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Language Complexity in
Generative Grammar

Early formal theories of syntax were generally couched in terms of
rewriting systems—phrase structure grammars and the transformational
grammars based on them. This approach was quite successful in uncov-
ering structural properties of natural languages and, moreover, was theo-
retically very fruitful as well, yielding the field of Formal Language The-
ory and leading to the identification of hierarchies of language complexity
classes. There was an expectation, in this early work, that such classes
would play a significant role in defining the structure of natural lan-
guages. The initial definition of the Chomsky Hierarchy (Chomsky 1959)
was motivated, in part, by the idea that the hierarchy might serve to
characterize the class of natural languages, at least in the broad sense
that some level might be shown to include the natural languages while
excluding significant categories of non-natural languages. The intent
was that by capturing the class of natural languages with a mechanism
that had a formally well-defined generative capacity one might gain in-
sight into the structural regularities of those languages. Further, given
the dual structural/automata-theoretic characterizations of these classes
one might hope not just to identify the regularities of natural language,
but to account for them.

Over time the emphasis has turned away from formalisms with re-
stricted generative capacity in favor of those that support more natural
expression of the relevant regularities. These more recent approaches
tend to fall into the category of constraint-based formalisms—formalisms
that define languages by specifying constraints on the structures analyz-
ing their strings. Concomitantly, the topic of language-theoretic com-
plexity has all but disappeared from linguistic research. This is largely
the result of a realization that the structural properties characterizing
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natural languages as a class may well not be those that can be distin-
guished by existing language complexity classes, but it is also at least
in part a result of the fact that it is not at all clear how to establish
such results for constraint-based theories. These studies address both of
these issues. We introduce a method for establishing language-theoretic
complexity results that is natural for application to constraint-based
formalisms over trees. What’s more, our experience in applying it to
Government and Binding Theory (GB) suggests that the connection be-
tween such results and current research in natural language syntax may
be stronger than generally assumed.

It will be useful, by way of introduction, to review briefly the in-
tertwined histories of formal language theory and generative linguistics
and in particular to sketch the diminishing role of language complexity
within formal theories of syntax. Our focus is the tradition that has led
to the development of Government and Binding Theory, but a similar
transition can be found in the evolution of GPSG into HPSG, albeit ac-
companied, in that case, by a move from trees to a more general class
of structures.

1.1 From Rewriting Systems to Constraint-Based For-
malisms

In one of the earliest applications of formal language theory to natu-
ral language Chomsky (1959, 1957) undertook to prove that English is
not included in the regular languages, and consequently, that finite-
state automata are inadequate to model the human language faculty.
At the same time he argued informally that the context-free gram-
mars were also, if not inadequate, then at least inexpedient, for defin-
ing natural languages. This proved to be a much more difficult result
to achieve and is still controversial. Although a considerable amount
of subsequent work was directed towards showing formally that vari-
ous natural languages were not context-free languages, that work was
mostly unsuccessful (Pullum and Gazdar 1982, Pullum 1984). Tt is only
relatively recently that compelling evidence has been offered for the non-
context-freeness of natural languages, specifically based on case-marking
in cross-serial verb constructions in Swiss German (Shieber 1985), on
long-distance extractions in Swedish (Miller 1991), and on word forma-
tion in Bambara (Culy 1985).

While the context-free grammars are evidently too weak, the context-
sensitive grammars seem clearly too powerful to characterize the class
of natural languages in any useful way. Savitch (1987), for instance,
points out that, for any recursively enumerable language L, there is
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a context-sensitive language L’ such that, a string is in L if and only if
it is one of an easily identifiable class of prefixes of the strings in L’.!
Thus, the context-sensitive languages exhibit every kind of structural
regularity exhibited by the r.e. languages.?

Natural languages, as a class, then, seem to fall between the context-
free and context-sensitive languages in the sense that they include
non-context-free languages but are expected to form a much smaller
class than the context-sensitive languages. Even in the early work
(Chomsky 1957, Chomsky 1959) there was a presumption that phrase
structure grammar alone was an inadequate foundation for a theory of
natural language syntax. This was based largely on the observation that
a great deal of the regularity in this syntax can be accounted for by trans-
formations that rearrange the components of sentences. At the same
time, one could hope for a formal result that the class of languages gen-
erated by CFGs augmented by some transformation mechanism might
be strictly smaller than the class of context-sensitive languages.

This was the intuition behind transformational grammars (as de-
veloped in Aspects, Chomsky 1965). In TG, a base grammar is associated
with a set of formal transformations. Here again, the generative capacity
of the grammars are well-defined, a function of both the complexity of
the base grammar and the permissible transformations.® In one extreme,
the Universal Base Hypothesis, the base grammar is fixed and all
variation between natural languages (modulo the lexicon) is to be ac-
counted for by variation in the transformations. The hope that such a
grammar might provide meaningful bounds on the complexity of natural
languages was frustrated, though, when Peters and Ritchie (1973, 1971,
see also Bach and Marsh 1987) showed that transformational grammars
of the type in Aspects are capable of generating every r.e. language. The
significance of these results is not that transformational grammars are
too strong in that they can generate languages that are too hard, in some
sense, to be natural languages, but rather that, by itself, the hypothesis
that natural languages are characterized by Aspects-style TGs, or even

ISpecifically, w € L iff there is some n € N for which (w,$"?) € L/, for all w and
some symbol $ not otherwise occurring in the language. This is the case simply
because any Turing Machine that accepts L, will accept each w € L using finitely
many tape cells. L’ simply encodes in $” that bound for some acceptor of L.

2Neither the context-sensitive nor unrestricted grammars have the same inherent
connection to phrase structure that the context-free grammars exhibit through their
derivation trees. Nonetheless, we assume that we are interested in the structure of
language and not just the set of strings in the language. That is to say, we are
interested in sets of phrase markers of some sort rather than sets of strings.

3 Although one does not necessarily have the simple connection to classes of com-
puting mechanisms exhibited by the phrase structure grammars.
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by TGs with a fixed base, has no non-trivial consequences with respect
to the class of natural languages. Every reasonable language is in the
class of languages generated by TGs.

Thus, the idea that one could get meaningful bounds on the class
of natural languages by restricting the framework in which the theory
of those languages is built was largely unsuccessful. The alternative ap-
proach is to work in a framework with relatively unrestricted (or just
unknown) generative capacity and characterize the natural languages by
a specific theory couched in that framework. The Principles and Pa-
rameters approach of Government and Binding Theory, for instance,
follows a strategy characterized by Berwick as aiming to “discover the
properties of natural languages first, and then characterize them for-
mally” (Berwick 1984, pg. 190). In this approach the structure of nat-
ural languages are consequences of a set of general principles that are
invariant across all of the languages, and a finite set of parameters that
account for the observed variation between them. While it is still usually
modeled as a transformational grammar, the base grammar (X-bar the-
ory) generates a single extremely simple set of structures and the catalog
of transformations of Aspects has been replaced with a single movement
rule, move-a—move anything anywhere. This underlying mechanism is
constrained by additional principles that specify structural conditions
that must be met in the admissible phrase markers. Ideally, every node
generated by the base grammar and every transformation introduced by
move-a is required by the consequences of these principles.*

GB, then, has adopted, in the place of the general formalism of TG, a
specific set of instances of that formalism. It no longer suggests that TG
might characterize the natural languages, rather that they are charac-
terized by a specific set of structural principles. This leaves the question
of the formal properties of the class open. But, even though the formal
properties no longer have a central role in guiding the theory, it is still
useful to determine these properties—both as a way of relating the GB
account of language to other linguistic theories and for what these prop-

4While, at first glance, this might appear to be a more powerful system than the
earlier T'G, particularly given the relative freedom in defining the principles on which
it is based, move-o, although relatively unconstrained in terms of what it can move
and where it can move it, represents only a single kind of transformation. In par-
ticular, subtrees are moved from one position in the tree to some other position
in the tree, leaving a trace—a node that is phonetically empty—behind. Thus,
move-o never deletes any portion of the tree nor creates new portions. The abil-
ity of the T'G-style grammars to delete material was instrumental to the proof of
Peters, Jr. and Ritchie 1973. Berwick (1984) and Berwick and Weinberg (1984) ar-
gue, partly on the basis of this lack of deletion, that GB generates only recursive or
context-sensitive (respectively) languages.
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erties can say about the nature of the human language faculty. Unfortu-
nately, formal complexity results are quite difficult to establish for GB.
If they are to be consequences of a set of structural principles, then one
needs either a complete set of those principles or precise formal bounds
on the principles that can be employed. The theory provides neither of
these. As a result, it is difficult to show even that the languages GB
defines are recursive.

1.2 A Descriptive Approach to Language Complexity

The topic of this book is a flexible and quite powerful approach to estab-
lishing language-theoretic complexity results for linguistic theories that,
like GB theories, are expressed as systems of constraints on trees. The
book falls naturally into two parts—Part I introduces our approach and
develops techniques for applying it and Part IT gives a fully worked-out
example of its application to a specific GB theory. In Chapter 3 we
introduce a logical language L%(,P capable of expressing many of the
constraints on trees that are employed in linguistic theories. This is
a monadic second-order language, allowing quantification both over in-
dividual nodes in trees and over arbitrary sets of those nodes, and 1s
thus superficially quite expressive. In Chapters 4 and b, however, we
establish that the descriptive power of this language, in terms of strong
generative capacity, is quite limited: sets of finite trees are definable in
L% KP iff they are strongly context-free. Thus, any set of constraints we
can capture in LK p licenses a context-free language. Similarly, we can
establish that a set of constraints is capable of defining non-context free
languages by showing that they are not definable in L% % p- We explore
techniques for establishing such results and give examples of both kinds.

In Part IT we apply this approach to Government and Binding The-
ory. We get both definability and non-definability results. We show,
first, that free-indexation, the mechanism that is usually employed to
express co-reference and agreement relationships in GB, is not definable
in L%(,Pa and thus, not enforceable by CFGs. In doing this, though,
we actually get the stronger result that free-indexation, even in an ex-
tremely weak form, is capable of defining languages for which emptiness
is undecidable. Thus, in general, it may not be possible to determine
the consistency of linguistic theories in which free-indexation is assumed.
Despite this inability to capture free-indexation, we go on to show that
a set of GB principles capable of describing substantially all of common
English syntax (or, rather, substantially all that has been accounted for
in GB) is, in fact, deﬁnable n LK p- Thus, we are able to establish that
the language hcensed by a partlcular theory within the GB framework
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is strongly context-free. This gives an indication of the strength of this
technique for establishing language-theoretic complexity results, as it is
easily the strongest such result for a realistic GB theory that has been
obtained to date.

One of the strengths we claim for this approach to language-theoretic
complexity is the naturalness of L% , as a language for formalizing lin-
guistically interesting constraints on trees. We have tried to maintain a
close connection to the linguistic concerns driving the theory throughout
our formalization, and, to that end, have tried to make it as orthodox as
possible. The benefit of such an approach is that, beyond its language
complexity consequences, this work stands on its own as a formalization
of a GB theory. The value of such formalizations, beyond providing a
basis for reasoning formally about the consequences of a theory, is that
they frequently raise linguistically significant issues that are obscured in
less rigorous expositions. The role of free-indexation, for instance, has
been questioned in a number of places within the linguistics literature
(we cite some in Section 9.3). Our results provide an independent justi-
fication for such questions—the use of free-indexation in formal theories
of language may be inappropriate, at least if one wants to restrict one-
self to formally decidable theories. The fact that we can capture most
aspects of GB without free-indexation, on the other hand, suggests that
its use in such theories is unlikely to be necessary. More concretely,
formalized principles may, in some cases, be simpler than the original
statements of some of those principles. The i1dentification component of
the Rizzi’s ECP, for example, reduces, in our treatment, to a simple re-
quirement that every node occur in a well-formed chain. Although such
results are typically only theoretically motivated, they may well suggest
refinements to the original theories that can be justified empirically.

1.3 Language-Theoretic Complexity Reconsidered

Having sketched the declining role of language-theoretic complexity in
the realm of generative grammar and raised the prospect of its restora-
tion, we are left with the question of why such a restoration might be
desirable.

The nature of language-theoretic complexity hierarchies is to classify
languages on the basis of their structural properties. The languages in a
class, for instance, will typically exhibit certain closure properties: if a
language includes strings of a particular form then it includes all strings
of a related form. Pumping lemmas are examples of such properties.
Similarly these classes typically admit normal forms: the languages in
the class can be generated from a set of simple languages using a small
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set of operations. Such normal forms are the topic of representation the-
orems such as Kleene’s Theorem for regular languages or the Chomsky-
Schiitzenberger Theorem for context-free languages (see, for instance,
Hopcroft and Ullman 1979).

While the linguistic relevance of individual results of this sort is de-
batable, the underlying form of the results at least loosely parallels fa-
miliar linguistic issues. The closure properties of a class of languages
state regularities that are exhibited by those languages; normal forms
express generalizations about their structure. So while these are, per-
haps, not the right results, they, at least, are not entirely the wrong kind
of results. Its reasonable, then, to ask where the natural languages as
a class fall with respect to these hierarchies, and, in fact, because the
classes are defined in terms of their structural properties and the struc-
tural properties of human languages can be studied directly, there is a
reasonable expectation of finding empirical evidence falsifying a given
hypothesis about the language complexity of natural languages should
such evidence exist. Note that even seemingly artificial diagnostics (like
the copy language {ww | w € {a, b}*}) can provide the basis for such
results, as witnessed by Shieber’s argument for the non-context-freeness
of Siwss-German (1985). On the other hand, we will show that the class
of languages which can be formalized in the way we develop here can be
characterized by the fact that it is possible to account for movement in
these languages while respecting a fixed bound on the number of chains
that overlap at any point in the tree. Effectively, this separates GB theo-
ries that license context-free languages from those that do not. We have,
then, a means of characterizing context-free languages that is quite nat-
ural in the realm of GB. Thus it may well be the case that the apparent
mismatch between formal language theory and natural languages has
more to do with the unnaturalness of the traditional diagnostics than
the appropriateness of the underlying structural properties.

By themselves these results would have little more than formal signif-
icance, but language complexity classes have automata-theoretic charac-
terizations as well. These determine, along certain dimensions, the types
of resources that are required to process the languages in a class. Reg-
ular languages, for instance, are characterized by acceptance by finite
state automata; they can be recognized using an amount of memory that
is independent of the length of the input string. Context sensitive lan-
guages can be characterized by acceptance by linear bounded automata;
they can be recognized using an amount of memory that is bounded by
a linear function of the length of the input. The context-free languages
are probably best characterized by acceptance of their derivation trees
by finite state tree automata (see Chapter 4); this corresponds to recog-
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nition by a collection of processes, each with a fixed amount of mem-
ory, where the number of processes is linear in the length of the input
string and there i1s minimal communication between the processes in the
sense that all communication with a process takes place as that process
is spawned.® The dual characterization of language complexity classes
means that hypotheses about the complexity of natural languages entail
specific predictions about both the structure of those languages and the
nature of the human language faculty. The key point is that these are
predictions about the mechanisms implementing a particular aspect of
human cognition—the human language faculty—that can be tested di-
rectly on the basis of observable behavior—the structural properties of
human languages.

The possibility that such results might be obtainable is suggested by
the fact that we find numerous cases in these studies in which the issues
that we encounter for definability reasons, and ultimately for complex-
ity reasons, have parallels that arise in the GB literature where they are
motivated by more purely linguistic concerns. This suggests that the
regularities of human languages that are the focus of the linguistic stud-
les are, perhaps, reflections of properties of the human language faculty
that can be characterized, at least to some extent, by language-theoretic
complexity classes.

5The more common characterization of the context-free languages by acceptance by
push-down automata seems too closely tied to an idiosyncratic model of computation
to correspond to a natural restriction on the types of resources.
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Introduction to Part 1

The first half of this book 1s an exploration of the theory of variably
branching finite trees in a logical language that allows formal reasoning
in terms of the kinds of relationships between nodes in a tree that gen-
erally form the foundation of formal theories of syntactic structure: in
particular the relationship between a node and its children, the relation-
ship between a node and the nodes in the sub-tree it dominates, and the
relationship between a node and the nodes that precede it in the left-
to-right ordering of the tree. The language supports reasoning about
labels or sets of features attributed to nodes through monadic second-
order variables—variables that range over arbitrary sets of nodes. Any
bounded system of attributes can be interpreted as variables to which are
assigned the sets of nodes exhibiting those attributes. As a result, most
systems of constraints on trees can be expressed nearly immediately in
the language. Exceptions include systems that, like HPSG, potentially
distinguish infinitely many types of nodes.!

The key motivation for formalizing linguistic theories within this
logic, as opposed to the variety of other formal systems that are avail-
able, is the primary result of this part—Ilanguages are definable in this
logic iff they are strongly context-free. Thus, in addition to the bene-
fits accrued from any rigorous formalization of a theory, one gets strong
generative-capacity results for the language in question. This result, of
course, implies that there are limits to the range of constraints that can
be expressed in this language. We explore the nature of the constraints
that cannot be captured directly and those that cannot be captured at
all, and we provide examples of techniques both for defining constraints
and for proving non-definability of constraints.

The content of this part is necessarily quite technical and it pre-

1But, based on the analyses of the second half of this book, one might question the
necessity of such a large variety of categories.

13
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sumes some familiarity with standard concepts of mathematical logic.
We provide definitions for most of the concepts we employ, however, and
it should be accessible to most mathematically inclined readers. Those
who are primarily interested in applying these results can safely skip
most of the details, focusing on Chapter 3 and Sections 5.1, 5.2, and 5.4,
and skipping, perhaps, most of the proofs. Part Il presents a detailed
formalization of a quite large theory of English using this approach. In
doing so, it demonstrates a variety of techniques for capturing a wide
range of constraints and for circumventing the superficial limitations of
the language. Thus, supplemented with only some of the background
from this part, Part II should serve as an in depth introduction to the
application of these results to linguistic theories.
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Trees as Elementary Structures

There have been two dominant approaches to the formalization of trees.
One of these, an algebraic approach (see, for instance, Courcelle 1983),
has grown primarily from studies in the semantics of programming lan-
guages and program schemes. In this approach, trees interpret terms in
the algebra generated by some finite set of function symbols. The term
f(z,y), for instance, is interpreted as a tree consisting of a root labeled
f that has the subtrees z and y as children. Maher (1988) has provided
a complete axiomatization for the equational theory of these trees. For
our purposes there are two characteristics of this theory that are most
significant: in it one reasons about (variables range over) entire trees as
opposed to individual nodes in those trees, and it is extensional in the
sense that f(z,y) = f(g(a), g(a)) implies that z = y.

In contrast, the second approach is concerned with the the internal
structure of trees. Formal treatments of trees of this sort are ultimately
founded in the theory of multiple successor functions, a generalization
of the theory of the natural numbers with successor and less-than. The
domain of this theory is the individual nodes in the tree—one reasons
about the relationships between these nodes. Here, it is a theorem that
the left successor of a node is not equal to the right successor of that
node regardless of how the nodes are labeled. The structure of multiple
successor functions is an infinite tree in which all nodes have the same
(possibly infinite) degree. Tts language includes predicate symbols for
each successor function, a predicate symbol for domination, and one
for lexicographic order (the total order imposed by domination and the
ordering among the successor functions). Rabin (1969) has shown that
SnS, the monadic second-order theory of this structure with n successor
functions, is decidable for all n < w. An axiomatization of the weak
monadic second-order fragment has been provided by Siefkes (1978).

In applications to computational linguistics trees typically represent

15
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the relationships between the components of sentences. Here, 1t is the
second approach that is appropriate. One wants to distinguish, for in-
stance, between identical noun phrases occurring at different positions
in a sentence. The relations of interest are based on the relation of a
node to its immediate successors (parent or immediate domination),
the relation of a node to the nodes in the subtree rooted at that node
(domination), and the left to right ordering of the branches in the tree
(linear precedence or left-of). Here it is often useful to be able to
reason about domination independent of parent. Such reasoning is sup-
ported directly by SnS. On the other hand, it is also often useful to
reason about the parent relation independent of left-of. Since left-of is
derived from the ordering of the successor functions in SnS, it is incon-
venient in this respect. Further, these applications are concerned with
(typically) finite trees with variable branching, in contrast to SnS, which
is the theory of an infinite tree with fixed branching.

In this chapter we provide a an axiomatization of variably branch-
ing trees in a signature tailored to linguistic applications. While our
structures differ from the structure of SnS (in that they vary in size and
branching) and our signature varies (in that it is relational and expresses
left-of independently of parent) we will show, in Chapter 4 that the the-
ory of this class of structures can be expressed as a fragment of SwS.
Consequently, the theory is decidable, even though it is not complete.!

3.1 Language

The signature we employ is intended to support expression of properties
of trees that typically occur in linguistic theories in as direct a manner
as possible. It includes predicates for the standard tree relations: par-
ent, domination, proper domination (irreflexive), left-of, and equality.
It also includes individual constant symbols (constants naming specific
nodes in the tree) and monadic predicate symbols (constants naming
specific sets of nodes) as may be required. These latter can be thought
of as atomic labels—the formula NP(z) will be true for every x labeled
NP. There are two sorts of variables: those ranging over individuals
and those ranging over sets. Thus this is a monadic second-order
language. Crucially, this is all the language includes. By restricting
ourselves to this language we commit ourselves to working only with
properties that can be expressed in terms of these basic predicates.

1Tt is incomplete (does not include either ¢ or —¢ for some formulae) because we
include trees of all countable cardinalities. A common approach to establishing de-
cidability of a theory is to show that it is recursively axiomatizable and complete.
The theory of trees is recursively axiomatizable (even in the first-order language—
see Backofen et al. 1995), but, as it is incomplete, this approach is not applicable.
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To be precise, the language depends on the sets of individual and set
constants it employs. In general, then, we think in terms of a family of
languages parameterized by those sets.

Definition 1 For K a set of individual constant symbols, and P a set
of predicate symbols, both countable, let L% & p be the language built
up from K, P, a fixed countably mﬁmte set of variables, in two ranks,
X = X°UX" and the symbols:

qa,4%,at, < — two place predicates, parent, domination, proper
domination and left-of respectively,
~ — equality predicate,

ALY, -Y30), L] —
usual logical connectives, quantifiers, and group-
ing symbols.
We use infix notation for the fixed predicate symbols <, €*, <T, <, and
The rank of the variables determines the arity of the relations they
range over. Variables of rank 0 range over individuals, those of rank 1
range over sets of individuals. The set X7 is the set of variables in X
with rank . We use lower-case for individual variables and constants
and upper-case for set variables and predicate symbols. Further, we
will say X () to assert that the individual assigned to the variable » is
included in the set assigned to the variable X. So, for instance,

(Vy)lr <"y — X(y)]

asserts that the set assigned to X includes every node dominated by the
node assigned to z.

L%(P is a relational language, its terms are just the members of
K UX°. Atomic formulae, literals and well-formed-formulae are
generated in the usual fashion. We use ¢, u, v, etc. to denote terms and
¢, 1, etc. to denote wifs. R denotes any of the predicates.

3.2 Tree Axloms

Let A% denote the following set of axioms:

A1 (F)(Vy)le < g,
Az (Vry)llz <t yAy< z)—a =y,
Az (Ve,y,2)[(x <y Ay < z) —x <* 2],
Ag (Voy)e<y—

(zat yA (V) [(z <* 2 Az < y) — (2 <" 2 Vy<* 2)])],
A5 (Vo)< o — Gyly <l
A6 (Vz,2)[r <t z — (Ty)z <y Ay < 2],
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A7 (Vey)le<y— (< yAy< z Ay £ ),
A8  (Vw,z,y, )z < yArx < wAy<z) — w < 2],
Ag (Ve y,2)[(x RyAy=<z)—x <z,

Aro  (Va)[(Fy)[z <y] — By)le <y A(V2)[z <z — z A y]]],
A1 (Vo)[(Fy)[z < y] — Cy)lz <y A (V2)[e <2 — 2 A 4]},
A1z (Vo)[(Fy)[z < y] — Cy)lz <y A (V2)[e <z —y A 2]l].

The intuitive meaning of A1 is that every tree includes a root which
dominates every node in the tree. We will assume normal models (in
which the interpretation of & is fixed as equality in the domain of the
model). Az then requires domination to be anti-symmetric. The anti-
symmetry of domination implies that the root is unique. Ag requires
domination to be transitive. Reflexivity of domination follows from A%.
A4 implies that there is no node that falls properly between, wrt dom-
ination, any node and its parent.

The axiom Apg requires that every node other than the root has a
parent. A path from z to y is the set of nodes that dominate y and are
dominated by z. By A6, every path from « that is non-trivial (includes
some node other than z) includes a child of . By A4 this is minimal
wrt domination among the nodes in the path properly dominated by
z. Linear branching is a property of trees that requires every path
to be linearly ordered by proper domination. (Here it is a consequence
of A7 and A8, as we will show below.) Along with Ap, this implies
that every non-trivial path ending at y includes the parent of y, which
must be maximal wrt domination among the nodes in the path properly
dominating y. If we restrict the class of models to those in which all paths
are finite, then these axioms, with Ag and A4, fix proper domination
as the transitive closure of parent.?

The forward (—) direction of A7 requires every pair of nodes to be
related by either domination or left-of. This 1s sometimes referred to as
the exhaustiveness property. The converse direction (exclusiveness)
asserts that these relations are mutually exclusive (and that left-of is
asymmetric). Together with A2 these establish the fact that every tree

is totally ordered by the relation z<y PN yV e <y. (This gives
the depth-first ordering of the tree.) A8 is sometimes referred to as the
inheritance (or non-tangling) property. It requires that the entire
subtrees rooted at nodes related by left-of are also related by left-of. Ag
establishes transitivity of left-of. With A7 this establishes that left-of
linearly orders each set of siblings. A10, then, requires that linear order
to have a minimum and A11 and A2 require it to be discrete.

2Axioms A5 and A6 are only independent if we allow models with infinite paths.
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As we shall see, these axioms by themselves do not suffice to de-
fine the class of variably branching trees. In fact a simple compact-
ness argument shows that this class is not first-order axiomatizable
(see Backofen et al. 1995). They do imply, though, most of the proper-
ties of trees usually encountered in the literature (for instance, McCawley 1968,
Siefkes 1978, Radford 1988, Partee et al. 1990, Blackburn et al. 1993, Kayne 1994).
Shortly, we will introduce two second-order induction axioms which we
will show extend them sufficiently to capture exactly the structures we
are interested in.> Thus AL provides a sound and complete basis for
reasoning about trees if one admits induction as a rule of inference.

One example of a common property of trees that we capture as a
consequence rather than explicitly is linear branching. To see this, sup-
pose that z <* zAy <” z. By A7 we have 2 <* yVy <" zVe < yVy < .
But, by A8 and A7, x < y implies z < y which, in turn, implies =y <* z,
contradicting our hypothesis. A similar line of reasoning rules out y < .
Consequently, z <* y Vy <* z.

3.3 Models and Satisfaction

Models are ordinary structures interpreting the individual constants and
predicate symbols.
Definition 2 A model for the language L%(,P is a tuple:
<U,I,P,D,£,Rp>pep ,

where:

U is a non-empty domain,

7 is a function from K to U,

P, D, and L are binary relations over i

(interpreting <, <*, and < respectively),
Ry is a subset of U interpreting p, for each p € P.

If the domain of Z is empty (i.e., the model is for a language Ly p)
we will generally omit it. Models for Lg g, then, are tuples (i, P,D, L).

In general, satisfaction is relative to an assignment mapping each
individual variable into a member of i/ and each predicate variable into
a subset of . We use

M | ¢s]

to denote that a model M satisfies a formula ¢ with an assignment s.
The notation

M

3In Backofen et al. 1995 we show that the corresponding first-order schemas suffice
to define the theory of these trees although not the class of structures.
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asserts that M models ¢ with any assignment. When ¢ 1s a sentence we
will usually use this form.

Proper domination is a defined predicate:

tatu=t<*uA-uat?

That the axioms AL are consistent follows from the fact that they
are satisfiable, at least by the structure consisting of a single node. It
is easy to exhibit structures for each of the axioms which fail to satisfy
that axiom while satisfying all of the others. Thus, they are independent
as well.

If M is a model for a language L% p, then Th(M) is the set of
sentences satisfied by M. If M is a set of models, then Th(M) is the
set of sentences satisfied by all M € M. If ® is a set of sentences,
Mod(®) is the set of models that satisfy each of the sentences in ® and
Cn(®) is Th(Mod(9®)), the consequences of ®.

3.3.1 Intended Models

For our standard definition of trees we adopt tree domains (Gorn 1967).
A tree domain is, in essence, the set of node addresses in a tree in which
the root has been given address € and the children of the node at ad-
dress w are given addresses (in order, left to right) w-0,w-1, ..., where
- denotes concatenation.® Tree domains, then, are particular subsets of
IN*. (N is the set of natural numbers.)

Definition 3 A tree domain is a non-empty set 7' C IN*, satisfying,
for all u,v € N* and 7,7 € IV, the conditions:

TDa1 wel =ueTl, TD= wel j<i=ujel.

Our intended models are those structures that, when restricted to
Ly p, are isomorphic to a tree domain under its natural interpretation.

Definition 4 The natural interpretation of a tree domain 7' is a
model T% = (T, Pz, Dr, L), where:

Pr = {{uuileTxT|ueN" i€ N},
Dr = {{u,uv) €T xT |u,ve N},
Lr = {{uiv,ujw) €T X T |u,v,w e N*i<jeN}.

These are just those models of the axioms AL for which the sets

B, ={y|(y,z) €D}
and

L. ={y | (32)[(z,9) , (z,2) € P and (y,z) € L]}

4We reserve the symbol = for explicit definitions. The left-hand side can be taken
to be the syntactic equivalent of the right-hand side.
5We will usually dispense with the dot and denote concatenation by juxtaposition.
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are finite, that is, for which the length of the path from the root to any
node and the number of left siblings of any node are finite.

In these structures every branch—every maximal set of nodes that
is linearly ordered by domination—is isomorphic to an initial subset of
the natural numbers ordered by less-than-or-equals. Similarly, the set
of children of any node is also isomorphic to such an initial segment
of the natural numbers. Consequently, these models admit proofs by
induction on the depth of a node in the tree and on the number of its
left siblings. Note that, since every node has countably many children,
there are countably many nodes at any given depth in the tree. Since the
trees are countably deep, the domain of these structures is countable.

Lemma 1 If T C N* is a tree domain, then T% = AL and for all
x €T, By and L, are finite.

The finiteness of B, and L, is clear. The proof, then, consists of ver-
ifying that 7% satisfies each of the axioms. This is straightforward but
tedious.

Lemma 2 Suppose M = (U, P, D, L) is a model of Ak in which B, and
L. are finite for allz € U. Then there is some tree domain T C IN™ for
which T% = M (T% is isomorphic to M ).

Proof. Let lyy : U — IN* be defined:

y(z) = { € . %f (Yy)l{y, z) ¢ P, .
u(y) i if {y,2) € P and card(L,) = i.
Let I(M) = plar (the range of lyr).

We claim that [y is total, well-defined, and that {(M) is a tree
domain, i.e., a non-empty subset of IN* that satisfies conditions T' D1
and TDz2. It follows then, from the definitions of {3y and I(M)!, that
(M) =M.

To establish the claim:

Since M is a model of AL, by A1 there is some node in U that
dominates every member of i/. By Az it is unique. Let R denote this
node—the root of M. First, we show for every individual  in i except
the root that there is a unique y such that {z,y) € P, and that there is
no y € Y such that (y,R) € P. (It follows then, that I7(R) = €, and
thus, ply #£0.)

(R,z) € D for all # €Y by Ax. Thus, by A4 and the definition of
<%, there is no y € U such that (y,R) € P. Further, by A1 and As and
linear branching, for all x € U either © = R or there exists y such that
(R,y) €D and (y,x) € P.

Uniqueness of the parent of any « follows from linear branching, A4,
and Az as follows: Suppose both y and z are parents of z. By A4
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they both properly dominate z. Then, by linear branching, one must
dominate the other. But, by A4 again, this implies they each dominate
the other, and, by A2 they must be equal.

With this we can now establish, by an induction on the depth of
the node, that l3s(2) has a unique value for every node « € & and that
plyr satisfies TD1 and T D2. Note that B, and L, are defined for all
z € U, and that card(B;) > 1 for all such #. Suppose card(B;) = 1.
Then z = R and for all y € U, {y,z) ¢ P. Thus, {yy(z) = € and
L, = 0. Suppose card(B;) = n > 1 and for all y if card(B,) < n, then
I (y)l. Since card(B,) # 1, + # R and there is some unique y such
that (y,z) € P, and for that y, (y,x) € D, and {(x,y) & D.

For all z € By, (z,#) € D. Consequently, by linear branching, either
(z,y) € D or {y,z) € D. By A4 and Az, then, either {z,y) € D or
z = . Therefore, B, = B, \ {2}, and card(B,) =n — 1.

Thus, {y(y)] and Iy (2) = Iy (y) - card(L,). Further, by definition
of Ly, for all z € Ly, (y,z) € P and ly(z) = Iy (y) - card(Ly).

That plys satisfies TD1 and T D2 then follows immediately from
the definition of [y and the fact that it is total on /. O

3.3.2 Induction Axioms

While each of our intended models satisfy A%, the converse is not true—
there are structures that satisfy AL but are not structures of our in-
tended sort. As a result, the consequences of the axioms are a proper
subset of the theory of trees. As far as that theory is concerned, the key
distinction between these nonstandard models and the intended models
is that, in the nonstandard models, induction on the depth of nodes (or
on the number of left-siblings) is not valid. Consider the model M; of
Figure 1. This consists of two components: an infinite sequence of nodes,
each with a single child, extending up from the root; and, infinitely far
out, a second component in which every node has exactly two children,
every node has a parent in that component, and every node is dominated
by every node in the first component.® It is casy to verify that this is
a model of A}, although clearly B, is infinite for every x in the second
component. This model satisfies the sentence

Ve, y)[z <y A(T2)][x < z] — (3l2)[y < 2]],

which says that every node whose parent has exactly one child also has
exactly one child. Along with the fact that the root has exactly one
child, this is sufficient to establish by induction, in standard models,

6This example is due to Backofen and Vijay-Shanker.
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My .

° °
FIGURE 1 A nonstandard model of A%,

that every node has exactly one child. That is,

(F2)[(Vy)[z <* y] A Tly)[z < y]IA
Vo, Yz ayA @)z az]) — Fl)ly<2]]) — (Vo) Ty)lz ay]

is valid in the set of standard models. On the other hand, it is clearly
not satisfied in M.

To rule out such models we add two monadic second-order axioms.
Let Ap denote A% augmented with:

Awr-p  (VX)[(F2)[X(2)] — F2)[X(2) A (Vy)[y <F 2 — =X (y)]]
Awr-r  (VO[F)[X ()] — F2)[X(2) A (Vy)ly < 2 — =X (y)]]

These axioms simply require proper-domination and left-of each to be
well-founded, that is, there are no infinite sequences of nodes each of
which properly dominates (respectively, is left-of) its predecessor. Tt
is well known that well-foundedness of proper domination is equivalent
to validity of induction on parent and similarly for left-of.” These ax-
ioms, then, restrict us to structures in which induction is valid—to our
intended models.

"To see that well-foundedness implies induction, assume (for contradiction) that the
root is in a set S and that S is closed under parent, but that S (the complement of S)
is not empty. Consider, then, any node in S that is minimal wrt domination. For the
other direction, assume that S is an infinite descending sequence of nodes but that
induction on parent is valid. Consider the set of all nodes that are not dominated by
any node in S. Clearly, the root is in this set and it is closed under parent. But just
as clearly it contains no node in S.
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Lemma 3 In every model of Ap both B, and Ly are finite for every «
wn the domain of the model.

