
Hierarchical Distributed Reference CountingLuc MoreauDepartment of Electronics and Computer ScienceUniversity of SouthamptonSouthampton SO17 1BJ, UKL.Moreau@ecs.soton.ac.uk
AbstractMassively distributed computing is a challenging problemfor garbage collection algorithm designers as it raises theissue of scalability. The high number of hosts involved ina computation can require large tables for reference listing,whereas the lack of information sharing between hosts in asame locality can entail redundant GC tra�c. In this paper,we argue that a conceptual hierarchical organisation of mas-sive distributed computations can solve this problem. Byconceptual hierarchical organisation, we mean that proces-sors are still able to communicate in a peer to peer mannerusing their usual communication mechanism, but GC mes-sages will be routed as if processors were organised in hi-erarchy. We present an extension of a distributed referencecounting algorithm that uses such a hierarchical organisa-tion. It allows us to bound table sizes by the number ofhosts in a domain, and it allows us to share GC informationbetween hosts in a same locality in order to reduce cross-network GC tra�c.1 IntroductionMassively distributed computing has emerged over the lastfew years as a potentially powerful paradigm of computa-tion. It has taken di�erent shapes: (i) In the I-Way ex-periment [9], multiple sites, communicating over wide-areanetworks across the American continent, are involved in adistributed computation. (ii) The World Wide Web isregarded by many as a support for planet-wide computing:amongst others, WWW programming [5], object systemson the WWW, such as Java and RMI [36], Globe [14, 18] orW3Objects [16], (iii) Software agents are autonomous pro-grams, possibly relying on mobility [3, 22] to achieve a taskdelegated to them; they may cooperate with other agents inorder to form agent societies [26]. (iv) Amorphous com-puting [1] involves a multitude of individuals cooperatingtogether to provide a coherent behaviour.For a long time, the programming language communityhas defended the idea that garbage collection is an automaticmemory management technique that provides the program-mer with a powerful abstraction of memory resources, whichCopyright 1998 by the Association for Computing Machinery, Inc. Per-mission to make digital or hard copies of part or all of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for pro�t or commercial advantage and thatcopies bear this notice and the full citation on the �rst page. Copyrightsfor components of this work owned by others than ACM must be honored.Abstracting with credit is permitted. To copy otherwise, to republish, topost on servers, or to redistribute to lists, requires prior speci�c permis-sion and/or a fee. Request permissions from Publications Dept, ACMInc., fax +1 (212) 869-0481, or permissions@acm.org.ISMM'98 10/98, Vancouver, Canada.

eases programming. This idea has been taken on board inmany languages, including the recent and widespread lan-guage Java. Distributed garbage collection, which extendsthe idea of automatic memory management to distributedmemory, has been the focus of much attention [17, 30]. Dis-tributed reference counting has been a popular implemen-tation technique of distributed garbage collection because itis simple to implement and can be nicely integrated withsequential garbage collectors [2, 24, 28, 39]. Its variant, ref-erence listing , [4, 30, 34, 36], associates objects not only withreference counters, but also with the list of hosts that havereferences to them; reference listing is useful to o�er somefault-tolerance.Designing a garbage collector for massively distributedcomputations is, however, a challenging task. We have iden-ti�ed two problems that hamper the scalability of distributedgarbage collection.1. Reference listing does not scale. In the presence ofmassively distributed computations on the Internet,the number of hosts that have access to a given refer-ence can become very high, which requires the garbagecollector to maintain very large tables.2. Locality is not taken into account . Distributed GC al-gorithms usually o�er no mechanism by which sitesin a same neighbourhood, e.g., two hosts in a clus-ter, may share information to reduce GC-related traf-�c with another distant host, e.g., another cluster onanother continent.The �rst problem is typical of any algorithm that must main-tain tables of hosts; the second one is true for all referencecounting algorithms that we have encountered.Our thesis is that massively distributed computationsmay be conceptually organised in a hierarchy [19, 38] andthat distributed garbage collection may rely on this organi-sation to overcome the two aforementioned scalability prob-lems. An example of hierarchical organisation derived fromnetwork interconnectivity is as follows: at the lowest level,we have a COP, i.e. a cluster of PCs, connected to a labo-ratory network, itself in contact with a departmental back-bone, which takes part in a nation-wide network, from whichinternational connections depart. Other hierarchical organ-isation are conceivable, more speci�c to the problem beingsolved.For every hierarchy, we identify a distinguished site calledthe gateway . The intuition of our algorithm is that thegateway acts, in the hierarchy, as the representative of the

