functions.Let F� be the union over all � 2 [m;M ] and " 2 (0; "0) of the sets F�;". An adversary iscalled a �-adversary if he is restricted to choose only one of the ow rate functions in F�.Notice that no sensible online policy will ever change over if � 2 (M � 1;M ]; the savingsresulting from such a changeover never exceeds 1, which is the penalty incurred to performthe replacement. Hence, without loss of generality, we shall further restrict our attention to� 2 [m;M � 1], and update the above de�nitions accordingly.Assume that the online player knows that he plays against a �-adversary. We now seekan optimal policy for the online player. We shall �rst argue that in the limit � ! 0,every deterministic online policy (and in particular, the optimal one) is captured by a time-independent policy. More formally, it will be shown that there exists a constant c such thatfor every �, if the online player con�nes himself to one of the best time-independent policies,he can guarantee a competitive ratio smaller then r + c � � where r is the (general) optimalcompetitive ratio against the �-adversary. 8



Lemma 2.1 Let S be any online policy against the �-adversary and assume that r is itscompetitive ratio. Then, there exists a time-independent policy, Ŝ, that is r̂-competitiveagainst the �-adversary and r̂ < r + c � � where c is a constant independent of �.Proof. Let S = fMi(�)gki=1, an arbitrary replacement policy, be given. Choose g 2 F�such that S(g)opt(g) = r. Hence, g 2 F�0;"0 for some 0 < "0 < "0 and m � �0 � M � 1. Chooseany "̂ with "0 < "̂ < "0 and choose a ow rate function, f̂ 2 Fm;"̂, such that f̂[0;"0] = g[0;"0].That is, f̂ is an \extension" of g that decreases to the minimum possible rate. Clearlyf̂ 2 F�. We shall de�ne Ŝ, a time-independent policy, as follows. Let "1; "2; : : : ; "k0, (k0 � k)be the times S changes over when played against f̂ . For 1 � i � k0, set M̂i = f̂("i), andde�ne Ŝ def= fM̂igk0i=1.For each � 2 [m;M � 1], denote by "(�) the (unique) " such that f̂(") = �, and letf̂� 2 F�;"(�) be a function such that (f̂�)[0;"(�)] = f̂[0;"(�)]. It is evident, by the choice of Ŝ,and since S is an online policy, that for each �, the performance of S and Ŝ against f̂� isidentical; that is, S(f̂�) = Ŝ(f̂�).By the choice of r and g, it is clear that for each �,S(f̂�)opt(f̂�) � r: (1)Fix �. As " varies, the total cost of Ŝ with respect to a function in F�;" does not vary bymuch. Since Ŝ is time-independent, the number of changeovers it performs is independentof the choice of ". Clearly, for " 2 (0; "0),0 < supf;";f2F�;" Ŝ(f)� inff;";f2F�;" Ŝ(f) < "0(M � �): (2)From (2) and by the de�nition of "0 we obtain that for each choice of f 2 F� with f 2 F�;",Ŝ(f) � Ŝ(f̂�) + "0(M � �) < Ŝ(f̂�) + �: (3)The bounds (2) are also true for opt since supf;" opt(f) (f 2 F�;") is certainly not greaterthan (M��)"0+�+1 and inff;" opt(f) (f 2 F�;") is not smaller than minfM;�+1g � �+1.Thus, 0 < supf;";f2F�;" opt(f)� inff;";f2F�;" opt(f) < "0(M � �):Therefore, opt(f) � opt(f̂�)� "0(M � �) > opt(f̂�)� �: (4)Combining (1), (3) and (4), plus the facts that r �M always (a degenerate policy that neverchanges over is clearly M -competitive), that opt(f̂�) > 1, and � < 1=2, we obtainŜ(f)opt(f) < Ŝ(f̂�) + �opt(f̂�)� �9



� r � opt(f̂�) + �opt(f̂�)� �= r + � � r + 1opt(f̂�)� �< r + � � 2(M + 1):Remark 2.1 Ultimately, we would like to consider a �-adversary where � is \in�nitesimallysmall". Such a � is, of course, non-existent. Hence, we should investigate this problem as �approaches zero. Formally, one should obtain all results for a �xed � and then calculate theappropriate limits. However, to simplify the analysis, we shall avoid this formality wheneverpossible. We shall pretend that the ow rate function decreases continuously in \zero-time"to its �nal value, �, and measure all the quantities that depend on � by their limits, as� ! 0. For instance, we shall pretend that the optimal competitive ratio (for the restrictedreplacement problem) is attained by a time-independent policy. This is not proven to betrue, of course, but as � ! 0, by Lemma 2.1, the competitive ratio of the optimal time-independent policy approaches the (general) optimal ratio against the limit behavior of the�-adversary. It is to be understood that by taking this approach the only sacri�ce we makeis that our �nal result, the lower bound, will not be a real number, but a limit.In continuation to Remark 2.1, we shall consider for the rest of this section only time-independent policies (that may be referred to simply as `policies'). For each � 2 [m;M � 1],let f� denote the �ctitious ow rate function that drops continuously in \zero-time" to therate � and then jumps to M and remains constant. Formally, when we measure costs ofpolicies against such f�, we actually refer to the limit, "! 0, of these costs against functionsin F�;".For each �, the cost of opt against f� is characterized by the following lemma.Lemma 2.2 For su�ciently small 0 < " < "0, for each � 2 [m;M � 1], and each f 2 F�;",opt(f) = minfM;�+ 1 + "(M � �)g:Proof. We argue that the two options opt has are either to avoid change overs and keeppaying at the rate M , or to change over once, at time ", and to keep paying at the rate �.First we show that opt will change over at most once. Suppose opt changes over exactlyonce at time 0 < t � ", to the rate f(t). An additional changeover at time t0, 0 < t0 < t, willcut the ow rate component of the total cost by (t� t0)(M � f(t0)) < "0(M �m) < � < 1.However, the penalty to perform this changeover is 1. It follows that opt will change overat most once.Next, let us compare the cost of changing over once at time " to the rate �, with the costof changing over once to some ow rate a > �, say, at time "0 < ". By changing over once tothe rate a instead of changing over once to the rate �, opt will gain G = ("�"0)(M �a) but10



