
Mesh Displacement: An Improved ContouringMethod for Trivariate DataDoug Moore �Rice University Joe Warren yzRice UniversityAugust 22, 1995AbstractTrivariate data arise in a wide range of industrial and medical applications. Someof the most powerful techniques for visualizing these data involve computing piece-wise linear approximations to isocontours of the data [WMW86, LC87]. This paperdescribes a simple optimization that may be applied to the piecewise linear approxi-mations produced by these techniques. The bene�ts of this optimization include:� Reducing the number of triangles in the resulting approximation by 40% to 50%without a signi�cant loss of accuracy in the approximation.� Improving the shape of the remaining triangles while eliminating badly shapedtriangles produced by current methods.� Enabling simple computation of the topology of the resulting mesh.Keywords - computer graphics, medical imaging, surface reconstruction, visualization1 IntroductionScalar valued data de�ned over a rectangular, three-dimensional grid appear in a wide rangeof applications. In medical imaging, both computed tomography (CT) and magnetic reso-nance (MR) data usually take the form of density values spaced over a cubic grid [LC87].In graphics, trivariate functions are often used to de�ne \fuzzy" or \soft" objects [Bli82,WMW86]. During rendering, these functions are generally sampled over a regular cubic grid[Blo88].Among the most popular methods for visualizing scalar data over a cubic grid is bycomputing isocontours of the data. Typically, the data are used to de�ne some continuous�Supported in part by Center for Research in Parallel ComputationySupported in part by NSF grant CCR 89-03431zAuthors' address: Department of Computer Science, P.O. Box 1892, Houston, Tx 772511



function F (x; y; z) that interpolates the data. An isocontour of F is simply the set of allpoints (x; y; z) such that F (x; y; z) = c:Displaying several isocontours of F for appropriate values of c is often an e�ective toolfor understanding the behavior of the original trivariate data. In general, the problem ofcomputing an isocontour F = c can be transformed trivially into the simpler problem ofcomputing the zero contour of F � c = 0. Therefore, we focus on approximating the zerocontour of scalar data speci�ed over a cubic grid.Several authors have suggested similar methods for creating zero contours. Their meth-ods process the data separately on each cube of the cubic grid, and use linear interpolationalong the edges of a cube to compute a collection of points lying on the zero contour. In theoriginal \marching cubes" algorithm, these intersections are connected to form edges andtriangles using a table lookup based on the signs of the data at the vertices of the de�ningcube [LC87]. Figure 1 illustrates a two-dimensional version of this technique. Note that therightmost case is ambiguous and could also be triangulated as shown by the dotted lines.Figure 2 presents a table for the three-dimensional case like the one in the original march-ing cubes paper. Unfortunately, this particular method does not guarantee a contour thatis continuous, because adjacent cubes that share a face like the rightmost case in �gure 1may subdivide di�erently [D�ur88]. Others have suggested an alternative method that disam-biguates that case by sampling the function at the center of the ambiguous face [WMW86].We call methods like these, that compute the vertices of the resulting contour using linearinterpolation along edges of the cubic mesh, edge-based interpolation methods.Figures 8(a)-11(a) show several surface contours created using edge-based interpolationmethods. One drawback of these methods is that the surface meshes they produce can behighly irregular, even for simple trivariate data. These irregularities consist of tiny triangles,produced when the contour passes near a vertex of the cubic mesh, and narrow triangles,produced when the contour passes near an edge of the mesh. In our experience, such trianglescan account for up to 50% of the triangles in some surface meshes. These badly shapedelements often degrade the performance of rendering algorithms and �nite element analysis
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Figure 1 Edge-based interpolation in two dimensions2



Figure 2 Edge-based interpolation in three dimensionsapplied to the mesh while contributing little to the overall accuracy of the approximation.This paper describes a method for removing these badly shaped triangles from the re-sulting mesh with little loss of accuracy in the resulting approximation. This method takesas input a surface contour produced by an edge-based interpolation method and producesa new surface contour free of badly shaped triangles. The number of triangles in the newcontour is often reduced by as much as 50%.2 Mesh DisplacementThe algorithm described here is a generalization of the mesh displacement algorithm thatwe �rst described in a previous paper [MW90]. This algorithm is a contouring method forscalar data speci�ed over a simplicial mesh. Instead of producing a piecewise linear contourusing linear interpolation, vertices of the simplicial mesh are displaced to lie on or near theappropriate contour. The result is a new simplicial mesh whose set of faces contain as asubset an approximation to the appropriate contour. We propose to generalize this methodto cubic meshes.2.1 The methodWe begin with some de�nitions. Let S be a surface mesh that is piecewise linear over a cubicmesh C with the property that the vertices of S lie on the edges of C. We say that S isembedded in C. By de�nition, edge-based interpolation methods produce embedded surface3



