
The Multicomputer Toolbox { First-Generation ScalableLibrariesAnthony Skjellum�Computer Science Dept. & NSF Engineering Research CenterMississippi State UniversityAlvin P. LeungSyracuse UniversityNortheast Parallel Architectures CenterSteven G. Smith, Robert D. Falgout, Charles H. StillLawrence Livermore National LaboratoryNumerical Mathematics GroupChuck H. BaldwinUniversity of Illinois, Urbana ChampaignSubmitted to HICSS{27:Minitrack on Tools and Languages for Transportable Parallel ApplicationsJune 18, 1993�To whom correspondence should be addressed. Address: Mississippi State University, CS Department, PODrawer CS, Mississippi State, MS 39762. e-mail: tony@cs.msstate.edu.1

Abstract\First-generation" scalable parallel libraries have been achieved, and are maturing, within the Mul-ticomputer Toolbox. The Toolbox includes sparse, dense, iterative linear algebra, a sti� ODE/DAEsolver, and an open software technology for additional numerical algorithms, plus an inter-architectureMake�le mechanism for building applications. We have devised C-based strategies for useful classesof distributed data structures, including distributed matrices and vectors. The underlying Zip-codemessage passing system has enabled process-grid abstractions of multicomputers, communi-cation contexts, and process groups, all characteristics needed for building scalable libraries, andscalable application software.We describe the data-distribution-independent approach to building scalable libraries, which is neededso that applications do not unnecessarily have to redistribute data at high expense. We discuss thestrategy used for implementing data-distribution mappings. We also describe high-level message-passing constructs used to achieve exibility in transmission of data structures (Zipcode invoices).We expect Zipcode and MPI message-passing interfaces (which will incorporate many features fromZipcode, mentioned above) to co-exist in the future.We discuss progress thus far in achieving uniform interfaces for di�erent algorithms for the sameoperation, which are needed to create poly-algorithms. Poly-algorithms are needed to widen the po-tential for scalability; uniform interfaces make simpler the testing of alternative methods with anapplication (whether for parallelism or for convergence, or both). We indicate that data-distribution-independent algorithms are sometimes more e�cient than �xed-data-distribution counterparts, be-cause redistribution of data can be avoided, and that this question is strongly application dependent.1 IntroductionFirst-generation scalable libraries have been developed within the Multicomputer Toolbox schema,also described elsewhere [9, 10, 8]. In this system, we have devised distributed data structures forvectors and matrices, de�ned relative to virtual process topologies (logical grids), as well as anadvanced message-passing notation and system, called Zipcode, that manages processes, commu-nication scope, and virtual topologies. All of this software has initially been tied to homogeneousassumptions, both in performance, and in data format. We describe steps to relax these assump-tions systematically, work that has been underway for the past year.We describe message-passing operation scope, process groups, and communication contexts, withinthe framework of parallel libraries. In a heterogeneous environment, the limited message-passingscope attainable by basing message-passing on groups plus a logical partition of receipt selectivitybetween user-speci�ed and system-registered segments is conceptually pivotal; the data structuresthat arise are called \mailers" or intra-group-communicators. Libraries can readily be written towork without interference, given communication contexts, because they can acquire (through a2

registry mechanism) additional communication contexts using a single safe mechanism for com-munication. Furthermore, the mailer framework is an ideal data structure in which to \cache"information on how operations should be implemented for a particular part of a communicationhierarchy. Because of space limitations, we cannot describe in detail here how this is done inZipcode (see [7]), but we do mention that introducing mailer-scope for communication (and dataconversion) operations is an important source of runtime optimization for message passing. Wemention the issues of library initialization and communication context use. From time to time, werelate Zipcode calls to the forthcoming MPI1 standard [2].We consider the advances in message-passing notation that have been made to help improve theperformance potential of codes based on Zipcode, particularly those that can incorporate \gather-send" and \receive-scatter" semantics. We describe how these become the building blocks for fullyheterogeneous mathematical libraries, and which also o�er encapsulation of any heterogeneousconversions. As such, we are able to assure portability between environments with reasonablycompatible mathematical precision. We also see these semantics as o�ering the most optimizablemessage-passing constructs proposed as yet in any real system (what to do vs. how to do it).We describe the data-distribution-independent approach to building scalable libraries, which isneeded so that applications do not unnecessarily have to redistribute data at high expense. Wediscuss the strategy used for implementing data-distribution mappings, and how this can be ad-vanced further. We also describe high-level message-passing constructs used to achieve exibilityin transmission of data structures (Zipcode invoices). We expect Zipcodeand MPImessage-passinginterfaces (which will incorporate many features from Zipcode, mentioned above) to co-exist in thefuture.We discuss progress thus far in achieving uniform interfaces with for di�erent algorithms forthe same operation, which are needed to create poly-algorithms. Poly-algorithms are needed towiden the potential for scalability; uniform interfaces make simpler the testing alternative meth-ods with an application (whether for parallelism or for convergence, or both). We indicate thatdata-distribution-independent algorithms are sometimes more e�cient than �xed-data-distributioncounterparts, because redistribution of data can be avoided, and that this question is stronglyapplication dependent. 3