will lose L = (a� �)(1� "). It is not hard to see that when "! 0, either L > G or a! �.Hence, we may assume that between these two alternatives, opt will choose to change overto �.Since lim"!0 � + 1 + "(M � �) = � + 1 � M , a corollary of Lemma 2.2 is that for each� 2 [m;M � 1], opt(f�) = �+ 1.Let S = fMigki=1 be any (time-independent) policy that achieves a competitive ratio r.As noted in a previous discussion, we may assume that M1 � M � 1. Also, we may assumethat the last threshold, Mk, is strictly greater than m. The reason is that the adversary canalways choose � to be greater than m, but arbitrarily close to m. By convention, we setM0 = M and if the smallest threshold of S is Mk, we set Mk+1 = m. Thus,m = Mk+1 < Mk < � � � < M1 �M0 � 1 =M � 1:If � lies in the interval (Mi+1;Mi], the online player's cost with respect to f� isMi+i and theoptimal o�ine cost is �+1. A simple observation is that an optimal choice of � 2 (Mi+1;Mi]by the adversary is larger than but arbitrarily close to Mi+1. Hence, we assume that theoptimal o�ine cost for such � is arbitrarily close to Mi+1 + 1. Putting all this together wehaveCorollary 2.1 S is r-competitive if and only ifMi + i � r � (Mi+1 + 1); i = 0; 1; : : : ; k: (5)Lemma 2.3 If the competitive ratio r is attainable by some policy, then it can be attained bya policy fMigki=1 such that Mi+ i = r(Mi+1+1), i = 0; 1; : : : ; k� 1, and Mk+ k � r(m+1).Proof. Let S = fMigki=1 be any r-competitive policy. By Corollary 2.1, Mi + i �r(Mi+1 + 1) for all 0 � i � k. Let j be the minimal index such that Mj + j < r(Mj+1 +1). In other words, Mj+1 > Mj+jr � 1. Set M 0j+1 def= Mj+jr � 1. The modi�ed policy,fM1; : : : ;Mj;M 0j+1;Mj+2; : : : ;Mkg, must also attain a competitive ratio r sinceM 0j+1+j+1 <Mj+1 + j + 1 � r(Mj+2 + 1). Similarly, we can continue to modify the policy, step by step,replacing the thresholds Mj+2;Mj+3; : : :, etc. Since we replace each of these thresholds by alower threshold, we may end up with some thresholds smaller than m. As the �nal policy weshall take all remaining thresholds that are still in (m;M�1]. Let S 0 = fM 0igk0i=1 be this �nalpolicy, where k0 � k is the maximum index i such that Mi was still replaced by a thresholdM 0i > m . By construction, M 0i + i = r(M 0i+1+1), i = 0; 1; : : : ; k0�1. Although M 0k0+1 (� m)was not included in S 0, by construction, M 0k0 + k0 = r(M 0k0+1 + 1), so Mk0 + k0 � r(m + 1).Hence, by Corollary 2.1 S 0 is r-competitive and the proof is completed.2.1 The sequence S(r; a) and time-independent policiesFor any reals a > 1 and r > 1, consider the following sequence:( m0(r) = a;mi+1(r) = mi(r)+ir � 1; i � 0: (6)11



Denote this in�nite sequence, fmi(r)gi, by S(r; a). The nature of the sequence S(r; a) is tiedwith the nature of r-competitive time-independent policies. For instance, if there exists anr-competitive re�nancing policy, then, by Lemma 2.3, there exists an r-competitive policyS = fMigki=1 with Mi = mi(r), 0 � i � k � 1 and mk+1(r) � m, where the mi(r)'s areelements of S(r;M).The following is a closed form formula for mi(r).mi(r) =  a + r2(r � 1)2! r�i + ir � 1 � r2(r � 1)2 : (7)This formula can be veri�ed by induction on i.The following two lemmata establish a few basic properties of the sequence S(r; a) thatwill be used later.Lemma 2.4 For any a > 1 and r > 1, the sequence S(r; a) = fmi(r)g is unimodal (that is,it has a unique minimum).Proof. Fix any a > 1 and r > 1. Set mi = mi(r), i = 0; 1; : : :. We shall provethe following three claims. The lemma readily follows from the latter two. (i) for all i,mi > �1; (ii) fmig is initially (strictly) decreasing and then stops decreasing; and (iii) oncethe sequence fmig stop decreasing it strictly increases forever.We prove (i) by induction on i. By assumption, m0 = a > 1. Assume for the inductionhypothesis that, mi > �1 for some i > 0. Then, mi+1 = mi+ir � 1 > �1+1r � 1 = �1.We now prove that (ii) holds. It is not hard to see that, initially, the sequence is strictlydecreasing. For example, m1 = m0=r � 1 < m0. Assume by way of contradiction that thesequence is always decreasing. Hence, by (i), for all i, �1 < mi < m0. Take large enough iso that i=r � mi(1 � 1=r) + 1. Such an i must exist since the mi's are bounded. For thisi we obtain mi+1 = mir � 1 + ir � mir � 1 +mi(1 � 1r ) + 1 = mi. This proves (ii). Finally,to prove (iii) we show that for every i, if mi � mi+1, then mi+1 < mi+2. But if mi � mi+1,then mi+1 = mi+ir � 1 < mi+1+i+1r � 1 = mi+2.The next lemma describes the dependency of each element of S(r; a) in r.Lemma 2.5 Fix a > 1. Then for all r > 1, S(r; a) has the property that for each i � 1, (i)mi(r) is decreasing if and only if r is increasing; and (ii) mi(r) is increasing if and only ifr is decreasing.Proof. We prove by induction on i that (i) holds. For the base case, consider the equationm1(r) = m0r � 1. Since m0 = a is �xed, (i) trivially holds. To complete the induction step,consider the equation mi+1(r) = mi(r)+ir � 1. We start with the `only if' direction. If mi+1(r)decreases, it must be that r increases and/or mi(r) decreases. In the latter case, by theinduction hypothesis, r increases, so in either case the induction step is completed for thiscase. To complete the induction case for the `if' case, notice that if r increases then by the12