Proof. The proof is nearly immediate. Consider the set of all nodes for
which B, is infinite. There can be no node in this set that is minimal
wrt domination, since the parent of any such minimal node would be
dominated by only finitely many nodes. This set must, consequently, be
empty. Similarly for L. a

Lemma 4 Suppose M is a model of AL and both B, and Ly are finite
for every x in the domain of M. Then M salisfies Ap.

Proof. Again the proof is almost immediate. Assume, for instance, that
B, is finite for all z and that S is non-empty. Choose ¢ € S. Then
B, NS is finite and non-empty and therefore contains an element that is

minimal wrt domination. Such a point is, clearly, minimal in S as well.
O

Together with Lemmas 1 and 2 these prove the correctness of the
axiomatization.

Theorem 5 M = Ap iff there is some tree domain T C N™ for which
Th =~ M|Lw . (Where M|Lw g 5 M restricted to the signature Ly g.)
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The signature of L% , was chosen to directly express those relations
within trees that typ&cally occur 1n linguistic theories. We choose to
work with the monadic second-order language over that signature be-
cause, while this is a relatively expressive language, it is still solvable—
it is decidable whether a given formula in the language is satisfiable.!
We establish this, in this chapter, by reducing satisfiability in L% 5 to
membership in SnS—the monadic second-order theory of multiplé suc-
cessor functions. This is the theory of A, the complete n-branching
tree, and the structures we are interested are a definable class of sub-
sets of A,. Thus, the question of whether any tree satisfies a given
formula ¢: “Mod(¢) # 07, becomes the question of whether there is a
¢'(X), a suitable relativization of ¢ to X, for which “(3X)[¢'(X)] € SwS
(= Th(N,))?”. We actually get a stronger result—not only can theo-
ries expressed 1n L%(,P be reduced to fragments of SnS, but the converse
holds as well, SnS can be interpreted in L%(,P' Thus, in a strong sense,
L%(,P and SnS are equivalent.

As 1t turns out, many of the properties and relationships over in-
dividuals and over trees that we are interested in can be expressed in
L% ., equivalently in SnS, but not all. The issue of what can and can
not be expressed is a fruitful one, and it is this question that leads us,
ultimately, to the primary result of this part—the characterization of
the class of strongly context-free languages in terms of definability in

2
Lk p-

1In fact, it seems likely that L?\, p is very nearly maximally expressive among solv-

able languages over this signature.

25
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4.1 SnS

For n € N U{w}, let T, = n*, where n = {i|i<n}. T, is the n-
branching tree-domain, i.e., the tree-domain in which every address has
n successors. In keeping with our interpretation of tree-domains, we
have, for all #,y € T},, that x <* y < y = 2z for some 2z € n*. Let <
denote the lexicographic order on 7T},:

xﬁygl‘d*yorr:zau,y:zbv, and a < b

for z,y,z,u,v € n* and a,b € n. Let r; denote the i*" successor
function (which we will generally use in post-fix position): zr; = i, for
z € T,,. Then, again for n € N U {w},

Nn déf <Tna<]*aﬁari>

is the structure of n successor functions. (We conflate <*, <, and
r; with their interpretation in the structure.) The monadic second-
order theory of N, is

i<n

SnS X Thy(N,,).

Note that the language of SnS contains unary functions but no constants.

Rabin’s fundamental result is that S2S is decidable. (It follows, by a
reasonably easy interpretation, that SnS for every n < w is decidable as
well.) The proof involves a reduction of the problem to the emptiness
problem for a class of automata on infinite trees. We will not discuss it
in detail here, but as we will need to appeal to the automata later, we
will describe them.

4.2 Automata on Infinite Trees

Definition 1 If X is any finite alphabet, an n-ary X-valued tree is a
map 1y : T, — X.

Thus, an n-ary X-valued tree is just the tree T;, with the nodes labeled
with elements of . In sequel, unless stated otherwise, we will assume
binary Y-valued trees which we will denote T%.

Definition 2 A Rabin Tree Automaton over binary X-valued trees
is a tuple A = (Q, go, A, F') where:

(@ 1s a finite set of states,

qo € @ is the start state,

A:QxX—P(Q xQ)is a (non-deterministic) transition func-
tion,

and F' C P(Q) is the set of accepting subsets.”

2There are a number of variations on the definition of acceptance. In Biichi au-
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Definition 3 A branch?® 7 in a tree 7}, is a maximal subset of 7}, that
is linearly ordered by «*.

Definition 4 A run of an automata .4 over X on a Y-valued tree 7% is a
map r : T — @ in which r(g) = qp and (r(20),r(z1)) € A(r(z), Ts(z))
forall z € 7,,.

Definition 5 A run r of A on 7Ty is accepting iff

In(r|.) € F,for all branches .

.
Where In(f) def {be B |(3%a € A)[f(a) = b]} for any map f: A — B,
and r|, is r restricted to 7.

A Y-valued tree T% is accepted by an automaton A iff there is an
accepting run of A on Tx. A set of trees is Rabin recognizable iff it
is the set of trees accepted by some Rabin tree automaton.

The operation of an automaton, as with (top-down) tree automata
over finite trees, can be thought of as starting with a single automaton in
state qo at the root and proceeding by sending automata in states ¢’ and
q" to the 0 and 1 successor of node w if w is labeled a, the automaton
at w is in state ¢ and {¢’, ¢") € A(q, a).

Rabin’s theorem follows from the fact that there is an effective proce-
dure for constructing, from any formula ¢(Xy,..., X,,) in the language
of 525 in which the free variables are among the X;, an automaton A,
over {0,1}"-valued trees such that a tree T is accepted by A, iff the
assignment

st = {X; — {w | m(T(w) = 1} | i < n}

h projection) is a satisfying assignment for ¢, i.e.,

No b= ¢(X1,. .., X) [s7].

Thus, the set of trees accepted by the automaton 1s non-empty iff the for-
mula is satisfiable. Rabin shows that emptiness of the language accepted
by these automata i1s decidable, and the decidability of S2S follows.

(where r; is the ¢°

tomata, which Rabin calls weak automata, F' is just a subset of Q. Thomas
(1990), refers to the automata we define here as Muller automata. He defines Ra-
bin automata as an equivalent variation in which acceptance is defined by a sequence
of pairs of finite subsets of Q, ((Li,U;))i<n, in which the members of L; may not
occur infinitely often along any path while some member of U; must occur infinitely
often along every path. Rabin, on the other hand, uses the definition we give in
Rabin 1969 and refers to the variation as Muller automata in Rabin 1972.

3In the SnS literature this is referred to as a path, but we prefer to use path for a
sequence of nodes falling between two nodes wrt domination. Such a sequence, in
turn, is usually referred to as a chain but this conflicts with use of the term in GB.
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4.3 Interpreting SnS in L% 0

Recall that L p denotes the monadic second-order language with no
individual constants or predicate symbols other than the fixed predicate
symbols 4, <*, a1, <, and ~. The purpose of this section is to show that,
roughly speaking, anything that can be said in the language of SnS can
be said in L%,w That is to say, there is a translation from formulae
in the language of SnS into L%,w such that a formula is in SnS iff its

translation is 1n Thz(Tﬁ) where TTE is the natural interpretation of T,
from Definition 4 of Section 3.3.1. Such a translation is referred to as a
faithful interpretation of SnS in Thy(7}) (see Enderton 1972, §2.7).
Note that we are dealing with the monadic second-order theory here, so
assignments map individual variables to elements of 7;, and predicate
variables to subsets of 7},. Since A, and TTE share the same universe,
assignments for the former serve for the latter as well. We give our
interpretation with a sequence of assertions that determine a syntactic
translation of formulae in the language of SnS into L E The assertions
form the core of a proof that the translation does in fact give a faithful
interpretation. This and the proofs of the assertions are reasonably self-
evident, and we don’t give them here.

We begin by eliminating function symbols. Let ¢(¢r;) denote any
formula in which the term #r;, for some term ¢, occurs and let ¢(z), in
the same context, denote ¢(tr;) with z replacing every occurrence of ¢r;.

Ny E6Cr)[s] < N, E 3z)z=ir; Ad(z)][s]
NoEomtrgs] © MEG@C AN yAtEy) — 2] [s]
NoEemtr[s] © N EG< zAVy)[iric1 <y — z=y])[s], 1> 0.
As an example
N, Erzmi2]s]| &
N |E (Fro)lt <" 2o A(VY)[(t <" y At 3 y) — w0y A
(Fz1)[t <" 21 A (Vy)[wo <y — 212y A
t<"w A (Vy)ler <y — z2]]] [s].

The translation introduces ¢ new individual variables for each tr;,
but, while r; is unbounded in general, the maximum r; occurring in any
finite ¢ is finite. Thus, the translation of ¢ is finite as well.

The actual translatlon into L B0 is induced by the translation of first-

order atomic formulae. The second-order atomic formulae need no trans-
lation.

NoEa<yls] & ThEeeyld
Ny Ee=yls] & TiEz<yVedyls)
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In our example
N, Erz=t2[s] <
T8 (o)t <" o A(VY)[(t < y At y) — (0 <y Vo < y)] A
(Fz)[t <" 21 A(VY)[eg <y — (21 <y Ve, < YA
t"z A(Vy)[zr <y — (@ <y Ve y]l[s]
This translation, then, witnesses the theorem:

Theorem 1 There is a syntactic translation ¢ — ¢’ taking formulae
wn the language of SnS to formulae in L%w such that, for all n < w,

6 € SnS iff ¢' € Thy(TH).

4.4 Defining Sets of Labeled Trees in SwS

The objects we are interested in describing are (generally finite) trees
with variable branching in which individual nodes may be named by
constants (in K') and are labeled via (monadic) predicate symbols (in
P). The structure A, in contrast, is infinite, has fixed branching, and
interprets no parameters other than <*; <, and the r;. Our concern
in this section is the embedding of our intended structures in A,. As
suggested earlier, we can capture trees that are smaller than 7}, as suit-
ably formed subsets. Thus, we are looking for a translation of a formula
¢ € L% p into a formula ¢'(X) in the language of SwS such that the
trees in i\/[od((b) correspond to the satisfying assignments for X in ¢/(X)
in SwS. Within this framework, constants and predicate symbols in K
and P can be interpreted as existentially quantified individual and set
variables, respectively. As with the prior section, rather than lay out the
translation explicitly, we make a sequence of assertions that both serves
to define the translation and forms the basis of a proof of its correctness.

Theorem 2 There is a translation ¢ — ¢’ taking formulae in L3 p to
formulae wn the language of SwS such that ¢ is satisfiable over trees iff
@' € SwSs.

Suppose ¢ € L% 5. We must show that there is a translation ¢'(X)
such that there is some tree M and assignment s that satisfy ¢ iff there
is some s’ for NV, that satisfies ¢'(X).

Suppose M = (U,Z,P,D,L,Rp)pcp is a tree and M |= ¢[s]. Let
X° and X! denote sets of individual and set variables, respectively, in
X, and suppose X = XU X' Then s maps X° — #f and X! — PU).

Let Py and Ky denote the (finitely many) parameters that actually
occur in ¢.

By Lemma 2 of Section 3.3.1 there is a mapping ! : ¢ — T, such
that {(M) (the range of [) is a tree-domain.
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For the forward direction, let
X =T, = {z—Is(x)]|zeX}U
(X —I(s(X)) | X eX'} U
{zg—1(Z(a)) |a€e K}U
{Xp—IRp)|PeP}U

{Xu — (M)}
where the z,, Xp, and Xy are new variables.
Then
MEaz<yls] & N,Ez<yls]
MEz=<y[s] & N,EFzQA-z< yls]
MEzayl[s] & NoExz< yA
(Vo)(z <" yAz b y) — 2 < 2][$]
ME P(z)[s] & NoEXp(2)[5]
M E é(a)[s] & NoE¢'(zd)[5]
M E (Vo)¢(z)][s] & No E (Vo)[Xu(z) — ¢'(2)][5]
ME VX)[(X)]s] & N B VX)[(V2)[X(2) — Xu(2)] —

¢'(X)] [s].

To get the other direction, i.e., that the existence of s’ implies the
existence of M and s, we must insure that the interpretation of X is a
tree-domain, that the interpretation of each . is in the interpretation
of X;; and that the interpretation of Xp is a subset of the interpretation
of Xz;. Thus, we translate ¢ as ¢'(Xy, Xp,%a)Pep, ack,, Which is the
conjunction of the translation of ¢ sketched above with:

Tree(Xe) A N\ Xu(wa) A N\ (Vo) [Xp(2) = Xu()].

Where

Tree(X) = (1)
(F2)(Vy)[X(2) A(X(y) — = <" )] A
(Ve 5, (X () A X() A 4™ 2 Az < g) — X(2)] A
(

(X()ANX(Aw<az AwayAw<azAze < zAz<y) — X(2)]

(Recall that = denotes syntactic equivalence, that is Tree(X) is to be
read as an abbreviation for the right hand side.)
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First conjunct requires existence of a root, second requires X to be
connected by parent, and the third requires the sets of siblings in X to
be connected by immediate left-of.

This suffices to insure, for any s’ such that

Nw ': ¢/(XUaXPa xG)P€P¢,a€K¢ [Sl]a
that
<5/(Xu)a I/a D/a P/a ‘C/a S/(XP)>P€P¢ ': ¢ [5]
where T’ : a v s'(x4), D', P, L are interpreted as indicated above, and
s=5"x.

If we work with SnS for some n < w rather than SwS, then this
translation serves to decide if ¢ 1s satisfiable over trees with branching
less-than-or-equal to n. It is trivial, of course, to restrict this further to
models with branching fixed at n. Then, taking K = P = {, Theorem 2
gives us the converse of Theorem 1.

Corollary 3 There is a translation ¢ — ¢' taking formulae in L%w to

formulae wn the language of SnS such that, for alln <w, ¢ € Thz(Tﬁ)
iff ' € SnS.

4.4.1 Labeled Trees in N,

Labeled trees, then, in the context of SwS can be equated with the
assignment for Xz, Xp, and z,.

Definition 6 A labeled tree in AV, (or just a ¢ree) is an assignment:
My = [Xy — U Xi— X[ 2 = ) i<n, j<m,

where
Ny | Tree(Xy)[ Xy — U],
X} cuti<ng, and
x]l ceU j < my.

Definition 7 A tree M satisfies a formula ¢ iff it is a satisfying assign-
ment for the variables in ¢ in N, .

Thus, it only satisfies formulae ¢( Xy, Xy, 2 )i<n, j<m, in which the free
variables are among { Xz, Xi, z; | ¢ < n1,j < mq}. Formally,

My ¢(Xe, Xiy j)i<ny j<m, & No | 6(Xu, Xiy 2j)icny j<mi M1
If SCUY' and v €U, then we will say
My E ¢(S,v) iff My E (X, 2)[X — S,z — ]
it N, Eo(X,2) MiU[X — S,z 1]

where X and z are variables that are not in § My (the domain of My).
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Definition 8 A formula ¢(X) is relativized to X iff all quantification
in ¢(X) is relative to X, e.g.,

Jz)[X(z) A -
3AY)[Subset(YV, X) A -
Y

)[Subset(V, X) — - - -

(
(
(
v

Let A; be Ap, the axioms of Section 3.2, relativized to Xz;. As-
signments into 7, that satisfy .4z, even those in which the range of
the assignment 1s the value of Xz, under the assignment, do not quite
correspond to trees in A,,. This is because we have no “immediate left-
of” predicate corresponding to the parent predicate. Thus, formulae
that are relativized to some subset of 7T}, are insensitive to children that
the subset excludes. Thus there is no way for A;; to enforce the third
conjunct of Tree(Xy/); subsets of T, in which sets of siblings are not
necessarily connected wrt immediate left-of (in A,) are trees so far as
Ar 1s concerned. Nonetheless, for convenience in working with trees in
N, directly in SwS (or rather, L%(,P) we would like the trees to exhibit
this property.

Let A’(Xy), then, be the third conjunct of Tree(Xz) and let A be
Ay extended with A’(X;;). Then, just as Ap characterizes the set of
trees (among models with finite B, and L), .AZ,' characterizes the set
of trees in N,,.

Theorem 4 [f My = [Xy — U, X; — Xl»l,x]' — x}]ith]’Sml 5 an
assignment into T, in which X} C U, for i < ny and x]l e U, for
j < ma, then My is a tree in N, off My = Af.

Proof. The proof is nearly immediate. Each of A2(Xy/) through A4(X/)
and A7(Xy) through A12(Xy/) are properties of every subset of T,.
(This is easy to verify.) A1(Xy) is just the first conjunct of Tree(Xy);
and A5(Xz) and A6(Xy/) are (each) equivalent to the second conjunct
of Tree(Xy). O
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4.4.2 TIsomorphisms between Trees in N,

Definition 9 If My and Ms are trees, then M7 and M- are isomorphic,
M, = M, iff there is a bijection h : U' — U? such that:*

MiEv<aw < M;Eh(v) < h(w)

MiEv<w < M Eh(v)<h(w)

MiEvaw & MsEh(v) <h(w)

X7 = [h(v) | v e X}

Lemma 5 If My = My and ¢(Xy, X;, ¢;) is relativized to Xy, then
M1 ': q/)(Xu,Xi,l‘]’) f— Mz ': qf)(Xu,Xi,l‘]’).

For the first-order fragment, this is the homomorphism theorem. The
second-order fragment is an easy extension.

4More properly, this would be
NoEos<yMi Uz —v,y—w] & Ny Ex<a*y My U[z — h(v),y — h(w)]

and so on.
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Definability and Non-Definability
in L%,? p

5.1 Definability on a Class of Structures

We now turn to the issue of what constitutes a definition of a relation
or a property with respect to a fixed class of structures (in our case
the class of intended models (trees) for L% . for some K and P, or, in
the degenerate case, A, ). We are concerned here with both first- and
second-order relations, by which we mean relations on predicates.
We will confine our second-order relations; however, to relations on sets
of individuals—those in which the arguments are monadic. This is suf-
ficient for our purposes and simplifies the exposition greatly. We can
admit hybrid relations in which some arguments range over individuals
and others over sets of individuals by interpreting them as second-order
relations in which some arguments are restricted to range over single-
tons. An n-ary relation on a class of structures C is an n-ary
relation that 1s uniformly defined on the universes of the structures in
C. Following Gurevich (1988) we formalize this as a function R taking
each M € C into, in the elementary case, a subset of |M|" (where |M]|
is the universe of M). For a second-order relation R(M) is a subset of
P(|M])", the set of n-tuples of subsets of |M]|.

In defining second-order relations we will have occasion to employ
variables that range over relations between sets of individuals. We will
be working, then, with three types of languages. For a given structure
M let L}, and L3, denote the first- and full (unrestricted arity) second-
order languages for M. Let L3, denote the language L3, augmented with
a set of third-order variables. We will use boldface type for the names of
these variables and will continue to use lowercase for individual variables
and uppercase for set variables. We will say X (X)) to assert that the
set of individuals assigned to X occurs in the set of sets assigned to

35
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X. In our applications third-order variables will never be bound by
quantifiers and will always range over relations between sets. We can
provide semantics for formulae in L3, therefore, simply by extending
the notion of an assignment appropriately.

For C, a class of structures, let

Le = () L,

MecC
for 1 <¢<3.
We will use &, def (x1,...,2,) to denote a sequence of distinct vari-
ables. For any assignment s, let s(#,) = (s(z1),...,s(xy)). Similarly

for )?n, s(in), )_fn and s(in)
5.1.1 Explicit Definitions

Definition 1 [Elementary definability] A relation R(M) C |[M|" is
(explicitly) elementary definable on a class of structures C iff there
is a formula ¢(Z,) in the language L} such that, for each M € C,
R(M) = {s(&n) | M = ¢(2n) [5]} -

Equivalently, if R is a predicate constant of arity n, not interpreted by
M, and M’ is any structure expanding M with an interpretation R’ of
R, then

M' E (VZ,)[R(Z,) < é(Z,)] if R = R.
The formula R(#,) < ¢(#,), then, is an (explicit) elementary definition
of R. Given such a definition, one can work in the language L} expanded
with the predicate R without actually leaving L}, since the definition
can be regarded as a purely syntactic definition R(#,) = ¢(&,), that is,
one can obtain an L} formula by replacing every occurrence of R(Z,) in
a formula with its definition ¢(Z),).

A relation on a class of structures is second-order definable iff it can
be expressed in the second-order language over that class. The notion
is meaningful for both elementary and second-order relations (as well as
hybrid relations).

Definition 2 [Second-order definability] A relation R(M) C |[M|" is
(explicitly) second-order definable on a class of structures C iff
there is a formula ¢(#,,) in the language L such that, for all M € C,

R(M) = {s(Zn) | M | 6(Zn) [s]} -
A second-order relation R(M) C P(|M|)" is (explicitly) second-order

definable on a class of structures C iff there is a formula ¢()?n) in the
language L2 such that, for all M € C,

R(M) = {s(X0) | M = o(X0) [}



DRAFT: September 12, 1995

DEFINABILITY AND NON-DEFINABILITY IN Lﬁ\:p / 37

Again, for our purposes, the value of these definitions is that we can
employ second-order definable predicates freely without exceeding the
expressive power of L.

5.1.2 Implicit Definitions

Definition 3 [Implicit Elementary Definability] A relation R(M) C
[M|" is implicitly elementary definable on a class of structures C
iff there is a formula ¢(X) in the language L% in which X is the only
second-order variable that occurs and only X occurs free, such that, for

all M € C,
M = 6(X)[s] & R(M) = s(X).

It 1s more usual to take X to be an otherwise uninterpreted predicate
symbol R. The definition ¢ is then a sentence and we require that, for
all M € C and all structures M’ expanding M with an interpretation R’
of R,
M E¢if R =R.
Definition 4 [Simultaneous Implicit Elementary Definability] A se-
quence of relations R is simultaneously implicitly elementary de-
finable on C iff there is a sentence (/)()?) in the language L2 in which the
X are the only second-order variables that occur and the only variables
that occur free, and each of the X; in X occurs with the appropriate
arity for the corresponding relation R; in 'ﬁ, such that, for each M € C
and R;,
M = 6(5)[s] & Ri(M) = (X,

The essence of implicit definability is that there is exactly one way to
expand each M € C with an interpretation of X such that the resulting
structure satisfies ¢(X), and that is by interpreting X as R. If we
take C to be the class of all structures over some signature, then Beth’s
Definability Theorem (Beth 1953) states that whenever a sequence of
relations is implicitly elementary definable on that class then each of
those relations are explicitly elementary definable on that class as well.
As a result, the distinction between implicit and explicit definability is
often ignored. Beth’s theorem, however, does not necessarily hold for
restricted classes of structures, and, in particular, is known to fail for
the class of all finite structures (Gurevich 1984).

It is easy to see, however, that implicit elementary definitions add
nothing to the expressive power of the second-order language, since every
R that is implicitly elementary definable on C, by ¢(X) say, can be
explicitly second-order defined by

R(Z) = (3X)[o(X) A X(Z)].
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Again, we can utilize a predicate R with its denotation fixed to be such
an R without actually leaving L2 since each occurrence of R(Z) can be
replaced with the right-hand side of its explicit second-order definition.

When we restrict ourselves to L%(,P this interpretation of implicit
first-order definitions as explicit second-order definitions only goes through
for monadic predicates, since we have only monadic second-order vari-
ables at our disposal. The concomitant restriction to monadic implicit
definitions is, in fact, unavoidable. We will show, in Section 5.3.4, that
there are binary relations that are implicitly first-order definable but not
explicitly second-order definable over trees in L%(,P'

Definition 5 [Implicit Second-order Definability] A second-order rela-
tion R(M) C P(|M])" is implicitly second-order definable on a
class of structures C iff there is a formula ¢(X) in the language L2 in
which X is the only third-order variable that occurs and only X occurs
free such that, for all M € C,

M £ ¢(X)[s] & R(M) = s(X).

The notion of implicit second-order definitions of elementary relations
is not useful, since, as we have just seen, any such definition is just
an explicit second-order definition. It is meaningful, however, to think
in terms of sequences of both elementary and second-order relations
that are simultaneously implicitly second-order definable. Again, to be
precise, we can think of the elementary relations in such a sequence as
relations on singleton subsets.

In general, at least over restricted classes of structures, implicit def-
initions extend the expressive power of L%. We will show, again in Sec-
tion 5.3.4, that there are implicitly second-order definable second-order
relations, even second-order relations with monadic arguments, that are
not explicitly second-order definable over trees in L%(,P'

5.1.3 Positive-Inductive Definitions

The notion of positive-inductive definability has figured prominently in
the study of descriptive computational complexity (see Chandra and Harel 1982,
Gurevich 1988). The properties of elementary positive-inductive defini-
tions (over fixed arbitrary structures) have been explored by Moschovakis (1974).
For the most part we follow Moschovakis’s exposition, generalizing
slightly. The reader is directed there for details.

Suppose ¢(Z, X) is a L2 formula with free variables among & and
X, no other second-order variables other than X, and in which X only
occurs positively—within the scope of an even number of negations.

Let 74 be the operator mapping P(|M|") — P(|M["), where n is
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the arity of X, such that

76(R) = {s(2) | M | ¢(Z, X)[s], s(X) = R}.
Let

25 =2,(Jrs),
£<k

(and thus 7% = 74(0)). Since X occurs only positively, 7 4 is monotone,
that is,if A C Bthen 7 4,(A) C 7 4(B). It follows that 7 4 has a least fixed
point Iy, which is 7§ for the smallest ordinal x for which ? (72) =7%.

[
The cardinality of x is always less than or equal to that of the universe

of M.

Definition 6 [Positive-inductive elementary definability] A relation R(M) C

|M|" is positive-inductively (elementary) definable on C iff there
is such a formula ¢(Z, X) for which, for all M in C, Iy = R(M).

While the key characteristic of all definitions is that there is a single
relation that satisfies the definition, for positive-inductive definitions
there may be many relations R for which 7,(R) = R, that is, 74
may have many fixed points. The essential characteristic of a positive-
inductive definition is that there is a unique minimum (with respect
to subset) such relation. For elementary definitions, this characteristic
is a second-order definable property. Thus, if R is a relation defined
positive-inductively by ¢(#, X), it can be explicitly second-order defined
with

R(Z) = (VXUVD)o(¥, X) — X()] — X(&)].
That is: & is in R iff it is in every relation closed under 7 4—in ev-
ery fixed-point of 74. Here again, then, we can incorporate positive-
inductively elementary defined relation symbols into the language with-
out actually leaving L2.

Of course this interpretation of positive-inductive elementary defini-
tions as explicit second-order definitions suffers the same limitation when
we restrict to L% p as our interpretation of implicit elementary defini-
tions did—it onlyyworks for monadic predicates—and we will show, with
a minor variation of our argument for the implicit case, that there are bi-
nary relations on N, that are positive-inductively elementary definable
but not explicitly second-order definable over trees in L%(,P'

We would like to consider positive-inductive definitions of second-
order relations as well. This 1s actually a straightforward generalization
of the elementary case since we can think of definitions of relations on
subsets of |M| in terms of definitions of elementary relations on the
structure built on the power set of |M].

Suppose X is a second-order variable with monadic arguments. Sup-
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pose (b()?, X)) is a formula with free variables among X and X, no other
third-order variables other than X, and in which X only occurs posi-
tively.

Let 74 map P(P(|M|)") — P(P(|M])"), where n is the arity of X,
such that

75(R) = {s(X) | M = 6(£, X)[5], s(X) = R} .

Define 7; as above. Again, 74 is monotone and has a least fixed point
1.

Definition 7 [Positive-inductive second-order definability] A relation
R(M) C P(|M])" is positive-inductively second-order definable
on C iff there is such a formula qb()?,X) for which Iy = R(M) for all
M in C.

Again, we will be able to show for this class of definitions, as with
implicit second-order definitions, that their expressive power is strictly
greater than that of explicit second-order definitions—there are second-
order relations, even those with monadic arguments, that are positive-
inductively second-order definable but not explicitly second-order defin-
able over trees in L%(,P'

5.2 Definability over Trees in Lj; p

From this discussion, 1t follows that we can expand the language of
L% . with explicit elementary or second-order definitions without ex-
tenaing its expressive power. In addition, we can also employ monadic
relations that are implicitly or positive-inductively elementary defined.
Beyond that, we cannot employ implicit or positive-inductive second-
order definitions or implicit or positive-inductive elementary definitions
of non-monadic relations without going beyond the descriptive power of
L% .. In fact, it will be a consequence of our proof of this fact that we
cannot employ such definitions without losing solvability.

As a rule, we will be interested in defining classes of labeled trees.
In our interpretation, these are relations between subsets of T,,: the set
of all nodes in the tree and the sets of nodes with each of the labels.
Thus, we generally will be explicitly defining non-monadic second-order
relations. In doing this, we can use monadic first-order relations freely—
these are interpreted as monadic predicate variables. Non-monadic rela-
tions and second-order relations, on the other hand, must be explicitly

defined.
5.2.1 Some Defined Relations

The following relations will be used in the sequel.



DRAFT: September 12, 1995

DEFINABILITY AND NON-DEFINABILITY IN Lﬁ\:p / 41

We start with a constant for the root:

root(z) = (Vy)[z <" y]. (1)
A subset of T, satisfies InclRoot iff it includes the root:
InclRoot(X) = (F2)[X (x) A root(x)]. (2)

A weaker condition is rootedness in the sense of having a lower bound
wrt domination:

Rooted(X) = (32)(Vy)[X () A (X(y) =z <" y)] (3)

A subset is connected if domination restricted to the nodes in that
set 1s the reflexive transitive closure of parent similarly restricted:

Connected(X) = (Vz,y, 2) (X (2)AX (y) Az <" zAz <" y) — X(2)]. (4)

Partition holds between a sequence of subsets and another subset

exactly in case the sequence partitions the other. There is a distinct
Partition relation of each arity greater than one.

Partition()?, Y)= (5)
Vo) (Y(z) = \/ X@)A A\ [X@)— A ~Z@)
xeX xeX ZeX \{X}

Path denotes any connected subset that is linearly ordered by dom-
ination (we are relaxing the requirement that it have a minimum and
maximum member):

Path(X) = (6)
Connected (X)) A (Va, y)[(X(2) A X(y) — (2 <" yVy <" )]
Branch is a rooted, unbounded path:
Branch(X) = (7)
InclRoot(X) A Path(X) A (V2)(Fy)[X(z) — (X(y) Az <t y)].
Subset:
Subset (X, Y) = (Va)[X(2) — Y(2)]. (8)
Since all subsets of T, are well-ordered by the lexicographic order,
X is finite iff each of its subsets has an upper-bound wrt <:

Finite(X) = (9)
(97 )(32) (V) [Subset (Y, X) — (V(2) A (¥ () — y=a)].

5.3 Non-Definability in L%(’P

We have that a relation is definable in L%(,P iff 1t is definable in SnS.
Thus, definability and non-definability results for SnS apply to L%(,P as
well. Thisis a reasonably well-studied topic (see Lauchli and Savioz 1987
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and Thomas 1990). Non-definability results are of particular interest to
us as these provide bounds on the relations, and hence, the sets of trees,
which we can capture in SnS, and consequently, in L% p. By definition,
every structure extending A, with a predicate for a relation definable in
SnS will have a decidable theory. One approach, then, to proving that
a given relation is not definable in SnS is to show that the theory of A,
extended with a predicate for that relation is not decidable. As with
many undecidability results, these ultimately involve reductions from
the halting problem. Typically (again in the context of SnS) the re-
duction 1s done via the Origin-Constrained Tiling Problem which yields
non-decidability of the monadic second-order theory of the g¢grid. This
result is due to Lewis (1979). While we will not repeat his proof here,
we will sketch it, adapted to our terminology.

5.3.1 The Origin-Constrained Tiling Problem
A Tiling System is a tuple D = (D, Dy, H, V), where

D is a finite set
Dy C D
H,V C D?

A Tiling is a map 7 : N? — D.
A tiling 7 is accepted by a tiling system D iff, for all (x,y) € IN?

7((0,0)) € Do
(r((z, ), 7+ Ly)) € H
(r((z,9), 7((x,y +1))) € V

The Origin-Constrained Tiling Problem is the question of whether,
for a given D, there exists a 7 such that D accepts 7.

Lewis shows the origin-constrained tiling problem to be undecidable
by reduction from the halting problem. To do this, he chooses

D=YU{{g,0)|¢€Q,0€X}

where X is the set of tape symbols and @ the set of states of a given
Turing Machine TM. He then defines H and V such that instantaneous
descriptions of TM are encoded parallel to the z-axis, their evolution
over time is encoded parallel to the y-axis, the initial configuration is
required along the y = 0 row, and a halting configuration is required
to occur, which, consequently, must be the maximum row wrt y. Some
refinement 1s required to account for the fact that the head of TM moves
diagonally in this space, etc., but it is reasonably easy to see that the
tiling system defined in this way accepts a 7 iff that 7 encodes a halting
computation of TM.
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5.3.2 The Monadic Second-Order Theory of the Grid
Let G = <1\72,O,r0,r1>, where

0 = (0,0)
ro({z,y)) = (x+1y)
n({z,y) = (x,y+1)

Let Thy(G) be the monadic second-order theory of G.
Lemma 1 (Lewis 1979) Tha(G) is undecidable.

Proof. By reduction from the origin-constrained tiling problem. Given a
tiling system D = (D, Dy, H, V), Let D be the set D, in arbitrary order,
take as variables. D can be encoded in the language of G as follows:

¢5 = \/ D)

on = (V@) A\ DPW(wy)— [Py
DeD (D,DYeH
o0 = (V@ A\ D) — /D, y))]
DeD (D,DYeV
¢ = (Vo)L \/ [D@IA N [D@)— N\ D))
DeD DeD D'eS\D

Then
(3D)[6B A 65 A 6P A ¢T] € Th(G)
< (37)[r is accepted by D]
In fact, there is such a 7 iff
G E (o7 Aoh AoB AGT) 171,

that is, iff the sets of points mapped to D € D are satisfying assignments
in GG for those D. a

Since the subsets of the grid that correspond to halting computations
of the Turing Machine are necessarily finite, weak quantification suffices
for the proof. Thus, the weak monadic second-order theory of the grid
is undecidable as well.

Note also that the second-order quantification is needed only to ex-
istentially quantify the variables in D. We can define a class of labeled
grids in which the variables are explicitly interpreted as predicate con-
stants:

GD = <W2, O, Io, I, D>D€D .
The first-order theory the this class of structures, then, 1s undecidable
by the same argument.
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5.3.3 Some Relations Non-Definable in SnS

With this result, we can establish non-definability of a relation in SnS
by showing that, using a predicate for that relation, we can define a
substructure of N, that is isomorphic to the grid. As an example, con-
sider a function s : s(w) — Ow for all w € {0,1}".} We can identify the
set 0*1* with the grid (with the map 0719 ~ (i, 5)). This is a definable
subset of T4, by, for instance,

Gr(z) = Feg)(Vy)[zo < 2 Ay Lo A(mg <"y — 2 £ y)]

The conjunct y £ zg insures that zg is on the left-most branch of 75,
that is, g € 0*. The conjunct z¢ <* y — & 4 y insures that z is on the
right-most branch of the subtree rooted at zg, that is, x € 0*1*. The
structure (G, €, s,r1), then, is isomorphic to the grid.

A second example is the equal-level predicate. This denotes the
relation

E={{v,w) | |v] = |w|, v,w € {0,1}"}.
With this, one can define s, since s(x) = y iff

(Fzo,yo,01)(V2)[ o<tz Az Lo A (g™ 2 — 2 £ 2)A
oY Ayo T yAz Ly A(yo <z =y £ 2)A
y1 4y AE(y1, x)].

Here zy and x are as in the definition of 0*1*. Similarly for yy and y.
The node yq is the left child of g, and consequently, if x = 0717, then
yo = 07t

Suppose j > 0. Since the node y; is at the same level in the tree as z
it 1s dominated by yo. Since 1t 1s the parent of y, which is on the right-
most branch of the subtree rooted at yg, it must be the case that y; is
also on the right-most branch of that subtree. Therefore, y; = 0°+11/-1
and y = 0117,

If j = 0, on the other hand, then zy = =. It follows that y; = x as
well, and yy = y. Thus, y = 0°t!.

