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LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH �VIDA DUJMOVI�C zxy , PAT MORIN xy , AND DAVID R. WOOD x{yAbstrat. A queue layout of a graph onsists of a total order of the verties, and a partitionof the edges into queues, suh that no two edges in the same queue are nested. The minimumnumber of queues in a queue layout of a graph is its queue-number. A three-dimensional (straight-line grid) drawing of a graph represents the verties by points inZ3 and the edges by non-rossingline-segments. This paper ontributes three main results:(1) It is proved that the minimum volume of a ertain type of three-dimensional drawing of agraph G is losely related to the queue-number of G. In partiular, if G is an n-vertex member ofa proper minor-losed family of graphs (suh as a planar graph), then G has a O(1)�O(1)� O(n)drawing if and only if G has O(1) queue-number.(2) It is proved that queue-number is bounded by tree-width, thus resolving an open problemdue to Ganley and Heath (2001), and disproving a onjeture of Pemmaraju (1992). This resultprovides renewed hope for the positive resolution of a number of open problems in the theory ofqueue layouts.(3) It is proved that graphs of bounded tree-width have three-dimensional drawings with O(n)volume. This is the most general family of graphs known to admit three-dimensional drawings withO(n) volume.The proofs depend upon our results regarding trak layouts and tree-partitions of graphs, whihmay be of independent interest.Key words. queue layout, queue-number, three-dimensional graph drawing, tree-partition, tree-partition-width, tree-width, k-tree, trak layout, trak-number, ayli olouring, ayli hromatinumber.AMS subjet lassi�ations. 05C62 (graph representations)1. Introdution. A queue layout of a graph onsists of a total order of theverties, and a partition of the edges into queues, suh that no two edges in the samequeue are nested. The dual onept of a stak layout, introdued by Ollmann [73℄ andommonly alled a book embedding, is de�ned similarly, exept that no two edges inthe same stak may ross. The minimum number of queues (respetively, staks) ina queue layout (stak layout) of a graph is its queue-number (stak-number). Queuelayouts have been extensively studied [41, 53, 54, 58, 76, 80, 86, 88℄ with appliationsin parallel proess sheduling, fault-tolerant proessing, matrix omputations, andsorting networks (see [76℄ for a survey). Queue layouts of direted ayli graphs[9, 56, 57, 76℄ and posets [55, 76℄ have also been investigated. Our motivation forstudying queue layouts is a onnetion with three-dimensional graph drawing.Graph drawing is onerned with the automati generation of aesthetially pleas-ing geometri representations of graphs. Graph drawing in the plane is well-studied(see [24, 64℄). Motivated by experimental evidene suggesting that displaying a graphin three dimensions is better than in two [90, 91℄, and appliations inluding informa-tion visualisation [90℄, VLSI iruit design [66℄, and software engineering [92℄, thereis a growing body of researh in three-dimensional graph drawing. In this paperzShool of Computer Siene, MGill University, Montr�eal, Canada. E-mail: vida�s.mgill.axShool of Computer Siene, Carleton University, Ottawa, Canada.E-mail: fmorin,davidwg�ss.arleton.a{Department of Applied Mathematis, Charles University, Prague, Czeh Republi. Researhsupported by COMBSTRU.yResearh supported by NSERC.�Submitted Otober 14, 2002. Revised June 16, 2004. Results in this paper were presented atthe GD '02 [34℄, FST TCS '02 [93℄, and WG '03 [36℄ onferenes.1



2 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOODwe study three-dimensional straight-line grid drawings, or three-dimensional drawingsfor short. In this model, verties are positioned at grid-points in Z3, and edges aredrawn as straight line-segments with no rossings [17, 21, 25, 27, 28, 42, 53, 78, 75℄.We fous on the problem of produing three-dimensional drawings with small vol-ume. Three-dimensional drawings with the verties in R3 have also been studied[39, 47, 19, 16, 18, 61, 22, 63, 60, 62, 69, 74℄. Aestheti riteria besides volume thathave been onsidered inlude symmetry [60, 61, 62, 63℄, aspet ratio [19, 47℄, angularresolution [47, 19℄, edge-separation [19, 47℄, and onvexity [18, 19, 39, 87℄.The �rst main result of this paper redues the question of whether a graph has athree-dimensional drawing with small volume to a question regarding queue layouts(Theorem 2.10). In partiular, we prove that every n-vertex graph from a properminor-losed graph family G has a O(1)�O(1)�O(n) drawing if and only if G has aO(1) queue-number, and this result holds true when replaing O(1) by O(polylogn).Consider the family of planar graphs, whih are minor-losed. (In the onfereneversion of their paper) Felsner et al. [42℄ asked whether every planar graph has athree-dimensional drawing with O(n) volume? Heath et al. [58, 54℄ asked whetherevery planar graph has O(1) queue-number? By our result, these two open problemsare almost equivalent in the following sense. If every planar graph has O(1) queue-number, then every planar graph has a three-dimensional drawing with O(n) volume.Conversely, if every planar graph has a O(1) � O(1) � O(n) drawing, then everyplanar graph has O(1) queue-number. It is possible, however, that planar graphshave unbounded queue-number, yet have say O(n1=3)�O(n1=3)�O(n1=3) drawings.Our other main results regard three-dimensional drawings and queue layouts ofgraphs with bounded tree-width. Tree-width, �rst de�ned by Halin [50℄, althoughlargely unnotied until independently redisovered by Robertson and Seymour [81℄and Arnborg and Proskurowski [7℄, is a measure of the similarity of a graph to a tree(see x2.1 for the de�nition). Tree-width (or its speial ase, path-width) has beenpreviously used in the ontext of graph drawing by Dujmovi� et al. [33℄, Hlin�en�y [59℄,and Peng [77℄, for example.The seond main result is that the queue-number of a graph is bounded by itstree-width (Corollary 2.8). This solves an open problem due to Ganley and Heath [45℄,who proved that stak-number is bounded by tree-width, and asked whether a similarrelationship holds for queue-number. This result has signi�ant impliations for theabove open problem (does every planar graph have O(1) queue-number), and themore general question (sine planar graphs have stak-number at most four [94℄) ofwhether queue-number is bounded by stak-number. Heath et al. [58, 54℄ originallyonjetured that both of these questions have an aÆrmative answer. More reentlyhowever, Pemmaraju [76℄ onjetured that the `stellated K3', a planar 3-tree, has�(logn) queue-number, and provided evidene to support this onjeture (also see[45℄). This suggested that the answer to both of the above questions was negative. Inpartiular, Pemmaraju [76℄ and Heath [private ommuniation, 2002℄ onjetured thatplanar graphs have O(logn) queue-number. However, our result provides a queue-layout of any 3-tree, and thus the stellated K3, with O(1) queues. Hene our resultdisproves the �rst onjeture of Pemmaraju [76℄ mentioned above, and renews hopein an aÆrmative answer to the above open problems.The third main result is that every graph of bounded tree-width has a three-dimensional drawing with O(n) volume. The family of graphs of bounded tree-widthinludes most of the graphs previously known to admit three-dimensional drawingswith O(n) volume (for example, outerplanar graphs), and also inludes many graph



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 3families for whih the previous best volume bound was O(n2) (for example, series-parallel graphs). Many graphs arising in appliations of graph drawing do have smalltree-width. Outerplanar and series-parallel graphs are the obvious examples. Anotherexample arises in software engineering appliations. Thorup [89℄ proved that theontrol-ow graphs of go-to free programs in many programming languages have tree-width bounded by a small onstant; in partiular, 3 for Pasal and 6 for C. Otherfamilies of graphs having bounded tree-width (for onstant k) inlude: almost treeswith parameter k, graphs with a feedbak vertex set of size k, band-width k graphs,ut-width k graphs, planar graphs of radius k, and k-outerplanar graphs. If the sizeof a maximum lique is a onstant k then hordal, interval and irular ar graphsalso have bounded tree-width. Thus, by our result, all of these graphs have three-dimensional drawings with O(n) volume, and O(1) queue-number.To prove our results for graphs of bounded tree-width, we employ a related stru-ture alled a tree-partition, introdued independently by Seese [85℄ and Halin [51℄. Atree-partition of a graph is a partition of its verties into `bags' suh that ontratingeah bag to a single vertex gives a forest (after deleting loops and replaing paralleledges by a single edge). In a result of independent interest, we prove that every k-treehas a tree-partition suh that eah bag indues a onneted (k � 1)-tree, amongstother properties. The seond tool that we use is a trak layout, whih onsists of avertex-olouring and a total order of eah olour lass, suh that between any twoolour lasses no two edges ross.The remainder of the paper is organised as follows. In x2 we introdue the requiredbakground material, and state our results regarding three-dimensional drawings andqueue layouts, and ompare these with results in the literature. In x3 we establisha number of results onerning trak layouts. That three-dimensional drawings andqueue-layouts are losely related stems from the fat that three-dimensional drawingsand queue layouts are both losely related to trak layouts, as proved in x4 andx5, respetively. In x6 we prove the above-mentioned theorem for tree-partitions ofk-trees, whih is used in x7 to onstrut trak layouts of graphs with bounded tree-width. We onlude in x8 with a number of open problems.2. Bakground and Results. Throughout this paper all graphs G are undi-reted, simple, and �nite with vertex set V (G) and edge set E(G). The number ofverties and the maximum degree of G are respetively denoted by n = jV (G)j and�(G). The subgraph indued by a set of verties A � V (G) is denoted by G[A℄. Forall disjoint subsets A;B � V (G), the bipartite subgraph of G with vertex set A [ Band edge set fvw 2 E(G) : v 2 A;w 2 Bg is denoted by G[A;B℄.A graph H is a minor of a graph G if H is isomorphi to a graph obtained froma subgraph of G by ontrating edges. A family of graphs losed under taking minorsis proper if it is not the lass of all graphs.A graph parameter is a funtion � that assigns to every graph G a non-negativeinteger �(G). Let G be a family of graphs. By �(G) we denote the funtion f : N! N,where f(n) is the maximum of �(G), taken over all n-vertex graphs G 2 G. We say Ghas bounded � if �(G) 2 O(1). A graph parameter � is bounded by a graph parameter� (for some graph family G), if there exists a funtion g suh that �(G) � g(�(G))for every graph G (in G).2.1. Tree-Width. Let G be a graph and let T be a tree. An element of V (T )is alled a node. Let fTx � V (G) : x 2 V (T )g be a set of subsets of V (G) indexedby the nodes of T . Eah Tx is alled a bag. The pair (T; fTx : x 2 V (T )g) is a