rest of the computation; symmetrically, it acts in the rest ofthe computation, as the representative of the hierarchy. Forinstance, if a host in a COP has access to a reference, the restof the computation does not have to identify the precise host,but the COP gateway as holder of the reference. Similarly, apointer being duplicated between two sites in the UK doesnot have to be observed by its owner in the US, as longas reference counters are correctly maintained by the UKgateway.In this paper, we �rst present a
at and reference-listingvariant of our algorithm for distributed reference countingand di�usion tree reorganisation (Section 2). We then con-vey the intuition of a hierarchical organisation (Section 3).Afterwards, we illustrate the design of hierarchical referencecounting by several scenarios (Section 4). This is followedby a formal presentation of the algorithm (Section 5) andsome implementation issues (Section 6). The paper ends bya discussion of related work (Section 7) and a conclusion(Section 8).Terminology This algorithm has been designed as partof NeXeme [25], a distributed implementation of Scheme,based on the message-passing library Nexus [10]. In NeX-eme, computations can proceed in di�erent memory spaces,called sites. As in Nexus, there is a notion of global pointerGP which is a �rst-class name for an object; a GP speci�esa destination to which a communication can be directed viaa form of remote method invocation. As far as garbage col-lection is concerned, GP s are references to possibly remoteobjects. In addition, NeXeme provides a function ownerthat returns the site that owns the object at which a GP ispointing.2 Flat Distributed Reference CountingWe previously sketched a new algorithm for distributedreference counting [25]. We formalised this algorithm andproved its safety and liveness [24]. In this section, we brie
yexplain a variant of this algorithm that uses reference list-ing [4, 30]; we also discuss some of its problems if used inmassively distributed computations.Each site owns two tables called Receive and Send ta-bles, noted Rec T and Send T in the algorithm. A Send-table records triples of information: the global pointers thatwere sent to remote sites, the sites where they were sent to,and the number of times they were sent; according to theterminology of [4, 30], a Send-table maintains a referencelisting. Symmetrically, a Receive-table also records triplesof information composed of the global pointers that werereceived from remote sites, the sites that emitted them, andthe number of times they were received; in addition, we as-sume that a GP constructed (and therefore owned) by a siteis entered in its Receive table.Figure 1.1 displays the situation where a global pointerGP , owned by s1, is copied from s1 to s2, which we modelby the message COPY (s1; s2; GP). If the GP is copiedfor the �rst time, a new entry is created in the Send-tableof s1 for GP , the destination s2, and the initial value 1;for every new copy towards s2, the counter is incremented.Symmetrically, a GP received by s2 from its owner s1 isentered in the Receive-table; multiply receiving a GP froms1 increments the counter.As the Send-table is implemented as a root of the localgarbage collector, the presence of GP in the Send-table pre-vents its space to be reclaimed on s1. When GP becomes

garbage on s2, GP is removed from the Receive-table of s2;then, a decrement message DEC(s2; s1; GP; s2) is sent froms2 to s1, which in turn removes the entry in the Send-tableof s1, as displayed in Figure 1.2.The novelty of our algorithm is exhibited in Figure 1.3,when a site s2, which does not own a GP , sends a copyto a third site s3. (i) An entry for GP and s3 isadded to the Send-table of s2. (ii) When GP is receivedby s3 for the �rst time, an entry is added for GP in itsReceive-table. However, the entry records s1, the owner ofthe GP , and not s2, the GP 's emitter. (iii) A new messageINC DEC(s3; s1; GP; s2) is sent from s3 to the owner s1,to inform the owner of the arrival on s3 of a GP originatingfrom s2 (Figure 1.3). (iv) When receiving the INC DECmessage, the owner s1 adds a new entry for GP and s3 in itsSend-table, and then sends a DEC(s1; s2; GP; s3) messageto s2. (v) The decrement message sent to s2 decrementsthe entry in its Send-table, and removes the entry becauseit becomes null.The e�ect of the INC DEC message (followed by theDEC message) is to reorganise the di�usion tree of GP . GPwas di�used from s1 to s2 and then to s3, but the tables arenow recording that two copies of GP owned by s1 exist ons2 and s3. The bene�t of this reorganisation is that if GPbecomes garbage on s2, its space can be reclaimed, whereasin Piquer's indirect reference counting [29], a zombie pointerwould have to be maintained on s2 as long as GP is usedon s3. Note that the algorithm correctness relies on in-ordermessage delivery; indeed, it is essential to prevent a DECmessage from overtaking an INC DEC message, as thismay result in an undesirable object reclaiming.Further copying of GP from s2 to s3, which do not ownGP , increase the respective Send and Receive tables (Figure1.5). Note that it is no longer required to involve the ownerwith an INC DEC message, because this only has to beperformed the �rst time the GP is received. At any time, aDEC message may be sent to erase those entries and restorethe system in the situation of Figure 1.4.Thanks to this reorganisation mechanism, this algorithmis able to avoid zombie pointers resulting from computationsjumping from node to node. This algorithm however su�ersfrom some defects if used in the context of massively parallelcomputations [9, 13, 14].1. Reference listing does not scale. The reference listingmethod requires Send-tables to record all the sites thathave access to a given GP . In the presence of theInternet, this may potentially imply very large tables.2. The algorithm does not take locality into account . InFigures 1.3 and 1.4, let us assume that sites s2 and s3are connected via fast communication lines, and thatcommunication with s1 is slow. The technique to reor-ganise di�usion trees may force a communication witha site with slow communication. Similarly, in Figure1.5, sites s2 and s3 may be poorly connected and DECmessages from s3 could be grouped with other mes-sages from sites in the neighbourhood of s3. The lackof locality awareness also hampers the scalability ofother algorithms, such as [4, 28, 36].In the next section, we present a hierarchical organisationof sites that allows us to avoid these two problems.2