induction hypothesis, mi(r) decreases so it must be that mi+1(r) decreases. The statement(ii) is proven similarly.Set a = M . For each r > 1, consider S(r;M) and set m(r) def= minifmi(r)g. ByLemma 2.4, m(r) is well de�ned. For each r > 1 the initial decreasing segment of S(r;M),m0; m1; : : : ; m(r), induces a time-independent replacement policy. Speci�cally, we de�ne thepolicy induced by S(r;M) with respect to m to be the decreasing part of the sequence fromthe second element, up to, but not including, the �rst element that is less than or equal tom. If m(r) � m, the induced policy consists of all elements from the second, up to (andincluding) the minimum element, m(r).Lemma 2.6 For each r > 1, let S = fMigki=1 be the policy induced by S(r;M). Then S isr-competitive if and only if m � m(r).Proof. If m � m(r), then by the construction of S(r;M), for any choice of 0 � i < k,and any choice of � in the interval (Mi+1;Mi], S will pay Mi+ i against f�, and opt will payat least Mi+1 +1. But Mi+ i = r(Mi+1+1), so S attains the ratio r. For a choice i = k, foreach � 2 (m;Mk], S will payMk+k and opt, at leastm+1. But since mk+1(r) = m(r) � m,mk(r) + k = r(mk+1(r) + 1) � r(m+ 1). So here again, S attains the ratio r.On the other hand, if m < m(r) then suppose, by contradiction, that S is r-competitive.Choose any � greater than but very close to m. Then, against f�, S pays m(r) + k + 1,and opt incurs a cost arbitrarily close to m + 1. As S is r-competitive, it must be thatm(r)+k+1 � r(m+1). Hence, m � m(r)+k+1r �1 = mk+2(r). This contradicts the fact thatm(r) = mk+1(r) is the minimum element of S(r;M). Therefore, S is not r-competitive.Example 2.1 Suppose M = 100, and r = 2. The resulting sequence, S(2; 100), is:100; 49; 24; 12; 6:5; 4:25; 3:625; 3:813; 4:406; 5:203; : : :The minimum element of this sequence is 3.625. For m = 3:625 the induced policy isS1 = f49; 24; 12; 6:5; 4:25g:For any 6:5 < m < 12, the induced policy isS2 = f49; 24; 12g:By Lemma 2.6, the competitive ratio 2 is attainable by the induced policy if and only ifm � m(2) = 3:625. Therefore, both S1 and S2 are 2-competitive. However, for m < 3:625,the induced policy, which is again S1, cannot attain the ratio 2.Lemma 2.7 Fix any m � 0. For each M > m + 1, let r be the optimal competitive ratio.Then, the minimum element of S(r;M), m(r), equals m, and the policy induced by S(r;M)with respect to m is r-competitive. 13



Proof. As there exists an r-competitive policy, Lemma 2.3 implies that the policyinduced by S(r;M) with respect to m, is r-competitive and that m(r) � m. Let l denotethe index of the minimum element, m(r). Assume, by way of contradiction, that m > m(r).Then it is possible to increase ml(r) (together with all elements mi(r), 1 � i < l) to obtaina new sequence S(r0;M) with m(r) < m(r0) � m. By Lemma 2.6, the policy induced byS(r0;M), S 0, is r0-competitive, and by Lemma 2.5, r0 < r. This contradicts the optimalityof r. Hence, m(r) = m.For each m � 0 and each M > m+1, denote by r�(m;M) the optimal competitive ratiofor the restricted replacement problem. Denote by S�(m;M) = fMigki=1 the policy inducedby S(r�(m;M);M). By Lemma 2.7, S�(m;M) is r�(m;M)-competitive and m(r�(m;M)) =mk+1(r�(m;M)) = m. Denote by k�(m;M) the number, k, of changeover thresholds inS�(m;M).Whenever there is no confusion we may interchange the mi = mi(r)'s with the Mi's, thechangeover thresholds of the policy induced by S(r;M). The next lemma characterizes thenumber k�(m;M).Lemma 2.8 Let r = r�(m;M) and k = k�(m;M). Then,k = d(m + 1)(r � 1)e:Proof. Consider the policy S�(m;M) = fMigki=1. We know thatMk+1 = m andm < Mk.Also, Mk + k = r(Mk+1+1). Hence, m+ k < Mk + k = r(Mk+1 +1) = r(m+1). Therefore,k < r(m+ 1)�m: (8)By unimodality, m � mk+2 = m+k+1r � 1. Thus,k � rm+ r �m� 1; (9)and, together with (8), and the fact the k is an integer, the proof is completed.We are now interested in characterizing, r�(m;M), the optimal competitive ratio. It isnot hard to obtain an explicit expression for su�ciently small optimal ratios.Lemma 2.9 Let r = r�(m;M), k = k�(m;M). If r � m+2m+1 , then r = q Mm+1 and k = 1.Proof. First, if r � m+2m+1 , then r(m+1)�m � 2. By inequality (8), k < 2. On the otherhand, inequality (9) implies that k � 1. Therefore, S�(m;M) consists of one changeoverthreshold, M1. Set � = q Mm+1 and consider the policy induced by S(�;M). By de�nition,m1(�) = m0(�)=�� 1 = pMpm+ 1� 1:m2(�) = (m1(�) + 1)=�� 1 = pMpm+ 1pM=pm + 1 � 1 = m:14



Therefore, the policy fM1g achieves a competitive ratio �. By Lemma 2.5, if we take �0 < �then m(�0) > m(�) = m, so, it is implied, by Lemmas 2.3 and 2.6, that no policy can attainthe ratio �0. Hence, � is optimal. Thus, r = � = q Mm+1 .For small ratios, the following lemma proves some relationships between r; k;m, and Mthat better characterize the lower bound at its small values.Lemma 2.10 Set r = r�(m;M), k = k�(m;M). The following conditions are equivalent:(a) r � m+2m+1 ; (b) r = q Mm+1 ; (c) k = 1; and (d) M � (m+2)2m+1 .Proof. The following four statements easily derive the lemma:� (a) ) (b), (c) and (d): this is established by Lemma 2.9. Notice that q Mm+1 � m+2m+1 i�M � (m+2)2m+1 .� (c) ) (a): if k = 1 then (a) follows by inequality (9).� (b) ) (c): set � = q Mm+1 and consider S(�;M). It is not hard to see that m2(�) = m.Hence, the policy induced by S(�;M) with respect to m is �-competitive. But � = rand is thus optimal, so k = 1.� (d) ) (a): suppose M � (m+2)2m+1 . Consider S(�;M) where � is a variable. For a � thatsolves m2(�) = m, it must be that the policy induced by S(�;M) with respect to m is�-competitive. Hence, r � �. But m = m2(�) = M�2 � 1 � (m+2)2�2(m+1) � 1, so � � m+2m+1 and(a) holds.By Lemma 2.10, an alternative way to state Lemma 2.9 is to say that for m + 1 <M � (1 + 1m+1)(m + 2), it makes sense to change over at most once, and in this caser�(m;M) = q Mm+1 < 1 + 1m+1 .Set r = r�(m;M) and k = k�(m;M). Since S�(m;M) has the property that Mk+1 = m,using the closed form (7) formk+1(r) =Mk+1 (with a = M), we know that r is a real solutionof the system m = (M + r2(r � 1)2 )r�(k+1) + k + 1r � 1 � r2(r � 1)2 (10)k = d(m+ 1)(r � 1)e (11)This system implicitly de�nes the function r = r�(m;M), which we desire to characterize.However, the functional dependency of the optimal ratio, r, in m andM is very complicated.For example, when it is known that the optimal policy consists of exactly two changeover15



