
SUBMITTED TO THE IEEE TRANSACTIONS ON SIGNAL PROCESSING, October 22, 1994 1Equivariant adaptive source separationJean-Fran�cois Cardoso and Beate Laheld.Abstract| Source separation consists in recovering a setof independent signals when only mixtures with unknowncoe�cients are observed. This paper introduces a class ofadaptive algorithms for source separation which implementsan adaptive version of equivariant estimation and is hence-forth called EASI (Equivariant Adaptive Separation via In-dependence). The EASI algorithms are based on the ideaof serial updating: this speci�c form of matrix updates sys-tematically yields algorithms with a simple, parallelizablestructure, for both real and complex mixtures. Most im-portantly, the performance of an EASI algorithm does notdepend on the mixing matrix. In particular, convergencerates, stability conditions and interference rejection levelsdepend only on the (normalized) distributions of the sourcesignals. Close form expressions of these quantities are givenvia an asymptotic performance analysis. This is completedby some numerical experiments illustrating the e�ectivenessof the proposed approach.Keywords| Source separation, blind array processing,multichannel equalization, signal copy, adaptive signal pro-cessing, high order statistics, equivariant estimation.IntroductionThe problem of blind separation of sources has receivedsome attention in the recent signal processing literature,sometimes under di�erent names: blind array processing,signal copy, independent component analysis, waveformpreserving estimation: : : In all these instances, the under-lying model is that of n statistically independent signalswhose m (possibly noisy) linear combinations are observed;the problem consists in recovering the original signals fromtheir mixture.The `blind' quali�cation refers to the coe�cients of themixture: no a priori information is assumed to be availableabout them. This feature makes the blind approach ex-tremely versatile because it does not rely on modeling theunderlying physical phenomena. In particular, it shouldbe contrasted with standard narrow band array processingwhere a similar data model is considered but the mixturecoe�cients are assumed to depend in a known fashion onthe location of the sources. When the propagation con-ditions between sources and sensors, the sensor locations,or the receivers characteristics are subject to unpredictablevariations or are too di�cult to model with accuracy (thinkof multipaths in urban environment), it may be safer to re-sort to a blind procedure for recovering the source signals.This paper addresses the issue of adaptive source sep-aration and consider the case where any additive noisecan be neglected. The signal model then is that of a m-dimensional time series xt in the form :xt = Ast t = 1; 2; � � � (1)where xt and st are column vectors of sizes m and n re-spectively and A is a m � n matrix. The idea here is thatvector xt results from measurements by n sensors receiving

contributions from n sources. Hence, the components of stare often termed `source signals'. Matrix A is called the`mixing matrix'.Adaptive source separation consists in updating an n�mmatrix Bt such that its output yt:yt = Btxt (2)is as close as possible to the vector st of the source sig-nals (see �g. 1). Consider the global system denoted Ct,st - MixingmatrixA -xt SeparatingmatrixBt - ytBBBBBMSourcesignals Sensoroutput EstimatedsignalsFig. 1. Adapting a separating matrixobtained by chaining the mixing matrix A and the sepa-rating matrix Bt, that is :Ct def= BtA: (3)Ideally, an adaptive source separator should converge to amatrix B? such that B?A = I, or, equivalently, the globalsystem Ct should converge to the n� n identity matrix I.Outline of the paper. The main point of this paper is tointroduce and study `serial updating' algorithms. De�n-ing a serial updating algorithm consists in specifying ann � n matrix-valued function y ! H(y) which is used forupdating Bt according toBt+1 = Bt � �tH(yt)Bt (4)where, as above, yt is the output of Bt and �t is sequenceof positive adaptation steps.After some background on the source separation problemin section I, the serial updating scheme is investigated insection II: it is shown to yield adaptive algorithms whoseperformance is independent of the mixing matrix A. Whenthe algorithm is intended to optimize an objective functionc(B), we show that the required function H(�) may be ob-tained as the `relative gradient' of the objective function.In section III, a particular function H(�) is obtained froma cumulant based approach to blind identi�cation This isthen generalized in section IV, into a family of adaptivesource separation algorithms (35), called EASI for Equiv-ariant Adaptive Separation via Independence, whose sta-bility and asymptotic convergence are studied in section V.Section VI extends all the results to the complex case. Thisis completed in section VII by some numerical experimentsillustrating the e�ectiveness of the approach.



2 SUBMITTED TO THE IEEE TRANSACTIONS ON SIGNAL PROCESSING, October 22, 1994I. Source separationA. Assumptions and notations.Some notational conventions are: scalars in lower case,matrices in upper case, and vectors in boldface lowercase.The i-th component of a vector, say x, is denoted xi. Theexpectation operator is E and transposition is indicated bysupscript T. The identity matrix is denoted I; throughout,it is the n� n identity.The following assumptions hold throughout.Assumption 1. Matrix A is full rank with n � m.Assumption 2. Each component of st is a stationary zero-mean process.Assumption 3. At each t, the components of st are mu-tually statistically independent.Assumption 4. The components of st have unit variance.Some comments are in order. Assumption 3 is the keyingredient for source separation. It is a strong statisticalhypothesis but a physically very plausible one since it isexpected to be veri�ed whenever the source signals arisefrom physically separated systems. Regarding assumption4, we note that it is only a normalization convention sincethe amplitude of each source signal can be incorporatedinto A. We note that assumptions 2, 3 and 4 combine intoRs def= E [ stsTt ] = I: (5)Assumption 1 is expected to hold `almost surely' in anyphysical situation. More important is the existence of Aitself i.e. the possibility of observing instantaneous mix-tures.Instantaneous mixtures occur whenever the di�erence oftime of arrival between two sensors can be neglected or ap-proximated by a phase shift so that the propagation fromsources to sensors can be represented by a scalar factor :the relation between the emitted signals and the signals re-ceived on the sensors then amounts to a simple matrix mul-tiplication as in (1). This kind of instantaneous mixturesis the standard model in narrow-band array processing. Inthis context, one must then consider complex analytic sig-nals and a complexmixingmatrixA. For ease of exposition,most of the results are derived in the real case; extensionto the complex case is is straightforward and described insection VI.Finally, for source separation to be possible, there areconditions on the probability distribution of the source sig-nals. Since this condition is algorithm-dependent, its for-mulation is deferred to section V-A. Anticipating a bit, wemention that at most one source signal may be normallydistributed.Before starting, it is important to mention a technicaldi�culty, due to the following fact: without additional in-formation (such as spectral content, modulation scheme,etc: : : ), the outputs of a separating matrix cannot be or-dered since the ordering of the source signals is itself im-material (conventional): the individual source signals canbe estimated up to an indetermination. Also a scalar fac-tor can be exchanged between each source signal and thecorresponding column of matrix A without modifying the