4 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOODtree-deomposition of G if:1. [x2V (T )Tx = V (G) (that is, every vertex of G is in at least one bag),2. 8 edge vw of G, 9 node x of T suh that v 2 Tx and w 2 Tx, and3. 8 nodes x; y; z of T , if y is on the path from x to z in T , then Tx \ Tz � Ty.The width of a tree-deomposition is one less than the maximum ardinalityof a bag. A path-deomposition is a tree-deomposition where the tree T is a pathT = (x1; x2; : : : ; xm), whih is simply identi�ed by the sequene of bags T1; T2; : : : ; Tmwhere eah Ti = Txi . The path-width (respetively, tree-width) of a graph G, denotedby pw(G) (tw(G)), is the minimum width of a path- (tree-) deomposition of G.Graphs with tree-width at most one are preisely the forests. Graphs with tree-widthat most two are alled series-parallel1, and are haraterised as those graphs with noK4 minor (see [10℄).A k-tree for some k 2 N is de�ned reursively as follows. The empty graph isa k-tree, and the graph obtained from a k-tree by adding a new vertex adjaent toeah vertex of a lique with at most k verties is also a k-tree. This de�nition of ak-tree is by Reed [79℄. The following more restritive de�nition of a k-tree, whih weall `strit', was introdued by Arnborg and Proskurowski [7℄, and is more often usedin the literature. A k-lique is a strit k-tree, and the graph obtained from a stritk-tree by adding a new vertex adjaent to eah vertex of a k-lique is also a stritk-tree. Obviously the strit k-trees are a proper sub-lass of the k-trees. A subgraphof a k-tree is alled a partial k-tree, and a subgraph of a strit k-tree is alled a partialstrit k-tree. The following result is well known (see for example [10, 79℄). A hordof a yle C is an edge not in C whose end-verties are both in C. A graph is hordalif every yle on at least four verties has a hord.Lemma 2.1. Let G be a graph. The following are equivalent:1. G has tree-width tw(G) � k,2. G is a partial k-tree,3. G is a partial strit k-tree,4. G is a subgraph of a hordal graph that has no lique on k + 2 verties.Proof. She�er [83℄ proved that (1) and (3) are equivalent. That (1) and (4) areequivalent is due to Robertson and Seymour [81℄. That (2) and (4) are equivalent is theharaterisation of hordal graphs in terms of `perfet elimination' vertex-orderingsdue to Fulkerson and Gross [44℄.2.2. Tree-Partitions. As in the de�nition of a tree-deomposition, let G begraph and let fTx � V (G) : x 2 V (T )g be a set of subsets of V (G) (alled bags)indexed by the nodes of a tree T . The pair (T; fTx : x 2 V (T )g) is a tree-partition ofG if 1. 8 distint nodes x and y of T , Tx \ Ty = ;, and2. 8 edge vw of G, either(i) 9 node x of T with v 2 Tx and w 2 Tx (vw is alled an intra-bag edge), or(ii) 9 edge xy of T with v 2 Tx and w 2 Ty (vw is alled an inter-bag edge).The main property of tree-partitions that has been studied in the literature is themaximumardinality of a bag, alled the width of the tree-partition [11, 51, 85, 31, 32℄.The minimumwidth over all tree-partitions of a graph G is the tree-partition-width21`Series-parallel digraphs' are often de�ned in terms of ertain `series' and `parallel' ompositionoperations. The underlying undireted graph of suh a digraph has tree-width at most two (see [10℄).2Tree-partition-width has also been alled strong tree-width [85, 11℄.



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 5of G, denoted by tpw(G). A graph with bounded degree has bounded tree-partition-width if and only if it has bounded tree-width [32℄. In partiular, for every graph G,Ding and Oporowski [31℄ proved that tpw(G) � 24 tw(G)�(G), and Seese [85℄ provedthat tw(G) � 2 tpw(G)� 1.Theorem 6.1 provides a tree-partition of a k-tree G with additional features be-sides small width. First, the subgraph indued by eah bag is a onneted (k�1)-tree.This allows us to perform indution on k. Seond, in eah non-root bag Tx the setof verties in the parent bag of x with a neighbour in Tx form a lique. This featureis ruial in the intended appliation (Theorem 7.3). Finally the tree-partition haswidth at most maxf1; k(�(G)� 1)g, whih represents a onstant-fator improvementover the above result by Ding and Oporowski [31℄ in the ase of k-trees.2.3. Trak Layouts. Let G be a graph. A olouring of G is a partition fVi :i 2 Ig of V (G), where I is a set of olours, suh that for every edge vw of G, if v 2 Viand w 2 Vj then i 6= j. Eah set Vi is alled a olour lass. A olouring of G with olours is a -olouring, and we say that G is -olourable. The hromati number ofG, denoted by �(G), is the minimum  suh that G is -olourable.If <i is a total order of a olour lass Vi, then we all the pair (Vi; <i) a trak. IffVi : i 2 Ig is a olouring of G, and (Vi; <i) is a trak, for eah olour i 2 I, then wesay f(Vi; <i) : i 2 Ig is a trak assignment of G indexed by I. Note that at times itwill be onvenient to also refer to a olour i 2 I and the olour lass Vi as a trak.The preise meaning will always be lear from the ontext. A t-trak assignment is atrak assignment with t traks.As illustrated in Fig. 2.1, an X-rossing in a trak assignment onsists of twoedges vw and xy suh that v <i x and y <j w, for distint traks Vi and Vj . A t-trakassignment with no X-rossing is alled a t-trak layout. The trak-number of a graphG, denoted by tn(G), is the minimum t suh that G has a t-trak layout.
x

y

v

w

(Vi, <i)

(Vj , <j)Fig. 2.1. An example of an X-rossing in a trak assignment.Let f(Vi; <i) : i 2 Ig be a t-trak layout of a graph G. The span of an edge vw ofG, with respet to a numbering of the traks I = f1; 2; : : : ; tg, is de�ned to be ji� jjwhere v 2 Vi and w 2 Vj.Trak layouts will be entral in most of our proofs. To enable omparison ofour results to those in the literature we now introdue the notion of an `improper'trak layout. A improper olouring of a graph G is simply a partition fVi : i 2 Ig ofV (G). Here adjaent verties may be in the same olour lass. A trak of an improperolouring is de�ned as above. Suppose fVi : i 2 Ig is an improper olouring of G,and (Vi; <i) is a trak, for eah olour i 2 I. An edge with both end-verties in thesame trak is alled an intra-trak edge; otherwise it is alled an inter-trak edge.We say f(Vi; <i) : i 2 Ig is an improper trak assignment of G if, for all intra-trakedges vw 2 E(G) with v 2 Vi and w 2 Vi for some i 2 I, there is no vertex xwith v <i x <i w. That is, adjaent verties in the same trak are onseutive inthat trak. An improper t-trak assignment with no X-rossing is alled an improper



