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Equivariant adaptive source separation

Jean-Francois Cardoso and Beate Laheld.

Abstract— Source separation consists in recovering a set
of independent signals when only mixtures with unknown
coefficients are observed. This paper introduces a class of
adaptive algorithms for source separation which implements
an adaptive version of equivariant estimation and is hence-
forth called EASI (Equivariant Adaptive Separation via In-
dependence). The EASI algorithms are based on the idea
of serial updating: this specific form of matrix updates sys-
tematically yields algorithms with a simple, parallelizable
structure, for both real and complex mixtures. Most im-
portantly, the performance of an EASI algorithm does not
depend on the mixing matrix. In particular, convergence
rates, stability conditions and interference rejection levels
depend only on the (normalized) distributions of the source
signals. Close form expressions of these quantities are given
via an asymptotic performance analysis. This is completed
by some numerical experiments illustrating the effectiveness
of the proposed approach.

Keywords— Source separation, blind array processing,
multichannel equalization, signal copy, adaptive signal pro-
cessing, high order statistics, equivariant estimation.

INTRODUCTION

The problem of blind separation of sources has received
some attention in the recent signal processing literature,
sometimes under different names: blind array processing,
signal copy, independent component analysis, waveform
preserving estimation. .. In all these instances, the under-
lying model is that of n statistically independent signals
whose m (possibly noisy) linear combinations are observed;
the problem consists in recovering the original signals from
their mixture.

The ‘blind’ qualification refers to the coefficients of the
mixture: no a priori information is assumed to be available
about them. This feature makes the blind approach ex-
tremely versatile because 1t does not rely on modeling the
underlying physical phenomena. In particular, it should
be contrasted with standard narrow band array processing
where a similar data model i1s considered but the mixture
coefficients are assumed to depend in a known fashion on
the location of the sources. When the propagation con-
ditions between sources and sensors, the sensor locations,
or the receivers characteristics are subject to unpredictable
variations or are too difficult to model with accuracy (think
of multipaths in urban environment), it may be safer to re-
sort to a blind procedure for recovering the source signals.

This paper addresses the issue of adaptive source sep-
aration and consider the case where any additive noise
can be neglected. The signal model then is that of a m-
dimensional time series x; in the form :

XtIASt t21,2, (1)

where x; and s; are column vectors of sizes m and n re-
spectively and A is a m x n matrix. The idea here is that
vector x; results from measurements by n sensors receiving

contributions from n sources. Hence, the components of s;
are often termed ‘source signals’. Matrix A is called the
‘mixing matrix’.

Adaptive source separation consists in updating an nxm
matrix B; such that its output y;:

v = Bixy (2)

is as close as possible to the vector s; of the source sig-
nals (see fig. 1). Consider the global system denoted Cj,
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Fig. 1. Adapting a separating matrix

obtained by chaining the mixing matrix A and the sepa-
rating matrix By, that is :

C, Y BA. (3)
Ideally, an adaptive source separator should converge to a
matrix By such that B, A = I, or, equivalently, the global
system Cy should converge to the n x n identity matrix 7.

QOutline of the paper. The main point of this paper is to
introduce and study ‘serial updating’ algorithms. Defin-
ing a serial updating algorithm consists in specifying an
n x n matrix-valued function y — H(y) which is used for
updating B; according to

Bt+1 = Bt — AtH(yt)Bt (4)

where, as above, y; 1s the output of B; and A; is sequence
of positive adaptation steps.

After some background on the source separation problem
in section I, the serial updating scheme is investigated in
section II: it is shown to yield adaptive algorithms whose
performance is tndependent of the mizing matriz A. When
the algorithm is intended to optimize an objective function
¢(B), we show that the required function H(-) may be ob-
tained as the ‘relative gradient’ of the objective function.
In section III, a particular function H(-) is obtained from
a cumulant based approach to blind identification This is
then generalized in section IV, into a family of adaptive
source separation algorithms (35), called EAST for Equiv-
ariant Adaptive Separation via Independence, whose sta-
bility and asymptotic convergence are studied in section V.
Section VI extends all the results to the complex case. This
is completed in section VII by some numerical experiments
illustrating the effectiveness of the approach.
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I. SOURCE SEPARATION
A. Assumptions and notations.

Some notational conventions are: scalars in lower case,
matrices in upper case, and vectors in boldface lowercase.
The ¢-th component of a vector, say x, is denoted x;. The
expectation operator is E and transposition is indicated by
supscript T. The identity matrix is denoted I; throughout,
it is the n x n identity.

The following assumptions hold throughout.
Assumption 1. Matriz A is full rank with n < m.
Assumption 2. Fach component of s; is a stationary zero-
Mean process.

Assumption 3. At ecach t, the componenis of s; are mu-
tually statistically independent.
Assumption 4. The components of s; have unit variance.

Some comments are in order. Assumption 3 is the key
ingredient for source separation. It is a strong statistical
hypothesis but a physically very plausible one since it 1is
expected to be verified whenever the source signals arise
from physically separated systems. Regarding assumption
4, we note that it is only a normalization convention since
the amplitude of each source signal can be incorporated
into A. We note that assumptions 2, 3 and 4 combine into

()

Assumption 1 is expected to hold ‘almost surely’ in any
physical situation. More important is the existence of A
itself i.e. the possibility of observing instantaneous mix-
tures.

Instantaneous mixtures occur whenever the difference of
time of arrival between two sensors can be neglected or ap-
proximated by a phase shift so that the propagation from
sources to sensors can be represented by a scalar factor :
the relation between the emitted signals and the signals re-
ceived on the sensors then amounts to a simple matrix mul-
tiplication as in (1). This kind of instantaneous mixtures
is the standard model in narrow-band array processing. In
this context, one must then consider complex analytic sig-
nals and a complez mixing matrix A. For ease of exposition,
most of the results are derived in the real case; extension
to the complex case is is straightforward and described in
section VI.

Finally, for source separation to be possible, there are
conditions on the probability distribution of the source sig-
nals. Since this condition is algorithm-dependent, its for-
mulation is deferred to section V-A. Anticipating a bit, we
mention that at most one source signal may be normally
distributed.

