Mesh Displacement: An Improved Contouring
Method for Trivariate Data

Doug Moore * Joe Warren 1*
Rice University Rice University

August 22, 1995

Abstract

Trivariate data arise in a wide range of industrial and medical applications. Some
of the most powerful techniques for visualizing these data involve computing piece-
wise linear approximations to isocontours of the data [WMWS86, LC87]. This paper
describes a simple optimization that may be applied to the piecewise linear approxi-
mations produced by these techniques. The benefits of this optimization include:

e Reducing the number of triangles in the resulting approximation by 40% to 50%
without a significant loss of accuracy in the approximation.

o Improving the shape of the remaining triangles while eliminating badly shaped
triangles produced by current methods.

¢ Enabling simple computation of the topology of the resulting mesh.

Keywords - computer graphics, medical imaging, surface reconstruction, visualization

1 Introduction

Scalar valued data defined over a rectangular, three-dimensional grid appear in a wide range
of applications. In medical imaging, both computed tomography (CT) and magnetic reso-
nance (MR) data usually take the form of density values spaced over a cubic grid [LC8T].
In graphics, trivariate functions are often used to define “fuzzy” or “soft” objects [Bli82,
WMWS86]. During rendering, these functions are generally sampled over a regular cubic grid
[Blo88].

Among the most popular methods for visualizing scalar data over a cubic grid is by
computing isocontours of the data. Typically, the data are used to define some continuous

*Supported in part by Center for Research in Parallel Computation
TSupported in part by NSF grant CCR 89-03431
tAuthors’ address: Department of Computer Science, P.O. Box 1892, Houston, Tx 77251

function F(x,y,z) that interpolates the data. An isocontour of F' is simply the set of all

points (x,y, z) such that
F(z,y,z)=c.

Displaying several isocontours of F' for appropriate values of ¢ is often an effective tool
for understanding the behavior of the original trivariate data. In general, the problem of
computing an isocontour F' = ¢ can be transformed trivially into the simpler problem of
computing the zero contour of F' — ¢ = 0. Therefore, we focus on approximating the zero
contour of scalar data specified over a cubic grid.

Several authors have suggested similar methods for creating zero contours. Their meth-
ods process the data separately on each cube of the cubic grid, and use linear interpolation
along the edges of a cube to compute a collection of points lying on the zero contour. In the
original “marching cubes” algorithm, these intersections are connected to form edges and
triangles using a table lookup based on the signs of the data at the vertices of the defining
cube [LC8T]. Figure 1 illustrates a two-dimensional version of this technique. Note that the
rightmost case is ambiguous and could also be triangulated as shown by the dotted lines.
Figure 2 presents a table for the three-dimensional case like the one in the original march-
ing cubes paper. Unfortunately, this particular method does not guarantee a contour that
is continuous, because adjacent cubes that share a face like the rightmost case in figure 1
may subdivide differently [Diir88]. Others have suggested an alternative method that disam-
biguates that case by sampling the function at the center of the ambiguous face [WMW86].
We call methods like these, that compute the vertices of the resulting contour using linear
interpolation along edges of the cubic mesh, edge-based interpolation methods.

Figures 8(a)-11(a) show several surface contours created using edge-based interpolation
methods. One drawback of these methods is that the surface meshes they produce can be
highly irregular, even for simple trivariate data. These irregularities consist of tiny triangles,
produced when the contour passes near a vertex of the cubic mesh, and narrow triangles,
produced when the contour passes near an edge of the mesh. In our experience, such triangles
can account for up to 50% of the triangles in some surface meshes. These badly shaped
elements often degrade the performance of rendering algorithms and finite element analysis

+ + 4+ + o+ ‘ —

Figure 1 Edge-based interpolation in two dimensions

. Pt

Figure 2 Edge-based interpolation in three dimensions

applied to the mesh while contributing little to the overall accuracy of the approximation.

This paper describes a method for removing these badly shaped triangles from the re-
sulting mesh with little loss of accuracy in the resulting approximation. This method takes
as input a surface contour produced by an edge-based interpolation method and produces
a new surface contour free of badly shaped triangles. The number of triangles in the new
contour is often reduced by as much as 50%.

