Static Frequency Assignment in Cellular
Networks

Lata Narayanan® Sunil Shendef
October 15, 1997

Abstract

A cellular network is generally modeled as a subgraph of the triangular lat-
tice. In the static frequency assignment problem, each vertex of the graph is a
base station in the network, and has associated with it an integer weight that
represents the number of calls that must be served at the vertex by assigning
distinct frequencies per call. The edges of the graph model interference con-
straints for frequencies assigned to neighboring stations. The static frequency
assignment problem can be abstracted as a graph multicoloring problem. We
describe an efficient algorithm to optimally multicolor any weighted even or odd
length cycle representing a cellular network. This result is further extended to
any outerplanar graph. For the problem of multicoloring an arbitrary connected
subgraph of the triangular lattice, we demonstrate an approximation algorithm
which guarantees that no more than 4/3 times the minimum number of required
colors are used. Further, we show that this algorithm can be implemented in
a distributed manner, where each station needs to have knowledge only of the
weights at a small neighborhood.

Keywords: Graph multicoloring, approximation algorithms, distributed

algorithms, frequency assignment, cellular networks.

*Department of Computer Science, Concordia University, Montreal, Quebec, Canada, H3G 1MS8.
email: lata@cs.concordia.ca, FAX (514) 848-2830. Research supported by NSERC, Canada.

T Department of Computer Science and Engg., University of Nebraska-Lincoln, Lincoln, NE 68588,
USA. email: sunil@calypso.unl.edu, FAX (402) 472-7767. This research was conducted at Concordia
University during the summer of 1996, with partial support from NSERC, Canada.

1 Introduction

Cellular data and communication networks can be modeled as planar graphs with
each vertex representing a base station (sometimes called a cell) in the network. Cells
can communicate with their neighbors in the graph via directional radio transceivers.
At any given time, a certain number of active connections (or calls in cellular network
terminology) are serviced by their nearest base station. This service consists mainly
of assigning a frequency to each client call in a manner that minimizes or avoids radio
interference between two distinct calls in the network. However, cellular networks use
a fixed spectrum of radio frequencies and the efficient shared utilization of the limited
available bandwidth is critical to the viability and efficiency of the network. The
static frequency assignment problem, therefore, consists of designing an interference-
free frequency allocation protocol for a network where the number of calls per cell is
known a priori. This forms the motivation for the problems studied in this paper.

In particular, cellular networks are usually modeled as finite portions of the in-
finite triangular grid embedded in the plane. Vertices representing cells are placed
at the apexes of similar triangles, and each vertex has at most six other neighbors
surrounding it in the grid. The reason for adopting this particular geometry stems
from the fact that cells are uniformly distributed in the geographic area of the net-
work, and an individual cell generally has six directional transceivers. Hence, the
Voronoi region around a cell (or equivalently, that cell’s calling area) can be idealized
as a regular hexagon. The triangular tiling representing the network is simply the
planar dual of the resulting Voronoi diagram. We shall refer to the resulting graphs
as heragon graphs.

The frequency assignment problem incorporating interference constraints can be
abstracted as follows. Let ¢ = (V| F) denote an hexagon graph. Fach vertex v € V
has an associated integer weight, w(v) > 0. A w-coloring (or multicoloring) of ¢
is an assignment of sets of colors to the vertices such that each vertex v is assigned
w(v) distinct colors whereby for every edge (u,v) € E, the set of colors assigned to
the endpoints u and v are disjoint. In particular, we are interested in a minimum
multicoloring or a w-coloring of G that uses the least number of colors.

In the context of frequency assignment, a multicoloring as defined above, provides
a useful abstraction of the essential interference constraints: each color represents a
distinct frequency and it is assumed that two calls may use the same frequency if and
only if they originate in distinct cells that are not neighbors. It should be noted that
in practice, the available cellular frequency spectrum is a contiguous linear subinterval

of the radio spectrum, and frequency reuse is controlled by a sequence of non-negative

integers, ¢o > ¢ ..., with ¢g > 1, called distance reuse constraints. Two distinct calls
in cells that are a distance ¢ apart in the underlying graph must be assigned frequencies
that differ by ¢; in the frequency spectrum. Hale [2] discusses many generalizations
and versions of the frequency assignment problem. We formulate our problem under
the simplest constraints, viz. when ¢ = ¢; = 1 and ¢; = 0, + > 2. Under this
formulation, the problem reduces to being able to compute a minimum multicoloring
to a given hexagon graph.

In the sequel, we assume that G = (V, E,w) denotes a hexagon graph, i.e. it is
a (vertex) weighted graph that is a finite, induced subgraph of the infinite triangular
grid. Thus, the graph is planar, and every vertex v € V has degree at most six and an
associated integer weight, w(v) > 0. The weighted chromatic number of G, denoted
X(G), is the minimum number of colors required in a w-coloring of G. Even for
graphs with a regular structure such as those considered in the paper, the problem of
determining y((G') is non-trivial. In fact, it has been established only recently that the
problem is NP-complete [7], and hence it is unlikely that a polynomial time algorithm
for computing x(() can be devised. Naturally, it is of interest to study approximation
algorithms for the problem.