1

Rec TSend TGP
1
1COPY (s1; s2; GP)

s1 1
s1s2

s1 s2
Rec TSend TGP

2 Send T
DEC(s2; s1; GP; s2)
GC MessageMandatory Message

Rec Ts2
s1 s1 1Rec TSend TGP

3 COPY (s2; s3; GP)Rec TSend TGP 1
1s1

INC DEC(s3; s1; GP; s2)
s3 1 s1 1Rec TSend Ts1s2 s3 GP

GPSend TRec Ts1 s2 1
4 s1 1Rec T

Rec TSend TGP
Send T

s2 11s3DEC(s1; s2; GP; s3)
s1 1s1

GPs3s2 s1GPSend TRec T 1
5 COPY (s2; s3; GP) s1s3 GPSend TRec T 1s2

1s1s2 s3Rec T DEC(s3; s2; GP; s3)
s2 1

GPSend T GP
GPSend TRec T 1s1 1

Send TRec T 1s1
s3

Figure 1: Flat Distributed Reference Counting3

s9 s10
s6s8COPY (sD; sC ; GP)COPY (sC ; s8; GP) SCs7 DC

SDCOPY (sB ; sD ; GP)s5
s1s3 SA COPY (s1; sA; GP)COPY (sA; sB ; GP)s4

s2 A B
SB

Figure 2: Hierarchical Message Forwarding3 Hierarchical OrganisationSites that are in the same proximity or in a same logical or-ganisation are said to be grouped in domains; for instance,COPs, i.e. clusters of PCs, or NOWs, i.e. networks of work-stations, may be regarded as domains. As domains are de-signed to follow a hierarchical organisation, domains are de-�ned as sets of sites or subdomains. Sites (or subdomains)that belong to a domain are said to be siblings. We associateeach domain with a distinguished site that acts as a gatewayto the parent domain. For instance, in Figure 2, s1; s2; s3 aresiblings and belong to a same domain A, with gateway sA;sites s4; s5; sA are siblings and belong to domain B whosegateway is sB .For garbage collection purposes, we regard the gatewayas a key component of a domain: (i) The gateway sA ofdomain A acts as the representative in domain B of all thesites of domain A. In other words, elements of domain B areonly aware of the existence of sA and not of its children sitess1; s2; s3. (ii) Symmetrically, the gateway sA of domain Aacts as the representative in domain A of all the sites thatdo not belong to domain A. In other words, sites of A areonly aware of their sibling sites and of sA which acts as aproxy for all the other sites.We want to use this hierarchical organisation in order toguarantee that: (i) reorganisation as in Figure 1.3 canbe hidden by a domain gateway, (ii) table sizes for a givenGP are bounded by domain sizes. Figure 2 presents aconceptual way of implementing such a hierarchical organi-sation: gateways between domains could also act as messageforwarders. For instance, in order to send a message froms1 to s8, s1 sends it to the gateway sA because s8 is out-side domain A, which in turn forwards it to sB for the samereason, etc.In practice such a solution is not acceptable because it po-tentially delays the sending of messages as it involves severaldomain gateways in message forwarding1. However, from atheoretical point of view, this solution is suitable because aGP copied from s1 to sA would create an entry for sA inthe Send-table of s1, and reciprocally for the Receive-table1We assume here that we are using a network layer, such asTCP/IP, which already e�ciently performs routing between networks.Every GC gateway acting as a forwarder would introduce delays. Notealso that hierarchical domains may also be di�erent from the networkorganisation.