2 Overview of Toolbox LibrariesThe following applications currently use Toolbox technology:Current Toolbox-based ApplicationsName Problem Domain Principal Author(s) InstitutionArdra Neutron Transport Milo Dorr LLNLParow Groundwater Modeling R. Falgout/S. Ashby LLNLCdyn Process Flowsheeting A. Skjellum MSUThese codes have run on several di�erent con�gurations on machines including the Intel Delta,Paragon, nCUBE2, and networks of Sun workstations. Note that we expect the number of appli-cations to grow markedly once we are able to release the software to the general public. Work ona dynamic power systems application (based on CDASSLand Cdyn) is also in progress.The Multicomputer Toolbox supports the following libraries at present:Toolbox Libraries Currently SupportedCDASSL Concurrent Di�erential-Algebraic Solver[13],Citer Krylov-subspace methods for linear system solution,Csparse Sparse LU solvers [11],Cdense Dense level-2 and level-3 LU solvers (see section 7),Cblas Concurrent BLAS library (in development) [4],Cvector Concurrent Vector operations (and transformations),Cdistri Data-Distribution-Independence Support,Range Index set manipulation,Resources Portability Support,Zipcode High-level message passing library with virtual topologies,groups, contexts, and communicators (mailers),CE/RK Message-Passing Porting Layer for Multicomputers and Ho-mogeneous Networks.Notable current omissions are FFTs, QR factorizations, and eigensolvers. We hope to close someof these gaps in the future.3 Zipcode Communication SystemIn this section, we describe how the message passing system Zipcode, whose speci�c design purposewas to support parallel libraries in parallel applications, has been designed and extended to provide4

basic services useful for library management. We also compare current practice in Zipcode tostandardization e�orts underway in MPI1.3.1 Programming ModelWe assume a multiple-instruction, multiple-data programming model. Multiple program texts arepossible within the system. Libraries typically operate in a loosely synchronous fashion. How-ever, multiple independent instances and, overlapping process groups are permitted. Support forasynchronous operations is included (for instance, users could de�ne their own library for an asyn-chronous collective operation).3.2 Porting StrategyZipcode currently relies on the basic process management (spawn/kill) and messaging services (x-primitives) of the Reactive Kernel / Cosmic Environment, or, more usually, emulations thereof[5, 6]. This strategy has been e�ective in that we have produced stable, usable ports for the SymultS2010, nCUBE/2, iPSC/2, iPSC/860, Delta, Paragon, BBN TC2000, CM-5 scalar machine, Sunworkstation network, and RS/6000 networks during the past �ve years. A port to the PVM systemsis nearly completed [1]; integration of Zipcode with ELROS messaging capabilities is also beingundertaken [3]; a direct TCP/IP port is also underway, which omits a PVM-like intermediatelibrary,Zipcode supports the common multicomputer HOST/NODE model of computation, which essen-tially means that there is an initial process that is responsible for the main part of the \sequentialfraction" of computation, including spawning, killing, and initializing the parallel processes of anapplication. This model is not as general as one would prefer in an hierarchical, heterogeneousenvironment, but is a reasonable starting point. On a related note, certain multicomputer systemswe have addressed in the past do not allow for dynamic process management (e.g., Intel Delta), andmany restrict programming to one process per processor. For such systems, operations like \spawnprocess" and \kill process" are NULL operations, but reasonable portability is still maintained.3.3 Process NamingIn all Zipcode versions to-date, we have utilized the Reactive Kernel's fnode, pidg-pairs to describeprocesses in a pool, whether in a single multicomputer, or attached to a network. For a given5

implementation, the fnode, pidg pair will be mapped to hardware, but this naming remains visibleduring the initialization process, during which processes are created (spawning). This notationis seen as extremely unattractive for programming by the user, but is rarely used because ofautomatically generated process groups (addressee lists) and virtual topologies.Once message-passing has been set up, most Zipcode programs work with logical process grids ofone-, two-, or three-dimensions. Furthermore, an advanced user can add new virtual topologiesto the system. Some libraries might like to have tree topologies, for instance, to make them mostnatural to program. Virtual topologies provide naming that maps to an addressee list. This levelof virtualization hides the implementation of addressee lists from the application, while improvingnotation.3.4 Process GroupsA process group is a basic abstraction that has been found to be useful in a number of message-passing systems. A process group might be a way of describing the participants in a communicationprimitive, such as a synchronization (perhaps with additional information to encapsulate thatparticular collective operation instance from other operations). In Zipcode, a process group iscalled an \addressee list," and has the following properties:� It is a logical, ordered collection of fnode, pidg pairs.� It has a rank (number of members).� It is a purely local object.� Communication cannot be expressed solely in terms of addressee lists.� An addressee list can be transmitted in an extant communication context (see below).In Zipcode, we have consistently implemented addressee lists as enumerations of fnode, pidg pairs;originally, users assembled addressee lists, but addressee lists are now to be considered opaque; astandard constructor is provided:ZIP_ADDRESSEES *addressees =zip_new_cohort(int N, int node_bias, int cohort_pid, int pm_flag);where 6

� N is the number of processes involved, or one less than the number of processes involved ifpm flag is true,� node bias is the suggested node-number o�set to start with when spanning the user's logicalallocation of processors,� cohort pid is the suggested, constant process ID of the entire collection of processes,� pm flag ags whether the process calling zip_new_cohort() is introduced as its zeroth entry,and hence the \postmaster" (group leader) for communication based on this addressee list(see below, under context creation).This call builds a sensible set of process names over the range of logical nodes available in the user'sallocation. The system may choose to override the cohort pid suggestion never, immediately, orwhen processes are spawned using the addressee list (see below), The system may choose to overridethe node bias naming never, immediately, or when processes are spawned using the addressee list(see below). These relaxations retain the opaque nature of the underlying addressee list, which isimportant to future generalizations of process naming. Furthermore, the needed transmission ofaddressee lists during context creation retains this desirable opacity.Since internal manipulations of addressee lists is denigrated practice, addresee lists can be gener-alized in future Zipcode releases without breaking conforming code. Particularly, there could beadditional portable ways to construct, modify, and transmit addressee lists, and particular envi-ronments could provide non-portable calls to provide additional addressee lists with appropriateopaque structure. Within the Zipcode system itself, there remains the need for non-enumerativerepresentation inside an addressee list, and more general process naming (e.g., PVM task ID's, or,preferably, handles to general opaque name objects). Zipcode will be generalized appropriately.For completeness, Zipcode provides the following process management support, for which there isno planned analog in MPI1:int result = zip_spawn(char *prog_name, ZIP_ADDRESSEES *addressees,void *state, int not_pm_flag);where� prog_name is the ASCII name of the program to spawn, local to the spawner's �le system,� addressees addressee list upon which to spawn the program,� state is unused, future expansion,� not_pm_flag ags if TRUE, program is spawned on the zeroth addressee, of addressees.7