thresholds (k = 2), then the optimal competitive ratio isr =  M2(m+ 1) + 127 (m + 1)3 + pMp27Mm2 + 54Mm+ 27M + 4p318 (m + 1)2 ! 13 + M2 (m+ 1) + 127 (m + 1)3 � pMp27Mm2 + 54Mm+ 27M + 4p318 (m + 1)2 ! 13 +13 (m+ 1) :Although it may be desirable to �nd a simple approximation for r�(m;M), it seems that anyaccurate approximation will be hard to �nd, rather complex, and not necessarily informative(for our purposes). We therefore con�ne ourselves to the much simpler task of �nding anasymptotic approximation that will show the nature of r�(m;M) as the ratio M=m grows.(Then again, such an approximation will be useless for very small competitive ratios.)Lemma 2.11 For a �xed m, and su�ciently large M , the optimal competitive ratio (for thisrestricted version of the problem) is r = r�(m;M) = � � lnMln lnM �.Proof. By isolating M in (10), we obtainM = rk+1  m + r2(r � 1)2 � k + 1r � 1!� r2(r � 1)2 : (12)Fix m. We assume that r > 2+p2. We will use the following inequalities. The �rst followsfrom r > 2 +p2: 1 < r2(r � 1)2 < 2: (13)Then from (11) we derive lower and upper bounds on the optimal k(m + 1)(r � 1) � k < (m+ 1)(r � 1) + 1 = m(r � 1) + r: (14)Using (12), it is not hard to derive the following bounds on M : rk�1 � 2 < M < rk+1 � 1:Further, by applying the bounds on k, (14), we obtainr(r�1)m � 2 < M < rr(m+1)�m+1 � 1:Then by applying the natural logarithm to both these inequalities we easily obtain r =�( lnMln r ). Applying again the natural logarithm to this asymptotic bound we obtain r =�(ln lnM) and the proof is complete.
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3 A characterization theorem for simple refusal poli-ciesHaving determined a general lower bound for the replacement problem using the restrictedadversary, we now step back and examine the general case, in which the ow rate functionis entirely unrestricted.3.1 A subclass of simple refusal policiesWe will be focusing on a subclass of refusal policies (see Section 1.4 for a de�nition). Arefusal policy in this new subclass has a particularly simple form and is speci�ed by twosequences of real numbers:� fMigki=1 - changeover thresholds;� fbigki=1 - refusal times.We require that the changeover threshold sequence is strictly decreasing within the openinterval (M;m) and that the refusal time sequence is non-increasing within the time horizon[0; 1]. Given these sequences of changeover thresholds and refusal times, the refusal policyis de�ned as follows: Mi(t) = Mi, for t � bi, and Mi(t) = �1, for t > bi. Thus, up to time bithe threshold for making the ith changeover is the constant Mi, but after time bi the onlinepolicy refuses to change over for an ith time. By convention, we set M0 = M and bk+1 = 0.Here again (as in the discussion in page 11) we can assume that the last threshold, Mk, isgreater than m, and then we set Mk+1 = m.3.2 A characterization theoremWe now introduce a characterization theorem that proves very useful for obtaining upperand lower bounds. This theorem provides necessary and su�cient conditions for establishingthat a refusal policy hfMig; fbigi as de�ned above attains a competitive ratio r. By thistheorem, to establish whether or not a particular refusal policy with k thresholds attains acertain competitive ratio, all that is needed is to examine O(k2) inequalities. This meansin particular that given any parameters for the problem (i.e. m and M), one can computee�ciently a numerical approximation of the best refusal policy.Theorem 3.1 For each m � 0 and each M > m, let S = hfMigki=1; fbigki=1i be a refusalpolicy with fbig non-increasing. Then S is r-competitive if and only if the following twoconditions hold:
17



C1 for all i and j with 0 � i � j � k,Mibj+1 +Mj(1� bj+1) + j � r �Min 26664 M0;Mi+1 + 1;M0bj+1 +m(1� bj+1) + 1;Mi+1bj+1 +m(1� bj+1) + 2 37775 ;C2 for all i and j with 0 � i < j � k,Mibj +Mj(1� bj) + j � r �Min 26664 M0;Mi+1 + 1;M0bj +m(1� bj) + 1;Mi+1bj +m(1� bj) + 2 37775 :Proof. To prove the su�ciency of the above conditions, assume that they are satis�ed.Consider the behavior of S against a ow rate function f . For each 0 � i � k, let Ii bethe (possibly null) interval of time during which S is paying at the ow rate Mi. Let jbe the largest index for which the associated interval is nonempty. Then, throughout theinterval Ii, where i < j, f(t) � Mi+1. Let the interval Ij be partitioned into two parts,I1j and I2j , where I1j = Ij \ [0; bj+1] and I2j = Ij \ (bj+1; 1]. Then, throughout the intervalI1j , f(t) � Mj+1 and throughout the interval I2j , f(t) � m. For i = 0; 1; : : : j � 1, let �idenote the length of the interval Ii. Let �j denote the length of the interval I1j and let �j+1denote the length of the interval I2j (note that �j + �j+1 > 0). The cost of the online policywith respect to f , S(f), is Pji=0 �iMi + �j+1Mj + j. Let g(t) be the function that is equalto Mi+1 on Ii, i = 1; 2; : : : ; j � 1, to Mj+1 on I1j and to m on I2j . Clearly, g(t) � f(t) forall t, so opt(g) � opt(f). We shall prove that the hypotheses of the theorem imply thatS(f) � r � opt(g).Since g is a non-increasing, piecewise-constant function, the optimal policy for the o�ineplayer has the property that changeovers occur only at the boundary points between intervalsof constancy for g. For each particular choice of changeover points, the o�ine cost is a linearform, L(�0; �1; : : : ; �j+1). It su�ces to show that for every choice of j, for every choice ofthe �i, and for every such linear form, S(f) � r � L(�0; �1; : : : ; �j+1). For each �xed choiceof j, the quantities �i satisfy the following conditions:(I1) �i � 0, i = 0; 1; : : : ; j;(I2) Pji=0 �i = 1� �j+1;(I3) 1� bj+1 � �j+1 � 1� bj;(I4) if �j > 0, then 1�bj+1 = �j+1.Regard the (j + 2)-tuple (�0; �1; : : : ; �j+1) as a point of a (j + 2)-dimensional Euclideanspace. Then the set of feasible points (possible choices of the �i's) is determined by the18