6 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOODt-trak layout3.Lemma 2.2. If a graph G has an improper t-trak layout, then G has a 2t-traklayout.Proof. For every trak Vi of an improper t-trak layout of G, let V 0i be a newtrak. Move every seond vertex from Vi to V 0i , suh that V 0i inherits its total orderfrom the original Vi. Clearly there is no intra-trak edge and no X-rossing. Thus weobtain a 2t-trak layout of G.Hene the trak-number of a graph is at most twie its `improper trak-number'.The following lemma, whih was jointly disovered with Giuseppe Liotta, gives aompelling reason to only onsider proper trak layouts. Similar ideas an be foundin [42, 27℄. Let vw be an edge of a graph G. Let G0 be the graph obtained from Gby adding a new vertex x only adjaent to v and w. We say x is an ear, and G0 isobtained from G by adding an ear to vw.Lemma 2.3. Let G be a lass of graphs losed under the addition of ears (forexample, series-parallel graphs or planar graphs). If every graph in G has an impropert-trak layout for some onstant t, then every graph in G has a (proper) t-trak layout.Proof. For any graph G 2 G, let G0 be the graph obtained from G by adding tears to every edge of G. By assumption, G0 has an improper t-trak layout. Supposethat there is an edge vw of G suh that v and w are in the same trak. None ofthe ears added to vw are on the same trak, as otherwise adjaent verties wouldnot be onseutive in that trak. Thus there is a trak ontaining at least two ofthe ears added to vw. However, this implies that there is an X-rossing, whih is aontradition. Thus the end-verties of every edge of G are in distint traks. Henethe improper t-trak layout of G0 ontains a t-trak layout of G.Lemmata 2.2 and 2.3 imply that only for relatively small lasses of graphs willthe distintion between trak layouts and improper trak layouts be signi�ant. Wetherefore hose to work with the less umbersome notion of a trak layout. Thefollowing theorem summarises our bounds on the trak-number of a graph.Theorem 2.4. Let G be a graph with maximum degree �(G), path-width pw(G),tree-partition-width tpw(G), and tree-width tw(G). The trak-number of G satis�es:(a) tn(G) � pw(G) + 1 � 1 + (tw(G) + 1) logn,(b) tn(G) � 3 tpw(G) � 72�(G) tw(G),() tn(G) � 3 tw(G) � 6(4 tw(G)�3 tw(G)�1)=9.Proof. Part (a) follows from Lemma 3.2, and the fat that pw(G) � (tw(G) +1) logn (see [10℄). Note that tn(G) � 1+(tw(G)+1) logn an be proved diretly usinga separator-based approah similar to that used to prove pw(G) � (tw(G) + 1) logn.Part (b) follows from Lemma 3.3 in x3, and the result of Ding and Oporowski [31℄disussed in x2.2. Part () is Theorem 7.3.2.4. Vertex-Orderings. Let G be a graph. A total order � = (v1; v2; : : : ; vn)of V (G) is alled a vertex-ordering of G. Suppose G is onneted. The depth of avertex vi in � is the graph-theoreti distane between v1 and vi in G. We say � isa breadth-�rst vertex-ordering if for all verties v and w with v <� w, the depth ofv in � is no more than the depth of w in �. Vertex-orderings, and in partiular,vertex-orderings of trees will be used extensively in this paper. Consider a breadth-�rst vertex-ordering � of a tree T suh that verties at depth d � 1 are ordered withrespet to the ordering of verties at depth d�1. In partiular, if v and x are verties3In [34, 35, 93℄ we alled a trak layout an ordered layering with no X-rossing and no intra-layeredges, and an improper trak layout was alled an ordered layering with no X-rossing.



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 7at depth d with respetive parents w and y at depth d� 1 with w <� y then v <� x.Suh a vertex-ordering is alled a lexiographial breadth-�rst vertex-ordering of T ,and is illustrated in Fig. 2.2.
depth 0 depth 1 depth 2 depth 3Fig. 2.2. A lexiographial breadth-�rst vertex-ordering of a tree.2.5. Queue Layouts. A queue layout of a graph G onsists of a vertex-ordering� of G, and a partition of E(G) into queues, suh that no two edges in the same queueare nested with respet to �. That is, there are no edges vw and xy in a single queuewith v <� x <� y <� w. The minimum number of queues in a queue layout of G isalled the queue-number of G, and is denoted by qn(G). A similar onept is that ofa stak layout (or book embedding), whih onsists of a vertex-ordering � of G, and apartition of E(G) into staks (or pages) suh that there are no edges vw and xy ina single stak with v <� x <� w <� y. The minimum number of staks in a staklayout of G is alled the stak-number (or page-number or book-thikness) of G, andis denoted by sn(G). A queue (respetively, stak) layout with k queues (staks) isalled a k-queue (k-stak) layout, and a graph that admits a k-queue (k-stak) layoutis alled a k-queue (k-stak) graph.Heath and Rosenberg [58℄ haraterised 1-queue graphs as the `arhed levelledplanar' graphs, and proved that it is NP-omplete to reognise suh graphs. Thisresult is in ontrast to the situation for stak layouts | 1-stak graphs are preiselythe outerplanar graphs [8℄, whih an be reognised in polynomial time. Heath etal. [54℄ proved that 1-stak graphs are 2-queue graphs (redisovered by Rengarajanand Veni Madhavan [80℄), and that 1-queue graphs are 2-stak graphs.While it is NP-hard to minimise the number of staks in a stak layout given a�xed vertex-ordering [46℄, the analogous problem for queue layouts an be solved asfollows. A k-rainbow in a vertex-ordering � onsists of a mathing fviwi : 1 � i � kgsuh that v1 <� v2 <� � � � <� vk <� wk <� wk�1 <� � � � <� w1, as illustrated inFig. 2.3. Fig. 2.3. A rainbow of �ve edges in a vertex-ordering.A vertex-ordering ontaining a k-rainbow needs at least k queues. A straight-forward appliation of Dilworth's Theorem [30℄ proves the onverse. That is, a �xedvertex-ordering admits a k-queue layout where k is the size of the largest rainbow.(Heath and Rosenberg [58℄ desribe a O(m log logn) time algorithm to ompute thequeue assignment.) Thus determining qn(G) an be viewed as the following vertex-



8 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOODordering problem.Lemma 2.5 ([58℄). The queue-number qn(G) of a graph G is the minimum, takenover all vertex-orderings � of G, of the maximum size of a rainbow in �.Stak and/or queue layouts of k-trees have previously been investigated in [20,80, 45℄. A 1-tree is a 1-queue graph, sine in a lexiographial breadth-�rst vertex-ordering of a tree no two edges are nested (see Fig. 2.2). Chung et al. [20℄ proved thatin a depth-�rst vertex-ordering of a tree no two edges ross. Thus 1-trees are 1-stakgraphs. Rengarajan and Veni Madhavan [80℄ proved that graphs with tree-width atmost two (the series parallel graphs) are 2-stak and 3-queue graphs4. Improper traklayouts are impliit in the work of Heath et al. [54℄ and Rengarajan and Veni Mad-havan [80℄. In x5 we prove the following fundamental relationship between queue andtrak layouts.Theorem 2.6. For every graph G, qn(G) � tn(G) � 1. Moreover, if G is anyproper minor-losed graph family, then G has queue-number qn(G) 2 F(n) if and onlyif G has trak-number tn(G) 2 F(n), where F(n) is any family of funtions losedunder multipliation (suh as O(1) or O(polylogn)).Ganley and Heath [45℄ proved that every graph G has stak-number sn(G) �tw(G) + 1 (using a depth-�rst traversal of a tree-deomposition), and asked whetherqueue-number is bounded by tree-width? One of the prinipal results of this paper isto solve this question in the aÆrmative. Applying Theorems 2.4 and 2.6 we have thefollowing.Theorem 2.7. Let G be a graph with maximum degree �(G), path-width pw(G),tree-partition-width tpw(G), and tree-width tw(G). The queue-number qn(G) satis-�es5:(a) qn(G) � pw(G) � (tw(G) + 1) logn,(b) qn(G) � 3 tpw(G)� 1 � 72�(G) tw(G)� 1,() qn(G) � 3 tw(G) � 6(4 tw(G)�3 tw(G)�1)=9 � 1.A similar upper bound to Theorem 2.7(a) is obtained by Heath and Rosen-berg [58℄, who proved that every graph G has qn(G) � d12bw(G)e, where bw(G)is the band-width of G. In many ases this result is weaker than Theorem 2.7(a)sine pw(G) � bw(G) (see [29℄). More importantly, we have the following orollary ofTheorem 2.7().Corollary 2.8. Queue-number is bounded by tree-width, and hene graphs withbounded tree-width have bounded queue-number.2.6. Three-DimensionalDrawings. A three-dimensional straight-line grid draw-ing of a graph, heneforth alled a three-dimensional drawing, represents the vertiesby distint points inZ3 (alled grid-points), and represents eah edge as a line-segmentbetween its end-verties, suh that edges only interset at ommon end-verties, andan edge only intersets a vertex that is an end-vertex of that edge.In ontrast to the ase in the plane, a folklore result states that every graph hasa three-dimensional drawing. Suh a drawing an be onstruted using the `momenturve' algorithm in whih vertex vi, 1 � i � n, is represented by the grid-point(i; i2; i3). It is easily seen | ompare with Lemma 4.2 | that no two edges ross.(Two edges ross if they interset at some point other than a ommon end-vertex.)4In [35℄ we give a simple proof based on Theorem 6.1 for the result by Rengarajan and Veni Mad-havan [80℄ that every series-parallel graph has a 3-queue layout.5In [93℄ we obtained an alternative proof that qn(G) � pw(G) using the `vertex separationnumber' of a graph (whih equals its path-width), and applying Lemma 2.5 diretly we proved thatqn(G) � 32 tpw(G), and thus qn(G) � 36�(G) tw(G).