Before starting, it is important to mention a technical
difficulty, due to the following fact: without additional in-
formation (such as spectral content, modulation scheme,
ete...), the outputs of a separating matrix cannot be or-
dered since the ordering of the source signals is itself im-
material (conventional): the individual source signals can
be estimated up to an indetermination. Also a scalar fac-
tor can be exchanged between each source signal and the
corresponding column of matrix A without modifying the

R, EE [sisf] = 1.

observations. Hence, even with the normalization conven-
tion implied by assumption 4, the sign (real case) or the
phase (complex case) of each signal remains unobservable.
This may be formalized using the following definitions: any
matrix which is the product of a permutation matrix with a
diagonal matrix with unit-norm diagonal elements is called
a quasi-tdentity matrix; any matrix B, is said to be a sepa-
rating matriz if the product B, A is a quasi-identity matrix.
The adaptive source separation problem then consists in
updating an n x m matrix B; such that it converges to
a separating matrix or, equivalently, such that the global
system Cy = By A converges to a quasi-identity matrix. The
issue of indetermination is addressed at length in [24].

B. Approaches to source separation

The seminal paper on source separation is [17]. Therein,
the separating matrix B is parameterized as B = (I4+W)™!
and the off-diagonal entries of W are updated with a rule
like w;; — w;; — Af(yi)g(y;) where f and g are odd
functions. If separation is achieved, each y; i1s propor-
tional to some s; so that by the independence assumption:
E[f(yi)9(y;)] = Ef(yi)Eg(y;) which cancels for symmetri-
cally distributed sources. Hence, any separating matrix is
an equilibrium point of the algorithm. This kind of equi-
librium condition also appears in [12]. The Jutten-Hérault
algorithm is inspired by a neuromimetic approach; this line
is further followed by Karhunen [18] and Chicocki [7].

Nonlinear distortions of the output y also appear when
the equilibrium condition stems from minimization of some
measure of independence between the components of y.
When independence is measured by the cancelation of some
4th-order cumulants of the output, cubic nonlinearities
show up, as in [11], [19].

When the sources have a known differentiable density of
probability (ddp), the maximum likelihood (ML) estimator
is easily obtained in the i.i.d. case; the (asymptotically
optimal) nonlinearities are the log derivatives of the ddp’s
[20]. See also [2] for an ML approach for with discrete
sources 1n unknown (Gaussian noise.

Our starting point for finding a H(-) function required
for serial updating is the idea of ‘orthogonal contrast func-
tions’. In the context of source separation, these were in-
troduced by Comon [9] as functions of the distribution of
y which are to be optimized under a whiteness constraint:
R, = Eyy! = I. Comon suggest minimizing the squared
cross-cumulants of the components of y. This orthogonal
contrast is also arrived at by Gaeta and Lacoume [14] as a
Gram-Charlier approximation of the likelihood. A similar
(and asymptotically equivalent) contrast which can be effi-
ciently optimized by a Jacobi-like algorithm, especially in
the complex case, is described in [6].

When the sources have kurtosis of identical signs, simpler
orthogonal contrasts may be exhibited. For instance, if all
the sources have a negative kurtosis, the minimization of

64(B) S ELY |yl (6)

subject to R, = I is achieved only when B is a separating
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matrix. This is a strongly reminiscent of 4th-order objec-
tives used in blind equalization [23]. This contrast lends
itself more easily to adaptive minimization since it is the
expectation of a function of the output vector y. It is used
in [11] where it is optimized by a deflation technique. The
resulting adaptive algorithm can be proved to be asymptot-
ically free of spurious attractors, but the implementation
is not simple.

Before closing this section, other batch estimation tech-
niques may be mentionned: higher-order cumulants are
used together with a prewhitening strategy in Tong and
al. [24], [25]; fourth-order-only is investigated in [5], [4];
purely second-order is possible if the sources have different
spectra as investigated in [13], [21], [1], [24] and also in [15]
in an adaptive implementation.

C. Equivariant source separation.

Our approach to adaptive source separation may be mo-
tivated by first considering batch estimation. Consider the
problem of estimating matrix A form T samples Xp =
[x(1),...,x(T)] where we assume for simplicity that n = m
(as many sources as ‘sensors’). A blind estimator of A is,
by definition, a function of X7 only. This may be denoted

by:
A= A(Xp). (7)

A particular estimator is said to be equivariant if it satisfies

(8)

for any invertible n x n matrix M. Equivariant estimation
is in fact a broader notion which is relevant whenever the
parameters to be estimated form a group. This is indeed
the case here with the multiplicative group of invertible
matrices.

The equivariance property is quite natural in the context
of source separation. For instance, M-estimators [16] which

AMX7) = MA(Xr)

compute A as the solution of an estimation equation in the

form
771N H(AT'x(1)) =0 9)

are easily seen to be equivariant. The ML estimator in the
ii.d. case is an instance of M-estimator. In equation (9),
the vector-to-matrix function H is as in (4): the serial al-
gorithm (4) is a stochastic solver of equation EH(y) = 0,
while the M-estimator defined by eq. (9) solves the sample
version of EH (y) = 0.

The point to be made here is that, in the context of
source separation, equivariant estimators exhibit uniform
performance. This is to be understood in the following
sense. Assume that the source signals are estimated as
S(t) = (A)~!x(t) where A is obtained from an equivariant
estimator. Then

§0) = ACKDI™x0) = LA () = (S0
10
The last equality is obtained thanks to the equivariance
property (8) and reveals that the source signals estimated
by an equivariant equivariant estimator A for a particular

realization Sy = [s(1),...,s(T)] depend only on Sy but
do not depend on the mizing matriz A. It follows that, in
terms of signal separation, the performance of an equivari-
ant algorithm does not depend at all on the mixing matrix.

That the performance of a batch algorithm may not de-
pend on the ‘hardness’ of the mixture is a very desirable
property. However, adaptive source separation i1s addressed
here: mnext section actually shows how ‘uniform perfor-
mance properties’ can be inherited by an adaptive algo-
rithm from a batch estimation procedure.

II. SERIAL MATRIX UPDATING
A. Serial updates

The adaptation rule (4) is termed a ‘serial update’, be-
cause it reads equivalently B;y1 = (I — A\;Hy)B;. This
later form evidences that B; is updated by ‘plugging’ ma-
trix 1 — Ay Hy at the output of the current system B; to get
the updated system Biy; (see fig. 2). This could be op-

Biy1 I — M\¢Hy

Fig. 2. Serial update

posed to ‘parallel updating” which would consist in adding
a small matrix to By rather than multiplying it with a ma-
trix close to the identity. Of course, any serial update also
is a parallel update where By is updated by (formally) plug-
ging — Ay Hy B, between its input and output. However, not
every parallel update can be seen as a serial update be-
cause we specifically require that the variation of B; is in
the form —A;H;B; where H; depends only on the output
vector yy.