5.3.4 The Additional Expressive Power of Implicit and Positive-
Inductive Definitions

We can use the non-definability of the equal-level predicate to witness the
additional expressive power of implicit and positive-inductive definitions
of non-monadic relations and of implicit and positive-inductive second
order definitions of monadic relations on the class of trees. We can
capture the equal-level predicate with an implicit elementary definition

1This example and the next are discussed in Thomas 1990. Proofs, by an alternative
method, are given in Lauchli and Savioz 1987.
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as the conjunction of the following formulae:

(Vz,y)[z ~ y — EL(z,y)] (10a)
(Vo,y)[EL(y, ) — EL(x, y)] (10b)
Vo, y, 2)[(EL(z, 2) AEL(z,y)) — EL(z, y)] (10¢)
Vo, z0,y, yo)[(zo <2 Ayo <y AEL(20,y0)) — EL(2,y)] (10d)
(Va,y)[z «F y — ~EL(z, y)] (10e)

The first three conditions require EL to be an equivalence relation—
reflexive, symmetric, and transitive. Condition 10d insures that EL is
true of nodes on the same level. (This is an easy induction on the level of
the nodes. Note that the fact that EL is reflexive implies that the root is
related to itself by EL.) The final condition insures that nodes that are
not on the same level are not related by EL. To see this, assume there
are two nodes a and b at different levels that are related by EL. Assume
a 18 the deeper of these. There must be a ¢, a proper predecessor of a,
that is at the same level as . Since they are equal-level nodes b and
¢ must be related by EL and, thus, by transitivity, a and ¢ must be as
well, contradicting condition 10e.

To transform this into a positive-inductive definition we need only
drop condition 10e and take the disjunction of the antecedents of the
implications of the remaining conditions:

r~y  V (11a)
EL(y,z) V (11b)
(F2)[EL(#, 2) AEL(z,y)] V (11¢)
(Fzo, yo)[ro <2 Ayo <y AEL(zg, yo)] (11d)

Again, it is easy to show that ? for this formula preserves the condi-
tion 10e.

To capture the equal-level predicate as a monadic second-order rela-
tion (a property of sets individuals) we define the class L of strata of
the tree. A set is in the class L iff it consists of all nodes at some level
in the tree. EL(z,y) is explicitly definable in terms of L(X):

EL(z,9) = (3X)[X(2) A X (y) A L(X)] (12)
L can be defined implicitly as follows:
(VX)) [(V2)[ X (z) < root(z)] — L(X)] (13a)
(VOIEVILY) A (Vo) [ X (2) = Fy)[Y (y) Ay < 2]]] —
L(Y) (13b)
(VX)[(Fz, y)[X(2) A X(y) Az <F y] — ~L(X)] (13¢)

Condition 13a states that the set consisting of just the root is in L,
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condition 13b states that the set of children of any set in L is also in L,
and the final condition states that no set in L contains any individuals
related by proper domination.

Again we can convert this to a positive-inductive definition by drop-
ping condition 13¢ and taking the disjunction of the antecedents of the
implications in the first two:

(V&)X (x) < root(z)] v (14a)
@EAV[LY) A (Vo)[X(2) < Fy)[Y(y) Ay <az]]  (14b)
5.3.5 The Non-Definability of Subtree Isomorphism

We will derive some additional non-definability results in the next section
by other methods, but as a final example of non-definability by reduction
from undecidability of the grid, consider the relation Isoz(x,y). This
holds iff the subtrees rooted at x and y are isomorphic wrt the predicates
in P. That is, a tree satisfies Isos(v, w) iff the subtrees rooted at v and

w, restricted to the predicates in ]3, are isomorphic.

This predicate is significant because it is essentially the difference
between the theory of trees as subsets of N, and the algebraic theory
of trees as in Courcelle 1983. If we fix some (finite) set of predicates P
and define equality extensionally in terms of Isozs, that is, take all pairs
of individuals related by Isop(x,y) to be equal, then the theory of the
resulting class of structures is just the algebraic theory of trees over P.
As this is not a decidable theory, it should come as no surprise that Isop
is not definable in L% p.

We show this by showing that, using Isos, we can capture an unde-
cidable fragment of the monadic second-order theory of the grid using
the property (of trees, parameterized by ]3)

<I>I(15) = (Y, x0,71, Y0, y1)[ (15)
(x<azg ANe dyg Axzg < Yo
zop <z ANyo QA
(Vo) zr A2Vvz Ayl — Tsop(xi,y)].

The nodes zy and yy are the left and right children of z, respectively 20
and z1. Since no nodes fall between z; and y; with respect to left-of,
these must be, in turn, the right child of 2y and left child of y;. This,
then, simply requires the subtrees at 01 and 210 to be isomorphic with
respect to the assignment of the predicates P.

Theorem 2 Isos(x,y) is not definable in SnS.

Suppose, for contradiction, that Isoz(x,y) is a formula in the language
of SnS that is true iff the subtrees rooted at the nodes assigned to z and
y are isomorphic wrt the sets assigned to P. Then ®;(P) is a formula
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in the language of SnS. We show that there are sentences in which
@I(ﬁ) occurs as a subformula that would then be in S2S, but for which
satisfiability is non-decidable, contradicting the decidability of S2S.

The underlying idea of the proof is that we can interpret paths from
the root in N5 as paths from the origin in IN? that follow the same se-
quence of successors. This defines a many-to-one map from 75 onto IV 2.
The formula @I(ﬁ) is sufficient to insure that all nodes in 75 that map
to the same point in IV? are labeled identically by the interpretations of
P. Tt will follow, then, that

(3D)[66 Adfr AP AéT Adr(D)]
will be in S2S iff
(3D)[66 A 5 A 6T A 07
is in Thy(G). As this is the formula from Section 5.3.2 that captures

the tiling system D, its satisfiability is non-decidable.

Let M = [Xyy — Ty, P; PZ»M]P cp be a labeled tree in N5 that

satisfies @I(ﬁ). Such an M exists—the tree in which every PM is either
T or the empty set, for instance.

For the sake of simplicity, if v,w € T5 we will say Iso (v, w) holds to
indicate that M = Isog(x, y)[z — v,y — w].

Suppose v € T5. (Recall that 75 = {0,1}".) We will denote the
number of ‘0’s in v by |v|,, and the number of ‘1’s by |v|,. Let

£ = {(v,w) | |v|y = [w]y and |v]; = fwl,} (16)

Then (v, w) € &g iff v and w have the same end point when interpreted as
paths from the origin in IN?. Further, (v, w) € &z iff v is a permutation
of w.

Lemma 3 If M | @I(ﬁ), then (v,w) € Eg implies Iso s(v, w).

Proof. We must show that whenever v is a permutation of w, then the
subtrees at v and w are isomorphic wrt the interpretations of Pin M.
We do this by induction on |v|, the length of v (and of w, as well).

Suppose |v| = 0. Then v = w and Iso (v, w) holds trivially.

Suppose, then, that |v] > 1 and the result holds for all pairs of nodes
at depths in the tree less than |v|.

Suppose, further, that v = v'i and w = w’i for some ¢ € {0, 1}. Then,
by the induction hypothesis, Isos(v',w’). It follows that Isos(v,w)
holds.

Suppose, alternatively, that v and w differ in their last element.
Without loss of generality, let v end in ‘0" while w ends in ‘1’. Since v is a
permutation of w, it must be the case that v = v'1v"0 and w = w'0w’’1
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for some v', v, w',w'" € {0,1}". Then
</U/1/U//’ U/U//1> , <w/0w//’ w/w//0> , </U//U//’ w/w//> E ((/‘G

and, since these are all shorter than |v], these are all related by Isop.
By 15, Iso5(v'v"'10,v'0"01). Then

Iso5(v"v"'10, w'w'01) by isomorphism of v+ and w'w"

Iso5(v'10"0, w'w'01) by isomorphism of v'1v"" and v'v"'1

Iso5(v'10"0, w' 0w 1) by isomorphism of w'0w” and w'w’0
Which is just Isos(v, w). O

Thus, the subtrees rooted at pairs of points in 75 that correspond to
the same point in IN? must be labeled identically with the P by M if
M = ®7(G). This lets us take the quotient of M wrt Eg.

Let [v]g = {w | {v,w) € Eg}.

Let Ng = <T2/5G, e,r§,r?>, where

Tofe, = AlvlalveT}
5 ([vle) = [v0]g
i ([vle) = [vlle
¢’ is well-defined, since |v|, = |w|, and |v|;, = |w|, imply that |vi|], =

|wi|, and |vi], = |wil.

Let P& = {[v]¢ |ve PM}.

Since w € [v]¢ implies w € PM < v € PM (by Lemma 3), PM =
{v|[v]g € PF} as well.

Let Mg = [P; — Pz’G]P,eﬁ' Mg is an assignment for Ng. Just as
we say that M satisfies a formula iff it is a satisfying assignment for the
variables in that formula for A5, we will say that Mg satisfies a formula
iff it is a satisfying assignment for the variables in that formula for AVg.

For the class of formulae relevant to the tiling problem—the class of
formulae involving only 7, the successor functions, the logical connec-
tives and the some set P of monadic predicate variables—this quotient
preserves satisfiability in the sense that M is a satisfying assignment
in My iff Mg is a satisfying assignment in Ag. (This is still under the
assumption that M satisfies @I(ﬁ))

Lemma 4 For (b(ﬁ) in the class just defined,
M = ¢(P) A ®1(P) iff Mg = ¢(P).

Proof. The proof is by structural induction. We give only the base case
and the induction step for one successor function.

M = Pi(z)[x — v, P; — PM]

K3
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v e PM
[v]¢ € PF
Mg = Pi(2)[z — [v]a, P; — PF]
Pi(ro(x))[x — v, Pi — PM]
o v0ePM
& [v]g € PY
o Mg E Pi(ro(2))[z — [v]g, Py — PF]

¢ ¢

M

To complete the proof of the <= direction, we need to show that the M
induced by Mg (by PM = {v|[v]e € PE}) satisfies ®;(P) as well as

(b(ﬁ) This is an easy consequence of the fact that Isos(v, w) holds in
such an M for every pair {v,w) € £g. O
Note that the restriction to the class (b(ﬁ) is required, since none of &,
<*, or < are preserved by this quotient.

To complete the proof of the theorem, we need only to show that Mg
models a ¢(P) sentence iff ¢ models it. This follows nearly immediately
from the following lemma, which asserts that M is isomorphic to G.

Lemma 5 Mg =G
Proof. The isomorphism 1s witnessed by the map
h: [vla = (lvly, o)) -

Its trivial to verify that this is a bijective homomorphism from Mg to

G. a

It follows that M and G are elementary equivalent. Further,

Corollary 6 Mg = (3P)[¢(P)] & G = (3P)[¢(P)]

as witnessed by the map between subsets induced by A
hi{[)e | v e To} v {(loly, [v];) | v e T}

We now have all we need to prove the theorem.
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Proof. (Theorem 2) Given a tiling system D, we have:
(37)[r accepted by D]

= (35)[(;573 AoB A dD A¢T] € Thy(G) from proof of
Lemma 1

& G E@AD)[¢5 AL AGD A D) by def. of Thy

& NaF 65 AGHAGRAGP[D; — DF] by Cor.

& M ESAGE AGE AGP NS (D) D; — DM] by Lemma 4

& =(3D)[¢B A SG AGD AGD AD(D)] & 529 by def. of $2S

a

Both the non-definability in L%(,P of the equal-level predicate and
that of Isos will be useful to us in the next chapter.

5.4 The Class of Sets of Trees Definable in L%”P

A set of trees is definable in L%(,P iff membership in the language is a
property of subsets of T, (a second-order property) that is (explicitly)
definable in SwS. Clearly, this class of sets is closed under Boolean
operations. Further, since SwS 1s decidable and emptiness for any set in
the class corresponds to satisfiability of (3X)[¢(X)] where ¢(X) is the
formula defining the set, emptiness is decidable for every set in the class.
This is sufficient to get a number of non-definability results.

Decidability of emptiness immediately implies that the set of deriva-
tion trees for an arbitrary context-sensitive grammar? is not definable
in L% p, since this would imply decidability of emptiness of the string
languége defined by the grammar. Decidability of emptiness along with
closure under Boolean operations gives decidability of emptiness of in-
tersection. This gives non-definability of the context-free tree languages
of Rounds 1970. It also gives non-definability of the set of trees gener-
ated by Tree-Adjoining Grammars (TAGs, Joshi et al. 1975, Joshi 1987,
Vijay-Shanker 1987) in which nodes are allowed to be re-labeled dur-
ing adjunction. In both these cases, non-decidability of emptiness of
intersection comes from the ability to define, for any context-free string
language, a set of linear trees in which the labeling of the (only) branch
of each tree in the set is a word in the string language (and v.v.). Thus,
Post’s correspondence problem (PCP) reduces, via emptiness of inter-
section of context-free string languages, to emptiness of intersection of
these tree sets.3

2For the notion of derivation tree to meaningful, of course, the CSG must be in
canonical form—each rule must rewrite only a single non-terminal.

3We can show that both the sets of CSG-generated trees and the TAG tree sets are
positive-inductively second-order definable on A,,. In addition, the TAG tree sets are
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The ability to capture context-free string languages in this way does
not appear to extend to pure TAGs—those in which nodes may not be
re-labeled, or at least in which labels may not be removed from nodes.
It turns out, however, to be reasonably easy to reduce PCP directly to
emptiness of the intersection of three pure TAG sets.

As an initial example of a class of tree sets that are definable in
L%(,P we have the class of sets of derivation trees generated by context-
free (string) grammars. Sets of trees in this class are referred to as local
sets.

Lemma 7 The set of derivation trees generated by an arbitrary context-
free grammar is definable in L3 p.

Proof. Suppose G is a CFG with start symbol S| non-terminals IV, and
terminals A. Let X be the set {Xy | N € N}U{X, |a€ A} U{X,},
in some order.

For each z € AU {e} let

6:(X,Xg) = (Va, p)[(X.(2) Aw aF y) = = Xa(y)].

For each N € N where the set of all right-hand sides of productions
for N is

{1 Zoo.. Zojg, ooy Zno-- - Zni,t,
where the Z; ; € N U AU {e}, let
on(X,Xe) = (Ve,y)[Xn(z) —
VI Xz, (2] A
i<n j<t,

((xayAar, <y) — Xa(y))]

Then let
¢G(f, Xg) = Finite(Xg) A Partition()?, Xa) A
N ¢:(X, Xg) A
ze Au{e}
N\ on(X)A
NeN

() [ Xg(z) Aroot(z) A Xg(x)].

The ¢, insure that no terminals are expanded, the ¢n insure that
each non-terminal is expanded according to some rule in the grammar,

positive-inductively elementary definable on AN, with non-monadic predicates. This
confirms that the languages of L?\, p Plus positive-inductive second-order definitions

on N, and that of L%\, p Plus non-monadic positive-inductive elementary definitions

on N, are strictly stronger that that of L?\, P alone.
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Finite and Partition insure that X is finite and completely labeled by
the symbols of &, and the final conjunct insures that the root is labeled
with the start symbol. a

The definability of local sets raises the question of why decidability of
emptiness of intersection is not violated. The answer is that emptiness
of the intersection of the string languages generated by CFGs is unde-
cidable. Here we have defined the tree set generated by the CFGs. The
undecidability of emptiness of intersection follows from a reduction from
PCP and that reduction depends crucially on the existence of strings in
the intersection with non-isomorphic derivation trees. The existence of
a tree in the intersection of the two languages, of course, implies that
the same derivation tree is generated by both grammars. From this
observation we get another non-definability result:

Corollary 8 The relation YieldsEqp(X,Y), which holds between finite
trees X and Y iff their yields, 1.e., ﬂie set of maximal nodes ordered by
left-of, are labeled identically by the P, is not definable in L%(,P’

5.4.1 Characterizing the Local Sets

This last result raises an interesting question. Vijay-Shanker, Weir,
and Joshi (1987) discuss a hierarchy of families of languages (originally
due to Weir 1987) in which the CFLs and the TALs form the first two
levels. Yet here we have the CFG-generated tree sets definable in the
second-order existential fragment of L%(,P while the TAG tree sets are
not definable at any level in L%(,P' One may ask what, if any, sets of
trees falling between these two are definable in L% .. It turns out, via
results originally due to Thatcher (1967) and Doner (1970) (in a slightly
different form), that every set of finite trees that is definable in L%(,P 18
a projection of a set of trees generated by a finite set of CFGs. Thus,
modulo the projection and the finiteness restriction, L% p characterizes
the CFG-generated tree sets. Doner’s work provides the connection to
SwS, Thatcher’s work provides the basic characterization of local sets
in terms of recognizable sets—those accepted by automata over finite
trees. Our proof is essentially a variation and slight extension of that of
Thatcher.

Definition 8 [(Mathematical) projection] A projection onto the ;™
co-ordinate is a mapping taking tuples to their *" co-ordinate. If ¥
is a set of tuples and T is a X-valued tree, then the i*" projection of 7'
is that tree in which each node is labeled with the 7" projection of its
label in 7. The i*®® projection of a set of tuples (respectively, a set of
tuple-labeled trees) is the set of i*® projections of the tuples in the set
(respectively, the trees in the set).
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We generalize this notion to include projections that take tuples into
tuples formed from some subsequence of their co-ordinates, that is, pro-
jections that delete certain co-ordinates. We interpret trees decorated
with labels from some set {X1,..., X,,} as an assignment of sets of nodes
to the X;. Equivalently (following Rabin), we can interpret these as X-
labeled trees for ¥ = {0,1}" in which the ' projection of the tuple
labeling a node 1s 1 just in case that node is included in the set assigned
to X;. A projection of a set of labeled trees, then, is a mapping that
suppresses some of the labels.

Lemma 9 FEvery set of finite trees with bounded branching that is de-
finable n L%(,P 1s the projection of a set of trees generated by a finite
set of Context-Free (string) Grammars.

Theorem 10 A set of finite trees with bounded branching is local (mod-
ulo projection) iff it is definable in L3 5.

Proof. (Lemma 9) From the discussion above, we have that a set
of trees is definable in L% . if every tree in the set is the satisfying

assignment for X, with labels that are the satisfying assignments for )?,
in a formula ¢ (X, )?) in AV,,. We will assume the trees are labeled subsets
of T5. The generalization to 7;, for any finite n is straightforward. By
Rabin’s theorem there is an automaton Ag on infinite {0,1}"-valued

trees, where n = ‘)_(" + 1, such that every tree in the language accepted

by the automaton is labeled with tuples built from the characteristic
functions of a satisfying assignment for ¢(X, )?) Assume, without loss
of generality, that if 7" is such a tree, then m; o T is the characteristic
function of the assignment for X. Thus, the subset of 7" in which 7, o T
has the value 1 is isomorphic to a tree in the original set. Call this subset
Tx.

Since the trees are necessarily rooted and connected and the behavior
of the automaton at any node is unaffected by the labeling of nodes that
do not dominate it, the labeling of the nodes in Tx are unaffected by
the labeling of the nodes in its complement. Thus, wlog, we may assume
for all w € T that m, o T'(w) = 0 iff T(w) = 0™. Then, since all subtrees
of T' that are rooted at a node w for which T'(w) = 0" are identical, we
may assume that every accepting run of A4 labels them with some state

4Bob Frank has pointed out that this result gives us another approach to Corol-
lary 8 of the preceding section, since using YieldsEqps one could generated the lan-
guage {ww | w € {a,b}*}. The approach through reduction from PCP, though, is
somewhat stronger since it implies that the theory one gets by extending SnS with
YieldsEq 3 is non-decidable, while the approach through reduction from non-context-
freeness of ww only implies that it is not equivalent to SnS.
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¢y that does not otherwise occur in the run, i.e.,

ny ) Heran)t ifa=gqy,
Alg,0%) = { 1 otherwise .
Thus, the set of accepting subsets of states for Ay is just {{qs}}.
Suppose Ay = {Q, 90, A, {{¢s}}) is such an automaton for ¢.
Let G 4, be the set of productions:

Ga, ¥ {la,0) — (g1, 00) (gr,07)

| (¢1,4r) € A(q,0) and A(qi,00)] and A(q,,0,)]}.

Let Sy def {<q0,0> | (q0,0) — Ir € G 4, for some [ and r}. Sp is, of
course, finite.

G 4, can be converted to a finite set of CFGs by the following proce-
dure:

1. Delete the production {g5,0") — {g7,0") (g5, 0™).

2. Delete all occurrences of {(g5,0") from all other productions.

@

3. For each production (¢, c) — with an empty rhs that results:
a. delete the production,
b. add (g, ) to a set of terminal symbols,
¢. add variants of every production in which (¢, &) occurs in the
rhs with (g, 0>/ replacing one or more of those occurrences.
4. For each pair {qg,c) in Sy define a CFG with (gg, o) as the start
symbol, the remaining productions, and the set of terminal sym-
bols collected in the previous step.

Suppose 7 1s an accepting run of A4 on 1'. We will show that T’x is a
projection of a tree generated by one of the CFG constructed above. For
all w € Ty we have A(r(w), T(w))] and {(r(w0), r(wl)) € A(r(w), T(w)),
since 7 is a run. Thus

(r(w0), T'(w)) — (r(w0), T(w0)) (r(wl), T(wl)) € Ga,.
Let T" be the tree generated by the CFG constructed above with start
state (go, T(¢)) using the productions selected by r and T. Clearly, the
right projection of 7" is Tx .

Conversely, suppose T’ is generated by one of the CFG constructed
above. Let T be the right projection of 7", extended to a total function
on 1% with w +— 0" for every w € T5 that does not occur in 7”. Let r
be the left projection of 77, extended similarly with w +— ¢;. Then r is
an accepting run of A4 on 7. a

5.4.2 The Linguistic Significance of (Mathematical) Projec-
tion
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FIGURE 2 Separating Local from Recognizable Sets

The fact that Theorem 10 only holds modulo a projection is some-
what unsatisfying, but the projection is, in fact, necessary—the local
sets are a proper subset of the recognizable sets. One set of trees that
separates these classes is the set of all finite binary {A, B}-labeled trees
in which exactly one node is labeled B. The tree of Figure 2 is one
such tree. This set of trees is recognizable by an automaton that distin-
guishes nodes that dominate a B from those that do not by the state it
assigns to them (0 and 1, respectively, for instance, as in the left-hand
tree of the figure).® That the set is not local is obvious—if an A can ever
expand to AB then any A can expand to AB. The construction of the
proof of Lemma 9, in essence, builds a CFG that generates trees labeled
with pairs consisting of the state assigned to a node by some successful
run and the original label of that node (as in the right-hand tree). The
generated grammar includes (among others) productions like

(0,4 — {0, 4)(1,4) | (1,4){0,4) | (0, B) (1, A4) | (1, 4) {0, B)
(1, 4y — (1, A)(1,4)
(0, By — (1,4)(1, A)

and so on.

In linguistic terms, the CFQG refines the categories of the original set
of trees on the basis of a limited amount of context, specifically the con-
text encoded by the state of the automaton; a (0, A) is an 4 with an
embedded B, while a {1, A) is an A that includes no such B. This is es-
sentially the same mechanism as the slashed categories of GPSG.% While
one might challenge the legitimacy of, for instance, a VP with an NP

5We will ignore complications having to do with finiteness, binary branching, etc.

6In fact the restrictions on the mechanism are the same as the fundamental limita-
tion on category-valued features in GPSG—we are limited to distinguishing finitely
many categories in all.
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gap as a category distinct from the class of all VPs, the idea that cate-
gories are subdivided on the basis of various additional features is hardly
controversial. The refinement introduced by the construction posits fea-
tures sufficient to make the language context-free. The projection simply
ignores those features.
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Conclusion of Part 1

The central result of this part, Theorem 10, is a kind of descriptive com-
plezity result for language-theoretic complexity. It says that definability
in L% , characterizes (modulo projection) the local sets—the sets of
finite trees generated by CFGs. This gives us a powerful tool for investi-
gating the “context-freeness” of grammar formalisms, particularly those
that are couched in logical terms possibly far removed from traditional
phrase structure rules.

Although the use of L%  is novel, the underlying idea is not. Peters
and Ritchie (1969) show that the class of trees analyzed by context-
sensitive grammars is generated by CFGs. Trees analyzed by a CSG are
those trees that are accepted when the grammar is used to verify, for each
node that has been expanded by a rule, that the appropriate context can
be found at some (any) level in the tree. Joshi and Levy (1977) extended
this approach to local constraints—specifications that include context
along branches as well as across the breadth of the tree. These results
are related to ours by the fact that they were proved by demonstrating
(finite) tree automata that accepted the languages in question.

The result itself is implicit in Doner 1970 and an nearly immediate

consequence of the combination of Thatcher and Wright 1968 and Thatcher 1967.

Both Doner 1970 and Thatcher and Wright 1968 (independently) ad-
dress the decidability of weak SnS. Doner 1970 proves the claim that a
string language is definable as the yield of a set of finite trees definable
in wSnS iff it is a CFL by proving, in essence, Theorem 10. Thatcher and
Wright 1968 give an automata-theoretic proof of decidability of wSnS,
but don’t make the connection to local sets. Thatcher 1967, however,
contemporaneously shows the equivalence of local sets and projections
of recognizable sets.

The result (in terms of wSnS) is itself a nice extension of an earlier

result of Biichi’s (1960) (and, again independently, Elgot 1961) establish-

57
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ing the equivalence of regular languages and strings definable in wS1S.
Thus, in lifting from a single successor function to multiple successor
functions we go from strings to trees, from regular sets to recognizable
sets, and (roughly) from regular grammars to context-free grammars.

More recently, Kracht has been pursuing a program that is remark-
ably similar to ours. In Kracht 1995 he gives constructions for compil-
ing sets of principles stated in the orientation language—a particular
fragment of dynamic logic—into GPSG-style grammars. The sets of fi-
nite trees definable in this fragment of dynamic logic, therefore, are the
local sets in an appropriately generalized form.! The goal of Kracht’s
program, as with ours, is to provide a means of comparing, in formal
language-theoretic terms, grammar formalisms based on systems of con-
straints on trees.

The results we have presented here, then, have a place among a
number of collections of similar results that differ mostly in the lan-
guages they use to express constraints. Although exact equivalence will
not necessarily obtain in all cases, it is possible to translate systems of
constraints on finite trees stated in L%(,P into Joshi and Levy’s local con-
straints, into wSnS, or into Kracht’s orientation language and vice versa.
While the notion of the “naturalness” of logical languages is a matter of
personal taste, L% 5 is a formal language of considerable clarity, and one
that is quite close to the languages in which constraints on trees are typ-
ically stated. Even though the very restrictions that are responsible for
the language’s capacity to provide language-theoretic complexity results
necessitate a certain amount of cleverness in encoding some linguistic
principles, for the most part the difficulty of comprehending the formal-
ization is not tremendously greater than the difficulty of comprehending
the original principles.

In the second part of this book, we apply this result to the question
of the complexity of the language defined by a Government and Binding
Theory account of English, and raise the possibility of using similar
results to establish bounds on the generative capacity of GB.

1Kracht gives conditions under which such a set of trees is actually a local set
in terms of the memory of the grammar, a notion he defines. The distinction be-
tween local and recognizable sets is closely related to the distinction between rational
(memory 0) grammars and grammars with non-zero memory.
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Introduction to Part II

The result characterizing the local sets by definability in L%(,P is a kind of
descriptive complexity result for language-theoretic complexity—a logi-
cal characterization of a language complexity class. Modulo projection,
any set of trees we can define within L% 5 can be generated by a context-
free grammar. Conversely, any set of trees that is provably non-definable
in L% o is strictly non-context-free. Definability in L% p, then, coupled
with the numerous non-definability results for SnS, pryovides a new set
of tools for determining context-freeness.

One particularly inviting domain for application of this technique
is Government and Binding Theory (GB). The principles employed in
GB generally have reasonably direct interpretations in formal logic; so
much so that a number of the principle-based parsers—parsers for GB-
style grammars—are defined directly in a formal logic and implemented
in PROLOG (Johnson 1989, Fong 1991, Stabler, Jr. 1992, Cornell 1992).
Thus, it 1s natural to ask which of these principles, or rather which
collections of these principles, are definable in L% . The answer to this
question would provide a step towards establishing formal bounds on
the principles, and consequently, bounds on the generative capacity of
GB.

This is the program we undertake here. Our primary result is that a
set of principles sufficient to define substantially all of common English
syntax is definable in L% . The only non-standard aspect of the set of
principles we capture is that we assume a constant bound on the number
of overlapping chains that can occur. We show that this is a property
of analyses that have been proposed for a broad range of movement
in English. Thus, we claim that the set of phrase markers licensed by
a reasonably mainstream GB grammar for English is strongly context-
free. If one accepts that the language this theory licenses is, in fact,
English, then we have a consequential claim that English is a context-
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free language. We do not, on the other hand, make any such claims
about the class of natural languages in general. On the contrary, we
explore some specific structures that have been offered as evidence of
the non-context-freeness of natural language as a class, and show how
our formalization fails to account for these.

The second result we offer here is a non-definability result. We show
that the mechanism of free-indexation, which occurs widely in GB the-
ories, is beyond the power of L% ,. Consequently, theories that nec-
essarily employ it license non-context-free languages. The proof of the
non-definability of free indexation actually yields a stronger result—
consistency of theories that employ free-indexation is, in general, unde-
cidable. As a result, it may be impossible to determine exactly what the
consequences of such a theory are. These results call into question the
appropriateness of free-indexation as a component of linguistic theory,
a question that has been raised on linguistic grounds elsewhere in the
literature.

Of course complexity results are not the typical reasons one under-
takes a formalization of a theory. The main thing one gets from a for-
malization is the ability to carry out formal proofs of the consequences
of the theory. One may, for instance, be able to formally establish the
consistency of the theory, or establish the independence of various as-
pects of the theory. Stabler, for example, considers a number of proofs
of the independence and non-independence of various sets of principles
in Stabler, Jr. 1992 and, in motivating his formalization, quotes Chom-
sky, “An attempt at full-scale formalization of the relevant assumptions
might be in order, given the level of complexity and the range of mate-
rial that must be considered” (Chomsky 1982). Most importantly, the
consequences of a linguistic theory constitute the predictions the theory
makes about natural language. It i1s these predictions that distinguish
a theory from a simple taxonomy. In formalizing the theory, one pro-
vides a means of exploring these consequences; and of testing them, in
a formal framework.

The act of formalizing a theory, in itself, often illuminates details
of the theory that are otherwise obscure. Frequently, assumptions and
gaps in the theory show up that were not at all apparent in less rigorous
treatments. Further, the formalization may well suggest modifications
and extensions to the theory, such as the elimination of components
that can be shown to be consequences of the remainder of the theory.
In some cases the issues involved in formalizing the theory may even
suggest alternative statements of the theory that can be justified on
linguistic grounds. While we don’t claim any results along these lines,
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we will offer, in passing, arguments that the formalization we develop
can, indeed, support such research.

The considerations that motivate most of the details of our approach
are “theory internal” in the sense that they are concerned with spe-
cific language complexity results. Absent a claim that these language
complexity results characterize natural language there is no particular
reason to believe that the issues we encounter will be significant for GB
in general. It’s somewhat surprising, then, to find parallels to these
issues arising in the current GB research. Indeed, our success in this
program is built largely upon the theoretical work of Rizzi and others
which, while motivated by linguistic considerations, addresses our needs
almost directly. The strength of these connections is enough to sug-
gest that there are deeper parallels between the intuitions driving that
research and the language complexity considerations driving ours.

7.1 The Generative Capacity of GB

There are two types of language complexity results one might establish
for GB. First, it may be possible to determine the complexity of the sets
of phrase markers licensed by the GB mechanism under some specific set
of principles and parameters. The result would characterize the class of
natural languages to the extent that those principles capture that class.
Alternatively, one might be able to identify some class of principles that
can be shown to be sufficient to capture natural languages, and then es-
tablish that the languages that can be generated by the GB mechanism
when restricted to principles in that class fall within some complexity
class. The first type of result gives the generative capacity of some spe-
cific theory within the GB framework, where that generative capacity is
just the class of languages one gets by varying the parameters through
their ranges. It says nothing about the complexity of languages gen-
erated by extensions to that theory. The second type is a generative
capacity result of a more typical nature. It establishes an upper bound
on the complexity of the languages defined by the mechanism no matter
what principles (in the restricted class) embody the theory.

One approach to the formal characterization of the set of structures
generated by the GB mechanism is due to Berwick. In Berwick 1984, he
defines, inductively, the set of trees admissible under GB by specifying
a local set as a base and defining a specific set of transformations to
the trees in that set. He uses this as the foundation of an argument
that the GB languages are recursive. The problem, as pointed out by
Perrault 1984, is the difficulty of showing that this formalization actually
captures the range of GB languages. This seems, rather, to be a result
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of the first type. It captures some specific set of principles and, in
fact, as Perrault notes, does not address many fundamental principles
and phenomena, among these case theory, Theta-theory, passives and
raising. Presumably, these could be added, but the result would not
necessarily hold for the extended theory.

The central result of this half of the book is also a result of the first
type. We show that the sets of phrase markers licensed in GB by a
specific set of principles are strongly context-free by showing that those
principles are definable in L% .. This approach has several advantages
over more traditional approaéhes like that of Berwick 1984. Foremost
among these is the fact that our proofs deal directly with the princi-
ples in a transparent way. Extensions to the theory in the form of new
principles or modifications of those principles already accounted for re-
quire only that we provide a translation of those principles into L% p
that is consistent with the existing definitions. Further, we have non-
definability results for L%(,P that rule out the possibility of capturing
certain types of principles in L%(,P' Thus, in addition to establishing
definability for a particular set of principles, we also have an indication
of what the limits of that definability are.

This suggests the possibility of establishing a result of the second
kind. We assume, on the basis of the evidence cited earlier, that natural
languages, as a class, are not context-free. We expect, then, that there
will be principles which are necessary to their definition in GB that can-
not be captured in L% .. Nonetheless, if descriptive complexity results
similar to ours can be established for larger language complexity classes
(for the indexed languages, for instance) it may be possible to make a
realistic argument that GB can be restricted to principles that are de-
finable in the corresponding theory without losing the ability to account
for the full class of natural languages. In this way we could establish
non-trivial generative capacity results for GB as a whole.

7.2 Formalizing GB via Logic

The body of our approach is a logical formalization of GB (or rather, of a
specific theory of English syntax within the framework of GB). The most
extensive studies of this sort have been in the area of principle-based

parsers (Berwick et al. 1991), particularly those of Johnson 1989, Fong 1991,

and Stabler, Jr. 1992). There are some significant contrasts between
these formalizations and ours. In particular, the universe of their defini-
tions consists of individuals and trees implemented as lists. Predicates
are defined recursively over these lists. We are confined to L% 5. Our
universe is individuals and arbitrary sets of individuals, and our lan-
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guage 1s restricted in that all non-monadic predicates other than those
of parent, domination, and left-of must be defined explicitly. Thus, there
will be significant differences in both the content and form of our def-
initions of the same principles. Nonetheless, these formalizations have
much to offer our efforts both in precise interpretation of principles and
in demonstrating successful approaches to the problems of capturing
them 1in logic.

One lesson to be gained is the suggestion that our goal might be at-
tainable for some significant set of principles. Johnson, for instance,
notes that X-bar theory, Theta-theory, and the case filter all seem
to involve strictly local principles and could be modeled as tree au-
tomata (Johnson 1989). Berwick (1991) points out that a similar conclu-
sion can be obtained from Correa’s implementation of a principle-based
parser as an attribute grammar (Correa 1991), in that his grammar ap-
pears to be of a restricted form known to generate only recognizable sets.
Thus, for this fragment of the theory at least, we expect to encounter
no difficulty.