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 9Sine every graph has a three-dimensional drawing, we are interested in optimis-ing ertain measures of the aestheti quality of a drawing. If a three-dimensionaldrawing is ontained in an axis-aligned box with side lengths X � 1, Y � 1 and Z � 1,then we speak of an X � Y � Z drawing with volume X � Y � Z and aspet ratiomaxfX;Y; Zg=minfX;Y; Zg. This paper onsiders the problem of produing a three-dimensional drawing of a given graph with small volume, and with small aspet ratioas a seondary riterion.Observe that the drawings produed by the moment urve algorithm have O(n6)volume. Cohen et al. [21℄ improved this bound, by proving that if p is a prime withn < p � 2n, and eah vertex vi is represented by the grid-point (i; i2 mod p; i3 mod p),then there is still no rossing. This onstrution is a generalisation of an analogoustwo-dimensional tehnique due to Erd}os [40℄. Furthermore, Cohen et al. [21℄ provedthat the resulting O(n3) volume bound is asymptotially optimal in the ase of theomplete graph Kn. It is therefore of interest to identify �xed graph parameters thatallow for three-dimensional drawings with small volume.The �rst suh parameter to be studied was the hromati number [17, 75℄. Calam-oneri and Sterbini [17℄ proved that every 4-olourable graph has a three-dimensionaldrawing with O(n2) volume. Generalising this result, Pah et al. [75℄ proved thatgraphs of bounded hromati number have three-dimensional drawings with O(n2)volume, and that this bound is asymptotially optimal for the omplete bipartitegraph with equal sized bipartitions. If p is a suitably hosen prime, the main stepof this algorithm represents the verties in the ith olour lass by grid-points in theset f(i; t; it) : t � i2 (mod p)g. It follows that the volume bound is O(k2n2) fork-olourable graphs.The lower bound of Pah et al. [75℄ for the omplete bipartite graph was gener-alised by Bose et al. [14℄ for all graphs. They proved that every three-dimensionaldrawing with n verties and m edges has volume at least 18 (n + m). In partiular,the maximum number of edges in an X � Y � Z drawing is exatly (2X � 1)(2Y �1)(2Z � 1)�XY Z. For example, graphs admitting three-dimensional drawings withO(n) volume have O(n) edges.The �rst non-trivial O(n) volume bound was established by Felsner et al. [42℄for outerplanar graphs. Their elegant algorithm `wraps' a two-dimensional drawingaround a triangular prism to obtain an improper 3-trak layout (see Lemmata 3.1 and3.4 for more on this method). Poranen [78℄ proved that series-parallel digraphs haveupward three-dimensional drawings with O(n3) volume, and that this bound an beimproved to O(n2) and O(n) in ertain speial ases. Di Giaomo [27℄ proved thatseries-parallel graphs with maximum degree three have three-dimensional drawingswith O(n) volume.In x4 we prove the following intrinsi relationship between three-dimensionaldrawings and trak layouts.Theorem 2.9. Every graph G has a O(tn(G)) � O(tn(G)) � O(n) drawing.Moreover, G has a F(n) � F(n) � O(n) drawing if and only if G has trak-numbertn(G) 2 F(n), where F(n) is a family of funtions losed under multipliation.Of ourse, every graph has an n-trak layout | simply plae a single vertex oneah trak. Thus Theorem 2.9 mathes the O(n3) volume bound disussed in x2.6.In fat, the drawings of Kn produed by our algorithm, with eah vertex in a distinttrak, are idential to those produed by the algorithm of Cohen et al. [21℄.Theorems 2.6 and 2.9 immediately imply the following result, whih redues theproblem of produing a three-dimensional drawing with small volume to that of pro-



10 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOODduing a queue layout of the same graph with few queues.Theorem 2.10. Let G be a proper minor-losed family of graphs, and let F(n)be a family of funtions losed under multipliation. The following are equivalent:(a) every n-vertex graph in G has a F(n) �F(n) �O(n) drawing,(b) G has trak-number tn(G) 2 F(n), and() G has queue-number qn(G) 2 F(n).Graphs with onstant queue-number inlude de Bruijn graphs, FFT and Bene�snetwork graphs [58℄. By Theorem 2.10, these graphs have three-dimensional drawingswith O(n) volume. Applying Theorems 2.4 and 2.9 we have the following result.Theorem 2.11. Let G be a graph with maximum degree �(G), path-width pw(G),tree-partition-width tpw(G), and tree-width tw(G). Then G has a three-dimensionaldrawing with the following dimensions:(a) O(pw(G))� O(pw(G))�O(n), whih is O(tw(G) logn)�O(tw(G) logn)�O(n),(b) O(tpw(G))�O(tpw(G))�O(n), whih is O(�(G) tw(G))�O(�(G) tw(G))�O(n),() O(3 tw(G) � 6(4 tw(G)�3 tw(G)�1)=9)� O(3 tw(G) � 6(4 tw(G)�3 tw(G)�1)=9)� O(n).Most importantly, we have the following orollary of Theorem 2.11().Corollary 2.12. Every graph with bounded tree-width has a three-dimensionaldrawing with O(n) volume.Note that bounded tree-width is not neessary for a graph to have a three-dimensional drawing with O(n) volume. The pn�pn plane grid graph has �(pn)tree-width, and has a pn � pn � 1 drawing with n volume. It also has a 3-traklayout, and thus, by Lemma 4.2, has a O(1)� O(1)� O(n) drawing.Sine a planar graph is 4-olourable, by the results of Calamoneri and Sterbini [17℄and Pah [75℄ disussed above, every planar graph has a three-dimensional drawingwith O(n2) volume. This result also follows from the lassial algorithms of de Frays-seix et al. [23℄ and Shnyder [84℄ for produing O(n) � O(n) plane grid drawings.All of these methods produe O(n)�O(n)�O(1) drawings, whih have �(n) aspetratio. Sine every planar graph G has pw(G) 2 O(pn) [10℄, we have the followingorollary of Theorem 2.11(a).Corollary 2.13. Every planar graph has a three-dimensional drawing withO(n2) volume and �(pn) aspet ratio.This result mathes the above O(n2) volume bounds with an improvement in theaspet ratio by a fator of �(pn). As disussed in x1, it is an open problem whetherevery planar graph has a three-dimensional drawing with O(n) volume. Subsequentto this researh, Dujmovi� and Wood [37℄ proved that graphs exluding a lique minoron a �xed number of verties, suh as planar graphs, have three-dimensional drawingswith O(n3=2) volume, as do graphs with bounded degree.Our �nal result regarding three-dimensional drawings, whih is proved in x4,examines the apparent trade-o� between aspet ratio and volume.Theorem 2.14. For every graph G and for every r, 1 � r � n=tn(G), G has athree-dimensional drawing with O(n3=r2) volume and aspet ratio 2r.3. Trak Layouts. In this setion we desribe a number of methods for produ-ing and manipulating trak layouts. The following result is impliit in the proof byFelsner et al. [42℄ that every outerplanar graph has an improper 3-trak layout.Lemma 3.1 ([42℄). Every tree T has a 3-trak layout.Proof. Root T at an arbitrary node r. Let � be a lexiographial breadth-�rstvertex-ordering of T starting at r, as desribed in x2.4. For i 2 f0; 1; 2g, let Vi be the



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 11set of nodes of T with depth d � i (mod 3) in �. With eah Vi ordered by �, we havea 3-trak assignment of T . Clearly adjaent verties are on distint traks. Sine notwo edges are nested in �, there is no X-rossing (see Fig. 3.1).Fig. 3.1. A 3-trak layout of a tree.Lemma 3.2. Every graph G with path-width pw(G) has trak-number tn(G) �pw(G) + 1.Proof. Let k = pw(G) + 1. It is well known that a G is the subgraph of a k-olourable interval graph [10, 48℄. That is, there is a set of intervals f[`(v); r(v)℄ � R :v 2 V (G)g suh that [`(v); r(v)℄ \ [`(w); r(w)℄ 6= ; for every edge vw of G. Let fVi :1 � i � kg be a k-olouring of G. Consider eah olour lass Vi to be an ordered trak(v1; v2; : : : ; vp), where `(v1) < r(v1) < `(v2) < r(v2) < � � � < `(vp) < r(vp). Supposethere is an X-rossing between edges vw and xy with v; x 2 Vi and w; y 2 Vj for somepair of traks Vi and Vj . Without loss of generality, r(v) < `(x) and r(y) < `(w).Sine vw is an edge, `(w) � r(v). Thus r(y) < `(w) � r(v) < `(x), whih implies thatxy is not an edge of G. This ontradition proves that there is no X-rossing, and Ghas a k-trak layout.Fig. 3.2. A 4-trak layout of a 4-olourable interval graph.The next lemma uses a tree-partition to onstrut a trak layout.Lemma 3.3. Every graph G with maximum degree �(G), tree-width tw(G), andtree-partition-width tpw(G), has trak-number tn(G) � 3 tpw(G) � 72�(G)tw(G).Proof. Let (T; fTx : x 2 V (T )g) be a tree-partition of G with width tpw(G). ByLemma 3.1, T has a 3-trak layout. Replae eah trak by tpw(G) `sub-traks', andfor eah node x in T , plae the verties in bag Tx on the sub-traks replaing the trakontaining x, with at most one vertex in Tx in a single trak. For all nodes x and yof T , if x < y in a single trak of the 3-trak layout of T , then for all verties v 2 Txand w 2 Ty, v < w whenever v and w are assigned to the same trak. There is noX-rossing, sine in the trak layout of T , adjaent nodes are on distint traks andthere is no X-rossing. Thus we have a trak layout of G. The number of traks is3 tpw(G), whih is at most 72�(G)tw(G) by the theorem of Ding and Oporowski [31℄disussed in x2.2.In the remainder of this setion, we prove two results that show how trak layoutsan be manipulated without introduing an X-rossing. The �rst is a generalisation



