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Abstract

In many engineering applications, including surveillance, guidance, or navigation, single stand-alone sen-
sors or sensor networks are used for collecting information on time varying quantities of interest, such as
kinematical characteristics and measured attributes of moving or stationary objects of interest (e.g. maneu-
vering air targets, ground moving vehicles, or stationary movers such as a rotating antennas).

More strictly speaking, in these applications the state vectors of stochastically moving objects are to be
estimated from a series of sensor data sets, also called scans or data frames. The individual measurements
are produced by the sensors at discrete instants of time, being referred to as scan or frame time, target revisit
time, or data innovation time. These output data (sensor reports, observations, returns, hits, plots) typically
result from complex estimation procedures themselves characterizing particular waveform parameters of the
received sensor signals (signal processing).

In case of moving point-source objects or small extended objects, i.e. typical radar targets, often rela-
tively simple statistical models can be derived from basic physical laws describing their temporal behavior
and thus defining the underlying dynamical system. In addition, appropriate sensor models are available
or can be constructed, which characterize the statistical properties of the produced sensor data sufficiently
correct.

As an introduction to advanced target tracking techniques characteristic problems occurring in typical
radar applications are presented; key ideas relevant for their solution are discussed.
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1 Discussion of the Basic Ideas

In many engineering applications, including surveillance, guidance, or navigation, single stand-alone sensors
or sensor networks are used for collecting information on time varying quantities of interest, such as kine-
matical characteristics and measured attributes of moving or stationary objects of interest (e.g. maneuvering
air targets, ground moving vehicles, or stationary movers such as a rotating antennas).

More strictly speaking, in these applications the state vectors of stochastically moving objects are to be
estimated from a series of sensor data sets, also called scans or data frames. The individual measurements
are produced by the sensors at discrete instants of time, being referred to as scan or frame time, target revisit
time, or data innovation time. These output data (sensor reports, observations, returns, hits, plots) typically
result from complex estimation procedures themselves characterizing particular waveform parameters of the
received sensor signals (signal processing).

In case of moving point-source objects or small extended objects, i.e. typical radar targets, often relatively
simple statistical models can be derived from basic physical laws describing their temporal behavior and thus
defining the underlying dynamical system. In addition, appropriate sensor models are available or can be
constructed, which characterize the statistical properties of the produced sensor data sufficiently correct.

As an introduction to advanced target tracking techniques characteristic problems occurring in typical
radar applications are presented; key ideas relevant for their solution are discussed.

1.1 Sensor Data Exploitation: Tracking

Let us assume a single stand-alone radar sensor or a sensor network (distributed or co-located) producing
measurements which characterize the kinematical parameters of certain objects of interest such as range,
azimuth, or radial velocity with respect to the sensors’ position. In addition, certain types of sensors can be
considered delivering attribute type measurements, which provide information of the objects’ characteristic
properties and thus can be used for target classification or even identification.

For efficiently exploiting the sensor resources available as well as for gaining information not directly
given by the individual sensor reports themselves, appropriate sensor data exploitation algorithms are re-
quired. These techniques for a “post-production processing” of the sensor data basically consist in a tem-
poral integration and a logical analysis of the data by exploiting statistical estimation and data association
methods. In this context also the combination of the data with available background information (“context
knowledge”) is an important aspect. These sensor data processing techniques result in tracks, i.e. estimates
of state trajectories, which statistically represent the currently available knowledge of an object of interest
along with its temporal history. Important parts of the tracks are characteristic quality measures, which
quantitatively describe the reliability or precision of this information.

In the two lectues devoted to target tracking and data fusion aspects we address characteristic target
tracking tasks and sketch the structure and potential use of more advanced algorithms being relevant for
designing tracking systems. By selected examples their potential in view of real radar applications are
demonstrated. The results can directly be transfered to stand-alone sensors and measurement fusion, but are
also the basic elements for designing more sophisticated sensor data fusion architectures.

1.2 Characteristic Problem: Ambiguity

In many practical applications the tracking problem is characterized by uncertainty and ambiguities, which
are inherent constituents of the underlying scenario and the sensor systems used for observing targets in
a region of interest. The BAYESian approach being discussed in the subsequent sections is a well-suited
methodology for dealing with those phenomena. More abstractly speaking, BAYESian tracking is essentially
a processing scheme for dealing with uncertain information (of a particular type), which allows to make
“soft” or “delayed” decisions as long as it is not possible to form a unique decision according to the particular
data situation currently to be dealt with.
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Ambiguities can have many different causes: The sensors may produce ambiguous data due to their lim-
ited resolution capabilities or phenomena such a Doppler blindness in MTI radar applications (MTI: Moving
Target Indicator). Often an additional source of ambiguities is the environment of the object to be tracked
itself. There can well exist dense object situations, residual clutter nor being suppressed of the radar’s clutter
filter, man-made noise, or simply unwanted targets (e.g. birds). A more indirect type of ambiguities can
raise from the properties of the object to be tracked, for example if it shows qualitatively distinct maneuver-
ing phases. Finally, the potential background knowledge to be used may imply problem-inherent ambiguities
such as road maps with their intersections or tactical rules describing the over-all behavior of the objects to
be tracked.

1.3 Multiple Objects: Sensor Resolution

Due to the limited resolution capabilities of every physical sensor, closely-spaced objects moving as a group
for a time will continuously transition from being resolved to unresolved and back again.

As an example let us consider a medium range radar producing range and azimuth measurements for a
target formation consisting of two targets. In case of a resolution conflict an unresolved radar plot can be
interpreted as a measurement of the group center. For physical reasons the resolution in range, azimuth,
and range-rate will be independent from each other. In particular, range and cross-range resolution differ
significancy in many radar applications. Therefore the resolution performance of the sensor is expected to
depend strongly on the current sensor-to-group geometry and the relative orientation of the targets within
the group. The sensor’s resolution capability also determined by the particular signal processing techniques
used and the random target fluctuations. As a complete description is rather complicated, we have to look
for a simplified, but qualitatively correct and mathematically tractable model.

In any case, the radar resolution capability in range and azimuth is limited by the corresponding band- and
beam-width. These radar specific parameters must explicitly enter into any processing of possibly unresolved
plots. The typical size of resolution cells in a medium distance is about 50 m (range) and 500 m (cross
range). As in target formations the mutual distance may well be 50 - 500 m or even less, the limited sensor
resolution is a real problem in target tracking [6]. Evidently, resolution phenomena will be observed if the
range and angular distances between the targets are small compared with the resolution parameters. On
the other hand, the targets within the group are resolvable if the opposite is true. Furthermore we expect a
narrow transient region. A more quantitative description is provided by introducing a probability of being
unresolved Pu depending on the sensor-to-group geometry. For this quantity in subsection 3.2.3 a simple
model is discussed.

As an example let us consider the simplified situation in Figure 1a. A formation with two targets is
passing a radar. We here consider an echelon formation. R is the minimum distance of the group center
from the radar. Figure 1b shows the resulting probability Pu(r;R) parameterized by R = 0, 10, 30, 60
km as a function of the distance r between the formation center and the radar. The solid lines refer to a
formation approaching the radar (ṙ < 0), the dashed lines refer to ṙ > 0. For R �= 0 both flight phases differ
substantially. Near R the probability Pu varies strongly (0.85→ 0.15). For a radial flight (R = 0) we observe
no asymmetry and Pu is constant over a wide range (r � rc). This discussion makes evident, that radar
resolution capability strongly depends on the underlying sensor-to-target geometry and the relative position
of the targets within the group.

1.4 Description by Probability Densities

Many basic ideas and mathematical techniques relevant to the design of tracking systems can be discussed
in a unified statistical framework that essentially makes use of BAYES’ Rule. The general multiple-object,
multiple-sensor tracking task, however, is highly complex and involves rather sophisticated combinatorial
and logical considerations that are beyond the scope of this tutorial. For a more detailed discussion of the

 

 

Advanced Target Tracking Techniques  

2 - 4 RTO-EN-SET-086 



a. scenario b. resolution

Figure 1: Resolution (Effect of Sensor-to-Target Geometry)

problems involved see [4] and the literature cited therein. Nevertheless, in many applications the task can be
partitioned into independent sub-problems of (much) less complexity.

In a BAYESian view, a tracking algorithm is an iterative updating scheme for conditional probability
densities p(xl|Zk). These densities represent all available knowledge on the kinematical state vectors xl of
the objects to be tracked at discrete instants of time tl given both, the sensor data Zk accumulated up to some
time tk , typically the current scan time, as well as all available a priori information (sensor characteristics,
object dynamics, operating conditions, road and topographical maps, tactical rules, . . . ). Depending on the
time tl at which estimates for the state vectors xl are required, the related estimation process is referred to
as prediction (tl > tk), filtering (tl = tk), and retrodiction (tl < tk), respectively [9, 7, 17, 22]. Equation 1
illustrates schematically an iterative process for calculating the conditional probability densities p(xl|Zk):

prediction: p(xk−1|Zk−1)
dynamics model−−−−−−−−−−−−−−−−→

road/topographical maps
p(xk |Zk−1)

filtering: p(xk |Zk−1)
current sensor data−−−−−−−−−−−−−→

sensor model
p(xk |Zk)

retrodiction: p(xl−1|Zk)
filtering output←−−−−−−−−−−

dynamics model
p(xl|Zk).

(1)

Under the conditions previously discussed, the densities have a particular formal structure: They are finite
mixtures, i.e. weighted sums of individual densities that assume particular data interpretations and model
hypotheses to be true. This structure is thus a direct consequence of the uncertain origin of the sensor
data and of the uncertainty related to the underlying system dynamics. Provided the densities p(xl|Zk) are
calculated correctly, optimal estimators may be derived related for various risk functions adapted to the
applications.

Evidently, iteratively defined tracking algorithms must be initiated by appropriately chosen a priori den-
sities (track initiation, track extraction [12, 11]). This is a relatively simple task provided the sensor reports
are actually valid measurements of the objects to be tracked. For low observable objects, i.e. targets em-
bedded in a high false return background, however, more than a single frame of observations are unusually
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(a) forward iteration (b) backward iteration

Figure 2: Scheme of BAYESian Density Iteration

necessary for detecting all objects of interest moving in the sensors’ field of view. By this, a higher level
detection process is defined resulting in algorithms for multiple-frame track extraction (see subsection 3.6).