The approach to a logical formalization of GB that is closest to ours
is due to Marcus Kracht (1995). Here Kracht sketches a formalization
of portions of Rizzi’s Relativized Minimality theory in the orientation
language, a fragment of dynamic logic which he shows to be compilable
into a GPSG-style grammar. While his results are similar to ours—
Relativized Minimality, to the extent that he captures it, must license
a recognizable set—his formalization 1s developed as an example, rather
than as a primary result, and, consequently, is no where near as compre-
hensive as ours. Some of the points he does not treat he leaves as open
questions. The formalization we give here explicitly addresses some of
those questions. In particular, we address the question of whether the
multiple levels of structure assumed in GB can be collapsed into a sin-
gle tree without materially affecting the theory, the related issue of the
problems created for such interpretations of the theory by the interac-
tion of movements (which are typically addressed via reconstruction),
and, perhaps most importantly, the question of what aspects of GB the-
ories raise the languages they license beyond the class of context-free
languages.

7.3 Overview

In the chapters that follow we apply definability in L%(,P to the prob-
lem of determining the language complexity of the sets of trees licensed,
within the GB framework, by a number of commonly identified princi-
ples. The underlying X-bar structure—roughly the base component of
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GB grammars—is simple enough that its definability is nearly trivial.
Our results, then, will be concerned primarily with the definability of
the principles that constrain that structure. We have, then, a measure of
the complexity of various sets of principles—if they are definable within
L% . they can be enforced by a CFG, if they are provably non-definable,
then they are non-context-free.

We begin, in the next chapter, with a simple survey of the basic
structures of GB, followed by a brief discussion of approaches to captur-
ing GB logically and a sketch of our overall approach. We then turn to
the 1ssue of non-definability. Here our main result is that indexation, as
it is usually employed, is not definable in L% p. As indexation is used
for a wide range of purposes within the various modules of GB, this es-
tablishes the basic theme of our study—since principles that are stated
in terms of indexation are not directly definable in L% , the main issue
for us is to identify which principles necessarily emp107y indexation and,
where 1t 1s not necessary, to reformulate the principles without it. This,
as 1t turns out, is an issue that has appeared, at least indirectly, in a
number of current refinements of GB theory. Thus, we are not left to
explore this unguided.

Some uses of indexation plainly involve simple structural relation-
ships that are easy to capture—subject-verb agreement, for instance.
The two uses that are most interesting theoretically are the use of in-
dices in the theories of binding and control to identify the reference of
nominals, and the use of indexation in the theory of movement to identify
chains. The particular theoretical framework we choose to follow is the
Relativized Minimality theory of Rizzi 1990. This is concerned primarily
with the notion of government—the fundamental class of relationships
that determine the relevant domain in binding theory and, at least as
the theory is developed by Rizzi, the connection between adjacent co-
indexed categories in chains. Significantly for us, these are relationships
with a strictly bounded domain and are amenable to definition in L% p.
Thus, for the most part, the task here is to capture Rizzi’s definition of
the government relationships and his re-interpretation of the standard
theory in terms of these relationships. Since Rizzi was motivated by lin-
guistic issues rather than any particular desire to eliminate indexation,
this 1s not always a straightforward process. Nonetheless, we are able to
capture a great deal of this theory within L%(,P'

In Chapter 10 we begin our formalization with the basic structures
and relationships of X-bar theory. We then introduce Head-Government,
following Rizzi (Section 10.7). In Chapter 11 we discuss our formaliza-
tion of the lexicon. In our interpretation, this has an extensive role. It
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is here that issues of subcategorization, Theta theory and case theory

are handled.

We begin our exploration of indexation issues, in Chapter 12, with
binding and control—the simpler cases. In treating this, we identify
a distinction between those aspects of these theories that have conse-
quences for the distribution of nominals (Principle A and Obligatory
Control) and those that concern only the proper interpretation of those
nominals (Principles B and C and Optional Control). Without access
to indexation, or an equivalent mechanism, we cannot in general enforce
specific interpretations. Thus, we cannot enforce this latter class of prin-
ciples, although we never license a tree in which there is no interpretation
consistent with these theories.

The largest part of this half of the book covers our formalization of
the theory of movement, Chapters 13 and 14. After introducing the ba-
sic notions and surveying the classes of movement in English, we follow,
for the most part, Rizzi’s development of the theory. One interesting
aspect of our interpretation of the theory is that, while we end up with
a reasonably complex definition of chains, the Empty Category Principle
reduces to a requirement of proper-head-government and a simple prin-
ciple requiring every category to be a member of some (possibly trivial)
well-formed chain. The formalization we develop in this chapter accom-
modates essentially all of the simple forms of movement in English.

The theory developed in Chapter 13 is incomplete in that it can-
not account for cases where portions of chains are moved by subsequent
movement of the phrases in which they occur. This complication is a
problem that must be resolved by every declarative interpretation of
movement. The usual approach is via reconstruction—effectively undo-
ing the movement. In Chapter 14 we develop a mechanism that resolves
this 1ssue purely declaratively.

Finally, in Chapter 15 we discuss the nature of two types of structures
for which our interpretation fails: particular analyses of cross-serial de-
pendencies in Dutch, and long-distance extractions in Swedish. In both
these cases, the failure can be traced to a violation of properties of move-
ment in English on which our interpretation depends. This leads us to
suggest a principle which appears to distinguish the context-free non-
context-free and GB languages. We close with some summary remarks
in Chapter 16.

While this study is not a tutorial, it is intended to be accessible to
those with little or no prior knowledge of GB. Indeed, those familiar
with GB will likely find some of our exposition tedious, we hope not
intolerably. The accounts we give of the phenomena the theory treats
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serve not only to explain the principles comprising the theory, but also
to fix the specific formulations of those principals that we capture.
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The Fundamental Structures of GB
Theories

In this chapter, we survey the basic structures and relationships that
provide the framework for GB. For the most part the discussion will be
based on the exposition in Haegeman 1991 and Radford 1988, as well
as, to a lesser extent, primary sources (Chomsky 1986 and others cited
in the text) and some additional secondary sources—in particular the

discussions of Stabler, Jr. 1992, Fong 1991, and Johnson 1989.
8.0.1 Levels of Representation and X-Bar Theory

Government and Binding Theory is generally defined in terms of four
levels of representation (Figure 3); each sentence is analyzed as four
distinct syntactic structures which are related in specific ways. D-
Structure corresponds roughly to the deep-structure—the output of
the base grammar—of Transformational Grammar. All trees gener-
ated here share an extraordinarily simple configuration—the basic X-
bar structure (Figure 4). Phrases have three levels: the phrase itself,

or maximal projection (XP or X), consisting of a possible specifier
(as in the determiner of a NP) and an X head, which in turn consists
of some set of complements (as in the arguments of a verb) and the
head of the phrase (X° or just X). These are referred to as bar levels 2
through 0, respectively. Specifiers and complements are required to be
maximal projections. In keeping with the projection principle selection
of specifiers and complements 1s determined by the lexical head of the
phrase, that is, by the content of the head. For predicates, this selection
is closely related to argument structure. It is at D-Structure that Theta-
roles are assigned. In addition to the lexical categories (N, V, A and
P) GB employs the functional categories INFL (I), inflection—carrying
agreement and tense, and COMP (C), a (possibly empty) complemen-
tizer. Clauses (S in prior terminology) are analyzed as CPs, projections
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FIGURE 3 Levels of Representation
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FIGURE 5 Structure of a Typical English Sentence

of C (whether empty or not). Propositions (S) are taken to be IPs.
COMP selects an TP complement, INFL usually selects a VP (or AP).
Figure 5 demonstrates the X-bar structure of a typical English sentence.

The structure of IP is sometimes analyzed further, following Pol-
lock (1989), as a complex of phrases headed by T? (tense), possibly Neg’
(negation), and Agr® (agreement).! The same sentence in this interpre-
tation is diagrammed in Figure 6.2 While there are arguments that turn
on this refinement, it is often more convenient to work with the simple
INFL. Thus, they are often employed side-by-side, as the need arises, in
which case INFL might be regarded as a notational convenience. Our
interpretation is neutral to this issue. As we will see when we define the
lexicon, either analysis, or even both, can be accommodated depending
only on the details of how the lexicon is defined.

The underlying D-Structure is permuted by move-« to produce S-
Structure.?
sentence. As a rule the lexical content at this structure is devoid of

This is as close as we will get to the surface form of the

IThere is some controversy over the relative order of TP and AgrP. Pollock has TP
contain AgrP. Rizzi 1990 requires the order in the figure.

20ther finer analyses have been proposed as well.

3Since move-a is a reversible process a more general way of thinking of this is that
D-Structure and S-structure are related by move-a.
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FIGURE 6 An Alternative Structure

inflection, contractions, etc. These are produced by the “spell-out” pro-
cess that relates S-Structure to PF, Phonetic Form, the actual surface
structure. For inflections at least, an alternative analysis is possible,
in which the lexical content at S-Structure is fully inflected and the
spell-out process is one of checking agreement of that inflection with
INFL (see, for instance, Chomsky 1993). While it is largely immate-
rial to our program, we will adopt this second approach as a matter of
convenience. Principles associated with Case Theory, Binding Theory
(with some controversy), and constraints on movement, such as subja-
cency and at least some aspects of the Empty Category Principle (ECP),
apply at S-Structure.

Finally, LF, Logical Form, encodes the logical structure of the ut-
terance. This 1s related to S-Structure by move-a. The associated
transformations, for the most part, have to do with raising wh-elements
and quantifiers to the leading edge of their scope. The traditional ap-
proach to constraining movement with ECP requires it to ultimately
apply at LF. For most of the analyses we cover, the distinction be-
tween S-Structure and LF is not significant; our formalization focuses
on D-Structure and S-Structure and does not cover LF.
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FIGURE 7 Adjunction and Chains

8.0.2 Varlations on X-Bar Structure

The Structure Preserving Principle requires X-bar structure to be
respected at all levels of representation. However, the basic structure
i1s modified, in practice, in two significant ways. First nodes may be
adjoined (i.e., Chomsky adjunction) either to the right or left of another
element (Figure 7). In the figure, I; is adjoined to the left of C and PP
is adjoined to the right of V. In this configuration the element at which
the adjunction occurs is split into two segments (or more if there are
multiple adjunctions). Collectively, these segments form a category.
For the purposes of the theory we do not want to distinguish between
the segments of a category. Thus, categories, rather than nodes, are the
atomic objects of the theory.

Adjoined categories occur under two circumstances. The first, base
generated adjunction occurs in D-Structure and accounts for modifiers
(adjuncts). Our interpretation of the theory makes no assumption about
where base-generated adjunction can occur. It i1s, however, generally
stipulated that only maximal projections can be adjoined in this way.
The second source of adjunction is adjunction that occurs as a result
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of movement (movement generated adjunction). This is generally
restricted to the cases of heads adjoining to heads (X° to Y?) or maximal
projections adjoining to maximal projections (XP to YP).

Movement need not create adjunction structures. Frequently a cat-
egory will move by substitution to a node that was left open at D-
Structure. In the figure, the wh-NP has moved, first by adjunction to
VP and then by substitution at the specifier of CP ([Spec,CP]). Note
that the structure preserving principle implies that XPs can only sub-
stitute at YP positions and X° can only substitute at Y° positions.

The second modification to X-bar structure is a consequence of the
nature of move-a. When a category is moved it leaves a trace behind
in its original position. These traces have no phonological content and
no constituents, but they do have syntactic features, sharing certain of
the features of the moved category and exhibiting some of their own. As
movement can occur in several steps (cyclically) each moved category
may have several traces. The moved category and its traces together
form a chain which is usually indicated by co-indexation—marking them
with the same index. In the figure the wh-NP and its co-indexed traces
form a chain, as do the I and its trace. Under some circumstances it is
useful to regard members of a chain as a single category, just as segments
of an adjunction structure form a single category, but this is by no means
standard.

8.1 Representational and Derivational Interpretations

Recent theories frequently do not take the notion of move-a as literal
movement. It is often given a representational rather than deriva-
tional interpretation. That is, one can regard move-« and the con-
straints on movement declaratively, licensing the the existence of chains
in S-Structure and LF rather than creating them by a sequence of deriva-
tion steps. Under this interpretation the need for multiple levels of rep-
resentation 1s no longer obvious. Constraints that apply at D-Structure
can be re-interpreted as applying to chains, or applying through the me-
diation of chains. D-Structure might then be regarded as a perspicuous
means of specifying certain constraints on S-Structure and LF.* This
approach is not without problems. As we will see later, move-« can se-
riously distort what were compellingly clear conditions at D-Structure.
So much so, that these conditions are often assumed to apply under
reconstruction—as if the checking mechanism applies them in their orig-

40r, carrying this to its logical conclusion, D-structure and S-structure are
means of specifying constraints on and the relationship between PF and LF.
See Chomsky 1993.
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inal form after undoing the movement. (This is an alternate conception
of the idea of the condition holding through the mediation of the chain.)

Given this variation in the theoretical conception of movement, it’s
interesting to see how it plays out in practice in the principle-based
parsers. Stabler (1992) takes a derivational approach in the sense that he
explicitly defines each of the levels of representation and defines move-
a (or its equivalent) as a relation between them. Fong (1991) takes
a reconstructive approach. He does not explicitly build D-Structure,
but extracts D-Structure relationships (essentially by “de-referencing”
chains) when needed. Particularly interesting is Johnson’s approach
in Johnson 1989. Here he begins with an implementation like that of
Stabler, but then applies optimizations in the form of program trans-
formations to this implementation. In doing so first D-Structure and
then S-Structure become redundant in the sense that no predicates de-
pend on them. Thus he, in essence, optimizes them out and ends up
with, in addition to a more efficient implementation, a representational
interpretation.

Our approach 1s purely declarative. We actually cannot define move-
« as an operation on trees or even a relationship between trees. We are
forced to adopt a representational interpretation of the principles and
to do so at a single level of representation. The representation we define
is closest to S-structure. This is mostly a convenience. Being close to
PF, the yields of S-structure trees are reasonably familiar. More impor-
tantly, LF effects are not critical to the issues we discuss. For reasons we
have hinted at, we cannot rely on the mechanism of indexation to iden-
tify the members of chains. This prevents us from treating chains, in the
manner of Fong, as a sort of indirection for the purposes of checking prin-
ciples that apply at D-Structure. Consequently, we define our particular
variant of S-Structure so that every important D-Structure relationship
is preserved directly, by some means, in the S-Structure. Justification
for this approach on linguistic grounds can be found in Brody’s (1993)
argument that D-Structure is best understood as the substructure of
S-Structure generated by its restriction to the base positions of chains.

It should be noted that the issue of how transformations are rep-
resented is independent of the issue of whether they are an essential
component of linguistic theories. This latter issue questions the GB
assumption of distinguishable levels of structure—with some linguistic
relationships being expressed at one level, others at another, and still
others as transformations between the levels. At the other extreme are
“non-transformational” theories (such as GPSG Gazdar et al. 1985) in
which all linguistic relationships are expressed within a single structure
and many of the artifacts of GB transformations, in particular interme-
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diate traces, have no role. In between fall theories like Brody’s inter-
pretation of D-Structure or Koster’s Radical Autonomy (1987), in which
the syntactic consequences of the GB theory of movement are accepted
but simplifications are found in encoding linguistic relations in a single
structure.

The distinction between these two issues becomes clearer once one
recognizes that, so far as mathematical structures go, there is nothing
extraordinary about transformations. If we take the configuration of
Figure 3 literally, then we are concerned with the theory of a class of
compound structures including components encoding each of the levels
of representation (D-Structure, S-Structure, etc.). The transformations
between the levels are just relations that happen to connect individuals
in one of these components to individuals in another.® As we have seen
in the first part of this book, it is not unusual for theories over one class
of structures to have fatthful interpretations into theories over a distinct
class—there is a translation between formulae such that a given formula
is valid in one class iff its translation is valid in the other. From the
point of view of the theory, classes for which such faithful interpretations
exist are equivalent. Given the particular characteristics of move-a, 1t
is possible to represent all of the levels of Figure 3 (with the possible
exception of PF) within a single tree with each level being the restriction
of that tree to a certain subset of its nodes. One can translate faithfully
between the theories in terms of these two structures; the distinctions
between them have no theoretical weight.

Note that none of the formalizations we have cited actually realizes
the structure of Figure 3 directly, even Stabler interprets trees as a
particular class of lists. The intent of these formalizations, however, as
with ours, is not to modify the theory, but to capture it as faithfully
as possible. In contrast, both the non-transformational theories and
Koster’s reinterpretation of transformations as a class of relations within
a single tree offer alternatives to the theoretical formulation of linguistic
relationships that is embodied in GB. Thus the arguments for these
alternatives, while usually couched in terms of the underlying structures,
are not, in fact, about the structures themselves, but are rather about
the way in which particular linguistic relationships are represented on
those structures.

5To see the “ordinariness” of this it perhaps helps to think of rewrite rules as
transformations from one level in the derivation tree to the next. If we think, then,
of D-Structure as a tree generated by such rules, then we can see it as a compound
structure in itself, consisting of a number of levels each related to the next by a
specific range of transformations. The full structure, then, just takes this into another
dimension.
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In closing this discussion, we should note that, primarily because we
cannot employ free-indexation, there are distinctions between the way
in which we formalize certain relationships and the way in which they
are typically defined in GB. In some cases, as in our formalization of the
ECP, there is considerable simplification; others are considerably more
complex. Given that the role of indexation in linguistic theories is a topic
of debate, the ways in which principles must be restated to eliminate it
is of interest in its own right, and this study should help to illuminate
that issue. On the other hand, we do not presume to propose, in the
manner of Koster, any significant modification to the theory—rather,
we are reformulating it within the restrictions of L%(,P'
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GB and Non-definability in L%:P

Before developing our formalization of those principles that are definable
in L% 5, it will be useful to explore the boundaries of that definability
with fespect to GB. We have a number of non-definability results from
Chapter 4. Some of these have consequences for particular GB analyses.

These results, recall, are based on reductions from non-decidable
theories. By the definition of definability, the theory of any class of
structures definable in L%(,P when augmented with any relation that is
definable in L%(,P is still decidable. One way of showing non-definability
of a relation, then, is to show that by adding it to L% , one can define
a class of structures that has an non-decidable monadic second-order
theory. For most of these results, the class of structures involved includes
just the grid. This is a structure with two successor functions similar
to the infinite binary tree, but in which the right successor of the left
successor of a node is equal to the left successor of its right successor,
i.e., 01 & £10. One can define sets in the monadic second-order theory
of the grid that correspond to the halting computations of any given
Turing Machine. These sets are non-empty, then, iff the given Turing
Machine halts. This is the tiling argument of Lemma 1 in Chapter 4.
It follows that, if one can capture the theory of the grid in L% . using
a predicate for a particular relation, then that relation is not definable
in L%(,P' Results based on reduction from the theory of the grid include
non-definability of the equal level predicate, which is true of a pair
iff they are at the same depth in the tree, and non-definability of the
predicate Isos(x,y) which is true of a pair of nodes x and y just in
case the subtrees rooted at the nodes are isomorphic with respect to the
monadic predicates in P. We will use this approach in establishing the
central non-definability result of this section.

The other reduction we employed in proving non-definability was
from the problem of whether the intersection of two CFLs was empty.

79
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The main result here was that the predicate YieldskEqps(X,Y') is not
definable in L%(,P' This relation is true of pairs of subtrees iff their

vields are labeled identically with respect to P.In L%, extended with
YieldsEqp we can define, given any pair of CFGs, a set of finite trees
that is empty iff the intersection of the string languages generated by
those CFGs i1s non-empty. Since emptiness of the intersection of CFGs
is non-decidable, emptiness of this set is non-decidable. It follows that
YieldsEqp is a not definable in L%(,P'

9.1 Some Non-Definable GB Analyses

As an example of how these results relate to GB, consider the argu-
ment of Bresnan, et al., (1982) that a particular analysis of cross-serial
dependencies in Dutch is not strongly context-free. They propose a (lin-
guistically motivated) analysis of sentences of the form

dat Jan Piet ... de kinderen zag helpen ... zwemmen
that Jan Piet ... the children see-past help-inf ... swim-inf
...that Jan saw Piet help ...the children swim

where arbitrarily many noun/verb pairs may be inserted in the ellipses.
There are agreement constraints between the nouns and their corre-
sponding verbs. This is weakly context-free since all but the first and
the last verb/noun pairs share the same agreement conditions, and thus,
permuting those nouns or verbs (or both) does not change acceptability
of the sentence. The language, then, is closer in nature to a”b” than ww;
the number of nouns and verbs must match, but, other than the first
and last pair, we need not distinguish them.! In their proposed analy-
sis, however, the nouns and the verbs occur along separate branches of
the tree. Consequently, these branches must be of equal length. The
formal part of their argument is very close in its foundation to our ap-
proach here. They show that the set of these structures is not strongly
context-free using Thatcher’s pumping lemma for finite-state tree au-
tomata (Thatcher 1967). We can get the same result by noting that the
ability to establish that pairs of branches are of equal length gives us
the ability to define the equal level predicate, and so ultimately allows
definition of the grid. We will return to this example in Chapter 15
when we consider structures that our formalization cannot capture.
Another analysis that we cannot capture directly is movement by

1This is in contrast to Shieber’s Swiss German example Shieber 1985 in which each
pair exhibits either of two agreement features resulting in a language similar in nature

to {ww | w € {a,b}*}.
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copying. This has been considered in a number of places, most recently
in Chomsky 1993. In this account of movement it is proposed that, at
the equivalent of S-Structure, a moved category and its trace dominate
exactly the same subtree. The ability to enforce this constraint is es-
sentially the ability to enforce the Isops predicate, and thus, not within
the power of L%(,P' Even if one weakens the analysis to require only
that the category and its trace dominate the same lexical material, it is
still beyond our capacity, since this would entail the YieldsEqps predi-
cate. Note that this says nothing about the non-context-freeness of sets
defined by a particular use of this mechanism. It says only that the
mechanism is powerful enough to define sets that are not context-free.
An argument that some set that has been defined using this mechanism
can be captured in L% p is, in essence, an argument that the mechanism
is not used in that definition in a necessary way.

9.2 Non-Definability of Free-Indexation

Our examples so far are not very compelling. We don’t expect to be able
to handle cross-serial dependencies in general, and it is not generally as-
sumed that movement necessarily involves copying. The main result of
this section, though, concerns the non-definability of a mechanism that
appears in nearly all aspects of GB theory—indexation. We have al-
ready mentioned that chains are identified (in part) by co-indexation of
their members. Indexation is also used to indicate co-reference in the
theories of Binding and Control. That is, an anaphor or pronominal and
its referent are marked with a common index. In addition, it is usually
assumed that agreement constraints between categories are indicated by
co-indexation.? In GB, assignment of indices is often assumed to occur
by a process of free-indexation—indices are assigned to categories ran-
domly and those assignments that do not meet the various constraints
on chains, binding, control, or agreement are filtered out. In essence,
the indexation is an equivalence relation with unbounded index (it dis-
tinguishes unboundedly many equivalence classes). That is, each value
of the index identifies an equivalence class, and there can be no a priori
bound on its maximum value. Free-indexation views constraints on the
indexation as a filter that admits only those equivalence relations that
meet specific conditions on the individuals in each equivalence class.
To see that such a relation is not definable in L% ., suppose we
extend N> with indices and a predicate CI(z, y) which holds if and only

2While these uses are functionally distinct, there are occasions where an analysis is
based on conflating them, although this never seems necessary.
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if  and y are co-indexed. We show that this results in a non-decidable
theory.

Let

Tor = {{Ts, <", <, 1,11, CI) | CI is an equivalence relation on T3},

that is, the class of structures built by extending A5 with a single index
and a binary relation that holds just in case its arguments are co-indexed.
Let S2S5+CI be the monadic second-order theory of Z¢ .

Theorem 1 S25-+C1T is not decidable.

We will prove this by reduction from the theory of the grid. The proof
is nearly identical to the proof of non-definability of Isos in Section 5.3.5
(Theorem 2 of Chapter 5). We do not repeat here the definitions and
lemmas they have in common. The 1dea is to interpret paths from the
root in Ny as paths (non-decreasing in both # and y) from the origin
in IV? following the same sequence of successors. Of course there are
multiple paths to most points in V2, and these each correspond to a
unique point in A5. We use indexation to identify sets of points in the
tree that correspond to the same point in the grid. All that is then
required 1s to insure that the co-indexed points agree on the features
relevant to the proof of non-definability of the grid, that is, to insure
that, for some set of monadic predicates P a point is in some set P; € P
iff all of 1ts co-indexed points are also in that set.
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We begin by axiomatizing the appropriate indexation relation. To

simplify the connection with Thy(G), we use the original language of
528S.

®e(P) =
(Vo) Ol ) — (2 %y (12)
(32',y/)] CI(a, ')A
((x m 2’0NNy Ry 0)V
(rme'lAy=y )V
(x =2 10Ay = y01))]) A
——=z and y are co-indexed if equal,
if similar children of co-indexed nodes,
or if one is left-child of the right-child
and the other right-child of the left-child
of co-indexed nodes.
Cl(x,y) — Agrees(x,y, ]3) ] (1b)
—Co-indexed nodes agree on P.
Where
Agrees(a,y, P) = \ (Pi(z) = Pi(y)). (2)
P.,eP

Recall, from Section 5.3.2, that the proof of non-definability of
Thy(G), the monadic second-order theory of the grid, was based on
the fact that .

(3D)65 Aol A év Aé7] € Thy(G)
iff there is a tiling accepted by the tiling system D = (D, Dy, H, V), and
that such tiling systems could encode the set of accepting computations
of arbitrary Turing Machines. Here qbg, QSE, and (be encode Dy, H, and
V, respectively. It should be noted that these formulae are built solely
from atomic formulae involving O, the successor functions ry and ry, the
monadic predicate variables in l_j, and the logical connectives.

We claim that the conjunction (roughly) of a formula in this class
with <I>G(l_j) is in S25+CT iff that formulais in Tha(G) (allowing for the

translation O = »). In particular, we claim that
(3D)[68 A 67 A ST A ST A Da(D)]
will be in S254-CI iff
(3D)[66 A 5 A 6T A 07

it is in Tha(G).
Note that, as with qbg, QSEI, e, and ¢ the formulae from which



DRAFT: September 12, 1995

84 / A DESCRIPTIVE APPROACH TO LANGUAGE-THEORETIC COMPLEXITY

—.

®;(P) is constructed involve only relationships (other than CI) between
individuals that are quite close in the tree—either an immediate succes-
sor or the successor of a successor. These are certainly well within the
range of the kinds of constraints on indexation one might expect to find
in natural theories of grammar.

The claim will follow from a few lemmas. First we establish that
whenever (Ty,<*, =, 1o, 11, CI) satisfies @G(ﬁ) with some assignment,
then every pair of nodes in 75 that correspond to the same point in
IN? under the interpretation sketched above will be co-indexed by CI.

Let & be defined, as in Section 5.3.5, as the set of pairs of points in
T, that correspond to the same point in IVZ.

Lemma 2 Suppose
M = <T2,<1*, S,I‘o,rl,CD € Ter and M ': @G(ﬁ)[Pz — Pz'M]P B
then CI D &g.

Proof. We must show that if M models @G(ﬁ) with some assignment,
then all pairs (v,w) € T% for which v is a permutation of w will be in
CI. We do this by induction on |v]|, the length of v, which, of course, is
also the length of w.
If |[v] = 0, then v = w = ¢, {v,w) € £ and {v,w) € CI, by (la).
Suppose v is a permutation of w, |v| > 1 and for every pair (¢, w')
of length less than ||, if v/ is a permutation of w’, then (v, w') € CI.
Suppose v and w have the same final element, that is, v = v'¢ and w =
w'i for i € {0,1}. Then v is a permutation of w’, and by the induction
hypothesis (¢', w') € CI. Tt follows, then, by (1a), that {v,w) € CI.
Suppose, alternatively, that v and w differ on their last element.
Without loss of generality, suppose v ends with a ‘0’ and w ends with a
‘1’. Then, since v is a permutation of w, v = v'1v”0 and w = w'0w”1
for some v/, v, w', w"” € {0,1}". Note that

<U/11}//, U/U//1> ’ <w/0w//’ w/w//0> ’ <U/U//, w/w//> €&
and each of these is of length less than |v|. Tt follows, by the induction
hypothesis, that each of these pairs is in CI. Then, by (1a), we have
(v"10"0,v"v"10) | (w' 0w 1, w'w” 01} , (v'v"10, w'w”’01) € CI
and, by reflexivity and transitivity of CI,
(v"10"0, w'0w"1) € CI
or equivalently, (v, w) € CI. O

The point of this co-indexation is that, via 1b, it requires all nodes
in T, that correspond to the same node in IN? to be assigned to the
same subsets P/, Thus, just as in the proof of Theorem 2 of Chapter 5
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we can take the quotient of M with respect to these classes of nodes
without disturbing the assignment. For the class of formulae relevant
to the tiling problem this quotient preserves satisfiability, that is, for

this class of formulae every M € 7¢r that satisfies &g (P) is logically
equivalent to M¢.

Lemma 3 For (b(ﬁ) i the class relevant to the tiling problem,

M = (3P)[¢(P) A @c(P)] iff Mg |= (3P)[g(P)].

The proof 1s essentially the same as that of Lemma 4 or Section 5.3.5.
It is easy to verify that the model (T%,<*, < ro,rl,é'g> € T¢o7 and
that, given any assignment [P; — PZ

]P P mapping P to sets of equiv-
alence classes in Ty wrt &g, the assignment [P; — PZM]P P that this

induces from P to subsets of T is a satisfying assignment for the P in
®;(P) for this model. Thus, we get a corollary.

Corollary 4 Mg E (EIﬁ)[qb(ﬁ)] iff there exists some M in Toy such
that

M = 3P)[¢(P) A 6(P)).

The completion of the proof is now identical to the final steps of the
proof of Theorem 2 of Chapter 5.

Lemma 5 Mg =G
Corollary 6 Mg k= (3P)[¢(P)] < G = (3P)[4(P)]

For proofs, see Section 5.3.5.
This suffices to prove the theorem.
Proof. (Theorem 1) Given a tiling system D, we have:

(37)[r accepted by D]

= (Ell_j)[qbg A¢B AP A ¢T] € Tha(G) from proof of
Lemma 1

& GEQA3 5)[ oMo NoD AoP] by def. of Th,

& Mg | 3D)[¢B A ¢D AGD A ¢D] by Cor. 6

& (AM e Teg)]

cI
M | (3D)[65 A 6F AP AP AdG(D)] by Cor. 4
& —(3D)[¢5 A D AGD AGD Adg(D)] ¢ S25+CI

by def. of S2S+CI

Thus, the S254-CI is non-decidable, by reduction from the halting prob-
lem. a

Consequently, arbitrary equivalence relations with unbounded index
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are not definable in L%(,P and, equivalently, free-indexation is not defin-
able in L%{,P'S

9.3 Discussion

This result is actually considerably stronger than just a proof that free-
indexation is not definable in L%(,P' It says that the sets of trees de-
finable in L% 5 augmented with free-indexation not only include sets
that are non—é:ontext—free, they include sets for which emptiness is not
decidable. Thus, in general, it may not be possible to establish the con-
sistency of linguistic theories expressed in terms of free-indexation, or,
even in the case that the consistency of the underlying theory can be es-
tablished, it may be impossible to determine its consequences. In other
words, one can define theories that one simply cannot reason about ad-
equately. Further, the proof is modeled, in some sense, after linguistic
usage of indexation. It involves only free-indexation constrained by lo-
cal conditions—in this case relationships between nodes and one or two
levels of predecessor—and agreement between co-indexed nodes. Agree-
ment like this is characteristic of the use of indexation in linguistic the-
ories. Thus, the definition of @G(ﬁ) is reasonably natural. Note also,
that the result needs second-order quantification only to existentially
quantify the labels of the nodes. If one assumes labeled trees, then a
first-order language suffices. This suggests that the consistency of logi-
cal formalizations of GB that employ free-indexation may, in general, be
non-decidable.* This is an explicit statement of a fairly common intu-
ition that indexation is a very powerful mechanism, perhaps too powerful
to play a fundamental role in language.

Since free-indexation allows the definition of non-context-free lan-
guages, it is interesting to consider just how powerful, from the point of
view of language complexity, it is. Sets of finite trees that are finitely de-
finable in reasonable logical languages are always recursive, since, given
such a definition and a finite tree, the number of formulae in the def-
inition, the number of variables that occur in those formulae, and the
number of possible assignments to those variables are all finite and can
thus be exhaustively checked.® The fact that we can define sets for which

3The property of being an equivalence relation, that is, of a relation being reflex-
ive, transitive, and symmetric, is trivially definable in L%{,P' This result, then, is
one way of establishing that SnS extended with any (arbitrary) binary predicate is
undecidable.

4Tt does not imply, however, that it is necessarily non-decidable.

5We are indebted to Jason Eisner and Eric Rosen for pointing out an error in an
earlier version of this work, in which we, via an ill-considered argument, concluded
that non-recursive sets of trees were definable in L%&',P plus free-indexation.
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emptiness is undecidable, on the other hand, implies that the class of
languages we can define is not contained in the indexed languages (for
which emptiness is decidable). Since many of the classes of languages
falling between the CFLs and the CSLs that have been studied are prop-
erly contained within the class of indexed languages, this rules out much
of the known terrain between CFLs and CSLs. As it turns out, we can,
in fact, capture the class of CSLs in a reasonably straightforward way.
To see that every CSL is the yield of a set of trees that 1s definable in
L% . plus Cl(z,y), recall that every CSL is generated by some grammar
in which every rule rewrites exactly one non-terminal, 1.e., is of the form

aAf — ayf

for some non-terminal A and sequences of terminals and non-terminals
«, 3, and 7. The idea is that we can use CI to capture the equal-level
predicate,® and then use the equal-level predicate to define a set of trees
that encode the derivations in that grammar.

We can capture the equal-level predicate as follows:

(Vao, 21,90, y1)[2o < 21 Ayo <1 A Cl(zo, yo) — Cl(x1, y1)] 3)
(Va,y)lz <t y — =Cl(z, y)]

This is just the implicit definition of the equal-level predicate from Sec-
tion 5.3.4 without the equivalence relation axioms (which are unneces-
sary since we have restricted ourselves to structures in which CI is such a
relation). These axioms, then, restrict CI to be the equal-level predicate.
With this we can capture the derivations of a given context-sensitive
grammar (in the canonical form we assume above) with a set of condi-
tions, each of which is definable in L%(,P in a straightforward way:

e The root of the tree is labeled with the start symbol.

e Every level that includes some non-terminal includes exactly one
non-terminal that is marked for rewriting.

e No node labeled with a terminal is marked for rewriting.

e Every node that is is not marked for rewriting but that is on a level
that includes some node marked for rewriting has exactly one child
and that child is labeled 1dentically to the node with the possible
exception that it may be marked for rewriting.

e For every node that is marked for rewriting there is some rule (as
given above) such that:

o The node is labeled A.

6This alone is sufficient to establish non-definability of CI in L?\, ps of course, but
the definition involves less natural constraints on the indexation than that of the
proof of Theorem 1.
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o The immediate predecessors of the node (wrt left-of) on the
same level as the node are labeled «.

o The immediate successors of the node (wrt left-of) on the
same level as the node are labeled 3.

o The children of the node are labeled ~.

e No node included in a level in which every node is labeled with a
terminal has any children.

It should be clear that every branch of the tree has the same length and
that every level of the tree corresponds to a sentential form of a deriva-
tion in the grammar. As the root is labeled with the start symbol and
the frontier 1s labeled with a string of terminals, every tree meeting these
conditions corresponds to some derivation in the grammar. It is easy to
see, furthermore, that every derivation in the grammar corresponds to
some tree meeting these conditions. Thus the language defined by the
grammar is exactly the yield of the trees defined by these conditions. We
have actually captured the language in a slightly stronger way. While
the set we define is not strongly equivalent to the grammar—our trees
are not the derivation trees defined by the grammar since every level
in our trees corresponds to a sentential form (a property not shared by
the derivation trees)—we can recover those derivation trees from our
trees by collapsing every path in which at most one node is marked for
rewriting into a path of length one.