Note the following two facts. On one hand, uniform per-
formance of equivariant batch algorithms is a direct con-
sequence of (8) which is a multiplicative equation. On the
other hand, the system B; 1s serially updated by left multi-
plication by matrix I — Ay H;. Thus, the group structure un-
derlying equivariance is turned into an updating rule. We
show below that this simple fact actually leads to uniform
performance adaptive algorithms. This is then further spe-
cialized to the case of gradient descent algorithm. Again,
we take advantage of the existence of the matrix product
to define a ‘relative gradient” which 1s consistent with the
notion of serial updating. The idea is that when matrices
are to be updated, specific rules may be considered which
have no equivalent for a generic adaptive system with an
unstructured vector of parameters.

B. Serial updates and uniform performance

The benefits of serial updating are revealed by consid-
ering the global mixing-unmixing system C; = B;A. Its
evolution under the updating rule (4) is readily obtained
by right multiplication of (4) by matrix A4, yielding

Ct+1 = Ct — AtH(CtSt)Ct (11)
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where we used y = Bx = BAs = (Cs. Hence, the global
system C} also undergoes serial updating, an obvious fact
anyway in the light of figure 2. This is a trivial but re-
markable result because it means that, under serial updat-
ing, the evolution law of the global system is independent
of the mixing matrix A in the sense described below. The
reader will notice that the argument parallels the one used
in previous section regarding batch algorithms.

Assume the algorithm is initialized with some matrix B,
so that the global system has initial value C, = B, A. By
equation (11), the subsequent trajectory {Cy[t > 1} of the
global system will be identical to the trajectory that would
be observed for another mixing matrix A’, provided the
initial point is B], = B,AA'"". This is pretty obvious since
in both cases, the global system starts from the same initial
condition and evolves according to (11) which involves only
the source signals and C;. Hence, with respect to the global
system C%, changing the mixing matrix A is tantamount to
changing the initial condition By.

The key point here is that, since the issue is the separa-
tion of the source signals, the performance of a separating
algorithm is completely characterized by the global system
Cy and not by the individual values of B; and A; this is
because the amplitude of the j-th source signal in the esti-
mate of the i-th source signal at time ¢ is determined only
by the (i, j)-th entry of C;.

It follows that it is only needed to study the conver-
gence of C to a quasi-identity matrix under the stochastic
rule (11) to completely characterize a serial source separa-
tion algorithm.

In summary, serial updating is the only device needed
to transfer the uniform performance of equivariant batch
algorithms to an adaptive algorithm.

C. The relative gradient

A serial algorithm is determined by the choice of a spe-
cific function H. To obtain such a function, the notion
of ‘relative gradient’ is instrumental. In this section, we
denote < -|- > the Euclidian scalar product of matrices:

< M|N >= TracelMTN] < M|M >=||M|}},. (12)

Let ¢(B) be an objective function of the n x m matrix
B, differentiable with respect to the entries of B. The
gradient of ¢ at point B is denoted 99 . it is the n x m

3B’
matrix, depending on B, whose (i, j)th entry is ai‘z’v. The
ij

first order expansion of ¢ at B then reads

0
d(B+E)=¢(B)+ < a—gw > +o(€). (13)
In order to be consistent with the perturbation of B in-
duced by the serial serial updating rule (4), we define the
relative gradient of ¢ at B as the n x n matrix, denoted

V¢, such that:
(B + EB) = ¢(B)+ < Vo|E > +o(&). (14)

There is no profound difference with the ‘absolute gradient’
though: one easily finds that V¢ = %BT, but that the

relative gradient is the appropriate quantity is confirmed
in th following.

To illustrate the relevance of considering the relative gra-
dient, we now compute it in the case where ¢(B) is in the
form ¢(B) = Ef(y) = Ef(Bx). If function f is differen-

tiable everywhere, one has

fly +8y) = f(y) +£'(y)Toy +oly)  (15)
where /(y) is the gradient of f at y, i.e. it is the column
vector whose ¢-th component is the partial derivative of
f(y) with respect to y;. Computing the first order expan-
sion in matrix £ of ¢(B + £B) and comparing with (14)
yields, after elementary manipulations, the relative gradi-

ent:
VEf(y) = VEf(Bx) =E ['(y)y"]. (16)

Note that this relative gradient depends only on the dis-
tribution of y. This was to be expected since modifying
B in to B 4+ £B amounts to modifying y into y + £y, re-
gardless of the particular values of x or B. In view of (13),
the gradient rule for minimizing ¢(B) is to modify B into
B+ EB with £ = —AV¢ because then the variation of ¢ is
< Vo€ > +o(€) = —A||V||E,, + o(A) which is negative if
A is a small enough positive scalar as long as V¢ £ 0. A
stochastic relative gradient is obtained by deleting the ex-
pectation operator in (16), leading to the adaptation rule:

Biy1 = B, — A f'(y))y/! B (17)
for the stochastic minimization of Ef(y).

The key point here is that the adaptation rule (17) ac-
tually is serial updating algorithm in the form (4) with
H(y) = f'(y)y*. According to the discussion of the pre-
vious section, 1t will enjoy uniform performance. The con-
clusion is that stochastic relative gradient algorithm yields
adaptive algorithm in the serial form. Had we used the
absolute gradient rather than the relative one, we would
have found an updating rule not meeting the conditions
for uniform performance, namely that H should depend on
y only.

The process of obtaining function H via a relative gra-
dient computation is not limited to the optimization of ob-
jectives in the form ¢(B) = Ef(y). Recall in particular
that equation (6) defines an ‘orthogonal’ contrast function
for source separation, i.e. it is to be optimized under the
constraint that the output of B is (spatially) white. Next
section shows how the previous approach is easily adapted
to yield the required H(-) function for orthogonally con-
strained optimization.

III. SERIAL UPDATES FOR ORTHOGONAL CONTRASTS

The contrast function ¢4 defined in (6) is in the form

4 = Ef(y) but must be optimized under the decorrela-
tion constraint R, = Eyy™ = I. Batch procedures for op-
timizing contrast functions under this constraint have been
described in [6], [9], [8]; they are based on factoring the sep-
arating matrix as B = UW where W an n x m whitening
matrix and U is an n x n orthogonal matrix: there is an
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S¢ Xt Z¢ Y

Fig. 3. A two-stage separation in batch processing

intermediate vector z; = Wx; and the estimated source
signal vector is y; = Uz, (see figure 3). By definition, W
i1s a whitening matrix if its output is spatially white z.e.:

(18)

The constraint Ry = I is then satisfied if, and only if, U is
orthogonal. Thus, after whitening of x into z, the problem
of minimizing a contrast function Ef(y) = Ef(Bx) over B
under the constraint R, = I becomes that of minimizing
Ef(y) = Ef(Uz) over U under the constraint that U is
orthogonal.

We now show how this program is completed in the adap-
tive context with serial updates: serial updates of a whiten-
ing matrix W and of an orthogonal matrix U are first ob-
tained and then combined into a unique serial updating
rule for B.

I=R. YE[22] = WR,W".

A. Serial update of a whitening matriz

It is desired to adapt a matrix W such that it converges
to a point where R, = I. This is obtained by minimizing
a ‘distance’ between R, and I. The Kullback—Leibler di-
vergence [10] between two zero-mean normal distributions
with covariance matrices equal to R, and I respectively is

K(R.) * Trace(R.) — logdet(R.,) —n.  (19)

Hence a whitening matrix is a minimizer of

def

o2 (W) = K(WR,WT). (20)

Computing the relative gradient is easily done in two steps.
First, if W is modified into W + éW = W + EW, the
corresponding variation of R, = WR, wWTis

bR, = SWR, WY + WReWT =R, + R.ET  (21)

Second, the differential of function K 1s known to be

K(R, 4 6R,) = K(R.) + Trace{(I — R;")6R.} + o(éR,).
(22)
Combining (21) and (22) yields, after simplification:

Voo = 2R, — I) = 2E[zz} — 1] (23)

The serial adaptive whitener is obtained by deleting the
expectation operator:

Wig1 =Wy — X [zez) — 1] Wi (24)

Interestingly enough, this rule can be shown to correspond
the first order (in A) approximation of the Potter formula
[22] for the recursive computation of the inverse square
root of a covariance matrix estimated with an exponential
window. In this instance, the serial approach is seen to
correspond to an optimal solution.

B. Serial update of an orthogonal matriz

It is desired to adapt an orthogonal matrix U such that
$4(U) = Ef(y) = Ef(Uz) is minimized. Unconstrained
minimization of such an objective leads to the updating
rule (17) which does not preserve the orthogonality of U.
Orthogonality could be preserved by some parameteriza-
tion of the orthogonal matrices (as product of Givens ro-
tations for instance), but this solution is to be discarded
because it would result in losing the uniform performance
property of serial adaptation and also because we ulti-
mately want to get rid of the factorization of B into two
distinct matrices W and U. Hence, we rather stick to the
idea that U should be updated in the form U + £U but
note that if U is orthogonal, i.e. UUT = I, then

U+ ENU+ENT =T+ E+ET €7 (25)

so that the orthogonality of U 4 EU is preserved at first-
order, i.e. (U + EVYWU + EUYY = I+ 0(&), if & is skew-
symmetric, i.e. verifies ET = —&.

Thus the (relative) gradient rule, which consists in align-
ing —& along the (relative) gradient E[f'(y)y™'] cannot be
followed since this gradient is not skew-symmetric. In or-
der to satisfy the orthogonality constraint, matrix —& must
be aligned along the orthogonal projection of the relative
gradient onto the space of skew-symmetric matrices. This
choice guarantees that matrix —& makes an acute angle
with the relative gradient matrix, still resulting in a de-
crease of the objective function if A is small enough. The
orthogonal projection of V¢4 onto the skew-symmetric ma-
trix set is just (V¢a— V1 )/2 leading to the serial update:

Upr = U = A [F(ye)y) —yof T (ye)] Ur. (26)

Of course, such an updating rule does not preserve ezactly
unitarity, but only at first order in A. Next section shows
that this problem disappears when the whitening stage and
the orthogonal stage are considered altogether.

C. The one-stage solution

A global updating rule for matrix B = UW is obtained
by computing Biy1 = UspiWip1 where Wipq is given
by (24) and U;41 by (26). From (26), we readily obtain

Ui Wy = By — X[t (yo)y! — vt  (v2)] Be. (27)

From (24) and using ULU; = I and y; = Uz, we get

UtWt+1 = Bt — AtUt[ZtZtT — I]Wt

= B;— \[y:yf — I]B;. (28)

There is no reason to use the same step size in (27) and (28),
but since a ratio different from 1 could be integrated in f,
we do assume here an identical value, and the resulting
adaptation for By, dropping the term in A2, then just is

Bt+1 = Bt - At H(yt) Bt (29)
where function H(y) appears to be:
H(y)=yy' —I+f'(y)y" —yf'(y)".  (30)
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Hence, we do arrive at an algorithm for updating a sep-
arating matrix B in the serial form. This completes the
program of this section.

IV. THE EASI ALGORITHMS

In the previous section, the notion of serial update ap-
plied to a 4th-order contrast function provided us with a
specific form (30) for the function H(y) required in the
serial approach. The source separation algorithms to be
considered in this paper improves on (30) by modifying it
in two respects. First, we consider using functions other
than t/(y) for increased flexibility. Second, stabilizing fac-
tors are introduced which are needed since finite adaptation
steps are used in practice. This is discussed in the next two
subsections and yields a family of adaptive source separa-
tion algorithms as summarized by egs. (35) and (36).

A. Stationarity and non-linearities

An stationary point for a serial updating algorithm is any
matrix B such that EH(y) = 0. For the serial algorithm
derived in the previous section, i.e. for H(-) given by (30),
this equation can be decomposed into symmetric and skew-
symmetric parts, yielding:

Elyy'] = I
Eff'(y)y" —yt'(y)"] = 0.

The condition (31) is that the output y is spatially white
and matches the normalization convention (5). This con-
dition ensures the second-order independence (i.e. decorre-
lation) of the separated signals. Tt is however clearly not
sufficient for determining a separating matrix since, if the
output y 1s further rotated by some orthogonal matrix, the
condition R, = I is preserved but source separation is no
longer achieved. Hence, other than second order conditions
are required and these are provided by (32). If the com-
ponents of y are mutually independent, then, for ¢ # j,
one has E[y; fi(y;)] = Eyi Eff(y;) which cancels by the
zero mean assumption, Thus condition (32) is satisfied if
B is a separating matrix. This conclusion reached using
only the fact that f’ acts componentwise. Thus, defining a
componentwise nonlinear function g:

) gn(yn)]Ta

the form (30) may be generalized into

g(y) =[n(y), . (33)

H(y)=yy' —I+gy)y' -y’ (34)
with the separating matrices remaining stationary points
of the rule (4). To any componentwise nonlinear function
g, we thus associate a corresponding EASI algorithm:

EASI algorithms for adaptive source separation

Biyi = Be = M [yoyd — T +g(vo)ys — yveg(y)™] B
(35)

We note that the functions g; must be nonlinear: if any
two functions ¢; and g; are linear, then the corresponding

entries in the skew-symmetric part of H(y) provide only
second-order equilibrium conditions which are redundant
with those provided by the symmetric part of H(y).

B. Normalization

In some applications like digital communications, fast
convergence is required, implying the use of ‘large’ adap-
tation steps (say A > 107?) which may cause explosive
behavior if no special provisions are taken. We note that
a stabilization procedure should not be based on clipping
the entries of the separating matrix or renormalizing its
rows. In fact, stabilization should not involve any action
on the separating matrix itself, because this would spoil the
uniform performance property. Hence, stabilization should
rather be implemented by preventing H (-) to take too large
values, suggesting the following normalized form:

Normalized EASI algorithms for adaptive source separation

gly)yl — yigly)?”
L+ lyfg(yo)l

yviye =1

B = B;—A
t+1 t— At T+ vy

which is very similar to the modification of the LMS al-
gorithm into the ‘normalized LMS’. It offers the following
advantages. It entails very little extra computation with
respect to (30) and it does not introduce additional pa-
rameter. Also, when the system 1s close to a stationary
point, the covariance of y is close to the identity matrix
so that, for reasonably small A, the normalized version is
expected to behave like the raw version (as confirmed in
section VII) for which a detailed performance analysis is
possible. Finally, the choice of the denominators is such
that a natural protection against the outliers is granted.
Finally, the normalized form has proved very satisfactory
in the numerical experiments.

C. Discussion

Stability and permutations. The choice of the nonlinear
function g is of course crucial to the performance of the
algorithm. For any choice of g, a separating matrix a sta-
tionary point but the real issue is the stability of the sepa-
rating matrices. The stability condition is (48), established
below by an asymptotic analysis which also give some clues
as how to choose and scale the nonlinear functions ¢4, ...,
gn- We note here that this analysis is led for Cy being close
to the identity matrix, but the case where ('} converges to
another permutation matrix reduces to the previous case
by permuting accordingly the nonlinear functions acting at
the output of B;.

Uniform performance and the noise. The uniform conver-
gence property rigorously holds if model (1) is verified ex-
actly, as discussed above. In particular, one can deal with
arbitrarily 1ll conditioned mixtures, a fact which may ap-
pear paradoxical : the intrinsic hardness of array process-
ing is known to depend on the conditioning of matrix A.
This is not true, though, in the specific case of model (1)
which ignores any additive noise. In practice, some noise is
always present and the claim of uniform performance may
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be more cautiously restated as: matrix A determines an up-
per limit to the noise level, under which the performance
of EASI does not depend on A.

On the scale indetermination. Because of the scaling in-
determinations inherent to the source separation problem,
some parameters have to be arbitrarily fixed. Quite of-
ten, this is achieved by constraining the separating matrix.
For instance, its diagonal elements or those of its inverse
are fixed to unity [17], [19] or the rows of B; are normal-
ized [20]. In contrast, EAST does not constrain the sepa-
rating matrix; indeterminations are dealt with by requiring
that the output signals have unit variance. This solution
is necessary to get uniform performance but also offers an-
other important benefit: knowing in advance the range of
the output signals allows to properly scale the non linear-
ities. Assume for instance, that the hyperbolic tangent is
used at the first output, i.e. g1(y1) = tanh(ay;). Here «
is a real parameter which should not be chosen too small
because this would make the tangent to work in its linear
domain. However, the choice of « depends on the scale of
y1 which is known in advance when indeterminations are
fixed by requiring unit variance output signals. In contrast,
if indeterminations are fixed by constraining B, the range
of y; may be arbitrarily large or small, depending on the
mixing matrix A.

V. ASYMPTOTIC ANALYSIS

In this section, we evaluate the quantities governing the
stability and the performance of serial adaptive algorithms.
Since theoretical results are mainly available in the limit of
arbitrarily small step size, we use the form (34) of func-
tion H(-) rather than the normalized version of (36). This
approximation has negligible impact as checked in the ex-
perimental section VII.

We informally recall some definitions and results (see [3])
about stochastic algorithms in the form

Or11 = 01 — Atp(0r, %) (37)
where x; 1s a stationary sequence of random variables and
A+ a sequence of positive numbers. A stationary point 6,
verifies E¢(0,,x) = 0 and is said to be asymptotically stable
if all the eigenvalues of matrix I' defined as

[ def IEY(6,x) |
— 69 =0,

(38)
have positive real parts.

When 6, is the unique global attractor, then for large
t, small enough fixed step size A\; = A, and under rather
restrictive conditions, the covariance matrix of #; is ap-
proximately given, in the 1.i.d. case, by the solution of the
Lyapounov equation:

T'Cov(6;) + Cov(6,)TT = AP (39)

where P denotes the covariance matrix of ¢ for 8 = 0,:

def

P = Cov(¥(0y, %)) = E[vo(04, x)0T (05, %)]. (40)

Clearly, this result does not apply in full rigor to the source
separation problem where there are several basins of at-
traction. However, in practical applications, the step size
1s chosen to ensure that the probability of jumps from one
separating matrix to another 1s sufficiently small. The close
form solution of equation (39) is given below and is indeed
found to predict with great accuracy the residual error of
source separation observed in numerical simulations (see
section VII).

We recall that it is only needed to study the dynamics of
the global system C} as given by (11). The above results
apply to our algorithm by the identifications 6; — C} and,
according to (11), ¥(f,x) — H(Cs)C . Tt is also needed to
vectorize these matrices. The following convention turns
out convenient: an n x n matrix is turned into a n? x 1
vector by first stacking the (¢, j)-th and (j, ¢)-th entries for
each 1 < 7 < j < n. and then appending the diagonal
terms of the matrix, For instance, matrix C' corresponds to
vector 6:

) Cigy *

] (41)

9:["',62']',6]'2',"',"'

1<i<j<n 1<i<n

and similarly for matrix H(C's)C.