2 Mesh Displacement

The algorithm described here is a generalization of the mesh displacement algorithm that
we first described in a previous paper [MW90]. This algorithm is a contouring method for
scalar data specified over a simplicial mesh. Instead of producing a piecewise linear contour
using linear interpolation, vertices of the simplicial mesh are displaced to lie on or near the
appropriate contour. The result is a new simplicial mesh whose set of faces contain as a
subset an approximation to the appropriate contour. We propose to generalize this method
to cubic meshes.

2.1 The method

We begin with some definitions. Let S be a surface mesh that is piecewise linear over a cubic
mesh C' with the property that the vertices of S lie on the edges of C'. We say that 5 is
embedded in C. By definition, edge-based interpolation methods produce embedded surtace

meshes. Given a vertex v of the cubic mesh C', the convex hull of those points on the edges
of C lying nearest to v is called the vertex orbit of v and denoted N(v). For vertices in
the interior of C', the vertex orbits form a cubic grid of octahedra that touch only at their
vertices. Those points where S intersects the edges of (' inside the vertex orbit of v are the

satellites of v.
The following technique, called the mesh displacement algorithm, eliminates small and

narrow triangles in S by displacing vertices of C' to lie on or near S.

1. For each triangle in 5,
if S intersects the orbits of three distinct vertices

then produce a triangle connecting these three vertices
else the triangle collapses to a vertex or edge
2. For each vertex v of C,

if S intersects the vertex orbit of v
then displace v to the centroid of its satellites

The first step of the method defines the topology of a new mesh connecting vertices of C'.
All the vertices of S lying in the same vertex orbit are coalesced into a single vertex in the
resulting mesh. Thus, small triangles lying in a single vertex orbit are collapsed to a vertex.
Narrow triangles connecting two vertex orbits are collapsed to an edge. Figure 3 illustrates
this for the two dimensional case. This perspective shows that if the original surface mesh
S is continuous, then the topological mesh produced in the first step of the algorithm must
also be continuous.

In the second step, the vertices of the topological mesh are displaced to lie on or near
the original embedded surface mesh. Since each new vertex position is chosen to be at the
centroid of a small cluster of points lying on 5, the new approximation usually diverges only
slightly from S. If S itself is an approximation to a smooth surface arising from some other
representation, information from that representation can be used to reposition the vertex to

lie precisely on the original smooth surface.

[
1
1
1
1
1
1
1
1
1
1
1
1
1
]

Vertex orbits
Embedded linear approximation

== Topological approximation

Figure 3 Two dimensional case table for mesh displacement

Figure 4 illustrates this method applied to a two-dimensional mesh. The upper portion
illustrates the result of the first step. The lower portion illustrates the output of the second
step. The short edges in the upper portion of the figure have been collapsed to form vertices
in the lower portion.

2.2 Experimental results

The mesh displacement method of the previous section has been coded and run on a range
of test data. Figure 8(a) shows the zero contour produced by the marching cubes method
on a 13 by 13 by 13 grid of data from a function that defines a sphere. Figure 8(b) shows
the result of applying mesh displacement to figure 8(a). Figures 9, 10, and 11 show the
meshes resulting from applying the two methods to data derived from the function for a
hyperboloid, a CT scan of the upper portion of a human femur, and a randomly generated
cubic polynomial, respectively.