above conditions I1-I4. Since the (in)equalities in these conditions are linear each inequality�xes a half-space and each equality �xes a hyperplane and the set of feasible points is theintersection of these half spaces and hyperplanes. As this feasible set is a polytope it iscompletely determined by its corner points and it is hence su�cient to prove that the linearinequality jXi=0 �iMi + �j+1Mj+1 + j � r � L(�0; �1; : : : ; �j+1) (15)is satis�ed by the corner points of the feasible set. We now claim that in each corner point atmost one of the �i's, i = 0; 1; : : : ; j, is non-zero. Consider the system of linear inequalities ofconditions I1 and I2. This system has j+1 variables. A corner point solution of a system oflinear inequalities in j+1 variables has the property that it satis�es at least j+1 inequalitieswith equality. Hence in each corner point of the ((j + 2)-dimensional) feasible set at mostone of the �i's (i = 0; : : : ; j) is non-zero. By considering the additional conditions, I3 andI4, we conclude that each corner-point � = (�0; �1; : : : ; �j+1) of the feasible set satis�es oneof the following types of conditions:1. for some i � j, �i = bj+1 and �j+1 = 1� bj+1;2. for some i < j, �i = bj and �j+1 = 1� bj.By the de�nition of the �i, for the �rst type of corner point solutions, the online cost isMibj+1 +Mj(1� bj+1) + j, with i � j, and the corresponding optimal o�ine cost isMin 26664 M0;Mi+1 + 1;M0bj+1 +m(1� bj+1) + 1;Mi+1bj+1 +m(1� bj+1) + 2 37775 :For the second type of corner point solutions, the online cost is Mibj +Mj(1 � bj) + j,with i < j, and the corresponding optimal o�ine cost isMin 26664 M0;Mi+1 + 1;M0bj +m(1� bj) + 1;Mi+1bj +m(1� bj) + 2 37775 :Therefore, by the hypotheses of the theorem, the linear inequality (15) holds for everycorner point of the feasible set and we have completed the proof of su�ciency.To prove that the conditions C1 and C2 are necessary, we construct for each conditiona ow rate function for which the left-hand side of the condition corresponds to the onlinecost and the right-hand side (not including the factor r), to the o�ine cost.First consider the condition C1. Fix any j and i � j. Let " be a very small positive realand de�ne f to be the ow rate function such that f(0) = M ; during the interval (0; "], f19



decreases continuously to the value Mi+1 + ", remains at this value until the time bj+1 andthen, during the interval (bj+1; bj+1+"], decreases continuously to m, and remains at m untiltime 1. It is easy to see that when " approaches zero, S(f) approachesMibj+1+Mj(1�bj+1)+jand opt(f) approaches Min 26664 M;Mi+1 + 1;Mbj+1 +m(1� bj+1) + 1;Mi+1bj+1 +m(1� bj+1) + 2 37775 :Therefore, condition C1 must hold for S to attain a competitive ratio r.The necessity of condition C2 is similarly justi�ed. For any i; j with i < j, and ",consider the ow rate function such that f(0) = M ; during the interval (0; "], f decreasescontinuously to the value Mi+1 + ", remains at this value until the time bj � " and then,during the interval (bj � "; bj], decreases continuously to m, and remains at m until time 1.When " approaches zero, S(f) approaches Mibj +Mj(1� bj) + j and opt(f) approachesMin 26664 M;Mi+1 + 1;Mbj +m(1� bj) + 1;Mi+1bj +m(1� bj) + 2 37775 :Hence, condition C2 must hold for S to attain a competitive ratio r.4 Upper boundsEquipped with the characterization theorem of the previous section, we construct and analyzein this section two replacement policies. The �rst, S��, is strictly optimal in some cases andthe second, S���, is approximately optimal.4.1 Construction of the refusal policy S��(m;M)We now construct a refusal policy and then calculate its competitive ratio. The basis for thisconstruction is the changeover threshold sequence fMig of the policy S�(m;M), the optimalpolicy against the restricted adversary (see Section 2). Recall that S�(m;M) = fMigki=1where k = k�(m;M) and ( M0 = M ;Mi+1 = Mi+ir � 1; 0 � i < k;where r = r�(m;M) is the lower bound for the problem (or alternatively, the competitiveratio of S�(m;M) against the restricted adversary). For this r we already know that k =d(m + 1)(r � 1)e (Lemma 2.8) and that Mk+1 = m (Lemma 2.7).20



What would be a reasonable choice for the refusal times? A simple observation is that itis worthwhile to change over only if the changeover will save the policy at least the penaltyit pays to perform it (1). To this end, we de�ne the refusal time bi (associated with thethreshold Mi, i = 1; 2; : : : ; k) as the solution of the equation (1 � bi)(Mi�1 � Mi) = 1.Clearly, the bi's thus de�ned are meaningful if and only if bi lies in the time interval [0; 1],and the sequence fbig is non-increasing. Using the following two lemmata we establish thesefacts.Lemma 4.1 For all 1 � i � k, Mi�1 �Mi > Mi �Mi+1.Proof. Let C = M + r2(r�1)2 . Using formula (7) with a = M and mi(r) =Mi we obtainMi�1 �Mi = Cri�1 + i� 1r � 1 � r2(r � 1)2 � Cri � ir � 1 + r2(r � 1)2= C � 1ri�1 � 1ri� + i� 1� ir � 1= Cr � 1ri � 1r � 1=  M + r2(r � 1)2! � r � 1ri � 1r � 1= [M(r � 1)2 + r2](r � 1)ri(r � 1)2 � 1r � 1= M(r � 1)2 + r2 � riri(r � 1) : (16)Hence, Mi�1 �MiMi �Mi+1 = ri+1(r � 1)ri(r � 1) � M(r � 1)2 + r2 � riM(r � 1)2 + r2 � ri+1= r � M(r � 1)2 + r2 � riM(r � 1)2 + r2 � ri+1 > 1;for every r > 1.Lemma 4.2 For all 1 � i � k, Mi�1 �Mi > 1.Proof. By Lemma 4.1 the di�erence Mi�1�Mi is decreasing with i. It is thus su�cientto prove the claim for i = k; that is, to prove that Mk�1 �Mk � 1.Using the identities Mk�1 = r(Mk+1)�k+1 and Mk = r(Mk+1+1)�k = r(m+1)�k,and the bound k < r(m+ 1)�m (for k = k�(m;M)) we obtainMk�1 �Mk = r(Mk + 1)� k + 1�Mk= Mk(r � 1) + r � k + 121



