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1 Introduction

A mapping u : X — Y between metric spaces is sequentially continuous if for
each sequence (z,) converging to z € X, (u(z,)) converges to u(z). It is well
known in classical mathematics that a sequentially continuous mapping between
metric spaces is continuous; but, as all proofs of this result involve the law of
excluded middle, there appears to be a constructive distinction between sequen-
tial continuity and continuity. Although this distinction is worth exploring in
its own right, there is another reason why sequential continuity is interesting to
the constructive mathematician: Ishihara [8] has a version of Banach’s inverse
mapping theorem in functional analysis that involves the sequential continuity,
rather than continuity, of the linear mappings; if this result could be upgraded
by deleting the word “sequential”, then we could prove constructively the stan-
dard versions of the inverse mapping theorem and the closed graph theorem.

Troelstra [9] showed that in Brouwer’s intuitionistic mathematics (INT) a
sequentially continuous mapping on a separable metric space is continuous. On
the other hand, Ishihara [6], [7] proved constructively that the continuity of
sequentially continuous mappings on a separable metric space is equivalent to
a certain boundedness principle for subsets of N; in the same paper, he showed
that the latter principle holds within the recursive constructive mathematics
(RUSS) of the Markov School. Since it is not known whether that principle holds
within Bishop’s constructive mathematics (BISH), of which INT and RUSS are
models and which can be regarded as the constructive core of mathematics, the
exploration of sequential continuity within BISH holds some interest

In this paper we derive some results about sequentially continuous linear
mappings within BISH. These results tend to reinforce our hope that such map-
pings may turn out to be bounded (continuous) after all. For background ma-
terial on BISH, see [1], and for information about the relation between BISH,
INT, and RUSS, see [2].

2 Sequential continuity preserves Cauchyness

The main result of this section and of the entire paper is Theorem 1 below,
in which we show that a linear mapping is sequentially continuous if and only
if it preserves the Cauchyness of sequences.! To do this we shall need the
constructive least-upper-bound principle:

1t is trivial to show that a bounded linear mapping preserves Cauchyness.



Let S be a nonempty set of real numbers that is bounded above. Then
sup S exists if and only if for all real numbers a,b with a < b, either
b is an upper bound of S or else there exists s € S such that s > a
([1], Ch. 2, (4.3)).

LEMMA 1  Let u: X — Y be a sequentially continuous linear mapping between
normed spaces, (x,,) a Cauchy sequence in X, and let 0 < a < b. Then either
llu(zy,)|| < b for all n or else there exists n such that ||u(z,)|| > a.

PROOF. In view of the linearity of w, we may assume that b —a > 1.
Choosing a strictly increasing sequence (Ny)32; of positive integers such that

|Zm — znll < 273 for all m,n > Ny, write
s = max {||lu(z,)|| : 1 <n < Ni}.
Construct an increasing binary sequence (A;)%2; such that

M=0 = Vj<k(s; <b—27%),
=1 = F3<k (S]' >b— 272-7'+1)

We may assume that A1 = Ay = 0. Now construct a sequence (z;) in X as
follows. If A\py1 =0, or if A\j11 = A, = 1, set 2, = 0. If Ap11 =1 and A\ = 0,
then

Ju(zn )| < sk <b—27%

and szp1 > b — 272571 50 we can choose j such that Ny < j < Np,.; and
lu(z;)]| > b—272F"1; setting z; = 22*(z; — zn, ), We note that ||z|| < 27* and

lu(zi)l = 2% |lu(z;) — u(zn,)|
> 2% (flu(z)ll = llu(wm)I)
> 22k (b _ 272k71 _ (b _ 27219)) — %

This completes the construction of a sequence (z;) converging to 0 in X. So,
by the sequential continuity of u, limg_, u(2x) = 0. Now choose K such that
[lu(zg)|| < 1/2 for all k > K; then Ay # 1 — A\, for all £ > K. If Ax = 1, then
there exists n < Nk such that

lu(z,)|] > b—272""" > q.