Mesh displacement improves the resulting surface meshes in two ways. First, by remov-
ing small and narrow triangles from the surface mesh, the resulting mesh is significantly
compressed. This effect decreases the rendering time and storage space required for such
meshes. Table 1 presents statistics for the four examples of the figures and several other
data sets generated from randomly chosen degree three functions. In these examples, the
compression averaged 40% to 50%. Of course, not every data set will experience such com-
pression. For example, a planar contour perpendicular to a coordinate axis will experience
no compression during mesh displacement. However, for most data sets arising in practice,
mesh displacement achieves significant compression.

edge-based aspect ratios mesh disp aspect ratios
Example verts ‘ faces | avg ‘ dev ‘ min || verts ‘ faces | avg ‘ dev ‘ min
sphere 672 | 1328 | .666 | .259 | .055 354 | 704 | .840 | .086 | .685
hyperboloid 596 | 1088 | .617 | .306 | .007 264 | 464 | .871 | .100 | .597
femur 2095 | 4150 | .679 | .254 | .000 || 1246 | 2462 | .838 | .084 | .415
cubic0 809 | 1503 | .648 | .295 | .002 398 | 723 | .869 | .104 | .426
cubicl 842 | 1562 | .655 | .298 | .004 439 | 796 | .869 | .109 | .367
cubic? 648 | 1179 | .660 | .278 | .003 385 | 690 | .839 | .092 | .279
cubic3 854 | 1587 | .650 | .285 | .000 457 | 834 | .851 | .097 | .426
cubicd 739 | 1375 | .663 | .258 | .001 438 | 795 | .833 | .085 | .457
cubich 922 | 1722 | .635 | .289 | .000 472 | 860 | .856 | .099 | .410
cubich 746 | 1373 | .651 | .293 | .002 397 | 714 | .857 | .095 | .h68
cubic7 817 | 1517 | .634 | .295 | .000 408 | 739 | .859 | .101 | .495
cubic8 868 | 1592 | .664 | .267 | .001 510 | 921 | .843 | .099 | .330
cubic9 834 | 1553 | .644 | .287 | .001 423 | 769 | .851 | .106 | .389

Table 1 Comparison of edge-based interpolation and mesh displacement

Vertex orbits
---- Embedded linear approximation
== Topological approximation

—— Final linear approximation
—— Final volume mesh

Figure 4 An example of mesh displacement

2.3 Shape bounds

The second improvement from mesh displacement involves the shape of the triangles in the
new mesh. By eliminating small and narrow triangles, mesh displacement produces only
triangles with good shape. A more precise statement requires a formal measure of the shape
of a triangle. One standard measure is the aspect ratio of a triangle, the ratio of the radius
of its inscribed circle to the radius of its circumscribing circle. This ratio is normalized by
multiplying by a factor of two so that an equilateral triangle has aspect ratio one. The aspect
ratio measures how close the three vertices of a triangle are to being collinear.

Table 1 also includes statistics on the aspect ratios of triangles produced by the two
methods. Mesh displacement produces meshes whose average aspect ratio is significantly
better than those produced by edge-based interpolation methods. Perhaps a more important
measure is the worst case aspect ratio of triangles produced by these methods. Triangles
with small aspect ratio can degrade the performance of polygon-based rendering methods
such as Gouraud and Phong shading. In finite element analysis, elements with small aspect
ratio can generate ill-conditioned systems of linear equations [Zie78].

Edge-based interpolation methods can and do produce triangles with arbitrarily small
aspect ratios, as noted in table 1. For the mesh displacement method, we believe that the
aspect ratios of the resulting triangles are bounded below by a positive constant. To support
our claim, we offer the following argument.

A triangle with aspect ratio near zero has almost collinear vertices. In the second step of
the algorithm, each vertex of the cubic mesh C' is displaced inside its orbit. Only those cases
in which the orbits of three vertices of a cube contain collinear points can lead to triangles
with arbitrarily small aspect ratio. By inspection, the only case in which this is possible is
pictured in figure 5, where four cubes share a common edge. Three vertices on the lower left
cube have vertex orbits that are collinear along the bold line L. Edge-based interpolation
has produced the triangle abe in the lower left cube and the triangle bed in the lower right
cube. Vertex c lies on the interior edge shared by all four cubes, but near the vertex v.

During mesh displacement, vertices ¢ and d lie in the orbit of vertex v and are collapsed
to their centroid e. If the cubes have unit size, the new triangle abe has sides of length %,

g, and %. The resulting triangle has an aspect ratio of about 0.0503.