= (r(m+ 1)� k) (r � 1) + r � k + 1> (r(m+ 1)� (r(m+ 1)�m)) (r � 1) + r � (r(m+ 1)�m) + 1= 1:From Lemma 4.2 it follows that bi 2 (0; 1). Further, by Lemma 4.1 it follows thatthe sequence fbig is strictly decreasing. Hence, the bi's are well de�ned refusal times. Byconvention we take bk+1 = 0 and thus we havebi = ( 1� 1Mi�1�Mi ; 0 � i � k;0; i = k + 1:Denote this resulting refusal policy, comprised of the changeover threshold sequence fMigand the above refusal time sequence fbig, by S��(m;M). Somewhat surprisingly (as will beshown), S��(m;M) attains the competitive ratio r�(m;M), when m = 0 or M � (m+2)2m+1 .As r�(m;M) is the lower bound for the problem, S��(m;M) is optimal in these cases. The�rst result of this section will be devoted to proving one of these bounds. In this rest of thissection unless otherwise speci�ed r and k will denote r�(m;M) and k�(m;M), respectively.4.2 Optimality of S��(m;M) when k = 1In this section we prove that S��(m;M) is optimal when k = k�(m;M) = 1; i.e. whenS��(m;M) consists of one threshold. An equivalent assumption to k = 1, is that q Mm+1 �m+2m+1 (see Lemma 2.10).Theorem 4.1 For any m and M with q Mm+1 � m+2m+1 , S��(m;M) attains a competitive ratior�(m;M) = q Mm+1 and hence, it is optimal.Proof. As r = r�(m;M) = q Mm+1 (see Lemma 2.9), S��(m;M) consists of one changeoverthreshold M1, with a corresponding refusal time b1. M0 = M , M2 = m, and we can writeS��(m;M) explicitly: M1 = M0=r � 1= qM(m + 1)� 1;b1 = 1� 1=(M0 �M1)= 1� 1=(M �qM(m + 1) + 1)= M �qM(m + 1)M �qM(m + 1) + 1 :22



We shall use theorem 3.1 to prove that S��(m;M) attains the ratio r. Since for these Mand m, r is also a lower bound for the problem, it will follow that S��(m;M) is optimal. Itremains to con�rm that the conditions of the theorem hold.Since b2 is set to zero, proving that condition C1 holds reduces to proving that thefollowing three inequalities hold, corresponding to the three possible values of the pair (i; j)(i.e. (0; 0), (0; 1) and (1; 1)).M � r �min fM;M1 + 1;Mb1 +m(1� b1) + 1;M1b1 +m(1� b1) + 2g ; (17)M1 + 1 � r �minfM;M1 + 1; m+ 1; m+ 2g: (18)M1 + 1 � r �minfM;m + 1; m+ 2g: (19)Consider �rst inequalities (18) and (19). In both these inequalities m+1 is the minimum ofthe right-hand side (by assumption, m+1 < M) so it remains to prove thatM1+1 � r(m+1).But since m =M2, both inequalities follow by the identity M2 = M1+1r � 1.Next we prove that inequality (17) holds. We will consider four cases, that correspondto the four expressions inside the \min" operator in (17). The �rst inequality, M � rM ,trivially holds. The second inequality, M � r(M1+1), follows by the identityM1 =M0=r�1.Next we want to check that the following inequality holds:M � r � (Mb1 +m(1� b1) + 1) : (20)Substituting r with M=(M1 + 1) and b1 with 1 � 1=(M � M1), inequality (20) becomes(M �M1)2 �M �m. Then, by substituting M1 with qM(m + 1)�1 it becomes equivalentto M + 1�qM(m + 1)�pM �m � 0:The left hand side is a non-increasing function of m and thus attains its minimum value,zero, when m =M � 1.The last inequality from (17) to check isM � r � (M1b1 +m(1� b1) + 2) :Using again the substitutions r = M=(M1 + 1) and b1 = 1 � 1=(M �M1) this inequalitybecomes (M �M1)(M1 �m� 1) � (M �M1 � 1)(M1 �m);which is equivalent to M �M1 �M1 �m that clearly holds (see Lemma 4.1).Lastly, we have to verify that condition C2 holds. Since 0 � i < j � 1, we want to showthat Mb1 +M1(1� b1) + 1 � r �minfM;M1 +1;Mb1 +m(1� b1) + 1;M1b1 +m(1� b1) + 2gholds. Consider the left hand side. Using the identity b1 = 1 � 1=(M �M1), we will showthat it is exactly M .Mb1 +M1(1� b1) + 1 = M(1� 1M �M1 ) + MM �M1 + 123



= M � MM �M1 + M1M �M1 + 1= M + M1 �MM �M1 + 1= M � 1 + 1 = M:Thus, C2 is identical to (17), and the proof is therefore complete.4.3 Optimality of S��(m;M) when m = 0Similar to the proof of Theorem 4.1, we can prove optimality of S��(m;M) for all valuesof M whenever m = 0. As in the proof of Theorem 4.1, the idea is to verify that the twoconditions of Theorem 3.1 hold with respect to S��(m;M). Nevertheless, in this case theproof we know of is extremely laborious and and involves lengthy \bookkeeping". We statethe following theorem without a proof.3Theorem 4.2 Let m = 0. For each M > 1, S��(m;M) is r�(m;M)-competitive and henceoptimal.4.4 Is S��(m;M) always optimal?In the previous sections we learned that S��(m;M) is optimal in two special cases. Thiswas established by showing that S��(m;M) attains the lower bound in these special cases.Unfortunately, S��(m;M) does not attain the lower bound ratio r�(m;M) for all values of mand M . For example, for M = 100, m = 3:625, with r�(3:625; 100) = 2 (see Example 2.1),it can be veri�ed that S��(3:625; 100) violates some of the conditions of Theorem 3.1, andtherefore, by the `only if' direction of this theorem, it cannot attain a competitive ratioof 2. However, for this example it can be shown (using Theorem 3.1) that S��(3:625; 100)is approximately 2:0351-competitive. Similarly, we worked out various numerical examplesin which S��(m;M) cannot attain a competitive ratio r�(m;M). For each such example,using theorem 3.1, we also calculated a number � � 1 such that S��(m;M) is [� � r�(m;M)]-competitive. Table 1 summarizes some of these examples. The table shows � as a function ofM , with a �xedm = 2. We conjecture that limM!1 �(M) = 1. In other words, we conjecturethat r�(m;M) is indeed the optimal competitive ratio for the replacement problem and thatS��(m;M) is near-optimal.4.5 A weak upper bound for S��(m;M) when m > 0For the case m > 0, we now prove that for su�ciently large r = r�(m;M), S��(m;M) isr2-competitive. In fact, we shall prove what appears to be a stronger statement - that atime-independent version of S��(m;M) is r2-competitive. In contrast to a refusal policy, a3A proof of Theorem 4.2 can be found in [6]. 24