[t is easy to see that y((G') must be greater than the total number of colors required
at any set of mutually adjacent vertices. Thus the maximum over the sum of weights
at vertices in any maximal clique in the graph is a trivial lower bound on (). Note
that for hexagon graphs, edges and triangles are maximal cliques. In the direction of
upper bounds, while there is a vast literature on algorithms for frequency assignment
on graphs (especially hexagon graphs) that claim to use few colors, generally there
are no proven bounds on the performance of the proposed algorithms, in terms of the
number of colors used in relation to the weighted chromatic number [1, 5, 6, 9, 10].
We note here two exceptions. A well-known algorithm, sometimes referred to as Fized
Allocation, uses the fact that the underlying graph can be 3-colored. The algorithm
uses three fixed sets of colors, one for each base color. A vertex that has base color 1
uses colors from the first set, and a vertex that base color 2 or 3 uses colors from the
second or third sets respectively. It is easy to show that this algorithm could use as
many as 3 times the number of required colors. Janssen et. al. [4] propose a different
algorithm called Fized Preference Allocation that is guaranteed to use no more than
3/2 times the minimum number of colors required.

In the next section, we formally define some basic terminology and problems.
In Section 3, we present an optimal algorithm for multicoloring any cycle. This
result is extended in Section 4 to arbitrary outerplanar graphs. In Section 5, we

address the question of multicoloring an arbitrary hexagon graph, and present an

efficient approximation algorithm with a performance guarantee of within 4/3 of the
optimal. We note that in recent work, McDiarmid and Reed [7] have demonstrated
independently, another 4/3-approximate algorithm for the same problem considered
here. Finally, in Section 6, we show how to implement the above algorithm in a

distributed manner. We conclude with a discussion of future directions in Section 7.

2 Preliminaries

Let G = (V, E,w) be a hexagon graph with a non-negative integer weight vector w
defined on the vertices of the graph, where w(v) represents the number of calls to
be served at vertex v. We assume hereafter that G has a fized planar embedding
with vertices and edges contained in the infinite triangular lattice (tessellation) of the
plane. Thus any vertex v can be connected to at most 6 neighbors, and for a fixed
edge incident on v, any other edge incident on v is at an angle of 7 /3,27 /3, 7,47 /3 or
57 /3 from that edge. Since the triangular lattice is 3-colorable in the ordinary sense
(i.e. when each vertex has unit weight), the underlying graph corresponding to unit
weights at vertices of (& is also 3-colorable.

A w-coloring or multicoloring of the graph GG = (V| E,w) consists of a set of colors
C (the color palette) and a function f that assigns to each v € V' a subset f(v) of
the palette €' such that

e Vv, |f(v)] = w(v): each vertex gets w(v) distinct colors, and
o V(u,v)€ E, f(u)Nf(v) = ¢: two neighboring vertices get disjoint sets of colors.

The span of a multicoloring is the cardinality of the set C'. The weighted chro-
matic number of G, denoted Y(G), is the smallest number m such that there exists
a multicoloring of GG of span m. Thus given a hexagon graph G, our objective is to
find a multicoloring for ¢ whose span is as close to y((') as possible.

The only maximal cliques in G being edges and triangles, we define the weight of
an edge (triangle) in G to be the sum of the weights of its endpoints (apexes). Note
that the weight of any maximal clique of G is a lower bound on x((). Let Dg] and
Dg] denote the respective maxima over the weights of edges and triangles in G, and
define Dg = maX{Dg], Dg]}. Then, if there exists a multicoloring of G with span A,
it follows that:

A > x(G) > D(G).

We will assume without loss of generality that any palette of available colors can

be suitably ordered or partitioned; in particular, we will often assume that vertices

4

are assigned colors from the circularly ordered interval [1, M] = {1,2,..., M}, where
M > 1is a positive integer that depends on the particular graph under consideration.
For instance, when a vertex is assigned the subinterval of colors [z, j] from the palette,
it means that the vertex is colored with the set {z,7 + 1,...,5} in a cyclic manner

where color 1 is assumed to follow the color M.

3 An Optimal Multicoloring for Cycles

Consider a hexagon graph GG = (V, E,w) with n vertices in the form of a simple
cycle, labeled uq,us,...,u, in clockwise order. For simplicity, let w;, 1 < ¢ < n,
denote the weight, w(w;), of vertex u;. We show that any such hexagon graph can be
optimally colored with exactly y(G') colors. There are two cases to consider depending
on whether n, the number of vertices on the cycle, is even or odd.

Suppose that n = 2m, ¢.e. the graph consists of an even length cycle. Then all
maximal cliques of GG being edges, Dg = Dg] is the maximum weight of an edge in the
cycle. We observe that a very simple greedy strategy suffices to multicolor ¢ with the
color palette [1, Dg]. The idea is to assign for 1 < ¢ < m, the colors [1,wy;,_1] to the
odd-numbered vertex uy;,_1 and the colors [Dg — wy; + 1, D] to the even-numbered

vertex uy;. Noting that for 1 < ¢ < m,

D¢

Dg > wy + wain

Y

Wyi—1 + wy;, and

with subscripts interpreted cyclically, it follows that the given multicoloring is proper.
By construction, x(G) = D¢ and the simple parity-based algorithm thus provides an
optimal multicoloring of G.

We note that a very similar idea was already used in the cellular network literature
[9, 4], but it was only applied to networks consisting of simple paths (it is easy to
see that this strategy works in general for any bipartite graph). Unfortunately, the
parity argument fails to multicolor odd-length cycles, precisely because the underlying
unweighted odd-length cycle needs at least three colors in any ordinary coloring. For
instance, suppose that GG is a 9-cycle with weight 2 on each vertex, as shown in Figure
1; it is easy to see that (G cannot be multicolored with D¢ = 4 colors. It will follow
as a consequence of our next result that an optimal multicoloring for the cycle in the
example can be efficiently obtained using one additional color (i.e. x(G) =5 in this

case).