and where result is non-zero on failure. Most implementations require that this spawning functionbe e�ected in the HOST process, though this restriction is less likely in a distributed setting. If thecaller to zip_spawn is the zeroth entry in the addressee list (role of postmaster), it is erroneous toattempt to set not_pm_flag true. So, a valid HOST/NODE spawning procedure would be#define FALSE 0#define TRUE ~FALSEint N = 256, try_pid = 33;addressees = zip_new_cohort(N, 0, try_pid, TRUE);result = zip_spawn("./testprog", addressees, NULL, FALSE);A compatible zip kill() is also de�ned:result = zip_kill(addressees);With the inclusion of these functions, Zipcode speci�es an entire programming environment thatcan be completely divorced from its original relationship with the Reactive Kernel / Cosmic Envi-ronment (CE/RK).3.5 Contexts of CommunicationA communication context is an abstraction that was introduced by the author in the original (1988)Zipcode system, and which also will appear in the MPI1 standard [12, 2]. In order to write practical,\safe" distributed-memory, and/or distributed-computing libraries, communication contexts areneeded to restrict the scope of messages. This is done to prevent messages from being selectedimproperly by processes when they do message passing. We described contexts in several papers onZipcode [12, 15, 14]. Without this type of scope restriction, it quickly becomes intractable to buildup code without globalizing the details of how each portion of a code utilizes the message-passingresource. Communication contexts are therefore central to creating reusable library code, and tomaintaining modularity in large-scale distributed application codes, with or without third-partylibraries.A context of communication has the following properties:� A context of communication is based on an addressee list, the members of which are theassumed participants in the communication,� A context of communication has one or more system-de�ned, labelings (\zipcodes," or con-text ids in MPI1) of message passing for its addressee list the system,8

� It provides a logical partitioning of receipt selectivity into user-de�ned, and system-registeredcomponents.� If used correctly, allocated zipcodes guarantee that messages will not be misdirected.� A zipcode is a globally unique quantity, but may be reused in disjoint groups.To enforce safe programming, the following strictures are placed on message-passing in Zipcode:� Send/receive (point-to-point) and collective communication work only within contexts of com-munication,� Wildcarding, where permitted, does not violate context boundaries.The creation of a context synchronizes the participants in that (future) context, while promulgatingthe addressee list, and zipcodes (context id's). Only the \postmaster" (initial member of anaddressee list) must know the addressee list initially. All other processes just need to know thatthey are going to create a communication context. The context server provides the needed zipcodes,and promulgates them with the addressee list information to all participants. A token released bythe context server is held to ensure that the process completes without the chance that mailers failbecause of race conditions on overlapped collections with distinct postmasters. (A server-free modelis also possible, but has not yet been implemented in Zipcode.) The following call allocates globallyunique zipcodes (context id's) that can subsequently be used to build contexts of communication,when merged with addressee lists:ZIP_ZIPSET *zips = zip_newzips(int N);The following is the simplest form of the mailer creation call, in the 3D virtual topology (of shapeP �Q� R).ZIP_MAILER *g3_grid_open(int *P, *Q, *R, ZIP_ADDRESSEES *addressees)The postmaster for the communication context calls this procedure with a valid addressee list, andvalid values for the grid shape. All other participants call with unde�ned values for the grid shape,and NULL for the addressee list. A variant exists that permits the zipcodes to be speci�ed. Inthat case, if all participants know their addressee list, then mailer creation is communication-free.9

4 Issues from Toolbox Libraries4.1 InitializationLibrary initialization is a di�cult question for conventional message-passing systems, because itis extremely tricky to predict how the receipt-selectivity-space will be partitioned by multipleinvocations of the same library, by distinct libraries, by user programs, and even by collectivecommunications implemented by a vendor (e.g., Intel NX/2 uses the tag space to enforce order incollective combine). Having a library writer publish his/her \range of tags" utilized, which is acommon alternative suggested to contexts, simply does not provide enough safety.Zipcode provides two communication contexts (both encapsulated in the same mailer), by default:one for point-to-point and one for loosely synchronous, collective communication. This is de�nedto be a basic, safe environment for message passing, from which libraries could acquire additionalcontexts, as needed. (The second context is needed in the portable Zipcode implementation, sincepoint-to-point messages are used to e�ect collective operations, rather than through alternativenetwork hardware, as a vendor might do.) For each additional type of collective operation that isasynchronous or non-deterministic (e.g., an asynchronous broadcast where the source is not knowninitially, and where tags must be used with point-to-point operations to preserve correctness),an additional communication context is needed. For each level of stack depth of libraries called,an additional context of communication is needed. For each overlapping pair of addressee lists,separate contexts must be de�ned for safe communication.Since users interact mainly with virtual topologies (which are small collections of mailers), it is im-portant to understand virtual-topology requirements and properties. Zipcode's context_id's (zip-codes) are globally unique when issued, yet the built-in functions that implement virtual topologiesreuse them safely on non-overlapping children of a virtual topology. As such, a three-dimensionalvirtual topology of shape P � Q � R requires one pair of contexts for transmissions across thethree-dimensional collection, and some number 3K additional contexts, where K is the numberrequired for any one of the two-dimensional children (any process belongs to three plane subsets).Each of these two-dimensional logical process planes requires a pair of communication contextsfor planar communication, and 2L additional contexts, where L is the number required by a one-dimensional process grid (a row or column). Evidently, L = 2, resulting in a total of two contextsfor a one-dimensional grid, six for a two-dimensional grid, and twenty for a three-dimensional grid.10