If A\x =0, then \;, =0 for all £ > K and therefore for all &, so ||u(zy)|| < b for
all k. O

LEMMA 2 Let u: X — Y be a sequentially continuous linear mapping between
normed spaces, and (z,) a Cauchy sequence in X. Then sup,, |[u(z,)| ezists.

Proor. We first show that the sequence (||u(zy)||) is bounded. To do so,
choose R > 0 such that ||z,|| < R for all n. Taking a =1 and b = 2 in Lemma
1, we may assume that there exists ny such that ||u(z,,)|| > 1. Set Ay = 0. Using
Lemma 1 repeatedly, we now construct an increasing binary sequence (A;), and
an increasing sequence (ny)5>, of positive integers, such that

M=0 = [u(za)l >k and ng > ng o,
A =1 = (u(zy)) is a bounded sequence and ngi1 = ng.



Assume that we have found A, and ng. If Ay = 1, we set A1 = A and
Ngt1 = ng. If A\, = 0, then ||u(:1:n])|| > j for all j < k. We then apply Lemma
1 to the Cauchy sequence (z;);s>n,. Either we obtain njy1 > nj such that
|w(@n,y)|| > &+ 1, or else |lu(z;)|| < k+2 for all j > ny. In the first case
we set A\p4+1 = 0, and in the second, noting that (u(z,))22, is bounded, we set
Ak+1 = 1 and ngy1 = ng.

If \p, =0, set z;, = k 'x,,; if A\, = 1, set z;, = 0. Then |[|2|] < Rk™! for
each k, so z;, — 0 and therefore, by the sequential continuity of u, u(zg) — 0.
Choose K such that ||Ju(z;)]| < 1 for all & > K. If Ax = 0, then |lu(z)|| =
k=Y |u(zn, )|| > 1, a contradiction. Hence Ax = 1 and so (||u(z,)]||) is bounded.

It follows immediately from this, Lemma 1, and the constructive least-upper-
bound principle that sup,,~; ||u(z,)| exists. O

THEOREM 1 A linear mapping u: X — Y between normed spaces is sequen-
tially continuous if and only if it maps Cauchy sequences to Cauchy sequences.

PRrROOF. Assume first that u is sequentially continuous. Given a Cauchy se-
quence (z,) in X, choose a strictly increasing sequence (Ny)%2, of positive
integers such that ||z,, — z,|| < 27* for all m,n > Nj. For each k let

s, = sup |lu(zn) —u(zn,)l,
n> Ny

which exists in view of Lemma 2. Given £ > 0, we show that s; < ¢ for some
k. To this end, construct an increasing binary sequence () such that

=0 = s, > 6/4
=1 = s, < 6/2.

We may assume that A\; = 0. If Ay = 0, choose j > Ny such that ||u(z;) — u(zn,)|| >
£/4 and set 2z, = z; — zn,. If A\ =1, set 2;, = 0. Then ||zx]| < 27* for each k,

so 2z — 0. Since u is sequentially continuous, u(z;) — 0 and we can choose K
such that ||u(z)]| < e/4 for all k > K. If Ax = 0, then ||u(zk)|| > /4, which is
absurd; so A = 1 and therefore s; < £/2. It follows that for all j, k > Nk,

lu(z;) — ()l < llulzg) — ulen, )l + lu(zy) — ulen,)||
< 373
E.

Since ¢ is arbitrary, (u(z,)) is a Cauchy sequence in Y.

Now assume, conversely, that u maps Cauchy sequences to Cauchy sequences.
If (z,,) is a sequence converging to 0 in X, then (u(z,)) is a Cauchy sequence in
Y; so in order to prove that (u(z,)) converges to 0, it will suffice to find a sub-
sequence of it that converges to 0. Accordingly, choose a subsequence (2, )7,
of (z,) such that ||z,,|| < 1/k? for each k. Then (kz,, )%, converges to 0
in X, so (u(kz,,))?>; is a Cauchy sequence in Y. Hence there exists M > 0
such that, for each k, ||ku(z,,)|| < M and therefore ||u(z,,)|| < M/k. Thus
limy,_ oo w(zy, ) = 0 and our proof is complete. O

Theorem 1 enables us to extend a sequentially continuous linear map to the
completion of its domain.