[1,2] [3,4]

[45] [L2] [49]
Figure 1: An optimal coloring for an odd-cycle with weight 2 on every vertex

Definition 3.1 Let G = (V, E,w) be an odd-length simple cycle, with vertices labeled
Uy, U, -y Ugmat, M > 1, in clockwise order. We define

Z?gl—l_l Wi

Dy = maz{DE, [1}

Theorem 3.2 Let G = (V, F,w) be a cycle of odd length n = 2m +1 > 3. Then
X(G) = Dy, and G can be optimally multicolored with exactly Dy, colors. Further, the

multicoloring can be obtained in time O(n).

Proof. It is clear that Dg] is a lower bound on y((G'); we establish that (@L

and hence Dy, is a lower bound on X(G). Since the size of an independent set in (¢
is at most m, any single color can be used only at m vertices or fewer in the cycle.

2m+1

The total number of colors needed at all vertices being ;7" w;, we conclude that

2t VL.
X(G) > (%W Thus, D, is indeed a lower bound on x(G).
Next we show that G can be colored with D, colors using a linear time algorithm;
this completes the proof of the theorem. We first observe that there must be a smallest

index k, 1 < k < m, which satisfies the inequality
N2 < kD

Note that this property holds true for the index m from Definition 3.1, and hence k
is well-defined and can be found easily in linear time.

The vertices of the cycle are now colored as follows:

1. Vertices uy through wusy are assigned contiguous colors in a cyclic manner from

the palette [1, D). Specifically, for 1 < j < 2k, vertex u; 1s assigned the colors

0+ T w). Swi

cyclically. By construction, this ensures that the path wq,us, ..., ug is properly

multicolored since Dy, > Dg].

2. Vertices uggq1 through uz,11 are colored based on their parity (as in the even-
cycle algorithm). In particular, for 2k4+1 < ¢ < 2m+1, the vertex u; is assigned
the colors [1,w] if i is even, or the colors [Dy, — w; + 1, D] if 7 is odd. Again,

this ensures that the path wogi1, uogya, ..., U,y is properly multicolored.

Since vertex uy has the colors [1,w,] and vertex ug,, 11 the colors [D/G—wzmH +1, D/G],
the edge (u1,u2m+41) is also properly multicolored. All that remains is to verify that
the edge (uag, ugkt1) is properly multicolored: this is a consequence of the minimality
of k, for we know that Z?i;lwi > (k — 1)D/G. Hence, no color assigned to ug; can be
among the colors [D/G — Wopy1 + 1, D/G] assigned to vertex ugpyq. [|

We illustrate the labeling scheme by the example in Figure 1. Since the weight of
each vertex is 2, Dy, = max{4,5} = 5 and hence, we use the palette [1...5]. Since
Y2 w; =10 < 2D, but X2 w; = 6 > Dy, we color the first four vertices in a cyclic
manner, always taking the next four available colors in the palette. For the last five
vertices, we assign colors as in a bipartite graph, from the two ends of the interval
[1,5]. Finally, we note that our algorithm can actually multicolor any cycle, and not

just cycles that are hexagon graphs (i.e. embedded in the triangular lattice).

4 Optimal multicoloring of outerplanar graphs

A graph is said to be outerplanar if it can be embedded in the plane so that every
vertex of (G lies on the boundary of the exterior face. In this section, we assume we
are given an outerplanar graph G with a fixed planar embedding having the above

property. We use the following well-known characterization of outerplanar graphs.

Fact 4.1 [3] A graph is outerplanar if and only if it contains no subgraph homeo-
morphic from Ky or K(2,3).

We start by describing a multicoloring for biconnected outerplanar graphs, which
proceeds by using an ear decomposition of the outerplanar graph, and coloring nodes

in each ear in sequence.

Definition 4.2 [8] An ear decomposition D = [Fy, ..., P._1] of an undirected graph
G = (V, E) is a partition of E into an ordered collection of edge disjoint simple paths
Py, ... P._q1 called ears, such that Py is a simple cycle and for v > 0, P; is a simple path
with each endpoint belonging to a lower-numbered ear, and with no internal vertices
belonging to lower numbered ears. An ear with no internal vertices is called a trivial

ear.

Every biconnected graph is known to have an ear decomposition [8]. Our algorithm
for multicoloring outerplanar graphs exploits a particular type of an ear decomposition

of such graphs.

Lemma 4.1 Given a biconnected outerplanar graph G = (V, F), every ear decompo-
sition D = [Py, P, ..., Px_1] of G has the following properties: Y1 > 0,

1. The endpoints of the path P; are connected by an edge in .

2. No internal vertex in P; ts connected by an edge lo any vertex in an ear P;,

J <.

Proof. Let D = [Py, P1,..., Pi_1] be an ear decomposition of . If the endpoints
of some path P;, ¢ > 0, are not connected in G. then G must contain a subgraph
homeomorphic from K(2,3) which is impossible from Fact 4.1. The second statement
in the lemma is a consequence of the fact that an outerplanar graph cannot contain

a subgraph homeomorphic from Kjy. [|

Lemma 4.2 Given a biconnected outerplanar graph G = (V, E), there exists an ear
decomposition D = [Py, Py, ..., Pr_1] of G such that Vi > 0, the subgraph induced by

P; in G s a simple cycle; equivalently D has no trivial ears.