If contexts could not be reused as just described, then the total number of contexts would growwith P , Q, R, rather than being constant (which is undesirable).The initialization process for a three-dimensional grid instigates one synchronization of all partic-ipant processes, allocates the needed zipcodes (using Zipcode's context server process), and thenbuilds all lower-dimensional children without further communication. This sub-children creationcan be done safely without further synchronization because of receipt-selectivity semantics of Zip-code: It is legal to post a message to a context before any mailer has been established on therecipient that supports that context of communication. After signi�cant discussion during thede�nition of MPI1, we have also con�rmed the need to support these semantics there, regardlessof how system-de�ned virtual topologies are built in MPI1. For both message-passing systems,libraries can allocate reserve (i.e., \extra") context id's, and then use them at will, without costlysynchronizations. This provides for safe message passing without synchronizations as one nestslibrary calls in an application. So, the natural interpretation of the communication context as par-titioning the receipt-selectivity space also leads to the best semantics for libraries, from the pointof view of minimizing the number of synchronizations. It does not necessarily lead to the cheapestmessage-passing system from a low-level implementation perspective.4.2 Objects & InteractionsThus far, we have written numerical libraries, such as dense matrix-vector multiplication, to utilizepairs of distributed objects. A dense matrix is de�ned as distributed on a two-dimensional vir-tual topology, by specifying a speci�c mailer that is also identi�ed as a two-dimensional topology.Initially, that mailer has available a safe context of communication for point-to-point and looselysynchronous collective communication. Similarly, we de�ne vectors as replicated objects alongone axis of that same topology, again relative to the identical mailer. When objects are created,additional zipcodes (context id's) could have been allocated, to provide safe communication formember functions working on the object. However, when friend functions are applied (i.e., betweena matrix and vector, or two matrices), one has to be careful to utilize a valid context of commu-nication for the operations. For instance, validity of operating on two distributed objects is basedon the equality of their mailers in the current Toolbox, rather than by performing an expensivecongruency test on logical process grids. Hence, it is currently necessary for distributed objectsto reveal the base virtual topology, and manage extra zipcodes (context id's) separately (though11

they imply ephemeral contexts of communication, in general). This is so that the equality test canbe satis�ed in libraries that do error checking for compatible distributed objects.We have not fully faced this issue in Toolbox libraries as yet, because we have assumed up tonow that users do not leave dangling communications before calling a constructor. This is a badassumption, in general. In fact, one has to question how safe a context of communication is iflibraries have no state, but that they only initialize in the sense of creating objects like distributedmatrices. One would have to be certain that no spurious communications were pending beforecreating such objects, or the programwould be erroneous. As we don't want to leave this complexityto the user (a decision consistent with our e�orts to create contexts), we might not want to rely onthe supposedly safe context of communication provided by the mailer, but only rely on a context idprovided to the library (e.g., when it was globally initialized), coupled with the addressee list ofthe passed-in mailer. So, each unique library in the system needs a pair of zipcodes, so it can bindthem when constructing distributed objects. The correct user program is going to have to initializeeach library in the system explicitly (or implicitly with static constructors, when we use C++in the future). This type of library-scope initialization would not be user thread safe, returningthe burden to the caller to provide safe context of communication when calling constructors fordistributed objects.5 Implementing Data ConversionIn the fully heterogeneous environment, data conversion will be needed within all heterogeneouscommunication contexts. We wanted to achieve the following goals (and have done so):� No explicit conversion calls in user or library code.� No extra data motion when homogeneous communication contexts are involved.� Support for collective operations in the heterogeneous model.� No user intervention with \how" bu�ers (if any) are formatted, nor how message protocol ishandled (who converts, converts to what intermediate form, etc).In other words, we make the message passing itself opaque. For point-to-point, the user's interfaceis a gather speci�cation and destination on the sender's side, and a source and scatter speci�cationon the recipient side. For collective communication, a macro procedure is used so that the user12

speci�es the associative-commutative operation; Zipcode generates the code needed to handle boththe fully heterogeneous and homogeneous cases. For more details, see [14, 7].5.1 Building Encapsulated Data Distribution ObjectsZipcode, together with the Cdistri library, support data distribution objects. Currently, the modelis restricted to representations on 2D grids (though this can be relaxed). Speci�cally, the callmailer = g2_grid_open(&P, &Q, addressees)on the \postmaster" andmailer = g2_grid_open(&P, &Q, NULL)on the non-postmaster processes result in a P�Q grid, which excludes the postmaster (the postmas-ter can send and receive from the grid, but only via \out-of-band" communication, which we don'tcover here). The pointer \mailer" represents a hierarchy of mailers, including the two-dimensionalgrid, and its logical one-dimensional row/column children. Cdistri includes the following construc-tors as well:Cdistrib *new_Cdistrib(ZIP_MAILER *g2mlr, int rctype, int dist,void *init_mu_extra)CMdistrib *new_CMdistrib(Cdistrib *rdis, *cdis)The data structures Cdistrib and CMdistrib encapsulate powerful mappings between global (se-quential) naming of indices, and corresponding fprocess, local indexg naming in each dimension(currently row or column). The underlying two-dimensional logical process grid is included. Thesedata structures form the basis of all distributed mathematical objects in the Toolboxto date.typedef struct _Cdistrib{ ZIP_MAILER *g2mlr; /* grid mailer */ZIP_MAILER *rcmlr; /* row or column mailer + type */short rctype; /* specifies axis */short dist; /* Distribution type. */void (*mu)(); /* distribution mapping */int (*mu_i)(); /* and its inverse */13