It is important to recognize that these results only hold for our fairly
literal interpretation of the notion of free-indexation. It is certainly
possible to define indexation relations, even those with unboundedly
many equivalence classes, which don’t support definition of unverifiable
linguistic theories and which are even definable in L% 5. The significance
of the result 1s that the usual conception of free—iﬂdexation, in which
arbitrary indexations are filtered by some set of principles, 1s likely to
be problematic even when those principles are limited to expression of
local conditions. If linguistic theories that employ indexation are to be
verifiable, they are likely to need stronger restrictions on that indexation
than these.

Berwick suggests one such restriction in Berwick 1984. Here, in the
discussion of his argument that GB can define only recursive sets, he
attributes the fact that it must consequently be weaker than Lexical-
Functional Grammar (LFG) to the fact that LFG, via unification, ef-
fectively has the power to check similarity of structure over all levels
of unboundedly deep hierarchical structures (something like Isoz). In
GB such similarity need only be checked at the top level of the struc-
tures. In the treatment of the Bresnan, et al., analysis of Dutch, he
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argues, LFG would enforce agreement of the two subtrees by unifica-
tion of functional structures capturing the agreement constraints along
those trees—structures of unbounded depth. A GB account, in contrast,
needs only check agreement between co-indexed elements of linear phrase
markers. He goes on to speculate that a bound such as this on the com-
plexity of the structures that must be checked may be characteristic of
structural constraints on natural languages.

—.

The least natural aspect of the definition of ®¢(P) is the fact that, al-
though the constraints on the co-indexation are local and all co-indexed
nodes occur at the same level of the tree, 1t requires every node in the
tree to be indexed. While this is a typical assumption for free-indexation,
linguistic theories are generally only concerned with the indexation of
particular subsets of the tree. Perhaps if the indexation were restricted
to a single level in some way (perhaps to sets of nodes that are pair-
wise related by left-of—a single horizontal “cut” through the tree) we
would no longer be able to define theories for which emptiness was non-
decidable using i1t. It would certainly rule out our definition of @G(ﬁ).

But even this appears to be too strong. Suppose we restrict the
indexing to sets that are pairwise related by left-of, or even stronger, to
the yield of the tree. Even with this notion of free-indexation we can

define YieldsEqpz(X,Y):

YieldsEqp(X,Y) = (4)
(Va')[Frontier(z', X) — (3l )[Frontier(y’, Y) A CI(z',y)]] A
—Every frontier node of X is co-indexed with
exactly one frontier node of Y
(Vy/)[Frontier(y’, V) — (3!z')[Frontier(z’, X) A CI(y/, 2")]] A
—Every frontier node of Y is co-indexed with
exactly one frontier node of X
(Va', 2",y ,y")[(Frontier(z’, X) A Frontier(z”, X) A
Frontier(y’, Y) A Frontier(y”,Y) A
Cl(z", ') ACI(2",y")) —
(o <a” g <y A
—The indexing respects left-of
(Va', y')[(Frontier(z’, X) A Frontier(y', V) A CI(z, ¢/)) —
Agreeﬁ(ﬁ, ' y)]

—Co-indexed nodes agree on P
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where Frontier(z, X') holds just if # is maximal in X wrt domination
Frontier(z, X) = X(z) A (Vy)[z <7 y — =X (y)].

The definition is reasonably transparent. The first two clauses require
the indexation to reflect a bijection between the yields of the subtrees
X and Y. The third clause requires it to preserve left-of. (This is easy
to establish by induction on the number of left siblings.) Finally, the
last clause requires co-indexed nodes to be labeled identically. Again,
second-order quantification is needed here only to existentially quantify
the labels. Thus, the result holds for the first-order theory of labeled
trees extended with co-indexing. Recall that the non-definability or
YieldskEqps was established by reduction from emptiness of intersection
of CFLs (and thus, indirectly from PCP). Thus again, sets of trees
defined using co-indexation, even in this restricted form, are not just
non-context-free, their emptiness is not decidable. So some stronger
restrictions on the indexation are apparently necessary.

The approach we take in our formalization, in which we are looking
for context-freeness as well as decidability of emptiness, in essence, is to
bound the range of the indexing, that i1s, bound the number of equiva-
lence classes it identifies. This approach is not as restrictive as it might
seem. We will discuss this in more detail in the following sections, but
bounded indexation suffices for us because we do not require co-referring
categories to be co-indexed (rather we only require that trees are ruled
out whenever there is no indexing that is consistent with the theory),
and because we adopt an analysis in which there are boundedly many
chains that can occur in a given local context. This latter condition is
shared by Berwick’s formalization in Berwick 1984, where he assumes
that there can be only a fixed number of landing sites in a given cycle.

Given the non-definability of free-indexation as it is usually used in
GB, our investigations become, in part, an exploration of which prin-
ciples actually require unbounded indexation. These explorations may
have significance beyond our narrow focus on context-free principles. As
we noted earlier, the appropriateness of indexation as a basic linguistic
mechanism has been questioned. Chomsky, in endorsing an account of
binding theory that does not make use of indexation, notes

A theoretical apparatus that takes indices seriously as entities, al-
lowing them to figure in operations (percolation, matching, etc.), is
questionable on more general grounds. Indices are basically the ex-
pression of a relationship, not entities in their own right. They should
be replaceable without loss by a structural account of the relation
they annotate. Chomsky 1993, pg.49, note 52
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We are compelled to look for these structural relationships underlying
uses of indexation in linguistic theory by the fact that they are the only
types of relationships we can capture. Chomsky and others questioning
these uses of indexation have been led to explore the same issues by
more purely linguistic considerations. This i1s one of the cases in which
our research, motivated by language complexity considerations, seems
to converge with research motivated by such linguistic considerations.
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Formalizing X-Bar Theory

We begin our formalization with X-bar structure. The sets of trees we
define are essentially S-Structure trees, and our interpretation of X-bar
reflects this. We take the representational approach and regard move-«
and conditions on chains as constraints on S-Structure. While we will
not concern ourselves yet with the implementation of those constraints,
the structure we define allows for traces and both base-generated and
movement-generated adjunction. We allow adjunction of X% to other
Bar0 nodes. In fact, for reasons we will explain shortly, we assume that
all head movement is adjunction. We start with definitions of the basic
constituents and structural relations of the X-bar scheme.

We will be defining four classes of predicate: properties of nodes in
the tree (or equivalently, the assignment of simple features to nodes),
relations between nodes, properties of subsets of the tree, and relations
between those subsets. As we discussed in Chapter 4, only properties
of nodes have actual interpretations in L% p—as existentially quantified
second-order variables. We can think of these predicates as labeling
the tree. Our definitions license particular distributions of these labels.
The other classes of predicate must be defined using ezplicit definitions
(which we denote with =), that is, definitions that ultimately resolve into
formulae involving only monadic first-order predicates and the dyadic
predicates of the signature (<, <*, and <). These are best thought of
as notational conveniences which are expanded by simple substitution
of the right-hand side for the left. Thus, care must be taken to avoid
circularities in their definition.

10.1 Categories

As we noted in Chapter 8, GB structures are defined in terms of cat-
egories rather than nodes. That is, the structures do not distinguish
between nodes that have been split by the process of adjoining another

93
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node to them. We define categories in two steps. A component is a se-
quence of nodes that are segments of the same category, that is, they are
connected by parent and linearly ordered by domination, they all share
the same set of features, and each node except the minimum segment
(the maximum wrt <*) is binary branching with exactly one child that
is an adjoined node and another that is a member of the component. At
this point we make no restriction on the adjoined node. Various con-
straints on adjunction will be added later. A category, then, is just a
maximal component—one that cannot be extended in any way.

Component(X) =
Path(X)A
(Vz,y)[X(z) A X(y) — F.Eq(z,y)] A
Ve, Y Fy)(Vz) [ X(@)AX@E)YAear' —
SAdj( YA <y Ay 2 AAdj(y)A
(x<az—zma'Vzry) ]

Category(X) = (2)
Component(X)A
(VY)[Subset(X,Y) A =Subset(Y, X) — =Component(Y)]

The predicate Subset is defined in Chapter 4. The predicate F.Eq(z, y)
enforces agreement between the segments of the category on all linguis-
tic features. This includes features such as (linguistic) category and
whether the category is in its base generated position, etc., but does
not include all features. In particular it does not include Adj (discussed
momentarily). Exactly which features are shared by the segments is not
important here. F.Eq(#,y), then, might be defined, in part:

F.Eq(z,y) = (N(z) = N(y)) A (V(z) = V(y) A~ (3)

We use the feature Adj to distinguish adjoined nodes. Its distribu-
tion is determined by definitions 1 and 4. This is the first of a great
many artificial features that are required to make the formalization go
through. We attach no linguistic significance to them; they are simply
bookkeeping measures, not altogether different than the slashed cate-
gories of traditional CFG treatments of movement. It is possible, if
one likes, to distinguish features with linguistic significance from those
purely internal to the formalization. We leave the issue of which are
which open.

The definition of component requires that every adjoined node is
marked Adj and that every sibling of an adjoined node is not. Note that
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the maximal segment of a category can be either Adj or not depending
on whether the category i1s adjoined to another. We must require, as
well, that no node is marked Adj unless it is the child of a non-minimal
segment of a non-trivial category:

(Vo) Adj(z) — (4)
(Fy, 2, V)y<ax Ay <z A Category(Y)AY (y) AY (2)]]

An example of an adjunction structure is given in Figure 8. The
three XPs are a category that has been formed by adjunction of two
YPs. Of these, the lower YP is also a non-trivial category, formed by
(right) adjunction of a ZP. The minimal node of this YP category is
labeled Adj, since it is adjoined to the XP. The minimal node of the
XP category may be labeled Adj or not, depending on whether it is, in
turn, adjoined to another category.

Note that every node is a member of some (possibly trivial) cate-
gory. Further, every component can be extended towards the root in at
most one way (with its parent) and, because of the Adj feature, every
component can be extended towards the frontier in at most one way as
well. It follows, then, that every node is a member of a unique category.
We overload the predicate Category to pick out the category of a given
node, and those nodes that share the same category.

Category(X,z) = Category(X) A X(z) (5)
Category(z,y) = (3X)[Category(X,z) A Category(X,y)] (6)
To pick out the maximal and minimal segments (nodes) of a category:

MaxSeg(z) = (3X)[Category(X,z) A (Vy)[X(y) — 2z <" y]] (7)
MinSeg(z) = (3X)[Category(X,z) A (Vy)[X(y) — y<* z]] (8)
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10.2 Basic Structural Relationships

The pattern, as in the definitions of Category, of having multiple pred-
icates that differ only in the types of their arguments is typical of our
approach. While categories are the atomic objects of X-Bar theory, the
variables of our language range over arbitrary subsets rather than cat-
egories. Thus, definitions of predicates in terms of categories tend to
be cluttered by qualifications restricting their domain to those subsets
that are categories. Rather than propagate these throughout the for-
malization, we localize them, for the most part, in this section and the
next. Relations between categories will generally be expressed as rela-
tions between the segments (nodes) of those categories, that is, rather
than defining a predicate R(X,Y") between categories (or, perhaps, in
addition to defining such a predicate) we will define a predicate R(z, y)
which holds for every pair of nodes z, y that are segments of categories
X and Y, respectively, for which R(X,Y) is true. As we invariably use
upper case for set variables and lower case for individual variables, there
should be no confusion between the types of these predicates.

Since categories are the atomic objects of the theory, we need analogs
of @, 4, and < as relations on categories. As promised, we define them
as relations on nodes that hold between the segments of appropriately
related categories. A category dominates (irreflexive) another just in
case every segment of that category dominates every segment of the
other. A category excludes another just in case none of its segments
dominate any segment of the other. It is left-of another if the two
categories mutually exclude each other and the segments of the first are
left-of the segments of the other. Since they exclude each other, no
segment of either dominates any segment of the other. It follows that
every segment of the one is left-of every segment of the other iff any
segment is.

Dominates(z, y) = (Vz')[Category(z, ') — 2’ a% y] (9)
Excludes(z, y) = (Va')[Category(z, 2’) — =2’ <* ¢] (10)
Includes(z, y) = —Excludes(z, y) (11)

Left-Of(x, y) = Excludes(z, y) A Excludes(y, ) Ax < y (12)

A category immediately dominates another if it dominates it and
there is no category that falls properly between the two. Immediate
domination 1s used to pick out the children of a category. This is a case
where the ambiguous status of adjoined nodes with respect to domina-
tion is significant. A category does not dominate, a fortior: does not
immediately dominate, those categories that are adjoined to it. On the
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other hand, we do not want a category to immediately dominate those
categories adjoined to its children either; for the purposes of immedi-
ate domination the child category must fall between its parent and its
adjoined categories with respect to domination.

Imm-Dominates(z, y) = (13)
Dominates(z, y)A
(V2)[(Excludes(z, ) A Includes(z, y)) — Category(z, y)]
—mno z falls properly between z and y

Note that the structures defined in terms of categories are richer
than simple trees. In a tree, every pair of nodes is related either by
equality, proper domination, or left-of. Categories, in contrast, can be
related by inclusion without being related by domination. In Figure 9,
for example, the category C includes the subtree rooted at the highest
C. Tt ezcludes everything else. It dominates, on the other hand, only
the (. I; is neither dominated nor left-of the category C, nor does it
dominate it. This relationship of inclusion without domination plays an
important role in GB. It allows I; to be attached to C without actually
being under it.

In GB the most important fundamental structural relations are c-
command and m-command. These are relations that correspond
roughly to a category being “higher in the tree” than another. There
are a variety of variations on the definition of these, or at least on the
definition of c-command. We will follow Rizzi (1990) (who in turn is
following Sportiche) and say that a category c-commands another iff
neither category dominates the other and every category (not just ev-
ery branching category) that dominates the first dominates the second.
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M-command is similar, but it extends to the maximal projection—every
XP that dominates the first category must dominate the second. In Fig-
ure 9 t; c-commands VP and m-commands (but does not c-command)
NP (Alice).

Note that it is possible for a pair of nodes to mutually c-command
or m-command each other, as in the case of {; and VP in the figure.
Most commonly, when these relations are employed, the relationship be-
tween the relevant categories is actually asymmetric. There are technical
reasons for preferring asymmetry,! not the least of which is that while
asymmetric c-command is transitive, ordinary c-command is not. As an
example I c-commands NP in the figure, and NP c-commands VP, but I
dominates VP and does not c-command it. We will require asymmetric
c-command in our analysis of chains.

C-Commands(z,y) = (14)
—Dominates(z, y) A “Dominates(y, ) A
—neither dominates the other
(Vz)[Dominates(z, £) — Dominates(z, y)]
—every category dominating x

dominates y

M-Commands(z, y) = (15)
—Dominates(z, y) A "Dominates(y, ) A
—neither dominates the other
(V2)[(Bar2(z) A Dominates(z, #)) — Dominates(z, y)]
—every maximal projection dominating «

dominates y

A-C-Commands(z,y) = (16)
C-Commands(z, y) A =C-Commands(y, )

The command relations are a case in which the distinction between struc-
tures of categories and structures of nodes is significant. These are often
defined as relations on nodes in terms of <t rather than Dominates. But
the fact that a category is not dominated by the category it is adjoined
to is essential to several analyses in GB. The category I; in Figure 9,

IThere are linguistic reasons as well. Kayne (1994) employs asymmetric c-command
crucially in developing an argument that X-Bar structure can be derived from the
assumption that phrase structure uniquely determines the linear order of the terminal
string.
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for instance, is required to c-command its trace (¢;). This relation holds
because c-command is defined in terms of Dominates, and C does not
dominate I;, but this would not be the case if c-command were defined
in terms of «%.

10.3 X-Bar Structure

Our intention 1s to capture S-structure. To simplify, we take the basic
definition of X-Bar structure absolutely literally. In the literature, non-
branching categories are frequently left out of the structure and empty
non-lexical heads may be missing. In our interpretation every level is
always present including a level for lexical insertion. Our notion of the
lexicon includes empty categories such as PRO, pro, O, as well as a null
element for every head that may be truly empty at S-structure (e.g.,
COMP). These are necessary because we take the projection principle
literally. Each head determines its complements and specifiers;? every
node is licensed by some head. Thus, in our definition of the lexicon
even null heads will be associated with a category feature and formulae
selecting complements and specifiers.

It is generally assumed, in accounts of movement in GB, that only
XP and X" elements may move. We handle movement, in part, using the
features Base and Trace. The D-structure position of an element has the
feature Base. (This is irrelevant for X’.) Traces have the feature Trace.
Treating lack of movement as trivial movement, the target position of
any (possibly trivial) chain is that position that is —=Trace. We treat
all Head movement as adjunction. The primary reason for this is that
substitution of one head for another violates our strict interpretation
of X-bar theory at S-Structure. Structurally, adjunction at a null head
is nearly identical to substitution. The extreme case for English, V
to I to C movement, is shown in Figure 10. Here, again, neither the
I nor the C dominate the V. Thus, every node in the complex at the
head of CP bears the same c-command and m-command relationships
to every node that is not in that complex. We don’t claim any linguistic
justification or significance for this interpretation of head movement. It
is a convenient mechanism for capturing the operations of amalgamation
(of T and V) and head substitution (of [V,I] for C) without losing strict
X-bar structure.

The X head of an XP y is picked out by HeadXP(z,y). The head of
an X y is picked out by HeadX(z,y). Definition of these, of course, is a

2This is an oversimplified interpretation of the projection principle. The actual prin-
ciples involved in selecting specifiers, in particular, are certainly more complicated
than this. These can be captured as refinements to our treatment.
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parameter of variation. Separating these definitions from the definition
of the X-Bar structure itself 1s one of the few places we follow the notion
that GB involves a fixed set of principles specialized with a small set of
parameters. In English, specifiers are head-final and complements are
head-initial, and so we have:

HeadXP(z,y) = Imm-Dominates(y,z) A (17)
(Vz)[Imm-Dominates(y, z) — —Left-Of(z, z)]
—= is the right-most child of y
HeadX(z,y) = Imm-Dominates(y,z) A (18)
(V2)[Imm-Dominates(y, z) — —Left-Of(z, )]
—=z 1s the left-most child of y

These are only valid when « is an XP or X, respectively.
Projection of features from a category y to its next higher projection
is enforced by the predicate Projects(z, y), which looks something like:

Projects(z,y) = (N(z) < N(y)) A(V(z) = V(y)) ... (19)
for all relevant features.

All nodes are required either to be at some Bar level, or to be defined
in the lexicon.?

(Vz)[Bar2(z) V Barl(z) V Bar0(z) V Lexicon(z)] (20)

XPs may either immediately dominate some (optional) specifiers and

an X head or may be traces, in which case they dominate nothing. Since
we assume Xs do not move, these must immediately dominate some (op-
tional) complements and an X° head. We must treat X" traces differ-
ently than XP traces because our strict interpretation of X-bar theory
requires an image of the lexical item in its base position in order to select
specifiers and complements. Thus, both the target and base positions
of head movement immediately dominate a lexicon node. Lexicon items
and heads fulfill their X-Bar roles in their base position and not in their
moved position. In spell-out the nodes dominated by X° traces will be ig-
nored. Again, this is not a linguistically motivated treatment, it is simply
a convenient way of simplifying the definition of X-bar structures that
have been permuted by movement. Its main consequence here is that
all X%, even traces, immediately dominate exactly one node and that
node is defined in the lexicon. (The requirement that it immediately
dominate exactly one node is enforced by (3ly)[Imm-Dominates(z, y)]
which implies that y forms a trivial category.) The predicate Base(x) is

3This will be modified when we extend the theory to deal with reconstruction in
Chapter 14.
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true just in the case that x is in its base position. It 1s defined for the
bar level nodes in Chapter 13. The lexical item dominated by the X0 is
in base position iff the X° is in base position.

(Vz)[Bar2(z) — (21)
Trace(z) A (Vy)[-Dominates(z, y)] Vv
—= is a trace dominating nothing
(Jy)[HeadXP(y, z) A Barl(y) A Projects(z, y)] A
—or it is the projection of an X
(Vy)[(Imm-Dominates(z, y) A “HeadXP(y, z)) — Bar2(y)] ]
—and all non-head children are YPs
(Vz)[Barl(z) — (22)
(Jy)[HeadX(y, =) A BarO(y) A Projects(z, y)] A
— is the projection of an XY
(Vy)[(Imm-Dominates(x, y) A ~HeadX(y, z)) — Bar2(y)] |

—and all non-head children are YPs

(Vz)[BarO(z) — (23)
(F'y)[Imm-Dominates(z, y)] A
—2z has exactly one child
(Vy)[Imm-Dominates(z, y) — (Lexicon(y) A Projects(z, y) A
—a lexical item that » projects
Base(z) < Base(y))] |

—and is in Base position iff z is

We define a few more predicates which given any node pick out the
components of the phrase immediately including that node. These are
false for all nodes if the given node is not in base position unless it 1s at
bar level 2. Note that these predicates are defined for all nodes, those
at the lexical level as well as those at bar levels.

Each of these has a monadic version which is true of a node just in
case 1t 1s the corresponding component of some phrase.

Max-Projection(z, y) holds iff # is a segment of the minimal XP
including y. The monadic version Max-Projection(#) is true iff z is an
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XP.
Max-Projection(z, y) = (24)
(Base(y) V Bar2(y))A
Bar2(z) A Includes(z, y)A
(V2)[(Bar2(z) A Includes(z, y)) — Includes(z, #)]
Max-Projection(z) = Bar2(z) (25)
Head(z,y) holds iff # is the Bar0 level head of the XP containing
y. The monadic version Head(x) is true if # is the head of any phrase.
Generally, this would be true iff z is Bar0, but we exclude X% that
are not in base position. We define this explicitly, then, by existentially
quantifying the y in Head(z,y). If  is not in base position it cannot be
the head of any maximal projection, and there will be no such .

Head(z,y) = (Base(y)V Bar2(y)) A (26)
(F22, z1)[MaxProjection(zz, y) A
Head-XP(z1, 22) A Head—i(r, z1)]
—2z9 and z; are the XP and
X projections of x
Head(z) = (Jy)[Head(z, y)] (27)
Comp(z, y) holds iff z is a segment of a complement of the maximal
projection of y.
Comp(z,y) =
(Base(y) V Bar2(y)) A
(J22, z1)[MaxProjection(za, y) A HeadXP(zy, z2) A
Imm-Dominates(z;, z) A ~Head-X(z, 21)]
—=z is the non-head child of the X containing y
Comnp(x) = (Fy)[Comp(z, y) (29)
Similarly, Spec(z,y) holds iff # is a segment of a specifier of the
maximal projection of y.
Spec(x,y) = (30)
(Base(y) V Bar2(y)) A
(Fz2)[MaxProjection(z2, y) A Imm-Dominates(zz, ) A
—Head-XP(x, z1)]
—= is the non-head child of the

maximal projection of y

Spec(x) = (Fy)[Spec(z, y)] (31)

(28)
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10.4 Restricting Adjunction

Note that this definition of X-Bar structure allows both base and move-
ment generated adjunction of anything anywhere, even at traces. We
restrict this initially to allow only adjunction of heads to non-trace heads
and XPs to non-trace XPs and Xs.

Vo, y)[Adj(z) Ay<x — —Trace(y) A —Lexicon(y) A (32)
(BarO(z) A BarO(y) V Bar2(z) A =Bar0(y))

The predicate Trace, as with the predicate Base is defined in Section 13.

Base generated adjunction (that is where the adjoined element is
not empty at D-Structure) can be detected by the conjunction of Adj
and Base. Movement generated adjunction is characterized by Adj and
—Base. Thus, one might, for instance, further restrict adjunction to
prohibit base generated adjunction at X° (this is a common assumption):

—(3z, y)[Bar0(z) Az <y A Adj(y) A Base(y)],

or of movement generated adjunction at A-positions (defined in the next
section):

—(3z, y)[x < y A A-pos(z) A Adj(y) A -Base(y)],

(adjunction of wh-phrases in these positions is barred in Barriers) and
SO on.

10.5 Argument Positions

As a matter of convenience, we will assume that argument positions can
be identified by some reasonable, primarily structural, principles. The
set we use here is taken from Fong 1991, pg. 218.

A-pos(z) = (33)
(Jy) [Lexical(y) A Theta-marks(y) A Comp(z, y)V

I(y) A Spec(z, y)V
N(y) A Spec(z,y) AN() ]

The first disjunct picks out, in Fong’s words, “complement positions of
lexical heads corresponding to internal #-grid roles.” This will be dis-
cussed more fully when we discuss Theta-theory in our definition of the
lexicon (Chapter 11), for now we note that we assume that these are just
the complements of lexical heads that assign Theta-roles. (Lexical(z) is
true of the lexical categories—N, V, A, and P.) This assumption can
be relaxed if the lexicon is modified such that Internal, say, is true of a
node iff it is assigned an internal Theta-role. The second disjunct picks
out [Spec,IP]. The third picks out [Spec,NP] if it is occupied by an NP
(as opposed to a determiner). The details of the definition are not at all
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critical. The definition could be modified to accommodate a wide range
of proposals governing the definition of A-positions.

10.6 An Example

Figure 11 illustrates the structural relationships we have defined. The
predicate Category(X) is true of each of the sets {g,;j}, {t,v}, and
{w, 2}, as well as singleton sets containing each of the nodes not in these
three. Adj(x) is true of h, u, and bb and false for all others. MaxSeg(x)
is false only for j, v, and z, while MinSeg(#) is false only for g, ¢, and
w. All other nodes are both maximal and minimal in their category.
As an example of the domination, exclusion, etc., relationships con-
sider these with respect to the category VP = {¢,v}, (and thus, with
respect to ¢ and v individually as well). VP dominates every category
(and node) in the subtree rooted at w, while it is dominated by those
categories on the path between a and g. Every category that is a proper
descendant of the nodes along that path are left-of VP and every cat-
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egory it includes. VP includes those categories that it dominates plus
itself and u, that is, the categories in the subtree rooted at ¢. It excludes
every other category in the tree—those categories that dominate or are
left-of it. Finally, VP Imm-Dominates V (w and z) but not u, since VP
does not dominate u, and not bb, since bb 1s Adj.

The command relations have been illustrated with Figure 9. We will
skip them here, and move on to the X-Bar relations. HeadXP and HeadX
are true of {a, f), (b,¢), {{,q), (m,n),...and (c,d), {f,9), {f,7), {n,o0),
{q,7), ... tespectively. Note that HeadX is not true of (f, h), but is true
of {q,7). Projects is true of the pairs {a, f),{b,c),{c,d),{f, g}, (J, k),
etc. (F.Eq is true of {(g,j).) The Lexicon nodes are e, i, k,p,s,z,...
Note that the trace of Ig dominates a lexical item just as Ig does.
This is responsible for selecting the structure of the IP. We have
Projects(r, s), Projects(q,r), Projects({,¢), and Projects(h,), but of
course —Projects(g, h). The bar levels of the non-lexicon nodes are in-
dicated by their labels. Base is false for b, h, ¢, and u, and true for all
others.

CP (a) is the Max-Projection for a, f, ¢, j, and k, but not for any
category included by b or [, since these exclude CP, and not for & or ¢,
since these are not in Base position. Similarly, Head for each of a, f, ¢, 7,
and k is the category {g,j}, Comp for these is [ and Spec is b. For the
IP, (nodes [, ¢, 7, and s), Max-Projection is {, Head is r, Spec is m and
Comp is the category VP = {t,v}, and thus, both segments ¢ and v as
well.

Finally, the argument positions are m and aa.

10.7 Head-Government

While c-command and m-command are the fundamental structural rela-
tionships in GB, they have unbounded scope whereas most of the theory
is concerned with relationships between categories within the same or
adjacent phrases. This limited range is captured in the notion of gov-
ernment. In Case Theory, for instance, a head assigns case only to
those NPs that it governs. Similarly, in Binding Theory the relevant
domain is the governing category of a nominal. Roughly, this is the
minimal phrase containing both it and its governor. Existence of a gov-
erning head 1s also fundamental to the licensing of empty categories.
Government appears, in GB, in two forms. These cases are all instances
of head-government. The other form, antecedent-government will be
treated, along with the licensing of empty categories, in our discussion
of chains (Chapter 13).

Head-government is, to a large extent, m-command with restricted
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scope. While a category will usually have many m-commanding heads,
the intent is that it have at most a single governing head. The scope
of government is limited by two mechanisms: barriers—maximal pro-
jections that block government, and minimality—which requires a
governor to be the closest possible governor. In the Barriers ap-
proach Chomsky 1986, most of the work is done by barriers (not surpris-
ingly), and consequently, most XPs are barriers. The main exception
is IP, which allows a verb to case-mark the subject of an infinitival
complement in the case of Ezceptional Case Marking, e.g.:

(1) Alice [vpbelieves [1pBob to be a fooll]]

The analysis we adopt, Rizzi’s Relativized Minimality (Rizzi 1990),
in contrast to Barriers, determines the locality of government mostly
on the basis of minimality (again not surprising). Here the idea is that
no head can govern across another potentially governing head. Govern-
ment into a complement phrase is normally blocked by the fact that the
head of that phrase is a closer potential governor. It is possible in the
case of ECM simply because, under the particulars of the definition of
minimality the INFL does not intervene between its specifier and higher
heads. Under this analysis, most XPs are not barriers, although bar-
riers cannot be dispensed with entirely. In Rizzi’s definition (following
Cinque) (Rizzi 1990, pg. 112, note 6):

XP is a barrier if it is not selected by an X° not distinct from [+V].

where not distinct from[+V] means not [—V]. In our terms, barriers are
XPs that are not complements of some head other than N® or PY. For
the most part, this comes down to specifier and adjunct XPs and com-
plements of N? or PY. Note, that, in contrast to the Barriers account,
there 1s no notion of barriers by inheritance, the effect of these being
subsumed by minimality.

Barrier(z) = Bar2(x) A =(3y)[~(N(y) V P(y)) A Comp(z,y)]  (34)

Head-government, then, holds under m-command with no interven-
ing barriers or potential head-governors (Rizzi 1990, pg. 25). Governors
are lexical heads (V?, N° A% or P%), TENSE (T?), and heads with non-
empty agreement (+agr)—provided agreement actually holds between
the governor and the governee. Heads with non-empty agreement, as a
rule are finite INFLs and non-null AGRs (depending on which analysis
is in force), but Rizzi also allows COMP to acquire 4agr under some
circumstances.

Head-Governs(z, y) = (35)
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Bar0(z) A Base(x) A M-Command(z, y) A
(Lexical(x) vV T(x) V +agr(z) A Agreement(z, y)) A
—(3z)[InterveningBarrier(z, z, y)] A

—(32)[Bar0(z) A Intervenes(z, z, y)]

We have added the requirement that = be in base condition, as this
seems to be necessary to prevent a finite INFL that has moved to COMP
from head-governing its specifier (which is already head-governed by the
trace of the INFL).

The predicate Agreement(z,y) holds just in case # and y agree on
all relevant features. We will presume that this suffices to determine
whether the head actually agrees with the potential governor. It is not
inconceivable that some additional restrictions on the structural relation-
ship between x and y may be needed in some cases, but the structural
restrictions on Head-Governs as defined appear to suffice.

Agreement(z,y) = (Sing(z) — Sing(y)) A (36)
(Plural(z) < Plural(y)) A
(Ist(z) < Ist(y) A -

An intervening barrier is just one that dominates the potential governee,
but excludes the potential governor.

Intervening-Barrier(z, z, y) = (37)
Barrier(z) A Dominates(z, y) A Excludes(z, z)

The predicate Intervenes(z, x, y) picks out a z that falls between, wrt
command relations,  and y. Here, we are looking for intervening heads.
When we define antecedent-government we will be concerned with ei-
ther intervening XPs (for XP movement) or heads (for head movement).
This is the relativized aspect of Rizzi’s theory—minimality concerns only
potential governors of the appropriate type. The structural condition of
intervening is defined in terms of m-command for lexical heads and c-
command for non-lexical heads. This is so non-lexical heads (as in I°) do
not block external government of their specifiers (Rizzi 1990, pg. 111,
note 4).

Intervenes(z, z,y) = (38)
C-Command(z, y) A ~C-Command(z, ) A =Lexical(z) V
M-Command(z, y) A “M-Command(z, ) A Lexical(z)

Figure 12 illustrates the definitions of barriers and head-government.
Barriers are marked with rectangles while potential head-governors are



DRAFT: September 12, 1995

FORMALIZING X-BAR THEORY / 109

a
CPy Barrier

Head-governor

/\ £\ Head-government

pply
|

aa
t12 to the party

Z. .
mnuvite
FIGURE 12 Barriers and Head-Government
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marked with circles. Note that Ig is not a potential head-governor since
it is not in base position. It is, on the other hand, capable of blocking
head-government from outside the CP, although this is irrelevant since
such government is already blocked by Ca. Actual head-government is
indicated by the arrows. Not every category is head-governed, nothing
can govern [Ps, for instance, since Cs blocks government from above but,
being empty, does not itself head-govern. The nouns fail to head-govern
since there is nothing that they m-command.
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The Lexicon, Subcategorization,
Theta-theory, and Case Theory

If the projection principle is taken literally, the entire syntactic mecha-
nism is driven from the lexicon level. It is here that features are assigned,
which then are transmitted, via projection, up through the phrase. This
is also the level at which the selection of specifiers and complements is
determined (by subcategorization requirements, etc.) as are the closely
related mechanisms of Theta-marking and case assignment. Other com-
ponents of the theory—Binding Theory, Control Theory, the theory of
movement—are set in motion by the distribution of the categories and
their features that are determined here. As we noted in the introduc-
tion, it has been observed elsewhere (Johnson 1989, Berwick 1991) that
the properties assigned here all seem to involve local (in the technical
sense) relationships. In a sense the treatment we sketch here serves
mostly to confirm this observation. The actual details are unimportant;
substantial variation is possible within our general approach.

There is great deal of regularity to the properties of the lexicon, but
for the most part, we purposely avoid capturing this. Our intent is
to maximize simplicity and generality, and so we usually avoid making
even obvious assumptions about the distribution of properties across
the lexicon. Most generalizations can be exploited either by adding
disjunctions into our definitions (such as allowing for either NP or CP
complements in a single entry for a word) or by explicitly extracting
them from it (such as expressing V(z) — +v(2) A —n(x) as a separate
principle, where V is the category and +v and —n are the usual £V and
+ N categorial features'). We assume that such generalizations have all

1These are £v and £n rather than just v and —m, etc., since not all categories share
these features and one presumably wants to make generalizations over the negative
features as well as the positive ones.

111
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been multiplied out. We assume further that the result of this process
is finite. Thus, we make no attempt to handle non-finite, let alone non-
context-free, vocabularies, such as that of Bambara.

11.1 Principles Enforced in the Lexicon

As it is implemented here, a number of principles and parameters are
either restrictions on or consequences of the definition of the lexicon.
The Extended Projection Principle, for instance, requires, in part,
that every sentence has a subject. The pro-drop parameter determines
the availability of the empty subject pro to fulfill this requirement. Here
these are fulfilled by requiring INFLs to select a specifier and by the
presence or absence of pro in the lexicon. Agreement between subject
and verb is also enforced in the definition of INFLs. Some aspects of the
Theta Criterion and case filter, which together require that every
chain containing an argument receives exactly one Theta-role and one
case assignment, show up as requirements that every entry assigns a
Theta-role to each argument it licenses and licenses an argument for each
Theta-role it assigns, and that selectional constraints, case assignment
features and the requirement that case assignment occur under head-
government suffices to assign case uniquely and unambiguously.

The case filter itself, which requires that every overt NP receive case,
is enforced by the fact that every overt NP in the lexicon has some case
specified. Our definition insures that an NP with Accusative case, for
instance, can only be licensed in positions marked with accusative case
by some case assigner.