of sA. Such a property would also hold for every gateway,which would guarantee that table sizes are bounded by do-main sizes.In the next Section, we present an extension of the
atGC that does not increase the cost of sending mandatorymessages, but maintains a hierarchical organisation as wejust described.4 Hierarchical Distributed Reference CountingAs in every garbage collector design, it is essential to min-imize the impact of garbage collection activity on manda-tory computation. In particular, remote method invoca-tion, which copies global pointers, should be executed as ef-�ciently as possible. Therefore, instead of hierarchical mes-sage forwarding of Figure 2, we prefer the organisation ofFigure 3, where we see that the mandatory message is di-rectly sent from s1 to s8, but a conceptual hierarchy is keptfor GC purposes. Two new messages, introduced to informgateways of cross-domain messages, are asynchronously sentto gateways of the hierarchy; they are de�ned in terms ofthree sites s1; s2; s3:� With DOM SEND(s1; s2; GP; s3), site (or subdo-main) s1 informs its gateway s2 that GP was sent tos3 belonging to another domain.� With DOM RECV (s1; s2; GP; s3), site (or subdo-main) s1 informs its gateway s2 that GP was receivedfrom s3 belonging to another domain.In Figure 3, DOM SEND and DOM RECV messages arerepeatedly sent till they respectively reach sB and sD, suchthat sB is an ancestor of s1, sD is an ancestor of s8, and sBis sibling of sD.When messages are exchanged within a domain, the
atgarbage collection algorithm of Figure 1 is used. If globalpointers are sent to or received from sites belonging to otherdomains, then Figure 4 summarises the hierarchical proto-col.In Figure 4.1, site s2 sends a copy of GP to s3, a siteoutside the domain A. A new entry is added to the Send-table of s2, with GP and the gateway sA, as if the messagehad been routed via the gateway sA. In addition, a messageDOM SEND is sent to the gateway, which acts as if it wasforwarding the message. Gateways also maintain Receive4

B
SBs4 s5

s1s3 As2SA s10
s6s8DOM RECV (s8; sC ; GP; s1)DOM RECV (sC ; sD ; GP; s1)COPY (s1; s8; GP)

s9DOM SEND(sA; sB ; GP; s8)DOM SEND(s1; sA; GP; s8) s7 DC
SD

SC
Figure 3: Hierarchical Update of Tablesand Send tables: (i) Within domain A, the
at GC algo-rithm applies. If this is the �rst time that sA receives a copyof GP , and if s1 owns GP , then INC DEC and DEC mes-sages are sent in the usual triangular mode, and the Receive-table of sA records that GP comes from s1. (ii) If s3 (orone of its gateways) is a sibling of sA, then the Send-tableentry of sA records this gateway. Otherwise, if s3 (or one ofits gateways) is not a sibling of sA, then the same mechanismapplies recursively, and sA sends a DOM SEND messageto its gateway, etc. Figure 3 illustrates a succession of suchDOM SEND messages. A DOM SEND message is suc-cessively sent to gateways of the hierarchy till it reaches agateway sB (in Figure 3), which is a sibling of a gatewaysD, itself an ancestor of the GP receiver s8.Figure 4.2 describes the symmetric situation where a sites1 receives a copy of a GP from s3 outside the domain A.The system should behave as if GP had been received fromthe gateway sA. Hence, a DOM RECV is sent to the gate-way sA, which implies that the Send-table of sA records thatGP is sent to s1, and symmetrically for the Receive-tableof s1. If it is the �rst time that GP is received by s1 andif GP is owned by s2, a sequence of INC DEC and DECmessages is required as in the
at GC algorithm2. If s3 (orone of its gateways) is not a sibling of sA, then we proceedrecursively as illustrated in Figure 3. A DOM RECV mes-sage is successively sent to gateways of the hierarchy till itreaches a gateway sD (in Figure 3), which is a sibling of agateway sB, itself an ancestor of the GP emitter s1.In summary, gateways act as the Receive- and Send- ta-bles of domains. The DOM SEND or DOM RECV mes-sages consist of incrementing the Send or Receive tables inthe gateway, respectively, possibly entailing a triangular re-organisation as in the
at version of the algorithm.5 The AlgorithmWe formalise the algorithm using an abstract machine,called the HGC machine, whose con�guration is de�ned at2TheDOM RECV message to sA is in competition with theDECmessage which respectively increments and decrements the counterfor GP in the Send-table of sA. Even though this may decrementthe counter before it is increased, and hence result in a temporarynegative value, this has no consequence on the correctness becausethe DEC message sent from the owner has previously increased acounter on the owner, hereby preventing undesirable reclaiming.