Figure 2 provides a schematic illustration of the BAYESian density iteration scheme. The probability
densities p(xk−1|Zk−1), p(xk |Zk), and p(xk+1|Zk+1) resulting from filtering at the scan times tk−1, tk , and
tk+1, respectively, are displayed along with the predicted density p(xk+2|Zk+1) (Figure 2a, forward iteration).
While at time tk−1 one sensor report has been processed, no report could be associated to the track at time
tk. Hence a missing detection according to a detection probability < 1 is assumed. As a consequence of this
lack of sensor information, the density p(xk|Zk) is broadened, because target maneuvers may have occurred.
This in particular implies an increased correlation gate for the subsequent scan time tk+1. According to this
effect, at time tk+1 three correlating sensor reports are to be processed leading to a multi-modal probability
density. The multiple modes reflect the ambiguity regarding the origin of the sensor data and characterize also
the predicted density p(xk+2|Zk+1). By this, the data-driven adaptivity of the BAYESian updating scheme
is clearly indicated. In Figure 2b the density p(xk+2|Zk+2) resulting from processing a single correlating
report at tt+2 along with the retrodicted densities p(xk+1|Zk+2), p(xk|Zk+2), and p(xk−1|Zk+2) are shown.
Evidently, newly available sensor data significantly improve the estimates of the past states.

1.5 Discussion of an Example: Dog-fights

Track initiation and maintenance by processing noise corrupted sensor returns is by no means a trivial task if
the sensor data are of uncertain origin or if there exists uncertainty regarding the underlying system dynamics.
With an example with real radar data recorded during a dog-fight exercise we mainly focus on four aspects:

1. Data association conflicts arise even for well-separated objects if a high false return background is to
be taken into account, which was not completely suppressed by clutter filtering.

2. Even in the absence of unwanted sensor reports, ambiguous correlations between newly received sen-
sor reports and existing tracks are an inherent problem for objects moving closely-spaced for some
time.
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3. Additional problems arise from sensor returns having a poor quality, due to large measurement errors,
low signal-to-noise ratios, or fading phenomena (i.e. successively missing plots), for instance.

4. Besides that, the scan rates may be low in certain applications, such as long-range air surveillance.
Furthermore, resolution phenomena make the data association problem task even harder.

5. In a given mission often clearly distinct maneuvering phases can be identified, as even agile targets
do not always use their high maneuvering capability. Nevertheless, sudden switches between the
underlying dynamics models do occur and are to be taken into account.

Figure 3a shows a radar data set accumulated over about 50 min. Besides many false alarms (probably due to
ground clutter) the data of two pairs of interceptor aircraft performing an air combat exercise were recorded.

The detection probability is fairly low (40–60%). In addition rather long sequences of missed detections
occur (fading phenomena). The clutter density is about .002 /km2. The data were collected from a rotating S-
band long-range radar. Range and azimuth information was used only; the elevation data were corrupted and
thus ignored. The radar is characterized by the following parameters: scan period: 10 sec, range accuracy:
350 ft, bearing accuracy: .22◦, range resolution: 1600 ft, bearing resolution: 2.4◦.

Information on the real target position is crucial for evaluating tracking filters. This is particularly true
under conditions where even trained human observers seem unable to assess the filtering output. Here a
secondary radar was used: When primary and secondary radar produced identical information (within a
certain correlation gate), the primary plots received an ID number. The target ID served for track assessment
exclusively and was not used in the filtering algorithm. The verified primary plots are indicated by green
and blue dots in Figure 3d,e along with the final tracking result obtained after processing the raw data
(i.e. multiple hypothesis tracking (MHT) and and subsequent retrodiction).

Figure 3b shows the underlying hypothesis tree formed by the tracker in the first phase of dog-fight 1.
The yellow dots indicate hypotheses related to target 1, while the orange dots refer to target 2. During the
tracking process the number of targets involved (i.e. two) was assumed to be known. Right after the split-off
maneuver the non-maneuvering target has to be tracked in presence of strong clutter interference and is thus
likely to be lost if mono-hypothesis tracking algorithm were used. The leaves of the resulting hypothesis
tree in Figure 3b represent the knowledge of the targets’ kinematical state at the present time. The impact
of retrodiction on the available knowledge of the past target state is displayed in 3c. The blue dots indicate
hypotheses, which could be deleted by exploiting sensor data which became available after the time when
they were formed. The statistical weighting factors after their creation might well have been larger than
the weight of the hypothesis produced by processing the true target measurement. Red and white are the
trajectories finally found by applying retrodiction. Evidently, retrodiction does not improve the estimates
at present. We can conclude that the ambiguities inherent in the sensor data can be removed by using
retrodiction techniques at the expense of a certain time delay of some sensor scans. Even a delay of only two
frames can significantly improve the filtering output.

1.6 Generic Scheme of a Tracking System

Figure 4 provides a schematic overview of a generic tracking system along with its relation to the underlying
sensor system. In the subsequent sections its basic elements are being discussed in greater detail.

After passing the detector device, which essentially serves as a means of data rate reduction, the sen-
sor signal processing unit provides estimates of signal parameters characterizing the waveforms received by
the sensing hardware (e.g. radar antennas). From these preprocessed estimates sensor reports are formed,
i.e. measured quantities possibly related to the objects of interest, that are input information for the tracking
system. In the tracking system itself all sensor data, which can be associated to the already existing tracks,
are used for track maintenance (prediction, filtering, retrodiction). The remaining non-associated data are
processed in order to establish new tentative tracks (track initiation, multiple frame track extraction). The
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(a) accumulated radar data

(b) MHT hypothesis tree (c) retrodicted trajectory

(d), (e) both dogfights with verified primary plots

Figure 3: A Typical Dog-fight Scenario
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Figure 4: Generic Scheme of a Tracking System

plot-to-track association unit thus plays a key role in any multiple target tracking system. Evidently, a priori
knowledge in terms of statistical models of the sensor performance, object characteristics (including their
dynamical behavior), and the object environment is prerequisite to both track maintenance and track initi-
ation. Track confirmation/termination, object classification/identification, and fusion of tracks representing
identical information is performed in the track processing unit. The generic scheme of a tracking system
is completed by a man-machine interface with displaying and interaction functions. The available informa-
tion on the sensor, the objects of interest, and the environment can be specified, updated, or corrected by
direct human interaction as well as by the track processor itself, e.g. as a consequence of a successful object
classification.

2 BAYESian Approach to Target Tracking

Following the spirit of the preliminary discussion in the introduction we briefly summarize along which lines
how we shall proceed:

• Basis: In the course of time one or several sensors produce ‘measurements’ of one or several targets of
interest. The accumulated sensor data an example of a ‘time series’. Each targets is characterized by its
current ‘state’, a vector typically consisting of the current target position, its velocity, and acceleration.
The target state is expected to change with time.

• Objective: Learn as much as possible about the individual target states at each time of interest by
analyzing the ‘time series’ created by the sensor data.

• Problem: The sensor information is inaccurate, incomplete, and eventually even ambiguous. More-
over, the phenomena determining the targets’ temporal evolution are usually not well-known.

• Approach: Interpret sensor measurements and target state vectors as random variables. Describe by
the corresponding probability density functions (pdf) what is known about these random variables.
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• Solution: Derive iteration formulae for calculating the probability density functions of the state vari-
ables and develope a mechanism for initiating the iteration. Derive state estimates from the densities
along with appropriate quality measures.

2.1 Probability Densities: Selected Facts

Let us at first collect some facts from elementary probability theory to be used in the subsequent discussion:

1. Information of a random variable x is gained by integrating the corresponding probability density
function p(x). Integration over a volume V , i.e.

∫
V dxp(x), yields the probability that the event ‘x ∈ V ’

occurs. With this interpretation a pdf must be non-negative, p(x) ≥ 0, and normalized,
∫
dx p(x) = 1.

2. The expectation of x is defined by the integral � [x] =
∫
dx x p(x), i.e. by the ‘centroid’ of its pdf.

Another important expectation is the ‘expected error of the expectation of x’, i.e. a quality measure for
� [x]. It is defined by the integral (covariance matrix):

� [(x − � [x])(x − � [x])� ] =
∫
dx (x − � [x])(x − � [x])�p(x). (2)

3. A conditional probability density p(x|y) of a random variable x describes how available knowledge
about another random variable y affects our knowledge on x. The conditional pdf is defined by:

p(x|y) =
p(x, y)
p(y)

(3)

with p(x, y) denoting the joint pdf of both random variables x and y.

4. By writing the pdf p(x) of a random variable x in form of a marginal probability density,

p(x) =
∫
dy p(x, y) =

∫
dy p(x|y) p(y), (4)

we are able to bring another random variable y into the play, which might be related to x.

5. By using BAYES formula we can calculate how information on y affects our knowledge on x, provided
the pdfs p(y|x) and p(x) are known. It is a direct consequence of the last two statements and is given
by:

p(x|y) =
p(y|x)p(x)∫
dx p(y|x)p(x)

. (5)

6. Precise knowledge that a random variable x is equal to a certain value x̄ fits well into the description of
uncertainty by means of probability densities if Dirac’s δ-distributions p(x) = δ(x; x̄) are considered.
In this case we have for suitable function g : x 	→ g(x) of x: � [g(x)] =

∫
dx g(x) δ(x; x̄) = g(x̄).

7. An important special case is the GAUSSian pdf characterized by a single maximum concentrated
around x̄. Let the quadratic form q(x) = 1

2 (x − x̄)�C−1(x − x̄) be a measure for the distance between
the random variable x and the ‘center’ x̄. By q(x) = const. ellipsoids are defined centered around x̄,
whose volume and orientation are determined by a symmetric and positive definite matrix C. As a
special pdf decaying with an increasing distance of x from x̄, let us consider p(x) = e−q(x)/

∫
dx e−q(x) .

Evidently, p(x) is positive and correctly normalized. After integration we obtain:

p(x) = N (x; x̄, C
)
= det[2πC]−

1
2 e−

1
2 (x−x̄)�C−1(x−x̄) (6)

with an expectation vector and an covariance matrix given by � [x] = x̄ and � [(x − x̄)(x − x̄)�] = C,
respectively. By this, the covariance matrix C has a simple and intuitive geometrical interpre-
tation. By considering ‘C → 0’, a representation of the δ-distribution is defined: δ(x; x̄) ‘=’
lim‘C → 0’ N

(
x; x̄, C

)
.
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8. For GAUSSian pdfs there exists an extremely useful product formula facilitating many calculations:

N (z; Hx, R
)N (x; y, P

)
= N (z; Hy, S

)N (x; y + W(z −Hy), P −WSW�) (7)

with: S = HPH� + R and W = PH�S−1.

This formula can be proven by interpreting N (z; Hx, R
)N (x; y, P

)
as a joint density p(z, x) =

p(z|x)p(x). It can be shown that p(z, x) is a GAUSSian itself:

p(z, x) = N (( z
x
)
;
(Hy

y
)
,
(

S HP
PH� P

))
. (8)

Using p(z, x) and the ‘matrix inversion lemma’ (e.g. the useful book [10]) calculate the marginal
and conditional densities p(z), p(x|z). Due to p(z|x)p(x) = p(x|z)p(z) the formula is obtained. An
equivalent version of the product formula is:

N (z; Hx, R
)N (x; y, P

)
= N (z; Hy, S

)N (x; Q−1(P−1y + H�R−1z), Q
)

(9)

with: Q = (P−1 + H�R−1H)−1.