Proof. Given an arbitrary ear decomposition D of the graph G, we will construct
an ear decomposition D’ with the required property. Let P = (v, vy,,...,v;;) be an
ear in D (where the vertices are listed in clockwise order) and let (i; be the graph
induced by the vertices in P, in (. Suppose G; is not a simple cycle. By Lemma 4.1,
it is a cycle with chords. Since there cannot be any intersecting chords in the planar
embedding of (¢, and G is an induced subgraph of ¢, we know that there cannot
be any intersecting chords in G; as well. Suppose v;,, is the first vertex with degree
> 2 encountered while traversing P; clockwise from v;,. Let v;, be the last vertex
connected to v;, . Then we divide the ear F; into two new ears - one containing

the vertices vy, vi,, ... Vi,,, iy, Vinyy - - - vy, and the other one containing the remaining

Figure 2: An outerplanar graph and its ear decomposition. Vertex labels denote

weights on vertices and edge labels denote ear numbers.

path from v;_ to v; and with v; and v; as endpoints. Note that we can continue
processing both the newly identified ears in a similar manner starting from vertex v;,
in each case.

We repeat this process until all the ears thus found have the specified property.
The resulting ear decomposition proves the lemma. See Figure 2 for a weighted
outerplanar graph and an illustration of an ear decomposition with the specified
property. |

Now we can describe the multicoloring for outerplanar graphs. Given a weighted
outerplanar graph G = (V, £, w) we obtain first an ear decomposition of G with the
property in Lemma 4.2. Let (&; denote the subgraph induced by the vertices of P;, and
define Ag = mazo<i<r X(Gi). Clearly Ag is a lower bound on y(G); we show that
(G can be multicolored using exactly Ag colors by applying the cycle multicoloring

algorithm carefully to each ear in turn.

Lemma 4.3 Let G be a biconnected outerplanar graph and D = [Py, py, ... Pr_1] and
ear decomposition for G that contains no trivial ears. Then G can be multicolored
optimally in x(G) = mazo<i<p—1 X(Gi) colors, where for each v, G; is the graph
induced by P; in G.

Proof. Essentially we color the ears in order starting with the simple cycle F,. By
Theorem 3.2, we can multicolor P using at most Ag colors. Assume inductively that
the ears Fy, P, ..., P,_1 have been properly multicolored. Since none of the internal
vertices of P; can belong to an ear with number smaller than ¢, the only vertices in
P; that have already been colored are its endpoints, which must have disjoint sets of

colors since they are connected by an edge. It follows as a consequence of Lemma 4.2

10-3

5-7

Figure 3: A multicoloring for the outerplanar graph of Figure 2 that uses 11 colors

that the only potential conflict in coloring the internal vertices of P; is with respect
to the previously assigned colors to the endpoints of F;.

Let v, and v, be the endpoints of F;, and let), and C, be the colors already
assigned to them. Reorder the colors in the palette so that ', and C, are, respec-
tively, the initial and final colors in the palette. Now we may use the algorithm from
Section 3 to color the remaining vertices in the cycle using the newly ordered palette.
Since there are Ag colors in the palette, and since Ag > x(G;), the available colors
clearly suffice to color the vertices in P;. Proceeding in this manner, all the ears can
be systematically multicolored. [|

Figure 3 shows a multicoloring based on the ear decomposition of the outerplanar
graph shown in Figure 2.

We next establish that the weighted chromatic number of any graph is the maxi-
mum taken over the weighted chromatic numbers of its biconnected components: this
enables us to extend Lemma 4.3 to any outerplanar graph. Towards this end, consider
the graph, C((), of biconnected components of an undirected, connected graph G.
Specifically, let g1, g2, ..., gr be the vertices of C'(G) which correspond respectively to
the distinct biconnected components, Gy, Gy, ..., Gy, of G. Moreover, (¢g;,¢9;) is an
edge in graph C((G) if and only if the corresponding biconnected components &; and
(7; share an articulation point of G. We state without proof the following folklore
result about the structure of the graph C(G).

Lemma 4.4 1. For any graph G, the graph C(G) is triangulated, i.e. it contains
no induced cycle of length greater than three.

2. A subset of m > 2 vertices, iy, Giys-- -, Gin,, form a clique in the graph C(G) if

and only if the corresponding biconnected components together share a common

10

articulation point.

Lemma 4.5 Let G = (V, E,w) be a connected weighted graph, and let Gy,Gy, ... Gy,
be the biconnected components of G. Then x(G) = mazi<i<px(G).

Proof (of Lemma 4.5): We prove the result by induction on the number of
biconnected components m in GG. If m = 1, then the graph is biconnected, and the
statement is trivially true. Assume that the statement is true for all graphs with m or
fewer biconnected components, and let (¢ be a weighted graph with m-+1 biconnected
components. Then from Lemma 4.4, the graph C'(G) must be triangulated. But every
triangulated graph contains at least one simplicial vertex, that is, a vertex such that
it and all of its neighbors must be connected in a clique. From Lemma 4.4, there
must be a biconnected component GG; of G such that it is connected to the rest of the
graph via a single articulation point, say v. Consider the subgraph G induced by
the set of vertices, (V(G) — V(G;)) U {v}. The graph G’ has exactly m biconnected
components; in fact it has the same biconnected components as (' except for Gj.

By the inductive hypothesis, the vertices in GG’ can be colored using max ;. (G)
colors. Clearly (i; can be colored independently using y((G;) colors. Since (¢; and G’
contain a single common vertex, say the articulation point v, the colors used in G}
can be permuted so that the colors assigned to v are the same as the ones assigned
to v in G'. [|

Theorem 4.3 Let G = (V, E,w) be an arbitrary outerplanar graph. Then G can be

colored optimally using x(G) in linear time.

Proof: The algorithm to color GG follows immediately from Lemmas 4.5 and 4.3.
It is straightforward to check that it can be implemented in linear time. Finding
biconnected components and an ear decomposition for each component can be be done
in time O(F) using standard algorithms. It is not difficult to see that the algorithm
above for converting an arbitrary ear decomposition for a biconnected outerplanar
graph into one that has no trivial ears requires time O(F). [|

We remark that the algorithm presented in this section multicolors every outer-

planar graph, and not just outerplanar hexagon graphs.