12 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOODof the `wrapping' algorithm of Felsner et al. [42℄, who impliitly proved the ase s = 1.Lemma 3.4. If a graph G has an (improper) trak layout f(Vi; <i) : 1 � i � tgwith maximum edge span s, then G has an (improper) (2s+ 1)-trak layout.Proof. Let ` = 2s + 1. Construt an `-trak assignment of G by merging thetraks fVi : i � j (mod t)g for eah j, 0 � j � t � 1, with verties in V� appearingbefore verties in V� in the new trak j, for all �; � � j (mod t) with � < �. Thegiven order of eah Vi is preserved in the new traks. It remains to prove that thereis no X-rossing. Consider two edges vw and xy. Let i1 and i2, 1 � i1 < i2 � t, bethe minimum and maximum traks ontaining v, w, x or y in the given t-trak layoutof G.First onsider the ase that i2 � i1 > 2s. Then without loss of generality v is intrak i2 and y is in trak i1. Thus w is in a greater trak than x, and even if x (ory) appear on the same trak as v (or w) in the new `-trak assignment, x (or y) willbe to the left of v (or w). Thus these edges do not form an X-rossing in the `-trakassignment. Otherwise i2 � i1 � 2s. Thus any two of v, w, x or y will appear onthe same trak in the `-trak assignment if and only if they are on the same trak inthe given t-trak layout (sine ` > 2s). Hene the only way for these four verties toappear on exatly two traks in the `-trak assignment is if they were on exatly twolayers in the given t-trak layout, in whih ase, by assumption vw and xy do notform an X-rossing. Therefore there is no X-rossing, and we have an `-trak layoutof G.The next result shows that the number of verties in di�erent traks of a traklayout an be balaned without introduing an X-rossing. The proof is based on anidea due to Pah et al. [75℄ for balaning the size of the olour lasses in a olouring.Lemma 3.5. If a graph G has an (improper) t-trak layout, then for every t0 > 0,G has an (improper) bt + t0-trak layout with at most d nt0 e verties in eah trak.Proof. For eah trak with q > d nt0 e verties, replae it by dq=d nt0 ee `sub-traks'eah with exatly d nt0 e verties exept for at most one sub-trak with q mod d nt0 everties, suh that the verties in eah sub-trak are onseutive in the original trak,and the original order is maintained. There is no X-rossing between sub-traks fromthe same original trak as there is at most one edge between suh sub-traks. Thereis no X-rossing between sub-traks from di�erent original traks as otherwise therewould be an X-rossing in the original. There are at most bt0 traks with d nt0 e verties.Sine there are at most t traks with less than d nt0 e verties, one for eah of the originaltraks, there is a total of at most bt+ t0 traks.4. Three-Dimensional Drawings and Trak Layouts. In this setion weprove Theorem 2.9, whih states that three-dimensional drawings with small volumeare losely related to trak layouts with few traks.Lemma 4.1. If a graph G has an A � B � C drawing, then G has an improperAB-trak layout, and G has a 2AB-trak layout.Proof. Let Vx;y be the set of verties of G with an X-oordinate of x and a Y -oordinate of y, where without loss of generality 1 � x � A and 1 � y � Y . With eahset Vx;y ordered by the Z-oordinates of its elements, fVx;y : 1 � x � A; 1 � y � Y g isan improper AB-trak assignment. There is no X-rossing, as otherwise there wouldbe a rossing in the original drawing, and hene we have an improper AB-trak layout.By Lemma 2.2, G has a 2AB-trak layout.We now prove the onverse of Lemma 4.1. The proof is inspired by the gener-alisations of the moment urve algorithm by Cohen et al. [21℄ and Pah et al. [75℄,desribed in x2.6. Loosely speaking, Cohen et al. [21℄ allow three `free' dimensions,



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 13whereas Pah et al. [75℄ use the assignment of verties to olour lasses to `�x' onedimension with two dimensions free. We use an assignment of verties to traks to�x two dimensions with one dimension free. The style of three-dimensional drawingprodued by our algorithm, where traks are drawn vertially, is illustrated in Fig. 4.1.
Fig. 4.1. A three-dimensional drawing produed from a trak layout.Lemma 4.2. If a graph G has a (possibly) improper k-trak layout, then G hasa k � 2k � 2k � n0 three-dimensional drawing, where n0 is the maximum number ofverties in a trak.Proof. Suppose f(Vi; <i) : 1 � i � kg is the given improper k-trak layout. Letp be the smallest prime suh that p > k. Then p � 2k by Bertrand's postulate. Foreah i, 1 � i � k, represent the verties in Vi by the grid-pointsf(i; i2 mod p; t) : 1 � t � p � jVij; t � i3 (mod p)g ;suh that the Z-oordinates respet the given total order <i. Draw eah edge as aline-segment between its end-verties. Suppose two edges e and e0 ross suh thattheir end-verties are at distint points (i�; i2� mod p; t�), 1 � � � 4. Then thesepoints are oplanar, and if M is the matrixM = 0BB�1 i1 i21 mod p t11 i2 i22 mod p t21 i3 i23 mod p t31 i4 i24 mod p t41CCAthen the determinant det(M ) = 0. We proeed by onsidering the number of distinttraks N = jfi1; i2; i3; i4gj.� N = 1: By the de�nition of an improper trak layout, e and e0 do not ross.� N = 2: If either edge is intra-trak then e and e0 do not ross. Otherwiseneither edge is intra-trak, and sine there is no X-rossing, e and e0 do not ross.� N = 3: Without loss of generality i1 = i2. It follows that det(M ) = (t2 � t1) �det(M 0), where M 0 = 0�1 i2 i22 mod p1 i3 i23 mod p1 i4 i24 mod p1A :



14 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOODSine t1 6= t2, det(M 0) = 0. However, M 0 is a Vandermonde matrix modulo p, andthus det(M 0) � (i2 � i3)(i2 � i4)(i3 � i4) (mod p);whih is non-zero sine i2, i3 and i4 are distint and p is a prime, a ontradition.� N = 4: Let M 0 be the matrix obtained from M by taking eah entry modulop. Then det(M 0) = 0. Sine t� � i3� (mod p), 1 � � � 4,M 0 � 0BB�1 i1 i21 i311 i2 i22 i321 i3 i23 i331 i4 i24 i341CCA (mod p) :Sine eah i� < p, M 0 is a Vandermonde matrix modulo p, and thusdet(M 0) � (i1 � i2)(i1 � i3)(i1 � i4)(i2 � i3)(i2 � i4)(i3 � i4) (mod p);whih is non-zero sine i� 6= i� and p is a prime. This ontradition proves there areno edge rossings. The produed drawing is at most k � 2k� 2k � n0.Proof of Theorem 2.9. Let F(n) be a family of funtions losed under mul-tipliation. Let G be an n-vertex graph with a t-trak layout, where t 2 F(n). ByLemma 3.5 with t0 = t, G has a 2t-trak layout with at most dnt e verties in eah trak.By Lemma 4.2, G has a 2t� 4t� 4t � dnt e drawing, whih is O(t)�O(t)�O(n). Con-versely, suppose an n-vertex graph G has a A�B�O(n) drawing, where A;B 2 F(n).By Lemma 4.1, G has a trak layout with 2AB 2 F(n) traks.Proof of Theorem 2.14. Let t = tn(G), and suppose 1 � r � n=t. By Lemma 3.5with t0 = nr , G has a bnr + t-trak layout with at most r verties in eah trak. Byassumption t � nr , and the number of traks is at most 2nr . By Lemma 4.2, G has a2nr � 4nr � 4n three-dimensional drawing, whih has volume 32n3=r2 and aspet ratio2r. 5. Queue Layouts and Trak Layouts. In this setion we prove Theorem 2.6,whih states that trak and queue layouts are losely related. Our �rst lemma high-lights this fat | its proof follows immediately from the de�nitions (see Fig. 5.1).Lemma 5.1. A bipartite graph G = (A;B;E) has a 2-trak layout with traks Aand B if and only if G has a 1-queue layout suh that in the orresponding vertex-ordering, the verties in A appear before the verties in B.Fig. 5.1. A 2-trak layout and a 1-queue layout of a bipartite graph.We now show that a queue layout an be obtained from a trak layout. Thisresult an be viewed as a generalisation of the onstrution of a 2-queue layout of anouterplanar graph by Heath et al. [54℄ and Rengarajan and Veni Madhavan [80℄ (withs = 1).Lemma 5.2. If a graph G has a (possibly) improper t-trak layout f(Vi; <i) : 1 �i � tg with maximum edge span s (� t�1), then qn(G) � s+1, and if the given traklayout is not improper, then qn(G) � s.