M 10 20 30 50 100 1000 109 1020� 1 1 1.00341 1.01065 1.00812 1.00281 1.0000105 1 + :668� 10�9Table 1: � as a function of M for a �xed m = 2time-independent policy makes its changeovers without considering the time remaining (seeSection 1.4). Intuitively, time-independent policies should be weaker than refusal policies.Given m and M , we construct a time-independent version of S��(m;M) by modifying therefusal times such that bi = 1, i = 1; : : : ; k (as before, bk+1 = 0). The performance of thisresulting policy is, in fact, identical to the policy S�(m;M) from section 2, so we denote itby S�(m;M). The reason that we would like to view S�(m;M) as a (degenerate) refusalpolicy is that we shall use theorem 3.1 (that assumes a refusal policy) to derive an upperbound on its competitive ratio. The proof of the following theorem appears in Appendix ATheorem 4.3 Let m > 0 and M > m+1 be any numbers such that r = r�(m;M) � 1:619.Then, S�(m;M) is [r �minfr;m+ 2g]-competitive.For any ow rate function f , S��(m;M)(f) � S�(m;M)(f). This easily follows fromthe choice of the bi's: if for some j, at time t > bj S�� refuses to change over to thethreshold Mj but S� does, the penalty (1) paid by S� is greater than the savings in owpayments corresponding to this changeover. Further, since the bi's are non-increasing, thesame argument applies to any subsequent changeovers that may be performed by S� (andwill be \refused" by S��). Hence, we haveCorollary 4.4 For su�ciently large r = r�(m;M), S��(m;M) is [r�minfr;m+2g]-competitive.4.6 Approximately optimal policy for m > 0We now present a stronger upper bound for the general case where m is positive. We shallidentify a policy that for every positive m achieves a competitive ratio that for su�cientlylarge M , is within a constant factor of r�(m;M) (the constant is independent of M).The policy we consider is a time-independent policy, fMigki=1, where the sequence ofchangeover thresholds, fMig, is de�ned by the following recurrence relation. For each � > 1,set k = b�c. Then we de�ne8<: M0 def= M ;Mi+1 def= Mi+k� � 1; integer i � 1: (21)The following lemma states that for every positive m, the sequence de�ned by (21)decreases below m after a �nite (possibly more than k) number of steps.Lemma 4.3 Fix m > 0. Then, there exists j such that Mj < m.25



Proof. It can be shown (for example, by induction on j) thatMj = M�j + �� k(�� 1)�j + k � ��� 1 : (22)Since k � � and � > 1, for every non-negative j,�� k(�� 1)�j + k � ��� 1 � 0:�j increases with j so Mj decreases with j. Further, since limj!1 M�j = 0, limj!1Mj � 0.In fact, by a straightforward re�nement of the proof of Lemma 4.3, we can obtain thefollowing, stronger statement.Lemma 4.4 For su�ciently large �, the sequence fMig strictly decreases below m withink + 1 steps.Call a � for which Mk+1 � m and Mk > m good. Having Lemma 4.4 it is easy to seethat good � exist. For each �, each m > 0 and each M > m + 1, let S���� (m;M) denotethe policy fMig (as de�ned by (21)). Now, by considering S���� (m;M) as a (degenerate)time-dependent policy, we can apply Theorem 3.1 to prove that S���� (m;M) is �-competitivefor all good � and almost all values of M .Lemma 4.5 For any good �, any m > 0, and any M � maxfm + 1; b�c��1g, S���� (m;M) is�-competitive.Proof. First we note that the assumption M > b�c��1 = k��1 , implies thatM1+1�M � 0,which means that minfMi+1;Mg = Mi+1. We will use this fact later. Let us now specializethe three conditions of Theorem 3.1 to the case where bk+1 = 0 and bi = 1, i = 1; 2; : : : ; k.That is, when the (degenerate) refusal policy is a time-independent policy. For r = �, thetwo conditions of Theorem 3.1 reduce to the following condition.C1' 0forall � i � j � k, Mi + j � � �minfM0;Mi+1 + 1g;However, by the de�nition of theMi's, for all i,Mi+k = �(Mi+1+1), so under the assumptionthat M1 + 1 � M , condition C1' readily holds. Hence, by Theorem 3.1, S���� (m;M) is �-competitive.Fix m > 0. For each (su�ciently large) M de�ne �(M) to be the minimum (in�mum)good �. The next lemma establishes that the growth of �(M) with M is asymptotically thesame as the growth of r�(m;M).Lemma 4.6 For a �xed m, �(M) = � � lnMln lnM �.26