observations. Hence, even with the normalization conven-tion implied by assumption 4, the sign (real case) or thephase (complex case) of each signal remains unobservable.This may be formalized using the following de�nitions: anymatrix which is the product of a permutation matrix with adiagonal matrix with unit-norm diagonal elements is calleda quasi-identity matrix; any matrix B? is said to be a sepa-rating matrix if the product B?A is a quasi-identity matrix.The adaptive source separation problem then consists inupdating an n � m matrix Bt such that it converges toa separating matrix or, equivalently, such that the globalsystemCt = BtA converges to a quasi-identitymatrix. Theissue of indetermination is addressed at length in [24].B. Approaches to source separationThe seminal paper on source separation is [17]. Therein,the separating matrixB is parameterized as B = (I+W )�1and the o�-diagonal entries of W are updated with a rulelike wij  wij � �f(yi)g(yj ) where f and g are oddfunctions. If separation is achieved, each yi is propor-tional to some sj so that by the independence assumption:E[f(yi)g(yj)] = Ef(yi)Eg(yj ) which cancels for symmetri-cally distributed sources. Hence, any separating matrix isan equilibrium point of the algorithm. This kind of equi-librium condition also appears in [12]. The Jutten-H�eraultalgorithm is inspired by a neuromimetic approach; this lineis further followed by Karhunen [18] and Chicocki [7].Nonlinear distortions of the output y also appear whenthe equilibrium condition stems fromminimization of somemeasure of independence between the components of y.When independence is measured by the cancelation of some4th-order cumulants of the output, cubic nonlinearitiesshow up, as in [11], [19].When the sources have a known di�erentiable density ofprobability (ddp), the maximumlikelihood (ML) estimatoris easily obtained in the i.i.d. case; the (asymptoticallyoptimal) nonlinearities are the log derivatives of the ddp's[20]. See also [2] for an ML approach for with discretesources in unknown Gaussian noise.Our starting point for �nding a H(�) function requiredfor serial updating is the idea of `orthogonal contrast func-tions'. In the context of source separation, these were in-troduced by Comon [9] as functions of the distribution ofy which are to be optimized under a whiteness constraint:Ry = EyyT = I. Comon suggest minimizing the squaredcross-cumulants of the components of y. This orthogonalcontrast is also arrived at by Gaeta and Lacoume [14] as aGram-Charlier approximation of the likelihood. A similar(and asymptotically equivalent) contrast which can be e�-ciently optimized by a Jacobi-like algorithm, especially inthe complex case, is described in [6].When the sources have kurtosis of identical signs, simplerorthogonal contrasts may be exhibited. For instance, if allthe sources have a negative kurtosis, the minimization of�4(B) def= E[Xi=1;n jyij4] (6)subject to Ry = I is achieved only when B is a separating



CARDOSO AND LAHELD: EQUIVARIANT ADAPTIVE SOURCE SEPARATION 3matrix. This is a strongly reminiscent of 4th-order objec-tives used in blind equalization [23]. This contrast lendsitself more easily to adaptive minimization since it is theexpectation of a function of the output vector y. It is usedin [11] where it is optimized by a de
ation technique. Theresulting adaptive algorithm can be proved to be asymptot-ically free of spurious attractors, but the implementationis not simple.Before closing this section, other batch estimation tech-niques may be mentionned: higher-order cumulants areused together with a prewhitening strategy in Tong andal. [24], [25]; fourth-order-only is investigated in [5], [4];purely second-order is possible if the sources have di�erentspectra as investigated in [13], [21], [1], [24] and also in [15]in an adaptive implementation.C. Equivariant source separation.Our approach to adaptive source separation may be mo-tivated by �rst considering batch estimation. Consider theproblem of estimating matrix A form T samples XT =[x(1); : : : ;x(T )] where we assume for simplicity that n = m(as many sources as `sensors'). A blind estimator of A is,by de�nition, a function of XT only. This may be denotedby: bA = A(XT ): (7)A particular estimator is said to be equivariant if it satis�esA(MXT ) =MA(XT ) (8)for any invertible n� n matrixM . Equivariant estimationis in fact a broader notion which is relevant whenever theparameters to be estimated form a group. This is indeedthe case here with the multiplicative group of invertiblematrices.The equivariance property is quite natural in the contextof source separation. For instance, M-estimators [16] whichcompute bA as the solution of an estimation equation in theform T�1 Xt=1;T H(A�1x(t)) = 0 (9)are easily seen to be equivariant. The ML estimator in thei.i.d. case is an instance of M-estimator. In equation (9),the vector-to-matrix function H is as in (4): the serial al-gorithm (4) is a stochastic solver of equation EH(y) = 0,while the M-estimator de�ned by eq. (9) solves the sampleversion of EH(y) = 0.The point to be made here is that, in the context ofsource separation, equivariant estimators exhibit uniformperformance. This is to be understood in the followingsense. Assume that the source signals are estimated asbs(t) = ( bA)�1x(t) where bA is obtained from an equivariantestimator. Thenbs(t) = [A(XT )]�1x(t) = [A(AST )]�1As(t) = [A(ST )]�1s(t)(10)The last equality is obtained thanks to the equivarianceproperty (8) and reveals that the source signals estimatedby an equivariant equivariant estimator A for a particular