int (*mu_lim)(); /* ``limits'' fn. */int (*mu_init)(); /* initialization fn. */void *mu_extra; /* extra info. needed by mappings */Cdistrib_data *data; /* problem size global/local data */} Cdistrib;typedef struct _CMdistrib{ ZIP_MAILER *g2mlr; /* the subject 2D grid mailer */Cdistrib *rdis; /* row distribution */Cdistrib *cdis; /* column distribution */CMdistrib_data *data; /* problem data */} CMdistrib;which are based, in turn, on the following:typedef struct _Inv_proj_entry{ int Inv; /* global name of invariant */index i, j; /* local names in row/col sets */} Inv_proj_entry;typedef struct _Inv_proj /* dis/dis invariant projection */{ int n_invariants; /* # of invariants, this process */Inv_proj_entry *entries; /* array of entries */} Inv_proj;typedef struct _Cdistrib_data{ int M; /* Global problem size in this dimension */index m; /* Local problem size in this dimension */void *extra;} Cdistrib_data;typedef struct _CMdistrib_data{ Cdistrib_data *rdata; /* row problem data */Cdistrib_data *cdata; /* column problem data */Inv_proj *rc_inv_proj; /* row/col. data distribution proj. */} CMdistrib_data;These latter structures provide encapsulation of the (optional) problem size information within aCdistrib or CMdistrib. The \invariant projection" data stores the information about which ele-14

ments do not cross process boundaries when considering a conversion from row to column mappingwithin the grid. As such, they are useful for reducing the cost of speci�c operations that redistributedata.6 Toolbox Linear System LibrariesWe recognize three distinct classes of approaches for solving linear systems: direct methods (e.g.,LU factorization), semi-iterative or Krylov-subspace methods (e.g., GMRES, QMR, PCG) andstationery iterative methods (e.g., Jacobi, SOR). The Toolbox provides libraries to solve linearsystems using the �rst two methods through the Cdense, Csparse and Citer libraries, and will sooninclude Jacobi and SOR algorithms (with support for dense and sparse data structures). In whatfollows, we illustrate Cdense and Citerdata structures, and subsets of applicable calls.6.1 Uniform Calling InterfaceIf there were no high-level uniform calling interface for these diverse methods, however, the userwould be forced to spend considerable e�ort to interface these libraries to his or her program.Furthermore, in view of the need for \poly-algorithms" in order to increase application scalability,uniform calling interfaces become increasingly important. Consequently, a coherent linear solverinterface is needed to ease the programming e�ort and to increase the portability of the user programto the latest generation of Toolboxlinear solvers. This is our �rst version of such an interface.The linear library interface consists of one structure and several calls:typedef struct tbx_linear_system{ void *Info; /* This corresponds to "A", methods, data */void *b; /* This corresponds to 1 or more right-hand sides */void *x; /* This corresponds to 1 or more unknown vectors */Method *linear_solver; /* specific method from Info for solving system */Extra *extra;} Tbx_linear_system;The information content is broadly as follows: 15

� Info | Everything to do with the matrix (or generalized linear operator)� b | Everything to do with right hand sides� x | Everything to do with unknowns� linear_solver | The method for solving the system� extra | Other information needed by systemThe constructor for this object is as follows:void (*new_linear_solver)(void *Info, void *b, void *x, linear_solver);This constructor returns the Tbx_linear_system structure with all the default parameters setfor the speci�ed solvers. After the user has obtained this structure, problems can be solved byspecifying the compact call:error = Tbx_Solve_Linear_System(linear_system);which expands toerror = (*linear_system -> linear_solver)(Info, b, x, extra);The destructor is as follows:void Tbx_free_linear_system(Tbx_linear_system *linear_system);This operation destroys only the top-level data structure created by the previous constructor.We �nd this high-level encapsulation to be good as long as there is no need for a broader interfacebetween the solver and a higher-level accuracy check (such as if an inexact Newton method iscoupled to a linear solver). For such cases, the Newton solver will have to be more intimately tiedto the underlying linear solver, and a set of these methods will be needed, rather than a singleNewton method. We comment on this further under section 6.3.16

6.2 Cdense Functionality and InterfacesThe concurrent dense matrix has a local dense matrix, the global problem size (M, N), and thematrix distribution, CMdistrib *Mdis. The latter contains the two-dimensional grid mailer fromZipcode, as well the row and column data distribution mappings. As such, the matrix so representedis general:typedef struct _Cmatrix{ matrix *a; /* The local matrix. */int M, N; /* Dimensions of Cmatrix. */int type; /* more data on Cmatrix type */CMdistrib *Mdis; /* Data distribution on Grid */} Cmatrix;The local matrix data structure in turn includes the local storage, local size, and orientation (row-or column-major):typedef struct _matrix{ index m, n;double **s;index orient_flag; /* row- or column-major */} matrix;In order to solve linear systems, a linear system data structure is provided for both the level-2 andlevel-3 factorizations. For simplicity, the level-2 variant of this data structure is depicted here:typedef struct _Clu_info{ Cmatrix *A;int *perm; /* permutation info [stored scalably] */void (*pivot)(); /* pivot selection strategy fn. */double *piv; /* U temporary data space */double *updt; /* L temporary data space */int rank; /* estimated rank after factorization */int done; /* has factorization in place been done? */17