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 15Proof. First suppose that there are no intra-trak edges. Let � be the vertexordering (V1; V2; : : : ; Vt) of G. Let E� be the set of edges with span � in the giventrak layout. As in Lemma 5.1, two edges from the same pair of traks are nestedin � if and only if they form an X-rossing in the trak layout. Sine no two edgesform an X-rossing in the trak layout, no two edges that are between the same pairof traks are nested in �. If two edges not from the same pair of traks have the samespan then they are not nested in �. (This idea is due to Heath and Rosenberg [58℄.)Thus no two edges are nested in eah E�, and we have an s-queue layout of G. Ifthere are intra-trak edges, then they all form one additional queue in �.We now set out to prove the onverse of Lemma 5.2. It is well known that thesubgraph indued by any two traks of a trak layout is a forest of aterpillars [52℄.A olouring of a graph is ayli if every bihromati subgraph is a forest; that is,every yle reeives at least three distint olours. Thus a t-trak layout of a graphG de�nes an ayli t-olouring of G. The minimum number of olours in an ayliolouring of G is the ayli hromati number of G, denoted by �a(G). Thus,�a(G) � tn(G) :Ayli olourings were introdued by Gr�unbaum [49℄, who proved that everyplanar graph is aylially 9-olourable. This result was steadily improved [1, 65, 68℄until Borodin [12℄ proved that every planar graph is aylially 5-olourable, whih isthe best possible bound. Many other graph families have bounded ayli hromatinumber, inluding graphs embeddable on a �xed surfae [2, 3, 6℄, 1-planar graphs[13℄, graphs with bounded maximumdegree [5℄, and graphs with bounded tree-width.A folklore result states that �a(G) � tw(G) + 1 (see [43℄). More generally, Ne�set�riland Ossona de Mendez [71℄ proved that every proper minor-losed graph family hasbounded ayli hromati number. In fat, Ne�set�ril and Ossona de Mendez [71℄proved that every graph G has a star k-olouring (every bihromati subgraph is aforest of stars), where k is a (small) quadrati funtion of the maximum hromatinumber of a minor of G.Lemma 5.3. Every graph G with ayli hromati number �a(G) �  and queue-number qn(G) � q has trak-number tn(G) �  (2q)�1.Proof. Let fVi : 1 � i � g be an ayli olouring of G. Let � be the vertex-ordering in a q-queue layout of G. Consider an edge vw with v 2 Vi, w 2 Vj , andi < j. If v <� w then vw is forward, and if w <� v then vw is bakward. Consider theedges to be oloured with 2q olours, where eah olour lass onsists of the forwardedges in a single queue, or the bakward edges in a single queue.Alon andMarshall [4℄ proved that given a (not neessarily proper) edge k-olouringof a graph G, any ayli -olouring of G an be re�ned to a k�1-olouring so thatthe edges between any pair of (vertex) olour lasses are monohromati, and eah(vertex) olour lass is ontained in some original olour lass. (Ne�set�ril and Ras-paud [72℄ generalised this result for oloured mixed graphs.) Apply this result withthe given ayli -olouring of G and the edge 2q-olouring disussed above. Considerthe resulting (2q)�1 olour lasses to be traks ordered by �. The edges betweenany two traks are from a single queue, and are all forward or all bakward.Suppose that there are edges vw and xy that form an X-rossing. Sine eah trakis a subset of some Vi, we an assume that v; x 2 Vi, w; y 2 Vj and i < j. Supposethat vw and xy are both forward. The ase in whih vw and xy are both bakwardis symmetri. Thus v <� w and x <� y. Sine vw and xy form an X-rossing, andthe traks are ordered by �, we have v <� x and y <� w. Hene v <� x <� y <� w.



16 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOODThat is, vw and xy are nested. This is the desired ontradition, sine edges betweenany pair of traks are from a single queue. Thus we have a (2q)�1-trak layout ofG. Proof of Theorem 2.6. Let F(n) be a family of funtions losed under mul-tipliation. Let G be an n-vertex graph from a proper minor-losed graph familyG. First, suppose that G has a t-trak layout, where t 2 F(n). By Lemma 5.2,G has queue-number qn(G) � t � 1 2 F(n). Conversely, suppose G has queue-number qn(G) = q 2 F(n). By the above-mentioned result of Ne�set�ril and Ossonade Mendez [71℄, G has bounded ayli hromati number �a(G) �  2 O(1). ByLemma 5.3, G has a t-trak layout, where t � (2q)�1 2 F(n).6. Tree-Partitions of k-Trees. In this setion we prove our theorem regardingtree-partitions of k-trees mentioned in x2.2. This result forms the ornerstone of theproof of Theorem 7.3.Theorem 6.1. Let G be a k-tree with maximum degree �. Then G has a rootedtree-partition (T; fTx : x 2 V (T )g) suh that for all nodes x of T ,(a) if x is a non-root node of T and y is the parent node of x, then the set ofverties in Ty with a neighbour in Tx form a lique Cx of G, and(b) the indued subgraph G[Tx℄ is a onneted (k � 1)-tree.Furthermore the width of (T; fTx : x 2 V (T )g) is at most maxf1; k(�� 1)g.Proof. We assume G is onneted, sine if G is not onneted then a tree-partitionof G that satis�es the theorem an be determined by adding a new root node with anempty bag, adjaent to the root node of a tree-partition of eah onneted omponentof G.It is well-known that G is a onneted k-tree if and only if G has a vertex-ordering� = (v1; v2; : : : ; vn), suh that for all i 2 f1; 2; : : :; ng,(i) if Gi is the indued subgraph G[fv1; v2; : : : ; vig℄, then Gi is onneted andthe vertex-ordering of Gi indued by � is a breadth-�rst vertex-ordering of Gi, and(ii) the neighbours of vi in Gi form a lique Ci = fvj : vivj 2 E(G); j < ig with1 � jCij � k (unless i = 1 in whih ase Ci = ;).In the language of hordal graphs, � is a (reverse) `perfet elimination' vertex-ordering and an be determined, for example, by the Lex-BFS algorithm by Rose etal. [82℄ (also see [48℄). Moreover, we an hoose v1 to be any vertex in G.Let r be a vertex of minimum degree6 in G. Then deg(r) � k. Let � =(v1; v2; : : : ; vn) be a vertex-ordering of G with v1 = r, and satisfying (i) and (ii).By (i), the depth of eah vertex vi in � is the same as the depth of vi in the vertex-ordering of Gj indued by �, for all j � i. We therefore simply speak of the depth ofvi. Let Vd be the set of verties of G at depth d.Claim 1. For all d � 1, and for every onneted omponent Z of G[Vd℄, the setof verties at depth d� 1 with a neighbour in Z form a lique of G.Proof. The laim in trivial for d = 1 or d = 2. Now suppose that d � 3. Assumefor the sake of ontradition that there are two non-adjaent verties x and y at depthd � 1, suh that x has a neighbour in Z and y has a neighbour in Z. Let P1 be ashortest path between x and y with its interior verties in Z. Let P2 be a shortestpath between x and y with its interior verties at depth at most d � 2. Sine theinterior verties of P1 are at depth d, there is no edge between an interior vertex of6We hoose r to have minimum degree to obtain a slightly improved bound on the width of thetree-partition. If we hoose r to be an arbitrary vertex then the width is at most maxf1;�; k(��1)g,and the remainder of Theorem 6.1 holds.



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 17P1 and an interior vertex of P2. Thus P1 [ P2 is a hordless yle of length at leastfour, ontraditing the fat that G is hordal (by Lemma 2.1).De�ne a graph T and a partition fTx : x 2 V (T )g of V (G) indexed by the nodesof T as follows. There is one node x in T for every onneted omponent of eahG[Vd℄, whose bag Tx is the vertex-set of the orresponding onneted omponent. Wesay x and Tx are at depth d. Clearly a vertex in a depth-d bag is also at depth d. The(unique) node of T at depth zero is alled the root node. Let two nodes x and y of Tbe onneted by an edge if there is an edge vw of G with v 2 Tx and w 2 Ty. Thus(T; fTx : x 2 V (T )g) is a `graph-partition'.We now prove that in fat T is a tree. First observe that T is onneted sine G isonneted. By de�nition, nodes of T at the same depth d are not adjaent. Moreovernodes of T an be adjaent only if their depths di�er by one. Thus T has a yleonly if there is a node x in T at some depth d, suh that x has at least two distintneighbours in T at depth d� 1. However this is impossible sine by Claim 1, the setof verties at depth d�1 with a neighbour in Tx form a lique (whih we all Cx), andare hene in a single bag at depth d � 1. Thus T is a tree and (T; fTx : x 2 V (T )g)is a tree-partition of G (see Fig. 6.1).
V0

V1

V2

V3 Fig. 6.1. Illustration for Theorem 6.1 in the ase of k = 3.We now prove that eah bag Tx indues a onneted (k � 1)-tree. This is truefor the root node whih only has one vertex. Suppose x is a non-root node of T atdepth d. Eah vertex in Tx has at least one neighbour at depth d � 1. Thus in thevertex-ordering of Tx indued by �, eah vertex vi 2 Tx has at most k� 1 neighboursvj 2 Tx with j < i. Thus the vertex-ordering of Tx indued by � satis�es (i) and (ii)for k � 1, and G[Tx℄ is (k � 1)-tree. By de�nition eah G[Tx℄ is onneted.Finally, onsider the ardinality of a bag in T . We laim that eah bag ontainsat most maxf1; k(�� 1)g verties. The root bag has one vertex. Let x be a non-root



18 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOODnode of T with parent node y. Suppose y is the root node. Then Ty = frg, and thusjTxj � deg(r) � k � k(� � 1) assuming � � 2. If � � 1 then all bags have onevertex. Now assume y is a non-root node. The set of verties in Ty with a neighbourin Tx forms the lique Cx. Let k0 = jCxj. Thus k0 � 1, and sine Cx � Ty and G[Ty℄is a (k � 1)-tree, k0 � k. A vertex v 2 Cx has k0 � 1 neighbours in Cx and at leastone neighbour in the parent bag of y. Thus v has at most � � k0 neighbours in Tx.Hene the number of edges between Cx and Tx is at most k0(�� k0). Every vertex inTx is adjaent to a vertex in Cx. Thus jTxj � k0(�� k0) � k(�� 1). This ompletesthe proof.7. Tree-Width and Trak Layouts. In this setion we prove that trak-number is bounded by tree-width. Let f(Vi; <i) : i 2 Ig be a trak layout of agraph G. We say a lique C of G overs the set of traks fi 2 I : C \ Vi 6= ;g. LetS be a set of liques of G. Suppose there exists a total order � on S suh that forall liques C1; C2 2 S, if there exists a trak i 2 I, and verties v 2 Vi \ C1 andw 2 Vi\C2 with v <i w, then C1 � C2. In this ase, we say � is nie, and S is nielyordered by the trak layout.Lemma 7.1. Let L � I be a set of traks in a trak layout f(Vi; <i) : i 2 Ig of agraph G. If S is a set of liques, eah of whih overs L, then S is niely ordered bythe given trak layout.Proof. De�ne a relation � on S as follows. For every pair of liques C1; C2 2 S,de�ne C1 � C2 if C1 = C2 or there exists a trak i 2 L and verties v 2 C1 andw 2 C2 with v <i w. Clearly all liques in S are omparable.Suppose that � is not antisymmetri; that is, there exists distint liques C1; C2 2S, distint traks i; j 2 L, and distint verties v1; w1 2 C1 and v2; w2 2 C2, suhthat v1 <i v2 and w2 <j w1. Sine C1 and C2 are liques, the edges v1w1 and v2w2form an X-rossing, whih is a ontradition. Thus � is antisymmetri.We laim that � is transitive. Suppose there exist liques C1; C2; C3 2 S suhthat C1 � C2 and C2 � C3. We an assume that C1, C2 and C3 are pairwise distint.Thus there are verties u1 2 C1, u2 2 C2, v2 2 C2 and v3 2 C3, suh that u1 <i u2and v2 <j v3 for some pair of (not neessarily distint) traks i; j 2 L. Sine C3 hasa vertex in Vi and sine C3 6� C2, there is a vertex u3 2 C3 with u2 �i u3. Thusu1 <i u3, whih implies that C1 � C3. Thus � is transitive.Hene � is a total order on S, whih by de�nition is nie.Consider the problem of partitioning the liques of a graph into sets suh thateah set is niely ordered by a given trak layout. The following immediate orollaryof Lemma 7.1 says that there exists suh a partition where the number of sets doesnot depend upon the size of the graph.Corollary 7.2. Let G be a graph with maximum lique size k. Given a t-traklayout of G, there is a partition of the liques of G into Pki=1 �ti� sets, eah of whihis niely ordered by the given trak layout.We do not atually use Corollary 7.2 in the following result, but the idea ofpartitioning the liques into niely ordered sets is entral to its proof.Theorem 7.3. For every integer k � 0, there is a onstant tk = 3k � 6(4k�3k�1)=9suh that every graph G with tree-width tw(G) � k has a tk-trak layout.Proof. If the input graph G is not a k-tree then add edges to G to obtain a k-treeontaining G as a subgraph. It is well-known that a graph with tree-width at mostk is a spanning subgraph of a k-tree. These extra edges an be deleted one we aredone. We proeed by indution on k with the following hypothesis:For all k 2 N, there exists a onstant sk, and sets Ik and Sk suh that



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 191. jIkj = tk and jSkj = sk,2. eah element of Sk is a subset of Ik, and3. every k-tree G has a tk-trak layout indexed by Ik, suh that for every liqueC of G, the set of traks that C overs is in Sk.Consider the base ase with k = 0. A 0-tree G has no edges and thus has a 1-traklayout. Let I0 = f1g and order V1 = V (G) arbitrarily. Thus t0 = 1, s0 = 1, andS0 = ff1gg satisfy the hypothesis for every 0-tree. Now suppose the result holds fork � 1, and G is a k-tree.Let (T; fTx : x 2 V (T )g) be a tree-partition of G desribed in Theorem 6.1, whereT is rooted at r. Eah indued subgraph G[Tx℄ is a (k � 1)-tree. Thus, by indution,there are sets Ik�1 and Sk�1 with jIk�1j = tk�1 and jSk�1j = sk�1, suh that forevery node x of T , the indued subgraph G[Tx℄ has a tk�1-trak layout indexed byIk�1. For every lique C of G[Tx℄, if C overs L � Ik�1 then L 2 Sk�1. AssumeIk�1 = f1; 2; : : : ; tk�1g and Sk�1 = fX1; X2; : : : ; Xsk�1g. By Theorem 6.1, for eahnon-root node x of T , if p is the parent node of x, then the set of verties in Tp witha neighbour in Tx form a lique Cx. Let �(x) = i where Cx overs Xi. For the rootnode r of T , let �(r) = 1.Trak layout of T . To onstrut a trak layout of G we �rst onstrut a traklayout of the tree T indexed by the set f(d; i) : d � 0; 1 � i � sk�1g, where the trakLd;i onsists of nodes x of T at depth d with �(x) = i. Here the depth of a node xis the distane in T from the root node r to x. We order the nodes of T within thetraks by inreasing depth. There is only one node at depth d = 0. Suppose we havedetermined the orders of the nodes up to depth d� 1 for some d � 1.Let i 2 f1; 2; : : :; sk�1g. The nodes in Ld;i are ordered primarily with respet tothe relative positions of their parent nodes (at depth d� 1). More preisely, let �(x)denote the parent node of eah node x 2 Ld;i. For all nodes x and y in Ld;i, if �(x)and �(y) are in the same trak and �(x) < �(y) in that trak, then x < y in Ld;i. Forx and y with �(x) and �(y) on distint traks, the relative order of x and y is notimportant. It remains to speify the order of nodes in Ld;i with a ommon parent.Suppose P is a set of nodes in Ld;i with a ommonparent node p. By onstrution,for every node x 2 P , the parent lique Cx overs Xi in the trak layout of G[Tp℄. ByLemma 7.1 the liques fCx : x 2 Pg are niely ordered by the trak layout of G[Tp℄.Let the order of P in trak Ld;i be spei�ed by a nie ordering of fCx : x 2 Pg, asillustrated in Fig. 7.1.This onstrution de�nes a partial order on the nodes in trak Ld;i, whih an bearbitrarily extended to a total order. Hene we have a trak assignment of T . Sinethe nodes in eah trak are ordered primarily with respet to the relative positions oftheir parent nodes in the previous traks, there is no X-rossing, and hene we havea trak layout of T .Trak layout of G. To onstrut a trak assignment of G from the trak layoutof T , replae eah trak Ld;i by tk�1 `sub-traks', and for eah node x of T , insertthe trak layout of G[Tx℄ in plae of x on the sub-traks orresponding to the trakontaining x in the trak layout of T . More formally, the trak layout of G is indexedby the set f(d; i; j) : d � 0; 1 � i � sk�1; 1 � j � tk�1g :Eah trak Vd;i;j onsists of those verties v of G suh that, if Tx is the bag ontainingv, then x is at depth d in T , �(x) = i, and v is in trak j in the trak layout of G[Tx℄.
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Ld,1

Ld,2
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Ld,sk−1Fig. 7.1. Trak layout of nodes with a ommon parent p.If x and y are distint nodes of T with x < y in Ld;i, then v < w in Vd;i;j, for allverties v 2 Tx and w 2 Ty in trak j. If v and w are verties of G in trak j in bagTx at depth d, then the relative order of v and w in Vd;�(x);j is the same as in thetrak layout of G[Tx℄.Clearly adjaent verties of G are in distint traks. Thus we have de�ned a trakassignment of G. We laim there is no X-rossing. Clearly an intra-bag edge of Gis not in an X-rossing with an edge not in the same bag. By indution, there is noX-rossing between intra-bag edges in a ommon bag. Sine there is no X-rossing inthe trak layout of T , inter-bag edges of G whih are mapped to edges of T withouta ommon parent node, are not involved in an X-rossing.Consider a parent node p in T . For eah hild node x of p, the set of vertiesin Tp adjaent to a vertex in Tx forms the lique Cx. Thus there is no X-rossingbetween a pair of edges both from Cx to Tx, sine the verties of Cx are on distinttraks. Consider two hild nodes x and y of p. For there to be an X-rossing betweenan edge from Tp to Tx and an edge from Tp to Ty , the nodes x and y must be on thesame trak in the trak layout of T . Suppose x < y in this trak. By onstrution, Cxand Cy over the same set of traks, and Cx � Cy in the orresponding nie ordering.Thus for any trak ontaining verties v 2 Cx and w 2 Cy, v � w in that trak. Sineall the verties in Tx are to the left of the verties in Ty (in a ommon trak), there isno X-rossing between an edge from Tp to Tx and an edge from Tp to Ty. Thereforethere is no X-rossing, and hene we have a trak layout of G.Wrapped trak layout of G. As illustrated in Fig. 7.2, we now `wrap' thetrak layout of G in the spirit of Lemma 3.1. In partiular, de�ne a trak assignmentof G indexed by�(d0; i; j) : d0 2 f0; 1; 2g; 1� i � sk�1; 1 � j � tk�1	 ;where eah trak Wd0 ;i;j = [ fVd;i;j : d � d0 (mod 3)g :If v 2 Vd;i;j and w 2 Vd+3;i;j then v < w in the order of Wd0 ;i;j (where d0 = d mod 3).The order of eah Vd;i;j is preserved in Wd0 ;i;j. The set of traks fWd0;i;j : d0 2f0; 1; 2g; 1� i � sk�1; 1 � j � tk�1g forms a trak assignment of G.