realization ST = [s(1); : : : ; s(T )] depend only on ST butdo not depend on the mixing matrix A. It follows that, interms of signal separation, the performance of an equivari-ant algorithm does not depend at all on the mixing matrix.That the performance of a batch algorithm may not de-pend on the `hardness' of the mixture is a very desirableproperty. However, adaptive source separation is addressedhere: next section actually shows how `uniform perfor-mance properties' can be inherited by an adaptive algo-rithm from a batch estimation procedure.II. Serial matrix updatingA. Serial updatesThe adaptation rule (4) is termed a `serial update', be-cause it reads equivalently Bt+1 = (I � �tHt)Bt. Thislater form evidences that Bt is updated by `plugging' ma-trix I � �tHt at the output of the current system Bt to getthe updated system Bt+1 (see �g. 2). This could be op-- Bt+1 - = - Bt - I � �tHt -Fig. 2. Serial updateposed to `parallel updating' which would consist in addinga small matrix to Bt rather than multiplying it with a ma-trix close to the identity. Of course, any serial update alsois a parallel update where Bt is updated by (formally) plug-ging ��tHtBt between its input and output. However, notevery parallel update can be seen as a serial update be-cause we speci�cally require that the variation of Bt is inthe form ��tHtBt where Ht depends only on the outputvector yt.Note the following two facts. On one hand, uniform per-formance of equivariant batch algorithms is a direct con-sequence of (8) which is a multiplicative equation. On theother hand, the system Bt is serially updated by left multi-plication by matrix I��tHt. Thus, the group structure un-derlying equivariance is turned into an updating rule. Weshow below that this simple fact actually leads to uniformperformance adaptive algorithms. This is then further spe-cialized to the case of gradient descent algorithm. Again,we take advantage of the existence of the matrix productto de�ne a `relative gradient' which is consistent with thenotion of serial updating. The idea is that when matricesare to be updated, speci�c rules may be considered whichhave no equivalent for a generic adaptive system with anunstructured vector of parameters.B. Serial updates and uniform performanceThe bene�ts of serial updating are revealed by consid-ering the global mixing-unmixing system Ct = BtA. Itsevolution under the updating rule (4) is readily obtainedby right multiplication of (4) by matrix A, yieldingCt+1 = Ct � �tH(Ctst)Ct (11)



4 SUBMITTED TO THE IEEE TRANSACTIONS ON SIGNAL PROCESSING, October 22, 1994where we used y = Bx = BAs = Cs. Hence, the globalsystem Ct also undergoes serial updating, an obvious factanyway in the light of �gure 2. This is a trivial but re-markable result because it means that, under serial updat-ing, the evolution law of the global system is independentof the mixing matrix A in the sense described below. Thereader will notice that the argument parallels the one usedin previous section regarding batch algorithms.Assume the algorithm is initialized with some matrix Boso that the global system has initial value Co = BoA. Byequation (11), the subsequent trajectory fCtjt > 1g of theglobal system will be identical to the trajectory that wouldbe observed for another mixing matrix A0, provided theinitial point is B0o = BoAA0�1. This is pretty obvious sincein both cases, the global system starts from the same initialcondition and evolves according to (11) which involves onlythe source signals and Ct. Hence, with respect to the globalsystem Ct, changing the mixing matrix A is tantamount tochanging the initial condition B0.The key point here is that, since the issue is the separa-tion of the source signals, the performance of a separatingalgorithm is completely characterized by the global systemCt and not by the individual values of Bt and A; this isbecause the amplitude of the j-th source signal in the esti-mate of the i-th source signal at time t is determined onlyby the (i; j)-th entry of Ct.It follows that it is only needed to study the conver-gence of Ct to a quasi-identity matrix under the stochasticrule (11) to completely characterize a serial source separa-tion algorithm.In summary, serial updating is the only device neededto transfer the uniform performance of equivariant batchalgorithms to an adaptive algorithm.C. The relative gradientA serial algorithm is determined by the choice of a spe-ci�c function H. To obtain such a function, the notionof `relative gradient' is instrumental. In this section, wedenote < �j� > the Euclidian scalar product of matrices:< M jN >= Trace[MTN ] < M jM >= jjM jj2Fro: (12)Let �(B) be an objective function of the n � m matrixB, di�erentiable with respect to the entries of B. Thegradient of � at point B is denoted @�@B ; it is the n � mmatrix, depending on B, whose (i; j)th entry is @�@bij . The�rst order expansion of � at B then reads�(B + E) = �(B)+ < @�@B jE > +o(E): (13)In order to be consistent with the perturbation of B in-duced by the serial serial updating rule (4), we de�ne therelative gradient of � at B as the n � n matrix, denotedr�, such that:�(B + EB) = �(B)+ < r�jE > +o(E): (14)There is no profound di�erence with the `absolute gradient'though: one easily �nds that r� = @�@BBT, but that the

relative gradient is the appropriate quantity is con�rmedin th following.To illustrate the relevance of considering the relative gra-dient, we now compute it in the case where �(B) is in theform �(B) = Ef(y) = Ef(Bx). If function f is di�eren-tiable everywhere, one hasf(y + �y) = f(y) + f 0(y)T�y + o(�y) (15)where f 0(y) is the gradient of f at y, i.e. it is the columnvector whose i-th component is the partial derivative off(y) with respect to yi. Computing the �rst order expan-sion in matrix E of �(B + EB) and comparing with (14)yields, after elementary manipulations, the relative gradi-ent: rEf(y) = rEf(Bx) = E [ f 0(y)yT]: (16)Note that this relative gradient depends only on the dis-tribution of y. This was to be expected since modifyingB in to B + EB amounts to modifying y into y + Ey, re-gardless of the particular values of x or B. In view of (13),the gradient rule for minimizing �(B) is to modify B intoB + EB with E = ��r� because then the variation of � is< r�jE > +o(E) = ��jjr�jj2Fro+ o(�) which is negative if� is a small enough positive scalar as long as r� 6= 0 . Astochastic relative gradient is obtained by deleting the ex-pectation operator in (16), leading to the adaptation rule:Bt+1 = Bt � � f 0(yt)yTt Bt: (17)for the stochastic minimization of Ef(y).The key point here is that the adaptation rule (17) ac-tually is serial updating algorithm in the form (4) withH(y) = f 0(y)yT. According to the discussion of the pre-vious section, it will enjoy uniform performance. The con-clusion is that stochastic relative gradient algorithm yieldsadaptive algorithm in the serial form. Had we used theabsolute gradient rather than the relative one, we wouldhave found an updating rule not meeting the conditionsfor uniform performance, namely that H should depend ony only.The process of obtaining function H via a relative gra-dient computation is not limited to the optimization of ob-jectives in the form �(B) = Ef(y). Recall in particularthat equation (6) de�nes an `orthogonal' contrast functionfor source separation, i.e. it is to be optimized under theconstraint that the output of B is (spatially) white. Nextsection shows how the previous approach is easily adaptedto yield the required H(�) function for orthogonally con-strained optimization.III. Serial updates for orthogonal contrastsThe contrast function �4 de�ned in (6) is in the form�4 = Ef(y) but must be optimized under the decorrela-tion constraint Ry = EyyT = I. Batch procedures for op-timizing contrast functions under this constraint have beendescribed in [6], [9], [8]; they are based on factoring the sep-arating matrix as B = UW where W an n�m whiteningmatrix and U is an n � n orthogonal matrix: there is an



CARDOSO AND LAHELD: EQUIVARIANT ADAPTIVE SOURCE SEPARATION 5- - - -st xt zt ytA W UFig. 3. A two-stage separation in batch processingintermediate vector zt = Wxt and the estimated sourcesignal vector is yt = Uzt (see �gure 3). By de�nition, Wis a whitening matrix if its output is spatially white i.e.:I = Rz def= E [ ztzTt ] = WRxWT: (18)The constraint Ry = I is then satis�ed if, and only if, U isorthogonal. Thus, after whitening of x into z, the problemof minimizing a contrast function Ef(y) = Ef(Bx) over Bunder the constraint Ry = I becomes that of minimizingEf(y) = Ef(Uz) over U under the constraint that U isorthogonal.We now show how this program is completed in the adap-tive context with serial updates: serial updates of a whiten-ing matrix W and of an orthogonal matrix U are �rst ob-tained and then combined into a unique serial updatingrule for B.A. Serial update of a whitening matrixIt is desired to adapt a matrixW such that it convergesto a point where Rz = I. This is obtained by minimizinga `distance' between Rz and I. The Kullback{Leibler di-vergence [10] between two zero-mean normal distributionswith covariance matrices equal to Rz and I respectively isK(Rz) def= Trace(Rz) � log det(Rz) � n: (19)Hence a whitening matrix is a minimizer of�2(W ) def= K(WRxWT): (20)Computing the relative gradient is easily done in two steps.First, if W is modi�ed into W + �W = W + EW , thecorresponding variation of Rz =WRxWT is�Rz = �WRxWT +WRx�WT = ERz +RzET (21)Second, the di�erential of function K is known to beK(Rz + �Rz) = K(Rz) + Tracef(I �R�1z )�Rzg+ o(�Rz):(22)Combining (21) and (22) yields, after simpli�cation:r�2 = 2(Rz � I) = 2E[ztzTt � I] (23)The serial adaptive whitener is obtained by deleting theexpectation operator:Wt+1 = Wt � �t [ ztzTt � I] Wt: (24)Interestingly enough, this rule can be shown to correspondthe �rst order (in �) approximation of the Potter formula[22] for the recursive computation of the inverse squareroot of a covariance matrix estimated with an exponentialwindow. In this instance, the serial approach is seen tocorrespond to an optimal solution.

B. Serial update of an orthogonal matrixIt is desired to adapt an orthogonal matrix U such that�4(U ) = Ef(y) = Ef(Uz) is minimized. Unconstrainedminimization of such an objective leads to the updatingrule (17) which does not preserve the orthogonality of U .Orthogonality could be preserved by some parameteriza-tion of the orthogonal matrices (as product of Givens ro-tations for instance), but this solution is to be discardedbecause it would result in losing the uniform performanceproperty of serial adaptation and also because we ulti-mately want to get rid of the factorization of B into twodistinct matrices W and U . Hence, we rather stick to theidea that U should be updated in the form U + EU butnote that if U is orthogonal, i.e. UUT = I, then(U + EU )(U + EU )T = I + E + ET + EET (25)so that the orthogonality of U + EU is preserved at �rst-order, i.e. (U + EU )(U + EU )T = I + o(E), if E is skew-symmetric, i.e. veri�es ET = �E .Thus the (relative) gradient rule, which consists in align-ing �E along the (relative) gradient E[f 0(y)yT] cannot befollowed since this gradient is not skew-symmetric. In or-der to satisfy the orthogonality constraint, matrix�E mustbe aligned along the orthogonal projection of the relativegradient onto the space of skew-symmetric matrices. Thischoice guarantees that matrix �E makes an acute anglewith the relative gradient matrix, still resulting in a de-crease of the objective function if � is small enough. Theorthogonal projection ofr�4 onto the skew-symmetric ma-trix set is just (r�4�r�T4 )=2 leading to the serial update:Ut+1 = Ut � �t [ f 0(yt)yTt � ytf 0T(yt)] Ut: (26)Of course, such an updating rule does not preserve exactlyunitarity, but only at �rst order in �. Next section showsthat this problem disappears when the whitening stage andthe orthogonal stage are considered altogether.C. The one-stage solutionA global updating rule for matrix B = UW is obtainedby computing Bt+1 = Ut+1Wt+1 where Wt+1 is givenby (24) and Ut+1 by (26). From (26), we readily obtainUt+1Wt = Bt � �t[f 0(yt)yTt � ytf 0T(yt)]Bt: (27)From (24) and using UTt Ut = I and yt = Utzt, we getUtWt+1 = Bt � �tUt[ztzTt � I]Wt= Bt � �t[ytyTt � I]Bt: (28)There is no reason to use the same step size in (27) and (28),but since a ratio di�erent from 1 could be integrated in f ,we do assume here an identical value, and the resultingadaptation for Bt, dropping the term in �2t , then just isBt+1 = Bt � �t H(yt) Bt (29)where function H(y) appears to be:H(y) = yyT � I + f 0(y)yT � yf 0(y)T: (30)



6 SUBMITTED TO THE IEEE TRANSACTIONS ON SIGNAL PROCESSING, October 22, 1994Hence, we do arrive at an algorithm for updating a sep-arating matrix B in the serial form. This completes theprogram of this section.IV. The EASI algorithmsIn the previous section, the notion of serial update ap-plied to a 4th-order contrast function provided us with aspeci�c form (30) for the function H(y) required in theserial approach. The source separation algorithms to beconsidered in this paper improves on (30) by modifying itin two respects. First, we consider using functions otherthan f 0(y) for increased 
exibility. Second, stabilizing fac-tors are introduced which are needed since �nite adaptationsteps are used in practice. This is discussed in the next twosubsections and yields a family of adaptive source separa-tion algorithms as summarized by eqs. (35) and (36).A. Stationarity and non-linearitiesAn stationary point for a serial updating algorithm is anymatrix B such that EH(y) = 0. For the serial algorithmderived in the previous section, i.e. for H(�) given by (30),this equation can be decomposed into symmetric and skew-symmetric parts, yielding: E[yyT] = I (31)E[f 0(y)yT � yf 0(y)T] = 0: (32)The condition (31) is that the output y is spatially whiteand matches the normalization convention (5). This con-dition ensures the second-order independence (i.e. decorre-lation) of the separated signals. It is however clearly notsu�cient for determining a separating matrix since, if theoutput y is further rotated by some orthogonal matrix, thecondition Ry = I is preserved but source separation is nolonger achieved. Hence, other than second order conditionsare required and these are provided by (32). If the com-ponents of y are mutually independent, then, for i 6= j,one has E[yif 0j(yj)] = Eyi Ef 0j(yj) which cancels by thezero mean assumption, Thus condition (32) is satis�ed ifB is a separating matrix. This conclusion reached usingonly the fact that f 0 acts componentwise. Thus, de�ning acomponentwise nonlinear function g:g(y) = [g1(y1); : : : ; gn(yn)]T; (33)the form (30) may be generalized intoH(y) = yyT � I + g(y)yT � yg(y)T (34)with the separating matrices remaining stationary pointsof the rule (4). To any componentwise nonlinear functiong, we thus associate a corresponding EASI algorithm:EASI algorithms for adaptive source separationBt+1 = Bt � �t �ytyTt � I + g(yt)yTt � ytg(yt)T�Bt(35)We note that the functions gi must be nonlinear: if anytwo functions gi and gj are linear, then the corresponding

entries in the skew-symmetric part of H(y) provide onlysecond-order equilibrium conditions which are redundantwith those provided by the symmetric part of H(y).B. NormalizationIn some applications like digital communications, fastconvergence is required, implying the use of `large' adap-tation steps (say � > 10�2) which may cause explosivebehavior if no special provisions are taken. We note thata stabilization procedure should not be based on clippingthe entries of the separating matrix or renormalizing itsrows. In fact, stabilization should not involve any actionon the separating matrix itself, because this would spoil theuniform performance property. Hence, stabilization shouldrather be implemented by preventing H(�) to take too largevalues, suggesting the following normalized form:Normalized EASI algorithms for adaptive source separationBt+1 = Bt��t � ytyTt � I1 + �t yTt yt + g(yt)yTt � ytg(yt)T1 + �t jyTt g(yt)j �Bt(36)which is very similar to the modi�cation of the LMS al-gorithm into the `normalized LMS'. It o�ers the followingadvantages. It entails very little extra computation withrespect to (30) and it does not introduce additional pa-rameter. Also, when the system is close to a stationarypoint, the covariance of y is close to the identity matrixso that, for reasonably small �, the normalized version isexpected to behave like the raw version (as con�rmed insection VII) for which a detailed performance analysis ispossible. Finally, the choice of the denominators is suchthat a natural protection against the outliers is granted.Finally, the normalized form has proved very satisfactoryin the numerical experiments.C. DiscussionStability and permutations. The choice of the nonlinearfunction g is of course crucial to the performance of thealgorithm. For any choice of g, a separating matrix a sta-tionary point but the real issue is the stability of the sepa-rating matrices. The stability condition is (48), establishedbelow by an asymptotic analysis which also give some cluesas how to choose and scale the nonlinear functions g1, : : : ,gn. We note here that this analysis is led for Ct being closeto the identity matrix, but the case where Ct converges toanother permutation matrix reduces to the previous caseby permuting accordingly the nonlinear functions acting atthe output of Bt.Uniform performance and the noise. The uniform conver-gence property rigorously holds if model (1) is veri�ed ex-actly, as discussed above. In particular, one can deal witharbitrarily ill conditioned mixtures, a fact which may ap-pear paradoxical : the intrinsic hardness of array process-ing is known to depend on the conditioning of matrix A.This is not true, though, in the speci�c case of model (1)which ignores any additive noise. In practice, some noise isalways present and the claim of uniform performance may



CARDOSO AND LAHELD: EQUIVARIANT ADAPTIVE SOURCE SEPARATION 7be more cautiously restated as: matrixA determines an up-per limit to the noise level, under which the performanceof EASI does not depend on A.On the scale indetermination. Because of the scaling in-determinations inherent to the source separation problem,some parameters have to be arbitrarily �xed. Quite of-ten, this is achieved by constraining the separating matrix.For instance, its diagonal elements or those of its inverseare �xed to unity [17], [19] or the rows of Bt are normal-ized [20]. In contrast, EASI does not constrain the sepa-rating matrix; indeterminations are dealt with by requiringthat the output signals have unit variance. This solutionis necessary to get uniform performance but also o�ers an-other important bene�t: knowing in advance the range ofthe output signals allows to properly scale the non linear-ities. Assume for instance, that the hyperbolic tangent isused at the �rst output, i.e. g1(y1) = tanh(�y1). Here �is a real parameter which should not be chosen too smallbecause this would make the tangent to work in its lineardomain. However, the choice of � depends on the scale ofy1 which is known in advance when indeterminations are�xed by requiring unit variance output signals. In contrast,if indeterminations are �xed by constraining B, the rangeof y1 may be arbitrarily large or small, depending on themixing matrix A.V. Asymptotic analysisIn this section, we evaluate the quantities governing thestability and the performance of serial adaptive algorithms.Since theoretical results are mainly available in the limit ofarbitrarily small step size, we use the form (34) of func-tion H(�) rather than the normalized version of (36). Thisapproximation has negligible impact as checked in the ex-perimental section VII.We informally recall some de�nitions and results (see [3])about stochastic algorithms in the form�t+1 = �t � �t (�t;xt) (37)where xt is a stationary sequence of random variables and�t a sequence of positive numbers. A stationary point �?veri�es E (�?;x) = 0 and is said to be asymptotically stableif all the eigenvalues of matrix � de�ned as� def= @E (�;x)@� j�=�? (38)have positive real parts.When �? is the unique global attractor, then for larget, small enough �xed step size �t = �, and under ratherrestrictive conditions, the covariance matrix of �t is ap-proximately given, in the i.i.d. case, by the solution of theLyapounov equation:�Cov(�t) + Cov(�t)�T = �P (39)where P denotes the covariance matrix of  for � = �?:P def= Cov( (�? ;x)) = E[ (�?;x) T(�?;x)]: (40)

Clearly, this result does not apply in full rigor to the sourceseparation problem where there are several basins of at-traction. However, in practical applications, the step sizeis chosen to ensure that the probability of jumps from oneseparating matrix to another is su�ciently small. The closeform solution of equation (39) is given below and is indeedfound to predict with great accuracy the residual error ofsource separation observed in numerical simulations (seesection VII).We recall that it is only needed to study the dynamics ofthe global system Ct as given by (11). The above resultsapply to our algorithm by the identi�cations �t ! Ct and,according to (11),  (�;x) ! H(Cs)C . It is also needed tovectorize these matrices. The following convention turnsout convenient: an n � n matrix is turned into a n2 � 1vector by �rst stacking the (i; j)-th and (j; i)-th entries foreach 1 � i < j � n. and then appending the diagonalterms of the matrix, For instance, matrix C corresponds tovector �: � = [� � � ; cij; cji; � � �| {z }1�i<j�n ; � � � ; cii; � � �| {z }1�i�n ]T (41)and similarly for matrix H(Cs)C.A. Asymptotic stabilityThe `mean �eld' of an adaptive algorithmat point � is thevector E (�;x). In our setting, the mean �eld is denotedH(C) and is H(C) def= E[H(Cst)C]: (42)Simple calculations (see appendix) reveal that its linearapproximation in the neighborhood of C? = I isHii(I + E) = 2Eii + o(E) (43)� Hij(I + E)Hji(I + E) � = DJ ijD�1 � EijEji � + o(E) (44)where the 2� 2 matrices D and J ij areD def= � 1 11 �1 � J ij def= � 2 0�i � �j �i + �j � (45)with the non-linear moments of the source signals:�i def= E [g0i(si)� sigi(si)] (46)�i def= E [g0i(si) + sigi(si)]: (47)The signi�cant fact in eq. (43) (holding for 1 � i � n)and in eq. 44) (holding for 1 � i < j � n) is the pairwisedecoupling. It means that, with the vectorization (41),matrix � is block diagonal: there are n(n � 1)=2 blocksof size 2 � 2 equal to DJ ijD�1 for 1 � i < j � n andn `blocks' of size 1 � 1 with entries equal to 2. Since theeigenvalues of J ij are 2 and �i + �j , we get the followingStability condition: �i+�j > 0 for 1 � i < j � n (48)for a separating matrix B such that BA = I.



8 SUBMITTED TO THE IEEE TRANSACTIONS ON SIGNAL PROCESSING, October 22, 1994The stability conditions for these separating matrices Bsuch that BA is a permutation are very similar. Indeed, ifthe source signal si is present at the �(i)-th output of B,then it undergoes the non-linearity g�(i). Hence, the stabil-ity of this separatingB is subject to condition (48) providedthe moments �i are understood as E [ g0�(i)(si)�sig�(i)(si)].Obviously when identical functions gi are used or whensources with identical distributions have to be separated,the stability condition is veri�ed for C? being any permu-tation if it is veri�ed for C? = I. The case where C? is apermutation matrix with some 1's changed to �1, i.e.whenC? is any quasi-identity, leads again to the same conditionwhen the gi's are odd functions because the moments �iare then invariant under a change of sign.The non-linear moments �i deserve some comments.First note that if gi is a cubic distortion : gi(si) = s3i ,then �i = 3 � Ejsij4 since Ejsij2 = 1. This just the oppo-site of the fourth-order cumulant (or kurtosis) of si. Thestability condition for cubic non-linearities then is that thesum of the kurtosis of any two sources must be negative.This condition (48) is weaker than the requirement that allsource signals have a negative kurtosis. In particular, thestability condition (48) is veri�ed if one source is Gaussian(in which case, its kurtosis is zero) and the other sourceshave negative kurtosis. Also note that, integrating by partsthe de�nition of �i, it is easily seen that �i = 0 if si is aGaussian variable, independently of the non-linear functiongi. This shows that the stability condition (48) can neverbe met if there is more than one Gaussian source signal.Finally, if gi is a linear function, then �i = 0: it is seen thatall the functions gi but possibly one must be non linear tomake a separating matrix stable.B. Asymptotic covariance and rejection ratesIn this section, we give close form expressions for therejection rates obtained after convergence with a `small'�xed step size �. When the global system is C = I + E ,the i-th estimated source signal (the i-th output of C) isbsi = yi = [(I + E)s]i = (1 + Eii)si +Xj 6=i Eijsj: (49)Since the signals are independent with unit variance andsince E is of order p�, equation (49) shows that the ratio ofthe variance of the (undesired) j-th signal to the variance ofthe i-th signal (of interest) is approximately equal to jEijj2.Hence, we are interested in computing pairwise rejectionrates, which correspond to intersymbol interference in theterminology of equalization, and are de�ned by:ISIij = Ej(Ct � I)ij j2: (50)If Ct is `vectorized' in a n2-dimensional parameter vector,these quantities are the diagonal elements of matrixCov(�).The computations are deferred to appendix B as well as theresults for sources with di�erent distributions.For signals with identical distributions and a single non-linearity g(�) = gi(�), there is only one extra moment in-volved: 
 def= Eg2(s) Es2 � E2[g(s)s] (51)

where s is any of the si's. The rejection rates are (neces-sarily) identical and given byISI = ISIij = ��14 + 
2�� : (52)Note that 
 is positive by the Cauchy-Schwartz inequalityand � is positive by the stability condition. Hence, we haveISI � �4 (53)and this bound is reached when s = �1 with equal proba-bility and g is an odd function because then 
 = 0.C. Tuning the nonlinearitiesThe analytical results obtained above provide us withguidelines for choosing the nonlinearities in g(�). We do notintend to address this issue in full generality and will dis-cuss here only the simplest case, often encountered in prac-tice, where the sources have identical distributions. Sincethere is no reason in this case to use di�erent nonlineari-ties, we take g1(�) = � � � = gn(�) = g(�) and all the nonlinearmoments are then also equal: we denote � = �i and 
 = 
i.Three points are discussed below.Local convergence. The mean �eld H(C) then has a verysimple local structure when C is close to any quasi-identityattractor C?: equations (44) and (43) combine intoH(C? + E) = (E + ET) + �(E � ET) + o(E) (54)showing that symmetric and skew-symmetric deviations ofCt from C? are pulled back with a mean strength propor-tional to 2 and to � respectively. When the moment � isknown in advance or can be (even roughly) estimated, ex-pression (54) suggests to normalize the non-linearity g(�)into ~g(�) = g(�)=� because then the nonlinear moment ~�associated to ~g is ~� = 1. With such a choice, the mean�eld in the neighborhood of an attractor becomesH(C? + E) = 2E + o(E); (55)meaning that all the deviations to a separator are lo-cally isotropically pulled back, a bene�t usually reservedto Newton-like algorithms.Rejection rates. The nonlinear function g can be chosento minimize the rejection rates under the constraint thatits amplitude is �xed by the requirement of isotropic lo-cal convergence. In view of (52), the optimal nonlinearityshould minimize 
 under the constraint that � = 1. Thisoptimization problem is easily solved by the Lagrange mul-tiplier method when the source signals are identically dis-tributed with a di�erentiable probability density functionp(s). The optimal nonlinearity is found to begopt(s) =  (s)E 2(s) � 1 where  (s) def= �p0(s)p(s) : (56)The resulting minimal rejection rate may be computed tobe ISImin = ��14 + 12(E 2(s)� 1)� : (57)