11.2 The Lexicon

The lexicon is realized as a large disjunction with a disjunct for each con-
figuration of each word. As noted earlier, this includes entries for empty
heads and for every possible COMP and INFL (or AGR and TENSE)
including null ones.

Lexicon(z) = see(x) AV(x)A--- V (1)
seen(z) AV()A -V
I(l‘) AFinite(z) A+ V

The ellipses for each word includes specification of all appropriate lin-
guistic features, explicit constraints on specifiers and complements, and
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explicit specification of the Theta-marking and case assigning properties
of the word. So one might have, for believe as in [ believe the story:

believe(z)A (2a)
V(z) A4v(z) A —n(xz) A Sing(z) A 1st(x) A Finite(z) A
—Passive(z) A - - (2b)

Base(z) — ((3y)[Comp(y, #) A MaxSeg(y)] A
(Vy)[Comp(y, x) — N(y)] A

~(3y)[Spec(y, z)]) A (2¢)
Marks-External-Agent(z) A
—Marks-External-Theme(z) A= - -- (2d)
—Marks-Internal-1-Agent(z) A
Marks-Internal-1-Theme(z) A . .. (2¢)
Assigns-Acc(z) A ~Assigns-Nom(z) A - - (2f)

or for believe as in Alice believes Bob to be asleep:

believes(z)A (3a)
V(x) A+v(z) A —n(x) A Sing(z) A 3rd(z) A Finite(x) A
—Passive(z) A -+ - (3b)

Base(z) — ((3y)[Comp(y, ) A MaxSeg(y)] A
(Vy)[Comp(y, x) — I(y)] A

~(3y)[Spec(y, x)]) A (3¢)
Marks-External-Agent(z) A
—Marks-External-Theme(z) A= - -- (3d)
—Marks-Internal-1-Agent(z) A
Marks-Internal-1-Theme(z) A . .. (3e)
Assigns-Acc(z) A ~Assigns-Nom(z) A - - - (3f)

The second line (2b, 3b) of these entries define the basic linguistic
features of the word. The third (2c, 3c¢) selects the structure of the phrase
headed by . These are qualified by Base(x) so they only apply to
in D-Structure position. Recall that our definition of X-Bar structure
(Chapter 10) insures that, even in the case of head movement, there will
always be a Lexicon item under the head of every phrase. In the case of
the first sense of believe (2) there must be no specifier and a single NP
complement. In the second sense (3) there must be no specifier and a
single IP complement.
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11.3 Theta-Marking

The fourth and fifth (2d-2e, 3d—2e) line of the lexicon entries determine
the Theta-marking properties of the word. Their structure is intended to
draw an analogy to Theta-grids. Theta-theory has to do with predicate-
argument structure. Fach predicate requires certain arguments—entities
satisfying the relationship the predicate describes. In the case of believe,
there must be an Agent (the believer) and a Theme (what the agent
believes). The role assigned to an argument restricts the words that can
be selected to occupy that position. Selection of potato, for instance, as
the Agent of believe would be ruled out. There is little consensus on the
exact range of these Theta-roles nor on the specific roles assigned to
the arguments of some predicates; but there is generally agreement on
the core cases. The internal Theta-roles are those realized by the com-
plements (or perhaps adjuncts) of the predicate, for example the Theme
of believe. Presumably, there may be any number of these, although two
always seems to suffice and we will not bother to account for more than
one here. The remaining roles are external roles. There is never more
than one of these, and 1t 1s typified by the subject of a verb, the Agent
of believes, for example.

Most commonly, the Theta-marking characteristics of a word are
specified with a Theta-grid, a list with slots for each external and inter-
nal Theta-position which are filled with the appropriate role, if any. In
our interpretation we have a feature for each position/role pair (Marks-
External-Agent, Marks-External-Theme, Marks-Internal-1-Agent, etc.).
Each lexicon entry, then, specifies at most one role for each position
positively, and specifies all others negatively. The physical positions
corresponding to the Theta-positions are assumed to be fixed. (Varia-
tion would be captured by expanding the set of positions.) Selectional
restrictions are enforced by requiring the physical position corresponding
to the Theta-position to be filled by a category bearing the Theta-role
assigned to that position as a feature. So only XPs marked Theme (pro-
jected from the lexical head) can occupy the first internal Theta-position
of believe in sense (2). Following our principle of avoiding generaliza-
tions in the lexicon, words that can fulfill multiple Theta-roles will be
represented by multiple entries.

For simplicity we will assume that the internal arguments are simply
the complements and are distinguished by their relative position. Its
easy to see how even relatively complex conditions on this structure
could be enforced. The predicate External-Arg picks out the external
argument of a verb, that is, the specifier of the IP of which the verb is a
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complement.? Other external argument configurations, such as external
arguments of nouns, can be treated similarly.
Internal-Arg-1(z,y) = (4)
Comp(z,y) A (Vz)[Comp(z, y) — —Left-Of(z, z)]

—u 1is the left-most complement of y

External-Arg(z, y) = (5)
(Fz1, y1)[Max-Projection(yy, y) A Comp(y1, z1) A Spec(z, z1)]

With these, we can enforce selectional restrictions on the arguments

(V) [Ageni(x) — (6)
(Fy)[ Marks-External-Agent(y) A External-Arg(z, y)V
Marks-Internal-1-Agent(y) A Internal-Arg-1(z, y)V

(Vz)[Theme(z) < ete. (7)

A category is Theta-marked, then, only if one of the Theta-roles has
been required for its position.

(Vz)[Theta-Marked(z) — Agent(z)V Theme(z) V - -] (8)

The Theta criterion requires that each argument receives exactly
one Theta-role and each Theta-role is assigned to exactly one argument.
For us, this reduces to a requirement that every argument position that
is specified in the lexical entry for a word must correspond to exactly
one positively specified Theta-position and wvice versa.

11.4 Case Assignment

The final line of the lexicon entries (2f, 3f) determine the case-marking
characteristics of the word. As we are working with English, we as-
sume an impoverished case system, although it should be clear how this
can be expanded to deal with both structural and inherent case, etc.
As it stands, we treat only structural case and only Nominative and
Accusative cases. We handle this much like our treatment of Theta
marking. Since we consider only verbs with single complements, no head

2This is simpler if a VP-internal subject analysis is adopted, but the usual formula-
tion of this analysis is inconsistent with Relativized Minimality. See Rizzi 1990, pg.
114.
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assigns case to more than one NP. The entry simply specifies positively
which case it assigns, if any.?

The relationship of the case assigner to the recipient of that case
is not fixed to the same degree as the relationship between a predicate
and its arguments. The first sense of believe simply assigns accusative
case to its complement. The (3) sense, in contrast, is an Fzceptional
Case Marking verb, that is, it assigns accusative case to the subject of
its infinitival complement. We specify, in both cases, only that the verb
assigns accusative case. Case is always assigned under head-government,
and always to overt NPs (NPs other than traces, PRO, or pro). Our
assumption 1s that no case assigner head-governs more than one overt
NP. Thus, we assume that the selection restrictions on specifiers and
compliments along with the restricted domain of head-government suf-
fice to unambiguously pick out the appropriate recipient of the case
assignment. Again, case assignment, like Theta-role assignment, in our
interpretation, is an agreement process. Every overt noun is assigned
a case feature and the feature Overt in the lexicon. These can only be
selected 1n positions that are marked with the same case by some case
assigner.

(Vz)[Acc(x) — N(z)AOvert(z)A (9)
(Fy)[Assigns-Acc(y) A Head-Governs(y, 2)]]
(Vz)[Nom(z) < N(z)AOvert(z)A (10)

(Fy)[Assigns-Nom(y) A Head-Governs(y, z)]]

(Vz)[Case-Marked(z) < Acc(z) V Nom(z) V - -] (11)

11.5 Other Lexicon Items

An entry similar to these first two would exist for the passive form of
believe, as in Alice is believed to be sleeping. This would bear the feature
Passive, and would be negatively specified for all external Theta-roles
and for case-marking. This sense would be selected by an auxiliary, was
for example. The entry for the auxiliary would require its complement
to be marked Passive.

A finite, null INFL (@) with NP subject and VP complement might
be:

O(x)A (12)

3This can be expanded to account for multiple case assignments by distinguishing
multiple positions in the same way we do for Theta-marking.
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I(z) A Finite(z) A +agr(z) A Tense(x) A Sing(z) A Lst(z) A
Past(z) A---

Base(z) — ( [Spec(y, ) A MaxSeg(y)] A

Spec(y, #) — (N(y) A Agreement(x, y))] A
[Comp(y) A MaxSeg(y)] A

Vy)[Comp(y) — (V(y) A Agreement(z, y))]) A
—Assigns-Acc(z) A Assigns-Nom(z) A - - -

The structure of this entry is similar to those of believe. Of course,
INFLs assign no Theta-roles and so each Theta entry must be nega-
tively specified, these have been omitted from the displayed portion of
the entry. Finite INFLs assign Nominative case to the subject. Again,
this is a consequence of Assigns-Nom and the fact that the INFL head-
governs the subject. Subject-Verb agreement is enforced by requiring
Agreement(z, y) to hold between both the subject and the verb and the
INFL. This predicate requires agreement between the relevant features
of z and y. It is defined in the discussion of head-government in Sec-
tion 10.7 (Equation 36).

Note that the choice of a structure based on INFL and one based on
AGR and TENSE is determined by the (expanded) lexicon.
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Binding and Control

We turn now to two aspects of Government and Binding Theory that are
normally treated in a way that depends heavily on co-indexation. These
are the areas of Binding Theory and Control Theory. As we shall see,
these are closely related topics, and our interpretation of Binding The-
ory will extend naturally to cover the relevant aspects of Control Theory.
With some limitations, which are discussed below, we can capture Bind-
ing and Control Theory within L% 5. Thus, this chapter serves as (the
sketch of) a proof that indexation is not necessary to these theories (to
the extent that we capture them) and that mechanisms to enforce them
need not be more powerful than Context-Free Grammars. While these
theories are reasonably amenable to treatment without indexation, our
discussion will foreshadow issues that will arise in a more substantial
form when we develop a treatment of the theory of movement without
indexation in the next chapter.
We follow Haegeman (1991) in our exposition.

12.1 Binding Theory

Binding Theory concerns the interpretation of nominals, that is, of
reflexives—himself, yourself, etc., and reciprocals—each other, etc.,
(collectively called anaphors), of pronouns—him, she, etc., and of R-
expressions (referential expressions)—full NPs. This interpretation is
usually indicated by co-indexation; NPs referring to the same entity are
co-indexed. In

(1)  Alice; thinks Bob; doesn’t believe [she; saw him; herselfy]

Alice and she can either co-refer (i = k) or not (¢ # k), as can Bob and
him. If i = k, then Alice resolves the reference of she—Alice binds she.
An NP is bound iff there is c-commanding NP that is co-indexed with
it—its antecedent. If there is no antecedent, in this case ¢ # k, then
the pronoun is said to be unbound or free. Binding, in this sense, is
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a structural relation requiring c-command and co-indexation. Since we
are concerned with resolving references; and since these must be resolved
(when they are resolved) by some argument that occurs in the sentence,
we are only interested in binding by arguments—A-binding—also a
structural relationship: ¢-commands and co-indexed from an A-position.

She and herself, in contrast to Alice and she, must co-refer. This is
because anaphors must be bound locally:

(2) a. *He saw him herself.
b. *She thinks [he saw herself].

In (2) no possible antecedent occurs sufficiently local to the anaphor,
in (1) the only compatible antecedent is she.
Interpretation of pronouns, conversely, must not be local:
(3) a. *He; saw him;.
b. He; saw himself;.
c. He; thinks [he; saw him,)].
d. He; thinks [he; saw him;].
For R-expressions the restriction on interpretation is even stronger,
these must be unbound everywhere in the sentence:
(4)  a. *She; thinks [she; saw Alice;].
b. *She; thinks [she; saw Alice;].
The nominals are categorized on the basis of these binding charac-
teristics by two features, [fanaphor] and [+pronominal]:

Anaphors [+anaphor, —pronominal]
Pronouns [~anaphor, +pronominal]
R-expressions  [—anaphor, —pronominal]

The fourth category, [+anaphor, +pronominal] is associated with PRO,
which 1s treated in the next section. The appropriate notion of suffi-
ciently local is the governing category of the NP, the definition of
which is rather delicate. It will be expanded, although only superficially
motivated, shortly. With this, Binding Theory comes down to three
Principles:

Principle A: An NP that is [+anaphor] must be bound in its governing
category.
Principle B: An NP that is [+pronominal] must be free in its govern-
ing category.
Principle C: An NP that is [—anaphor, —pronominal] must be free
everywhere.
It should be noted that there is still much that is unresolved within
Binding Theory. There is controversy even over whether it applies at
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S-structure, at LF, or both. While the trend seems to be towards its
application at LF, since our interpretation focuses on S-structure we
will follow a traditional approach (as rendered in Haegeman 1991) and
apply it at S-structure. This should extend easily should we expand our
target structures to incorporate LF.

There 1s a significant distinction between Principle A, on one hand,
and Principles B and C on the other, in that Principle A requires the
presence of an antecedent, while Principles B and C only prohibit cer-
tain patterns of co-reference. Sentences in which there are no potential
antecedents of an anaphor in its governing category (Sentence (2) for
instance) are ill-formed no matter how indices are assigned. For sen-
tences that violate only Principles B and C, however, there will always
be some assignment of indices—all distinct, at least—that will be gram-
matical. With our limited mechanism, we cannot, in general, impose or
prohibit specific indexing. But, we can detect trees for which there is
no acceptable indexing. That is to say, our structures do not determine
co-reference, but we do not license any structure in which proper refer-
ents cannot be found. Consequently, Principles B and C have no direct
effect on the set of trees we license.!

It is not the case, however, that Principles B and C have no effect at
all. They do become part of a structural relationship Binding-Distinct(z, y)
that holds between x and y only if x cannot bind y. As with all non-
monadic relations, this must be explicitly defined. Thus, while it is
useful in building definitions of other predicates (which can use it to
check binding compatibility), it is actually a notational convenience and
cannot be thought of as labeling the tree in the sense that the monadic
predicates can. It is not available (except as a notational convenience),
for instance, to mechanisms outside the one defined here that might
check for proper indexation.

There is a sense in which indexation does not seem to have equal
status with other aspects of syntactic structure. While the resolution of
references is constrained by syntactic principles, it does not seem to be
a purely syntactic property. This shows up in Chomsky 1993 (albeit in
a context that argues, among other things, that Binding Theory cannot
apply at S-structure, but rather must apply at LF) in the discussion of
examples like:

(5)  *Which claim that John; was a liar did he; deny?

In the theory developed there, the LF interpretation of this can take one
of two forms:

1Except for the interaction of Principles A and B that partly determines the distri-
bution of PRO.
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(6) a. *[which z] [he; did deny # claim that John; was a liar]
b. [which #, z a claim that John; was a liar] [he; did deny #]

The judgment that the sentence, as indexed, is out is based on the
Principle C violation that shows up in the first interpretation.? Chomsky
argues that this interpretation prevails because 1t i1s preferred on the
basis of economy. In general, failure to meet syntactic requirements can
force the consideration of less economical derivations. Yet, the violation
of Principle C in (6a) does not allow acceptance of the reading (6b).
Principle C, then, is distinguished from most other syntactic principles
in that it cannot apply before fixing on the economically preferred, but
ill-formed interpretation.

12.1.1 Governing Categories

The governing category (GC) of an NP is, in its simplest form, the
minimal TP or NP containing (as in Includes) it, its head-governor, and
a c-commanding subject. In (1), the head-governor of herself is saw and
she 1s a c-commanding subject. Thus, the IP she saw him herself is the
GC for herself. If follows, then, that herself must be bound within this
phrase by she, and can not be bound by an NP outside that phrase,
Alice, for instance.® Unfortunately, this definition cannot account for

judgments like:
(7)  *Alice; thinks [cp that [;p herself; [1+agr] saw him]].

Here, there is no subject in the lower IP that c-commands herself, but
the relevant GC is surely that IP. To account for these cases, the no-
tion of SUBJECT is introduced, which is taken to include non-empty
AGR. In the example in (7), the finite INFL of the lower IP is such a
SUBJECT. The GC, then, must contain a c-commanding subject or an
m-commanding SUBJECT.

But, even this is not quite sufficient. It fails to license, for instance:
(8)  Alice; thinks [cp that [;p [np pictures of herself;] [1+agr]

were seen by him.]]

The rationale applied here is that the SUBJECT—the finite INFL—is
co-indexed, for agreement purposes, with [Spec,IP]—the NP a picture
of herself, which dominates herself. If this SUBJECT were to be co-
indexed with herself, it would violate the i-within-i filter, which forbids
co-indexation of categories if one is dominated by the other. The pro-
posal, then, is that a SUBJECT is accessible to a category only if co-

?Note that in the second interpretation there is no Binding Theory violation. John;
neither c-commands nor is c-commanded by he;, and therefore, binding theory is not
relevant.

3Unless she also binds herself, as in the case where ¢ = k.
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indexation of that SUBJECT and that category would not violate the
t-within-¢ filter.

So, formally, a subject is [NPIP] or [NP,NP]. A SUBIJECT is a
subject or a [+agr] head. These are accessible to a category if (for
subjects) they c-command it, or, (for SUBJECTS) they m-command it
and neither they nor their specifier violate the é-within-i filter. (Note
that the c-command requirement for subjects subsumes the i-within-i
filter.)

subject(#) = n(z) A GyI(i() V() ASpec(e,z)] (1)
SUBJECT(x#) = Subject(x)V Bar0(z) A +agr(x) (2)
Accessible-Subject (2, y) = (3)

subject(z) A C-commands(z,y) V
—= is a c-commanding subject
SUBJECT (#) A M-commands(z, y) A
— or an m-commanding SUBJECT
(V2)[(x m z V Spec(z, x)) — —i-within-i(z, y)]
—mneither z nor its specifier violate
i-within-i
The i-within- filter, in its simplest form is just*
i-within-i(#, y) = Dominates(z, y). (4)
The GC of z, then, is the minimal IP or NP including , its head-
governor, and a subject accessible to x. We define sets of nodes meeting

the conditions first (gc), and then define the GC as the minimal such set
of nodes. We define GC(y, #) to hold whenever y is in the GC of x.

ge(X,z) = (Ju,y,2)(Va') (5)
[(i(w) V n(w)) A Bar2(w) A (X(z') < Includes(w, z')) A

*This is actually a little delicate. Haegeman (1991) cites the following example (due
to Higginbotham) as evidence that ¢-within-7 applies only to the configuration of an
XP immediately dominating a category:

Mary; is [Np, [Np, [NP, her] cook’s] best friend].
Following Haegeman’s treatment (1991, pg. 227) we would have
i-within-i(z,y) = Dominates(z,y) A
—(3z)[MaxProj(z) A Dominates(z, z) A Dominates(z, y)]
Unfortunately, this does not work for Example (8). We will leave open the issue of

the precise definition of the i-within-i filter. Unless it is radically different than these,
it will be within the capacity of L?\, p in any case.
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X(z) A
X(y) A Head-Governs(y, z) A
X(z) A Accessible-Subject(z, z) ]

GO(X,2) = ge(X, ) A(VY)[ge(Y, ) — Superset(Y, X)] (6)
GC(y, ) = BX)[GC(X, 2) A X(y)] (7)

We can now capture Principles B and C with a (necessarily) partial
definition of the predicate Binding-Distinct(z,y). Note that this is an
asymmetric relation. It i1s true only if # may not A-bind y. We don’t
presume to have a complete account of when this is the case, so we
cannot hope to complete the definition. We do capture those that seem
essential to the theory. In particular, x may bind y only if

e they agree in number, person, and gender,
e the i-within-7 filter is respected,

e if y is [+pronominal] and «, in an A-position, c-commands y, then
z is not in the GC of y (Principle B),

e if £ is in an A-position c-commanding y, then y is not an R-
expression ([—anaphor,—pronominall]) (Principle C).

Binding-Distinct(z, y) = (8)
—Binding-Features-Agreement(z,y) V
i-within-i(z,y) V
+pronominal(y) A A-pos(x) A C-command(x, y) A GC(z,y) V
—Principle B violation
—anaphor(y) A —pronominal(y) A A-pos(x) A C-command(z,y) V

—Principle C violation

Binding-Feature-Agreement is just another agreement predicate, in
this case enforcing number, person, and gender.
Binding-Features-Agreement(x, y) = (9)
(Sing(x) < Sing(y)) A ... A
(Ist(z) < Ist(y) A ... A
(Masc(z) «— Masc(y)) A ...

Principle A can then be expressed as a requirement that every
[+anaphor] that has a GC has a potential antecedent in an argument
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position in that GC.

Principle A (10)
(Vz, X)[+anaphor(z) A GC(X, z) —
(F[X (y) A A-pos(y) A C-command(y, z) A
—Binding-Distinct(y, )]]

It should be noted that this interpretation of Principle A does not
identify a specific antecedent for a given anaphor; it only requires that
such an antecedent exists. This is a fundamental characteristic of in-
terpretations of relationships like these that do not employ indexation.
Any number of anaphors might share the same potential antecedent
if their GCs intersect. In English, at least as far as the definition of
Binding-Distinct we have goes, this is not a problem. The only things
that can force them to have independent reference is a clash of binding
features or the ¢-within-z filter. But complex NP anaphors of the sort
that could violate the ¢-within-z filter do not seem to occur in English.
This comes down, then, to an issue of binding feature agreement. By the
transitivity of agreement, the fact that the anaphors share an antecedent
implies that they may co-refer.

12.2 Deriving the Distribution of PRO

The qualification that the anaphor has a GC figures in the standard
account of the fact that PRO must be ungoverned. This is a topic for
the next section, but as the argument is a Binding Theory argument we
will anticipate that discussion and develop it here. The idea is that PRO
is [+anaphor,+pronominal], and thus, subject to both Principles A and
B. But one of these require it to be bound in its GC and the other requires
it to be free in 1ts GC. The resolution of the seeming contradiction is
that PRO can have no GC, and, thus, must be ungoverned. This actually
comes, as it should, as a consequence of our treatment of Binding Theory
since

+anaphor(z), +pronominal(x)

= GC(X,z) — (y)[X(y) A ...~ Binding-Distinct(y, z)]
(from (10))

= GC(X,z)— F[X(y) A...-GC(y, z)]
(from (8))

& GO, 2) — Gn)[X(4) A (VY)GCY, 2) — Y ()]
(from (7))

= =GC(X, ).
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12.3 Control Theory

Control Theory concerns the resolution of the reference or PRO, the
covert subject of otherwise subjectless non-finite IPs. For example:

(9) a. Alice; is wondering [cp whether [;p PRO; to invite Bob]].
b. Alice; is wondering [cp whether [1p PRO; to invite
herself; /*himself;]].
¢. [cp [1p PROgpp to invite Bob]] would be crazy.
d. *Alice; is wondering [cp whether [;p PRO; should invite Bob]].

That a subject occurs in the IP is required by the Extended Projec-
tion Principle. Clearly it is non-overt. In fact, it cannot be overt in these
contexts since it is not head-governed,® and consequently, cannot receive
case. This is characteristic of the distribution of PRO, it only occurs in
positions that are ungoverned; hence, the ill-formedness of (9d).

In (9a) the controller of PRO is Alice. That PRO, in a context such
as this, requires a controller can be seen in (9b). Here the reflexive
requires a local binder. The only possibility is PRO. If the PRO could be
freely interpreted, either reflexive would be acceptable. But the PRO is
necessarily controlled by Alice, and so only the feminine reflexive works.
In this context PRO behaves much like an anaphor. In (9¢), in contrast
there is no antecedent for PRO. It is said to be arbitrary. In this
context 1t behaves more like a pronoun. This suggests the interpretation
of PRO as [+anaphor, +pronominal] which, as argued in the previous
section, accounts for its distribution only in ungoverned positions.

12.3.1 Obligatory and Optional Control

As we have seen, in some contexts PRO must be controlled. These are
referred to as cases of obligatory control. A simple diagnostic of these
cases 1s the unacceptability of PRO as a binder for the indefinite reflexive
oneself.

(10) a. Alice decided [cp [1p PRO to invite herself/*oneself]]

b. Alice sent herself a note [cp [1p PRO to invite herself/*oneself]].
In other contexts, control is optional:
(11) a. John asked [cp how [;p PRO to behave himself/oneself]].

b. [cp [1p PRO; to invite oneself;]] would be rude.
¢. [ep [1p PRO; to invite herself;]] would be just like Alice;.

5Tt is not head-governed because neither the non-finite INFT nor the COMP (which
is empty here) are governors, but the COMP is a c-commanding head that intervenes
between PRO and any other potential head-governor.

8This example is due to Manzini, via Haegeman (1991).
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Whether control is obligatory or optional depends on the context in
which PRO occurs. The examples above are typical. Control is obliga-
tory for PRO occurring in declarative complement clauses (Sentence 10a)
but not interrogative complement clauses (Sentence 11a). Neither is it
obligatory in subject clauses (Sentences 11b and 1lc), but it is oblig-
atory in adjuncts (Sentence 10b). There are further refinements, but
the point is that the nature of the control requirement, while somewhat
idiosyncratic, depends on the structure, mood, etc. of the clause con-
taining PRO or the clause containing that. We can capture essentially
any condition that depends only on a bounded context like this. Thus,
rather than go through the exercise of encoding this (partial) list, we will
assume that the variants of PRO in the lexicon are of two varieties—those
that are [+oblig] and those that are [—oblig]|—and that the distribution
of these is determined by their context.

12.3.2 Subject and Object Control

In some cases of obligatory control the controller of PRO must be the
subject of the matrix clause, and in others it must be the object. Again,
sentences in which the PRO binds a reflexive are diagnostic.

(12) a. Alice told Bob PRO to invite himself/*herself/*oneself.
b. Alice promised Bob PRO not to invite herself/*himself/*oneself.

Here, the variation is dependent on the verb of the matrix clause. Again,
this 1s idiosyncratic. We will assume, then, that, in the lexicon, verbs
of subject control will mark their subject [+controller] and those of
object control will do the same with their object.

12.3.3 Control and Binding

Like Principles B and C, optional control can always be satisfied by in-
dexing each NP distinctly. Thus, like those principles, optional control
has no direct influence on the set of trees we license. In the case of oblig-
atory control, as in Principle A, we must necessarily find a controller.
This can rule out trees in two ways. There might be no argument in a
controlling position, as in (from Haegeman 1991):

(13) *There occurred three more accidents without PRO being any
medical help available on the premises.

In this example, the There in the subject position of the matrix clause is
an expletive and cannot serve as an argument. The other configuration
in which obligatory control rules out trees i1s the case where there is a
controlling argument but it does not agree with the binding features of
PRO. This can only occur when PRO binds another nominal necessarily
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(which thus, must be an anaphor) and has its features constrained by
that relationship. This case accounts for the judgments we have been
using throughout this section.

In cases of obligatory control, the controller must, evidently, c-
command PRO.

(14)  Alice’s brother decided PRO to invite himself/*herself.

The controller cannot be Alice, which does not c-command PRO but
can only be Alice’s brother. (In cases of optional control, on the other
hand, this is not a requirement—see Sentence (11c).) There are strong
parallels, then between obligatory control and the binding of anaphors.
Exploiting this, we treat obligatory control very much as we treat Prin-
ciple A.

ObligatoryControl
(Vz, X)[ PRO(z) A Oblig(z) —
(FY)[C-command(y, z) A Controller(y)A
—Expletive(z) A Binding-Features-Agreement(y, z)]]
(11)
We might have employed —Binding-Distinct here, but of the cases it
covers, only the condition Binding-Features-Agreement is germane.

12.4 Discussion

In this chapter we have sketched definitions in L% p of binding theory
and control theory, or at least of those aspects of these theories that gov-
ern the distribution of nominals rather than their interpretation. The
main result, of course, is that the principles of these aspects of these the-
ories are, in some sense, context-free. In developing this result, though,
other issues arise. We have been led, for instance, by our inability to
employ indexation, to identify a distinction between the Principle A and
Principles B and C of binding theory (and a similar distinction between
cases of Obligatory and Optional Control). Tt is perhaps significant that
this distinction is not idiosyncratic to our treatment, but has arisen in
other analyses, from considerations of a more purely linguistic nature,
as well.

Also, both as an example of the way in which formalizations of the
theory support inferences, and as a partial verification of the formaliza-
tion, we have sketched a formal derivation of the fact that PRO must
be ungoverned (the PRO theorem) from its definition as being both
anaphoric and pronominal and the principles of binding theory.

It should not be very surprising that these aspects of binding theory
and control theory are definable in L% ,. Obligatory Control is invari-
ably resolved in the matrix clause and binding theory centers around
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the notions of head-government and governing category. These tend to
bound the portion of the tree that is relevant to a given category with
respect to the theories. In the next chapter we undertake a treatment
of movement. This is a much more substantial task, since bounds such
as these are harder to come by. Some of the issues that we have uncov-
ered here will have central roles in that analysis, particularly the issue
of identification without co-indexation and the problem of confusing the
antecedents of categories.
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Chains

The aspect of GB that is most difficult to capture in L% p is the theory
of movement. This, in fact, is where our interpretation yfails, as indeed
1t must, for those non-English structures that have been shown to be
non-Context-Free.

The role of indices in movement is to identify the moved category
with its traces. Traces are the phonologically empty remnant of the
category that marks the positions i1t visits in the course of movement.
A moved element and its traces, collectively, form a chain. The D-
structure position of the category is referred to as its base position.
Fach cycle (or step) of the movement forms a link in the chain. The new
position is said to be the antecedent of the trace in the original position
in the link. In the theory we adopt, all movement is assumed to be
raising movement—to a higher position in the tree.! Thus, antecedents
always c-command their traces, and, consequently, bind them (although
not necessarily A-bind them). This also means that the link relation is
reflected in the c-command relations among the members of the chain.
One position in the chain is the antecedent of another just in the case
that it is the minimal member of the chain that c-commands it. As a
result, there is never any ambiguity about the sequence of moves that
form a chain. The linear ordering of the chain imposed by the link
relation is necessarily the same as its linear ordering by c-command.
The maximal position must be the only position in the chain that is not
a trace—the target of the movement. Consistent with the notion of
binding, this position provides the identity of the entire chain.

As chains are identified with a single entity, they behave, in some

1This specifically eliminates the lowering I° to V® as a way for the verb to acquire
inflection. We have already assumed, however, that verbs are fully inflected in the
lexicon, and that verb morphology is only checked in the syntax rather than being
generated there by movement.

131



DRAFT: September 12, 1995

132 / A DESCRIPTIVE APPROACH TO LANGUAGE-THEORETIC COMPLEXITY

respects like a single category. In particular, a chain can contain at most
one argument (since it contains exactly one non-trace). That argument
must receive exactly one Theta-role (by the Theta Criterion) and, if
overt, must be marked with case (by the Case Filter). Chains formed
by movement of overt NPs, then, must include exactly one position that
receives a Theta-role and one that receives case. This is one of the
factors that can force movement to occur.

In Barriers Chomsky 1986, the link relation is restricted by n-
subjacency, a requirement that it cross no more than n barriers (n
is a parameter of variation, but nearly always set at one.) Thus, it must
hold in a bounded domain. This is attractive from our point of view,
since the bounded domain of the link relation raises the possibility of
a bound on the number of distinct links that can occur in the same
(or overlapping) domains. In that case we can distinguish the links,
and consequently, the chains that contain them, without resorting to
(unbounded) indexation. Unfortunately, violations of subjacency are
weak effects; there are many sentences in which they occur that, while
degraded, are certainly not ungrammatical.

A stronger constraint on movement is the Empty Category Prin-
ciple (ECP). In its traditional formulation, this is only partly a re-
striction on the link relation, and in many cases leaves it completely
unbounded. One trend in accounts of movement is the idea that the
structure of all chains should largely be determined by local conditions
on links. Ungrammaticality that is usually attributed to ECP violations
should then show up as ill-formed links. This again raises the possi-
bility that we can capture all constraints on movement with principles
that involve only a bounded portion of the tree. While this is not quite
true—there are movements that involve links of arbitrary length (ignor-
ing subjacency violations)—in English the number of such movements
that can occur in a given sentence is bounded. Thus, the possibility that
there is a bound on the number of links that can occur in overlapping
domains 1s realized in English, and the interpretation we give here is
reasonably complete. Structures, on the other hand, like the cross-serial
dependencies of Swiss-German or long-distance extractions in Swedish,
turn out to be cases in which the number of links that can interact is
effectively unbounded.

The specific theory of link relations we implement is the core of
Rizzi’s Relativized Minimality theory. Following his lead, we will con-
centrate on ECP effects and ignore subjacency. We will pause here,
before discussing Relativized Minimality, to characterize the class of
movements we account for.
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13.1 A Taxonomy of Movement in English

This section is a brief, but reasonably complete, survey of the types of
movement in English that have been widely studied. As with many as-
pects of GB theory, we cannot hope for this survey to be exhaustive, but
it covers substantially all movement discussed in our sources, principally
Radford 1988, Haegeman 1991, Rizzi 1990, Frank 1991, Manzini 1992,
and, particularly for right movement, Kroch and Joshi 1987. Most of
our examples are drawn from these sources.

The most basic distinction we make 1s on the basis of the Bar level
of the moved category. Only X% and XPs move, so we distinguish two
classes:

e Head Movement forms X%-chains. In English, this is highly
restricted, occurring only in cases of IV to C° and V° to 1% to C°
movement. As in
(1) a. Who; did; [1p Alice t; invite t; to the party]?

b. What]’ hasi [Ip Alice tz’ [Vp tz’ [Vp seen t]]]]7
The structure of Example (1a) is illustrated in Figure 13, that of
Example (1b) isin Figure 14. (These are repeated from Chapters 8
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and 10, respectively.) The chains of interest, of course, are those
indexed .
Head movement is often treated as either amalgamation—in
which two heads are combined to produce a head that shares their
characteristics—or substitution. As explained earlier, we treat all
cases of head movement as adjunction. There is a universal con-
straint on head movement, the Head Movement Constraint
which prohibits links in X°-chains from crossing a head. Thus,
the antecedent of an X"-trace must be the closest c-commanding
head.?

¢ XP-movement is the movement of maximal projections either by
substitution of an XP at an appropriate position that was gener-
ated but left empty at D-structure, or by adjunction of an XP to
some other maximal projection.

The class of XP-movements is refined further on the basis of the target
position.

e A-chains are produced by movement from one argument position
(A-position) to another.? Since there are no adjoined A-positions,
this invariably involves substitution. The typical examples are:
(2) a. Alice; was seen t; at the fair.

b. Alice; seems [1p t; to have invited herself].

c. *Alice; seems that it is likely t; to have invited herself.
Sentence (2a) is the typical passive structure. Here Alice, the ob-
ject of the verb, moves to an empty subject position as required
by the passive was seen. Sentence (2b) is an example of raising.
Alice is the subject of an embedded non-finite IP that is raised to
the matrix subject position, again as a consequence of the nature
of the verb.* The starred sentence, an example of super-raising,
illustrates the strictly local nature of this type of movement—it
cannot cross the subject position of the middle clause.

Traces of A-movement are assigned features [+anaphor,—pronominal].

2While this would seem to provide exactly the kind of locality conditions we need,
it turns out, in the case of cross-serial verb/object dependencies, that movements of
multiple heads can interact to escape these bounds.

3This class of movement has traditionally been referred to as NP-Movement, al-
though it need not involve only NPs.