the top of Figure 5. A con�guration H is a tuple composedof a set of sites, a set of global pointers, Receive and Sendtables for every site, and a bag of messages. Receive andSend tables are functions which for a site s1, a GP , a site s2respectively return the number of times GP was received bys1 from s2, or sent from s1 to s2. The bag of messages de-notes messages that are in transit in the system, i.e. alreadyposted but not yet handled.We write owner(GP) to denote the site that owns GP .Initially, all table entries are zero, except for hosts that ownGP s: send T (s1; GP; s2) = 0; 8s1; s2; GP;rec T (s;GP; s) = 1 if owner(GP) = srec T (s1; GP; s2) = 0; 8s1; s2; GP; otherwise:We allow HGC-con�gurations to perform four transitions.Let H1 be hS;G; send T; rec T;Mi, and let us assume thats1; s2; s3 2 S; GP 2 G; m 2M, then:H1) MAKE COPY (s1; s2; GP))H2 (make-copy)H1) RECEIV E(m))H2 (receive)if m = DEC(s1; s2; GP); thenINC DEC(s1; s2; GP; s3) 62 M; 8s3H1) RELEASE(s1; GP))H2 (release)H1) DELETE(s1; s2; GP)) H2 (delete)The con�guration transformersMAKE COPY , RECEI-VE , RELEASE andDELETE are de�ned in Figures 5 and6. In Figure 5, if H1 = hS;G; send T; rec T;Mi, post(m)denotes the con�guration H2 such that H2 = hS;G; send T;rec T;M[fmgi. Similar notational conventions are usedfor assignments to Send and Receive tables. In the rulesabove, let us note the side-condition of (receive), which maybe implemented by in-order message delivery. We also as-sume that transitions are executed atomically.In addition, in order to model the hierarchical domainorganisation, we use the following relations:� parent(x; y): node y is parent of node x.� descendant(x; y): node y is a descendant of node x, ifx = y or 9z; parent(z; x) ^ descendant(z; y).5

1
s2

sA
DEC(s1 ; s2; GP; sA) COPY (s2; s3; GP)GP owned by s1 is sent by s2 outside domain AA

INC DEC(sA; s1; GP; s2) DOM SEND(s2; sA;GP; s3)s1
2

s2
sA

INC DEC(s1; s2; GP; sA)COPY (s3; s1; GP)DOM RECV (s1; sA;GP; s3) DEC(s2; sA;GP; s1)
GP owned by s2 is received by s1 from outside domain As1

Figure 4: Cross-Domain Pointer Copying� sibling(x; y): node y is a sibling of node x, if 9z,parent(x; z) = parent(y; z).� proxy(x; y): the representative of y in the domain ofx. For the time being, we consider a static hierarchicalorganisation; the proxy relation is de�ned as follows.proxy(x; y)= 8>><>>: y if sibling(x; y)z if :sibling(x; y) ^ :descendant(x; y)^ parent(x; z)z if :sibling(x; y) ^ descendant(z; y)^ parent(z; x)Let us �rst consider the particular case where all sitesbelong to the same domain, which means that sibling(x; y)holds and that proxy(x; y) = y for any x; y. In such a sit-uation, Figure 5 describes the algorithm for \
at" garbagecollection.Rule (make-copy) associated with con�guration trans-former MAKE COPY models the actions that site s1 hasto take before sending a copy of GP to s2. The send T isupdated and a COPY message is posted.Rule (receive) and its associated con�guration transfor-mer RECEIV E describe how messages are received. Whens2 receives a COPY message from s1, a triangular reorgani-sation is initiated if it is the �rst timeGP is received, i.e. the