5 Approximate multicoloring of the triangular grid

In this section, we consider the problem of computing an approximate multicoloring

of an arbitrary hexagon graph. Since a hexagon graph may contain an odd cycle

11

as an induced subgraph, it follows as a consequence of Theorem 3.2 that Dg], the

maximum weight taken over all triangles, is not always a tight bound. For example,
consider again the hexagon graph G shown in Figure 1, where every vertex is given
the weight k, for some integer £ > 2. While Dg] = Dg] = 2k for the graph, we know
from Theorem 3.2 that y(G) = 9k/4. We choose a 9-cycle because it is the smallest
odd cycle that can be an induced subgraph of the triangular lattice. This shows
that any algorithm to color hexagon graphs must use at least 9Dg]/8 colors on some
graphs GG with triangle bound Dg]. In fact, we demonstrate an efficient approximation
algorithm that can multicolor any hexagon graph using at most 4Dg]/3 colors (and
hence, at most 4x(G)/3 colors).

Without loss of generality, we assume that GG is connected, since disconnected com-
ponents of ¢ can be independently colored without any color conflicts. For simplicity,
we let M = (Dg]/iﬂ and we choose the following color palette in our algorithm. Start
with a base coloring of GG so that every vertex gets base color red, blue or green. With
each base color, we associate a class of M hues identified with the interval [1, M].
In addition, we have at our disposal a class of auxiliary purple hues, again identified
with the interval [1, M]. The entire collection of 4M distinct hues forms our color
palette.

The idea is to let each vertex v use as many hues from its base color class as
possible before trying to use hues either from the remaining two base classes or from
the auxiliary purple class. We describe the algorithm as proceeding in five phases;
we maintain the invariant that at the end of each phase, the graph is partially but
correctly colored. To facilitate reasoning about the correctness of the algorithm, we
let G; = (Vi, Ei, w;) denote the remaining graph after phase ¢ (1 < ¢ < 4) has been
completed. We also assign an artificial priority to vertices: red vertices dominate over
blue ones which in turn dominate over green ones. This priority scheme is used in
phases 2 and 3 to select, in each case, a suitable subset of vertices for partial coloring.

We illustrate our algorithm with a running example shown in Figure 4, a graph &
for which 3M = Dg] can easily be verified to be 18. Hence, the color palette consists
of 24 colors equally divided among the red, blue, green and purple hues.

A vertex v € (7 is defined to be light if w(v) < M and to be heavy otherwise. This

distinction is critical to each of the the five phases below:

Phase 1: Every vertex v is assigned the first w(v) hues from its base color class, in
particular, the hues [1, min{w(v), M}]. All the light vertices thus get completely
colored and are deleted from the graph. The weight of every remaining heavy

vertex v is decreased by M, resulting in the graph .

12

W>j o
(1)/ 10 \\.3 \\g/) e Blue
NN L e
NN Ny
\.></\/ . .

Figure 4: A hexagon graph with initial weights

It is easy to see that (¢4 has no maximal cliques of size greater than 2, because
every triangle in G must contain at least one light vertex that is eliminated in the
first phase. Let H denote the subgraph of (7 induced by the degree 3 vertices in (1.
Note that if a vertex v € (&1 has three neighbors (say, in clockwise order in the fixed
embedding) in (1, then the incident edges to the neighbors form successive angles of
27 /3 radians in order; furthermore the geometry implies that all three neighbors have
the same base color. It follows that each connected component in H contains vertices
that belong to at most two base color classes. Thus, every connected component of H
consists of either an isolated vertex, or contains only red and blue, or red and green,
or blue and green vertices.

Call a vertex v € H a priority vertex if and only if it has the highest priority
among its neighbors (if any) in H (recall that red dominates blue which dominates

green). Clearly, the priority vertices form an independent set (in fact, a dominating

set) in H.

Phase 2: Without loss of generality, let v be a red priority vertex in H with three
blue neighbors in H. Let g(v) be the maxzimum among the weights of the
three green neighbors of v; these vertices must have been light vertices in G.
Then v can borrow from among the last M — g(v) green hues; these suffice to
color the remaining weight on v since all three blue neighbors of v are heavy
vertices and hence, wy(v) < M — g(v). Accordingly, v is assigned the green
hues, [M — g(v) + 1, M], and eliminated from further consideration. Note that
the partial color assignment at the end of phase 2 has no color conflicts among

neighbors, and the remaining graph is designated 5.

13

ri-6 b1-6 1 1
b1-6 /% gl 1 r1-6 b1-2 gl-6 1 /jc El 1 4
[o ° o eb o ° o
g 1 \s b3 1 g16 4
O ° O O O a ° eo O
b1-6 4 gl rl- 2 1 4 é/ 2
e O ° ™ o X °
g3 1 \y16 b6, 1 g3 (16 g5-6 /
O O O O ou \% ot O
1 2 Z\é 8 Z\E 8
™ o ° ° o y °
b1-6 g1-2 ri-6 1 1

@ (b)

Figure 5: Color assignment during (a) Phase 1 and (b) Phase 2

Figure 5 details the partial color assignment at the end of phase 1 and phase 2
respectively. Note that the six red hues are denoted as b1-6 and so forth in the
figure. Since the subset of priority vertices eliminated in phase 2 is a dominating set
of H (the degree 3 vertices of (71), every remaining vertex in (3 now has degree at
most 2. Equivalently, the connected components of (G consist of isolated vertices,
cycles and paths in the triangular grid. Note also that any edge of (G5 has a residual
weight of at most M, a consequence of the definition of heavy vertices. If the graph
(3 contains only even cycles or paths, then we can color all the vertices using the M
purple colors. However (G5 may contain isolated vertices and odd cycles. In the next
phase, we essentially eliminate all potential cycles in Gj.