4There is a superficial similarity between raising and control structures. In raising,
at least in the account we adopt here, the embedded clause is necessarily an IP.
Thus, the embedded subject position is governed by the matrix verb, and PRO
cannot occur there. There are often similar forms in which the complement is a CP

It seems that Alice has invited herself.
but in these forms the embedded subject does not raise.
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Thus, they behave like anaphors and, by Principle A, must be A-
bound locally (by their antecedents). It follows that any inter-
mediate traces must be in A-positions and the movement must,
therefore, be by substitution. Movement in these cases is forced
by the Case Filter. The chain receives a Theta-role at the base po-
sition, but is not case-marked there. Rather, the argument must
move to a position in which it can receive case without receiving
a second Theta-role. The only such position is the matrix sub-
ject, which receives case from the finite INFL, but is not assigned
a Theta-role due to the nature of passive and raising verbs. A
consequence of this analysis is that, since object positions always
receive Theta-roles, there can be no A-movement into object po-
sitions. A-movement, then, is always movement of subject to sub-
ject or object to subject. For the class of movements we consider,
this means that there is exactly one possible landing site, namely
[Spec,IP].

e A-chains involve movement of an XP into a non-argument position.
This can involve either substitution (into [Spec,CP], say) or ad-
junction to a maximal projection. Traces of A-movement are as-
signed binding theory features [—anaphor,—pronominal]. Under
Binding Theory (Principle C), these, like an R-expression, can-
not be A-bound. Since they are necessarily bound by their an-
tecedents, those antecedents may not occur in argument positions.
Thus, A-chains necessarily involve A-positions, and A-chains, ez-
cept for the base position necessarily involve A-positions. The ex-
ception allows these to intersect each other in exactly one way. An
A-chain and an A-chain can be concatenated in that order, e.g.:
(3)  Who; do you think [cp t; [1p ti is believed

[ip t; to be winning]]].
This can’t be given a representational analysis as two chains, since
it contains exactly one base position and one target position. If
one views the essential aspect of chains to be the link relation,
however, it has a simple analysis as a single chain containing both

‘A-links and A-links.

The class of A-movement can be refined again into Left movement and
Right movement based on the direction of movement in the surface
string.

5

e Right movement Since all movement raises a category to a
higher position in the tree, and since specifiers in English are ini-

5This is the class of movement traditionally referred to as Wh-Movement, although,
again, it often involves categories other than Wh elements.



DRAFT: September 12, 1995

CHAINS / 137

tial, right movement in English invariably involves adjunction to a

c-commanding XP. This shows up in the surface string as move-

ment of some constituent of a phrase either to the end of that
phrase or to the end of a phrase containing that phrase.

(4) a. [cp That [tp [np someone t;] will be there

[cp, that you know]]] is likely.
b. [cp That [1p [Np someone t; | will be there
[pp, from Peru]]] is likely.
c¢. Alice [yp attended [np the reception t;] last night
[pp,at Bob’s house]].
d. *[cp That [1p [Np someone t; | will be there ] is likely
[cp, that you know ]].

These are examples of extraposition of a CP (4a) and a PP (4b)
from a subject, and a PP from an object (4c). As (4d) illus-
trates, this movement is strictly bounded by a condition similar
to subjacency—the extraposed phrase cannot cross more than one
major category. Thus, these are cases of movement from the com-
plement or adjunct of an NP to adjoin at the minimal maximal
projection including that NP.

(5) a. [cp That [;p Alice would [vp show t; to the guests

[np, the videos of her children]]]] was inevitable.
b. *[cp That [1p Alice would [vp show t; to the guests ]]]
was inevitable [np, the videos of her children].

These are cases of heavy NP shift—an NP complement of the verb

moves to adjoin to that VP. Again, as illustrated in (5b) the

movement cannot cross more than one major category.

(6) a. Alice told Bob t; yesterday [cp, that she wanted peaches].
b. Alice sent Bob t; yesterday [pp, to the store to get some.]
¢. How fond t; are you [pp, of peaches].

Here we have rightward extraction of CP and PP arguments, (6a)

and (6b) respectively, of a verb and a predicate adjective (6¢).

These pattern similarly to extraposition from NP.

The main characteristic of rightward movement in English, then, is

that it involves movement of complements or adjuncts of a phrase

to adjoin at the minimal XP properly including that phrase. It
seems never to involve more than one cycle of movement. Thus, it
is a strictly local form of movement.

e Left movement occurs in three general patterns:

o Wh-question formation and Wh-exclamatives
(7) a. [cp Who; [ip t; ate the peach]]?
b. What; did you eat t;7
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¢. Why; did you eat the peach t;7

d. [ap, How delicious] these peaches are.
(8) a. [cp Who; did you think ...

[cp t; [1p t; ate the peach]]]?

b. What; did you think ...T ate t;7

¢. When; did you think ...I ate the peach t;

These are cases of Wh-extraction from the subject, object and
adjunct positions (Sentences (7a) through (7c¢), respectively).
Wh-exclamatives (Sentence (7d)) are also a type of extrac-
tion, but being unaccompanied by inversion of the verb, do
not form a question. The landing site, in each of these cases
is [Spec,CP]. In general, the extraction can occur from an
arbitrarily deeply embedded clausal complement, as shown
in (8), although there are restrictions on the context from
which they can be extracted that depend on the extraction
site. (These will be covered shortly.)

Topicalization and Preposing

(9) a. [np,The peach], T ate t; on purpose.

b. Peaches;, we have plenty of t;.

¢. [np,The peach], T believe ... he ate t; on purpose.

d. Rarely; do you find such succulent peaches t;.

e. She said she would eat one and [cp [vp, eat one]

[Ip she did tl]]

f. [ap, So hungry] would she have been t;, that ...
These are examples of topicalization of a verbal comple-
ment (9a), a prepositional complement (9b), and a verbal
complement of an embedded clause (9¢), and preposing of an
adjunct (9d), a VP (9e), and an AP complement (9f). Again,
the landing site is [Spec,CP] in every case, and the extraction
can generally be from a clausal complement.
Relativization, Infinitival Adjuncts, Comparatives, and Par-
asitic Gaps
(10) a. [wp The inconsiderate clod; [cp O; that t; ate

my peach]]. ..
b. The peach; is too ripe [cp O; [1p PRO to eat t;]].
¢. The peaches are sweeter; than [cp O; the pears
are t;]
d. [Which fruit]; should you wash t;
[pp before [Cp Oz [Ip PRO eating tl]]]

These cases all involve a moved empty operator (O;). In
the case of parasitic gaps (10d), there is some controversy
about the landing site. Chomsky, in Barriers, requires the
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empty operator to be licensed by a trace that is 0-subjacent.
In the example, the licensing trace is t;. If the operator is
in [Spec,CP], as we have it, the PP will be a barrier inter-
vening between the operator and that trace, violating this
0-subjacency condition. Consequently, he requires the oper-
ator to adjoin to the PP. Aoun and Clark (1985) propose an
alternative analysis in which the empty operator is licensed
by the operator in the matrix clause (Which fruit). Frank,
in Frank 1991, critiques both of these approaches and offers
an analysis of his own (based on TAGs) in which the empty op-
erator is licensed by the operator in the matrix clause. Since
neither of these require the 0-subjacency condition, the oper-
ator can land in [Spec,CP]. We will assume, then, an analysis
that derives the structure we give in (10d). Then, once again,
in each of the examples the movement lands in [Spec,CP], and
originates in [Spec,IP], a complement or adjunct of VP or a
complement or adjunct of a complement or adjunct of VP.

Left A-movement, then, is characterized by the fact that the target
is always [Spec,CP] and the base is always either [Spec,IP] or is
from a complement or adjunct that is more or less along the “spine”
of the structure, or, more precisely is not from within a specifier.

Movement, in English at least, is characterized, then, by a few well-
defined types, each with its own specific range of base positions and
targets. Figure 15 displays these schematically. Our approach is to
distinguish chains by type. We then need be concerned only with distin-
guishing chains of the same type with overlapping domains. Our claim
will be that movement can be treated in such a way that the number of
such overlapping chains is bounded, and thus, can be resolved without
indexation.

13.2 The Empty Category Principle

As we noted in the previous sections there are a variety of phenomena
that have been studied that reflect constraints on the context of the po-
sitions from which movement can occur. These include restrictions on
head movement, Subject-Object Asymmetries, that-Trace Effects, Wh-
1sland Effects, and many others. The usual account of these involves a
combination of subjacency restrictions and the Empty Category Princi-
ple. Subjacency tends to be responsible for weak effects—questionable
sentences rather than outright stars. The empty category principle is ap-
parently much more fundamental, and, in Rizzi’s analysis (Rizzi 1990),
at least, 1t is the crucial constraint in the theory of movement.
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Empty Category Principle: Non-pronominal empty categories must
be properly governed, where proper government is either Antecedent-
Government or Theta-Government.

Essentially, this states that traces (non-pronominal empty categories)
must be governed either by their antecedent or by the lexical head that
assigns them a Theta-role. The alternatives show up in the account of
subject-object asymmetries.

(11) a. Whom do you think Alice will invite t7
b. Whom do you think that Alice will invite t7
¢. "Whom do you wonder why Alice invited t?7

(12) a. Who; do you think [cpt; [ipt; invited Alice]]?
b. *Who; do you think [cpt; that [jpt; invited Alice]]?
c. *Who do you wonder why t invited Alice?

The first set of sentences involves extraction from an object. Since ob-
jects are Theta-marked (and governed) by the verb, these satisfy the
ECP regardless of the relationship between the trace and its antecedent.
Sentence (11c) illustrates the fact that this relationship can still create
subjacency effects.® In the second set of sentences, the extraction is from
the subject. In (12a) both traces are antecedent-governed, but in (12b)
government of the trace in [Spec,IP] is blocked by the overt comple-
mentizer that. (This is an example of the that-trace effect.)” Similarly,
in (12¢) the judgment is stronger than in (11c), since an ECP violation,
and not just a subjacency violation, is involved.

Under Relativized Minimality, Rizzi isolates antecedent-government
from head-government. Since minimality concerns only potential gover-
nors of the same type, potential head-governors (e.g., that) cannot block
antecedent-government. To account for that-trace effects, then, he sug-
gests a conjunctive form of the ECP involving two principles: formal
licensing and identification.

ECP (Rizzi): A non-pronominal empty category must be both

e properly head-governed (Formal Licensing)
e antecedent-governed or Theta-governed (Identification).

The that-trace effect, in this analysis, 1s a failure of the formal licensing
principle.

Rizzi goes on to question the disjunctive nature of the identification
principle. He points out that there are phenomena mimicking subject-

6In this case the why prevents the movement from passing through the specifier of
the lower clause, thus, forcing it to cross two barriers.

"The analysis of extraction from subjects is significantly different under Relativized
Minimality.
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object asymmetry that involve something beyond a simple subject-
object distinction.®

(13) a. What did John weigh t?
b. ?What did John wonder how to weigh t7

In the first case weigh can be construed either in an agentive (He weighed
apples.) or astative (He weighed 200 1bs.) sense. But in the second, only
the agentive is possible. He accounts for this by distinguishing refer-
ential Theta-roles, as assigned by the agentive sense of weigh from
non-referential Theta-roles, as assigned by the stative. He argues that
the only indices that are meaningful from the standpoint of identification
are those assigned to arguments receiving referential Theta-roles. These
he refers to as Referential Indices. He then categorizes A-chains as
either Referential Chains or Non-referential Chains, on the basis
of the nature of their index. This allows the disjunctive identification
clause of the ECP to be subsumed under a general principle requiring
every operator (the moved element) to be properly identified with its
variable (the trace in the base position). For referential chains (includ-
ing those of the standard cases of object extraction) this is satisfied by
the referential index of the chain, but, since non-referential indices do
not serve for identification, the principle can only be satisfied in non-
referential chains (including cases of subject extraction) by the sequence
of antecedent-government relationships linking the target of the chain
to the base.
This might be stated:

ECP (Rizzi—final version):
e A non-pronominal empty category must be properly head-
governed (Formal Licensing).
e Operators must be identified with their variables (Identifica-
tion).
Identification: Operators are identified with their variables either by
e a referential index
e a chain of antecedent-government links.

In this way, Rizzi first introduces a conjunctive form of the ECP
that extends the traditional disjunctive form, and subsequently replaces
that disjunctive component with a distinction in the way that a single
principle can be realized. From our point of view, of course, the most
significant aspect of this analysis 1s that it reduces the role of indexa-
tion in chains to identification of referential chains, replacing it in non-
referential chains with the local relationship of antecedent-government.

8Rizzi attributes the observation and the example to David Feldman.
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13.3 Antecedent-Government

We can now proceed with formalizing these notions. Like that of head-
government, the definition of antecedent-government has four compo-
nents:

e The governor must be the proper type of category.
e The proper structural relationship must exist.
e There must be no intervening barriers.

e Minimality must be respected.

In the definition of head-government the appropriate structural relation-
ship i1s m-command. For antecedent-government this is c-command. The
notion of intervening barrier (which is weak in Rizzi’s theory) remains
unchanged. Since minimality is relative, it will be realized differently
for each class of chain. Thus, there will be three versions of antecedent-
government, one each for A-chains, A-chains, and X%-chains.

Usual definitions of antecedent-government make use of a co-indexation
requirement to properly identify the antecedent. Since Rizzi has aban-
doned the use of indices for identification in non-referential chains,
he suggests that this could be weakened to a general notion of non-
distinctness; for referential chains this is interpreted as not having dis-
tinct indices, for non-referential chains antecedent-government must hold
and, under minimality, the closest potential antecedent-governor must
be the antecedent. Non-distinctness, then, simply rules out wildly in-
compatible antecedents (of the wrong category, etc.). We adopt a fairly
strong interpretation of non-distinctness. We label each category in
a chain with an additional complete set of features (we call these T-
Features), that reflect the features of the target category. Thus, we
can require that a trace and its antecedent agree in their T-Features.
Note that the T-Features of chains formed by movement of identical
categories will be identical. Thus, this is considerably weaker than co-
indexation, as indeed it must be if it 1s to be definable, and so 1s weaker
than Rizzi’s notion of non-distinctness in the case of referential-chains.
But in English, as we will see, other factors serve to eliminate any po-
tential ambiguity in that case.

We add one more case of antecedent-government than Rizzi distin-
guishes. He does not treat right movement in English in Relativized Min-
tmality, and it seems to be somewhat problematic for the theory. Rather
than try to integrate it into A-movement, we define Right-Antecedent-
Governs as an independent case. This is a case where the Barriers that
remain in Rizzi’s theory apply effectively, and we define locality for this
form of government with what is essentially a 1-subjacency condition.



DRAFT: September 12, 1995

144 / A DESCRIPTIVE APPROACH TO LANGUAGE-THEORETIC COMPLEXITY

A-Antecedent-Governs(x, y) = (1)
A-pos(z) A C-Commands(z, y) A T.Eq(z, y) A
—=z 1s a potential antecedent in an A-position
—(3z)[Intervening-Barrier(z, z, y)] A
—no barrier intervenes
—(32)[Spec(z) A A-pos(z) A C-Commands(z, z) A
Intervenes(z, z, y)]
—minimality is respected
A-Antecedent-Governs(z, y) = (2)
—A-pos(z) A C-Commands(z, y) A T.Eq(z, y) A
—=z is a potential antecedent in an A-position
—(3z)[Intervening-Barrier(z, z, y)] A
—no barrier intervenes
—(32)[Spec(z) A ~A-pos(z) A C-Commands(z, z) A
Intervenes(z, z, y)]
—minimality is respected
Right- Antecedent-Governs(z,y) = (3)
Adj(z) A C-Commands(z, y) A T.Eq(z, y) A
—=z 1s a potential antecedent in an adjoined position
=(3z, z')[Intervening-Barrier(z, z, z') A
Intervening-Barrier(z’, z, y)]
—no more than one barrier intervenes
X"-Antecedent-Governs(z, y) = (4)
Bar0(z) A C-Commands(x, y) A T.Eq(z, y) A
—~ is a potential X antecedent
—(3z)[Intervening-Barrier(z, z, y)] A
—no barrier intervenes
—(32)[Bar0(z) A C-Commands(z, y) A Intervenes(z, z, y)]
—minimality is respected
Intervening-Barrier and Intervenes are defined with head-government
in section 10.7 (Equations 37 and 38). The predicate T.Eq is just another

agreement predicate forcing the T-features of the categories to be equal.
We realize these T-features as a set of features T.N, T.V ... T.Sing,
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.., one for each feature that can appear on a category.

T.Eq(z,y) = (T.N(z) = T.N(y) A (T.V(z) = T.Vy) A--- (5)

13.4 The Link Relation

In Rizzi’s analysis, chains are just sequences of antecedent-government
links. Their primary function is the identification of the target and base
positions. Technically, this would leave the case of long-distance refer-
ential movement outside the theory of chains. This actually becomes
the basis of his analysis of the fact that long-distance A-movement is
not possible even though the moved category typically receives a ref-
erential Theta-role. The Theta criterion, recall, expressed in terms of
chains, requires every argument to belong to a chain that receives ex-
actly one Theta-role, and every Theta-position to belong to a chain that
includes exactly one argument. A-movement is generally forced by the
case filter—the NP does not receive case in its base position, and so must
move to a position in which it does. This can be incorporated into the
Theta Criterion by requiring a chain to be marked with case in order to
receive a Theta-role (the so called visibility condition). In A-movement,
both case and the Theta-role are assigned at the base position. Thus,
the Theta Criterion is satisfied even if no (non-trivial) chain exists. In
contrast, A-chains receive their Theta-role at the base position and their
case at the target. Thus, the chain is required in order to satisfy the
Theta Criterion.

This leaves A-movement of referential objects as the sole exception
to the antecedent-government requirement. Rather than leaving this
type of movement outside the theory of chains, we choose to make this
exception in the definition of a link. For all other forms of movement
the link relation is just the appropriate notion of antecedent-government
(coupled with corresponding restrictions on the types of the categories
forming the link). For A-referential-movement we will use a weakened
notion, A-Antecedent, in which intervening barriers may occur and min-
imality need not be satisfied.

We will assume that base positions receiving a referential Theta-role
will be marked, by the head assigning that role, with the feature Ref.
Propagation of this along the chain is then forced by the definition of
A-Ref-Link.

A-Antecedent(z, y) = (6)
—Apos(z) A C-Commands(x, y) A T.Eq(z, y)

—=z 1s a potential antecedent in an
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‘A-position
We now have five types of links.
A-Link(z,y) = (7)
A-Antecedent-Governs(z, y) A
—Base(x) A Trace(y)+anaphor(y) A —pronominal(y)
—y is an A-trace, z is not in Base position
A-Ref-Link(z, y) = (8)
A-Antecedent-Governs(z, y) A =Ref(z) A =Ref(y) A
Bar2(z) A (—Target(z) V Spec(z)) A
—= is an XP and is a specifier if it is the target
—Base(#) A Trace(y) A —anaphor(y) A —pronominal(y)
— is an A-trace, z is not in Base position
A-Ref-Link(z, y) = (9)
A-Antecedent(z, y) A Ref(z) A Ref(y) A
Bar2(z) A (—Target(z) V Spec(z)) A
—= is an XP and is a specifier if it is the target
—Base(#) A Trace(y) A —anaphor(y) A —pronominal(y)
— is an A-trace, z is not in Base position
Right-Link(z,y) = (10)
Right- Antecedent-Governs(z, y) A
—Base(#) A Trace(y) A —anaphor(y) A —pronominal(y) A
— is an A-trace, z is not in Base position
Bar2(z) A Target(x)
—= is the Target and is an XP
X"-Link(z, y) = (11)
X"-Antecedent-Governs(z, y) A
—Base(x) A Trace(y)

—2z 1s not in base position, y is a trace

Link(z,y) = A-Link(x,y)V A-Ref-Link(z,y) V (12)
A-Ref-Link(z, y) V X°-Link(z, y) V
Right-Link(z, y)

The basic link relations are pairwise mutually exclusive. To see this,
note that X°-Link(z,y) requires z to be at Bar(, while in each of the
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others it is required to be an XP. (In the case of A-Antecedent-Governs
this is a consequence of A-pos(z).) The fact that x is required to be in
an A-position distinguishes A-Link(x, y) from the other XP links, which
require x to be in an A-position. Right-Link(z,y) is distinguished from
the other A-links by the fact that it requires x to be a Target (right
movement is non-cyclic in our analysis) and adjoined (which implies
that it is not a specifier), while the others require x to be a specifier
if it is a Target. Finally, the two types of A-leftward movement are
distinguished by Ref.

13.4.1 Avoiding Conflation of Chains

Our idea is to define chains as sets of categories that are linearly ordered
by the link relation and contain both a maximum (the target position)
and minimum (the base position) wrt to that relation. The remaining
concern is that it is not sufficient to just pick out chains to satisfy ECP
for the various traces in the tree, we must also insure that the chains are
identified consistently for all traces in the tree. With indexation, this is
simple. Each category belongs to exactly one chain, that consisting of
all categories sharing its index. Here we have the possibility that two
chains that occur within the same domain might end up intersecting.
An example might be:

(14) * Who has [1p t; told you [cp t; [1p t; invited him]]].

where the indices on the traces are intended to distinguish them for
discussion only. While chains can be found for both the i and j traces,
they necessarily share Who. This can be read of a conflation of the
sentences

(15) Who; has Alice told you [cp t; [1p t; invited himl]]
Who; has t; told you Alice invited him.

In order to rule out such configurations, we define chains not only
to be bounded sets of categories that are linearly ordered by the link
relation, but also to be maximal in the sense that every category that is
related to some member of the chain by the link relation is included in
the chain. In the case of (14) any such set including either of the traces
will necessarily include both, since both are related to Who by link.
Consequently, there is no linearly ordered set including either of them
that is maximal in this sense, and no chains for them can be found. This
approach requires, though, that whenever two chains overlap in a well-
formed sentence, there is no category in one that is related by the link
relation to a category in the other. Otherwise, neither chain could be
licensed. We argue, in the next section, that the classification of chains
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we have already developed, with some extensions, suffices to establish
this condition for English.

13.5 Defining Chains

Chains, then, are bounded sets of categories that are linearly ordered by
the link relation and are maximal in the sense of the preceding section.

Chain(X) = (13)

(F2)[ X (2) A Target(z)] A (12)[X (2) A Base(z)] A

—X contains exactly one Target and one Base
(V&)X (z) A —Target(z) — (Fy)[X (y) A Link(y, z)]] A

—All non-Target have a unique antecedent in X
(V&)[X(2) A —Base(z) — (Ay)[X (y) A Link(z, 9)]] A

—AIl non-Base have a unique successor in X
(Y2, )[X () A (Link(z, y) V Link(y, 2)) — X(y)

—X is maximal wrt the Link relation

The maximality condition is enforced by the last clause. Note that
Link(x, y) cannot hold if # is Base or y is Target (under the assumption
that Target(y) — —Trace(y)). Thus, the Target position of the chain
is necessarily maximal and the Base position necessarily minimal with
respect to Link. It also follows that chains that would be conflated if
they were to overlap can occur end-to-end without interfering with each
other.

There is one more detail we need to take care of which has to do with
the propagation of features along chains. The definition of Link requires
a trace and its antecedent to agree in their T-features, but nothing
yet requires the T-Features to take any particular value. Further, in
movement some of the features of the moved category are inherited by
its trace, usually the ¢ features—mumber, case, gender, etc.—but we
can be neutral about which features they actually are. They do not, of
course, include the features distinguishing binding properties (+anaphor
and +pronominal) since these are assigned to traces on the basis of the
type of movement and are independent of the type of the moved category.
Both of these issues have to do with the relation between the T-features
and the ordinary features of a category. We handle this as explicit
principles, one which applies to targets and one which applies to traces:

(Vo) Target(x) — T.N(z) = N(z) A--- (14)
AT .+anaphor(z) — 4anaphor(x) A -]

(Vz)[ Trace(z) — T.N(z) « N(z) A -]
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13.6 Defining ECP

We are now ready to return the the Empty Category Principle. In Rizzi’s
final version, this comes down to two principles: every trace must be
properly head-governed, and every moved category must be identified
with its base position. The second of these, which is the remnant of the
traditional formulation of ECP, requires the trace to be either bound by
its antecedent via a referential index, or to be antecedent-governed. By
incorporating A-referential links into our account of chains, we reduce
both of these cases to a requirement that the trace occurs in a well-
formed chain. Thus, in our interpretation, the traditional notion of ECP
reduces to the intuitively obvious requirement that every trace occurs in
some chain.”

Proper head-government is just head-government of a category that
is included in the minimal category including the governor.

Proper-Head-Governs(z, y) = (15)
Head-Governs(z, y) A (Vz)[Includes(z, ) — Includes(z, y)]

ECP, then, is expressed by the two principles:

Licensing (16)
(Vx)[Trace(x) — (Bar0(x) V (Jy)[Proper-Head-Governs(y, 2)])]

Identification (17)
(V) [Trace(x) — (3X)[Chain(X) A X(z)]]

Rizzi requires only antecedent-government for X movement (Rizzi 1990,
pg. 118, note 8). As antecedent-government is required by the Identifi-
cation principle, we exclude XU traces from the Licensing clause.

Of course, the requirement that Traces occur within some chain ap-
plies to Targets as well, that is, every category that is —=Base should be
assigned to some chain. But we can generalize this even further. As
we admit trivial chains (in which the only member is both Target and
Base), every category belongs to some chain. Then the Identification
principle applies universally:

9The cost, of course, is that our notion of well-formed chain is much more complex.
We have transferred the burden usually carried by ECP to the definition of chain.
But without indexation this additional complexity in the definition of chains seems
to be necessary in any case. It is satisfying, then, that it can be accompanied by a
corresponding simplification of ECP.
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Identification(Generalized) (18)
(V2)(3X)[Chain(X) A X(2)]

13.7 Distinguishing Chains in English

To complete this account of movement we still need to justify our claim
that only ill-formed chains will be excluded by our maximality condition.
In essence, this is a claim that we can distinguish a set of classes of
chains, the size of which is bounded independent of the input, and which
suffices to guarantee in well-formed English sentences that chains within
the same class will never overlap. We will approach this by treating each
of the classes of chains we have already distinguished separately. As we
shall see, 1t is only in the case of rightward movement that we will have
to refine any of these classes. As an aid in following the discussion, the
reader will probably want to refer back to our map of the classes we
cover in our taxonomy of movement in English, Figure 15.

We should note that our entire analysis up to this point ignores
the fact that traces and targets themselves are sometimes moved in the
course of the movement of other categories. This last issue is usually
resolved by reconstruction which we will take in the next section.

13.7.1 Head Movement

In English, head movement is extraordinarily simple, particularly if verbs
are fully inflected in the lexicon, as we have assumed. It comes down
simply to I%-to-C% or V9-to-1%-to-C® movement. Each movement is to
the immediately c-commanding head and it never crosses a CP. In any
domain there i1s a fixed bound on the number of categories that can
participate in this movement and each is distinct from the others. Thus,
while these chains can overlap (in the case of VO-to-1°-to-C” movement
the VO chain and 1Y chain overlap) they are always distinguished by
their T-features. In fact, even if they were not distinguished by their
T-features, as long as there 1s a bound on the number of chains that can
overlap we can always add a (bounded) set of new features sufficient to
distinguish them. The inability of this approach to account for cross-
serial dependencies in Dutch is a result of the fact that, in the analysis
we assume, an arbitrary set of overlapping V°-to-1° chains can occur in
these constructions.

13.7.2 A-movement

As we saw in section 13.1, A-movement in English is limited to subject-
to-subject or object-to-subject movement. Thus, the landing site is al-
ways [Spec,IP]. Further, by minimality of antecedent-government, no
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A-link can cross [Spec,IP] without landing there. Thus, whenever two
A-chains occur within the same IP, they must both land in the specifier
of that IP, that is, they must necessarily intersect. It follows that two
well-formed A-chains cannot occur in the same IP; the maximality con-
dition in our definition of chains makes exactly the right judgment and
it makes it for exactly the right reason.

13.7.3 Leftward, Non-referential Abar-movement

The analysis here parallels that of A-movement precisely. The landing
site for this class of movement, in English, is always [Spec,CP]. Further,
A-Ref-links cannot cross [Spec,CP], again, by minimality of antecedent-
government. Two well-formed chains of this class cannot occur, then, in
the same CP, and our definition of chains again gets both the judgment
and its explanation correct.

13.7.4 Leftward, Referential Abar-movement

Here we can appeal to Manzini’s (Manzini 1992) account of A-movement
which implies that no more than two A-chains—one referential and one
non-referential—may ever overlap. Consequently, overlapping referen-
tial A-chains cannot occur. This claim can be argued directly from the
apparent distribution of this type of movement in English as well. Con-
sider the following examples (due to Bob Frank):

(16) a. *[np, Which car] do you wonder [xp, which mechanic] John knew
[ap, when] to tell t; how to fix t; t57

b. ?[xp, Which car] do you wonder whether John knew [sp, when]
to tell the mechanic how to fix t; t;7

c¢. 7*[np, Which car] do you wonder [xp,which mechanic] John
should tell t; how to fix t; 37

d. 7*[xp, Which car] do you wonder [xp,which mechanic] John
thought I should tell t; how to fix t; t;7

(17) a. *[xp,Which painting] do you wonder [xp,which museum] John
decided whether to give t; t;7
b. [np, Which painting] do you wonder [sp,how] John decided
whether to give t; the museum t;7

As is typical of this class of movement, all of these examples are
at least somewhat degraded due, presumably, to subjacency violations.
The point here is that the cases of overlapping A-Ref-movement (Ex-
amples 16a, 16¢, 16d, 17a) are all at least highly marked, while the cor-
responding examples in which the overlapping movement involves only



DRAFT: September 12, 1995

152 / A DESCRIPTIVE APPROACH TO LANGUAGE-THEORETIC COMPLEXITY

one referential chain are relatively acceptable.!® On this evidence, it

would seem that overlapping A-Ref-movement results in ill-formed En-
glish sentences. Clearly, then, two such chains can never occur in the
same domain, and the issue of intersection cannot arise.

13.7.5 Rightward movement

It is in the case of rightward movement that we need to refine our clas-
sification. As we saw in our taxonomy of movement, this comes down
to five cases (the figure helps in identifying these):

A complement of a subject raises to adjoin at IP.

A complement of VP raises to adjoin at VP.

A complement of a verbal complement raises to adjoin at VP.
An adjunct of a subject raises to adjoin at IP.

An adjunct of a verbal complement raises to adjoin at IP.

There 1s some controversy about the particular site of adjunction in
some of these cases, but, as this movement cannot cross CP, the possible
number of such sites is bounded, and our approach can be extended to
account for any bounded set of sites.

We assume that the number of complements of any phrase is bounded.
Thus there is a finite bound on the number of base positions that can
participate in the first three cases of rightward movement. We assume
further that categories in these positions are distinguished by some new
set of features (Comp-1-of-Subject, for instance). Chains formed by
these classes of movement, then, will be distinct.

The last two cases present more of a problem. While the base posi-
tions involved are all adjoined either to [Spec,IP] or [Comp,VP], either at
the XP or X level, there is no bound on the number of categories that can
be adjoined in this way. As we saw, though, in the discussion about our
treatment of head movement as adjunction (Section 10.3), there is little
structural distinction between the nodes adjoined to the same side of the
same category. While there may be linguistic reasons for preferring one
adjunction structure over another, as long as the theory is based only
on structural relationships there will be little to distinguish alternative
structures within it. Consider the two structures in Figure 16. With the
exception of the inclusion/exclusion relationships between the adjuncts
themselves, the structural relationships determined by c-command and
domination in the two alternatives are the same. Further, for the most
part these adjuncts can be freely permuted. Thus, there is little to prefer
one order at D-structure over another (unless one is going to propose

10Tn these examples (31b and 32b) each wh-adverbial is taken to be modifying that
clause the [Spec,CP] of which it fills.
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FIGURE 16 Alternate Adjunction Structures

that the adjuncts move among themselves between D-structure and S-
structure). We will assume, then, that:

e All right adjunctions to a category are higher than any left ad-
junction to the same category.

e All adjoined categories that raise from a given position are adjoined
at D-structure in the second configuration of Figure 16.

e These all raise simultaneously, in a single movement of the most
inclusive category.

This can be refined to allow for movement to multiple target sites from
a given D-structure adjunction site. The point is that under these as-
sumptions there are boundedly many pairs of base and target positions,
and thus, boundedly many chains suffice. Again, we assume these are
distinguished by a finite set of new features.

Note that we end up accepting trees in which the adjunction structure
differs superficially from the analysis one is likely to assume, but that
are essentially identical structurally to whatever particular analysis that
may be. Of course, these structures are all acceptable under X-bar
theory, and so we do not need to do anything to explicitly license or
require them. The thrust of our treatment is that among the trees we
already license, and those that are licensed by standard GB accounts,
there 1s an analysis in which we can account for rightward movement
of unboundedly many adjuncts with a bounded number of chains. Our
treatment will accept these, and reject others.

13.8 An Example

Figure 17 is the example of Figure 13 with the base, trace, and target
categories labeled as we have described. There are two chains: an A-
referential chain (the NP chain) and an X°-chain (the I°-chain). The A-
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referential chain is a wh-chain. Note that, while its target is pronominal
([~anaphor,+pronominal]) and this determines the value of the corre-
sponding T-features for the chain, the traces do not inherit these features
and are [—anaphor,—pronominal] as required by the A-Ref-Link relation.

13.9 Discussion

We have sketched, in this chapter, the formalization in L% , of a rea-
sonably complete account of simple movement in English.y Since the
theory we capture is not parameterized for English but the formaliza-
tion must necessarily fail for non-context-free natural languages, the
question arises of what specializes it to English-like languages. This can
be traced to the maximality condition we include in the definition of
chains. This condition makes it impossible to identify any of the chains
in a configuration in which multiple chains overlap that are not distin-
guished by class of movement or the features of the target. Thus, the
formalization works only if such configurations do not occur. In essence,
we must posit a principle ruling out overlapping chains of this sort in
order to establish correctness of the formalization. While we argue that
such a principle holds for the fragment of English we discuss, we do not
presume that it will hold for the class of all natural languages. In fact,
we will return to this issue in Chapter 15, where it will become the ba-
sis for distinguishing the class of languages for which our formalization
succeeds, and which are therefore strongly context-free, from those for
which 1t fails, which are possibly non-context-free.

The fact that this fragment of English can be captured in L% p is
a consequence, to a large extent, of the fact that the account we ycap—
ture, Rizzi’s Relativized Minimality, is expressed largely in terms of link
relations—based on antecedent-government—which have bounded do-
mains. Again, it seems significant that Rizzi has been led by purely
linguistic considerations to an account of movement that is nearly ex-
actly tailored for formalization in L%(,P'

Moving from the use of indices to the use of antecedent-government
to 1dentify members of chains puts a much greater burden on the defi-
nition of antecedent-government, and consequently, on the definition of
the link relation. Of course, Rizzi argues that the more complicated no-
tion of antecedent-government is necessary to account for the fact that
the different types of antecedent-government do not interact for the pur-
poses of minimality. At the same time, this increase in the complexity of
antecedent-government is accompanied by a simplification of the ECP.
For Rizzi, the traditional formulation of ECP evolves into a general re-
quirement that every operator be identified with its variable. We push
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this slightly further; and capture each of Rizzi’s cases of identification
as link relations. Consequently, for us the traditional formulation of
ECP becomes a simple requirement that every category is a member of
a (possibly trivial) well-formed chain. In this way, limiting ourselves
to a radically impoverished mechanism (CFGs) yields what is in some
respects a radically simplified account of a complex array of syntactic
effects.

We should emphasize that the formalization we have provided so far
can not successfully account for all movement in English. In particular,
it is unable to account for structures that Rizzi analyzes under recon-
struction. The extension of the formalization to account for these cases
is the topic of the next chapter.
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Reconstruction

Our treatment of movement so far works well only as long as no chain
is disturbed by subsequent movement. Unfortunately, this is frequently
not the case; interactions between movements frequently disrupt the
government relations that license their chains. A common example is the
case of V-to-I-to-C movement (Figure 14 of the previous chapter). Here,
while has does c-command its trace, it does not X-Antecedent-Govern it.
The Bar0 level trace t; intervenes. This is the worst case of interacting
head movement in English and we could make specific exceptions for it,
but the same process can occur more generally in other languages. It
makes sense to seek a more general solution.
Another case is demonstrated by the sentence

(1)  How likely is Alice to win?