9. Let x be a GAUSSian random variable. The pdf of y = a + Ax with fixed a and A is given by

N (x; x̄, X
) y=a+Ax−−−−−−→ N (y; a + Ax̄, AXA�

)
. (10)

Proof: p(y) =
∫
dx p(x, y) =

∫
dx p(y|x) p(x) =

∫
dx δ(y; x) p(x) as we have precise knowledge of

y given x is known. For ‘D → 0’ we can thus write: p(y) =
∫
dx N (y; a + Ax, D) N (x; x̄, P) =

N (y; a + Ax̄, AXA� + D) according to the product formula Equation 7.

2.2 Target Tracking: General Problem

Let us consider a time series of measurement sets Zl = {z1
l , . . . , z

nk
l } related to target states xl at instants of

time denoted by tl, l = 1, . . . , k: Zk = {Zk, nk,Zk−1, nk−1, . . . , Z1, m1} = {Zk, nk,Zk−1}. The individual
measurements and the target states be described by vectors zjl and xl , respectively. In general: dim zjl <

dim xl.
The central question of target tracking can be stated as follows: What can be known about the target states

xl at time instants t1, t2, . . . , tk−1, tk, tk+1, . . ., i.e. for the past, at present, and in the future, by exploiting the
sensor data collected in the times series Zk?

According to the approach previously sketched, the answer to this question is given by the conditional
probability densities p(xl |Zk), which are to be calculated iteratively. At present we confine the discussion
to the case l = k; i.e. we are interested in the target states at the current time tk . Firstly, an application of
BAYES’ formula yields:

p(xk|Zk) = p(xk|Zk, nk,Zk−1) =
p(Zk, nk|xk,Zk−1) p(xk|Zk−1)∫

dxk p(Zk, nk|xk,Zk−1) p(xk |Zk−1)
. (11)

In many practical cases we will have: p(Zk, nk|xk,Zk−1) = p(Zk, nk|xk). This means that the measurement
set at time tk is depending only on the target state at this time and not on previous measurements. According
to Equation 11, the pdf p(Zk, nk|xk) evidently needs to be known only up to a multiplicative constant: With
a function �(Zk, nk|xk) ∝ p(Zk, nk|xk) we obtain the same result. Functions proportional to a conditional
probability density in this sense are called likelihood functions. The quantities p(xk |Zk−1) and �(Zk, nk|xk)
in Equation 11 have intuitively clear meanings as sketched in the following subsections.
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2.2.1 Target State Prediction

The pdf p(xk |Zk−1) is a prediction of the target state for the time tk based on all the measurements received
in the past up to and including time tk−1. We can write p(xk |Zk−1) as a marginal density in order to bring
the target state xk−1 at the previous time tk−1 into play:

p(xk |Zk−1) =
∫
dxk−1 p(xk, xk−1|Zk−1) =

∫
dxk−1 p(xk |xk−1,Zk−1)︸ ︷︷ ︸

target dynamics

p(xk−1|Zk−1)︸ ︷︷ ︸
idea: iteration

. (12)

In many practical cases we can assume p(xk |xk−1,Zk−1) = p(xk |xk−1) (MARKOV property). Furthermore a
GAUSSian MARKOV dynamics is defined by a GAUSSian transition density,

p(xk |xk−1) = N (xk; Fk|k−1xk−1, Dk|k−1
)
, (13)

with an evolution matrix Fk|k−1 and a dynamics covariance matrix Dk|k−1 defining the underlying target
dynamics model. For a target state xk = (r�k , ṙ

�
k , r̈

�
k )� given by position, velocity, and acceleration vectors in

three spatial dimensions the following simple realization is useful in many practical applications [14]:

Fk|k−1 =

(
I (tk−tk−1) I 1

2 (tk−tk−1)2 I
O I (tk−tk−1) I
O O e−(tk−tk−1)/θ I

)
, Dk|k−1 = Σ2(1 − e−2(tk−tk−1)/θ)

(
O O O
O O O
O O I

)
(14)

with I = diag[1, 1, 1], O = diag[0, 0, 0]. According to this simple model, the acceleration r̈k is described by
an ergodic MARKOV process with � [r̈k ] = 0. The corresponding autocorrelation function decays exponen-
tially and is given by � [r̈k r̈�l ] = Σ2 exp[−(tk − tl)/θt] I, l ≤ k. This expression gives a clear meaning to the
modeling parameters Σ (acceleration width) and θ (maneuver correlation time).

2.2.2 Likelihood Function

The likelihood functions �(Zk, nk|xk) describe, what can be learned from the current sensor output Zk, nk
about the current target state xk . In the special case of well-separated targets, perfect detection, no false
returns we have: nk = 1, Zk = {zk}. With an idealized sensor model describing bias-free measurements by
linear functions Hkxk of the target state, which are corrupted by GAUSSian white noise characterized by a
measurement error covariance matrix Rk, the likelihood function is given by:

�(zk|xk) ∝ N (zk; Hkxk, Rk

)
. (15)

The possibly time-dependent matrix Hk is called measurement matrix and defines, which characteristic prop-
erty of the target is currently being measured. At different times the quality of the sensor measurements itself
may change as well as the accuracy Rk by which they are measured.

2.2.3 Combination of Densities

According to these considerations we are in principle able to calculate conditional pdf p(xk |Zk) iteratively,

p(xk |Zk) =
�(Zk, nk|xk)

∫
dxk−1 p(xk |xk−1) p(xk−1|Zk−1)∫

dxk �(Zk, nk|xk)
∫
dxk−1 p(xk|xk−1) p(xk−1|Zk−1)

, (16)

by combining the following pieces of evidence:

p(xk−1|Zk−1) : available past knowledge

p(xk |xk−1) : target dynamics model

�(Zk, nk|xk) : sensor data, sensor model.
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2.3 A Realization: KALMAN Filter

The well-known KALMAN filter is a straight-forward realization of the general tracking scheme previously
sketched in the case of well-separated targets, a GAUSS-MARKOV target dynamics, perfect detection, no
false returns. Hence Zk is a time series of single measurements: Zk = {z1, . . . , zk}. It will become clear
below, that in this context GAUSSian pdfs, p(xk |Zk) =N (xk ; xk|k,Pk|k), represent the available knowledge
at each time tk. They are to be calculated iteratively according to the following scheme:

2.3.1 Track Initiation

At the beginning of the iteration the pdf p(x0|Z0) = N (x0; x0|0, P0|0
)

has to describe the initial ig-
norance. In many cases this is possible by choosing a ‘large’ covariance matrix P0|0. More strictly
speaking, we initialize the interation by x0|0 = (z0, o, o)�, where z0 denotes the first measurement, and
P0 = diag[R0, (vmax)2I, (qmax)2I], respectively. In P0|0 the matrix R0 is the measurement error covariance
matrix of the first measurement z0, while ignorance about the initial velocity and acceleration is modeled by
spheres, whose radius is given by the maximum speed vmax and acceleration qmax, respectively.

2.3.2 Prediction Step

N (xk−1; xk−1|k−1, Pk−1|k−1
) dynamics model−−−−−−−−−−−→

Fk|k−1, Dk|k−1
N (xk; xk|k−1, Pk|k−1

)
(17)

with: xk|k−1 = Fk|k−1xk−1|k−1 (18)

Pk|k−1 = Fk|k−1Pk−1|k−1Fk|k−1
� + Dk|k−1 (19)

These formulae directly result from the elementary probability facts collected in subsection 2.1:

p(xk |Zk−1) =
∫
dxk−1 p(xk, xk−1|Zk−1) =

∫
dxk−1 p(xk |xk−1) p(xk−1|Zk−1) (20)

=
∫
dxk−1 N (xk; Fk|k−1xk−1, Dk|k−1)︸ ︷︷ ︸

dynamics model

N (xk−1; xk−1|k−1, Pk−1|k−1)︸ ︷︷ ︸
filtering at tk−1

(21)

= N (xk; Fk|k−1xk−1|k−1, Fk|k−1Pk−1|k−1Fk|k−1
� + Dk|k−1)

∫
dxk−1 N (xk−1; b, B)︸ ︷︷ ︸

=1 (normalization)

.

In the last step we made use of the product formula for GAUSSians (Equation 7).

2.3.3 Filtering Step

N (xk ; xk|k−1, Pk|k−1)
current measurement zk−−−−−−−−−−−−−−−→
sensor model: Hk, Rk

N (xk; xk|k, Pk|k) (22)

with: xk|k = xk|k−1 + Wk|k−1(zk −Hkxk|k−1), Wk|k−1 = Pk|k−1Hk
�Sk|k−1

−1

Pk|k = Pk|k−1 −Wk|k−1Sk|k−1W�
k|k−1, Sk|k−1 = HkPk|k−1Hk

� + Rk.
(23)

Also these formulae directly result from elementary probability reasoning (subsection 2.1) and an application
of the product formula (Equation 7):

p(xk |Zk) = p(xk |zk,Zk−1) =
p(zk |xk) p(xk|Zk−1)∫

dxk p(zk |xk) p(xk |Zk−1)
(BAYES’ rule) (24)

=
N (zk ; Hkxk, Rk) N (xk; xk|k−1, Pk|k−1)∫

dxk N (zk; Hkxk, Rk)︸ ︷︷ ︸
likelihood function

N (xk; xk|k−1, Pk|k−1)︸ ︷︷ ︸
prediction at tk

. (25)
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2.3.4 Retrodiction

N (xl; xl|k, Pl|k)
filtering output←−−−−−−−−−−−

prediction output
N (xl+1; xl+1|k, Pl+1|k) (26)

with: xl|k = xl|l + Wl|l+1(xl+1|k − xl+1|l) Wl|l+1 = Pl|lF�l+1|lP
−1
l+1|l,

Pl|k = Pl|l + Wl|l+1(Pl+1|k − Pl+1|l)W�
l|l+1

(27)

These update equations are also called RAUCH-TUNG-STRIEBEL formulae and result from the following
considerations:

p(xl|Zk) =
∫
dxl+1 p(xl , xl+1|Zk) p(xl+1|Zk) =

∫
dxl+1 p(xl |xl+1,Zk) p(xl+1|Zk)

=
∫
dxl+1 p(xl |xl+1,Zk) N (xl+1; xl+1|k, Pl+1|k)︸ ︷︷ ︸

retrodiction at tl+1

(28)

with p(xl|xl+1,Zk) given by

p(xl|xl+1,Zk) =
p(xl+1|xl) p(xl|Zl)∫
dxl p(xl+1|xl) p(xl|Zl)

=
N (xl+1; Fl+1|lxl, Dl+1|l) N (xl; xl|l, Pl|l)∫

dxl N (xl+1; Fl+1|lxl, Dl+1|l)︸ ︷︷ ︸
dynamics model

N (xl; xl|l, Pl|l)︸ ︷︷ ︸
filtering at time tl

. (29)

An application of the product formulae in Equation 29, insertion of the result into Equation 28, and a second
use of the product formulae yields the retrodiction update formulae in Equation 27.