A. Asymptotic stability

The ‘mean field’ of an adaptive algorithm at point 8 is the
vector E¢(0,x). In our setting, the mean field is denoted
H(C) and is

def

H(C) L E[H(Cs,)C]. (42)

Simple calculations (see appendix) reveal that its linear
approximation in the neighborhood of Cy = I is

[ Z/Eﬁg ] = DJUpt [ g]J ] +0(&) (44)

where the 2 x 2 matrices D and J%¥ are
def | 1 1

.5 def 2 0
D: o=
[1 —1] / |:€i_€j Ki + Kj

with the non-linear moments of the source signals:

| @)

The significant fact in eq. (43) (holding for 1 < i < n)
and in eq. 44) (holding for 1 < i < j < n) is the pairwise
decoupling. Tt means that, with the vectorization (41),
matrix I' is block diagonal: there are n(n — 1)/2 blocks
of size 2 x 2 equal to DJYD™! for 1 < i < j < n and
n ‘blocks’ of size 1 x 1 with entries equal to 2. Since the
eigenvalues of J% are 2 and &; + kj, we get the following

Stability condition: &;+&; >0 for 1 <i<j<n (48)

for a separating matrix B such that BA = [.
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The stability conditions for these separating matrices B
such that BA is a permutation are very similar. Indeed, if
the source signal s; is present at the o(i)-th output of B,
then it undergoes the non-linearity g,(;). Hence, the stabil-
ity of this separating B is subject to condition (48) provided
the moments x; are understood as E [g;(i)(si)—siga(i)(si)].
Obviously when identical functions ¢; are used or when
sources with identical distributions have to be separated,
the stability condition is verified for C} being any permu-
tation if 1t is verified for C, = I. The case where C} is a
permutation matrix with some 1’s changed to —1, i.e. when
C 1s any quasi-identity, leads again to the same condition
when the ¢;’s are odd functions because the moments «;
are then invariant under a change of sign.

The non-linear moments «; deserve some comments.
First note that if g; is a cubic distortion : g;(s;) = s?,
then k; = 3 — Els;|* since Els;|? = 1. This just the oppo-
site of the fourth-order cumulant (or kurtosis) of s;. The
stability condition for cubic non-linearities then is that the
sum of the kurtosis of any two sources must be negative.
This condition (48) is weaker than the requirement that all
source signals have a negative kurtosis. In particular, the
stability condition (48) is verified if one source is Gaussian
(in which case, its kurtosis is zero) and the other sources
have negative kurtosis. Also note that, integrating by parts
the definition of k;, it is easily seen that x; = 0 if s; is a
Gaussian variable, independently of the non-linear function
¢;. This shows that the stability condition (48) can never
be met if there is more than one Gaussian source signal.
Finally, if g; is a linear function, then x; = 0: 1t 1s seen that
all the functions g; but possibly one must be non linear to
make a separating matrix stable.

B. Asymptotic covartance and rejection rates

In this section, we give close form expressions for the
rejection rates obtained after convergence with a ‘small’
fixed step size A. When the global system 1s C' = [ 4+ &,
the i-th estimated source signal (the i-th output of (') is

Si=u = [T+ E)s)i= (14 Ex)si + D Eigsy.
J#i

(49)

Since the signals are independent with unit variance and
since & is of order v/X, equation (49) shows that the ratio of
the variance of the (undesired) j-th signal to the variance of
the i-th signal (of interest) is approximately equal to |&;;|?.
Hence, we are interested in computing pairwise rejection
rates, which correspond to intersymbol interference in the
terminology of equalization, and are defined by:

ISLi; = E|(Ce — D)y (50)

If Cy is ‘vectorized’ in a n?-dimensional parameter vector,
these quantities are the diagonal elements of matrix Cov(6).
The computations are deferred to appendix B as well as the
results for sources with different distributions.

For signals with identical distributions and a single non-
linearity g(-) = gi(+), there is only one extra moment in-
volved:

(51)

= Eg?(s) Es? — E*[g(s)s]

where s is any of the s;’s. The rejection rates are (neces-
sarily) identical and given by

L v
ISI=1ISL; = A -+ =—]. 52
Note that v is positive by the Cauchy-Schwartz inequality
and « is positive by the stability condition. Hence, we have
A
ISI > — (53)
4
and this bound is reached when s = &1 with equal proba-
bility and g is an odd function because then y = 0.

C. Tuning the nonlinearities

The analytical results obtained above provide us with
guidelines for choosing the nonlinearities in g(-). We do not
intend to address this issue in full generality and will dis-
cuss here only the simplest case, often encountered in prac-
tice, where the sources have identical distributions. Since
there is no reason in this case to use different nonlineari-
ties, we take g1(-) = - - - = gn(-) = g(-) and all the nonlinear
moments are then also equal: we denote k = x; and v = ;.
Three points are discussed below.

Local convergence. The mean field H(C') then has a very
simple local structure when C' is close to any quasi-identity
attractor Cy: equations (44) and (43) combine into

H(O+E) = (E+EN) +w(E—ET) +0(8) (54)

showing that symmetric and skew-symmetric deviations of
Cy from C are pulled back with a mean strength propor-
tional to 2 and to x respectively. When the moment « is
known in advance or can be (even roughly) estimated, ex-
pression (54) suggests to normalize the non-linearity ¢(-)
into §(-) = ¢(-)/x because then the nonlinear moment &
associated to g 1s K = 1. With such a choice, the mean
field in the neighborhood of an attractor becomes

H(Cy + &) = 28 + o(€), (55)

meaning that all the deviations to a separator are lo-
cally ¢sotropically pulled back, a benefit usually reserved
to Newton-like algorithms.

Rejection rates. The nonlinear function ¢ can be chosen
to minimize the rejection rates under the constraint that
its amplitude is fixed by the requirement of isotropic lo-
cal convergence. In view of (52), the optimal nonlinearity
should minimize 4 under the constraint that x = 1. This
optimization problem is easily solved by the Lagrange mul-
tiplier method when the source signals are identically dis-
tributed with a differentiable probability density function
p(s). The optimal nonlinearity is found to be

_ ¥ det _P'(s)
Jopt(s) = W where (s) = _p(s) :

(56)
The resulting minimal rejection rate may be computed to

be
1 1
St =3 (5 g =y) O



CARDOSO AND LAHELD: EQUIVARIANT ADAPTIVE SOURCE SEPARATION 9

As a final comment, we note that the various nonlinear
moments appearing during performance analysis are not
homogeneous and, unlike cumulants, cannot generally be
normalized. This is an unavoidable effect when arbitrary
nonlinearities are used. They are defined for unit variance
random variables and, in any application, the source sig-
nals should be normalized to unit variance before the cor-
responding formulas are theoretically or empirically evalu-
ated. It should be clear that our results giving the stability
conditions and the rejection rates are valid regardless of the
‘true’ scale of the source signals.

VI. THE COMPLEX CASE

At this stage, the processing of complex valued sig-
nals and mixtures is obtained straightforwardly from the
real case by understanding the transposition operator -*
as the transpose-conjugation operator and understanding
‘unitary’ in place of ‘orthogonal’. The discussion in section
IV-A on stationarity of the separating matrices carries over
to the complex case with only one restriction: the diago-
nal terms of the skew-symmetric part of EH(s) are not
necessarily zero unless the scalar-to-scalar functions g; are
restricted to be phase-preserving, i.e. of the form

gi(yi) = wili(lyil’) 1<i<n (58)

where the [;’s are real-valued functions. In order to eas-
ily extend the performance analysis to the complex case,
it must be assumed that the source signals are ‘circularly
distributed’, i.e. we assume:

Assumption 5. (Circularity): E [ 5;(¢)?] =0, 1 <i < n.
The modifications with respect to the real case are then
mainly cosmetic and the results are given below without
proof.

Regarding the stability of the separating matrices, the
computations are very similar to the real case: 1t is found
that

[ Hij (14 &)
Hi(I+€)

o [f] oo

where matrices D and J% are as in (45), but the nonlinear
moments are slightly different:

def

ki =  Ellsil*l(|si*) + Li(Isil*) — [sil*L(]s6]*)], (60)
def

& = ElsilPE(si ) + L(lsil?) + [si6(]si)]. (61)

Hence, the stability condition (48) is unchanged provided
ki is defined according to (60). For cubic non-linearities,
i.e. for l;(s) = s, one has r; = 2 — E|s;|* and —x; again is
the fourth-order cumulant of s; in the circular case.

Regarding the asymptotic covariance, it is governed by
the nonlinear moments

def def
i = Ellsi " (s )] = [Elsi " (ls: )] i = Ellsil*i(]s:]*)]

(62)
which are direct complex counterparts of those defined
in (72). With these definitions, the rejections rates take
the very same form, either in the i.i.d. case, as given by
the simple formula (52) or in the general case as given by
the general expression (81).

VII. NUMERICAL EXPERIMENTS

This section illustrates some properties of EASI and
investigates the accuracy of the theoretical results, since
these are only asymptotics (small A). All the experiments
are done in the complex case (but in figure 7). Figures 4 to
6 display trajectories of the modulus of the coefficients of
the global system C}. Hence, an experiment with n sources
is illustrated by a plot with n? trajectories, with n of them
getting close to 1 and the other getting close to zero.

Fast convergence is first illustrated by figure 4 for two
11.d. QAMI16 sources using the basic cubic nonlinearity
9i(y) = |yi|?y; for 1 < i < n. The dashed lines represent +
two standard deviations computed from (52) and (75).

O WP VS Y |

o
)

Modulus of mixture coefficients
(o] o
IS o

0.2

. ) . d
300 500
Iteration number

Fig. 4. A sample run. Convergence to 0 or 1 of the moduli of the
coefficients of the global system B;A. Fixed step size : A = 0.03.
Two QAM16 sources, cubic non-linearities : g;(y) = |v;|?vi.

Figure 5 is similar but three QAM16 sources are involved
and the step size is decreased according to the cooling
scheme: Ay = 2/1.

o
0
I

Modulus of mixture coefficients
o [}
» o
L L

0.2 3

. . I I
o 50 100 150 200 250 300
Iteration number

Fig. 5. A sample run. Convergence to 0 or 1 of the moduli of the
coefficients of the global system B;A. Three QAM16 sources.
Decreasing step size : A\; = 2/%.

Figure 6 is concerned with the effect of normalization.
With the same QAMI16 input, two serial algorithms are
run with A = 0.01 one with the normalized algorithm (36),
the other with the raw algorithm (35); Both trajectories
are displayed and show little discrepancy (see also table T).
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o
©

Modulus of mixture coefficients
o o
IS )

0.2

. . . . 1
20 40 60 80 100
Iteration number

Fig. 6. Effect of normalization.

Figure 7 illustrates the isotropic convergence with a bal-
anced nonlinearity. It displays the evolution of a logarith-
mic distance of C} to the identity, namely 20log,,||C: —
I||Fro, with a constant step size. Each curve corresponds
to a different initial condition. These initial conditions are
randomly chosen but are at a fixed Frobenius distance from
the identity matrix. Both panels are for cubic nonlinearities
and uniformly distributed sources which have a normalized
kurtosis equal to —6/5 (this is the only experiment with
real signals). Isotropic convergence is achieved by taking
g(s) =5/6 s® so that x = 1 as suggested in the discussion
of section V-C. The resulting trajectories are displayed
in the lower panel, where the dashed line corresponds to
a distance varying as exp(—2At). The upper panel dis-
plays trajectories for g(s) = 0.2 s3: they are sandwiched
between two dashed lines corresponding to exp(—2At) and
exp(—2 5?/—26/\15) which are the mean decaying rates for the
symmetric and skew-symmetric parts respectively. Hence,
according to the respective proportion of symmetric and
skew-symmetric errors in Cj, various decaying rates are
observed, while the lower panel shows logarithmic slopes
which are essentially independent of the initial condition.

The rejection rates predicted by (52) have been experi-
mentally measured in the case of n = 2 sources. Results are
reported in table I. The following fixed step sizes are used:
A =10.1,0.3,0.01,0.003. For each step size, Nyrc = 500 tra-
jectories are simulated. The initial point is C, = I and the
sample estimate of ISI;5 is computed over a trajectory in
the range 5/A <t < 35/X (the scaling with 1/A is adopted
to get a constant relative precision). The resulting Nyse¢
values are further averaged and also used to determine an
experimental standard deviation. The table presents the
mean plus and minus two standard deviations of A~1ISI;.
There are no results presented for A = 0.1 and QAMI16
signals for the non-normalized algorithms because a signif-
icant fraction of divergent trajectories have been observed.
In all the other cases, representing 15 x 500 trajectories, no
divergence have been observed. It appears that asymptotic
analysis correctly predicts the rejection rates for step sizes
as large as A = 0.01. We also note that normalization does
not affect much the empirical performance.

Distance to the identity

L L
1000 1500
Iteration number

Distance to the identity

00

Iteration number

Fig. 7. Vertical axis: 20log;q ||Cs — I||Fro- Lower panel: convergence
rate depends on the starting point; unbalanced nonlinearity. Up-
per panel: isotropic convergence with a balanced nonlinearity.

Rejection rate A~ 1ISI 5 with QAMA4 sources

A Theoretical | Non normalized | Normalized
0.100 || 0.250 0.229 £ 0.003 0.213 £ 0.003
0.030 || 0.250 0.240 £ 0.003 0.233 £ 0.003
0.010 || 0.250 0.249 £ 0.003 0.246 £ 0.003
0.003 || 0.250 0.248 £ 0.003 0.247 £ 0.003

Rejection rate A~1ISI 5 with QAMI6 sources
A Theoretical | Non normalized | Normalized
0.100 || 0.410 Non convergent | 0.417 4+ 0.008
0.030 || 0.410 0.435 £ 0.006 0.410 £ 0.006
0.010 || 0.410 0.417 & 0.005 0.411 £+ 0.005
0.003 || 0.410 0.412 & 0.005 0.410 £ 0.005

TABLE I
EMPIRICAL AND THEORETICAL REJECTION RATES.
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VIII. CONCLUSION

A class of adaptive algorithms for the blind separation
of sources has been introduced. It is based on the idea of
serial updating by which the uniform performance prop-
erty of equivariant estimators is directly inherited by the
corresponding adaptive serial algorithms. For adaptive al-
gorithms, the uniform performance property means that
changing the mixing matrix is equivalent to changing the
initial condition. As a result, the characteristics of a serial
algorithm, such as the stability conditions, the convergence
rates or the residual errors, do not depend on the mixing
matrix.

A senial algorithm is defined by specifying a vector-to-
matrix mapping H verifying EH(s) = 0 if the random
vector s has independent components. While many such
mappings may be devised, we have considered a specific
class, where the symmetric part of H corresponds to a sec-
ond order condition of independence (decorrelation) while
the skew-symmetric part involves nonlinear functions. This
structure allows a simple, very regular implementation in
the real case as well as in the complex case. By its very
structure, the algorithm can be used ‘as is’ when more sen-
sors than sources are available.

The asymptotic analysis for arbitrary nonlinearities re-
veals a pairwise decoupling, pairwise stability conditions
and yields the rejection rates in close form. These results
allow the symmetric and skew-symmetric parts to be bal-
anced in order obtain isotropic local convergence and the
non linearity to be shaped in order to maximize interfer-
ence rejection.

APPENDIX
I. DERIVATIVE OF THE MEAN FIELD

We compute the first-order expansion of the mean field
in the neighborhood of the identity matrix. This amounts
to finding the linear term in £ in H(I 4+ &). First note that
the definition (42) rewrites

H(I+ &) =E[ H(s + Es)(I + &)]. (63)

Since the identity is a stationary point, we have EH(s) =0
so that the mean field also is

H(I+&) =EH(s + £s) + o(E). (64)

The hermitian part of EH (s 4+ £s) is readily obtained as :
E[(s+&s)(s+&)T =T =E+ET 4 0(E) (65)

since our normalization convention is E [ ss™] = I. In
order to compute the antisymmetric part of H(I + &) that
is E [ g(y)y! — yg(y'] with y = s+ &s, we have to go
down to the component level. We start by evaluating the
(i,7)-th entry of E [ yg(y)']. Using y; = s; + 3., EiaSa, We
get

vigi(9;) = sigi(s;) + Y Eiasag;(s))

+ > Epsisng)(si) + o(€) (66)

b

There is no need evaluating the terms for i = j because
these disappear in the anti-symmetrization. Focusing on
the terms with ¢ # j, we next find that

8(j,a) Es;g;(s;) (67)
8(i,b) Es?Eg} (s;) fori#j (68)

Esag;(s;)
Esisbg} (s;) =

because the source signals are independent with zero mean.
It follows that, for ¢ # j,

Eyigi(y) = &ijBs;95(5;) + £1:Bs{ B (s7) + o(€). (69)
Expectations (63), (65) and (69) then combine into :
MHiy(I+€) = &;(1+ EsjEgi(si) — Esjg;(s;))
+ &i(l = Es{Egj(s;) + Esigi(si)) + o(€)
which, after symmetrization yields (44).

II. ASYMPTOTIC COVARIANCE

To solve (39), we must first evaluate matrix P. Using
source independence, it is easily checked most of the entries
of H(s) are uncorrelated. The non vanishing terms can be
computed to be

Cov(Hyu(s)) = E|s;|* — 1 (70)

Hij(s) ]) ij 1T
Cov J = DQYD 71
([ Hji(s) @ (T

with the following definitions

ij  def 1 M — fi 79
¢ [ui—w I I
v = BleE(s)] - [Bsigi(si)) (73)
pi = Blgi(si)si). (74)

This is a pleasant finding since it means that P has the
same block diagonal structure as I', allowing the Lya-
pounov equation (39) to be solved blockwise. Further, the
blocks having sizes 1 and 2, close form solutions can be
worked out.

Solving for the 1 x 1 blocks is immediate: each scalar
equation yields

Est -1

COV(CZ'Z') = 4

(75)

The 2 x 2 Lyapounov equation extracted from (39) for a
pair ¢ # j is
(DJYD™YRY + RY(DJY DT = ADQ" DT

Cij(s) D .
Cji(s)

Left and right multiplication by D~! and D~T respec-
tively yields

(76)
where we set

R Coy ([ (77)

JYDT'RID™T) + (DT'RVD™T)JIT =A@ (78)
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Matrix J% being lower triangular, this 2 x 2 Lyapounov
equation is easily worked out. We find the following inter-
mediate result: If (z,y,1) is the solution of

)Ll I E]= T ]

(79)
then, the northwest entry of D [ J; Z ] DT is
a B (2b—¢)(2ay — ca)
2% =—+ —
Y T S T T 2ab(a v+ b) (80)

From this, an explicit expression for Cov(Cj;) is readily

obtained. We skip some additional uninspiring algebraic

reorganization which yields the form most appropriate for
our concerns:

1 v+

E|Ci; ]2 = Cov(Cij) = A(7 + = 21

+ =
17 2kt ok + 055 + 8i;) (81)

where BZ"]' and BZ; cancel for identical sources and nonlinear-
ities. They are respectively symmetric and skew-symmetric
in the exchange ¢ — j:

der 20k 4 £5)(ps — 145)° + (5i — K;j)*
4(/@ =+ K?]')(Q + K; + K?]')
_aer (2 — ki) — (205 — Kj)
ﬁlj - 2(2 + R; + K?]') ’ (83)

+
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