entry in the receive table for the owner sg is empty. The tri-angular reorganisation involves sending an INC DEC mes-sage to the owner, which is followed by a DEC message.An entry in the receive table pointing at a site that is notthe owner of a GP may always be cleared by rule (release),which sends a decrement message to the site. Finally, a localgarbage collector that proves that a GP has become garbageon site s initiates the transition (delete); such a transitioncan only be �red if Receive and Send tables (except for theowner sg) are empty, and it results in a DEC message sentto the owner.If the sites involved in the transitions do not belong tothe same domain, rules of Figure 5 remain still applicable,but are now involving proxies of the sites. For instance,receiving a COPY message from s1, which does not belongto the same domain as s2, potentially results in a triangularreorganisation with sp and sg, respectively proxies of s1 andthe owner (cf. Figure 4.2). In addition, a DOM RECVmessage is sent, when s2 is not sibling with (the proxy of)s1. Figure 6 displays how the two messages for hierarchicalGC are handled. Receiving a messageDOM RECV (s1; s2; GP; s3) is similar to receiving a mes-sage COPY (s3; s2; GP). The only di�erence is that thegateway s2 has to act as if it was forwarding the messageoriginating from s3 to s1 (as in Figure 2). As a result, theentry for s1 in the send T of s2 has to be incremented.6

s 2 S = fs0; s1; : : : ; sng (Site)GP 2 G = fGP0; GP1; : : :g (Global Pointer)m 2Msg ::= COPY (s1; s2; GP) jDEC(s1; s2; GP; s3) jINC DEC(s1; s2; GP; s3) jDOM SEND(s1; s2; GP; s3) jDOM RECV (s1; s2; GP; s3) (Message)M : BagOf(Msg) (Pool of Messages)send T : S � G � S ! IN (Send Tables)rec T : S � G � S ! IN (Receive Tables)H 2 Config ::= hS;G; send T; rec T;Mi (HGC-Con�guration)MAKE COPY (s1; s2; GP) if s1 6= s2 ^ rec T (s1; GP; proxy(s1; owner(GP))) > 0//s1 prepares to copy GP to s2f let sp = proxy(s1; s2)send T (s1; GP; sp) := send T (s1; GP; sp) + 1;post(COPY (s1; s2; GP));if :sibling(s1; s2) thenpost(DOM SEND(s1; sp; GP; s2)) gRECEIV E(COPY (s1; s2; GP)) if s1 6= s2 //s2 receives a copy of GP from s1f let sp = proxy(s2; s1)sg = proxy(s2; owner(GP))if rec T (s2; GP; sg) = 0 thenfrec T (s2; GP; sg) := 1;post(INC DEC(s2; sg; GP; s1)) if sp 6= sg ^ s2 6= sg gelsefrec T (s2; GP; sp) := rec T (s2; GP; sp) + 1 g;if :sibling(s2; sp) thenf post(DOM RECV (s2; sp; GP; s1)) g gRECEIV E(INC DEC(s1; s2; GP; s3)) //s2 receives an INC DEC messagef let sp = proxy(s2; s3) //from s1 which received GP from s3send T (s2; GP; s1) := send T (s2; GP; s1) + 1;post(DEC(s2; sp; GP; s1; 1)) gRECEIV E(DEC(s1; s2; GP; s3; n)) //s2 receives an DEC message from s1f send T (s2; GP; s3) := send T (s2; GP; s3)� n gRELEASE(s1; s2; GP) if s1 6= s2; s2 6= proxy(s1; owner(GP))rec T (s1; GP; s2) > 0rec T (s1; GP; proxy(s1; owner(GP))) > 0//s1 annihilates receive table entryf post(DEC(s1; s2; GP; s1; rec T (s1; GP; s2)));rec T (s1; GP; s2) := 0 gDELETE(s; sg; GP) if sg = proxy(s; owner(GP));s 6= sg;8si; send T (s;GP; si) = 0;8si 6= s; si 6= sg; rec T (s;GP; si) = 0 //GP becomes garbage on sf post(DEC(s; sg; GP; s; rec T (s;GP; sg)));rec T (s;GP; sg) := 0 g Figure 5: Flat Garbage Collection7