meshes. Given a vertex v of the cubic mesh C, the convex hull of those points on the edgesof C lying nearest to v is called the vertex orbit of v and denoted N(v). For vertices inthe interior of C, the vertex orbits form a cubic grid of octahedra that touch only at theirvertices. Those points where S intersects the edges of C inside the vertex orbit of v are thesatellites of v.The following technique, called the mesh displacement algorithm, eliminates small andnarrow triangles in S by displacing vertices of C to lie on or near S.1. For each triangle in S,if S intersects the orbits of three distinct verticesthen produce a triangle connecting these three verticeselse the triangle collapses to a vertex or edge2. For each vertex v of C,if S intersects the vertex orbit of vthen displace v to the centroid of its satellitesThe �rst step of the method de�nes the topology of a new mesh connecting vertices of C.All the vertices of S lying in the same vertex orbit are coalesced into a single vertex in theresulting mesh. Thus, small triangles lying in a single vertex orbit are collapsed to a vertex.Narrow triangles connecting two vertex orbits are collapsed to an edge. Figure 3 illustratesthis for the two dimensional case. This perspective shows that if the original surface meshS is continuous, then the topological mesh produced in the �rst step of the algorithm mustalso be continuous.In the second step, the vertices of the topological mesh are displaced to lie on or nearthe original embedded surface mesh. Since each new vertex position is chosen to be at thecentroid of a small cluster of points lying on S, the new approximation usually diverges onlyslightly from S. If S itself is an approximation to a smooth surface arising from some otherrepresentation, information from that representation can be used to reposition the vertex tolie precisely on the original smooth surface.
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Figure 4 illustrates this method applied to a two-dimensional mesh. The upper portionillustrates the result of the �rst step. The lower portion illustrates the output of the secondstep. The short edges in the upper portion of the �gure have been collapsed to form verticesin the lower portion.2.2 Experimental resultsThe mesh displacement method of the previous section has been coded and run on a rangeof test data. Figure 8(a) shows the zero contour produced by the marching cubes methodon a 13 by 13 by 13 grid of data from a function that de�nes a sphere. Figure 8(b) showsthe result of applying mesh displacement to �gure 8(a). Figures 9, 10, and 11 show themeshes resulting from applying the two methods to data derived from the function for ahyperboloid, a CT scan of the upper portion of a human femur, and a randomly generatedcubic polynomial, respectively.Mesh displacement improves the resulting surface meshes in two ways. First, by remov-ing small and narrow triangles from the surface mesh, the resulting mesh is signi�cantlycompressed. This e�ect decreases the rendering time and storage space required for suchmeshes. Table 1 presents statistics for the four examples of the �gures and several otherdata sets generated from randomly chosen degree three functions. In these examples, thecompression averaged 40% to 50%. Of course, not every data set will experience such com-pression. For example, a planar contour perpendicular to a coordinate axis will experienceno compression during mesh displacement. However, for most data sets arising in practice,mesh displacement achieves signi�cant compression.edge-based aspect ratios mesh disp aspect ratiosExample verts faces avg dev min verts faces avg dev minsphere 672 1328 .666 .259 .055 354 704 .840 .086 .685hyperboloid 596 1088 .617 .306 .007 264 464 .871 .100 .597femur 2095 4150 .679 .254 .000 1246 2462 .838 .084 .415cubic0 809 1503 .648 .295 .002 398 723 .869 .104 .426cubic1 842 1562 .655 .298 .004 439 796 .869 .109 .367cubic2 648 1179 .660 .278 .003 385 690 .839 .092 .279cubic3 854 1587 .650 .285 .000 457 834 .851 .097 .426cubic4 739 1375 .663 .258 .001 438 795 .833 .085 .457cubic5 922 1722 .635 .289 .000 472 860 .856 .099 .410cubic6 746 1373 .651 .293 .002 397 714 .857 .095 .568cubic7 817 1517 .634 .295 .000 408 739 .859 .101 .495cubic8 868 1592 .664 .267 .001 510 921 .843 .099 .330cubic9 834 1553 .644 .287 .001 423 769 .851 .106 .389Table 1 Comparison of edge-based interpolation and mesh displacement5
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Figure 4 An example of mesh displacement6



2.3 Shape boundsThe second improvement from mesh displacement involves the shape of the triangles in thenew mesh. By eliminating small and narrow triangles, mesh displacement produces onlytriangles with good shape. A more precise statement requires a formal measure of the shapeof a triangle. One standard measure is the aspect ratio of a triangle, the ratio of the radiusof its inscribed circle to the radius of its circumscribing circle. This ratio is normalized bymultiplying by a factor of two so that an equilateral triangle has aspect ratio one. The aspectratio measures how close the three vertices of a triangle are to being collinear.Table 1 also includes statistics on the aspect ratios of triangles produced by the twomethods. Mesh displacement produces meshes whose average aspect ratio is signi�cantlybetter than those produced by