double condition; /* part of pivot tolerance calculation */double tolerance; /* part of pivot tolerance calculation */} Clu_info;The following function calls implement LU factorization within Cdense:void lu_factor_Cmatrix_lvl_2(Clu_info *LU, Cmatrix *B, Cvector *rhs)void lu_factor_Cmatrix_lvl_3(Clu_info *LU, Cmatrix *B, Cvector *rhs)Both single (replicated) and multiple right-hand sides are supported. The following function callsimplement triangular solves:void fwd_solve_lu_Cmatrix(Clu_info *LU, Cvector *rhs, *sol) /* forward only */void back_solve_lu_Cmatrix(Clu_info *LU, Cvector *rhs, *sol) /* back only */void solve_lu_Cmatrix(Clu_info *LU, Cvector *rhs, *sol) /* forward/back */Other variants (such as those that can exploit pipelined back-solve techniques, despite data distri-bution independence) are in the works.6.3 Citer Functionality and InterfacesCiter currently supports the following Krylov sub-space algorithms:� GMRES | General Minimized Residual Method� PCGS | Preconditioned Conjugate Gradient Squared� PCG { Preconditioned Conjugate Gradient� PTFQMR - Preconditioned Transpose-Free Quasi-Minimum Residual MethodAs other methods are demonstrated to provide distinct advantages as compared to these fouralgorithms, additional methods will be added. For now, this appears to be a reasonable set ofmethods from which to choose. One exception to this is our intent to add the ability to supportpolynomial preconditioned iterative methods, speci�cally polynomial preconditioned conjugate gra-dient method (PPCG). On another note, we intend to add stationery methods such as Jacobi,SOR/Gauss-Seidel. These will be done as soon as possible, that is, before the Citer library has its�rst public release (4th quarter of 1993). 18

6.4 General Structures for CiterSigni�cant encapsulation occurs within Citer. For instance, the following structure houses theconcurrent inner products to be supported for a typical iterative method:typedef struct _inner_product_bundle{ Method *inner_product; /* inner_product(x,y,&ip,extra) */Method *skew_inner_product; /* as above but for skew vectors */Method *multi_inner_product; /* multi_inner_product(v1,v2,ip,num, extra)* v1, v2 are arrays with num # of vectors.* ip is array of doubles for results */Method *skew_multi_inner_product; /* as above but for skew* vectors */} Inner_Product_Bundle;(Actual instantiations of these methods reside in Cvector.) Furthermore, the following structurepackages matrix-vector multiplication functions for iterative solvers:typedef struct _matvec_bundle{ Method *matvec; /* x := bAy + cz matvec(b,A,y,c,z,x,extra) */Method *matvec_T; /* x := by^T A + cz* matvec_T(b,A,y,c,z,x,extra) */} Matvec_Bundle;It should be noted that, separate from Citer, one supports speci�c matrix data structures andmatrix-vector multiplications. For instance, the \Parow" application at Lawrence Livermore Na-tional Laboratory uses its own stencil library, but this has not been abstracted and added to theToolbox as of yet. We currently support dense matrix-vector multiplication for the Cmatrix datastructure de�ned by the Cdense library, and we are considering the addition of a general sparsetechnology as well. This remains to be done.Within Citer, we add the notion of a \matrix," though matrix-free methods are equally wellsupported:typedef struct _citer_matrix{ 19

void *A;CMdistrib *Mdis;Matvec_Bundle *mv_bundle;long rows, columns;} Citer_Matrix;The culmination comes in the top-level data structure Citer_Info; the following structure describesthe entire iterative linear system:typedef struct _citer_info{ Citer_Matrix *coeff_matrix;Citer_Matrix *left_precond;/* z := M r */Citer_Matrix *right_precond;Method *iter_solver; /* Solves Ax = b iter_solver(iter_info,x,b)* method dependent data is located in* iter_solver -> extra */Method *store_results; /* called at each iteration to store* results */Method *term_cond; /* called at start of each iterations to* determine if solver should be terminated. */} Citer_Info;Note that we support both left and/or right preconditioning in the formalism. Furthermore, weprovide a general format in which the user can elect to store arbitrary information about some orall of the past iterates through the store_results mechanism. Finally, \extra information" forthe implementation of the termination condition method is also supported:typedef struct _citer_residual_test_extra{ int max_iter;double tol;} Citer_Residual_Test_Extra;Standard error codes are supported by Citer, and all libraries must conform to these return codes:20

Error Codes for CiterSymbolic Name Value DescriptionCITER_CONVERGED 0 Normal CompletionCITER_INFO_PROBLEM 1 Error with Info StructureCITER_BREAKDOWN 2 Method had \breakdown" anomalyCITER_MATVEC_ERROR 3 Matrix-vector error code reportedCITER_PRECOND_ERROR 4 Preconditioner reported error6.5 Example of Data Structures for Preconditioned Conjugate Gradient Squared(PCGS)In the foregoing section, we de�ned the framework for iterative solvers within Citer. In this sec-tion, we describe the additional data structures for one of the supported solvers, PreconditionedConjugate Gradient Squared (PCGS).typedef struct _citer_pcgs_extra{ Cvector *rt, *p, *z, *r, *q, *u, *v, *w, *t;Inner_Product_Bundle *ip_bundle;Method *wvsum;double breakdown_tolerance;} Citer_PCGS_Extra;The constructor and destructor the the extra information needed by PCGS are as follows:Extra *citer_new_PCGS_extra(Inner_Product_Bundle * ip_bundle,Method * wvsum, CMdistrib *matrix_dis,long row_size,long col_size, double tol);void citer_free_PCGS_extra(Extra * extra);Finally, the actual call for this solver is as follows:int citer_PCGS(Citer_Info * PCCG, Cvector * rhs, Cvector * sol);which is the same calling sequence used by all Citer solvers.21