Call a vertex v € Gy a corner vertex if and only if it has two neighbors x, y of the
same base color class in (G5 such that the angle subtended at v by the incident edges
(v,2) and (v, y) is exactly 27 /3 radians. Further, a corner vertex v is a priority vertex
in (5 if and only if v has the highest priority among all its neighbors, if any, that are
also corner vertices. It is not difficult to see that the subset of priority vertices in Gy
forms an independent set in (5. Also, every corner vertex is either itself a priority
vertex or is adjacent to a priority vertex; hence, the subset of priority vertices is
a dominating set of the subgraph induced by the corner vertices in 5. Finally, by
definition every cycle in (G5 contains at least one corner vertex. Thus, coloring priority
vertices and eliminating them also breaks all cycles. For example, in Figure 5-(b),
the vertices labeled v, v" and x are corner vertices of G5; among them, v and v’ are

priority vertices.

Phase 3: Without loss of generality, let v be a blue priority vertex in GG with red

14

utd

O
P
| Je

/ t 1 Red

O or ® Blue

o
v\ G
5 - o o Green

b y q

Figure 6: Local geometry around a blue priority vertex v in Phase 3

neighbors « and y in GGy as shown in Figure 6. Note that u denotes the third
neighbor of v of the same base color class as x and y. It is also easy to see from
priority considerations that = and y must be non-corner vertices and hence, the
blue vertices p and ¢ must be light vertices. While u is absent in G5, there are

two possibilities.

(i) w was eliminated in phase 1 (i.e. wq(u) = 0): let g(v) be the maximum
over the weights of v’s green neighbors (i.e. vertices a, b and ¢ in Figure 6)
in (G. Since u did not participate in phase 2, v can borrow from among the
last M — g(v) green hues; these suffice since two of v’s red neighbors are heavy

vertices and hence wq(v) < M —g(v). Accordingly, v is assigned the green hues,

[M — wq(v) + 1, M], and eliminated.

(ii) w was a priority vertex in phase 2: consider a and b, the common (light)
green neighbors of w and v in . Let wy, be the maximum among w(a) and w(b)
and recall that u was assigned the last wq(u) green hues, [M —wq(u)+1, M],
during Phase 2. Since wy(v) 4 wq(u) + wep < M, it appears that v could borrow
the green hues [wq, + 1, wep + w2(v)] from the middle of the green spectrum.
However, we must ensure that this assignment will not conflict with the green

hues assigned to ¢ (see Figure 6).

If w(t) < wy, then clearly the new assignment does not conflict with prior
color assignments. However, if w(t) > wgy, then we can recolort as follows: its
original assignment of the first w(t) green hues (in phase 1) is changed so that ¢
now uses the first w,; and the last w(t) — w,y, green hues. The new assignment
to t cannot conflict with the green hues, [w.; + 1, wap + we(v)], borrowed by v
since w(t) + wz(v) < M.

15

g2
O z O z
\% pl \% pl-4

[] O [] O (] O [] O

1 g5 b4-5 4
O [O O (@) O [(@) O

1 1 pl pl

[] O O [] (] O O []

g3-4 g6-2

O O [O O (@) O [(@) O

1 1 8 pl pl pl—ﬁ, b5-6

[] O O [] [] O O []

@ (b)

Figure 7: Color assignment during (a) Phase 3 and (b) Phase 4

It remains to verify that recoloring ¢ does not cause a cascading conflict with any
other neighbor of t. Clearly such a conflict could occur only if some other neighbor of
t also borrows green hues in Phases 2 or 3. From the observations above, we conclude
that this would be impossible for vertices x,y (they are not priority vertices in either
phase) and p, ¢ (they are light in). The only remaining possibility, viz. vertex r, is
not a problem either: r could not have been a priority vertex in phase 2 (since it has
three consecutive light neighbors p,t and ¢) and if it were a corner vertex in phase
3, it would have green neighbors in (3 and would borrow blue hues. Figure 7-(a)
depicts the color assignment during phase 3 for the running example; note that the
light vertex labeled ¢ in Figure 5-(b) is recolored as described above.

Thus, at the end of phase 3, we have a correct partial assignment of colors, and
furthermore, the remaining graph G5 consists only of isolated vertices or straight-line
paths. It is easy to see that any remaining isolated vertex may have a residual weight

between 1 and 2M, whereas the weight on every remaining edge is at most M.

Phase 4: To any isolated vertex v € (i3, we first assign min{ws(v), M } purple hues.
If ws(v) > M, then we still need to find 6 = ws(v)—M < M additional colors to
finish coloring v. Without loss of generality, we assume that v is a red vertex,
and observe that all the neighbors of v must have been light vertices in G.
Hence, the blue (green) neighbors of v must have had colors either assigned
to them in Phase 1 or in Phase 3 (as a result of recoloring). We claim that
v can still borrow 6 colors from either the blue or the green palettes without

conflicting with any neighboring assignment.