edge-based interpolation methods. Perhaps a more importantmeasure is the worst case aspect ratio of triangles produced by these methods. Triangleswith small aspect ratio can degrade the performance of polygon-based rendering methodssuch as Gouraud and Phong shading. In �nite element analysis, elements with small aspectratio can generate ill-conditioned systems of linear equations [Zie78].Edge-based interpolation methods can and do produce triangles with arbitrarily smallaspect ratios, as noted in table 1. For the mesh displacement method, we believe that theaspect ratios of the resulting triangles are bounded below by a positive constant. To supportour claim, we o�er the following argument.A triangle with aspect ratio near zero has almost collinear vertices. In the second step ofthe algorithm, each vertex of the cubic mesh C is displaced inside its orbit. Only those casesin which the orbits of three vertices of a cube contain collinear points can lead to triangleswith arbitrarily small aspect ratio. By inspection, the only case in which this is possible ispictured in �gure 5, where four cubes share a common edge. Three vertices on the lower leftcube have vertex orbits that are collinear along the bold line L. Edge-based interpolationhas produced the triangle abc in the lower left cube and the triangle bcd in the lower rightcube. Vertex c lies on the interior edge shared by all four cubes, but near the vertex v.During mesh displacement, vertices c and d lie in the orbit of vertex v and are collapsedto their centroid e. If the cubes have unit size, the new triangle abe has sides of length 54,p22 , and p54 . The resulting triangle has an aspect ratio of about 0:0503.To achieve this lower bound would require highly unusual input data. In practice, themesh displacement algorithm rarely produces triangles whose aspect ratio is worse than 0:4.For all thirteen examples of table 1, only six triangles possess aspect ratios of less than 0:4.The smallest aspect ratio that we have observed in practice is about 0:25.3 Boundary containmentEdge-based interpolation methods produce surface meshes whose boundaries are containedin the boundaries of the original cubic grid. The boundary curves of surfaces produced bymesh displacement do not necessarily conform to the boundaries of the cubic mesh. If suchboundary containment is desired, we suggest two possible approaches.One solution is to apply mesh displacement only to those vertices of S that lie in theorbits of interior vertices of C. Those vertices of S that lie in the orbit of a particular7
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Figure 5 Worst case aspect ratios in mesh displacementinterior vertex of C are coalesced into a single vertex. Those vertices of S that lie in theorbits of vertices on the boundary of C are left unchanged. This method has the advantageof simplicity, but can still leave several badly shaped triangles along the boundaries of the�nal surface mesh.Another solution allows mesh displacement to be applied in all but a rare set of circum-stances. This technique, called boundary classi�cation, classi�es a satellite p of a vertex vinto one of two categories. If p and v lie in exactly the same set of faces on the boundary ofC, then p is a primary satellite of v. Otherwise, p is a secondary satellite of v. If v lies on aface of the boundary of C, its primary satellites lie on that face. If v lies on an edge of theboundary of C, its primary satellites lie on that edge of C.Boundary classi�cation is incorporated into the mesh displacement algorithm by replacingthe second step with the following:2. for each vertex v of Cif v has a primary satellitedisplace v to the centroid of its primary satelliteselsetreat each secondary satellite of v as lying in a distinct vertex orbitThis approach is correct because displacing v to the centroid of its primary satelliteskeeps the vertex on the same facet of the boundary of C. If v has a single secondarysatellite, displacing v to this satellite does not a�ect the boundary behavior of S. If v hastwo or more secondary satellites, it is not always possible to coalesce these satellites so thatthe boundary of the resulting surface mesh still lies on the boundary of C. For example in�gure 6, S passes near a corner vertex v of C. Vertex v has two secondary satellites, p andq. Coalescing p and q into a new vertex and forcing the new vertex to simultaneously lie on8



the edges containing p and q results in the new vertex being positioned at v. However, v isan unsatisfactory location for the new vertex since it may lie up to p24 units from S. In thisrare case, we suggest that each secondary satellite be treated as lying in a distinct vertexorbit and assigned a di�erent vertex index.Figure 7 illustrates three examples of mesh displacement with boundary classi�cation intwo dimensions. In the middle and right examples, the vertex v has a single primary satellite.Vertex v is displaced to this primary satellite, so that the resulting curve still terminatesat the boundary of the mesh. In the leftmost example, v has a single secondary satellite.Since v has only a single secondary satellite, the original embedded curve does not exit theboundary of the mesh in the orbit of v. Thus, displacing v to its secondary satellite does nota�ect the termination of the curve. The examples given in this paper were computed usingboundary classi�cation so that, for instance, the boundary curves in �gure 11 remain planarafter mesh displacement.Boundary classi�cation also has the advantage that the behavior of the �nal mesh alonga boundary is determined solely by the scalar data lying on the containing boundary of thecubic grid. Thus, if two adjacent cubic grids share the same scalar data along a commonboundary, the two zero contours produced by boundary classi�cation are guaranteed to becontinuous along the common boundary.Requiring boundary containment a�ects the aspect ratios of the resulting triangles inseveral ways. First, mesh displacement with boundary classi�cation can produce triangleswith arbitrarily small aspect ratios. Degenerate triangles can arise, as depicted in �gure5. If the vertex v lies on a face of the boundary of C, then d is a primary satellite of v