2.3.5 Discussion

We discuss some characteristic properties of KALMAN filtering and RAUCH-TUNG-STRIEBEL retrodiction:

• The KALMAN filter algorithm is linear in the sensor data, i.e. the superposition principle is valid.

• The conditional pdfs are fully characterized by the related expectations and covariance matrices.

• KALMAN filtering corrects predictions by the difference between actual and expected measurements.

• Variable revisit intervals as well as time-dependent dynamics and sensor models are inherently admit-
ted.

• The computational effort is rather small; matrix inversions involved can often be performed analyti-
cally.

• Qualitatively speaking, the retrodicted densities p(xl|Zk) are ‘sharper’ than p(xk |Zk) and p(xl|Zl).

• For retrodiction only expectations and covariance matrices of the filtering and predictions are used.

• The sensor data themselves are processed in the filtering step only and not needed in retrodiction.

• The information gain by retrodiction is driven by the target dynamics: Wl|l+1 = Pl|lF�l+1|lP
−1
l+1|l.

• There is no gain by retrodiction at present: Tracks are ‘smoothed’ at the expense of some delay.

• Retrodiction has potential applications for target classification/identification/IFF from track data.
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2.3.6 Non-linearities

In a radar system typically target range, azimuth, range-rate, and eventually target elevation are measured.
These quantities are easily described in a polar coordinate system, while for modeling the target dynamics
Cartesian coordinates better suited. Therefore, it seems to be convenient to perform the prediction step of
the density update in the Cartesian dynamics system and the filtering in sensor coordinates according to the
following scheme:

dynamics system:
xd=(x,y,ẋ,ẏ)

p
(
xdk−1| Zk−1

) p
(

xdk | xdk−1

)
−−−−−−−−→

dynamics
p
(
xdk| Zk−1

)
p
(
xdk| Zk

)
�td←s

�ts←d

�td←s

sensor system:
xs=(r,ϕ,ṙ,ϕ̇)

p
(
xsk−1| Zk−1

)
p
(
xsk| Zk−1

) p
(

zk | xsk
)

−−−−−−→
sensor

p
(
xsk| Zk

)
scan k − 1 scan k scan k

(30)

The corresponding coordinate transformations td←s and ts←d, however, are non-linear and given by:

td←s[xs] =
( x

y
ẋ
ẏ

)
=

(
r cosϕ
r sinϕ

ṙ cosϕ−rϕ̇ sinϕ
ṙ sinϕ+rϕ̇ cosϕ

)
, ts←d[xd] =

( r
ϕ
ṙ
ϕ̇

)
=




√
x2+y2

arctan y/x

(xẋ+yẏ)/
√

x2+y2

(xẏ−yẋ)/(x2+y2)


 . (31)

This non-linear character of the coordinate transformations in particular implies that a GAUSSian pdf
p
(
xsk−1| Zk−1

)
is no longer a GAUSSian after its transformation into the dynamics system and vice versa.

In order to circumvent this problem in ‘extended’ KALMAN filtering the non-linear transformations are sim-
ply linearized by a first order Taylor expansion around the filtering xsk|k in the sensor system or around the

prediction xdk|k−1 in the dynamics system, respectively:

td←s[xsk] ≈ td←s[xsk|k] + Td←s[xsk|k] (xsk − xsk|k) with: Td←s = ∂td←s[xsk|k]/∂xsk|k (32)

ts←d[xdk] ≈ ts←d[xdk|k−1] + Td←s[xdk|k−1] (xdk − xdk|k−1) Ts←d = ∂td←s[xdk|k−1]/∂xdk|k−1. (33)

With this approximation the ‘GAUSSianity’ of the densities is preserved according to Equation 10 describing
the pdf of an affine transform of a GAUSSian random variable.

Let us consider a more simplified situation, where only range and azimuth measurements are available.
These measurements zk = (rk, ϕk)� are characterized by a diagonal measurement error covariance matrix
Rp = diag[σ2

r , σ
2
ϕ] assuming that range and azimuth measurements are independent from each other. When

the measurements zk are transformed into Cartesian coordinates, the corresponding measurement error co-
variance matrix can approximately be obtained as follows: Let us expand t[zk] around the prediction xk|k−1:

t[zk] = (rk cosϕk, sinϕk)� ≈ t[xk|k−1] + Tk|k−1 (zk − xk|k−1), (34)

where the corresponding Jacobi matrix can be written as the product of a rotation and a dilation:

Tk|k−1 =
∂t[xk|k−1 ]
∂xk|k−1

=
(

cosϕk|k−1 −rk|k−1 sinϕk|k−1
sinϕk|k−1 rk|k−1 cosϕk|k−1

)
=
(

cosϕk|k−1 − sinϕk|k−1
sinϕk|k−1 cosϕk|k−1

)
︸ ︷︷ ︸

rotation Dϕ

(
1 0
0 rk|k−1

)
︸ ︷︷ ︸

dilation Sr

. (35)

According to Equation 10 the measurement error covariance in Cartesian coordinate is depending on time
(i.e. on the predicted target range rk|k−1 and azimuth ϕk|k−1) as well as on the underlying sensor-to-target
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geometry. It is given by:

Rc
k = Tk|k−1RpT�k|k−1 = DϕSr Rp SrD

�
ϕ = Dϕ

(
σ2
r 0

0 (rk|k−1σϕ)2

)
D�ϕ. (36)

As a direct consequence, the Cartesian measurement error ellipses typically increase with increasing range.
In certain applications it may be useful to deal with different measurement accuracies, depending on the
tracking task under consideration, such as search, acquisition, or high-precision tracking for phased-array
radar [4].

There exist more advanced methods for dealing with non-linearities such as “particle filtering” or “un-
scented KALMAN update equations yield in this case:

Initiation: x1|1 = z1

Prediction: xk|k−1 = xk−1|k−1,Pk|k−1 = Pk−1|k−1, k = 2, 3, . . .

Filtering: xk|k = xk−1|k−1 + Wk−1 (zk − xk−1|k−1) = Pk|k
(
R−1
k zk + P−1

k−1|k−1xk−1|k−1
)

= Pk|k
∑k

i=1 R−1
i zi

Pk|k = Pk−1|k−1 −Wk−1
(
Pk−1|k−1 + Rk

)
W�

k−1

= Pk−1|k−1 − Pk−1|k−1(Pk−1|k−1 + Rk)−1Pk−1|k−1 = (P−1
k−1|k−1 + R−1

k )−1

=
(∑k

i=1 R−1
i

)−1
.

In the last step we made use of the matrix inversion lemma. From these considerations it becomes clear that
in case of stationary targets the KALMAN filter is equivalent to a weighted, recursive arithmetic mean of the
sensor data. The related error covariance matrix is a harmonic mean of the corresponding measurement error
covariance matrices. We collect some observations:

• If all measurement covariances Ri, i = 1, . . . , k are identical, we observe the expected ‘square-root’
law:

Pk|k = R/k. (37)

• If all measurement error ellipses involved differ significantly in the geometrical orientation relative to
each other, a much larger effect can be observed.

• The ‘statistical intersection’ of error ellipses is described by calculating the harmonic mean of the
related error covariance matrices:

k∑
i=1

R−1
i zi. (38)

• In the limiting case of very narrow measurement error ellipses the triangulation of the target position
from bearings is obtained (→ multiple sensor data fusion).

• These considerations are also valid in 3D and for more abstract measurements.

Let us consider an example: The target position in Cartesian coordinates be given by r =
r[cos(π4 ), sin(π4 )]� = r/

√
2(1, 1)�. The measurement error covariances of sensor 1 and 2 is given by R1 =
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D1SD�1 and R2 = D2SD�2 with D1 = D(π4 ) = 1√
2

(
1 −1
1 1

)
, D2 = D( 3π

4 ) = 1√
2

(
1 1
−1 1

)
, S = diag[σ2

r , (rσϕ)2].
We hence obtain the ‘fused’ measurement error covariance

R−1 = R−1
1 + R−1

2 = D�1 S−1D1 + D�2 S−1D2 = D�1 (S−1 + D1D�2 S−1D2D�1 )D1 (39)

= D�1
(

σ−2
r +(rσϕ)−2 0

0 σ−2
r +(rσϕ)−2

)
D1 (40)

That means R is a sphere with radius Σ given by 1
Σ2 = 1

σ2
r
+ 1

(rσϕ)2 . Let us consider the following special

cases: ‘triangulation’ (σr � rσϕ)→ R = (rσϕ)2, ‘large distance’ (r � σr/σϕ)→ R = σ2
r .

A practically important problem is the following: If there are more than one target in the common field of
view of both sensors, not every intersection of bearing beams actually corresponds to a real target position.
For more details and possible solutions of resulting “deghosting problem” see [1, 2].

2.3.7 Expectation Gates

KALMAN filtering provides also the means for calculating the statistical properties of expected measure-
ments. The corresponding pdf is itself the basis for calculating an expectation gate containing an expected
measurement with a given probability (correlation probability Pc). The conditional pdf of an expected mea-
surement zk at time tk given the accumulated sensor data up to and including the time tk−1 can be calculated
by:

p
(
zk| Zk−1) = ∫dxk p(zk, xk|Zk−1) =

∫
dxk p(zk|xk) p(xk |Zk−1) (41)

=
∫
dxk N (zk; Hkxk, Rk)︸ ︷︷ ︸

likelihood: sensor model

N (xk ; xk|k−1, Pk|k−1)︸ ︷︷ ︸
prediction for time tk

(42)

= N (zk; Hkxk|k−1, Sk|k−1) with: Sk|k−1 = HkPk|k−1H�k + Rk (43)

according to the product formula (Equation 7). Evidently, νk|k−1 = zk − Hkxk|k−1 is a GAUSSian random
variable with zero expectation and the covariance matrix Sk|k−1. Being the difference between actual and
expected measurement, it is called innovation, Sk|k−1 is thus referred to as innovation covariance. By

||νk|k−1||2 = ν�k|k−1S−1
k|k−1νk|k−1 ≤ λ(Pc) (44)

an ellipsoid is defined, which contains the target measurement zk with probability Pc. The actual size of the
gate parameter λ(Pc) for a given value of Pc can be taken from a χ2-table [4].

3 Elements of Multiple Hypothesis Tracking

As an example let us consider 6 sensor reports produced by two closely-spaced targets at time tk (Figure 5).
This single frame of observations is by no means uniquely interpretable. Among other feasible interpre-
tation hypotheses the black dots could be assumed to represent real position measurements of the targets,
while all other plots are false (Figure 5a). The asterisks indicate the predicted target positions provided by
the tracking system. Under the statistical assumptions previously discussed, the expected target measure-
ments are normally distributed about their predictions with a covariance matrix Sk|k−1 determined by the
related state prediction covariance and the measurement error. As any prediction uses assumptions on the
underlying system dynamics, both the sensor performance and the dynamics model enter into the statistics of
the expected target measurements. A natural scalar measure for the deviation between the predicted and an
actually received measurement is given by ||νk|k−1||2 = ν�k|k−1S−1

k|k−1νk|k−1, also called Mahalanobis norm.
Gating means that only those sensor returns are considered for track maintenance, whose innovations are
smaller than a certain predefined threshold λ(Pc).
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(a) two resolved targets (b) two unresolved targets

Figure 5: Sensor Data of Uncertain Origin with Competing Interpretations

Competing with the previously discussed data interpretation, however, there exist many other feasible
association hypotheses; for instance, the targets could have produced a single unresolved measurement as
indicated in Figure 5b, all other plots being false returns. Alternatively, one of both targets might not have
been detected or no target detection might have occurred at all, the gates containing false returns only. The
correlation gates and thus the ambiguity of the received sensor data are the larger the more false returns and
missed detections or even successively missed detections must be taken into account, if the measurement
errors involved or the data innovation intervals are large, or if uncertainty regarding the target dynamics
model or agile targets exists. As will become clear below, the innovation statistics related to a particular
interpretation hypothesis is essential to evaluating its statistical weight.

3.1 Ad-hoc Approaches

For dealing with sensor data of uncertain origin several well-established ad-hoc methods exist which are
implemented in numerous operational tracking systems. Under benign conditions gating can be sufficient
for separating real target measurements from competing sensor returns. The resulting plot is then processed
by KALMAN filtering or one of its derivatives. In the previous example (Figure 5) two sensor reports can
be excluded by this measure. Evidently, the gate must be sufficiently large, otherwise the real plot might be
excluded from processing. By Nearest Neighbor (NN) filters [4] only the measurement having the smallest
innovation is processed via KALMAN filtering if competing returns exist in the gates. This approach fails,
however, if one of the interpretation hypotheses indicated in Figure 5 is true. (Joint) Probabilistic Data
Association (PDA, JPDA) filters [3] are adaptive mono-hypothesis trackers that show data-driven adaptivity
in case of data association conflicts as will be discussed below.

A more rigorous Bayesian approach, capable of handling challenging conditions as sketched in the intro-
duction, leads to Multiple Hypothesis Tracking (MHT) discussed below [16]. The ad-hoc methods mentioned
(KF, NN, PDAF, JPDAF) quite naturally prove to be limiting cases of this more general approach.

3.2 Sensor Modeling

A statistical description of what kind of information is provided by the sensor systems is prerequisite to
processing of the nk sensor output data Zk = {zjk}

nk
j=1 consecutively received at discrete instants of time tk.

For the sake of simplicity, our discussion and terminology is confined to point-source objects, small extended
objects, possibly unresolved closely-spaced objects, or small clusters of such objects; i.e. we consider “small
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targets” following Oliver Drummond’s definition [8]. The underlying statistical models essentially determine
the feasible interpretations of the received sensor reports.

3.2.1 Detection Process

The detection process is essentially a means of rata rate reduction and therefore prior to any further sensor
signal processing which results in sensor reports possibly related to objects of interest.

For resolved objects and a given association hypothesis each sensor return can be associated to exactly
one individual object, whereas for unresolved closely-spaced targets a given report may correspond to several
objects. It is, thus, reasonable to introduce different detection probabilities for resolved and unresolved
objects: PD, P u

D. Moreover, the detection process and the production of measurements (fine localization by
monopulse processing, for instance [5, p. 119 ff.]) are assumed to be statistically independent.

Let FoV (Field of View) denote a region large enough to contain all relevant sensor reports at scan k.
False detections or detections produced by unwanted objects are assumed to be equally distributed in FoV
and independent from scan to scan. Moreover let the number of false returns in FoV be Poisson-distributed
according to the distribution

pF (nk) =
1
nk!

(|FoV| ρF )nk e−|FoV| ρF , (45)

where |FoV| denotes the volume of FoV and ρF the spatial false return density.
In a typical radar application a simple quadrature detector decides on target detection if the received

signal strength exceeds a certain threshold: a2
k > λD. For a given fluctuation model of the radar cross

section of the targets, the detection probability depends on the signal-to-noise ratio of the sensor and the
detector threshold, while the false alarm probability is a function of the detector threshold alone. Provided the
received signal strength is accessible for the tracking system, it can be used as input information for adaptive
threshold control [4], for discriminating of false returns [12, 13] or for phased-array energy management
[19]. A more detailed discussion will be given in the second talk (subsection 1.2.4).

3.2.2 Measurements

For a resolved object let zk be a bias-free measurement of its kinematical state vector xk at time tk with an
additive, normally distributed measurement error:

zk = Hkxk + wk, wk ∼ N(0,Rk) ←→ p(zk |xk) = N (zk; Hkxk, Rk) (46)

as before in the case of KALMAN filtering. In case of a non-linear relationship between the target state and
the measurement, zk = hk(xk), we thus have to deal with data-dependent measurement matrices.

In case of a resolution conflict we interpret an unresolved plot zgk at time tk as a measurement of the
group center [20], i.e.

zgk = Hgxk + ug
k with Hgxk = 1

2H(x1
k + x2

k), (47)

where ug
k ∼ N(0,Rg ) denotes the measurement error characterized by a corresponding group measurement

error covariance matrix Rg [20]. Let H be the underlying measurement matrix defined by Hxik = (rik, ϕ
i
k).

Monopulse angle estimation techniques provide approximately bias-free, normally distributed angular
measurements. While in principle high precision monopulse measurements are available also in range, in
many radar systems the range measurement errors are a superposition of errors uniformly distributed in the
related range cells. For convenience and without significant degradation of the tracking process, however,
in many cases range measurement errors can be assumed normally distributed with a standard deviation σr
which must not be chosen too optimistically. For a more detailed discussion see [4][chapter 2].
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3.2.3 Sensor Resolution

We expect that the resolution performance of the sensor strongly depends on the current sensor-to-group
geometry and the relative orientation of the targets within the group. For physical reasons the resolution in
range and azimuth will be independent from each other. The sensor’s resolution capability also depends on
the particular signal processing used and on the random target fluctuations. As a complete description is
rather complicated, we are looking for a simplified, but qualitatively correct and mathematically tractable
model.

In any case the resolution capability in range and azimuth is limited by the band- and beam-width of the
sensor characterized by the parameters αr, αϕ. These radar specific parameters must explicitly enter into any
processing of possibly unresolved plots.

Resolution phenomena will be observed if the range and angular distances are small compared with αr,
αϕ: ∆r/αr < 1, ∆ϕ/αϕ < 1. The targets within the group are resolvable if ∆r/αr � 1, ∆ϕ/αϕ � 1.
Furthermore we expect a narrow transient region. A more quantitative description is provided by introducing
a resolution probability Pr = Pr(∆r,∆ϕ) depending on the sensor-to-group geometry. It can be expressed
by a corresponding probability of being unresolvabe Pu. Let us describe Pu by a Gaussian-type function of
the relative range and angular distances [20]:

Pr(∆r,∆ϕ) = 1 − Pu(∆r,∆ϕ) (48)

with Pu(∆r,∆ϕ) = exp
[
− log 2(∆rαr )2

]
exp
[
− log 2(∆ϕαϕ )2

]
. (49)

Evidently, this simple model for describing resolution phenomena reflects the previous, more qualitative
discussion. We in particular observe that Pu is reduced by a factor of 2 if ∆r is increased from zero to αr.
Due to the Gaussian character of its dependency on the state vector xk the probability Pu can be written in
terms of a normal density:

Pu = exp
[− log 2 [(r1

k − r2
k)/αr]2] exp

[− log 2 [(ϕ1
k − ϕ2

k)/αϕ]2] (50)

= exp
[− log 2 (Hx1

k −Hxk2)�A−1(Hx1
k −Hxk2)

]
(51)

= exp
[− log 2 (Huxk)�A−1Huxk

]
. (52)

Here the resolution matrix A is defined by A = diag(α2
r , α

2
ϕ), while the quantity Huxk = H(x1

k − x2
k) can be

interpreted a measurement matrix for distance measurements.
Up to a constant factor the resolution probability probability Pu(xk) might formally be interpreted as

the ficticious likelihood function of a measurement 0 of the distance H(x1
k − x2

k) between the targets with a
corresponding ficticious measurement error covariance matrix Ru defined by the resolution parameters αr,
αϕ.

Pu(xk) = |2πRu|−1/2 N (O; Huxk, Ru

)
(53)

with Ru =
A

2 log 2
= 1

2 log 2diag[α2
r , α

2
ϕ]. (54)

According to a first order Taylor expansion around the predicted range r
g
k|k−1 and azimuth ϕ

g
k|k−1 of the

group center, the resolution matrix Ac describing the resolution cells in Cartesian coordinates proves to be
time dependent and results from the matrix A by applying a rotation Dϕ

g
k|k−1

around ϕ
g
k|k−1 and a dilatation

diag[1, rgk|k−1]:

Ac = Dϕ
g
k|k−1

(
α2
r 0

0 (rgk|k−1αϕ)2

)
D�
ϕ
g
k|k−1

. (55)

In the same way as the Cartesian measurement error ellipses, the Cartesian “resolution ellipses” depend on
the target range. Suppose we have αr = 100 m and αϕ = 1◦, then we expect that the resolution in a distance
of 50 km is about 100 m (range) and 900 m (cross range). As for military targets in a formation their mutual
distance may well be 200 - 500 m or even less, resolution is a real target tracking problem[6].
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3.3 Likelihood Functions

The likelihood functions proportional to the conditional probability density p(Zk, nk|xk) statistically describe
what a single frame of nk observations Zk = {zjk}

nk
j=1 can say about the single/joint state xk of the objects

to be tracked. Due to the Total Probability Theorem, p(Zk, nk|xk) can be written as a sum over all possible
data interpretations Ek, i.e. over all hypotheses regarding the origin of the data set Zk:

p(Zk, nk|xk) =
∑
j

p(Zk, nk, Ej|xk) (56)

=
∑
j

p(Zk, nk|Ej, xk) p(Ej |xk) (57)

As shown below, the probability P (Ej|xk) of Ej being correct as well as the individual likelihood functions
p(Zk, nk|Ej, xk) = p(Zk|Ej, nk, xk) p(nk|Ej) directly result from the statistical sensor model previously
discussed (eqs. 45, 46, 47, 53). These considerations make evident that the determination of mutually
exclusive and exhaustive data interpretations is prerequisite to sensor data processing. Though this is in
general by no means a trivial task, in many practical cases a given multiple-object tracking problem can
be decomposed into independent sub-problems of reduced complexity. We consider two examples that are
practically important, but can still be handled more or less rigorously.

3.3.1 Well-separated Targets

For well-separated objects in a cluttered environment essentially two classes of data interpretations can be
identified [3]:

1. E0: The object considered was not detected, all nk sensor returns in Zk are false, i.e. assumed to be
equally distributed in FoV (one interpretation).

2. Ej, j = 1, . . . , nk: The object was detected, zjk ∈ Zk is the corresponding measurement, all other
sensor returns are false (nk interpretation hypotheses).

Standard probability reasoning yields:

p(Ej|xk) =

{
1 − PD j = 0
1
nk

PD j �= 0
(58)

p(Zk, nk|Ej, xk) =

{
pF (nk) |FoV|−nk j = 0

pF (nk − 1) |FoV|nk−1 N (zjk; Hxk, R
)

j �= 0.
(59)

With pF (nk) given by Equation 45, the conditional pdf p(Zk, nk|xk) is proportional to the sum:

p(Zk, nk|xk) ∝ (1 − PD) ρF + PD

nk∑
j=1

N (zjk; Hkxk, Rk). (60)

up to a factor 1
nk! ρ

nk−1
F |FoV|−nk e−|FoV|ρF being independent of the kinematical target state xk .

3.3.2 Target Formations

For a cluster of two closely-spaced objects moving in a cluttered environment five different classes of data
interpretations exist (xk = (x1

k, x
2
k)�) [20]:
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1. Eii, i = 1, . . . , nk: Both objects were not resolved but detected as a group, zik ∈ Zk represents the
group measurement, all remaining returns are false (nk data interpretations):

p(Zk, nk|Eii, xk) = |FoV|1−nk N (zik ; Hg
kxk, Rg

k) pF (nk − 1) (61)

P (Eii|xk) = 1
nk

Pu(xk) P u
D. (62)

With Pu as represented in Equation 53, p(Zk, nk, E
ii
k |xk) is up to a constant factor given by:

p(Zk, nk, E
ii
k |xk) ∝ N

((
zik
0

)
;
(

Hg

Hu

)
xk,
(

Rg O
O Ru

))
. (63)

Hence under the hypothesis Eii
k two measurements are to be processed: the (real) plot zik of the group

center Hg
kxk = 1

2H(x1
k + x2

k) and a (ficticious) measurement ‘zero’ of the distance Huxk = H(x1
k − x2

k)
between the objects. We can thus speak of ‘negative’ sensor information [15], as the lack of a second
target measurement conveys information on the target position. For in case of a resolution conflict the
relative target distance must be smaller than the resolution.

2. E0: Both objects were neither resolved nor detected as a group, all returns in Zk are thus assumed to
be false (one interpretation hypothesis):

p(Zk, nk|E0, xk) = Pu(xk) (1 − P u
D) pF (nk) (64)

P (E0|xk) = Pu(xk) (1 − P u
D). (65)

In analogy to the previous considerations we can write up to a constant factor:

p(Zk, nk, E
00
k |xk) ∝ N (0; Hux, Ru

)
. (66)

This means that even under the hypothesis of a missing unresolved plot at least a ficticious distance
measurement 0 is being processed with a measurement error given by the sensor resolution.

3. Eij, i, j = 1, . . . , nk , i �= j: Both objects were resolved and detected, zik, z
j
k ∈ Zk are the measure-

ments, nk − 2 returns are false (nk(nk − 1) interpretations):

p(Zk, nk|Eij, xk) = |FoV|2−nk N (zik ; Hkx1
k, Rk) N (zjk; Hkx2

k, Rk) pF (nk − 2) (67)

P (Eij|xk) = 1
nk (nk−1)

(
1 − Pu(xk)

)
P 2
D. (68)

According to the factor 1 − Pu(xk) = 1 − |2πRu|
1
2 N (0; Hux, Ru

)
the likelihood function becomes

a mixture, in which negative weighting factors can occur. Nevertheless the coefficients sum up to
one; the density p(xk|Zk) is thus well-defined. This reflects the fact that in case of a resolved group
the targets must have a certain minimum distance between each other which is given by the sensor
resolution. Otherwise they would not have been resolvable.

4. Ei0, E0i, i = 1, . . . , nk: Both objects were resolved but only one object was detected, zik ∈ Zk is the
measurement, nk − 1 returns in Zk are false (2nk interpretations):

p(Zk |Ei0, xk) = |FoV|1−nk N (zik ; Hkx1
k, Rk) pF (nk − 1) (69)

P (Ei0|xk) = 1
nk

(
1 − Pu(xk)

)
PD (1 − PD). (70)

5. E00: The objects were resolved but not detected, all nk plots in Zk are false (one interpretation):

p(Zk, nk|E00, xk) = |FoV|−nk pF (nk) (71)

P (E00|xk) =
(
1 − Pu(xk)

)
(1 − PD)2. (72)
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As there exist (nk + 1)2 + 1 interpretation hypotheses, the ambiguity for even small clusters of closely-
spaced objects is much higher than in the case of well-separated objects (nk + 1 each). We thus expect that
only small groups can be handled more or less rigorously. For larger clusters (raids of military aircraft, for
instance) a collective treatment [?] seems to be reasonable until the group splits off into smaller sub-clusters
or individual objects. Up to a factor 1

nk! ρ
nk−2
F |FoV |−nk e−|FoV|ρF independent of xk (eq. 45), the likelihood

function of the sensor data,

p(Zk, nk|xk) = p(Zk, nk, E0) +
nk∑

i,j=0

p(Zk,Eij, nk|xk), (73)

is proportional to a sum of GAUSSians and a constant:

p(Zk, nk|xk) ∝ ρ2
F (1 − PD)2(1 − Pu(xk)

)
+ ρF (1 − P u

D)Pu(xk) + P u
DρFPu(xk)

nk∑
i=1

N (zik; Hg
kxk, Rg

k)

+ ρFPD(1 − PD)
(
1 − Pu(xk)

) nk∑
i=1

{N (zik ; Hkx1
k, Rk) + N (zik ; Hkx2

k, Rk)
}

+ P 2
D

(
1 − Pu(xk)

) nk∑
i,j=1
i �=j

p
ij
k (xk) N (zik; Hkx1

k, Rk) N (zjk ; Hkx2
k, Rk). (74)

3.4 MHT Update Equations

The tracking problems considered here are inherently ambiguous due to sensor data of uncertain origin. For
the sake of simplicity we concentrate on the case of well-separated target. The formalism discussed below,
however, can directly be applied to small target groups if the likelihood function in Equation 74 is used
instead.

As in the examples previously discussed, let El denote a specific interpretation of the sensor data Zl at
scan time tl taken out of a set of mutually exclusive and exhaustive interpretation hypotheses. Accordingly,
the k-tuple Hk = (Ek, . . . , E1), consisting of consecutive data interpretations El, 1 ≤ l ≤ k, up to the
time tk, is a particular interpretation hypothesis regarding the origin of the accumulated sensor data Zk =
{Zk, nk,Zk−1, nk−1, . . . , Z1, n1}. Hk is thus called an interpretation history. For each Hk the related pre-
histories Hk−n = (Ek−n, . . . , E1) provide possible interpretations of sensor dataZk−n accumulated up to scan
k − n. With Hk

n = (Ek, . . . , Ek−n+1), the recent history, any Hk can be decomposed in Hk = (Hk
n ,Hk−n).

Obviously, the each density p(xk |Zk) can be written as a sum over all possible interpretation histories:

p(xk |Zk) =
∑
Hk

p(xk,Hk|Zk) =
∑
Hk

p(xk|Hk,Zk) p(Hk|Zk). (75)

p(xk|Zk) is thus a finite mixture density, i.e. a weighted sum of component densities p(xk |Hk,Zk) that
assume a particular interpretation history Hk to be true (given the data Zk). The corresponding mixing
weights p(Hk |Zk) sum up to one.

3.4.1 MHT Prediction

Let the pdf p(xk−1|Zk−1) at time tk−1 be given by the following weighted sum of GAUSSians:

p(xk−1|Zk−1) =
∑
Hk−1

pHk−1 N (xk−1; xHk−1 , PHk−1 ). (76)
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According to the GAUSS-MARKOV-Model of the target dynamics previously introduced (subsection 2.2.1),
the predicted pdf p(xk |Zk−1) of the target state at time tk is given by:

p(xk|Zk−1) =
∫
dxk−1 p(xk |xk−1) p(xk−1|Zk−1) (MARKOV model) (77)

=
∑
Hk−1

pHk−1 N (xk; FxHk−1 , FPHk−1F� + D). (78)

3.4.2 MHT Filtering

Very similar to the proceeding in the case of KALMAN filtering we obtain the filtering update equations by
exploiting the product formula (Equation 7):

p(xk|Zk) =
p(Zk, nk|xk) p(xk |Zk−1)∫

dxk p(Zk, nk|xk) p(xk |Zk−1)
(BAYES’ rule) (79)

=

(
(1 − PD) ρF + PD

∑nk
j=1 N (zjk; Hxk, R)

)
p(xk |Zk−1)∫

dxk
(
(1 − PD) ρF + PD

∑nk
j=1 N (zjk ; Hxk, R)

)
p(xk |Zk−1)

(80)

=
∑
Hk

pHk N (xk ; xHk , PHk ). (81)

The expectation xHk and covariance matrix PHk result from the KALMAN filtering formulae (Equation 22),
while the weighting factors are essentially characterized by the corresponding innovations νHk , the innova-
tion covariance matrix SHk , and the statistical weight of the corresponding pre-history pHk−1 :

pHk =
p∗Hk∑
Hk

p∗Hk

with p∗Hk
= pHk−1 ×

{
(1 − PD) ρF for Ek = E0

k

PD N (νHk ; o, SHk ) for Ek = E
j
k

. (82)

3.4.3 MHT Retrodiction

Retrodiction is an iteration scheme for calculating the probability densities p(xl |Zk), l < k, that describe the
past states xl given all available sensor information Zk accumulated up to a later scan time tk > tl, typically
the current time. The iteration is initiated by the filtering result p(xk|Zk) at time tk and describes the impact
of newly available sensor data on our knowledge of the past. In close analogy to the previous reasoning, an
application of the Total Probability Theorem yields:

p(xl |Zk) =
∑
Hk

p(xl ,Hk|Zk) =
∑
Hk

p(xl |Hk,Zk)︸ ︷︷ ︸
no ambiguity

p(Hk |Zk)︸ ︷︷ ︸
filtering

(83)

