Multilevel Visualization of Clustered Graphs*

Peter Eades Qingwen Feng
Department of Computer Science Department of Computer Science
The University of Newcastle The University of Newcastle
NSW 2308, Australia NSW 2308, Australia
eades@cs.newcastle.edu.au gwfeng@cs.newcastle.edu.au
Abstract

Clustered graphs are graphs with recursive clustering structures over the ver-
tices. This type of structure appears in many systems. Examples include CASE
tools, management information systems, VLSI design tools, and reverse engineer-
ing systems. Existing layout algorithms represent the clustering structure as re-
cursively nested regions in the plane. However, as the structure becomes more and
more complex, two dimensional plane representations tend to be insufficient. In
this paper, firstly, we describe some two dimensional plane drawing algorithms for
clustered graphs; then we show how to extend two dimensional plane drawings to
three dimensional multilevel drawings. We consider two conventions: straight-line
convex drawings and orthogonal rectangular drawings; and we show some exam-
ples.

1 Introduction

Graph drawing algorithms are widely used in graphical user interfaces of software sys-
tems. As the amount of information that we want to visualize becomes larger, we need
more structure on top of the classical graph model. Graphs with recursive cluster-
ing structures over the vertices are called clustered graphs (see Fig. 1). This type of
structure appears in many systems. Examples include CASE tools [16], management
information systems [8], and VLSI design tools [7].

In two dimensional representations, the clustering structure is represented by region
inclusions, i.e. a cluster is represented by a simple region that contains the drawing
of all the vertices which belong to that cluster (see Fig. 2). For such drawings, some
heuristic methods have been developed by Sugiyama and Misue [13, 10], by North [11],
and by Madden et al. [12, 9]. Algorithms for planar straight-line convex drawings have
been developed by Eades, Feng and Lin [6, 4]. An algorithm for planar orthogonal
rectangular drawings is presented by Eades and Feng in [3]. However, as the clustering
structure becomes more and more complex, two dimensional representations tend to be
insufficient. A common strategy for visualizing large graphs with recursive clusterings
is to visualize the graph at multiple abstraction levels. A natural method for such
multiple level representations is a three dimensional drawing with each level drawn on
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Figure 1: An Example of a Clustered Graph

Figure 2: A 2D Representation of a Clustered Graph

a plane at different z-coordinate; and with the clustering structure drawn as a tree in
three dimensions. This type of representation not only facilitates visualizing the graph
at different depth of abstractions, but also keeps the track of the abstractions from
one level to another. This is useful in preserving the mental map between abstraction
levels.

In this paper, firstly, we describe some two dimensional drawing algorithms for
clustered graphs; then we show how to extend two dimensional plane drawings to three
dimensional multilevel drawings. We consider two conventions: straight-line convex
drawings and orthogonal rectangular drawings; and we show some examples.

2 Terminology

A clustered graph C' = (G,T') consists of an undirected graph G and a rooted tree T'
such that the leaves of T are exactly the vertices of G. Each node v of T represents
a cluster V(v) of the vertices of G that are leaves of the subtree rooted at v. Note
that tree T describes an inclusion relation between clusters. The height of a cluster v,



denoted by h(v), is defined as the depth of the subtree of 1" rooted at v. The span of
an edge (vq,vy) of T'is |h(v1) — h(v2)]. If the span of an edge of T is greater than one,
we say it is long. In the rest of the paper, we assume every edge of T' has a span of
one. We consider long edges of T as a sequence of edges, each has a span of one.

For a clustered graph C' = (G, T), its view at level i is a graph G; = (V;, F;), where
Vi consists of the set of nodes of height ¢ in 7. There is an edge (y,v) in F; if there is
an edge (u,v) of G where u belongs to cluster u, and v belongs to cluster v; in other
words, edge (u,v) of F; is the abstraction of all edges between cluster p and cluster v
in G.

In a plane drawing of a clustered graph C' = (G, T'), graph G is drawn as points and
curves in the plane as usual. For each node v of T, the cluster is drawn as a simple
closed region R that contains the drawing of G/(v), such that:

o the regions for all sub-clusters of R are completely contained in the interior of R;
o the regions for all other clusters are completely contained in the exterior of R;

o if there is an edge e between two vertices of V(v), then the drawing of e is
completely contained in K.

We say that the drawing of edge e and region R have an edge-region crossing if the
drawing of e crosses the boundary of R more than once. A plane drawing of a clustered
graph is c-planar if there are no edge crossings or edge-region crossings. If a clustered
graph C has a c-planar drawing, then we say it is c-planar (see Fig. 2). An edge is said
to be incident to a cluster V(v) if one end of the edge is a vertex of that cluster but
the other end is not in V(v). An embedding of a clustered graph consists of the circular
ordering of edges around each cluster which are incident to that cluster.

In a plane drawing of a view (see Fig.3), each node is drawn as a simple region
in the plane, each edge is drawn as a curve between the region boundaries of its two
ends. A plane drawing of a view is c-planar if there are no edge crossings or edge-region
crossings.

A multilevel drawing (see Fig. 4) of a clustered graph C' = (G, T') consists of:

o A sequence of plane drawings of views from the leaf level (level 0) to the root
level. The view at level 7 is drawn on the plane z = 7.
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Figure 3: The Drawing of a View



Figure 4: A Multilevel Drawing

o A three dimensional drawing of tree 7', with each node v of height ¢ drawn as a
point on the plane z = i, and within the region of v in the drawing of the view
at that level.

A multilevel drawing of a clustered graph is c-planar if the plane drawings of views at
all levels are c-planar.

3 Plane Drawings

In this section we describe algorithms which produce c-planar plane drawings of clus-
tered graphs. From these plane drawings, c-planar multilevel drawings can be con-
structed. We consider two conventions: straight-line convex drawings and orthogonal
rectangular drawings.

3.1 Straight-line Convex Drawings

One of the basic graph drawing convention consists of representing edges as straight-line
segments. In a straight-line convex drawing of a clustered graph C' = (G, T'), edges of G
are drawn as straight-line segments, regions for clusters are drawn as convex polygons.
We use two approaches for such drawings.

An approach based on Tutte’s algorithm. This approach from [6] applies a
well known algorithm of Tutte [15], which creates a straight-line planar drawing of
a triconnected planar graph G such that every face is a convex polygon. To apply
Tutte’s algorithm, we construct a skeleton I'(v) for each cluster v. The skeleton I'(v)
is the subgraph of G/(v) consisting of the vertices and edges on the outer faces of the
child clusters of v. Intuitively, a child cluster p is represented by the outer face of
G(p) in the skeleton I'(v) . We recursively apply Tutte’s algorithm to every skeleton
graph, and compute a convex polygon for the outer face of each cluster, hence obtain a
straight-line convex drawing. However, since Tutte’s algorithm works on triconnected
planar graphs, this approach is restricted to clustered graphs whose skeletons have the
required connectivity property.



An approach based on hierarchical drawings. This approach uses the tech-
nique of drawing hierarchical graphs. Hierarchical graphs are directed graphs where
vertices are assigned to layers. In a straight-line drawing of a hierarchical graph, ver-
tices assigned to layer ¢ are drawn on the horizontal line y = ¢, arcs are drawn as
straight-line segments. If no pair of nonincident arcs intersect in the drawing, we say
it is hierarchical planar (h-planar).

In this approach, we transform a clustered graph to a hierarchical graph by com-
puting an st numbering' of the vertices of ¢, such that the vertices which belong to the
same cluster are numbered consecutively. We call this numbering c-st numbering. We
use this numbering as a layer assignment to transform a clustered graph to a hierarchi-
cal graph, then apply the algorithm presented in [4] to produce a h-planar straight-line
drawing.

The c¢-st numbering ensures that each cluster occupies consecutive layers in the
drawing. For every cluster, we draw a convex hull of its vertices. It can be shown
that in this drawing, there are no edge crossings; and there are no edges that cross the
region (the convex hull) of a cluster where they do not belong. Note that if we draw
regions as rectangles instead of convex hulls, edge-region crossings are still possible. In
fact, by this algorithm, vertices of every cluster are bounded inside a trapezoid region
which is formed by two horizontal lines for the highest layer and lowest layer of the
cluster, and two straight lines (but not necessarily vertical) on the left and right of the
the cluster.

3.2 Orthogonal Rectangular Drawings

In this section, we consider a drawing convention known as orthogonal rectangular
drawings. In an orthogonal rectangular drawing of a clustered graph C = (G, T'), edges
of G are drawn as sequences of horizontal and vertical segments, vertices of G are drawn
on grid points and regions for clusters are drawn as rectangles. We use a method in [3]
which produce such drawings with O(n?) area, and with constant number of bends on
every edge.

Roughly speaking, this method works as follows. First, we transform a clustered
graph to a planar st-graph?, taking into account the clustering structure. Then we
produce a visibility representation of the planar st-graph. Finally, we use orthogo-
nalization method to produce our orthogonal rectangular drawing from the visibility
representation.

Here again, we compute a c-st numbering of G. Then we apply a direction for each
edge of GG according to the c-st numbering, and therefore obtain a planar st-graph. We
use the technique in [2] of producing visibility representations of planar st-graphs. To
obtain a rectangle for each cluster v, we add 4 dummy vertices, each represents one

!Given any edge (s,t) in a biconnected graph G with n vertices, a st numbering for G is defined as
follows. The vertices of G are numbered from 1 to n so that vertex s receives number 1, vertex ¢ receives
number n, and any vertex except s and t is adjacent both to a lower-numbered and a higher-numbered
vertex. Vertices s and t are called the source and the sink respectively. Such a numbering is an st
numbering for G. An st numbering of a biconnected graph can be computed in linear time [5].

2A planar st-graph [1]is a planar directed graph with one source s and one sink ¢; and both source
and sink above can be embedded on the boundary of the same face, say the external face.



side of a rectangle. We also add some dummy edges to obtain the two vertical sides of
a rectangle. Then, using the algorithm in [2], we obtain a visibility representation of
the graph. Finally, we construct an orthogonal rectangular drawing from the visibility
drawing using some local operations similar to [14].

4 Multilevel Drawings

In this section we discuss methods of producing multilevel drawings of clustered graphs.
We take the two dimensional plane drawings produced by the algorithms described
in the previous section, and we show how to construct three dimensional multilevel
drawings from the plane drawings.

To extend plane drawings of clustered graphs to multilevel drawings, we need to
consider the following issues:

e Construct the drawing of the view at every level.
e Construct the drawing of the inclusion tree.

To construct the drawing of a view graph, we need to construct the regions for
each node of the view, and route every edge between the boundaries of the regions of
its two ends. For every node v of a view at level ¢, we simply use its representation
in the two dimensional plane drawing, and translate them to the plane where z = 4.
Note that every edge (u,v) in the view of level ¢ is the abstraction of all the edges that
connect between vertices of cluster p and cluster v. Therefore, an edge (u,v) in the
view graph may correspond to multiple edges in G. We choose one edge (u,v) between
cluster o and cluster v as a representative edge, and derive the drawing of edge (u,v)
in the view from the drawing of edge (u,v). Suppose that in the two dimensional plane
drawing, cluster g and v are drawn as regions R(u) and R(v) respectively; the drawing
of edge (u,v) crosses the boundaries of R(y) and R(v) at points 2 and y respectively
(see Fig. 5). To construct the drawing of edge (u,r) in the view, we use the segment
between x and y and translate it to the plane where z = 7. It can been shown that
if the two dimensional plane drawing is c-planar, i.e. with no edge crossings or edge-
region crossings, then the drawing derived for each view also has no edge crossings or

Figure 5: Forming an Edge in the View



edge-region crossings. It can also be shown that the derived drawing for each view
preserves the convention of the two dimensional plane drawing.

To form the drawing of the inclusion tree T, we need to decide the position of every
node, and route the edges between the nodes. Note that a node v of level ¢ has to be
positioned on the plane z = ¢ and in the corresponding region of the view. Here, we
compute the position of each node recursively from bottom to top of T, as follows:

FOR i =0 to h (the depth of tree T') DO

o [fi =0, then for each node of level 0 (leaf node), we simply place it at the
position where it is drawn in the two dimensional plane drawing.

e For every node v of level 1, we compute the average of the xvy-coordinates of
its children (at level i — 1), and use them as the xy-coordinates for v.

END

It is easily shown that by this method, every node v is positioned within the corre-
sponding region in the drawing of the view.

To route the edges of T, we simply draw a straight-line segment between the two
nodes. Since we have replaced long edges of T’ by a sequence of edges, crossings between
the edges of T' cannot occur. Note that we use the average zy-coordinates of the
children as the coordinates of a node. This will put a node right above most of its
children and therefore let the edges between a node and most of its children drawn at
a large angle to the zy-plane. If a node has only one child, then the edge is strictly
vertical. Consequentially, by this method, a long edge of span £ is drawn as a line with
only one bend. The first segment is strictly vertical and spans k — 1 levels. The second
segment spans one level.

5 Examples

In this section, we show some examples of drawings produced by our method.

Figure 6 shows a straight-line convex drawing produced using the approach based
on Tutte’s algorithm. Figure 7 shows the same drawing of Figure 6, but has a viewing
direction almost orthogonal to the z axis; this shows the inclusion tree. Figure 8
shows a straight-line convex drawing produced using the approach based on hierarchical
drawings. Figure 9 shows an orthogonal rectangular drawing we produced. Figure 10
shows a view inside the orthogonal rectangular drawing of Figure 9; this emphasizes a
single level of the abstraction hierarchy.



Figure 6: Example 1

Figure 7: Example 2
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Figure 8: Example 3

Figure 9: Example 4
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Figure 10: Example 5

6 Conclusion and Future Work

This paper represents the first attempt to investigate methods for visualizing clus-
tered graphs at multiple abstraction levels and in three dimensions. Particularly, we
have considered two drawing conventions: straight-line convex drawings and orthog-
onal rectangular drawings. We have described some algorithms for two dimensional
plane drawings and have shown how to extend them to multilevel three dimensional
drawings.

In this paper, every view that we consider is at a specific abstraction level. However,
in many applications, we need to visualize a graph at an arbitrary cross-section. For
example, sometimes we need to visualize a view with some portions in very detail, and
other portions in abstract. This seems an interesting topic for our future research.
Further, it will be interesting to investigate the methods of making smooth changes
between views based on three dimensional drawings. This would be helpful to some
mental map issues in human computer interface design.

Although some of the methods described in this paper may look naive and straight-
forward, we hope, with the increasing interest in compound structure visualization,
more and more results could come forward.
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