7 About Data Distribution IndependenceAs a proof-of-principle, as well as a signi�cant related area of research, we have worked on highperformance, data-distribution-independent dense LU factorization algorithms, and demonstratedthese on the Caltech Intel Delta prototype, during its \acceptance test phase." Within the Tool-box framework, we were able to generate sustained performance of three double-precision gigaops(3:0� 109) with a non-blocking, right-looking, data-distributiion independent LU factorization (onan order 10,000 dense matrix). This level of performance occurs for a particular logical grid shape,18 � 28, with a scatter-scatter distribution of both rows and columns. Less-than-optimal gridshapes and data distributions generate somewhat inferior results (see Tables 2, 3, 4). However,for a number of variations, performance degrades only slightly. Hence, the needs of the applicationgenerating the matrix, in terms of row- and column- parallelism, and in terms of data locality canstill be factored into the overall tuning of an application. For problems not much smaller thanour test example, explicit redistribution of data is prohibitively expensive on the Delta and similarmachines. Consequently, the data-distribution-independent algorithm is the most important one:it can generate the high performance results for the special distribution that is \optimal" for it;yet, it can also function when an application code needs to generate some other distribution.For the present solver, the computational kernel is a BLAS level-2, rank-1 update called dger, theleast e�cient of level-2 operations, because of its data reuse characteristics. Its single-node perfor-mance is depicted in Table 1. Our further work, still in progress, has led us to a data-distribution-independent level-3 BLAS right-looking solver, capable of approximately eight gigaops for thebest data distribution, and useful (with somewhat degraded performance) for other distributionsthat may occur in real applications. When complete, this solver will o�er higher computationalperformance, without sacri�cing data-distribution independence. In other words, we �nd that, withgreater e�ort, we can still exploit nodal pipelining or vectorization, without seriously compromisingdata distribution independence.To summarize, for this class of operations, data-distribution independence becomes less importantfor N > N�, where N� is the smallest matrix size for which explicit data redistribution costs anorder-of-magnitude less than factoring in the \optimal data layout," both operations consideredwith the same number of nodes. Even for N > N�, it may not be economical to redistribute data,however, from nearly optimal or even mediocre distributions, to the optimal distribution, because,22

the improvement in performance may be marginally less valuable than the cost of redistribution.Hence, the data-distribution-independent algorithm remains relevant for large N , depending moreor less on the application requirements. For very bad data distributions, however, explicit redistri-bution will make sense even for N � N�: : : there is a \shrinking table" of distributions for whichredistribution is economical as N decreases. For computational steps with lower time complexity,problems will have to be even larger in dimension before one can begin to neglect data distributionindependence. Table 1. i860 : dger mopsSize Assembled Compiled100 10.343 8.368250 11.221 9.171500 11.434 9.5601000 11.434 9.901Table 1: Performance of single-node double-precision rank-1 update of a dense matrix, on the Intel i860chip, based on code optimized with a compiler, or by hand coding. This serves as the computational kernelfor our non-blocking, data-distribution-independent LU factorization.Table 2. Size = 10000x10000, Scatter/ScatterShape Time Gops Mops/node6x84 264.827s 2.517 4.9957x72 242.605s 2.748 5.4529x56 233.643s 2.853 5.66110x51 226.765s 2.940 5.76511x46 225.850s 2.952 5.83412x42 224.525s 2.969 5.89113x39 221.401s 3.011 5.93914x36 224.419s 2.971 5.89415x34 219.533s 3.037 5.95416x31 219.273s 3.040 6.130Table 2: The Intel Delta performance for the right-looking LU algorithm generated these performanceresults. Data-distribution-independent, partial-row pivoting LU factorization utilized the assembly codedlevel-2 rank-1 update dger. Gigaops were computed as 23N310�6=T where N = 10; 000 here, and T was theobserved maximal runtime in seconds. Each time T quoted is the average of two or more repetitive runs. Anumber of similar grid shapes and node counts produce similar performance, suggesting an important degreeof freedom left to applications that will call this kernel .23

Table 3. Size = 10000x10000, Scatter/ScatterShape Time Gops Mops/node18x28 217.508s 3.065 6.08121x24 223.732s 2.980 5.91224x21 241.501s 2.761 5.47728x18 249.990s 2.667 5.29132x8 406.676s 1.639 6.40416x16 351.916s 1.894 7.4008x32 353.402s 1.886 7.369Table 3: Here we see, for the LU factorization, the optimal runtime achieved for the 18� 28 grid shape.We also see that using less nodes (last three lines utilize 256 nodes) achieves higher e�ective per-nodeperformance, but longer overall runtime.
Table 4. Size = 10000x10000, 8x63 shapeDistributionRow Col Time Gops Mops/nodeScat Scat 225.230s 2.960 5.873Scat Lin 254.054s 2.624 5.210Lin Scat 343.812s 1.940 3.850Lin Lin 444.143s 1.501 2.980Table 4: The LU factorization on the e�cient 8 � 63 grid shape, with various data locality choices.Performance degrades with the deviation from scatter-scatter distribution, but by not more than a factor oftwo in the worst case. 24

8 Abstraction vs. PerformanceOne of the clearest lessons of our work thus far, is that abstractions such as the gather/send, re-ceive/scatter semantics of message-passing, because they are expressive, open the way for greateroptimization, at the same time they provide the user with greater expressivity, and ease of pro-gramming. So, it is not true that higher levels of abstraction always imply less performance, as iscommonly held.The invoice (or bu�er-descriptor) semantics allow the total encapsulation of heterogeneity withinthe calls, removing expensive data motion or conversion when it proves unnecessary (such as whenan application is used on a homogeneous subset of machines). Furthermore, the careful binding ofa communication context (Zipcode mailer) to such calls provides a means to maintain (\cache")appropriate methods, and architectural information about the group of communicating processes.Such information (such as the realization that a context is homogeneous, or in a single memoryhierarchy) could be derived at runtime.The lesson is that moving to a \what-I-want" not \how-I-want-it-done" approach to message passing(which incidently removed bu�er structuring from user control), made message passing less errorprone, potentially much faster, and simultaneously easier to understand. The limitations of C as theimplementation language are relevant in this discussion. In C++ we could discover optimizations atcompile-time because of tighter type checking (and overload more appropriate operators), runtimeoptimizations are no longer our only avenue of improved performance. C++ would open the wayfor inlining, and would also help instigate much safer message-passing constructs. In fact, thecombination of contexts of communication, virtual topologies, and gather/send, receive/scattersemantics could be quite e�ective (e.g., \a Zipcode++" system), but most of the bene�ts wouldbe lost if the program were not entirely in C++ (because operator overloading would be lost, andtype checking would have to be sacri�ced). The invoice-oriented message-passing constructs, plusC++ extensions to allow data-only structs to be transferred would provide a reasonably simpleextension to C++ for parallel computing. Such a system is certainly within our immediate reach.9 Summary and ConclusionsIn this paper, we have raised issues that emerge when trying to create multicomputer librariesand when trying to move to the fully heterogeneous domain. We have touched on several issues:25

