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LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH �VIDA DUJMOVI�C zxy , PAT MORIN xy , AND DAVID R. WOOD x{yAbstra
t. A queue layout of a graph 
onsists of a total order of the verti
es, and a partitionof the edges into queues, su
h that no two edges in the same queue are nested. The minimumnumber of queues in a queue layout of a graph is its queue-number. A three-dimensional (straight-line grid) drawing of a graph represents the verti
es by points inZ3 and the edges by non-
rossingline-segments. This paper 
ontributes three main results:(1) It is proved that the minimum volume of a 
ertain type of three-dimensional drawing of agraph G is 
losely related to the queue-number of G. In parti
ular, if G is an n-vertex member ofa proper minor-
losed family of graphs (su
h as a planar graph), then G has a O(1)�O(1)� O(n)drawing if and only if G has O(1) queue-number.(2) It is proved that queue-number is bounded by tree-width, thus resolving an open problemdue to Ganley and Heath (2001), and disproving a 
onje
ture of Pemmaraju (1992). This resultprovides renewed hope for the positive resolution of a number of open problems in the theory ofqueue layouts.(3) It is proved that graphs of bounded tree-width have three-dimensional drawings with O(n)volume. This is the most general family of graphs known to admit three-dimensional drawings withO(n) volume.The proofs depend upon our results regarding tra
k layouts and tree-partitions of graphs, whi
hmay be of independent interest.Key words. queue layout, queue-number, three-dimensional graph drawing, tree-partition, tree-partition-width, tree-width, k-tree, tra
k layout, tra
k-number, a
y
li
 
olouring, a
y
li
 
hromati
number.AMS subje
t 
lassi�
ations. 05C62 (graph representations)1. Introdu
tion. A queue layout of a graph 
onsists of a total order of theverti
es, and a partition of the edges into queues, su
h that no two edges in the samequeue are nested. The dual 
on
ept of a sta
k layout, introdu
ed by Ollmann [73℄ and
ommonly 
alled a book embedding, is de�ned similarly, ex
ept that no two edges inthe same sta
k may 
ross. The minimum number of queues (respe
tively, sta
ks) ina queue layout (sta
k layout) of a graph is its queue-number (sta
k-number). Queuelayouts have been extensively studied [41, 53, 54, 58, 76, 80, 86, 88℄ with appli
ationsin parallel pro
ess s
heduling, fault-tolerant pro
essing, matrix 
omputations, andsorting networks (see [76℄ for a survey). Queue layouts of dire
ted a
y
li
 graphs[9, 56, 57, 76℄ and posets [55, 76℄ have also been investigated. Our motivation forstudying queue layouts is a 
onne
tion with three-dimensional graph drawing.Graph drawing is 
on
erned with the automati
 generation of aestheti
ally pleas-ing geometri
 representations of graphs. Graph drawing in the plane is well-studied(see [24, 64℄). Motivated by experimental eviden
e suggesting that displaying a graphin three dimensions is better than in two [90, 91℄, and appli
ations in
luding informa-tion visualisation [90℄, VLSI 
ir
uit design [66℄, and software engineering [92℄, thereis a growing body of resear
h in three-dimensional graph drawing. In this paperzS
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2 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOODwe study three-dimensional straight-line grid drawings, or three-dimensional drawingsfor short. In this model, verti
es are positioned at grid-points in Z3, and edges aredrawn as straight line-segments with no 
rossings [17, 21, 25, 27, 28, 42, 53, 78, 75℄.We fo
us on the problem of produ
ing three-dimensional drawings with small vol-ume. Three-dimensional drawings with the verti
es in R3 have also been studied[39, 47, 19, 16, 18, 61, 22, 63, 60, 62, 69, 74℄. Aestheti
 
riteria besides volume thathave been 
onsidered in
lude symmetry [60, 61, 62, 63℄, aspe
t ratio [19, 47℄, angularresolution [47, 19℄, edge-separation [19, 47℄, and 
onvexity [18, 19, 39, 87℄.The �rst main result of this paper redu
es the question of whether a graph has athree-dimensional drawing with small volume to a question regarding queue layouts(Theorem 2.10). In parti
ular, we prove that every n-vertex graph from a properminor-
losed graph family G has a O(1)�O(1)�O(n) drawing if and only if G has aO(1) queue-number, and this result holds true when repla
ing O(1) by O(polylogn).Consider the family of planar graphs, whi
h are minor-
losed. (In the 
onferen
eversion of their paper) Felsner et al. [42℄ asked whether every planar graph has athree-dimensional drawing with O(n) volume? Heath et al. [58, 54℄ asked whetherevery planar graph has O(1) queue-number? By our result, these two open problemsare almost equivalent in the following sense. If every planar graph has O(1) queue-number, then every planar graph has a three-dimensional drawing with O(n) volume.Conversely, if every planar graph has a O(1) � O(1) � O(n) drawing, then everyplanar graph has O(1) queue-number. It is possible, however, that planar graphshave unbounded queue-number, yet have say O(n1=3)�O(n1=3)�O(n1=3) drawings.Our other main results regard three-dimensional drawings and queue layouts ofgraphs with bounded tree-width. Tree-width, �rst de�ned by Halin [50℄, althoughlargely unnoti
ed until independently redis
overed by Robertson and Seymour [81℄and Arnborg and Proskurowski [7℄, is a measure of the similarity of a graph to a tree(see x2.1 for the de�nition). Tree-width (or its spe
ial 
ase, path-width) has beenpreviously used in the 
ontext of graph drawing by Dujmovi�
 et al. [33℄, Hlin�en�y [59℄,and Peng [77℄, for example.The se
ond main result is that the queue-number of a graph is bounded by itstree-width (Corollary 2.8). This solves an open problem due to Ganley and Heath [45℄,who proved that sta
k-number is bounded by tree-width, and asked whether a similarrelationship holds for queue-number. This result has signi�
ant impli
ations for theabove open problem (does every planar graph have O(1) queue-number), and themore general question (sin
e planar graphs have sta
k-number at most four [94℄) ofwhether queue-number is bounded by sta
k-number. Heath et al. [58, 54℄ originally
onje
tured that both of these questions have an aÆrmative answer. More re
entlyhowever, Pemmaraju [76℄ 
onje
tured that the `stellated K3', a planar 3-tree, has�(logn) queue-number, and provided eviden
e to support this 
onje
ture (also see[45℄). This suggested that the answer to both of the above questions was negative. Inparti
ular, Pemmaraju [76℄ and Heath [private 
ommuni
ation, 2002℄ 
onje
tured thatplanar graphs have O(logn) queue-number. However, our result provides a queue-layout of any 3-tree, and thus the stellated K3, with O(1) queues. Hen
e our resultdisproves the �rst 
onje
ture of Pemmaraju [76℄ mentioned above, and renews hopein an aÆrmative answer to the above open problems.The third main result is that every graph of bounded tree-width has a three-dimensional drawing with O(n) volume. The family of graphs of bounded tree-widthin
ludes most of the graphs previously known to admit three-dimensional drawingswith O(n) volume (for example, outerplanar graphs), and also in
ludes many graph



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 3families for whi
h the previous best volume bound was O(n2) (for example, series-parallel graphs). Many graphs arising in appli
ations of graph drawing do have smalltree-width. Outerplanar and series-parallel graphs are the obvious examples. Anotherexample arises in software engineering appli
ations. Thorup [89℄ proved that the
ontrol-
ow graphs of go-to free programs in many programming languages have tree-width bounded by a small 
onstant; in parti
ular, 3 for Pas
al and 6 for C. Otherfamilies of graphs having bounded tree-width (for 
onstant k) in
lude: almost treeswith parameter k, graphs with a feedba
k vertex set of size k, band-width k graphs,
ut-width k graphs, planar graphs of radius k, and k-outerplanar graphs. If the sizeof a maximum 
lique is a 
onstant k then 
hordal, interval and 
ir
ular ar
 graphsalso have bounded tree-width. Thus, by our result, all of these graphs have three-dimensional drawings with O(n) volume, and O(1) queue-number.To prove our results for graphs of bounded tree-width, we employ a related stru
-ture 
alled a tree-partition, introdu
ed independently by Seese [85℄ and Halin [51℄. Atree-partition of a graph is a partition of its verti
es into `bags' su
h that 
ontra
tingea
h bag to a single vertex gives a forest (after deleting loops and repla
ing paralleledges by a single edge). In a result of independent interest, we prove that every k-treehas a tree-partition su
h that ea
h bag indu
es a 
onne
ted (k � 1)-tree, amongstother properties. The se
ond tool that we use is a tra
k layout, whi
h 
onsists of avertex-
olouring and a total order of ea
h 
olour 
lass, su
h that between any two
olour 
lasses no two edges 
ross.The remainder of the paper is organised as follows. In x2 we introdu
e the requiredba
kground material, and state our results regarding three-dimensional drawings andqueue layouts, and 
ompare these with results in the literature. In x3 we establisha number of results 
on
erning tra
k layouts. That three-dimensional drawings andqueue-layouts are 
losely related stems from the fa
t that three-dimensional drawingsand queue layouts are both 
losely related to tra
k layouts, as proved in x4 andx5, respe
tively. In x6 we prove the above-mentioned theorem for tree-partitions ofk-trees, whi
h is used in x7 to 
onstru
t tra
k layouts of graphs with bounded tree-width. We 
on
lude in x8 with a number of open problems.2. Ba
kground and Results. Throughout this paper all graphs G are undi-re
ted, simple, and �nite with vertex set V (G) and edge set E(G). The number ofverti
es and the maximum degree of G are respe
tively denoted by n = jV (G)j and�(G). The subgraph indu
ed by a set of verti
es A � V (G) is denoted by G[A℄. Forall disjoint subsets A;B � V (G), the bipartite subgraph of G with vertex set A [ Band edge set fvw 2 E(G) : v 2 A;w 2 Bg is denoted by G[A;B℄.A graph H is a minor of a graph G if H is isomorphi
 to a graph obtained froma subgraph of G by 
ontra
ting edges. A family of graphs 
losed under taking minorsis proper if it is not the 
lass of all graphs.A graph parameter is a fun
tion � that assigns to every graph G a non-negativeinteger �(G). Let G be a family of graphs. By �(G) we denote the fun
tion f : N! N,where f(n) is the maximum of �(G), taken over all n-vertex graphs G 2 G. We say Ghas bounded � if �(G) 2 O(1). A graph parameter � is bounded by a graph parameter� (for some graph family G), if there exists a fun
tion g su
h that �(G) � g(�(G))for every graph G (in G).2.1. Tree-Width. Let G be a graph and let T be a tree. An element of V (T )is 
alled a node. Let fTx � V (G) : x 2 V (T )g be a set of subsets of V (G) indexedby the nodes of T . Ea
h Tx is 
alled a bag. The pair (T; fTx : x 2 V (T )g) is a



4 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOODtree-de
omposition of G if:1. [x2V (T )Tx = V (G) (that is, every vertex of G is in at least one bag),2. 8 edge vw of G, 9 node x of T su
h that v 2 Tx and w 2 Tx, and3. 8 nodes x; y; z of T , if y is on the path from x to z in T , then Tx \ Tz � Ty.The width of a tree-de
omposition is one less than the maximum 
ardinalityof a bag. A path-de
omposition is a tree-de
omposition where the tree T is a pathT = (x1; x2; : : : ; xm), whi
h is simply identi�ed by the sequen
e of bags T1; T2; : : : ; Tmwhere ea
h Ti = Txi . The path-width (respe
tively, tree-width) of a graph G, denotedby pw(G) (tw(G)), is the minimum width of a path- (tree-) de
omposition of G.Graphs with tree-width at most one are pre
isely the forests. Graphs with tree-widthat most two are 
alled series-parallel1, and are 
hara
terised as those graphs with noK4 minor (see [10℄).A k-tree for some k 2 N is de�ned re
ursively as follows. The empty graph isa k-tree, and the graph obtained from a k-tree by adding a new vertex adja
ent toea
h vertex of a 
lique with at most k verti
es is also a k-tree. This de�nition of ak-tree is by Reed [79℄. The following more restri
tive de�nition of a k-tree, whi
h we
all `stri
t', was introdu
ed by Arnborg and Proskurowski [7℄, and is more often usedin the literature. A k-
lique is a stri
t k-tree, and the graph obtained from a stri
tk-tree by adding a new vertex adja
ent to ea
h vertex of a k-
lique is also a stri
tk-tree. Obviously the stri
t k-trees are a proper sub-
lass of the k-trees. A subgraphof a k-tree is 
alled a partial k-tree, and a subgraph of a stri
t k-tree is 
alled a partialstri
t k-tree. The following result is well known (see for example [10, 79℄). A 
hordof a 
y
le C is an edge not in C whose end-verti
es are both in C. A graph is 
hordalif every 
y
le on at least four verti
es has a 
hord.Lemma 2.1. Let G be a graph. The following are equivalent:1. G has tree-width tw(G) � k,2. G is a partial k-tree,3. G is a partial stri
t k-tree,4. G is a subgraph of a 
hordal graph that has no 
lique on k + 2 verti
es.Proof. S
he�er [83℄ proved that (1) and (3) are equivalent. That (1) and (4) areequivalent is due to Robertson and Seymour [81℄. That (2) and (4) are equivalent is the
hara
terisation of 
hordal graphs in terms of `perfe
t elimination' vertex-orderingsdue to Fulkerson and Gross [44℄.2.2. Tree-Partitions. As in the de�nition of a tree-de
omposition, let G begraph and let fTx � V (G) : x 2 V (T )g be a set of subsets of V (G) (
alled bags)indexed by the nodes of a tree T . The pair (T; fTx : x 2 V (T )g) is a tree-partition ofG if 1. 8 distin
t nodes x and y of T , Tx \ Ty = ;, and2. 8 edge vw of G, either(i) 9 node x of T with v 2 Tx and w 2 Tx (vw is 
alled an intra-bag edge), or(ii) 9 edge xy of T with v 2 Tx and w 2 Ty (vw is 
alled an inter-bag edge).The main property of tree-partitions that has been studied in the literature is themaximum
ardinality of a bag, 
alled the width of the tree-partition [11, 51, 85, 31, 32℄.The minimumwidth over all tree-partitions of a graph G is the tree-partition-width21`Series-parallel digraphs' are often de�ned in terms of 
ertain `series' and `parallel' 
ompositionoperations. The underlying undire
ted graph of su
h a digraph has tree-width at most two (see [10℄).2Tree-partition-width has also been 
alled strong tree-width [85, 11℄.



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 5of G, denoted by tpw(G). A graph with bounded degree has bounded tree-partition-width if and only if it has bounded tree-width [32℄. In parti
ular, for every graph G,Ding and Oporowski [31℄ proved that tpw(G) � 24 tw(G)�(G), and Seese [85℄ provedthat tw(G) � 2 tpw(G)� 1.Theorem 6.1 provides a tree-partition of a k-tree G with additional features be-sides small width. First, the subgraph indu
ed by ea
h bag is a 
onne
ted (k�1)-tree.This allows us to perform indu
tion on k. Se
ond, in ea
h non-root bag Tx the setof verti
es in the parent bag of x with a neighbour in Tx form a 
lique. This featureis 
ru
ial in the intended appli
ation (Theorem 7.3). Finally the tree-partition haswidth at most maxf1; k(�(G)� 1)g, whi
h represents a 
onstant-fa
tor improvementover the above result by Ding and Oporowski [31℄ in the 
ase of k-trees.2.3. Tra
k Layouts. Let G be a graph. A 
olouring of G is a partition fVi :i 2 Ig of V (G), where I is a set of 
olours, su
h that for every edge vw of G, if v 2 Viand w 2 Vj then i 6= j. Ea
h set Vi is 
alled a 
olour 
lass. A 
olouring of G with 

olours is a 
-
olouring, and we say that G is 
-
olourable. The 
hromati
 number ofG, denoted by �(G), is the minimum 
 su
h that G is 
-
olourable.If <i is a total order of a 
olour 
lass Vi, then we 
all the pair (Vi; <i) a tra
k. IffVi : i 2 Ig is a 
olouring of G, and (Vi; <i) is a tra
k, for ea
h 
olour i 2 I, then wesay f(Vi; <i) : i 2 Ig is a tra
k assignment of G indexed by I. Note that at times itwill be 
onvenient to also refer to a 
olour i 2 I and the 
olour 
lass Vi as a tra
k.The pre
ise meaning will always be 
lear from the 
ontext. A t-tra
k assignment is atra
k assignment with t tra
ks.As illustrated in Fig. 2.1, an X-
rossing in a tra
k assignment 
onsists of twoedges vw and xy su
h that v <i x and y <j w, for distin
t tra
ks Vi and Vj . A t-tra
kassignment with no X-
rossing is 
alled a t-tra
k layout. The tra
k-number of a graphG, denoted by tn(G), is the minimum t su
h that G has a t-tra
k layout.
x

y

v

w

(Vi, <i)

(Vj , <j)Fig. 2.1. An example of an X-
rossing in a tra
k assignment.Let f(Vi; <i) : i 2 Ig be a t-tra
k layout of a graph G. The span of an edge vw ofG, with respe
t to a numbering of the tra
ks I = f1; 2; : : : ; tg, is de�ned to be ji� jjwhere v 2 Vi and w 2 Vj.Tra
k layouts will be 
entral in most of our proofs. To enable 
omparison ofour results to those in the literature we now introdu
e the notion of an `improper'tra
k layout. A improper 
olouring of a graph G is simply a partition fVi : i 2 Ig ofV (G). Here adja
ent verti
es may be in the same 
olour 
lass. A tra
k of an improper
olouring is de�ned as above. Suppose fVi : i 2 Ig is an improper 
olouring of G,and (Vi; <i) is a tra
k, for ea
h 
olour i 2 I. An edge with both end-verti
es in thesame tra
k is 
alled an intra-tra
k edge; otherwise it is 
alled an inter-tra
k edge.We say f(Vi; <i) : i 2 Ig is an improper tra
k assignment of G if, for all intra-tra
kedges vw 2 E(G) with v 2 Vi and w 2 Vi for some i 2 I, there is no vertex xwith v <i x <i w. That is, adja
ent verti
es in the same tra
k are 
onse
utive inthat tra
k. An improper t-tra
k assignment with no X-
rossing is 
alled an improper



6 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOODt-tra
k layout3.Lemma 2.2. If a graph G has an improper t-tra
k layout, then G has a 2t-tra
klayout.Proof. For every tra
k Vi of an improper t-tra
k layout of G, let V 0i be a newtra
k. Move every se
ond vertex from Vi to V 0i , su
h that V 0i inherits its total orderfrom the original Vi. Clearly there is no intra-tra
k edge and no X-
rossing. Thus weobtain a 2t-tra
k layout of G.Hen
e the tra
k-number of a graph is at most twi
e its `improper tra
k-number'.The following lemma, whi
h was jointly dis
overed with Giuseppe Liotta, gives a
ompelling reason to only 
onsider proper tra
k layouts. Similar ideas 
an be foundin [42, 27℄. Let vw be an edge of a graph G. Let G0 be the graph obtained from Gby adding a new vertex x only adja
ent to v and w. We say x is an ear, and G0 isobtained from G by adding an ear to vw.Lemma 2.3. Let G be a 
lass of graphs 
losed under the addition of ears (forexample, series-parallel graphs or planar graphs). If every graph in G has an impropert-tra
k layout for some 
onstant t, then every graph in G has a (proper) t-tra
k layout.Proof. For any graph G 2 G, let G0 be the graph obtained from G by adding tears to every edge of G. By assumption, G0 has an improper t-tra
k layout. Supposethat there is an edge vw of G su
h that v and w are in the same tra
k. None ofthe ears added to vw are on the same tra
k, as otherwise adja
ent verti
es wouldnot be 
onse
utive in that tra
k. Thus there is a tra
k 
ontaining at least two ofthe ears added to vw. However, this implies that there is an X-
rossing, whi
h is a
ontradi
tion. Thus the end-verti
es of every edge of G are in distin
t tra
ks. Hen
ethe improper t-tra
k layout of G0 
ontains a t-tra
k layout of G.Lemmata 2.2 and 2.3 imply that only for relatively small 
lasses of graphs willthe distin
tion between tra
k layouts and improper tra
k layouts be signi�
ant. Wetherefore 
hose to work with the less 
umbersome notion of a tra
k layout. Thefollowing theorem summarises our bounds on the tra
k-number of a graph.Theorem 2.4. Let G be a graph with maximum degree �(G), path-width pw(G),tree-partition-width tpw(G), and tree-width tw(G). The tra
k-number of G satis�es:(a) tn(G) � pw(G) + 1 � 1 + (tw(G) + 1) logn,(b) tn(G) � 3 tpw(G) � 72�(G) tw(G),(
) tn(G) � 3 tw(G) � 6(4 tw(G)�3 tw(G)�1)=9.Proof. Part (a) follows from Lemma 3.2, and the fa
t that pw(G) � (tw(G) +1) logn (see [10℄). Note that tn(G) � 1+(tw(G)+1) logn 
an be proved dire
tly usinga separator-based approa
h similar to that used to prove pw(G) � (tw(G) + 1) logn.Part (b) follows from Lemma 3.3 in x3, and the result of Ding and Oporowski [31℄dis
ussed in x2.2. Part (
) is Theorem 7.3.2.4. Vertex-Orderings. Let G be a graph. A total order � = (v1; v2; : : : ; vn)of V (G) is 
alled a vertex-ordering of G. Suppose G is 
onne
ted. The depth of avertex vi in � is the graph-theoreti
 distan
e between v1 and vi in G. We say � isa breadth-�rst vertex-ordering if for all verti
es v and w with v <� w, the depth ofv in � is no more than the depth of w in �. Vertex-orderings, and in parti
ular,vertex-orderings of trees will be used extensively in this paper. Consider a breadth-�rst vertex-ordering � of a tree T su
h that verti
es at depth d � 1 are ordered withrespe
t to the ordering of verti
es at depth d�1. In parti
ular, if v and x are verti
es3In [34, 35, 93℄ we 
alled a tra
k layout an ordered layering with no X-
rossing and no intra-layeredges, and an improper tra
k layout was 
alled an ordered layering with no X-
rossing.



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 7at depth d with respe
tive parents w and y at depth d� 1 with w <� y then v <� x.Su
h a vertex-ordering is 
alled a lexi
ographi
al breadth-�rst vertex-ordering of T ,and is illustrated in Fig. 2.2.
depth 0 depth 1 depth 2 depth 3Fig. 2.2. A lexi
ographi
al breadth-�rst vertex-ordering of a tree.2.5. Queue Layouts. A queue layout of a graph G 
onsists of a vertex-ordering� of G, and a partition of E(G) into queues, su
h that no two edges in the same queueare nested with respe
t to �. That is, there are no edges vw and xy in a single queuewith v <� x <� y <� w. The minimum number of queues in a queue layout of G is
alled the queue-number of G, and is denoted by qn(G). A similar 
on
ept is that ofa sta
k layout (or book embedding), whi
h 
onsists of a vertex-ordering � of G, and apartition of E(G) into sta
ks (or pages) su
h that there are no edges vw and xy ina single sta
k with v <� x <� w <� y. The minimum number of sta
ks in a sta
klayout of G is 
alled the sta
k-number (or page-number or book-thi
kness) of G, andis denoted by sn(G). A queue (respe
tively, sta
k) layout with k queues (sta
ks) is
alled a k-queue (k-sta
k) layout, and a graph that admits a k-queue (k-sta
k) layoutis 
alled a k-queue (k-sta
k) graph.Heath and Rosenberg [58℄ 
hara
terised 1-queue graphs as the `ar
hed levelledplanar' graphs, and proved that it is NP-
omplete to re
ognise su
h graphs. Thisresult is in 
ontrast to the situation for sta
k layouts | 1-sta
k graphs are pre
iselythe outerplanar graphs [8℄, whi
h 
an be re
ognised in polynomial time. Heath etal. [54℄ proved that 1-sta
k graphs are 2-queue graphs (redis
overed by Rengarajanand Veni Madhavan [80℄), and that 1-queue graphs are 2-sta
k graphs.While it is NP-hard to minimise the number of sta
ks in a sta
k layout given a�xed vertex-ordering [46℄, the analogous problem for queue layouts 
an be solved asfollows. A k-rainbow in a vertex-ordering � 
onsists of a mat
hing fviwi : 1 � i � kgsu
h that v1 <� v2 <� � � � <� vk <� wk <� wk�1 <� � � � <� w1, as illustrated inFig. 2.3. Fig. 2.3. A rainbow of �ve edges in a vertex-ordering.A vertex-ordering 
ontaining a k-rainbow needs at least k queues. A straight-forward appli
ation of Dilworth's Theorem [30℄ proves the 
onverse. That is, a �xedvertex-ordering admits a k-queue layout where k is the size of the largest rainbow.(Heath and Rosenberg [58℄ des
ribe a O(m log logn) time algorithm to 
ompute thequeue assignment.) Thus determining qn(G) 
an be viewed as the following vertex-



8 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOODordering problem.Lemma 2.5 ([58℄). The queue-number qn(G) of a graph G is the minimum, takenover all vertex-orderings � of G, of the maximum size of a rainbow in �.Sta
k and/or queue layouts of k-trees have previously been investigated in [20,80, 45℄. A 1-tree is a 1-queue graph, sin
e in a lexi
ographi
al breadth-�rst vertex-ordering of a tree no two edges are nested (see Fig. 2.2). Chung et al. [20℄ proved thatin a depth-�rst vertex-ordering of a tree no two edges 
ross. Thus 1-trees are 1-sta
kgraphs. Rengarajan and Veni Madhavan [80℄ proved that graphs with tree-width atmost two (the series parallel graphs) are 2-sta
k and 3-queue graphs4. Improper tra
klayouts are impli
it in the work of Heath et al. [54℄ and Rengarajan and Veni Mad-havan [80℄. In x5 we prove the following fundamental relationship between queue andtra
k layouts.Theorem 2.6. For every graph G, qn(G) � tn(G) � 1. Moreover, if G is anyproper minor-
losed graph family, then G has queue-number qn(G) 2 F(n) if and onlyif G has tra
k-number tn(G) 2 F(n), where F(n) is any family of fun
tions 
losedunder multipli
ation (su
h as O(1) or O(polylogn)).Ganley and Heath [45℄ proved that every graph G has sta
k-number sn(G) �tw(G) + 1 (using a depth-�rst traversal of a tree-de
omposition), and asked whetherqueue-number is bounded by tree-width? One of the prin
ipal results of this paper isto solve this question in the aÆrmative. Applying Theorems 2.4 and 2.6 we have thefollowing.Theorem 2.7. Let G be a graph with maximum degree �(G), path-width pw(G),tree-partition-width tpw(G), and tree-width tw(G). The queue-number qn(G) satis-�es5:(a) qn(G) � pw(G) � (tw(G) + 1) logn,(b) qn(G) � 3 tpw(G)� 1 � 72�(G) tw(G)� 1,(
) qn(G) � 3 tw(G) � 6(4 tw(G)�3 tw(G)�1)=9 � 1.A similar upper bound to Theorem 2.7(a) is obtained by Heath and Rosen-berg [58℄, who proved that every graph G has qn(G) � d12bw(G)e, where bw(G)is the band-width of G. In many 
ases this result is weaker than Theorem 2.7(a)sin
e pw(G) � bw(G) (see [29℄). More importantly, we have the following 
orollary ofTheorem 2.7(
).Corollary 2.8. Queue-number is bounded by tree-width, and hen
e graphs withbounded tree-width have bounded queue-number.2.6. Three-DimensionalDrawings. A three-dimensional straight-line grid draw-ing of a graph, hen
eforth 
alled a three-dimensional drawing, represents the verti
esby distin
t points inZ3 (
alled grid-points), and represents ea
h edge as a line-segmentbetween its end-verti
es, su
h that edges only interse
t at 
ommon end-verti
es, andan edge only interse
ts a vertex that is an end-vertex of that edge.In 
ontrast to the 
ase in the plane, a folklore result states that every graph hasa three-dimensional drawing. Su
h a drawing 
an be 
onstru
ted using the `moment
urve' algorithm in whi
h vertex vi, 1 � i � n, is represented by the grid-point(i; i2; i3). It is easily seen | 
ompare with Lemma 4.2 | that no two edges 
ross.(Two edges 
ross if they interse
t at some point other than a 
ommon end-vertex.)4In [35℄ we give a simple proof based on Theorem 6.1 for the result by Rengarajan and Veni Mad-havan [80℄ that every series-parallel graph has a 3-queue layout.5In [93℄ we obtained an alternative proof that qn(G) � pw(G) using the `vertex separationnumber' of a graph (whi
h equals its path-width), and applying Lemma 2.5 dire
tly we proved thatqn(G) � 32 tpw(G), and thus qn(G) � 36�(G) tw(G).



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 9Sin
e every graph has a three-dimensional drawing, we are interested in optimis-ing 
ertain measures of the aestheti
 quality of a drawing. If a three-dimensionaldrawing is 
ontained in an axis-aligned box with side lengths X � 1, Y � 1 and Z � 1,then we speak of an X � Y � Z drawing with volume X � Y � Z and aspe
t ratiomaxfX;Y; Zg=minfX;Y; Zg. This paper 
onsiders the problem of produ
ing a three-dimensional drawing of a given graph with small volume, and with small aspe
t ratioas a se
ondary 
riterion.Observe that the drawings produ
ed by the moment 
urve algorithm have O(n6)volume. Cohen et al. [21℄ improved this bound, by proving that if p is a prime withn < p � 2n, and ea
h vertex vi is represented by the grid-point (i; i2 mod p; i3 mod p),then there is still no 
rossing. This 
onstru
tion is a generalisation of an analogoustwo-dimensional te
hnique due to Erd}os [40℄. Furthermore, Cohen et al. [21℄ provedthat the resulting O(n3) volume bound is asymptoti
ally optimal in the 
ase of the
omplete graph Kn. It is therefore of interest to identify �xed graph parameters thatallow for three-dimensional drawings with small volume.The �rst su
h parameter to be studied was the 
hromati
 number [17, 75℄. Calam-oneri and Sterbini [17℄ proved that every 4-
olourable graph has a three-dimensionaldrawing with O(n2) volume. Generalising this result, Pa
h et al. [75℄ proved thatgraphs of bounded 
hromati
 number have three-dimensional drawings with O(n2)volume, and that this bound is asymptoti
ally optimal for the 
omplete bipartitegraph with equal sized bipartitions. If p is a suitably 
hosen prime, the main stepof this algorithm represents the verti
es in the ith 
olour 
lass by grid-points in theset f(i; t; it) : t � i2 (mod p)g. It follows that the volume bound is O(k2n2) fork-
olourable graphs.The lower bound of Pa
h et al. [75℄ for the 
omplete bipartite graph was gener-alised by Bose et al. [14℄ for all graphs. They proved that every three-dimensionaldrawing with n verti
es and m edges has volume at least 18 (n + m). In parti
ular,the maximum number of edges in an X � Y � Z drawing is exa
tly (2X � 1)(2Y �1)(2Z � 1)�XY Z. For example, graphs admitting three-dimensional drawings withO(n) volume have O(n) edges.The �rst non-trivial O(n) volume bound was established by Felsner et al. [42℄for outerplanar graphs. Their elegant algorithm `wraps' a two-dimensional drawingaround a triangular prism to obtain an improper 3-tra
k layout (see Lemmata 3.1 and3.4 for more on this method). Poranen [78℄ proved that series-parallel digraphs haveupward three-dimensional drawings with O(n3) volume, and that this bound 
an beimproved to O(n2) and O(n) in 
ertain spe
ial 
ases. Di Gia
omo [27℄ proved thatseries-parallel graphs with maximum degree three have three-dimensional drawingswith O(n) volume.In x4 we prove the following intrinsi
 relationship between three-dimensionaldrawings and tra
k layouts.Theorem 2.9. Every graph G has a O(tn(G)) � O(tn(G)) � O(n) drawing.Moreover, G has a F(n) � F(n) � O(n) drawing if and only if G has tra
k-numbertn(G) 2 F(n), where F(n) is a family of fun
tions 
losed under multipli
ation.Of 
ourse, every graph has an n-tra
k layout | simply pla
e a single vertex onea
h tra
k. Thus Theorem 2.9 mat
hes the O(n3) volume bound dis
ussed in x2.6.In fa
t, the drawings of Kn produ
ed by our algorithm, with ea
h vertex in a distin
ttra
k, are identi
al to those produ
ed by the algorithm of Cohen et al. [21℄.Theorems 2.6 and 2.9 immediately imply the following result, whi
h redu
es theproblem of produ
ing a three-dimensional drawing with small volume to that of pro-
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ing a queue layout of the same graph with few queues.Theorem 2.10. Let G be a proper minor-
losed family of graphs, and let F(n)be a family of fun
tions 
losed under multipli
ation. The following are equivalent:(a) every n-vertex graph in G has a F(n) �F(n) �O(n) drawing,(b) G has tra
k-number tn(G) 2 F(n), and(
) G has queue-number qn(G) 2 F(n).Graphs with 
onstant queue-number in
lude de Bruijn graphs, FFT and Bene�snetwork graphs [58℄. By Theorem 2.10, these graphs have three-dimensional drawingswith O(n) volume. Applying Theorems 2.4 and 2.9 we have the following result.Theorem 2.11. Let G be a graph with maximum degree �(G), path-width pw(G),tree-partition-width tpw(G), and tree-width tw(G). Then G has a three-dimensionaldrawing with the following dimensions:(a) O(pw(G))� O(pw(G))�O(n), whi
h is O(tw(G) logn)�O(tw(G) logn)�O(n),(b) O(tpw(G))�O(tpw(G))�O(n), whi
h is O(�(G) tw(G))�O(�(G) tw(G))�O(n),(
) O(3 tw(G) � 6(4 tw(G)�3 tw(G)�1)=9)� O(3 tw(G) � 6(4 tw(G)�3 tw(G)�1)=9)� O(n).Most importantly, we have the following 
orollary of Theorem 2.11(
).Corollary 2.12. Every graph with bounded tree-width has a three-dimensionaldrawing with O(n) volume.Note that bounded tree-width is not ne
essary for a graph to have a three-dimensional drawing with O(n) volume. The pn�pn plane grid graph has �(pn)tree-width, and has a pn � pn � 1 drawing with n volume. It also has a 3-tra
klayout, and thus, by Lemma 4.2, has a O(1)� O(1)� O(n) drawing.Sin
e a planar graph is 4-
olourable, by the results of Calamoneri and Sterbini [17℄and Pa
h [75℄ dis
ussed above, every planar graph has a three-dimensional drawingwith O(n2) volume. This result also follows from the 
lassi
al algorithms of de Frays-seix et al. [23℄ and S
hnyder [84℄ for produ
ing O(n) � O(n) plane grid drawings.All of these methods produ
e O(n)�O(n)�O(1) drawings, whi
h have �(n) aspe
tratio. Sin
e every planar graph G has pw(G) 2 O(pn) [10℄, we have the following
orollary of Theorem 2.11(a).Corollary 2.13. Every planar graph has a three-dimensional drawing withO(n2) volume and �(pn) aspe
t ratio.This result mat
hes the above O(n2) volume bounds with an improvement in theaspe
t ratio by a fa
tor of �(pn). As dis
ussed in x1, it is an open problem whetherevery planar graph has a three-dimensional drawing with O(n) volume. Subsequentto this resear
h, Dujmovi�
 and Wood [37℄ proved that graphs ex
luding a 
lique minoron a �xed number of verti
es, su
h as planar graphs, have three-dimensional drawingswith O(n3=2) volume, as do graphs with bounded degree.Our �nal result regarding three-dimensional drawings, whi
h is proved in x4,examines the apparent trade-o� between aspe
t ratio and volume.Theorem 2.14. For every graph G and for every r, 1 � r � n=tn(G), G has athree-dimensional drawing with O(n3=r2) volume and aspe
t ratio 2r.3. Tra
k Layouts. In this se
tion we des
ribe a number of methods for produ
-ing and manipulating tra
k layouts. The following result is impli
it in the proof byFelsner et al. [42℄ that every outerplanar graph has an improper 3-tra
k layout.Lemma 3.1 ([42℄). Every tree T has a 3-tra
k layout.Proof. Root T at an arbitrary node r. Let � be a lexi
ographi
al breadth-�rstvertex-ordering of T starting at r, as des
ribed in x2.4. For i 2 f0; 1; 2g, let Vi be the



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 11set of nodes of T with depth d � i (mod 3) in �. With ea
h Vi ordered by �, we havea 3-tra
k assignment of T . Clearly adja
ent verti
es are on distin
t tra
ks. Sin
e notwo edges are nested in �, there is no X-
rossing (see Fig. 3.1).Fig. 3.1. A 3-tra
k layout of a tree.Lemma 3.2. Every graph G with path-width pw(G) has tra
k-number tn(G) �pw(G) + 1.Proof. Let k = pw(G) + 1. It is well known that a G is the subgraph of a k-
olourable interval graph [10, 48℄. That is, there is a set of intervals f[`(v); r(v)℄ � R :v 2 V (G)g su
h that [`(v); r(v)℄ \ [`(w); r(w)℄ 6= ; for every edge vw of G. Let fVi :1 � i � kg be a k-
olouring of G. Consider ea
h 
olour 
lass Vi to be an ordered tra
k(v1; v2; : : : ; vp), where `(v1) < r(v1) < `(v2) < r(v2) < � � � < `(vp) < r(vp). Supposethere is an X-
rossing between edges vw and xy with v; x 2 Vi and w; y 2 Vj for somepair of tra
ks Vi and Vj . Without loss of generality, r(v) < `(x) and r(y) < `(w).Sin
e vw is an edge, `(w) � r(v). Thus r(y) < `(w) � r(v) < `(x), whi
h implies thatxy is not an edge of G. This 
ontradi
tion proves that there is no X-
rossing, and Ghas a k-tra
k layout.Fig. 3.2. A 4-tra
k layout of a 4-
olourable interval graph.The next lemma uses a tree-partition to 
onstru
t a tra
k layout.Lemma 3.3. Every graph G with maximum degree �(G), tree-width tw(G), andtree-partition-width tpw(G), has tra
k-number tn(G) � 3 tpw(G) � 72�(G)tw(G).Proof. Let (T; fTx : x 2 V (T )g) be a tree-partition of G with width tpw(G). ByLemma 3.1, T has a 3-tra
k layout. Repla
e ea
h tra
k by tpw(G) `sub-tra
ks', andfor ea
h node x in T , pla
e the verti
es in bag Tx on the sub-tra
ks repla
ing the tra
k
ontaining x, with at most one vertex in Tx in a single tra
k. For all nodes x and yof T , if x < y in a single tra
k of the 3-tra
k layout of T , then for all verti
es v 2 Txand w 2 Ty, v < w whenever v and w are assigned to the same tra
k. There is noX-
rossing, sin
e in the tra
k layout of T , adja
ent nodes are on distin
t tra
ks andthere is no X-
rossing. Thus we have a tra
k layout of G. The number of tra
ks is3 tpw(G), whi
h is at most 72�(G)tw(G) by the theorem of Ding and Oporowski [31℄dis
ussed in x2.2.In the remainder of this se
tion, we prove two results that show how tra
k layouts
an be manipulated without introdu
ing an X-
rossing. The �rst is a generalisation



12 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOODof the `wrapping' algorithm of Felsner et al. [42℄, who impli
itly proved the 
ase s = 1.Lemma 3.4. If a graph G has an (improper) tra
k layout f(Vi; <i) : 1 � i � tgwith maximum edge span s, then G has an (improper) (2s+ 1)-tra
k layout.Proof. Let ` = 2s + 1. Constru
t an `-tra
k assignment of G by merging thetra
ks fVi : i � j (mod t)g for ea
h j, 0 � j � t � 1, with verti
es in V� appearingbefore verti
es in V� in the new tra
k j, for all �; � � j (mod t) with � < �. Thegiven order of ea
h Vi is preserved in the new tra
ks. It remains to prove that thereis no X-
rossing. Consider two edges vw and xy. Let i1 and i2, 1 � i1 < i2 � t, bethe minimum and maximum tra
ks 
ontaining v, w, x or y in the given t-tra
k layoutof G.First 
onsider the 
ase that i2 � i1 > 2s. Then without loss of generality v is intra
k i2 and y is in tra
k i1. Thus w is in a greater tra
k than x, and even if x (ory) appear on the same tra
k as v (or w) in the new `-tra
k assignment, x (or y) willbe to the left of v (or w). Thus these edges do not form an X-
rossing in the `-tra
kassignment. Otherwise i2 � i1 � 2s. Thus any two of v, w, x or y will appear onthe same tra
k in the `-tra
k assignment if and only if they are on the same tra
k inthe given t-tra
k layout (sin
e ` > 2s). Hen
e the only way for these four verti
es toappear on exa
tly two tra
ks in the `-tra
k assignment is if they were on exa
tly twolayers in the given t-tra
k layout, in whi
h 
ase, by assumption vw and xy do notform an X-
rossing. Therefore there is no X-
rossing, and we have an `-tra
k layoutof G.The next result shows that the number of verti
es in di�erent tra
ks of a tra
klayout 
an be balan
ed without introdu
ing an X-
rossing. The proof is based on anidea due to Pa
h et al. [75℄ for balan
ing the size of the 
olour 
lasses in a 
olouring.Lemma 3.5. If a graph G has an (improper) t-tra
k layout, then for every t0 > 0,G has an (improper) bt + t0
-tra
k layout with at most d nt0 e verti
es in ea
h tra
k.Proof. For ea
h tra
k with q > d nt0 e verti
es, repla
e it by dq=d nt0 ee `sub-tra
ks'ea
h with exa
tly d nt0 e verti
es ex
ept for at most one sub-tra
k with q mod d nt0 everti
es, su
h that the verti
es in ea
h sub-tra
k are 
onse
utive in the original tra
k,and the original order is maintained. There is no X-
rossing between sub-tra
ks fromthe same original tra
k as there is at most one edge between su
h sub-tra
ks. Thereis no X-
rossing between sub-tra
ks from di�erent original tra
ks as otherwise therewould be an X-
rossing in the original. There are at most bt0
 tra
ks with d nt0 e verti
es.Sin
e there are at most t tra
ks with less than d nt0 e verti
es, one for ea
h of the originaltra
ks, there is a total of at most bt+ t0
 tra
ks.4. Three-Dimensional Drawings and Tra
k Layouts. In this se
tion weprove Theorem 2.9, whi
h states that three-dimensional drawings with small volumeare 
losely related to tra
k layouts with few tra
ks.Lemma 4.1. If a graph G has an A � B � C drawing, then G has an improperAB-tra
k layout, and G has a 2AB-tra
k layout.Proof. Let Vx;y be the set of verti
es of G with an X-
oordinate of x and a Y -
oordinate of y, where without loss of generality 1 � x � A and 1 � y � Y . With ea
hset Vx;y ordered by the Z-
oordinates of its elements, fVx;y : 1 � x � A; 1 � y � Y g isan improper AB-tra
k assignment. There is no X-
rossing, as otherwise there wouldbe a 
rossing in the original drawing, and hen
e we have an improper AB-tra
k layout.By Lemma 2.2, G has a 2AB-tra
k layout.We now prove the 
onverse of Lemma 4.1. The proof is inspired by the gener-alisations of the moment 
urve algorithm by Cohen et al. [21℄ and Pa
h et al. [75℄,des
ribed in x2.6. Loosely speaking, Cohen et al. [21℄ allow three `free' dimensions,
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h et al. [75℄ use the assignment of verti
es to 
olour 
lasses to `�x' onedimension with two dimensions free. We use an assignment of verti
es to tra
ks to�x two dimensions with one dimension free. The style of three-dimensional drawingprodu
ed by our algorithm, where tra
ks are drawn verti
ally, is illustrated in Fig. 4.1.
Fig. 4.1. A three-dimensional drawing produ
ed from a tra
k layout.Lemma 4.2. If a graph G has a (possibly) improper k-tra
k layout, then G hasa k � 2k � 2k � n0 three-dimensional drawing, where n0 is the maximum number ofverti
es in a tra
k.Proof. Suppose f(Vi; <i) : 1 � i � kg is the given improper k-tra
k layout. Letp be the smallest prime su
h that p > k. Then p � 2k by Bertrand's postulate. Forea
h i, 1 � i � k, represent the verti
es in Vi by the grid-pointsf(i; i2 mod p; t) : 1 � t � p � jVij; t � i3 (mod p)g ;su
h that the Z-
oordinates respe
t the given total order <i. Draw ea
h edge as aline-segment between its end-verti
es. Suppose two edges e and e0 
ross su
h thattheir end-verti
es are at distin
t points (i�; i2� mod p; t�), 1 � � � 4. Then thesepoints are 
oplanar, and if M is the matrixM = 0BB�1 i1 i21 mod p t11 i2 i22 mod p t21 i3 i23 mod p t31 i4 i24 mod p t41CCAthen the determinant det(M ) = 0. We pro
eed by 
onsidering the number of distin
ttra
ks N = jfi1; i2; i3; i4gj.� N = 1: By the de�nition of an improper tra
k layout, e and e0 do not 
ross.� N = 2: If either edge is intra-tra
k then e and e0 do not 
ross. Otherwiseneither edge is intra-tra
k, and sin
e there is no X-
rossing, e and e0 do not 
ross.� N = 3: Without loss of generality i1 = i2. It follows that det(M ) = (t2 � t1) �det(M 0), where M 0 = 0�1 i2 i22 mod p1 i3 i23 mod p1 i4 i24 mod p1A :
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e t1 6= t2, det(M 0) = 0. However, M 0 is a Vandermonde matrix modulo p, andthus det(M 0) � (i2 � i3)(i2 � i4)(i3 � i4) (mod p);whi
h is non-zero sin
e i2, i3 and i4 are distin
t and p is a prime, a 
ontradi
tion.� N = 4: Let M 0 be the matrix obtained from M by taking ea
h entry modulop. Then det(M 0) = 0. Sin
e t� � i3� (mod p), 1 � � � 4,M 0 � 0BB�1 i1 i21 i311 i2 i22 i321 i3 i23 i331 i4 i24 i341CCA (mod p) :Sin
e ea
h i� < p, M 0 is a Vandermonde matrix modulo p, and thusdet(M 0) � (i1 � i2)(i1 � i3)(i1 � i4)(i2 � i3)(i2 � i4)(i3 � i4) (mod p);whi
h is non-zero sin
e i� 6= i� and p is a prime. This 
ontradi
tion proves there areno edge 
rossings. The produ
ed drawing is at most k � 2k� 2k � n0.Proof of Theorem 2.9. Let F(n) be a family of fun
tions 
losed under mul-tipli
ation. Let G be an n-vertex graph with a t-tra
k layout, where t 2 F(n). ByLemma 3.5 with t0 = t, G has a 2t-tra
k layout with at most dnt e verti
es in ea
h tra
k.By Lemma 4.2, G has a 2t� 4t� 4t � dnt e drawing, whi
h is O(t)�O(t)�O(n). Con-versely, suppose an n-vertex graph G has a A�B�O(n) drawing, where A;B 2 F(n).By Lemma 4.1, G has a tra
k layout with 2AB 2 F(n) tra
ks.Proof of Theorem 2.14. Let t = tn(G), and suppose 1 � r � n=t. By Lemma 3.5with t0 = nr , G has a bnr + t
-tra
k layout with at most r verti
es in ea
h tra
k. Byassumption t � nr , and the number of tra
ks is at most 2nr . By Lemma 4.2, G has a2nr � 4nr � 4n three-dimensional drawing, whi
h has volume 32n3=r2 and aspe
t ratio2r. 5. Queue Layouts and Tra
k Layouts. In this se
tion we prove Theorem 2.6,whi
h states that tra
k and queue layouts are 
losely related. Our �rst lemma high-lights this fa
t | its proof follows immediately from the de�nitions (see Fig. 5.1).Lemma 5.1. A bipartite graph G = (A;B;E) has a 2-tra
k layout with tra
ks Aand B if and only if G has a 1-queue layout su
h that in the 
orresponding vertex-ordering, the verti
es in A appear before the verti
es in B.Fig. 5.1. A 2-tra
k layout and a 1-queue layout of a bipartite graph.We now show that a queue layout 
an be obtained from a tra
k layout. Thisresult 
an be viewed as a generalisation of the 
onstru
tion of a 2-queue layout of anouterplanar graph by Heath et al. [54℄ and Rengarajan and Veni Madhavan [80℄ (withs = 1).Lemma 5.2. If a graph G has a (possibly) improper t-tra
k layout f(Vi; <i) : 1 �i � tg with maximum edge span s (� t�1), then qn(G) � s+1, and if the given tra
klayout is not improper, then qn(G) � s.



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 15Proof. First suppose that there are no intra-tra
k edges. Let � be the vertexordering (V1; V2; : : : ; Vt) of G. Let E� be the set of edges with span � in the giventra
k layout. As in Lemma 5.1, two edges from the same pair of tra
ks are nestedin � if and only if they form an X-
rossing in the tra
k layout. Sin
e no two edgesform an X-
rossing in the tra
k layout, no two edges that are between the same pairof tra
ks are nested in �. If two edges not from the same pair of tra
ks have the samespan then they are not nested in �. (This idea is due to Heath and Rosenberg [58℄.)Thus no two edges are nested in ea
h E�, and we have an s-queue layout of G. Ifthere are intra-tra
k edges, then they all form one additional queue in �.We now set out to prove the 
onverse of Lemma 5.2. It is well known that thesubgraph indu
ed by any two tra
ks of a tra
k layout is a forest of 
aterpillars [52℄.A 
olouring of a graph is a
y
li
 if every bi
hromati
 subgraph is a forest; that is,every 
y
le re
eives at least three distin
t 
olours. Thus a t-tra
k layout of a graphG de�nes an a
y
li
 t-
olouring of G. The minimum number of 
olours in an a
y
li

olouring of G is the a
y
li
 
hromati
 number of G, denoted by �a(G). Thus,�a(G) � tn(G) :A
y
li
 
olourings were introdu
ed by Gr�unbaum [49℄, who proved that everyplanar graph is a
y
li
ally 9-
olourable. This result was steadily improved [1, 65, 68℄until Borodin [12℄ proved that every planar graph is a
y
li
ally 5-
olourable, whi
h isthe best possible bound. Many other graph families have bounded a
y
li
 
hromati
number, in
luding graphs embeddable on a �xed surfa
e [2, 3, 6℄, 1-planar graphs[13℄, graphs with bounded maximumdegree [5℄, and graphs with bounded tree-width.A folklore result states that �a(G) � tw(G) + 1 (see [43℄). More generally, Ne�set�riland Ossona de Mendez [71℄ proved that every proper minor-
losed graph family hasbounded a
y
li
 
hromati
 number. In fa
t, Ne�set�ril and Ossona de Mendez [71℄proved that every graph G has a star k-
olouring (every bi
hromati
 subgraph is aforest of stars), where k is a (small) quadrati
 fun
tion of the maximum 
hromati
number of a minor of G.Lemma 5.3. Every graph G with a
y
li
 
hromati
 number �a(G) � 
 and queue-number qn(G) � q has tra
k-number tn(G) � 
 (2q)
�1.Proof. Let fVi : 1 � i � 
g be an a
y
li
 
olouring of G. Let � be the vertex-ordering in a q-queue layout of G. Consider an edge vw with v 2 Vi, w 2 Vj , andi < j. If v <� w then vw is forward, and if w <� v then vw is ba
kward. Consider theedges to be 
oloured with 2q 
olours, where ea
h 
olour 
lass 
onsists of the forwardedges in a single queue, or the ba
kward edges in a single queue.Alon andMarshall [4℄ proved that given a (not ne
essarily proper) edge k-
olouringof a graph G, any a
y
li
 
-
olouring of G 
an be re�ned to a 
k
�1-
olouring so thatthe edges between any pair of (vertex) 
olour 
lasses are mono
hromati
, and ea
h(vertex) 
olour 
lass is 
ontained in some original 
olour 
lass. (Ne�set�ril and Ras-paud [72℄ generalised this result for 
oloured mixed graphs.) Apply this result withthe given a
y
li
 
-
olouring of G and the edge 2q-
olouring dis
ussed above. Considerthe resulting 
(2q)
�1 
olour 
lasses to be tra
ks ordered by �. The edges betweenany two tra
ks are from a single queue, and are all forward or all ba
kward.Suppose that there are edges vw and xy that form an X-
rossing. Sin
e ea
h tra
kis a subset of some Vi, we 
an assume that v; x 2 Vi, w; y 2 Vj and i < j. Supposethat vw and xy are both forward. The 
ase in whi
h vw and xy are both ba
kwardis symmetri
. Thus v <� w and x <� y. Sin
e vw and xy form an X-
rossing, andthe tra
ks are ordered by �, we have v <� x and y <� w. Hen
e v <� x <� y <� w.



16 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOODThat is, vw and xy are nested. This is the desired 
ontradi
tion, sin
e edges betweenany pair of tra
ks are from a single queue. Thus we have a 
(2q)
�1-tra
k layout ofG. Proof of Theorem 2.6. Let F(n) be a family of fun
tions 
losed under mul-tipli
ation. Let G be an n-vertex graph from a proper minor-
losed graph familyG. First, suppose that G has a t-tra
k layout, where t 2 F(n). By Lemma 5.2,G has queue-number qn(G) � t � 1 2 F(n). Conversely, suppose G has queue-number qn(G) = q 2 F(n). By the above-mentioned result of Ne�set�ril and Ossonade Mendez [71℄, G has bounded a
y
li
 
hromati
 number �a(G) � 
 2 O(1). ByLemma 5.3, G has a t-tra
k layout, where t � 
(2q)
�1 2 F(n).6. Tree-Partitions of k-Trees. In this se
tion we prove our theorem regardingtree-partitions of k-trees mentioned in x2.2. This result forms the 
ornerstone of theproof of Theorem 7.3.Theorem 6.1. Let G be a k-tree with maximum degree �. Then G has a rootedtree-partition (T; fTx : x 2 V (T )g) su
h that for all nodes x of T ,(a) if x is a non-root node of T and y is the parent node of x, then the set ofverti
es in Ty with a neighbour in Tx form a 
lique Cx of G, and(b) the indu
ed subgraph G[Tx℄ is a 
onne
ted (k � 1)-tree.Furthermore the width of (T; fTx : x 2 V (T )g) is at most maxf1; k(�� 1)g.Proof. We assume G is 
onne
ted, sin
e if G is not 
onne
ted then a tree-partitionof G that satis�es the theorem 
an be determined by adding a new root node with anempty bag, adja
ent to the root node of a tree-partition of ea
h 
onne
ted 
omponentof G.It is well-known that G is a 
onne
ted k-tree if and only if G has a vertex-ordering� = (v1; v2; : : : ; vn), su
h that for all i 2 f1; 2; : : :; ng,(i) if Gi is the indu
ed subgraph G[fv1; v2; : : : ; vig℄, then Gi is 
onne
ted andthe vertex-ordering of Gi indu
ed by � is a breadth-�rst vertex-ordering of Gi, and(ii) the neighbours of vi in Gi form a 
lique Ci = fvj : vivj 2 E(G); j < ig with1 � jCij � k (unless i = 1 in whi
h 
ase Ci = ;).In the language of 
hordal graphs, � is a (reverse) `perfe
t elimination' vertex-ordering and 
an be determined, for example, by the Lex-BFS algorithm by Rose etal. [82℄ (also see [48℄). Moreover, we 
an 
hoose v1 to be any vertex in G.Let r be a vertex of minimum degree6 in G. Then deg(r) � k. Let � =(v1; v2; : : : ; vn) be a vertex-ordering of G with v1 = r, and satisfying (i) and (ii).By (i), the depth of ea
h vertex vi in � is the same as the depth of vi in the vertex-ordering of Gj indu
ed by �, for all j � i. We therefore simply speak of the depth ofvi. Let Vd be the set of verti
es of G at depth d.Claim 1. For all d � 1, and for every 
onne
ted 
omponent Z of G[Vd℄, the setof verti
es at depth d� 1 with a neighbour in Z form a 
lique of G.Proof. The 
laim in trivial for d = 1 or d = 2. Now suppose that d � 3. Assumefor the sake of 
ontradi
tion that there are two non-adja
ent verti
es x and y at depthd � 1, su
h that x has a neighbour in Z and y has a neighbour in Z. Let P1 be ashortest path between x and y with its interior verti
es in Z. Let P2 be a shortestpath between x and y with its interior verti
es at depth at most d � 2. Sin
e theinterior verti
es of P1 are at depth d, there is no edge between an interior vertex of6We 
hoose r to have minimum degree to obtain a slightly improved bound on the width of thetree-partition. If we 
hoose r to be an arbitrary vertex then the width is at most maxf1;�; k(��1)g,and the remainder of Theorem 6.1 holds.



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 17P1 and an interior vertex of P2. Thus P1 [ P2 is a 
hordless 
y
le of length at leastfour, 
ontradi
ting the fa
t that G is 
hordal (by Lemma 2.1).De�ne a graph T and a partition fTx : x 2 V (T )g of V (G) indexed by the nodesof T as follows. There is one node x in T for every 
onne
ted 
omponent of ea
hG[Vd℄, whose bag Tx is the vertex-set of the 
orresponding 
onne
ted 
omponent. Wesay x and Tx are at depth d. Clearly a vertex in a depth-d bag is also at depth d. The(unique) node of T at depth zero is 
alled the root node. Let two nodes x and y of Tbe 
onne
ted by an edge if there is an edge vw of G with v 2 Tx and w 2 Ty. Thus(T; fTx : x 2 V (T )g) is a `graph-partition'.We now prove that in fa
t T is a tree. First observe that T is 
onne
ted sin
e G is
onne
ted. By de�nition, nodes of T at the same depth d are not adja
ent. Moreovernodes of T 
an be adja
ent only if their depths di�er by one. Thus T has a 
y
leonly if there is a node x in T at some depth d, su
h that x has at least two distin
tneighbours in T at depth d� 1. However this is impossible sin
e by Claim 1, the setof verti
es at depth d�1 with a neighbour in Tx form a 
lique (whi
h we 
all Cx), andare hen
e in a single bag at depth d � 1. Thus T is a tree and (T; fTx : x 2 V (T )g)is a tree-partition of G (see Fig. 6.1).
V0

V1

V2

V3 Fig. 6.1. Illustration for Theorem 6.1 in the 
ase of k = 3.We now prove that ea
h bag Tx indu
es a 
onne
ted (k � 1)-tree. This is truefor the root node whi
h only has one vertex. Suppose x is a non-root node of T atdepth d. Ea
h vertex in Tx has at least one neighbour at depth d � 1. Thus in thevertex-ordering of Tx indu
ed by �, ea
h vertex vi 2 Tx has at most k� 1 neighboursvj 2 Tx with j < i. Thus the vertex-ordering of Tx indu
ed by � satis�es (i) and (ii)for k � 1, and G[Tx℄ is (k � 1)-tree. By de�nition ea
h G[Tx℄ is 
onne
ted.Finally, 
onsider the 
ardinality of a bag in T . We 
laim that ea
h bag 
ontainsat most maxf1; k(�� 1)g verti
es. The root bag has one vertex. Let x be a non-root



18 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOODnode of T with parent node y. Suppose y is the root node. Then Ty = frg, and thusjTxj � deg(r) � k � k(� � 1) assuming � � 2. If � � 1 then all bags have onevertex. Now assume y is a non-root node. The set of verti
es in Ty with a neighbourin Tx forms the 
lique Cx. Let k0 = jCxj. Thus k0 � 1, and sin
e Cx � Ty and G[Ty℄is a (k � 1)-tree, k0 � k. A vertex v 2 Cx has k0 � 1 neighbours in Cx and at leastone neighbour in the parent bag of y. Thus v has at most � � k0 neighbours in Tx.Hen
e the number of edges between Cx and Tx is at most k0(�� k0). Every vertex inTx is adja
ent to a vertex in Cx. Thus jTxj � k0(�� k0) � k(�� 1). This 
ompletesthe proof.7. Tree-Width and Tra
k Layouts. In this se
tion we prove that tra
k-number is bounded by tree-width. Let f(Vi; <i) : i 2 Ig be a tra
k layout of agraph G. We say a 
lique C of G 
overs the set of tra
ks fi 2 I : C \ Vi 6= ;g. LetS be a set of 
liques of G. Suppose there exists a total order � on S su
h that forall 
liques C1; C2 2 S, if there exists a tra
k i 2 I, and verti
es v 2 Vi \ C1 andw 2 Vi\C2 with v <i w, then C1 � C2. In this 
ase, we say � is ni
e, and S is ni
elyordered by the tra
k layout.Lemma 7.1. Let L � I be a set of tra
ks in a tra
k layout f(Vi; <i) : i 2 Ig of agraph G. If S is a set of 
liques, ea
h of whi
h 
overs L, then S is ni
ely ordered bythe given tra
k layout.Proof. De�ne a relation � on S as follows. For every pair of 
liques C1; C2 2 S,de�ne C1 � C2 if C1 = C2 or there exists a tra
k i 2 L and verti
es v 2 C1 andw 2 C2 with v <i w. Clearly all 
liques in S are 
omparable.Suppose that � is not antisymmetri
; that is, there exists distin
t 
liques C1; C2 2S, distin
t tra
ks i; j 2 L, and distin
t verti
es v1; w1 2 C1 and v2; w2 2 C2, su
hthat v1 <i v2 and w2 <j w1. Sin
e C1 and C2 are 
liques, the edges v1w1 and v2w2form an X-
rossing, whi
h is a 
ontradi
tion. Thus � is antisymmetri
.We 
laim that � is transitive. Suppose there exist 
liques C1; C2; C3 2 S su
hthat C1 � C2 and C2 � C3. We 
an assume that C1, C2 and C3 are pairwise distin
t.Thus there are verti
es u1 2 C1, u2 2 C2, v2 2 C2 and v3 2 C3, su
h that u1 <i u2and v2 <j v3 for some pair of (not ne
essarily distin
t) tra
ks i; j 2 L. Sin
e C3 hasa vertex in Vi and sin
e C3 6� C2, there is a vertex u3 2 C3 with u2 �i u3. Thusu1 <i u3, whi
h implies that C1 � C3. Thus � is transitive.Hen
e � is a total order on S, whi
h by de�nition is ni
e.Consider the problem of partitioning the 
liques of a graph into sets su
h thatea
h set is ni
ely ordered by a given tra
k layout. The following immediate 
orollaryof Lemma 7.1 says that there exists su
h a partition where the number of sets doesnot depend upon the size of the graph.Corollary 7.2. Let G be a graph with maximum 
lique size k. Given a t-tra
klayout of G, there is a partition of the 
liques of G into Pki=1 �ti� sets, ea
h of whi
his ni
ely ordered by the given tra
k layout.We do not a
tually use Corollary 7.2 in the following result, but the idea ofpartitioning the 
liques into ni
ely ordered sets is 
entral to its proof.Theorem 7.3. For every integer k � 0, there is a 
onstant tk = 3k � 6(4k�3k�1)=9su
h that every graph G with tree-width tw(G) � k has a tk-tra
k layout.Proof. If the input graph G is not a k-tree then add edges to G to obtain a k-tree
ontaining G as a subgraph. It is well-known that a graph with tree-width at mostk is a spanning subgraph of a k-tree. These extra edges 
an be deleted on
e we aredone. We pro
eed by indu
tion on k with the following hypothesis:For all k 2 N, there exists a 
onstant sk, and sets Ik and Sk su
h that
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h element of Sk is a subset of Ik, and3. every k-tree G has a tk-tra
k layout indexed by Ik, su
h that for every 
liqueC of G, the set of tra
ks that C 
overs is in Sk.Consider the base 
ase with k = 0. A 0-tree G has no edges and thus has a 1-tra
klayout. Let I0 = f1g and order V1 = V (G) arbitrarily. Thus t0 = 1, s0 = 1, andS0 = ff1gg satisfy the hypothesis for every 0-tree. Now suppose the result holds fork � 1, and G is a k-tree.Let (T; fTx : x 2 V (T )g) be a tree-partition of G des
ribed in Theorem 6.1, whereT is rooted at r. Ea
h indu
ed subgraph G[Tx℄ is a (k � 1)-tree. Thus, by indu
tion,there are sets Ik�1 and Sk�1 with jIk�1j = tk�1 and jSk�1j = sk�1, su
h that forevery node x of T , the indu
ed subgraph G[Tx℄ has a tk�1-tra
k layout indexed byIk�1. For every 
lique C of G[Tx℄, if C 
overs L � Ik�1 then L 2 Sk�1. AssumeIk�1 = f1; 2; : : : ; tk�1g and Sk�1 = fX1; X2; : : : ; Xsk�1g. By Theorem 6.1, for ea
hnon-root node x of T , if p is the parent node of x, then the set of verti
es in Tp witha neighbour in Tx form a 
lique Cx. Let �(x) = i where Cx 
overs Xi. For the rootnode r of T , let �(r) = 1.Tra
k layout of T . To 
onstru
t a tra
k layout of G we �rst 
onstru
t a tra
klayout of the tree T indexed by the set f(d; i) : d � 0; 1 � i � sk�1g, where the tra
kLd;i 
onsists of nodes x of T at depth d with �(x) = i. Here the depth of a node xis the distan
e in T from the root node r to x. We order the nodes of T within thetra
ks by in
reasing depth. There is only one node at depth d = 0. Suppose we havedetermined the orders of the nodes up to depth d� 1 for some d � 1.Let i 2 f1; 2; : : :; sk�1g. The nodes in Ld;i are ordered primarily with respe
t tothe relative positions of their parent nodes (at depth d� 1). More pre
isely, let �(x)denote the parent node of ea
h node x 2 Ld;i. For all nodes x and y in Ld;i, if �(x)and �(y) are in the same tra
k and �(x) < �(y) in that tra
k, then x < y in Ld;i. Forx and y with �(x) and �(y) on distin
t tra
ks, the relative order of x and y is notimportant. It remains to spe
ify the order of nodes in Ld;i with a 
ommon parent.Suppose P is a set of nodes in Ld;i with a 
ommonparent node p. By 
onstru
tion,for every node x 2 P , the parent 
lique Cx 
overs Xi in the tra
k layout of G[Tp℄. ByLemma 7.1 the 
liques fCx : x 2 Pg are ni
ely ordered by the tra
k layout of G[Tp℄.Let the order of P in tra
k Ld;i be spe
i�ed by a ni
e ordering of fCx : x 2 Pg, asillustrated in Fig. 7.1.This 
onstru
tion de�nes a partial order on the nodes in tra
k Ld;i, whi
h 
an bearbitrarily extended to a total order. Hen
e we have a tra
k assignment of T . Sin
ethe nodes in ea
h tra
k are ordered primarily with respe
t to the relative positions oftheir parent nodes in the previous tra
ks, there is no X-
rossing, and hen
e we havea tra
k layout of T .Tra
k layout of G. To 
onstru
t a tra
k assignment of G from the tra
k layoutof T , repla
e ea
h tra
k Ld;i by tk�1 `sub-tra
ks', and for ea
h node x of T , insertthe tra
k layout of G[Tx℄ in pla
e of x on the sub-tra
ks 
orresponding to the tra
k
ontaining x in the tra
k layout of T . More formally, the tra
k layout of G is indexedby the set f(d; i; j) : d � 0; 1 � i � sk�1; 1 � j � tk�1g :Ea
h tra
k Vd;i;j 
onsists of those verti
es v of G su
h that, if Tx is the bag 
ontainingv, then x is at depth d in T , �(x) = i, and v is in tra
k j in the tra
k layout of G[Tx℄.
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Cx1