RECEIV E(DOM RECV (s1; s2; GP; s3)) //gateway s2 is informed that GPf let sp = proxy(s2; s3) //is received by s1 from s3sg = proxy(s2; owner(GP))if rec T (s2; GP; sg) = 0 ^ :descendant(sg; s2) thenfrec T (s2; GP; sg) := 1;post(INC DEC(s2; sg; GP; s3)) if sp 6= sg ^ s2 6= sg gelsef rec T (s2; GP; sp) := rec T (s2; GP; sp) + 1 g;send T (s2; GP; s1) := send T (s2; GP; s1) + 1;if :sibling(s2; sp) thenf post(DOM RECV (s2; sp; GP; s3)) g gRECEIV E(DOM SEND(s1; s2; GP; s3)) //gateway s2 is informed that GPf let sp = proxy(s2; s3) //is copied from s1 to s3sg = proxy(s2; owner(GP))if rec T (s2; GP; sg) = 0 ^ descendant(sg; s2) thenfrec T (s2; GP; sg) := 1;post(INC DEC(s2; sg; GP; s1)) if sg 6= s1 gelsef rec T (s2; GP; s1) := rec T (s2; GP; s1) + 1 g;send T (s2; GP; sp) := send T (s2; GP; sp) + 1;if :sibling(s2; sp) thenf post(DOM SEND(s2; sp; GP; s3)) g gFigure 6: Hierarchical Garbage CollectionConceptually, when a gateway s2 receives a messageDOM SEND(s1; s2; GP; s3) from s1, it must act as if itwas forwarding the message to its destination s3. There-fore, the receive table records the arrival of GP from s1 (orsg via the usual triangular reorganisation). In addition, theentry for the proxy of s3 is incremented in the Send-table ofs2. Our hierarchical organisation solves the problem of the
at GC algorithm:� Locality : Gateways are hiding reorganisations withintheir domains. For instance, the copy of GP ownedby a site outside the domain results in a triangularexchange as described by Figure 7, where the gatewayacts as a representative for the GP 's owner.In addition, as the gateway sA of Figure 7 \centralises"GC information about GP for domain A, we are ableto send a decrement message to its owner only whenGP has become garbage on all sites of domain A. Suchsharing of information in a domain allows us to reduceGC tra�c across domains.� Table Size: per global pointer, a table now has a maxi-mum number of entries given by the size of the domain.Indeed, every access to a Send-Table (and similarly fora Receive-Table) in the algorithm of Figures 5 and 6 isof the formsend T (s1; GP; sx), where sx was de�ned asproxy(s1; s3), for any site s3. So, entries in Send-Tables always refer to sites in the same domain.

1
s2

sA
COPY (s1; s2; GP)

DEC(s1 ; sA;GP; s2) INC DEC(s2 ; sA;GP; s1)
A GP does not belong to domain As1

Figure 7: Inside Domain Triangular Reorganisation6 ImplementationThis distributed GC algorithm has been designed as partof NeXeme [25] a distributed extension of Scheme based onthe message-passing library Nexus [10]. The
at algorithmhas been fully implemented and tested, but (at the time ofwriting), the hierarchical implementation is still in progress.An important aspect of the implementation is the designof an e�cient function sibling. Currently, we de�ne a hier-8

archical pointer as a structure composed of a global pointerand an access path, which is a datastructure representingthe path of its owner in the hierarchy. By default, the ac-cess path is set to nil, which means that the hierarchicalpointer has not exited its domain. Every time a hierarchi-cal pointer is serialised, we have to compare its access pathwith the access path of the message destination. If the ac-cess paths are equal, then the hierarchical pointer is beingsent to its domain. Otherwise, from the common path pre-�x, one can derive the gateways to which the DOM SENDand DOM RECV messages must be sent.For the time being, gateways are built as distinguishedprocesses. We are investigating how to implement them asregular nodes, which could also take part in the computa-tion. So far, we have considered a static hierarchy. We arealso studying ways of specifying the hierarchy dynamicallyand of changing gateways at runtime according to the loadof the system.We have presented here an abstract algorithm, which canbe optimised in several ways. (i) Several DOM SEND(or DOM RECV) could be merged together, in the samespirit as DEC messages that contain a counter value. (ii)One message could be avoided in Figure 4.2 by recognisingthis particular situation, to the detriment of algorithm read-ability; for instance, the DOM RECV and DEC messagescould be combined in a new message that would follow theINC DEC message. (iii) We can design di�erent strate-gies for sending GC messages. For the time being, a regularsites sends GC messages as soon as it becomes idle. On theother hand, gateways infrequently send messages to theirsiblings in order to avoid cross-domain tra�c.7 Related WorkReference-counting garbage collection was initially devel-oped for uniprocessor systems [6]. Its principle is as fol-lows: every time a pointer is copied or deleted, a refer-ence counter is respectively incremented or decremented. Itmight seem that this algorithm can be extended straightfor-wardly to distribution by using two control messages INCand DEC that act on the reference counter residing on theowner of the pointer. Unfortunately, non-causal messagedelivery may reset the counter even though remote refer-ences may still be active. Correct solutions to this problemhave been proposed, including weighted reference counting[2, 8, 39] and its optimised version [7], generational referencecounting [12], indirect reference counting [28, 29].Other tripartite exchange of messages including the sitethat emitted a GP , the receiver of the GP and its ownercan be found in the literature, in particular by Lermen andMaurer [21, 37], and by Birrel et al. [4]. Our algorithmdi�ers from theirs by the direction in which messages areexchanged and because our solution only requires a tripar-tite exchange the �rst time a GP is received. Intuitively,our solution preserves causality because the owner sends aDEC message only after having processed an INC DECmessage which has increased a reference counter.However, our algorithm has another major bene�t as itis able to reorganise di�usion trees: when GC messages areall processed, the di�usion tree is completely
attened, andevery site owning a GP directly \depends" from its owner.In the presence of mobile computations jumping from siteto site, this allows sites to reclaim the space that was oc-cupied by a mobile program, hereby avoiding zombie refer-