Proof. The proof is very similar to the proof of Lemma 2.11 and hence will only besketched. For the analysis below abbreviate � = �(M). We �rst isolate M in the inequalityMk > m (� is good) to obtainM > �k  m + k � ��k(�� 1) + �� k�� 1! : (23)Assuming that � is greater than, say 2, it can be easily veri�ed that the sum of the tworight most terms inside the parentheses is always in (0; 1). In addition, we have the bounds� � 1 < k � �. Hence, M > m�k > m���1, so � = O � lnMln � �. Similarly, from Mk+1 � m(� is good) we have M � (m + 1)�k+1 � (m + 1)��+1. Therefore, � = 
 � lnMln � �. Hence, abootstrap derivation such as the one used in the proof of Lemma 2.11 completes the proof.By considering the lower bound from Section 2 we therefore obtain that for su�cientlylarge M , S����(M)(m;M) is approximately optimal; that is, S��� is �(M)-competitive and thereexists a constant c such that and �(M) � c � r�(m;M).Example 4.1 It can be shown that for M = 100, m = 3:625, �(M) = 2:905. This meansthat S���2:905(3:625; 100), with two changeover thresholds (k = 2), attains a competitive ratioof 2:905. For comparison, recall from previous examples that the lower bound for such mand M is r�(3:625; 100) = 2, and that S��(3:625; 100) is 2.035-competitive.5 Future workThis work is the �rst that studies the online replacement problem from the perspective ofcompetitive analysis. Not surprisingly, we leave many unresolved questions. In this sectionwe shall mention a few.An intriguing question is whether or not one can obtain strictly tight bounds for thisproblem. A sensible starting point to investigate this question would be to try re�ning thetime-independent policy S���� (m;M) (e.g. consider a refusal policy based on S���� (m;M)).Also, it would be of interest to obtain tighter bounds on the performance of S��(m;M) form > 0 and M > (1 + 1m+1)(m+ 2).Our problem formulation is still somewhat simplistic to accurately model various real-life applications. We now point out several possible extensions that will lead towards morerealistic models. A relatively simple extension (but probably, quite technical) would bethe introduction of interest rates (or discount factors); i.e. to measure all costs by theirpresent value. In our model, we assume that the changeover penalty is the same for all owchangeovers. It would be of interest to extend our results to the case where each ow rate iso�ered with a possibly di�erent changeover penalty.It is reasonable that one could obtain strictly better performance by allowing only discreteow rate sequences. For example, instead of considering the continuous time horizon [0; T ],27
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A Proof of Theorem 4.3We apply Theorem 3.1 to calculate an upper bound on the competitive ratio of S�(m;M).In particular we show that it attains a competitive ratio �r, where � is a constant smallerthan min(r;m+ 2) to be determined later. In other words, we show that the inequalities ofconditions C1 and C2 of Theorem 3.1 hold (but with a competitive ratio �r instead of r).The way we go about this task is to assume that the inequalities in C1 and C2 hold, andfrom each inequality we derive some constraints (lower bounds) on �.Throughout the analysis, recall that S�(m;M) has a degenerate refusal time sequence;that is, for all 1 � i � k, bi = 1, and bk+1 = 0.Consider �rst condition C1 for the case j = k. In this case, since bj+1 = bk+1 = 0, theminimum of the four operands of the min operator on the right hand side of C1 is m + 1.Hence we should prove that Mk + k � r(m + 1) which surely holds with equality sincem = Mk+1 and Mk+1 equals, by de�nition, (Mk + k)=r � 1.For all 0 � j � k � 1, since bj+1 = 1, the minimum on the right hand side of C1 isMi+1 + 1 and the left hand side of C1 reduces to Mi + j. Similarly, for all 1 � j � k, sincebj = 1, the minimum on the right hand side of C2 is Mi+1+1. Therefore, since the left handside of C2 reduces to Mi + j, for any j � k � 1, C1 is identical to C2.Therefore, it remains to calculate the minimal � � 1 for whichG1 for 0 � i � j � k � 1, Mi + j � �r(Mi+1 + 1);G2 for 0 � i � k � 1, Mi + k � �r(Mi+1 + 1).Notice that when i = j, the inequality G2 follows immediately (with � = 1) by theidentity Mj+1 = Mj+jr � 1.For the rest of the analysis we need a few identities that will now be derived. First, usingthe identity k = d(m + 1)(r � 1)e we write k = (m + 1)(r � 1) + x, with 0 � x < 1. Usingthis representation of k, the fact that Mk+1 = m and the identity Mi = r(Mi+1 + 1) � i,it is not hard to verify the following identities that express a few of the smaller changeoverthresholds in terms of m; r and x.Mk = m+ 1� x;Mk�1 = m+ r + 2� x(r + 1);Mk�2 = m+ r2 + 2r + 3� x(r2 + r + 1);Mk�2 = m+ r3 + 2r2 + 3r + 4� x(r3 + r2 + r + 1);Consider G1 (with i < j). j � k � 1 < (m+ 1)(r � 1). Using the identity Mi+1 = Mi+ir � 1we have �rMi+1 �Mi = �r(Mi + ir � 1)�Mi= Mi(�� 1) + �i� �r:30



Therefore, together with the upper bound on j we learn that it is su�cient to �nd (theminimal) � that satis�es (m + 1)(r � 1) � (�� 1)Mi + �i.Since � and i are nonnegative, it is su�cient to �nd an � that satis�es(m+ 1)(r � 1) � (�� 1)Mi: (24)Since the Mi are decreasing, it is su�cient to consider the minimum Mi which is Mk�2.Using the above identity for Mk�2 we have Mk�2 > m+ r + 2. Then, for�1 def= 1 + (m + 1)(r � 1)m + r + 2 ;we have an equality in (24). It is easy to check that �1 < min(r;m+ 2).Consider G2. By the same argument as above we obtain that it is su�cient to �nd (theminimal) � that satis�es k � (�� 1)Mi + �i: (25)We cannot solve this inequality in the same way we solved G1; that is, we cannot \sacri�ce"the term �i in the right hand side of (25). The reason is that this time i can take valuesas large as k � 1 and the right hand side can be very small. Therefore, we \pump-out" of(25) more constraints that correspond to large values of i, and then, after ensuring that Micannot be too small, we solve (25) exactly as we solved G1.First, for the case i = k � 1 we solve the equation k = (� � 1)Mk�1 + �(k � 1) for � toobtain � � �(x) def= mr + 2r � rx+ 1mr + 2r � rx :It is easy to see that �0(x) is positive, and therefore, �(1) = mr+r+1mr+r maximizes �(x). But itis also evident that �(1) < �1, and therefore, it is included in the previous constraint.for i = k � 2, the same procedure results in a new constraint:�2 def= mr + 2r + 2mr + 2r :It can be veri�ed that �2 � r, for each r � 1:619, and that �2 < m + 2.Lastly, we can assume that i � k�3. This time we solve k = (��1)Mk�3 for � to obtain� � �(x) def= mr + 4r + 3 + r3 + 2r2 � x(r3 + r2 + r)mr3 + 2r2 + 3r + 4� x(r3 + r2 + r + 1) :By di�erentiation, it can be shown that �(x) is increasing with x. Therefore, our lastconstraint �3, is simply the value �(1); namely,�3 def= mr + 3r + 3 + r2m+ 2r + 3 + r2 :It is easy to check that �3 < m + 2, and that �3 � r for any r � 1:175.Therefore, for r � 1:619, max�i � min(r;m + 2), and the proof is complete. Note thatin general, we have actually proven that S�(m;M) attains a competitive ratio �r where� = max(�1; �2; �3). 31