CARDOSO AND LAHELD: EQUIVARIANT ADAPTIVE SOURCE SEPARATION 9As a �nal comment, we note that the various nonlinearmoments appearing during performance analysis are nothomogeneous and, unlike cumulants, cannot generally benormalized. This is an unavoidable e�ect when arbitrarynonlinearities are used. They are de�ned for unit variancerandom variables and, in any application, the source sig-nals should be normalized to unit variance before the cor-responding formulas are theoretically or empirically evalu-ated. It should be clear that our results giving the stabilityconditions and the rejection rates are valid regardless of the`true' scale of the source signals.VI. The complex caseAt this stage, the processing of complex valued sig-nals and mixtures is obtained straightforwardly from thereal case by understanding the transposition operator �Tas the transpose-conjugation operator and understanding`unitary' in place of `orthogonal'. The discussion in sectionIV-A on stationarity of the separating matrices carries overto the complex case with only one restriction: the diago-nal terms of the skew-symmetric part of EH(s) are notnecessarily zero unless the scalar-to-scalar functions gi arerestricted to be phase-preserving, i.e. of the formgi(yi) = yili(jyij2) 1 � i � n (58)where the li's are real-valued functions. In order to eas-ily extend the performance analysis to the complex case,it must be assumed that the source signals are `circularlydistributed', i.e. we assume:Assumption 5. (Circularity): E [ si(t)2] = 0; 1 � i � n.The modi�cations with respect to the real case are thenmainly cosmetic and the results are given below withoutproof.Regarding the stability of the separating matrices, thecomputations are very similar to the real case: it is foundthat � Hij(I + E)H�ji(I + E) � = DJ ijD�1 � EijE�ji �+ o(E) (59)where matrices D and J ij are as in (45), but the nonlinearmoments are slightly di�erent:�i def= E[jsij2l0i(jsij2) + li(jsij2)� jsij2li(jsij2)]; (60)�i def= E[jsij2l0i(jsij2) + li(jsij2) + jsij2li(jsij2)]: (61)Hence, the stability condition (48) is unchanged provided�i is de�ned according to (60). For cubic non-linearities,i.e. for li(s) = s, one has �i = 2� E jsij4 and ��i again isthe fourth-order cumulant of si in the circular case.Regarding the asymptotic covariance, it is governed bythe nonlinear moments
i def= E[jsij2l2i (jsij2)]�[Ejsij2li(jsij2)]2 �i def= E[jsij2li(jsij2)](62)which are direct complex counterparts of those de�nedin (72). With these de�nitions, the rejections rates takethe very same form, either in the i.i.d. case, as given bythe simple formula (52) or in the general case as given bythe general expression (81).