From the description of phases 1 and 3, observe that the light neighbors of v may

16

be using colors from either end of their base color palettes. Let b3 < by < by < M
and g3 < g3 < g1 < M be the weights of v’s blue and green neighbors in ¢
respectively. Clearly, regardless of the manner in which the blue neighbors are
assigned blue hues, v has at least M — (b + by) hues available for its use from
the blue palette. Likewise, there are at least M — (g1 + g2) green hues available
to g. Since the green vertex with weight ¢, forms a triangle in G with v and
either one of the blue vertices with weight b; or with weight b;. In any event,
6 < M —(by+ ¢1). A similar argument shows that 6 < M — (g2 + b1). It follows
that
6 <max{M — (by + b3), M — (g1 + ¢2)};

or in other words, that v can obtain the remaining ¢ colors by borrowing either
only blue hues or only green hues without any color conflicts with assignments

prior to the phase.

Figure 7-(b) demonstrates the colors assigned in Phase 4 to the remaining isolated
vertices in our running example. At the end of phase 4, the remaining graph consists
only of straight-line paths, i.e. paths in which any two consecutive edges subtend an
angle of = degrees at the common vertex. Further, as noted above, every remaining

edge has a residual weight of at most M.

Phase 5: Since every remaining connected component is a straight-line path with a
weighted chromatic number of at most M, it suffices to use the greedy parity-
based strategy described in Section 3 to finish coloring the graph using the M
purple hues. This cannot cause any conflict with previously colored vertices
since the purple hues were used only in Phase 4 to color isolated vertices in P;

the latter are disconnected from any remaining vertex in the current phase.

Figure 8 shows the entire color assignment constructed by our algorithm for the

running example. The following result is immediate:

Theorem 5.1 An approzimate multicoloring that uses no more than 4Dg]/3 colors

for any hexagon graph G = (V, E,w) can be efficiently computed in linear time.

6 A distributed algorithm for approximate mul-

ticoloring

The algorithm given in the previous section has the additional property that it can be

implemented in a completely distributed manner. We consider the hexagon graph as

17

r1-6,g2 b1-6,pl

b1-6,p1 g/ r1-6p6 bl2 gl-6pl4
J

[O O
gl/ r1>6,9 \3{ - pélé
O

b1~ pl
913 9 /
\ 6g 4

Figure 8: Complete color assignment in the example graph

[
r1-6,pl-6,b5-6

b1—6,p1 g1—2 r1-6,pl

modeling a network of processors (base stations), with each processor responsible for
a single vertex in the hexagon graph. The network has the same spatial embedding as
the graph, and processors at neighboring base stations in the network can exchange
local information efficiently. For ease of description, we will sometimes identify the
vertices of the hexagon graph with their processors.

In the fixed planar embedding of the infinite triangular grid, we can select an
arbitrary vertex to be the origin, and three directional axes that intersect the origin:
one designated the horizontal axis, and the remaining two at angles 7 /3 and 27 /3
from the horizontal axis. It is easy to see that any path in the graph, where the angles
subtended by all intermediate edges in the path are exactly 7, is oriented along one
of the three directional axes. For every vertex, we wish to assign a parity with respect
to each directional axis. This can easily be done as follows. The parity of a vertex v
along the horizontal axis is defined to be the parity of the length of the path oriented
along the horizontal axis from v to a vertex on the 7 /3 axis that intersects the origin.
Similarly, the parity of v along the #/3 axis (27/3 axis) is the parity of the length of
the path from v oriented along the 7 /3 axis (27 /3 axis) to a vertex on the horizontal
axis intersecting the origin. Thus given an arbitrary finite hexagon graph, any path

in the graph that is oriented along one of the directional axes has a 2-coloring that

18

can be pre-computed according to the parities of the vertices along the path.
Our algorithm assumes that each processor initially has access to the following

information:

o A base coloring for the graph is known: each processor knows whether its vertex

is red, green or blue, and also the color of each of its neighbors.

o A 2-coloring along each path oriented along a directional axis is known. This
means each processor knows three bits corresponding to whether it has even or

odd parity along each of the 3 directional axes.

e The value of Dg] is known; this also implies that the division of base color
classes among processors 1s known. Additionally, this implies that every vertex

has access to a known set of M purple hues if needed.

The distributed algorithm consists of each processor determining whether it should
participate in one or more of the five phases of the approximation algorithm described
in Section 5. The algorithm starts with three rounds of information gathering, after
which no more communication other than informing neighbors of the current color
assignment is required; essentially, processors can continue independently to compute
the hues to assign to themselves. We describe the communication rounds from the

perspective of a fixed processor p.

Round 1: p sends its weight to each of its six neighbors.

Round 2: Having received the weights of all its neighbors, p decides it it would be a
degree 3 vertex after Phase 1, and sends this information (a single bit) to each
of its neighbors. This would be the case if p is itselt a heavy vertex and has

three neighbors that are heavy vertices.

Round 3: The information received in the previous two rounds suffices for p to decide
if it will be a priority vertex in Phase 2 as well as if any of its neighbors will
be priority vertices in Phase 2. For instance, p will be a priority vertex if it
is a blue vertex with degree 3 after phase 1 either with no neighbors that will
also be degree 3 vertices after phase 1, or with green neighbors of degree 3 after

phase 1 (see Section 5).

Next, p determines if it will be a corner vertex in phase 4 and sends this in-
formation (a single bit) to each of its neighbors. p is a corner vertex if all the

following conditions are met:

19

e pis a heavy vertex.
e p will not be a priority vertex in Phase 2.

e p has exactly two neighbors of the same color class that are heavy vertices

but not priority vertices in Phase 2.

Round 4: The information derived from Round 3 enables p to determine if it will be
a priority vertex in Phase 3, as described in Section 5. If p would be a priority
vertex in Phase 3, and would fall into case (ii) of Phase 3, then it has a light
neighbor, say ¢ that would need to be recolored in that phase. In this case, p
sends a message to ¢ with the maximum weight of its remaining two neighbors

of the same color as ¢, so that p can color itself appropriately.