namely, process control, communication context control, and the semantics for how messages shouldbe transmitted in order to encapsulate heterogeneity. We used our own software, Toolbox/Zipcodeto motivate this discussion. Future work will include large-scale demonstrations of this softwaretechnology on heterogeneous platforms. We drew analogies between Zipcode and MPI1. We dis-cussed several aspects of the mathematical libraries, including data structures, and interfaces. Weindicated that a few substantial Toolbox applications already exist, though we have not released thesoftware publicly; we expect serious interest once we get the software productized (read: manualswritten) and onto anonymous ftp and netlib.AcknowledgementsThe �rst author acknowledges �nancial support by the NSF Engineering Research Center for Com-putational Field Simulation (NSF ERC). Mississippi State University. We acknowledge Eric Van deVelde, of Caltech, who provided (more than six years ago) the initial software and encouragementthat motivated us to make the Multicomputer Toolbox, and who has consistently insisted on theimportance of data distribution independence.References[1] A. Beguelin, G. A. Geist, W. Jiang, R. Manchek, K. Moore, and V. Sunderam. The PVMproject. Technical report, Oak Ridge National Laboratory, February 1993.[2] Scott Berryman, James Cownie, Jack Dongarra, Al Geist, Bill Gropp, Rolf Hempel, BobKnighten, Rusty Lusk, Steve Otto, Tony Skjellum, Marc Snir, David Walker, and Steve Zenith.Draft document of the MPI standard. Available on netlib, May 1993.[3] M. L. Branstetter, J. A. Guse, D. M. Nessett, and L. C. Stanberry. An ELROS primer.Technical report, Lawrence Livermore National Laboratory, October 1992.[4] Robert D. Falgout, Anthony Skjellum, Steven G. Smith, and Charles H. Still. The multicom-puter toolbox approach to concurrent BLAS and LACS. In J. Saltz, editor, Proc. ScalableHigh Performance Computing Conf. (SHPCC), pages 121{128. IEEE Press, April 1992. Alsoavailable as LLNL Technical Report UCRL-JC-109775.[5] Charles L. Seitz et al. The C Programmer's Abbreviated Guide to Multicomputer Program-ming. Technical Report Caltech-CS-TR-88-1, California Institute of Technology, January 1988.[6] Jakov Seizovic. The Reactive Kernel. Technical Report Caltech-CS-TR-88-10, CaliforniaInstitute of Technology, 1988. 26

[7] Anthony Skjellum. The Design and Evolution of Zipcode. Parallel Computing, 1993. (InvitedPaper, to appear).[8] Anthony Skjellum, Steven F. Ashby, Peter N. Brown, Milo R. Dorr, and Alan C. Hindmarsh.The Multicomputer Toolbox. In G. L. Struble et al., editors, Laboratory Directed Research andDevelopment FY91 { LLNL, pages 24{26. Lawrence Livermore National Laboratory, August1992. UCRL-53689-91 (Rev 1).[9] Anthony Skjellum and Chuck H. Baldwin. The Multicomputer Toolbox: Scalable Paral-lel Libraries for Large-Scale Concurrent Applications. Technical Report UCRL-JC-109251,Lawrence Livermore National Laboratory, December 1991.[10] Anthony Skjellum, Chuck H. Baldwin, Charles H. Still, and Steven G. Smith. The Multicom-puter Toolbox on the Delta. In Tiny Mihaly and Paul Messina, editors, Proc. of the First IntelDelta Applications Workshop, pages 263{272. Caltech Concurrrent Supercomputing Consor-tium CCSF-14-92, February 1992.[11] Anthony Skjellum and Alvin P. Leung. LU factorization of sparse, unsymmetric Jacobianmatrices on multicomputers: Experience, strategies, performance. In Proc. Fifth DistributedMemory Computing Conf. (DMCC5), pages 328{337. IEEE, April 1990.[12] Anthony Skjellum and Alvin P. Leung. Zipcode: A portable multicomputer communica-tion library atop the Reactive Kernel. In Proc. Fifth Distributed Memory Computing Conf.(DMCC5), pages 767{776. IEEE, April 1990.[13] Anthony Skjellum and Manfred Morari. Concurrent DASSL applied to dynamic distillationcolumn simulation. In Proc. Fifth Distributed Memory Computing Conf. (DMCC5), pages595{604. IEEE, April 1990.[14] Anthony Skjellum, Steven G. Smith, Charles H. Still, Alvin P. Leung, and Manfred Morari.The Zipcode Message-Passing System. In Geo�rey C. Fox, editor, Parallel Computing Works!Morgan Kaufmann, 1992. (Also as LLNL UCRL-JC-112022) [To appear in February, 1994].[15] Anthony Skjellum and Charles H. Still. Zipcode: and the Reactive Kernel for the CaltechIntel Delta Prototype and nCUBE/2. In Proc. Sixth Distributed Memory Computing Conf.(DMCC6), pages 26{33. IEEE, April 1991. Also available as LLNL Technical Report UCRL-JC-107636.
27