VII. Numerical experimentsThis section illustrates some properties of EASI andinvestigates the accuracy of the theoretical results, sincethese are only asymptotics (small �). All the experimentsare done in the complex case (but in �gure 7). Figures 4 to6 display trajectories of the modulus of the coe�cients ofthe global system Ct. Hence, an experiment with n sourcesis illustrated by a plot with n2 trajectories, with n of themgetting close to 1 and the other getting close to zero.Fast convergence is �rst illustrated by �gure 4 for twoi.i.d. QAM16 sources using the basic cubic nonlinearitygi(y) = jyij2yi for 1 � i � n. The dashed lines represent �two standard deviations computed from (52) and (75).
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Fig. 4. A sample run. Convergence to 0 or 1 of the moduli of thecoe�cients of the global system BtA. Fixed step size : � = 0:03.Two QAM16 sources, cubic non-linearities : gi(y) = jyij2yi.Figure 5 is similar but three QAM16 sources are involvedand the step size is decreased according to the coolingscheme: �t = 2=t.
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Fig. 5. A sample run. Convergence to 0 or 1 of the moduli of thecoe�cients of the global system BtA. Three QAM16 sources.Decreasing step size : �t = 2=t.Figure 6 is concerned with the e�ect of normalization.With the same QAM16 input, two serial algorithms arerun with � = 0:01 one with the normalized algorithm (36),the other with the raw algorithm (35); Both trajectoriesare displayed and show little discrepancy (see also table I).
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Fig. 6. E�ect of normalization.Figure 7 illustrates the isotropic convergence with a bal-anced nonlinearity. It displays the evolution of a logarith-mic distance of Ct to the identity, namely 20 log10 jjCt �IjjFro, with a constant step size. Each curve correspondsto a di�erent initial condition. These initial conditions arerandomly chosen but are at a �xed Frobenius distance fromthe identity matrix. Both panels are for cubic nonlinearitiesand uniformly distributed sources which have a normalizedkurtosis equal to �6=5 (this is the only experiment withreal signals). Isotropic convergence is achieved by takingg(s) = 5=6 s3, so that � = 1 as suggested in the discussionof section V-C. The resulting trajectories are displayedin the lower panel, where the dashed line corresponds toa distance varying as exp(�2�t). The upper panel dis-plays trajectories for g(s) = 0:2 s3: they are sandwichedbetween two dashed lines corresponding to exp(�2�t) andexp(�2 0:25=6�t) which are the mean decaying rates for thesymmetric and skew-symmetric parts respectively. Hence,according to the respective proportion of symmetric andskew-symmetric errors in C0, various decaying rates areobserved, while the lower panel shows logarithmic slopeswhich are essentially independent of the initial condition.The rejection rates predicted by (52) have been experi-mentallymeasured in the case of n = 2 sources. Results arereported in table I. The following �xed step sizes are used:� = 0:1; 0:3; 0:01; 0:003. For each step size, NMC = 500 tra-jectories are simulated. The initial point is Co = I and thesample estimate of ISI12 is computed over a trajectory inthe range 5=� < t < 35=� (the scaling with 1=� is adoptedto get a constant relative precision). The resulting NMCvalues are further averaged and also used to determine anexperimental standard deviation. The table presents themean plus and minus two standard deviations of ��1ISI12.There are no results presented for � = 0:1 and QAM16signals for the non-normalized algorithms because a signif-icant fraction of divergent trajectories have been observed.In all the other cases, representing 15�500 trajectories, nodivergence have been observed. It appears that asymptoticanalysis correctly predicts the rejection rates for step sizesas large as � = 0:01. We also note that normalization doesnot a�ect much the empirical performance.
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CARDOSO AND LAHELD: EQUIVARIANT ADAPTIVE SOURCE SEPARATION 11VIII. ConclusionA class of adaptive algorithms for the blind separationof sources has been introduced. It is based on the idea ofserial updating by which the uniform performance prop-erty of equivariant estimators is directly inherited by thecorresponding adaptive serial algorithms. For adaptive al-gorithms, the uniform performance property means thatchanging the mixing matrix is equivalent to changing theinitial condition. As a result, the characteristics of a serialalgorithm, such as the stability conditions, the convergencerates or the residual errors, do not depend on the mixingmatrix.A serial algorithm is de�ned by specifying a vector-to-matrix mapping H verifying EH(s) = 0 if the randomvector s has independent components. While many suchmappings may be devised, we have considered a speci�cclass, where the symmetric part of H corresponds to a sec-ond order condition of independence (decorrelation) whilethe skew-symmetric part involves nonlinear functions. Thisstructure allows a simple, very regular implementation inthe real case as well as in the complex case. By its verystructure, the algorithm can be used `as is' when more sen-sors than sources are available.The asymptotic analysis for arbitrary nonlinearities re-veals a pairwise decoupling, pairwise stability conditionsand yields the rejection rates in close form. These resultsallow the symmetric and skew-symmetric parts to be bal-anced in order obtain isotropic local convergence and thenon linearity to be shaped in order to maximize interfer-ence rejection. AppendixI. Derivative of the mean fieldWe compute the �rst-order expansion of the mean �eldin the neighborhood of the identity matrix. This amountsto �nding the linear term in E in H(I +E). First note thatthe de�nition (42) rewritesH(I + E) = E[ H(s+ Es)(I + E)]: (63)Since the identity is a stationary point, we have EH(s) = 0so that the mean �eld also isH(I + E) = EH(s + Es) + o(E): (64)The hermitian part of EH(s+ Es) is readily obtained as :E [ (s+ Es)(s+ Es)T � I] = E + ET + o(E) (65)since our normalization convention is E [ ssT] = I. Inorder to compute the antisymmetric part of H(I + E) thatis E [ g(y)yT � yg(yT] with y = s + Es, we have to godown to the component level. We start by evaluating the(i; j)-th entry of E [ yg(y)T]. Using yi = si+Pa Eiasa, weget yigj(yj) = sigj(sj) +Xa Eiasagj(sj)+ Xb Ejbsisbg0j(sj) + o(E) (66)

There is no need evaluating the terms for i = j becausethese disappear in the anti-symmetrization. Focusing onthe terms with i 6= j, we next �nd thatEsagj(sj ) = �(j; a) Esjgj(sj) (67)Esisbg0j(sj ) = �(i; b) Es2iEg0j(sj) for i 6= j (68)because the source signals are independent with zero mean.It follows that, for i 6= j,Eyigj(yj) = EijEsjgj(sj) + EjiEs2iEg0j(sj ) + o(E): (69)Expectations (63), (65) and (69) then combine into :Hij(I + E) = Eij(1 + Es2jEg0i(si) � Esjgj(sj))+ Eji(1� Es2iEg0j(sj) + Esigi(si)) + o(E)which, after symmetrization yields (44).II. Asymptotic covarianceTo solve (39), we must �rst evaluate matrix P . Usingsource independence, it is easily checked most of the entriesof H(s) are uncorrelated. The non vanishing terms can becomputed to be Cov(Hii(s)) = Ejsij4 � 1 (70)Cov�� Hij(s)Hji(s) �� = DQijDT (71)with the following de�nitionsQij def= � 1 �i � �j�i � �j 
i + 
j + (�i � �j)2 � (72)
i def= E[g2i (si)]� [Esigi(si)]2 (73)�i def= E[gi(si)si]: (74)This is a pleasant �nding since it means that P has thesame block diagonal structure as �, allowing the Lya-pounov equation (39) to be solved blockwise. Further, theblocks having sizes 1 and 2, close form solutions can beworked out.Solving for the 1 � 1 blocks is immediate: each scalarequation yields Cov(Cii) = �Es4i � 14 : (75)The 2 � 2 Lyapounov equation extracted from (39) for apair i 6= j is(DJ ijD�1)Rij + Rij(DJ ijD�1)T = �DQijDT (76)where we set Rij def= Cov�� Cij(s)Cji(s) �� : (77)Left and right multiplication by D�1 and D�T respec-tively yieldsJ ij(D�1RijD�T) + (D�1RijD�T)J ijT = �Qij : (78)



12 SUBMITTED TO THE IEEE TRANSACTIONS ON SIGNAL PROCESSING, October 22, 1994Matrix J ij being lower triangular, this 2 � 2 Lyapounovequation is easily worked out. We �nd the following inter-mediate result: If (x; y; t) is the solution of� a 0c b � � x tt y �+ � x tt y � � a c0 b � = � � 

 � �(79)then, the northwest entry of D � x tt y �DT isx+ y + 2t = �2a + �2b + (2b� c)(2a
 � c�)2ab(a+ b) : (80)From this, an explicit expression for Cov(Cij) is readilyobtained. We skip some additional uninspiring algebraicreorganization which yields the form most appropriate forour concerns:EjCijj2 = Cov(Cij) = �(14 + 12 
i + 
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