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Figure 7 Several examples of boundary classi�cationand c is a secondary satellite of v. Displacing v to d yields the triangle abd whose aspectratio can be arbitrarily small. If the aspect ratio of the �nal mesh is important, we suggestexplicitly testing for this circumstance and deleting the triangle abd. Since this triangle liescompletely on the boundary of the cubic grid, the resulting surface is continuous and itsboundary curves still lie on the boundaries of C.For some embedded surface meshes, the three goals of boundary containment, boundedaspect ratio, and accurate approximation of the original mesh are di�cult to achieve simul-taneously. In �gure 6, the darkened triangle has an edge from p to q whose length can bemade arbitrarily close to zero. Any method that accurately approximates S and maintainsboundary containment must produce a surface mesh with vertices at p and q. Because ofthe vanishingly small distance between p and q, arbitrarily many vertices may need to beinserted into the resulting surface mesh to achieve a lower bound on the aspect ratio of theresulting triangles. In these case, we simply note that mesh displacement does not degradethe aspect ratio of the �nal mesh.4 Implementation and performance advantagesPiecewise linear meshes are typically represented using two sets of data: vertex locations andtriangle topology. A table of Cartesian coordinates stores vertex locations, with each vertexidenti�ed by its position in the table. Triples of vertex indices de�ne triangles. The tableof all triples de�nes the topology of the surface mesh. This representation allows severaltriangles to logically share a common vertex, typically decreasing the size of the vertex table10



by nearly a factor of six. This technique also makes later calculations, such as Gouraudshading for graphical display, simpler.For edge-based interpolation methods, identifying triangles sharing a common vertexusually involves some type of hashing or a table lookup based on the edge representation.For mesh displacement, such identi�cation is simple. Since each vertex of the �nal mesh istopologically a vertex of the original cubic mesh, vertex indices can be assigned during the�rst step and stored with the three-dimensional array of vertex data. Other information fora vertex such as the number of primary and secondary satellites it currently possesses andthe centroids of those satellites can be stored in an auxiliary table with as many entries asthere are vertices in the surface mesh. A pass through this auxiliary table allows creationof the actual vertex locations during the second step of the method. More sophisticatedimplementations of marching cubes that only store a few slices of the data cube at a timecan use mesh displacement as well, by interleaving the two steps of the algorithm with theprocessing of the slices. The algorithm requires only the vertex indices for the slices beingprocessed at any given time and the auxiliary data for the part of the surface mesh containedin those slices.We have modi�ed an existing implementation of the original marching cubes algorithmto use mesh displacement with boundary classi�cation. Complete revision and debugging ofthis code required about two hours and involved insertion of around 100 extra lines of code.Our installation of mesh displacement on top of the marching cubes algorithm improved theperformance of the resulting code because the surface mesh produced by mesh displacementwas signi�cantly smaller than the mesh produced by marching cubes.References[Bli82] J. Blinn. A generalization of algebraic surface drawing. ACM Transactions onGraphics, 1(3):235{256, 1982.[Blo88] Jules Bloomenthal. Polygonalization of implicit surfaces. Computer Aided Geo-metric Design, 5:341{355, 1988.[D�ur88] M. J. D�urst. Additional reference to marching cubes. Computer Graphics,22(2):72{73, 1988.[LC87] W. Lorenson and H. Cline. Marching cubes: A high resolution 3d surface con-struction algorithm. Computer Graphics, 21(4):163{169, 1987.[MW90] Doug Moore and Joe Warren. Adaptive mesh generation II: Packing solids.Technical Report TR 90-139, Rice University, Department of Computer Science,1990.[WMW86] G. Wyvil, C. McPheeters, and B. Wyvil. Data structure for soft objects. TheVisual Computer, 2:227{234, 1986.[Zie78] O. C. Zienkiewicz. The Finite Element Method. McGraw Hill, 1978.11
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BFigure 8 Two approximations to a sphere12
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BFigure 9 Two approximations to a hyperboloid13
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Figure 10 Two approximations to the head of a femur14
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B Figure 11 Two approximations to an implicit cubic patch15