Round 5: A light vertex that got a message to recolor itself in Round 4 informs
all its neighbors of how many colors it will use from the end of its base color
spectrum. This enables an isolated vertex in its neighborhood to color itself

appropriately in Phase 4.

From the weights of its neighboring processors and its limited global knowledge,
and the information collected in the communication rounds described above, a pro-
cessor can easily compute the colors it will use in each of the five phases. Without
loss of generality, consider a processor that corresponds to a blue vertex v € G. The

processor emulates the five phases of the sequential algorithm as follows:

Phase 1: If w(v) <= M, the processor assigns (to itself) the appropriate blue hues.
Otherwise, it assigns to itself all the blue hues, reduces its weight by M and

continues.

Phase 2: If the processor is a priority vertex in Phase 2, it simulates phase 2 and
stops, or else continues to phase 3. Recall that the colors that a priority vertex
would borrow from one of its neighboring color class are the last colors from
that class; thus no consultation is required with neighbors to compute the colors

at a priority vertex.
Phase 3: [If the processor is a priority vertex in Phase 3, it can determine the colors
it needs to borrow from the appropriate neighboring color class.

If, however, the processor is a light vertex that would have undergone recoloring
in phase 3 of the sequential algorithm, then it can emulate this behavior in the

distributed algorithm as well. To do so, it uses the information it received in

20

its neighbor in Round 4, and recolors itself as described in Section 5 so that no

conflict appears among the blue colors.

Phase 4: If a processor is an isolated vertex in this phase, it assigns itself any purple
hues that it needs. Additional colors that it may need are borrowed from one
of the neighboring color classes. Since any of its light neighbors that may have
recolored itself in the last phase sent information in Round 5 about the number
of colors it would use from the end of its base color spectrum, the processor can
determine all colors used by its light neighbors and can borrow colors without

any possibility of conflict.

Phase 5: Any vertex with unassigned colors at this stage lies along some straight-line
path in the grid. In particular, it can detect its one or two incompletely assigned
neighbors that lie along exactly one of the three directional axes. The processor
can easily compute the identity of the particular axis from the information
gathered after Round 3. Depending on whether it is an even or odd vertex
along this axis, it assigns itself the necessary hues from the beginning or end of

the set of purple hues, as in the coloring for bipartite graphs.

Theorem 6.1 An approzimate multicoloring that uses no more than 4Dg]/3 colors
for any hexagon graph G = (V, E,w), can be efficiently computed in constant time in a
completely distributed manner, after an initial constant time communication protocol

where each processor exchanges five messages with each of its neighbors.

7 Discussion

In this paper, we have cast the problem of frequency assignment in cellular networks as
a multicoloring problem for hexagon graphs. For some particular induced subgraphs
of hexagon graphs, that is, cycles and outerplanar graphs, we show efficient algorithms
for multicoloring them using an optimal number of colors. In Section 5, we describe
a multicoloring algorithm that uses at most 4Dg]/3 colors where Dg], the maximum
weight on any 3-clique in (G, is a trivial lower bound on the minimum number of colors
required. We showed also a hexagon graph that requires 9D2]/8 colors. Determining
an exact bound on Y(G), the weighted chromatic number of an arbitrary hexagon
graph is NP-hard; our results do establish that for all hexagon graphs G, Y(G) <
4D[§]/3. Whether or not there is an approximation algorithm for hexagon graphs

which always uses at most 9D2]/8 colors remains an intriguing open problem.

21

An interesting avenue for future research is the generalized version of the problem,
where the frequencies assigned at a particular vertex or at adjacent vertices are re-
quired not merely to be different, but to be far enough apart [2]. Finally, the dynamic
version of the problem involves changing weights at vertices. It would be interesting
to see if the distributed algorithm we describe in Section 6 can be adapted to work

in this setting and what bounds can be proved on its performance.

8 Acknowledgment

We thank Jeanette Janssen for introducing us to the problem of channel assignment,

and for comments that greatly improved the presentation of Section 3.

References

[1] D. Dimitrijevi¢ and J. Vuceti¢. Design and performance analysis of algorithms
for channel allocation in cellular networks. [IFEE Transactions on Vehicular

Technology, 42(4):526-534, 1993.

[2] W. K. Hale. Frequency assignment: Theory and applications. Proceedings of the
IEEE, 68(12):1497-1514, 1980.

[3] F. Harary. Graph Theory. Addison-Wesley, 1969.

[4] J. Janssen, K. Kilakos, and O. Marcotte. Fixed preference frequency allocation

for cellular telephone systems. Unpublished manuscript, April 1995.

[5] T. Kahwa and N. Georganas. A hybrid channel assignment scheme in large-
scale cellular-structured mobile communication systems. IEFE Transactions on
Communications, 4:432-438, 1978.

[6] S. Kim and S. L. Kim. A two-phase algorithm for frequency assignment in cellular

mobile systems. IEEE Transactions on Vehicular Technology, 1994.

[7] C. McDiarmid and B. Reed. Channel assignment and weighted coloring. sub-
mitted for publication, 1997.

[8] K. R. and V. Ramachandran. Parallel Algorithms for Shared Memory Machines,
chapter 17, pages 871-942. MIT Press, 1990.

22

[9] P. Raymond. Performance analysis of cellular networks. IEEE Transactions on

Communications, 39(12):1787-1793, 1991.

[10] W. Wang and C. Rushforth. An adaptive local-search algorithm for the channel-
assignment problem. Technical Report, August 1995.

23