Cx3

Cy1
Cy3

Cz1
Cz3

x1 x2 x3

y1 y2 y3

z1 z2 z3

p

Ld,1

Ld,2

b

b

b

Ld,sk−1Fig. 7.1. Tra
k layout of nodes with a 
ommon parent p.If x and y are distin
t nodes of T with x < y in Ld;i, then v < w in Vd;i;j, for allverti
es v 2 Tx and w 2 Ty in tra
k j. If v and w are verti
es of G in tra
k j in bagTx at depth d, then the relative order of v and w in Vd;�(x);j is the same as in thetra
k layout of G[Tx℄.Clearly adja
ent verti
es of G are in distin
t tra
ks. Thus we have de�ned a tra
kassignment of G. We 
laim there is no X-
rossing. Clearly an intra-bag edge of Gis not in an X-
rossing with an edge not in the same bag. By indu
tion, there is noX-
rossing between intra-bag edges in a 
ommon bag. Sin
e there is no X-
rossing inthe tra
k layout of T , inter-bag edges of G whi
h are mapped to edges of T withouta 
ommon parent node, are not involved in an X-
rossing.Consider a parent node p in T . For ea
h 
hild node x of p, the set of verti
esin Tp adja
ent to a vertex in Tx forms the 
lique Cx. Thus there is no X-
rossingbetween a pair of edges both from Cx to Tx, sin
e the verti
es of Cx are on distin
ttra
ks. Consider two 
hild nodes x and y of p. For there to be an X-
rossing betweenan edge from Tp to Tx and an edge from Tp to Ty , the nodes x and y must be on thesame tra
k in the tra
k layout of T . Suppose x < y in this tra
k. By 
onstru
tion, Cxand Cy 
over the same set of tra
ks, and Cx � Cy in the 
orresponding ni
e ordering.Thus for any tra
k 
ontaining verti
es v 2 Cx and w 2 Cy, v � w in that tra
k. Sin
eall the verti
es in Tx are to the left of the verti
es in Ty (in a 
ommon tra
k), there isno X-
rossing between an edge from Tp to Tx and an edge from Tp to Ty. Thereforethere is no X-
rossing, and hen
e we have a tra
k layout of G.Wrapped tra
k layout of G. As illustrated in Fig. 7.2, we now `wrap' thetra
k layout of G in the spirit of Lemma 3.1. In parti
ular, de�ne a tra
k assignmentof G indexed by�(d0; i; j) : d0 2 f0; 1; 2g; 1� i � sk�1; 1 � j � tk�1	 ;where ea
h tra
k Wd0 ;i;j = [ fVd;i;j : d � d0 (mod 3)g :If v 2 Vd;i;j and w 2 Vd+3;i;j then v < w in the order of Wd0 ;i;j (where d0 = d mod 3).The order of ea
h Vd;i;j is preserved in Wd0 ;i;j. The set of tra
ks fWd0;i;j : d0 2f0; 1; 2g; 1� i � sk�1; 1 � j � tk�1g forms a tra
k assignment of G.



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 21For every edge vw of G, the depths of the bags in T 
ontaining v and w di�er byat most one. Thus in the wrapped tra
k assignment of G, adja
ent verti
es remainon distin
t tra
ks, and there is no X-
rossing. The number of tra
ks is 3 � sk�1 � tk�1.Every 
lique C of G is either 
ontained in a single bag of the tree-partition or is
ontained in two adja
ent bags. LetS0 = �f(d0; i; h) : h 2 Xjg : d0 2 f0; 1; 2g; 1� i; j � sk�1	 :For every 
lique C of G 
ontained in a single bag, the set of tra
ks 
ontaining C is inS0. Let S00 = �f(d0; i; `) : ` 2 Xjg [ f((d0 + 1) mod 3; p; h) : h 2 Xqg :d0 2 f0; 1; 2g; 1� i; j; p; q � sk�1	 :For every 
lique C of G 
ontained in two bags, the set of tra
ks 
ontaining C is in S 00.Observe that S 0[S 00 is independent of G. Hen
e Sk = S 0[S 00 satis�es the hypothesisfor k.Now jS 0j = 3s2k�1 and jS 00j = 3s4k�1, and thus jS 0 [ S 00j = 3s2k�1(s2k�1 + 1).Therefore any solution to the following set of re
urren
es satis�es the theorem:s0 � 1; t0 � 1; sk � 3s2k�1(s2k�1 + 1); tk � 3sk�1 � tk�1 : (7.1)We 
laim that sk = 6(4k�1)=3 and tk = 3k � 6(4k�3k�1)=9is a solution to (7.1). Observe that s0 = 1 and t0 = 1. Now3s2k�1(s2k�1 + 1) � 6s4k�1 ;and 6(6(4k�1�1)=3)4 = 61+4(4k�1�1)=3 = 6(4k�1)=3 = sk :Thus the re
urren
e for sk is satis�ed. Now3 � sk�1 � tk�1 = 3 � 6(4k�1�1)=3 � 3k�1 � 6(4k�1�3(k�1)�1)=9= 3k � 6(3�4k�1�3+4k�1�3k+3�1)=9= 3k � 6(4k�3k�1)=9= tk :Thus the re
urren
e for tk is satis�ed. This 
ompletes the proof.In the proof of Theorem 7.3 we have made little e�ort to redu
e the bound on tk,beyond that it is a doubly exponential fun
tion of k. In [35℄ we des
ribe a numberof re�nements that result in improved bounds on tk. One su
h re�nement uses stri
tk-trees. From an algorithmi
 point of view, the disadvantage of using stri
t k-trees isthat at ea
h re
ursive step, extra edges must be added to enlarge the graph from apartial stri
t k-tree into a stri
t k-tree, whereas when using (non-stri
t) k-trees, extraedges need only be added at the beginning of the algorithm.For small values of k, mu
h-improved results 
an be obtained. For example, weprove that every series-parallel graph (that is, with tree-width at most two) has an



22 VIDA DUJMOVI�C, PAT MORIN, AND DAVID R. WOOD
sk

b

b

b

2

1

b

b

b

b

b

b

sk

b

b

b

2

1

b

b

b

b

b

b

sk

b

b

b

2

1

b

b

b

b

b

bFig. 7.2. Wrapped tra
k layout in Theorem 7.3.18-tra
k layout [35℄, whereas t2 = 54. This bound has re
ently been improved to 15by Di Gia
omo et al. [26℄. Their method is based on Theorems 6.1 and 7.3, and inthe general 
ase, still gives a doubly exponential upper bound on the tra
k-numberof graphs with tree-width k. For other parti
ular 
lasses of graphs, Di Gia
omo andMeijer [25, 28℄ re
ently improved the 
onstants in our results.Our doubly exponential upper bound is probably not best possible. Di Gia
omoet al. [26℄ 
onstru
ted graphs with tree-width k and tra
k-number at least 2k+1. Thefollowing 
onstru
tion establishes a quadrati
 lower bound. It is similar to a graphdue to Albertson [3℄, whi
h gives a tight lower bound on the star 
hromati
 numberof graphs with tree-width k.Theorem 7.4. For all k � 0, there is a graph Gk with tree-width at most k andtra
k-number tn(Gk) = 12(k + 1)(k + 2).Proof. Let G0 = K1. Obviously G0 has tree-width 0. Constru
t Gk from Gk�1 asfollows. Start with a k-
lique fv1; v2; : : : ; vkg. Let n = 2(12 (k+ 1)(k+2)� 1� k)+ 1.Add n verti
es fw1; w2; : : : ; wng ea
h adja
ent to every vi. Let H1;H2; : : : ;Hn be
opies of Gk�1. For all 1 � j � n, add an edge between wj and ea
h vertex of Hj. Itis easily seen that from a tree de
omposition of Gk�1 of width k�1, we 
an 
onstru
ta tree de
omposition of Gk of width k. Thus Gk has tree-width at most k.To prove that tn(Gk) � 12(k + 1)(k + 2), we pro
eed by indu
tion on k � 0.Obviously tn(G0) = 1. Suppose that tn(Gk�1) � 12k(k + 1), but tn(Gk) � 12(k +1)(k + 2) � 1. Sin
e fv1; v2; : : : ; vkg is a 
lique, we 
an assume that vi is in tra
k i.Sin
e ea
h vertex wj is adja
ent to ea
h vi, no wj is in tra
ks f1; 2; : : :; kg. There are12 (k + 1)(k + 2) � 1 � k remaining tra
ks. Sin
e n is more than twi
e this number,there are at least three wj verti
es in a single tra
k. Without loss of generality,w1 < w2 < w3 in tra
k k + 1. No vertex x of H2 is in tra
k i 2 f1; 2; : : : ; kg, asotherwise xw2 would form an X-
rossing with viw1 or viw3. No vertex x of H2 isin tra
k k + 1, sin
e x and w2 are adja
ent, and w2 is in tra
k k + 1. Thus all
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HnFig. 7.3. The graph Gk .the verti
es of H2 are in tra
ks fk + 2; k + 3; : : : ; 12 (k + 1)(k + 2) � 1g. There are12 (k + 1)(k + 2) � 1 � (k + 1) = 12k(k + 1) � 1 su
h tra
ks. This 
ontradi
ts theassumption that tn(Gk�1) � 12k(k + 1). Therefore tn(Gk) � 12(k + 1)(k + 2).It remains to prove that tn(Gk) � 12(k+ 1)(k+ 2). Suppose we have a 12k(k+ 1)-tra
k layout of Gk�1. Thus ea
h Hj has a 12k(k+ 1)-tra
k layout. Put ea
h vertex viof Gk in tra
k i. Put the verti
es fw1; w2; : : : ; wng in tra
k k + 1 in this order. Putthe tra
k layout of ea
h Hj in tra
ks k + 2; k+ 3; : : : ; 12 (k + 1)(k + 2), su
h that theverti
es of Hj pre
ede the verti
es of Hj+1. Clearly there are no X-
rossings.Also note that Theorem 7.4 (for k � 2) 
an be extended using the proof te
hniqueof Lemma 2.3 to give the same lower bound for improper tra
k layouts.8. Open Problems.1. (In the 
onferen
e version of their paper) Felsner [42℄ asked whether everyplanar graph has a three-dimensional drawing with O(n) volume? By Theorem 2.9,this question has an aÆrmative answer if every planar graph has O(1) tra
k-number.Whether every planar graph has O(1) tra
k-number is an open problem due to H.de Fraysseix [private 
ommuni
ation, 2000℄, and by Theorem 2.6, is equivalent to thefollowing question.2. Heath et al. [58, 54℄ asked whether every planar graph has O(1) queue-number? The best known upper bound on the queue-number of a planar graph isO(pn). In general, Dujmovi�
 and Wood [38℄ proved that every m-edge graph hasqueue-number at most epm, where e is the base of the natural logarithm.3. Heath et al. [58, 54℄ asked whether sta
k-number is bounded by queue-number(and vi
e-versa)? Note that there is a family of graphs G with sn(G) 2 
(3
(qn(G))��),for all G 2 G [54℄.4. Is the queue-number of a graph bounded by a polynomial (or even singlyexponential) fun
tion of its tree-width?A
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