To achieve this lower bound would require highly unusual input data. In practice, the
mesh displacement algorithm rarely produces triangles whose aspect ratio is worse than 0.4.
For all thirteen examples of table 1, only six triangles possess aspect ratios of less than 0.4.

The smallest aspect ratio that we have observed in practice is about 0.25.

3 Boundary containment

Edge-based interpolation methods produce surface meshes whose boundaries are contained
in the boundaries of the original cubic grid. The boundary curves of surfaces produced by
mesh displacement do not necessarily conform to the boundaries of the cubic mesh. If such
boundary containment is desired, we suggest two possible approaches.

One solution is to apply mesh displacement only to those vertices of S that lie in the
orbits of interior vertices of C'. Those vertices of S that lie in the orbit of a particular

N\
N\
N\

NN

Figure 5 Worst case aspect ratios in mesh displacement

interior vertex of (' are coalesced into a single vertex. Those vertices of S that lie in the
orbits of vertices on the boundary of ' are left unchanged. This method has the advantage
of simplicity, but can still leave several badly shaped triangles along the boundaries of the
final surface mesh.

Another solution allows mesh displacement to be applied in all but a rare set of circum-
stances. This technique, called boundary classification, classifies a satellite p of a vertex v
into one of two categories. If p and v lie in exactly the same set of faces on the boundary of
C', then p is a primary satellite of v. Otherwise, p is a secondary satellite of v. If v lies on a
face of the boundary of (', its primary satellites lie on that face. If v lies on an edge of the
boundary of C, its primary satellites lie on that edge of C.

Boundary classification is incorporated into the mesh displacement algorithm by replacing
the second step with the following:

2. for each vertex v of C
if v has a primary satellite
displace v to the centroid of its primary satellites
else
treat each secondary satellite of v as lying in a distinct vertex orbit

This approach is correct because displacing v to the centroid of its primary satellites
keeps the vertex on the same facet of the boundary of €. If v has a single secondary
satellite, displacing v to this satellite does not affect the boundary behavior of S. If v has
two or more secondary satellites, it is not always possible to coalesce these satellites so that
the boundary of the resulting surface mesh still lies on the boundary of C'. For example in
figure 6, S passes near a corner vertex v of (. Vertex v has two secondary satellites, p and
q. Coalescing p and ¢ into a new vertex and forcing the new vertex to simultaneously lie on

the edges containing p and ¢ results in the new vertex being positioned at v. However, v is
an unsatisfactory location for the new vertex since it may lie up to ? units from S. In this
rare case, we suggest that each secondary satellite be treated as lying in a distinct vertex
orbit and assigned a different vertex index.

Figure 7 illustrates three examples of mesh displacement with boundary classification in
two dimensions. In the middle and right examples, the vertex v has a single primary satellite.
Vertex v is displaced to this primary satellite, so that the resulting curve still terminates
at the boundary of the mesh. In the leftmost example, v has a single secondary satellite.
Since v has only a single secondary satellite, the original embedded curve does not exit the
boundary of the mesh in the orbit of v. Thus, displacing v to its secondary satellite does not
affect the termination of the curve. The examples given in this paper were computed using
boundary classification so that, for instance, the boundary curves in figure 11 remain planar
after mesh displacement.

Boundary classification also has the advantage that the behavior of the final mesh along
a boundary is determined solely by the scalar data lying on the containing boundary of the
cubic grid. Thus, if two adjacent cubic grids share the same scalar data along a common
boundary, the two zero contours produced by boundary classification are guaranteed to be
continuous along the common boundary.

Requiring boundary containment affects the aspect ratios of the resulting triangles in
several ways. First, mesh displacement with boundary classification can produce triangles
with arbitrarily small aspect ratios. Degenerate triangles can arise, as depicted in figure
5. If the vertex v lies on a face of the boundary of C, then d is a primary satellite of v

TN

wn

p v
—— Boundary of vertex orbit

Figure 6 A vertex with two secondary satellites

Vertex orbits
---- Initial linear approximation

. Primary satellites
o Secondary satellites

Figure 7 Several examples of boundary classification

and ¢ is a secondary satellite of v. Displacing v to d yields the triangle abd whose aspect
ratio can be arbitrarily small. If the aspect ratio of the final mesh is important, we suggest
explicitly testing for this circumstance and deleting the triangle abd. Since this triangle lies
completely on the boundary of the cubic grid, the resulting surface is continuous and its

boundary curves still lie on the boundaries of C'.
For some embedded surface meshes, the three goals of boundary containment, bounded

aspect ratio, and accurate approximation of the original mesh are difficult to achieve simul-
taneously. In figure 6, the darkened triangle has an edge from p to ¢ whose length can be
made arbitrarily close to zero. Any method that accurately approximates S and maintains
boundary containment must produce a surface mesh with vertices at p and ¢. Because of
the vanishingly small distance between p and ¢, arbitrarily many vertices may need to be
inserted into the resulting surface mesh to achieve a lower bound on the aspect ratio of the
resulting triangles. In these case, we simply note that mesh displacement does not degrade

the aspect ratio of the final mesh.

4 Implementation and performance advantages

Piecewise linear meshes are typically represented using two sets of data: vertex locations and
triangle topology. A table of Cartesian coordinates stores vertex locations, with each vertex
identified by its position in the table. Triples of vertex indices define triangles. The table
of all triples defines the topology of the surface mesh. This representation allows several
triangles to logically share a common vertex, typically decreasing the size of the vertex table

10

by nearly a factor of six. This technique also makes later calculations, such as Gouraud
shading for graphical display, simpler.

For edge-based interpolation methods, identifying triangles sharing a common vertex
usually involves some type of hashing or a table lookup based on the edge representation.
For mesh displacement, such identification is simple. Since each vertex of the final mesh is
topologically a vertex of the original cubic mesh, vertex indices can be assigned during the
first step and stored with the three-dimensional array of vertex data. Other information for
a vertex such as the number of primary and secondary satellites it currently possesses and
the centroids of those satellites can be stored in an auxiliary table with as many entries as
there are vertices in the surface mesh. A pass through this auxiliary table allows creation
of the actual vertex locations during the second step of the method. More sophisticated
implementations of marching cubes that only store a few slices of the data cube at a time
can use mesh displacement as well, by interleaving the two steps of the algorithm with the
processing of the slices. The algorithm requires only the vertex indices for the slices being
processed at any given time and the auxiliary data for the part of the surface mesh contained
in those slices.

We have modified an existing implementation of the original marching cubes algorithm
to use mesh displacement with boundary classification. Complete revision and debugging of
this code required about two hours and involved insertion of around 100 extra lines of code.
Our installation of mesh displacement on top of the marching cubes algorithm improved the
performance of the resulting code because the surtace mesh produced by mesh displacement
was significantly smaller than the mesh produced by marching cubes.

References

[Bli82] J. Blinn. A generalization of algebraic surface drawing. ACM Transactions on

Graphics, 1(3):235-256, 1982.

[Blo88] Jules Bloomenthal. Polygonalization of implicit surfaces. Computer Aided Geo-
metric Design, 5:341-355, 1988.

[D1ir88] M. J. Durst. Additional reference to marching cubes. Computer Graphics,
22(2):72-73, 1988.

[LC8T] W. Lorenson and H. Cline. Marching cubes: A high resolution 3d surface con-
struction algorithm. Computer Graphics, 21(4):163-169, 1987.

[MWO90] Doug Moore and Joe Warren. Adaptive mesh generation II: Packing solids.
Technical Report TR 90-139, Rice University, Department of Computer Science,
1990.

[WMWS86] G. Wyvil, C. McPheeters, and B. Wyvil. Data structure for soft objects. The
Visual Computer, 2:227-234, 1986.

[ZieT8] O. C. Zienkiewicz. The Finite Element Method. McGraw Hill, 1978.

11

B

Figure 8 Two approximations to a sphere

12

Figure 9 Two approximations to a hyperboloid

13

Figure 10 Two approximations to the head of a femur

14

B

Figure 11 Two approximations to an implicit cubic patch

15