PROPOSITION 1 Let u be a sequentially continuous linear mapping of a normed
space X into a Banach space Y. Then u extends to a sequentially continuous
linear mapping of X" into Y, where X" is the completion of X.

ProOF. Let (z,),(z)) be sequences in X that converge to the same limit
z € X", The foregoing theorem shows that

(u(fbl)a u(g;’l)’ u($2)7 U(Ié), . )

is a Cauchy sequence in Y. Since Y is complete, this Cauchy sequence converges
to a limit y € Y. Hence each of the sequences (u(z,)) and (u(z],)) converges to
y; so
# = 1li

does not depend on the sequence (z,) of elements of X converging to z. It is
straightforward to show that u! is linear and coincides with u on X. Now let
(z,) be any sequence in X" converging to 0. By the definition of u!, for each
n there exists ], € X such that ||z}, — z,|| < 1/n and ||u(z]) — u(z,)|| < 1/n.
Then lim,,_,o z;, = 0, so

.1 _ . ! _ .
0=u"(0) = nll)ngo u(z,) = nlglgo u(zy,).

Hence u! is sequentially continuous. O

3 Additional results on sequential continuity

To end the paper, we gather together some results connecting sequential conti-
nuity, boundedness, and normability for linear mappings.

PROPOSITION 1  Let u: X — Y be a sequentially continuous linear map be-
tween normed spaces, such that ker(u) is located. If zq € X and u(zo) # 0,
then p(zo,ker(u)) > 0.

Proor. Construct an increasing binary sequence (A,) such that

A =0 = p(zo,ker(u)) < 1/n?,
A =1 = p(zo,ker(u)) > 1/(n+1)%

If A\, = 0, choose y,, € ker(u) such that ||zg — y,|| < 1/n? and set z, = n(zo —
yn). If Ay = 1, set z, = 0. Then ||z,|| < 1/n for each n, so z, — 0. By the
sequential continuity of u, (u(z,)) converges to 0 and therefore there exists N
such that ||u(z,)|| <1 for alln > N. If Ay = 0, then

u(zn) = N(u(zo) —u(yn)) = N(1 -0) =N > 1,

a contradiction. Hence Ay = 1 and therefore p(zo, ker(u)) > 0. O

COROLLARY Let u: X —Y be a nonzero sequentially continuous linear map-
ping with finite-dimensional range. Then wu is compact if and only if ker(u) is
located.

PrOOF. Inspection of the proof of Theorem 1 in [3] shows that we need only
prove that if zo € X and u(zg) = 1, then p(zo,ker(u)) > 0; but this follows
immediately from Proposition 2. O



COROLLARY Let u: X — C be a nonzero sequentially continuous linear func-
tional. Then wu is normable if and only if ker(u) is located.

Proor. This is a special case of the preceding corollary. O

Finally, we have a criterion for the boundedness of a sequentially continuous
linear mapping. Note that if S is a subset of a normed space X, then

~S={zeX:|lz—s||>0forallseS}.

PROPOSITION 3 A sequentially continuous linear mapping u : X — Y between
normed spaces is bounded if and only if for each € > 0 either there exists © €
~u~"Y(B) or else ~u~1(B) is bounded away from 0, where B is the closed unit
ball of Y.

PRrROOF. Use a simple modification of the proof of Proposition 2 of [4]; we omit
the details. O

All the foregoing results reinforce the hypothesis that sequential continuity
and boundedness are equivalent properties of linear mappings within BISH.
However, we should note that there is a sheaf model in which a certain linear
mapping is sequentially continuous but not bounded (see page 293 of [5]); but
the principle of countable choice does not hold in that model, and the foregoing
proofs strongly suggest that we would have to use that principle in order to
prove, within BISH, that sequential continuity entails boundedness for a linear
map.
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