The calculation of p(xl|Hk,Zk), i.e. given a particular interpretation history Hk, is thus as in subsection
2.3.4, i.e. for PD = 1, ρF = 0:

p(xl |Hk,Zk) = N (xl; xHk (l|k), PHk (l|k)) (84)

where the parameters of the GAUSSian are given by:

xHk (l|k) = xHk (l|l) + WHk (l|k) (xHk (l+1|k) − xHk (l+1|l)) (85)

PHk (l|k) = PHk (l|l) + WHk (l|k) (PHk (l+1|k) − PHk (l+1|l)) WHk (l|k)
� (86)

gain matrix: WHk (l|k) = PHk (l|l)F�l+1|lPHk (l+1|l)−1. (87)
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A direct consequence of these considerations is the notion of a retrodicted probability [7]. Due to Hk =
(Hk

l ,Hl) and the Total Probability Theorem, the probability of Hl being correct given the accumulated data
up to time tk can be calculated by summing up the weighting factors of all its descendants at time tk:

p(Hl|Zk) =
∑
Hk

n

p(Hk
n ,Hl|Zk). (88)

This result can also be obtained by considering the following approximation:

p(xl|Hk,Zk) = N (xl; xHk (l|k), PHk (l|k)
) ≈ N (xl; xHk (l|l), PHk (l|l)), (89)

i.e. if the RTS-step is omitted. This means in particular: strong descendants can make weak ancestors
stronger; weak descendants can weaken also strong ancestors; if all descendants are deleted, also the ances-
tors die.

3.5 Suboptimal Realizations

Due to the uncertain origin of the sensor data, naively applied sensor data processing according to the pre-
vious formalism leads to memory explosions: The number of components in the mixture densities p(xk |Zk)
exponentially grow at each step. Suboptimal approximation techniques are therefore inevitable for any prac-
tical realization. Fortunately, the densities resulting from prediction and filtering are characterized by a finite
number of modes that may be large and fluctuating but does not explosively grow. This is the rationale for
adaptive approximation methods that keep the number of mixture components under control without disturb-
ing the density iteration too seriously. In other words, the densities can often be approximated by mixtures
with (far) less components. Provided the relevant features of the densities are preserved, the resulting sub-
optimal algorithms are expected to be close to optimal BAYESian filtering.

3.5.1 Moment Matching

Moment matching is an important approximation method, by which a pdf p(x) with expectation � p [x] = x
and a covariance matrix � p [(x − x̄)(x − x̄)�] = P is approximated by p(x) ≈ N (x; x, P). In the present
context moment matching is applied to mixture densities of the form p(x) =

∑
H pHN (x; xH,PH ), i.e. to

normal mixtures. In this case x and P are given by:

x =
∑
H

pH xH (90)

P =
∑
H

pH
{

PH +

spread term︷ ︸︸ ︷
(xH − x)(xH − x)�

}
(91)
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(a) (b)

Figure 6: Scheme of Moment Matching

due to the following calculations:

� p [x] =
∫
dx x p(x) =

∑
H

pH
∫
dx xN (x; xH,PH ) =

∑
H

pH xH =: x

� p [x] =
∫
dx p(x) (x − � p [x])(x − � p [x])� =

∑
H

pH
∫
dx (x − x)(x − x)� N (x; xH,PH )

=
∑
H

pH
∫
dx
{

(x − x)(x − x)� − 2(x − xH )(xH − x)�
}N (x; xH,PH )

according to:
∫
dx (x − xH )(xH − x)� N (x; xH,PH ) = 0

=
∑
H

pH
∫
dx
{
xx� − 2xx�H + xHx�H + xHx�H − 2xHx� + xx�

}N (x; xH,PH )

=
∑
H

pH
∫
dx
{

(x − xH )(x − xH )� + (xH − x)(xH − x)�
}N (x; xH,PH )

=
∑
H

pH
{

PH + (xH − x)(xH − x)�
}

= P.

Figure 6 provides a schematic illustration of moment matching. A particular mixture density p(x) =
c1p1(x) + c2p2(x) is displayed along with the related mixture components c1p1(x), c1p1(x) (Figure 6a).
In Figure 6b the mixture p(x) is compared with the Gaussian density N (x; x, P) with x = � p [x],
P = � p [(x − x)2]. The bars at the bottom line indicate the relative size of the mixture coefficients c1, c2

in this example. Evidently, moment matching can provide a satisfying approximations to a mixture as long
as it is unimodal.

3.5.2 Single Hypothesis

A radical solution to the growing memory problem is given by mono-hypothesis approximations briefly
sketched below:

• Exclusion of competing sensor data by testing if ||νik|k−1|| > λ: “Gating”. If this is successful we
obtain KALMAN filtering as a limiting case.
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(+) Gating is very simple (–) If λ is too small, the actual target measurement may be excluded.

• Forcing a unique interpretation in case of conflict. This means that the measurement with the minimum
statistical distance from the expected measurement is used for updating: mini ||νik|k−1||. The resulting
filter is called “Nearest-Neighbor-Filter (NN)”.

(+) One resultant hypothesis. (–) A hard decision is taken, which my be wrong. (–) NN is not adaptive.

• In case of “global combining” all hypotheses are merged to one single representative hypothesis. The
resulting filter is called “(Joint) Probabilistic Data Association Filter (J)PADF”.

(+) All sensor data are used, (+) PDAF is adaptive. (–) Its applicability is limited.

Due to its importance, let us take a closer look at the PDAF filter. It is formally analog to the KALMAN

filtering. The basic processing scheme is given by:

filtering (scan k−1): p(xk−1|Zk−1) = N (xk−1; xk−1|k−1,Pk−1|k−1) (→ initiation)

prediction (scan k): p(xk |Zk−1) ≈ N (xk; xk|k−1,Pk|k−1) (as usual)

filtering (scan k): p(xk |Zk) ≈
nk∑
j=0

p
j
kN (xk ; xjk|k,P

j
k|k) ≈ N (xk; xk|k,Pk|k)

where the quantities xjk|k, Pj
k|k, pjk are to be calculated as follows:

xjk|k =

{
xk|k−1 j=0

xk|k−1 + Wkν
j
k j �=0

Pj
k|k =

{
Pk|k−1 j=0

Pk|k−1 −WkSkW�
k j �=0

with: ν
j
k = zjk −Hxk︸ ︷︷ ︸

innovation

, Wk = Pk|k−1H�S−1
k︸ ︷︷ ︸

gain matrix

, Sk = HPk|k−1H� + R︸ ︷︷ ︸
innovation covariance

p
j
k =

p
j∗
k∑
j p

j∗
k︸︷︷︸

weights

, p
j∗
k =

{
(1 − PD) ρF j=0

PDN (νjk,Sk) j �=0
.

With the combined innovation νk =
∑nk

j=0 p
j
kν

j
k we obtain by moment matching:

xk|k =
nk∑
j=0

p
j
kxjk|k = p0

kxk|k−1 +
nk∑
j=1

p
j
k

(
xk|k−1 + Wkν

j
k

)
= xk|k−1 + Wk νk (92)

Pk|k =
nk∑
j=0

p
j
k

(
Pj
k|k + (xjk|k − xk|k)(xjk|k − xk|k)�

)
(93)

= Pk|k−1 −
nk∑
j=1

p
j
kWkSkW�

k +
nk∑
j=1

p
j
kWk(νjk − νk)(νj

k − νk)�W�
k (94)

= Pk|k−1 − (1 − p0
k)WkSkW�

k + Wk

[ nk∑
j=1

p
j
kν

j
kν

j�
k − νkνk

�

︸ ︷︷ ︸
spread of innovations

]
W�

k . (95)
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3.5.3 Multiple Hypotheses

In case of a more severe false return background or in a multiple-object tracking task with correlation gates
overlapping for a longer time, Bayesian track maintenance inevitably leads to densities p(xk |Zk) that are
characterized by several distinct modes. As this phenomenon is inherent in the uncertain origin of the re-
ceived data, relevant statistical information would get lost if global combining is applied to such cases. The
use of PDA-type filtering is thus confined to a relatively restricted area in parameter space (defined by ρF ,
PD, for instance).

By local combining of suitably chosen sub-mixtures and pruning of irrelevant mixture components,
however, memory explosions may be avoided without destroying the multi-mode structure of the densities.
Provided this is carefully done with data-driven adaptivity, all statistically relevant information may be pre-
served while keeping the number of mixture components under control, i.e. the number may be fluctuating
and be even large in critical situations but does not explosively grow. Evidently, PDA-type filtering is a
limiting case of such MHT-type techniques.

Individual Gating. In a first step for avoiding unnecessary computational load, sensor data irrelevant for
a given track hypothesis are excluded. Individual gating means that only those sensor data are used for
continuing a particular track hypothesis Hk whose innovations obey: ν�Hk

S−1
Hk

νHk < λ. The processing
parameter λ must be tuned to meet the requirements of a particular application. Evidently, the accuracy of
the prediction (depending on the system dynamics model and the previous track hypothesis) and a priori
information on the sensor performance enters into this decision criterion. Individual gating is a simple
measure of pre-selecting the sensor data. It can be performed for each track hypothesis independently before
any further data processing takes place.

Pruning Methods. In order to identify insignificant track hypotheses, first for each Hk the weighting
factors pHk are evaluated by processing the sensor data within the gates. This is done before the hypothetical
tracks xHk , PHk are computed. Due to the normalization involved, the size of each weighting factor pHk

depends on all sensor data in the gates. In contrast to individual gating, pruning is therefore applied after
all weighting factors are available. In zero-scan pruning track hypotheses are deleted that are smaller than
a certain predefined threshold. By this, an additional processing parameter is introduced that must be tuned
to meet the requirements of a particular application. The limiting case where the track hypothesis of highest
statistical weight is considered only, is a slightly more general formulation of standard Nearest-Neighbor
filtering as the hypothesis of a missing measurement may be of highest weight. Delayed or multiple-frame
pruning is closely related to this procedure. Here we consider the retrodicted weighting factors for a past
time given all sensor data up to the current scan (see subsection 3.4.3).

Local Combining. After filtering a single distinct mode of p(xk|Zk) might be a superposition of “similar”
mixture components. It is thus reasonable to apply local combining to the sub-mixture producing that mode.
Among several realizations successive local combining is particularly simple. Let us start with the mixture
component of highest statistical weight. In the order of decreasing weighting factors a component is searched
that is “similar” to the previous one. A very simple scalar criterion for similarity is provided by:

d(H1
k ,H

2
k ) < κ with: d(H1

k ,H
2
k ) = (xH1

k
− xH2

k
)�(PH1

k
+ PH2

k
)−1(xH1

k
− xH2

k
), (96)

where xH1,2
k

and PH
1,2
k

denote the mean and covariance of the components. By this, a third processing
parameter κ is introduced (besides λ and the pruning parameter) that must be tuned to meet the requirements
of a particular application. Local combining results in an ‘effective’ component with an increased weighting
factor. Then the next similar component is searched in the order of decreasing weighting factors and so on.
Having done this, we restart the procedure with the mixture component having the second largest weighting
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factor. Due to the data-driven adaptivity inherent in this method, MHT-type filtering automatically reduces
to PDA-type processing if PDA-processing provides good approximations to p(xk |Zk).

Objects moving closely-spaced for some time may irreversibly loose their identity: When they dissolve
again, a unique track-to-target association is impossible. In particular, this means that the component den-
sities p(xk,H1

k |Zk) and p(xk,H2
k |Zk) are nearly identical if H1

k and H2
k differ only in a permutation of the

targets. It is thus reasonable to deal with densities that are symmetric under permutations of the individual
targets. By this, no statistically relevant information is lost and the filter performance remains unchanged,
while the mean number of hypotheses involved may be significantly reduced.

3.6 Sequential Track Extraction

After solving the ‘track maintenance’ problem by deriving iterative processing schemes for updating condi-
tional probability densities, an important question is still open: By which means can the iteration process be
started? This is by no means a trivial task in case of ambiguous sensor data.

The initiation of the pdf-iteration is based on ‘extracted’ target tracks, i.e. on tracks whose existence
is ‘detected’ by a detection process on a higher level of abstraction, which makes use of sensor detections
accumulated over time. More strictly speaking, we have to find a candidate for a target track in a time series
of sensor observations Zk = {Zi}ki=1. For the sake of simplicity we assume for the time being: 1. In the FoV
of the sensors there is at most one object. 2. The sensor data collected in one scan are measured at the same
time.
We have to decide between two hypotheses:

• h1: Besides false returns, Zk contains also actual target measurements.

• h0: There is no target existing in the FoV; all sensor data in Zk are false.

Two decision errors are involved characterizing the performance of any test procedure: 1. The conditional
probability that hypothesis h1 is accepted given h1 is actually true P1 = Prob(accept h1|h1) corresponding
to the detection probability PD of a sensor. 2. P0 = Prob(accept h1|h0), corresponding to the false alarm
probability PF .

3.6.1 Likelihood-ratio Test

We are looking for a test procedure for deciding between these two probabilities as quickly as possible
for given decision errors P0, P1. Let us consider the conditional probability densities p(Zk |h0), p(Zk |h1)
(likelihood functions) and an intuitively plausible test function (likelihood ratio):

LR(k) =
p(Zk |h1)

p(Zk |h0)
. (97)

Starting from a time window of length k = 1, the test function LR(k) is successively calculated and compared
with two thresholds A and B:

for LR(k) < A, accept the hypothesis h0 (i.e. no object existent in the FoV)

for LR(k) > B, accept the hypothesis h1 (i.e. an object exists in the FoV)

for A < LR(k) < B, expect new data Zk+1 and repeat the test with LR(k + 1).

This test procedure (sequential likelihood ratio test) has the following, practically important properties:
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1. For the detection thresholds A, B and the decision errors P0, P1 obey approximately the relationship:

A ≈ 1 − P1

1 − P0
and B ≈ P1

P0
. (98)

2. The actual decision time required, i.e. the amount of sensor data required, is a random quantity.

3. On average the sequential likelihood test has a minimal decision length for given errors P0, P1.

4. The actual choice of P0 (P1) has impact on the mean decision length assuming h1 (h0) is valid.

5. In practice the parameter P1 is chosen close to One for actually detecting real object tracks.

6. The parameter P0 should be small, as the tracking system is not to be overloaded with false tracks.

3.6.2 Iterative Updating

For calculating the likelihood ratio, interpretations histories Hk = {Ek,Hk−1} of the accumulated data
Zk = {Zk,Zk−1} have to be considered as before in the case of track maintenance. With Ek = E0

k (Object

not detected), Ek = E
j
k (zjk ∈ Zk is the target measurement) and with the histories Hk we can write:

LR(k) =
p(Zk |h1)

p(Zk |h0)
=

∑
Hk

p(Zk,Hk|h1)

p(Zk |h0)
=

∑
Hk

p(Zk |Hk, h1) p(Hk |h1)

p(Zk |h0)
. (99)

For the test procedure an iterative calculation is requested. Standard probability reasoning yields:

p(Hk |h1) = p(Ek|Hk−1, h1) p(Hk−1|h1) = p(Hk−1|h1)

{
(1 − PD) pF (nk) Ek = E0

k
Pd
nk

pF (nk − 1) Ek = E
j
k

(100)

p(Zk|Hk, h1) = p(Zk|Hk,Zk−1, h1) p(Zk−1|Hk−1, h1) (101)

= p(Zk−1|Hk−1, h1)

{
|FoV|−nk Ek = E0

k

|FoV|−nk+1N (νHk,SHk ) Ek = E
j
k

(102)

p(Zk |h0) = p(Zk, nk,Zk−1|h0) = p(Zk|nk,Zk−1, h0) p(nk|Zk−1, h0) p(Zk−1|h0) (103)

= |FoV|−nk pF (nk) p(Zk−1|h0) with: pF (nk) =
ρF |FoV|

nk!
e−ρF |FoV|. (104)

We consider the following, convenient notation for multiple sums:

jk = (jk, . . . , j1) let us write
∑
jk

λjk =
nk∑

jk=0

· · ·
n1∑

j1=0

λjk...j1 . (105)

From the formulae above an application of the product formulae (Equation 7) results in the following simple
update formulae for the likelihood ratio:

Initiation: k = 0, j0 = 0, λj0 = 1 (106)

Updating: LR(k + 1) =
∑
jk+1

λjk+1 =
nk+1∑

jk+1=0

∑
jk

λjk+1jk λjk (107)

with: λjk+1jk =

{
1 − PD for: jk+1 = 0
PD
ρF
N (νjk+1jk ,Sjk+1jk ) for: jk+1 �= 0

(108)
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senor data innovation: νjk+1jk = zjk+1 −Hjk+1xjk+1|k (109)

innovation covariance: Sjk+1jk = Hjk+1 Pjk+1|kH�jk+1
+ Rjk+1 (110)

state update: xjk+1|k = Fjk+1xjk xjk = xjk|k−1 + Wjkjk−1νjk,jk−1 (111)

covariances: Pjk+1|k = Fjk+1PjkF�jk+1
+ Djk+1 Pjk = Pjk|k−1 −Wjkjk−1 Sjkjk−1 W�

jkjk−1
(112)

KALMAN gain: Wjkjk−1 = Pjk|k−1 H�jkS−1
jkjk−1

. (113)

3.6.3 Hand-over to Maintenance

The further proceeding in sequential track extraction consists of the following steps:

• LR(k) is represented by an increasing number of summands, which are related to a particular interpre-
tation history. The tuple {λjk , xjkPjk} is called a sub-track.

• For mitigating the growing-memory problem all approximations are to be used which have been intro-
duced for MHT track maintenance, as far as they do no significantly affect LR(k):

– Individual gating: Exclude data whose association to an existing sub-track is too improbable.

– Pruning: Delete sub-tacks which contribute not significantly to the likelihood ratio.

– Local combining: Merge similar sub-tracks by using moment matching according to

{λi, xi,Pi}i → {λ, x,P} with: λ =
∑
i

λi (114)

x =
1
λ

∑
i

λixi, P =
1
λ

∑
i

λi[Pi + (xi − x)(. . .)�}. (115)

• The test ends with a decision in favor of one of the hypotheses: h0 (no object) or h1 (object existent).

• After a track detection, the pdf for track maintenance is initiated by the sub-tracks according to:

normalization of the coefficients λjk : pjk =
λjk∑
jk λjk

(116)

{λjk , xjk ,Pjk} → p(xk |Zk) =
∑
jk

pjk N (xk ; xjk , Pjk ). (117)

• After a successful track extraction the sequential likelihood ratio test is restarted and exploits the
remaining sensor data not used for maintaining the existent tracks. Eventually other tracks can be
extracted.

• The sequential likelihood ration test can be used for track censoring: After a decision in favor of h1

we set: LR(0) = 1 and calculate LR(k) from the parameters defining p(xk |Zk):

– Track confirmation: LR(k) > P1
P0

, re-start: LR(0) = 1.

– Track Deletion: LR(k) < 1−P1
1−P0

, (eventually re-extraction of the target)
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3.6.4 Extension: Target Cluster

The previously discussed track extraction scheme can directly be generalized to target clusters if the number
n of objects within the cluster is known. For the sake of simplicity we let us assume an ideal resolution
capability of the sensor. In the case of an unknown number of objects we can proceed as follows:

1. Start the track extraction for the target cluster with the scan Z1 of sensor measurements.

2. Assume a maximum number N of objects within the target cluster, i.e. we have n < N.

3. Let the a priori probability of having n targets within the cluster be given by: P (n) = 1
N .

4. Consider hypotheses hn assuming n individual objects within the cluster (h0: no object).

5. Assume that in the initial sensor data set Z1 at least one object measurement is existent.

6. The generalized likelihood ratio test function is given by: LR(k) =
1
N

N∑
n=1

p(Zk |hn)

p(Zk |h0)
.

7. The conditional likelihoods p(Zk|hn) and p(Zk |h0) are iteratively calculated as before.

3.7 Discussion of Examples

From our experiments with real radar data we learned the following lessons (for details see [21, 18]):

1. IMM-MHT is applicable in situations that are inaccessible to human radar operators.

2. The filter is rather robust and does not critically depend on modeling parameters (within certain limits).

3. Decisive are both, its multiple hypothesis character allowing tentative alternatives in critical situations
and the qualitatively correct modeling of all significant effects.

4. Unless properly handled, resolution conflicts can seriously destabilize tracking.

5. Mono-hypothesis approximations to MHT (such as JPDAF) are not applicable in scenarios as consid-
ered in Figure 3.

6. MHT is highly adaptive, developing its multiple hypothesis character only when needed.

7. Retrodiction provides unique and accurate results from ambiguous MHT output if a small time delay
is accepted (some frames).

8. The maximum gain achievable by retrodiction is roughly the same for both, worst-case modeling and
IMM-MHT.

9. Algorithms employing multiple dynamics models are superior in that the time delays involved are
shorter.

10. Finally, it seems notable that a very simplified modeling of the sensor, the target dynamics, and the
environment may provide reasonable results if applied to real data.
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