We assume the D-structure:!

(2)  [cp [ip e is [ap [ap how] likely [1p Alice to win]]]]
This transforms by a sequence of four movements:
Alice raises to [Spec,IP] (of the upper IP).

The subordinate IP raises to adjoin at IP.

e AP raises to [Spec,CP].

o 17 raises to adjoin at CP.

The D- and S-structures for this are shown in Figure 18. We are in-
terested in the licensing and identification of the traces, that is, in their
proper-head-governors and antecedent-governors (or, rather, their an-
tecedent in the Link relation). In this structure the moved 1% antecedent-
governs its trace, all that is required by the theory. Similarly, the trace
of 1Y proper-head-governs the trace of AP, and that trace is antecedent-

1This is just one possible analysis. What is important, here, are the interactions of
the movements. The details of the analysis are irrelevant.

157



DRAFT: September 12, 1995

158 / A DESCRIPTIVE APPROACH TO LANGUAGE-THEORETIC COMPLEXITY

Spec C
/\
C 1P
‘ /\
0 NP I
/\
I AP
T
18 AP A
T
how A 1P
T
likely NP I
/\
Alice I VP
CP to win
/\
AP C
/\_ /\
AP A C 1P
VA NN T
how A t 1 C P
N AN AR
likely 18 1] NP 1 t 1
A N S
Alice t t VP
ey (AP) ‘ ‘
to win

FIGURE 18 Movement of the Base Position



DRAFT: September 12, 1995

RECONSTRUCTION / 159

governed by the target position. Also, likely proper-head-governs the
trace of IP. But that is as far as we get. The moved IP does not even
c-command its trace, let alone antecedent-govern it. The same is true
of Alice. Further, there is no proper-head-governor of the trace of Alice.

These are the kinds of difficulties for representational interpretations
of movement that are typically handled by reconstruction. Relationships
that hold at D-structure but which may be disturbed at S-structure are
allowed to hold under reconstruction—in a D-structure that has been
reconstructed from the S-structure. This is Rizzi’s approach as well.?
The actual mechanism involved is not often specified, although it is often
discussed as if it were a derivational mechanism actually extracting the
D-structure embedded in the S-structure.

It is tempting to treat this representationally by interpreting chains,
for government relations at least, as single categories. Then the chain
governs everything any member of the chain governs. This may well be
too strong, and it may be necessary to treat only the Target and Base
positions this way. (This is essentially Fong’s approach (Fong 1991);
the Target position participates in S-structure relations, the Base in D-
structure relations.) Unfortunately, this doesn’t work for us. We need
to identify chains in order to pick out Target/Base pairs, but we need
the government relations to identify the chains. Thus, the definition
would be circular (or, more precisely, not explicit). The approach is
theoretically inviting, though, and can likely be made to work in L% p
extended with inductive definitions. In order to stay within the povvér
of L%(,Pa we will adopt a more direct, if much less elegant, solution,
although one that is still purely declarative, and thus, in keeping with
the spirit of representational interpretation.

We distinguish three cases: those in which the Target position is
moved, those in which the Base 1s moved, and those that move an in-
termediate trace. The moved Target case is the simplest, and, while we
could handle it with a mechanism like the one we propose for the other
cases, it 1s possible to treat it more cleanly. Thus, we will deal with this
case separately first. We treat the case of moved Bases next, and then

2Although he places great importance on a requirement that proper-head-
government cannot apply under reconstruction, arguing from evidence in Italian and
German. He does not, on the other hand, consider (or license) right movement in
English. It is hard to see how the D-structure given for the example can derive the
S-structure without either violating the Licensing clause or allowing proper-head-
government to apply under reconstruction. We will define the mechanism to handle
it. Our definition can easily be restricted to appropriate cases, whatever they may

be.
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turn to movement of intermediate traces. As we will see, this last case
essentially falls under the category of moved Bases.

In all of these situations, what has been disturbed is the locality of the
government relation. Our idea is that the notion of locality for each of
the government relations will need to be modified to account for the sub-
sequent movement. These modifications, on the other hand, will depend
crucially on the original notions of locality. The following predicates
extract just the locality conditions—the structural relationships—from
the definitions of government in Sections 10.7 and 13.3. These will be
used both in defining the mechanisms that account for reconstruction
and in redefining the government relations based on those mechanisms.

Head-Local(z,y) = —(3z)[InterveningBarrier(z, z, y)] A (1)
—(3z)[Bar0(z) A Base(z) A Intervenes(z, z, y)]

A-Antecedent-Local(z, y) = (2)
—(32)[Intervening-Barrier(z, z, y)] A
—(32)[Spec(z) A A-pos(z) A C-Commands(z, z) A

Intervenes(z, z, y)]

A-Antecedent-Local(z,y) = (3)
—(3z)[Intervening-Barrier(z, z, y)] A
—(32)[Spec(z) A ~A-pos(z) A C-Commands(z, z) A

Intervenes(z, z, y)]

Right-Local(z, y) = (4)
=(3z, z')[Intervening-Barrier(z, z, z') A

Intervening-Barrier(z’, z, y)]

X"-Antecedent-Local(z, y) = (5)
—(3z)[Intervening-Barrier(z, z, y)] A
—(32)[Bar0(z) A C-Commands(z, y) A Intervenes(z, z, y)]

We also will assume that antecedents c-command their traces asym-
metrically (A-C-Command). This is useful, particularly in the analysis
of the next section, as it is a transitive relationship.
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14.1 Moved Targets

Suppose some category X; (of unspecified Bar level) has moved from a
position now occupied by t;. Then X; a-c-commands t; and it is either
substituted at a Spec or Comp position of some YP, or adjoined at
YP or Y°3 (See Figure 19.) Suppose, further, that some subsequent
movement moves X;. In the first three cases the moved category is either
X; 1itself, in which case this is a simple case of cyclic movement, or it
includes YP (or Y), and thus, t; as well.

The only interesting case, then, is the fourth case which occurs when
a head with an adjoined head is moved, as in V-to-I-to-C movement in
English. Note that any movement that moves X; without moving Y°
only forms a new link in the X; chain. Such movement can be analyzed
without reconstruction as simple cyclic movement. Let us suppose, then,
that no movement disturbs the relationship between X; and Y°. Suppose
Y? is moved. (The general case, in which any head of a deeper adjunction
structure moves, follows by induction.) The result of this movement
is shown in Figure 20. Since every head in the adjunction structure
includes X; and no head in that structure dominates it, every category a-

3We continue to assume that all head movement is by adjunction.
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c-commanded by any head in the structure is a-c-commanded by all such
heads. In particular, since Y° must a-c-command t;, then X; must also
a-c-command t;. Further, t; must a-c-command t; (since X; did when it
was attached there). Tt follows, by the transitivity of a-c-command that
X; still a-c-commands t;. Thus, movement of the target never disturbs
the a-c-command relation of target and trace.

It follows that X; is local to t; (that is, it is local when Y0 is moved
back to the position of t; under reconstruction) iff t; is local to t;.
Thus, we never need to follow more than one link of the subsequent
movements—that of the immediately including head. We can modify
our definition of X% antecedent-government, then, to pick out a head =
that is either X%-antecedent-local to y itself or is adjoined to a head the
base position of which is X%-antecedent-local to y.

X"-Antecedent-Governs(z, y) = (6)
Bar0(z) A A-C-Commands(z, y) A T.Eq(z, y) A
—Base(z) A Trace(y) A
(F)[ (z =2V
(3] Adj(x) A 2" <z A Target(z") A Bar0(z')A
A-C-Commands(z’, z) A Base(z) AT.Eq(z/, z)]
) A X% Antecedent-Local(z,y) ]

This depends on being able to pick out the appropriate Target/Base
pair for the head including X; on the basis of the T-features. For English,
this is guaranteed. All we ever see is a VP-chain and an 1°chain. For
other languages this is not a valid assumption.

14.2 Moved Base Positions

For moved base positions there is no such simple analysis of the problem.
We need a general solution, one that allows the propagation of each of
the remaining government relations through arbitrarily many chains.
Our approach here is quite artificial. It involves annotating traces in
base position with an indication of those traces that can be reached
from the target position of its chain (reached in the sense that it is
dominated by the target position and local to it). Of course, as long as
the locality conditions are met, this will be transitive. The traces that
can be reached from the target will include both the traces the target
actually dominates and those that can be reached from the targets of
those traces.
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14.3 Phantoms

Our annotation takes the form of Phantom traces. These are nodes
outside the X-Bar scheme that are marked as phantoms and occur as
children of traces. (Our definition of the X-Bar scheme must be modified
to license these.) These are identical in their T-features to the traces
they reference. A given trace dominates a phantom for every trace (both
ordinary and phantom) that is local to its antecedent. Since there are five
notions of locality we need to deal with here (counting both referential
and non-referential A-movement, but not counting X’-movement) we
will have five varieties of phantoms. We license these in two steps, first
defining where they must occur and then requiring them to occur only
there.

H-Phantom (7)
(Vo, 2’y )(3y)[ (Trace(x) A Link(z’, z) Az’ <t y/A
(Target(z’) A Head-Local(z', ¥ )A
(Trace(y') V H-Phantom(y') ) Vv
Trace(z')) A H-Phantom(y') ) —
z <y A H-Phantom(y) A T.Eq(y',y) ]

This says that whenever z is a trace with antecedent z’ (as identified by
Link) and either:

e z' is Target and is Head-Local to a trace y' or
e ¢/ is Target and is Head-Local to an H-Phantom y’ or

e z’ is a trace and dominates an H-Phantom 7/,

then there is an H-Phantom y under z that takes its T-features from y’.

The remaining four cases differ only in the variety of the phantom
and notion of locality.

A-Phantom (8)
(Va, ',y )(Jy)[ (Trace(x) A Link(z’,z) Az’ < y'A
(Target(z’) A A-Antecedent-Local (2', y')A
(Trace(y') V A-Phantom(y') ) Vv
Trace(z’)) A A-Phantom(y’) ) —
z <y A A-Phantom(y) A T.Eq(v',y) ]
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A-Ref-Phantom (9)
(Va, ',y )(Jy)[ (Trace(x) A Link(z’,z) Az’ < y'A
(Target(z') A A-Antecedent-Local(z', y')A
(Trace(y') V A-Ref-Phantom(y') ) V
Trace(z')) A A-Ref-Phantom(y’) ) —
z 4y A A-Ref-Phantom(y) A T.Eq(y',y) ]

A-Ref-Phantom (10)
(Va, ', y)(Jy)[ (Trace(x) A Link(z', ) Az’ < y'A
(Trace(y’) V A-Ref-Phantom(y')) ) —
z 4y A A-Ref-Phantom(y) A T.Eq(y', y) ]

R-Phantom (11)
(Ve o', /)(3u)]
(Trace(z) A Link(2’, ) A 2’ < y/A
(Target(z’) A Right-Antecedent-Local(’, y')A
(Trace(y') V R-Phantom(y') ) Vv
Trace(z’)) A R-Phantom(y’) ) —
z <y A R-Phantom(y) A T.Eq(y,y) ]

The opposite direction is similar:

(Vy)[H-Phantom(y) —
=(32)[y < Z]A
—(Base(y) V Bar0(y) V Barl(y) V Bar2(y) V Lexical(y)) A
Bz, ',y
zayAT.Eq(y, y)A
Trace(x) A Link(z’, z) Az’ < ¢/ A
(Target(z') A Head-Local(x', ') V Trace(z’))A
(Trace(y') Vv H-Phantom(y')) ] ]
(12)
This says that every H-Phantom y is structurally empty (dominates only
itself), is not in Base position and is outside the Lexicon and Bar levels,
and is the child of a trace x with an antecedent z’ that either is a target
that is head-local to a trace or H-phantom 3’ or is a trace dominating
an H-Phantom 3, and that y and y’ agree on their T-features.
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Again, the remaining cases vary only in the variety of phantom and
notion of locality.

(Vy)[A-Phantom(y) —
—(32)[y < Z]A
—(Base(y) V Bar0(y) V Barl(y) V Bar2(y) V Lexical(y)) A
Ge, o', 9|
<1y AT.Eq(y', y)A
Trace(x) A Link(z’, z) A 2’ <T ¢ A
(Target(z’) A A-Antecedent-Local(z’, y') V Trace(z'))A
(Trace(y') V A-Phantom(y')) ] ]
(13)

Ref-Phantom(y) —

32)[y < 2]A

Bas ( )V BarO(y) V Barl(y) V Bar2(y) V Lexical(y)) A
v )

a1y AT.Eq(y', y)A

Trace(x) A Link(z’, z) A 2’ <T ¢ A
(Target(z') A A-Antecedent-Local(z’, y') V Trace(z'))A
(Trace(y') V A-Ref-Phantom(y')) ] ]

(Vy)[A-

=
=
(3

(14)

(Vy)[A-Ref-Phantom(y) —
=(32)[y < Z]A
—(Base(y) V Bar0(y) V Barl(y) V Bar2(y) V Lexical(y)) A
e,y
<1y AT.Eq(y', y)A
Trace(x) A Link(z’, z) Az’ < ¢/ A
(Trace(y') V A-Ref-Phantom(y')) | ]

(Vy)[R-Phantom(y) —
—(32)[y < Z]A
—(Base(y) V Bar0O(y) V Barl(y) V Bar2(y) V Lexical(y)) A
Be, o', 9|
<1y AT.Eq(y', y)A
Trace(x) A Link(z’, z) A 2’ < y/A
(Target(z’) A Right-Antecedent-Local(z’,y') V Trace(z'))A
(Trace(y') V R-Phantom(y’)) ] ]
(16)
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These phantoms provide the means for extending the definitions of
antecedent-government. Government holds between z and y if either y
or a phantom of y are appropriately local to x.

Head-Governs(z, y) = (17)
(3y)[(y = y' v H-Phantom(y') A T.Eq(y, y')) A
Bar0(z) A M-Command(z, y') A
(Lexical(x) vV T(x) V +agr(z) A Agreement(z, y)) A
Head-Local(z, y')]

A-Antecedent-Governs(x, y) = (18)
(3Y)[(y = ¥ V A-Phantom(y') A T.Eq(y, v')) A
A-pos(z) A C-Commands(z,y’) A T.Eq(z,y') A
A-Antecedent-Local(z, y')]

A-Antecedent-Governs(z, y) = (19)
(3Y)[(y = ¥ V A-Ref-Phantom(y’) A T.Eq(y, ¥')) A
—=A-pos(z) A C-Commands(z,y') A T.Eq(z,y') A
A-Antecedent-Local (2, )]

Right- Antecedent-Governs(z,y) = (20)
(3y)[(y = ' v R-Phantom(y’) A T.Eq(y, y')) A
Adj(z) A C-Commands(z,y’) A T.Eq(z,y') A
Right-Antecedent-Local(z, y')]

This definition of phantoms is in terms of the Link relation, which,
in turn, depends on the definition of antecedent-government. This, of
course depends on the the distribution of phantoms. So this, then,
is an 1mplicit definition, which we can interpret inductively—as more
phantoms are licensed, more links will be defined, which in turn licenses
more phantoms. Note that the non-monadic predicates involved are
still explicitly defined. They resolve to formulae in which Phantom(x)
occurs, but in which none of the non-monadic predicates occur. We
must establish, then, that it is in fact a well-defined implicit definition
of Phantom.

Note that every movement creates one link. Invariably, then, there
is at least one link that is undisturbed. This gives the base case for
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FIGURE 21 Movement with Phantoms

an induction on the number of movements that have affected a chain.
For the induction step, note that if all phantoms due to the movements
that affect a chain have been properly located, then the link relations
for that chain can be determined using at most those phantoms. That
the induction terminates follows from the fact that each step correctly
sets the phantoms for one movement. No derivable structure involves
more than finitely many movements.

As an example of how this works, consider the example shown again
in Figure 21, this time decorated with the relevant phantoms. Here the
link between the AP and its trace is undisturbed. Since the target of
this movement is local to the trace of the IP for both A-antecedent-
government, and Right-antecedent-government, there must be one of
each of these types of phantoms, each referencing the trace of the IP,
attached to the trace of the AP. (For clarity we represent both of these
with a single phantom in the figure.) We then have the link between
the moved IP and its trace established via this phantom. Since the NP
trace is local to the antecedent of this link for both head-government
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and A-antecedent-government, there must be one of each of these types
of phantom, each referencing the trace of the NP, attached to the trace
of the TP. Since this is A-antecedent-local to the antecedent of the AP
movement, this immediately implies that there 1s such an A-Phantom
attached to the trace of the AP, as well. Note that the AP is not head-
local to the H-Phantom at the NP trace, and this phantom does not
propagate to the AP trace.

These phantoms are sufficient to resolve the government relations in
the figure. The trace of Alice is now proper-head-governed by virtue
of the fact that likely head-governs its phantom under the IP trace.
Right-antecedent-government of the IP trace, is established by the IP
phantom under the AP trace. And finally, A-antecedent-government of
the trace of Alice is established via the NP phantom under the AP trace.
Note that this last government relation holds through the mediation of
two chains—the AP chain and the IP chain—but requires reference to
only one phantom. Propagation through any finite number of chains
is handled by the definition of Phantom, which can be implicit, rather
than the definition of government, which must be explicit.

As with X"-antecedent-government, this mechanism depends on be-
ing able to distinguish pairs related by Link on the basis of their T-
features. Unlike that case, unfortunately, there is no simple way of
establishing that this in fact can be done. In particular, it is possible,
in principle, to move a head out of the local domain of its movement.
Thus, we cannot guarantee that chains in otherwise properly formed
structures will not interfere. Cases of movement that actually occur in
English seem not to suffer from this, but we are not aware of any research
that addresses the question of whether they are possible. In the absence
of results ruling out such structures, then, we can claim coverage only of
those structures in which nested movement does not lead to conflation
of chains. Since structures in which such conflation does occur are likely
to be at best marginal, this still seems to be an adequate fragment of

English.

14.4 Moved Intermediate Traces

We need only account, now, for movement of traces that are neither
Target nor Base. This case, for movement of maximal projections, is
shown schematically in Figure 22. Note that since the trace itself is
invisible to movement, anything that moves it must move YP, and thus,
move the Base position as well. This situation, then, is subsumed under
the moved Base case.

Moved intermediate traces simply do not occur for head movement,
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FIGURE 22 Movement of Intermediate XP-Traces
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FIGURE 23 Movement of Intermediate X°-Traces
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at least not in English. Nonetheless, Figure 23 shows the appropriate
configuration, if such movement could occur. Note that the requirement
that all head movement be head-local implies that Y° (and thus, X°)
is the closest head c-commanding Z°, and that movement of Z° must
adjoin at one of these two. In both these cases, resolution of the govern-
ment relation between X" and the intermediate trace cannot be resolved
via the category immediately including X°. Thus, the X°-antecedent-
government mechanism, as we give it, will not cover these cases. It is
simple, on the other hand, to extend the phantom mechanism to include
X% phantoms as well. Then, as with the case of moved intermediate XP-
traces, the moved Base mechanism will resolve the moved intermediate
trace case as well.
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Limitations of the Interpretation

In this chapter we look at two classes of structures that our mecha-
nism cannot accommodate—the analysis of cross-serial dependencies in
Dutch due to Bresnan, et al. (1982), and certain long-distance extrac-
tion phenomena in Swedish (Miller 1991). The fact that the mechanism
breaks down in essentially the same way for both of these classes of
structures suggests that the property responsible for the failure may be
characteristic of non-context-free natural languages.

15.1 Cross-Serial Dependencies in Dutch

The first class of structures we examine are those of the analysis of
cross-serial dependencies in Dutch that Bresnan, et al., have argued are
strongly non-context-free (recast in the current theory). The inability of
our interpretation to license these structures is due to a failure of head
movement in them to be adequately bounded.

The class of sentences of interest are typified by the (slightly modi-
fied) example from Bresnan et al. 1982:

(1) dat Jan Piet Marie de kinderen zag helpen helpen
that Jan Piet Marie the children saw-past help-inf help-inf
zZwemimen
swim-inf

that Jan saw Piet help Marie help the children swim

A possible D-structure for this is given in Figure 24. This is transformed
through a sequence of head movements: a verb adjoins to its INFL which
then adjoins to the next higher verb. The result is the S-structure of
Figure 25. This is something like an extension of the V-to-I-to-C move-
ment in English to arbitrarily deep structures. Our analysis of moved
targets still holds. Each of the targets in Figure 25 a-c-commands its
trace, and the trace of the category immediately enclosing the target is
still X% antecedent-local to its trace. The problem is that the domain

173
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FIGURE 24 Cross-Serial Dependencies—D-Structure
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of these movements is no longer bounded and so we can no longer guar-
antee that the chains can be uniquely identified by their T-features. In
fact we can not license either of the helpen chains, since the T-features
of both instances of helpen agree, as do the T-features of their INFLs.
Thus, the target of either one X'-antecedent-governs the base of the
other and there is no set that is both linearly ordered and maximal in
the way we require chains to be.

15.2 Long-Distance Extraction in Swedish

The second class of structures is less clear cut. These are the long-
distance extraction phenomena in Scandinavian languages that Miller
argues are non-context-free in Miller 1991.1

His example is the sentence (shown in Figure 26):

(2) Har &ar pojken; som jag undrar [svilken flicka] Kalle
This is [i1the boy] that T  wonder [swhich girl] Kalle
undrar  [svilka barn] han; trodde att hons
wonders [swhich children] he;  thinks that shes
hadde rekommenderat ts til studenterna.
had recommended ts to the students.

Strictly speaking, this is an agreement issue rather than a movement
issue. There is only one actual movement—the A-referential-chain of
vilka barn—and this is non-problematic. The other co-indexations in-
volve resumptive pronouns. These, in fact, are required for Miller’s weak
generative capacity argument, since the verb inflections are insufficiently
distinet.? Some kind of identification mechanism is necessary, though,
to mediate the agreement between the pronoun and its referent.

The section of the structure that may be iterated is the CP

[cp [np vilk— NP] NP undrar CP]

and the agreement of interest is that between the wh-NP in [Spec,CP]
and its corresponding pronoun. While these are certainly referen-
tial in the intuitive sense of Rizzi’s distinction, the pronoun is not
in a referential position, as it is a subject, and thus, not directly
Theta-marked. But we cannot interpret these as something like A-
Ref-antecedent-government, because the link crosses an intervening A-
specifier position.? We might extend the use of referential indices to

1In fact, he argues that these structures are not only non-context-free, but are
outside the generative power of indexed languages as well.

2In the case of pojken (the boy) it would seem that there can be no movement
anyway, as 1t would be from subject (ke thinks...) to object (...is the boy) and
resulting chain would have multiple Theta-roles.

3A corresponding sentence in English might be
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accommodate binding resumptive pronouns in a situation like this, but,
again, our mechanism fails, in this case because our assumption that ref-
erential links never overlap fails. It would appear, then, that there may
be no way to handle these structures without being able to distinguish
arbitrarily many overlapping chains.

15.3 A Class of “English-like” Languages

In both of these constructions the difficulty for our formalization is the
need to distinguish an unbounded number of chains. It is our ability to
classify chains in English into a bounded set of types in such a way that
no two chains of the same type overlap that is critical to the success of
the approach. In fact, our formalization can be adapted to the theory of
any language that is consistent with standard GB accounts and in which
there is an account of movement that respects such a bound.* We can
state this as a principle:

The number of chains which overlap at any single position in the tree
is bounded by a constant.

Arguments for the existence of such bounds have appeared in the lin-
guistics literature. As we noted earlier, Manzini’s Locality Theory (1992)
implies that there are never more than two A-chains overlapping at any
point. Stabler (1994) makes the stronger claim that such bounds exist
for all linguistically relevant relationships in all natural languages.

Leaving aside the possibility that it may be possible to account for
cross-serial dependencies and long-distance extractions in other ways,
it is suggestive that both of these canonical examples of non-context-
free constructions in natural language fail to satisfy this principle while,
conversely, those languages that do can evidently be formalized, using
our approach, in L% p and are consequently strongly context-free. It
would seem, then, at least if we restrict attention to languages with
potentially finite lexicons (and thus exclude the non-context-free account
of Bambara), that within the realm of GB the principle seems to separate
the context-free languages from the non-context-free.

*[Which boy]; did you wonder [which girl]; wondered t; thought t; recom-
mended the book.
which fails, at least in part, for this reason.
4This also provides a perspective on what it means for a relationship to be local. By
definition, every relationship we can capture within L%&',P is local in the sense that

it can be enforced by CFGs. A typical interpretation of the notion of local relations
is that they involve a bounded domain. But we can capture relations between ele-
ments that are unboundedly far apart. What we cannot capture are relationships in
which there are unboundedly many overlapping domains. This observation is implicit
in Joshi and Levy 1982.
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Conclusion of Part 11

We have explored, in this part of the book, the twin i1ssues of definability
and non-definability in L% , of the principles of Government and Bind-
ing Theory. When coupledywith our result from the first half of the book
characterizing the Local sets by definability in L%(,Pa these explorations
relate directly to the question of which sets of these principles can be
enforced by Context-Free Grammars.! Thus, we get generative capacity
results for formalizations of languages within the GB framework.

We have two main results. The first states that free-indexation, as
it is generally interpreted in GB, is not definable in L% 5. In this inter-
pretation indices are assumed to be assigned randomly, with inappropri-
ately indexed structures being filtered out by some set of constraints on
the relationships between co-indexed elements. The immediate implica-
tion of the non-definability in L%(,P of this form of indexation is that
it is capable of expressing conditions on the phrase markers that can-
not be enforced by CFGs. Our result, though, is considerably stronger
than this. We have shown that this approach to indexation is capa-
ble of defining sets of trees for which emptiness is undecidable, even
when the constraints on the indexing are severely restricted—limited to
agreement conditions and constraints stated in terms of pairs of nodes
related by one or two levels of immediate domination. This suggests
that, while free-indexation is a conceptually simple means of express-
ing certain structural principles, it 1s perhaps too powerful for formal
theories of language, at least if one hopes to be able to establish the
consistency of those theories. This is not an unprecedented idea. We
cite Chomsky (1993) questioning the appropriateness of indices as fun-

1While this is the typical characterization of the local sets, it should not be taken too
literally, especially when considering the consequences for the nature of the human
language faculty. As we noted in Chapter 1, in that context the key characteristic of
the local sets, perhaps, is that they are accepted by mechanisms that are equivalent
to finite-state tree automata.
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damental entities in linguistic theories, and suggesting that it should
be possible to dispense with them in favor of direct expressions of the
structural relationships they capture.

The second of our central results states that a specific set of prin-
ciples commonly employed in GB accounts of language, when extended
slightly, is definable in L%(,Pa and that this set of principles embodies a
substantially complete GB account of common English syntax. Again,
the superficial consequence of this result is a claim that English is a
context-free language. It seems more significant, though, that the ba-
sis of this claim 1s the claim that a fairly comprehensive formalization
of English within the GB framework is strongly context-free. This is
quite a strong language complexity result for a theoretical framework in
which such results are extremely difficult to come by. Thus, it serves
as an example of the power of our characterization of the Local sets in
establishing results of this type.

As we noted in our introductory comments, formalizations of linguis-
tic theories often have much to offer those theories. In developing our
formalization we have sketched a few examples of these potential uses.
Perhaps the most important benefit is the ability to verify aspects of
the theory formally. As a trivial example of how such verification can be
carried out we formally derive, within our definition of binding theory,
the fact that PRO must be ungoverned from the assumption that it is
[+anaphor,+pronominal]. This, of course, is an elementary result in GB,
and the exercise probably has as much value in verifying our formaliza-
tion as it has in verifying the result. Nonetheless, it is an indication of
the way in which such predictions can be given a rigorous foundation.

The need for such rigorous foundations is illustrated by a second
benefit formalizations such as this one can provide for linguistic theo-
ries. Frequently the process of formalization will clarify details of the
theory that are incomplete, have been overlooked, or simply cannot be
determined in a less precise context. An example is the fact that the
Barriers definition of ¢c-command allows for, but does not require, mu-
tual and reflexive c-command. While Chomsky raises the possibility of
restricting this, there is little reason in that context to choose between
the possible interpretations of the relationship. In our work here, on the
other hand, we point out that c-command is formally better behaved if
it is assumed to be asymmetric. This assumption, in fact, plays a role
in our analysis of the effects of subsequent movement on chains. As it
turns out, this observation, as with our observations about indexation,
has been anticipated in the GB literature. Kayne (1994) employs asym-
metric c-command in deriving X-Bar structure from the linear ordering
of terminal strings.
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This is a minor example of the way in which the needs of the for-
malization can illuminate issues that have linguistic significance beyond
that formalization. A wider array of such issues arise from the fact that
we cannot capture indexation directly. This has led us to explore the ex-
tent to which the principles of GB actually employ indexation necessarily.
One of the things these explorations have highlighted is a distinction be-
tween those principles of binding theory and control theory that govern
the distribution of nominals (Principle A and Obligatory Control) and
those principles that only govern their interpretation (Principles B and
C, and Optional Control). For binding theory, at least, this distinction
is discernible in the theory developed in Chomsky 1993, as well. More
significant, though, is the fact that we have shown that those princi-
ples that actually govern distribution of the nominals can be expressed
without the use of indexation, and that this can be done in a natural
way.

The problem of capturing the chains formed by movement without
using indexation is more substantial. Our approach is to look at chains
as linear sequences of link relations of a restricted sort. Here again,
our concerns are paralleled by issues raised in the GB literature, par-
ticularly in Rizzi’s Relativized Minimality (1990) and Manzini’s Locality
Theory (1992). To a large extent we owe our success in capturing chains
to Rizzi’s account, which is couched largely in terms of the antecedent-
government relation. This raises yet another way in which formalizations
can inform the linguistic theory they seek to capture. Rizzi, in develop-
ing his account of movement in Relativized Minimality is led to a refor-
mulation of the Empty Category Principle (ECP) as two principles—a
licensing principle that more or less governs the existence of traces, and
an tdentification principle that governs their distribution and interpreta-
tion. It is this second principle that accounts for most of the extraction
asymmetries that are usually attributed to ECP. In our account, we are
led by our emphasis on the link relation to take this a step further, and
for us the identification principle reduces to a simple requirement that
every category is a member of a (possibly trivial) well-formed chain.

Thus, we are led, by the purely internal requirements of our formal-
ization, to a highly simplified account of a wide range of phenomena. In
this way, the process of formalizing a theory may suggest alternatives or
extensions to the analysis the theory embodies. Another example has
to do with the principle that, in Chapter 15, we suggest separates the
context-free GB languages from the non-context-free GB languages. If
one had an analysis of all natural language structures in which one could
bound the number of overlapping chains then one could make a claim for
the context-freeness of natural language by proposing the principle as a
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component of Universal Grammar. The point, here, is not to make such
a claim, but to illustrate the way in which the formalization can identify
extensions to the theory that have well-defined formal consequences.

Finally, the prospect of being able to identify the formal consequences
of extensions to the theory raises the possibility of establishing genera-
tive capacity results for (some restriction of) GB as a whole. In a sense
this work provides something of a prototype result of this kind. The dif-
ficulty of establishing language complexity results for GB can be traced
to the fact that the only restrictions on the principles are relatively weak
notions, like learnability, coupled with subjective notions like generality,
parsimony, and elegance. If these are augmented by formal restrictions
of the sort we have developed the result will be a formalism within the
realm of GB with non-trivially restricted generative capacity. Our pro-
totype result, then, is that GB, when restricted to sets of principles that
are definable in L% ., generates only context-free languages. It is only
prototypical because we do not actually expect this restriction of GB to
be able to generate the entire class of natural languages. Nonetheless,
it seems likely that restrictions of the type we employ here, but with
somewhat greater generative capacity, could provide non-trivial bounds
on the generative capacity of GB theories without compromising their
ability to capture the entire range of natural languages.

The question remains of why there should be any correspondence
between restrictions on principles of the sort we propose for language
complexity reasons and the intuitive notions that drive the development
of GB theory. It would be hard to justify restrictions that were wholly
artificial from a linguistic point of view. It is here that we believe the
significance of the parallels between the issues we have encountered in
capturing principles in our restricted formalism and issues that have
arisen on purely linguistic grounds in the GB literature lies. If these
parallels are not purely coincidental, and we believe they are not, then
they suggest that there is a deeper connection between our language
complexity concerns and these linguistic intuitions. And so we come
full circle. If such a deeper connection exists, it is because the regulari-
ties of natural language, and thus the characteristics of the human lan-
guage faculty, can be distinguished, in part, by the structural properties
of language-theoretic complexity classes and their automata-theoretic
characterizations.
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Predicate Eq. No. Page
A-Antecedent-Governs(z, y) 1 144
A-Antecedent-Governs(z, y) 18 166
A-Antecedent-Local(z, y) 2 160
A-C-Commands(z, y) 16 98
A-Link(z, y) 7 146
A-Phantom(y) 13 165
A-pos(x) 33 104
A-Antecedent(z, y) 6 145
A-Antecedent-Governs(z, y) 2 144
A-Antecedent-Governs(z, y) 19 166
A-Antecedent-Local(z, y) 3 160
A-Ref-Link(z, y) 9 146
A-Ref-Phantom(y) 15 165
A-Ref-Link(z, y) 8 146
A-Ref-Phantom(y) 14 165
Acc(x) 9 116
Accessible-Subject (z, y) 3 123
Adj(z) 4 95
Agent(xz) 6 115
Agreement(z, y) 36 108
Bar0(x) 23 102
Barl(z) 22 102
Bar2(x) 21 102
Barrier(z) 34 107
Binding-Distinct(z, y) 8 124
Binding-Features-Agreement(z,y) 9 124
C-Commands(z, y) 14 98
Case-Marked(z) 11 116
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Predicate Eq. No. Page
Category(X) 2 94
Category(X, z) 5 95
Category(z, y 6 95
Chain(X) 13 148
Comp(z, y) 28 103
Comp(z) 29 103
Component(X) 1 94
Dominates(z, y) 9 96
Excludes(z, y) 10 96
External-Arg(z, y) 5 115
F.Eq(z,y) 3 94
GO(X, z) 6 124
GC(y, x) 7 124
ge(X, 2) 5 123
H-Phantom(y) 12 164
Head(z,y) 26 103
Head(x) 27 103
Head-Governs(z, y) 35 107
Head-Governs(z, y) 17 166
Head-Local(z, y) 1 160
HeadXP(z,y) 17 101
HeadX(z, y) 18 101
i-within-i(z, y) 4 123
Identification 17 149
Identification (Generalized) 18 150
Imm-Dominates(z, y) 13 97
Includes(z, y) 11 96
Internal-Arg-1(z, y) 4 115
Intervenes(z, z, y) 38 108
Intervening-Barrier(z, z,y) 37 108
Left-Of(z, y) 12 96
Lexicon(x) 1 112
Licensing 16 149
Link(z, y) 12 146
M-Commands(z, y) 15 98
Max-Projection(z, y) 24 103
Max-Projection(x) 25 103
MaxSeg(z) 7 95

MinSeg(z) 8 95
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Predicate Eq. No. Page
Nom(z) 10 116
Obligatory Control 11 128
Principle A 10 125
Projects(x, y) 19 101
Proper-Head-Governs(z, y) 15 149
R-Phantom(y) 16 165
Right-Antecedent-Governs(z,y) 3 144
Right-Antecedent-Governs(z,y) 20 166
Right-Link(z, y) 10 146
Right-Local(z, y) 4 160
SUBJECT(#) 2 123
subject () 1 123
Spec(z, y) 30 103
Spec(x) 31 103
T.Eq(z,y) 5 145
Theme(z) 7 115
Theta-Marked () 8 115
X"-Antecedent-Governs(z, y) 4 144
X"-Antecedent-Governs(z, y) 6 162
X"-Antecedent-Local(z, y) 5 160
X"-Link(z, y) 11 146
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