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 21For every edge vw of G, the depths of the bags in T ontaining v and w di�er byat most one. Thus in the wrapped trak assignment of G, adjaent verties remainon distint traks, and there is no X-rossing. The number of traks is 3 � sk�1 � tk�1.Every lique C of G is either ontained in a single bag of the tree-partition or isontained in two adjaent bags. LetS0 = �f(d0; i; h) : h 2 Xjg : d0 2 f0; 1; 2g; 1� i; j � sk�1	 :For every lique C of G ontained in a single bag, the set of traks ontaining C is inS0. Let S00 = �f(d0; i; `) : ` 2 Xjg [ f((d0 + 1) mod 3; p; h) : h 2 Xqg :d0 2 f0; 1; 2g; 1� i; j; p; q � sk�1	 :For every lique C of G ontained in two bags, the set of traks ontaining C is in S 00.Observe that S 0[S 00 is independent of G. Hene Sk = S 0[S 00 satis�es the hypothesisfor k.Now jS 0j = 3s2k�1 and jS 00j = 3s4k�1, and thus jS 0 [ S 00j = 3s2k�1(s2k�1 + 1).Therefore any solution to the following set of reurrenes satis�es the theorem:s0 � 1; t0 � 1; sk � 3s2k�1(s2k�1 + 1); tk � 3sk�1 � tk�1 : (7.1)We laim that sk = 6(4k�1)=3 and tk = 3k � 6(4k�3k�1)=9is a solution to (7.1). Observe that s0 = 1 and t0 = 1. Now3s2k�1(s2k�1 + 1) � 6s4k�1 ;and 6(6(4k�1�1)=3)4 = 61+4(4k�1�1)=3 = 6(4k�1)=3 = sk :Thus the reurrene for sk is satis�ed. Now3 � sk�1 � tk�1 = 3 � 6(4k�1�1)=3 � 3k�1 � 6(4k�1�3(k�1)�1)=9= 3k � 6(3�4k�1�3+4k�1�3k+3�1)=9= 3k � 6(4k�3k�1)=9= tk :Thus the reurrene for tk is satis�ed. This ompletes the proof.In the proof of Theorem 7.3 we have made little e�ort to redue the bound on tk,beyond that it is a doubly exponential funtion of k. In [35℄ we desribe a numberof re�nements that result in improved bounds on tk. One suh re�nement uses stritk-trees. From an algorithmi point of view, the disadvantage of using strit k-trees isthat at eah reursive step, extra edges must be added to enlarge the graph from apartial strit k-tree into a strit k-tree, whereas when using (non-strit) k-trees, extraedges need only be added at the beginning of the algorithm.For small values of k, muh-improved results an be obtained. For example, weprove that every series-parallel graph (that is, with tree-width at most two) has an



22 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOOD
sk

b

b

b

2

1

b

b

b

b

b

b

sk

b

b

b

2

1

b

b

b

b

b

b

sk

b

b

b

2

1

b

b

b

b

b

bFig. 7.2. Wrapped trak layout in Theorem 7.3.18-trak layout [35℄, whereas t2 = 54. This bound has reently been improved to 15by Di Giaomo et al. [26℄. Their method is based on Theorems 6.1 and 7.3, and inthe general ase, still gives a doubly exponential upper bound on the trak-numberof graphs with tree-width k. For other partiular lasses of graphs, Di Giaomo andMeijer [25, 28℄ reently improved the onstants in our results.Our doubly exponential upper bound is probably not best possible. Di Giaomoet al. [26℄ onstruted graphs with tree-width k and trak-number at least 2k+1. Thefollowing onstrution establishes a quadrati lower bound. It is similar to a graphdue to Albertson [3℄, whih gives a tight lower bound on the star hromati numberof graphs with tree-width k.Theorem 7.4. For all k � 0, there is a graph Gk with tree-width at most k andtrak-number tn(Gk) = 12(k + 1)(k + 2).Proof. Let G0 = K1. Obviously G0 has tree-width 0. Construt Gk from Gk�1 asfollows. Start with a k-lique fv1; v2; : : : ; vkg. Let n = 2(12 (k+ 1)(k+2)� 1� k)+ 1.Add n verties fw1; w2; : : : ; wng eah adjaent to every vi. Let H1;H2; : : : ;Hn beopies of Gk�1. For all 1 � j � n, add an edge between wj and eah vertex of Hj. Itis easily seen that from a tree deomposition of Gk�1 of width k�1, we an onstruta tree deomposition of Gk of width k. Thus Gk has tree-width at most k.To prove that tn(Gk) � 12(k + 1)(k + 2), we proeed by indution on k � 0.Obviously tn(G0) = 1. Suppose that tn(Gk�1) � 12k(k + 1), but tn(Gk) � 12(k +1)(k + 2) � 1. Sine fv1; v2; : : : ; vkg is a lique, we an assume that vi is in trak i.Sine eah vertex wj is adjaent to eah vi, no wj is in traks f1; 2; : : :; kg. There are12 (k + 1)(k + 2) � 1 � k remaining traks. Sine n is more than twie this number,there are at least three wj verties in a single trak. Without loss of generality,w1 < w2 < w3 in trak k + 1. No vertex x of H2 is in trak i 2 f1; 2; : : : ; kg, asotherwise xw2 would form an X-rossing with viw1 or viw3. No vertex x of H2 isin trak k + 1, sine x and w2 are adjaent, and w2 is in trak k + 1. Thus all
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HnFig. 7.3. The graph Gk .the verties of H2 are in traks fk + 2; k + 3; : : : ; 12 (k + 1)(k + 2) � 1g. There are12 (k + 1)(k + 2) � 1 � (k + 1) = 12k(k + 1) � 1 suh traks. This ontradits theassumption that tn(Gk�1) � 12k(k + 1). Therefore tn(Gk) � 12(k + 1)(k + 2).It remains to prove that tn(Gk) � 12(k+ 1)(k+ 2). Suppose we have a 12k(k+ 1)-trak layout of Gk�1. Thus eah Hj has a 12k(k+ 1)-trak layout. Put eah vertex viof Gk in trak i. Put the verties fw1; w2; : : : ; wng in trak k + 1 in this order. Putthe trak layout of eah Hj in traks k + 2; k+ 3; : : : ; 12 (k + 1)(k + 2), suh that theverties of Hj preede the verties of Hj+1. Clearly there are no X-rossings.Also note that Theorem 7.4 (for k � 2) an be extended using the proof tehniqueof Lemma 2.3 to give the same lower bound for improper trak layouts.8. Open Problems.1. (In the onferene version of their paper) Felsner [42℄ asked whether everyplanar graph has a three-dimensional drawing with O(n) volume? By Theorem 2.9,this question has an aÆrmative answer if every planar graph has O(1) trak-number.Whether every planar graph has O(1) trak-number is an open problem due to H.de Fraysseix [private ommuniation, 2000℄, and by Theorem 2.6, is equivalent to thefollowing question.2. Heath et al. [58, 54℄ asked whether every planar graph has O(1) queue-number? The best known upper bound on the queue-number of a planar graph isO(pn). In general, Dujmovi� and Wood [38℄ proved that every m-edge graph hasqueue-number at most epm, where e is the base of the natural logarithm.3. Heath et al. [58, 54℄ asked whether stak-number is bounded by queue-number(and vie-versa)? Note that there is a family of graphs G with sn(G) 2 
(3
(qn(G))��),for all G 2 G [54℄.4. Is the queue-number of a graph bounded by a polynomial (or even singlyexponential) funtion of its tree-width?Aknowledgements. The authors are grateful for stimulating disussions withProsenjit Bose, Jurek Czyzowiz, Hubert de Fraysseix, Stefan Langerman, GiuseppeLiotta, Patrie Ossona de Mendez, and Matthew Suderman. Thanks to an anonymousreferee for many helpful omments.REFERENCES[1℄ M. O. Albertson and D. M. Berman, Every planar graph has an ayli 7-oloring, Israel J.Math., 28 (1977), pp. 169{174.[2℄ , An ayli analogue to Heawood's theorem, Glasgow Math. J., 19 (1978), pp. 163{166.
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