ences as in indirect reference counting [28]. To the best ofour knowledge, Shapiro, Dickman, and Plainfoss�e [34, 35]were the �rst to address the issue of short-cutting chains ofpointers. They regard migration as a primitive notion to besupported by the GC; in this paper, we do not deal with mi-gration, however, we have showed that support for mobilitycould be added as an extra layer, like a library, on top ofthe current garbage collection algorithm [24].The distributed collector of Java with Remote MethodInvocation [36] is derived from Birrel's network objects [4].In addition, Java uses a mechanism of lease, by which siteshaving pointer copies are forced to regularly renew theirlease. Such a mechanism supports fault-tolerance and couldalso be implemented with our algorithm.Let us note that none of the previously mentioned algo-rithms is based on a hierarchical organisation as presented inthis paper. Therefore, those using reference listing [4, 35, 36]potentially have to manage very large tables in Internet-wide computation. Furthermore, they are not able to sharegarbage collection information within a neighbourhood,which prevents them from optimising GC information trans-fer on a local basis, such as per cluster or per network.We are accustomed to hierarchical memories in unipro-cessor systems and memory management has been studiedin this particular case [40]. We can regard our schema asa hierarchical organisation of a distributed memory. Otherhierarchical organisations have been brought forward. Lang,Queinnec, and Piquer \Garbage collecting the World" uses ahierarchy of nodes that are willing to cooperate for garbagecollection; such a similar approach is also adopted in [38] inorder to provide scalability. Queinnec [31] also suggests tocluster sites so that they can present a single clock to the restof the world; clocks are used to provide a causally-coherentdistributed memory.Rodrigues and Jones [32] dynamically identifygroups of processes that will collaborate to reclaim distri-buted cyclic garbage. Their groups provide locality as com-munication related to the garbage collection activity is onlynecessary between members of the group. The same au-thors [33] also explain how groups that have independentlyinitiated a collection on the same cyle may merge together.Maheshwari and Liskov [23] use back tracing [11] to deter-mine if an object is garbage. Back tracing as opposed toforward tracing preserve locality of the tracing process.Reference counting garbage collection is only able to re-claim acyclic data structures. Other algorithms may be com-bined with ours in order to collect cycles, such as Le Fes-sant, Piumarta, and Shapiro's [20], Rodrigues and Jones'[32], or Lang, Queinnec and Piquer's [19]. The latter seemsto be particularly appropriate because it also relies upona hierarchical organisation of sites that cooperate to elimi-nate cycles between themselves. Gateways in our algorithmcontain Send and Receive tables for a domain and can beused to perform a collaborative garbage collection of the do-main. The distributed variant of the Train GC [15] is alsoable to collect cycles; it combines a reference-counting stylepointer-tracking mechanism with a substitution protocol.8 ConclusionWe have presented a hierarchical organisation for distributedreference counting. Such an approach is particularly suitablefor Internet-wide programming because it is able to abstracta whole domain of sites by a single host, which acts as its9

representative for garbage collection purposes. Such a hier-archical schema allows us to give bounds on the size of tablesinvolved in reference listing and to reduce cross domain GCtra�c.This algorithm is being implemented as part of NeX-eme, a distributed implementation of Scheme [25], o�eringsome support for mobile computations [24] and distributedresource control [27]. We foresee two other applications forthis algorithm. First, in [26], we associate reference counterswith WWW documents, in order to build an agent architec-ture that o�ers link integrity in a publishing environment;the new reference counting algorithm may be used to im-prove scalability of the system. Second, in [27], we presenta distributed model of resource control, suitable for agent-style applications. We believe that the present algorithmcan be applied to resource control in order to facilitate re-source management among sites in a same locality.9 AcknowledgementThis research was supported in part by the Engineering andPhysical Sciences Research Council, grant GR/K30773. