
Multilevel Visualization of Clustered Graphs�Peter EadesDepartment of Computer ScienceThe University of NewcastleNSW 2308, Australiaeades@cs.newcastle.edu.au Qingwen FengDepartment of Computer ScienceThe University of NewcastleNSW 2308, Australiaqwfeng@cs.newcastle.edu.auAbstractClustered graphs are graphs with recursive clustering structures over the ver-tices. This type of structure appears in many systems. Examples include CASEtools, management information systems, VLSI design tools, and reverse engineer-ing systems. Existing layout algorithms represent the clustering structure as re-cursively nested regions in the plane. However, as the structure becomes more andmore complex, two dimensional plane representations tend to be insu�cient. Inthis paper, �rstly, we describe some two dimensional plane drawing algorithms forclustered graphs; then we show how to extend two dimensional plane drawings tothree dimensional multilevel drawings. We consider two conventions: straight-lineconvex drawings and orthogonal rectangular drawings; and we show some exam-ples.1 IntroductionGraph drawing algorithms are widely used in graphical user interfaces of software sys-tems. As the amount of information that we want to visualize becomes larger, we needmore structure on top of the classical graph model. Graphs with recursive cluster-ing structures over the vertices are called clustered graphs (see Fig. 1). This type ofstructure appears in many systems. Examples include CASE tools [16], managementinformation systems [8], and VLSI design tools [7].In two dimensional representations, the clustering structure is represented by regioninclusions, i.e. a cluster is represented by a simple region that contains the drawingof all the vertices which belong to that cluster (see Fig. 2). For such drawings, someheuristic methods have been developed by Sugiyama and Misue [13, 10], by North [11],and by Madden et al. [12, 9]. Algorithms for planar straight-line convex drawings havebeen developed by Eades, Feng and Lin [6, 4]. An algorithm for planar orthogonalrectangular drawings is presented by Eades and Feng in [3]. However, as the clusteringstructure becomes more and more complex, two dimensional representations tend to beinsu�cient. A common strategy for visualizing large graphs with recursive clusteringsis to visualize the graph at multiple abstraction levels. A natural method for suchmultiple level representations is a three dimensional drawing with each level drawn on�This work was supported by a research grant from the Australian Research Council.1



Figure 1: An Example of a Clustered Graph
Figure 2: A 2D Representation of a Clustered Grapha plane at di�erent z-coordinate; and with the clustering structure drawn as a tree inthree dimensions. This type of representation not only facilitates visualizing the graphat di�erent depth of abstractions, but also keeps the track of the abstractions fromone level to another. This is useful in preserving the mental map between abstractionlevels.In this paper, �rstly, we describe some two dimensional drawing algorithms forclustered graphs; then we show how to extend two dimensional plane drawings to threedimensional multilevel drawings. We consider two conventions: straight-line convexdrawings and orthogonal rectangular drawings; and we show some examples.2 TerminologyA clustered graph C = (G; T ) consists of an undirected graph G and a rooted tree Tsuch that the leaves of T are exactly the vertices of G. Each node � of T representsa cluster V (�) of the vertices of G that are leaves of the subtree rooted at �. Notethat tree T describes an inclusion relation between clusters. The height of a cluster �,2



denoted by h(�), is de�ned as the depth of the subtree of T rooted at �. The span ofan edge (�1; �2) of T is jh(�1)� h(�2)j. If the span of an edge of T is greater than one,we say it is long. In the rest of the paper, we assume every edge of T has a span ofone. We consider long edges of T as a sequence of edges, each has a span of one.For a clustered graph C = (G; T ), its view at level i is a graph Gi = (Vi; Ei), whereVi consists of the set of nodes of height i in T . There is an edge (�; �) in Ei if there isan edge (u; v) of G where u belongs to cluster �, and v belongs to cluster �; in otherwords, edge (�; �) of Ei is the abstraction of all edges between cluster � and cluster �in G.In a plane drawing of a clustered graph C = (G; T ), graph G is drawn as points andcurves in the plane as usual. For each node � of T , the cluster is drawn as a simpleclosed region R that contains the drawing of G(�), such that:� the regions for all sub-clusters of R are completely contained in the interior of R;� the regions for all other clusters are completely contained in the exterior of R;� if there is an edge e between two vertices of V (�), then the drawing of e iscompletely contained in R.We say that the drawing of edge e and region R have an edge-region crossing if thedrawing of e crosses the boundary of R more than once. A plane drawing of a clusteredgraph is c-planar if there are no edge crossings or edge-region crossings. If a clusteredgraph C has a c-planar drawing, then we say it is c-planar (see Fig. 2). An edge is saidto be incident to a cluster V (�) if one end of the edge is a vertex of that cluster butthe other end is not in V (�). An embedding of a clustered graph consists of the circularordering of edges around each cluster which are incident to that cluster.In a plane drawing of a view (see Fig.3), each node is drawn as a simple regionin the plane, each edge is drawn as a curve between the region boundaries of its twoends. A plane drawing of a view is c-planar if there are no edge crossings or edge-regioncrossings.A multilevel drawing (see Fig. 4) of a clustered graph C = (G; T ) consists of:� A sequence of plane drawings of views from the leaf level (level 0) to the rootlevel. The view at level i is drawn on the plane z = i.
Figure 3: The Drawing of a View3



Figure 4: A Multilevel Drawing� A three dimensional drawing of tree T , with each node � of height i drawn as apoint on the plane z = i, and within the region of � in the drawing of the viewat that level.A multilevel drawing of a clustered graph is c-planar if the plane drawings of views atall levels are c-planar.3 Plane DrawingsIn this section we describe algorithms which produce c-planar plane drawings of clus-tered graphs. From these plane drawings, c-planar multilevel drawings can be con-structed. We consider two conventions: straight-line convex drawings and orthogonalrectangular drawings.3.1 Straight-line Convex DrawingsOne of the basic graph drawing convention consists of representing edges as straight-linesegments. In a straight-line convex drawing of a clustered graph C = (G; T ), edges of Gare drawn as straight-line segments, regions for clusters are drawn as convex polygons.We use two approaches for such drawings.An approach based on Tutte's algorithm. This approach from [6] applies awell known algorithm of Tutte [15], which creates a straight-line planar drawing ofa triconnected planar graph G such that every face is a convex polygon. To applyTutte's algorithm, we construct a skeleton �(�) for each cluster �. The skeleton �(�)is the subgraph of G(�) consisting of the vertices and edges on the outer faces of thechild clusters of �. Intuitively, a child cluster � is represented by the outer face ofG(�) in the skeleton �(�) . We recursively apply Tutte's algorithm to every skeletongraph, and compute a convex polygon for the outer face of each cluster, hence obtain astraight-line convex drawing. However, since Tutte's algorithm works on triconnectedplanar graphs, this approach is restricted to clustered graphs whose skeletons have therequired connectivity property. 4



An approach based on hierarchical drawings. This approach uses the tech-nique of drawing hierarchical graphs. Hierarchical graphs are directed graphs wherevertices are assigned to layers. In a straight-line drawing of a hierarchical graph, ver-tices assigned to layer i are drawn on the horizontal line y = i, arcs are drawn asstraight-line segments. If no pair of nonincident arcs intersect in the drawing, we sayit is hierarchical planar (h-planar).In this approach, we transform a clustered graph to a hierarchical graph by com-puting an st numbering1 of the vertices of G, such that the vertices which belong to thesame cluster are numbered consecutively. We call this numbering c-st numbering. Weuse this numbering as a layer assignment to transform a clustered graph to a hierarchi-cal graph, then apply the algorithm presented in [4] to produce a h-planar straight-linedrawing.The c-st numbering ensures that each cluster occupies consecutive layers in thedrawing. For every cluster, we draw a convex hull of its vertices. It can be shownthat in this drawing, there are no edge crossings; and there are no edges that cross theregion (the convex hull) of a cluster where they do not belong. Note that if we drawregions as rectangles instead of convex hulls, edge-region crossings are still possible. Infact, by this algorithm, vertices of every cluster are bounded inside a trapezoid regionwhich is formed by two horizontal lines for the highest layer and lowest layer of thecluster, and two straight lines (but not necessarily vertical) on the left and right of thethe cluster.3.2 Orthogonal Rectangular DrawingsIn this section, we consider a drawing convention known as orthogonal rectangulardrawings. In an orthogonal rectangular drawing of a clustered graph C = (G; T ), edgesof G are drawn as sequences of horizontal and vertical segments, vertices of G are drawnon grid points and regions for clusters are drawn as rectangles. We use a method in [3]which produce such drawings with O(n2) area, and with constant number of bends onevery edge.Roughly speaking, this method works as follows. First, we transform a clusteredgraph to a planar st-graph2, taking into account the clustering structure. Then weproduce a visibility representation of the planar st-graph. Finally, we use orthogo-nalization method to produce our orthogonal rectangular drawing from the visibilityrepresentation.Here again, we compute a c-st numbering of G. Then we apply a direction for eachedge of G according to the c-st numbering, and therefore obtain a planar st-graph. Weuse the technique in [2] of producing visibility representations of planar st-graphs. Toobtain a rectangle for each cluster �, we add 4 dummy vertices, each represents one1Given any edge (s; t) in a biconnected graph G with n vertices, a st numbering for G is de�ned asfollows. The vertices of G are numbered from 1 to n so that vertex s receives number 1, vertex t receivesnumber n, and any vertex except s and t is adjacent both to a lower-numbered and a higher-numberedvertex. Vertices s and t are called the source and the sink respectively. Such a numbering is an stnumbering for G. An st numbering of a biconnected graph can be computed in linear time [5].2A planar st-graph [1] is a planar directed graph with one source s and one sink t; and both sourceand sink above can be embedded on the boundary of the same face, say the external face.5



side of a rectangle. We also add some dummy edges to obtain the two vertical sides ofa rectangle. Then, using the algorithm in [2], we obtain a visibility representation ofthe graph. Finally, we construct an orthogonal rectangular drawing from the visibilitydrawing using some local operations similar to [14].4 Multilevel DrawingsIn this section we discuss methods of producing multilevel drawings of clustered graphs.We take the two dimensional plane drawings produced by the algorithms describedin the previous section, and we show how to construct three dimensional multileveldrawings from the plane drawings.To extend plane drawings of clustered graphs to multilevel drawings, we need toconsider the following issues:� Construct the drawing of the view at every level.� Construct the drawing of the inclusion tree.To construct the drawing of a view graph, we need to construct the regions foreach node of the view, and route every edge between the boundaries of the regions ofits two ends. For every node � of a view at level i, we simply use its representationin the two dimensional plane drawing, and translate them to the plane where z = i.Note that every edge (�; �) in the view of level i is the abstraction of all the edges thatconnect between vertices of cluster � and cluster �. Therefore, an edge (�; �) in theview graph may correspond to multiple edges in G. We choose one edge (u; v) betweencluster � and cluster � as a representative edge, and derive the drawing of edge (�; �)in the view from the drawing of edge (u; v). Suppose that in the two dimensional planedrawing, cluster � and � are drawn as regions R(�) and R(�) respectively; the drawingof edge (u; v) crosses the boundaries of R(�) and R(�) at points x and y respectively(see Fig. 5). To construct the drawing of edge (�; �) in the view, we use the segmentbetween x and y and translate it to the plane where z = i. It can been shown thatif the two dimensional plane drawing is c-planar, i.e. with no edge crossings or edge-region crossings, then the drawing derived for each view also has no edge crossings or
x yµ

υ

u vx yFigure 5: Forming an Edge in the View6



edge-region crossings. It can also be shown that the derived drawing for each viewpreserves the convention of the two dimensional plane drawing.To form the drawing of the inclusion tree T , we need to decide the position of everynode, and route the edges between the nodes. Note that a node � of level i has to bepositioned on the plane z = i and in the corresponding region of the view. Here, wecompute the position of each node recursively from bottom to top of T , as follows:FOR i = 0 to h (the depth of tree T ) DO� If i = 0, then for each node of level 0 (leaf node), we simply place it at theposition where it is drawn in the two dimensional plane drawing.� For every node � of level i, we compute the average of the xy-coordinates ofits children (at level i� 1), and use them as the xy-coordinates for �.ENDIt is easily shown that by this method, every node � is positioned within the corre-sponding region in the drawing of the view.To route the edges of T , we simply draw a straight-line segment between the twonodes. Since we have replaced long edges of T by a sequence of edges, crossings betweenthe edges of T cannot occur. Note that we use the average xy-coordinates of thechildren as the coordinates of a node. This will put a node right above most of itschildren and therefore let the edges between a node and most of its children drawn ata large angle to the xy-plane. If a node has only one child, then the edge is strictlyvertical. Consequentially, by this method, a long edge of span k is drawn as a line withonly one bend. The �rst segment is strictly vertical and spans k� 1 levels. The secondsegment spans one level.5 ExamplesIn this section, we show some examples of drawings produced by our method.Figure 6 shows a straight-line convex drawing produced using the approach basedon Tutte's algorithm. Figure 7 shows the same drawing of Figure 6, but has a viewingdirection almost orthogonal to the z axis; this shows the inclusion tree. Figure 8shows a straight-line convex drawing produced using the approach based on hierarchicaldrawings. Figure 9 shows an orthogonal rectangular drawing we produced. Figure 10shows a view inside the orthogonal rectangular drawing of Figure 9; this emphasizes asingle level of the abstraction hierarchy.
7



Figure 6: Example 1
Figure 7: Example 28



Figure 8: Example 3

Figure 9: Example 49



Figure 10: Example 56 Conclusion and Future WorkThis paper represents the �rst attempt to investigate methods for visualizing clus-tered graphs at multiple abstraction levels and in three dimensions. Particularly, wehave considered two drawing conventions: straight-line convex drawings and orthog-onal rectangular drawings. We have described some algorithms for two dimensionalplane drawings and have shown how to extend them to multilevel three dimensionaldrawings.In this paper, every view that we consider is at a speci�c abstraction level. However,in many applications, we need to visualize a graph at an arbitrary cross-section. Forexample, sometimes we need to visualize a view with some portions in very detail, andother portions in abstract. This seems an interesting topic for our future research.Further, it will be interesting to investigate the methods of making smooth changesbetween views based on three dimensional drawings. This would be helpful to somemental map issues in human computer interface design.Although some of the methods described in this paper may look naive and straight-forward, we hope, with the increasing interest in compound structure visualization,more and more results could come forward.10



References[1] G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclicdigraphs. Theoretical Computer Science, 61:175{198, 1988.[2] G. Di Battista, R. Tamassia, and I.G. Tollis. Constrained visibility representationsof graphs. Information Processing Letters, 41:1{7, 1992.[3] Peter Eades and Qingwen Feng. Orthogonal grid drawing of clustered graphs.Technical Report 96-04, Department o f Computer Science, The University ofNewcastle, Australia, 1996.[4] Peter Eades, Qingwen Feng, and Xuemin Lin. Straight-line drawing algorithmsfor hierarchical graphs and clustered graphs. Technical Report 96-02, Departmentof Computer Science, The University of Newcastle, Australia, 1996.[5] S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical ComputerScience, 2:339{344, 1976.[6] Qing-Wen Feng, Robert F. Cohen, and Peter Eades. How to draw a planar clus-tered graph. In COCOON'95, volume 959 of Lecture Notes in Computer Science,pages 21{31. Springer-Verlag, 1995.[7] D. Harel. On visual formalisms. Communications of the ACM, 31(5):514{530,1988.[8] J. Kawakita. The KJ method { a scienti�c approach to problem solving. Technicalreport, Kawakita Research Institute, Tokyo, 1975.[9] Brendan Madden, Patrick Madden, Steve Powers, and Michael Himsolt. Portablegraph layout end editing. In Franz J. Brandenburg, editor, Graph Drawing '95, vol-ume 1027 of Lecture Notes in Computer Science, pages 385{395. Springer-Verlag.[10] K. Misue and K. Sugiyama. An overview of diagram based idea organizer: D-abductor. Technical Report IIAS-RR-93-3E, ISIS, Fujitsu Laboratories, 1993.[11] S. C. North. Drawing ranked digraphs with recursive clusters. preprint, 1993.Software Systems and Research Center, AT & T Laboratories.[12] Tom Sawyer Software. Graph layout toolkit. available from bmad-den@TomSawyer.COM.[13] K. Sugiyama and K. Misue. Visualization of structural information: Automaticdrawing of compound digraphs. IEEE Transactions on Systems, Man and Cyber-netics, 21(4):876{892, 1991.[14] R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and read-ability of diagrams. IEEE Transactions on Systems, Man and Cybernetics, SMC-18(1):61{79, 1988. 11



[15] W. T. Tutte. How to draw a graph. Proceedings of the London MathematicalSociety, 3(13):743{768, 1963.[16] C. Williams, J. Rasure, and C. Hansen. The state of the art of visual languagesfor visualization. In Visualization 92, pages 202 { 209, 1992.

12


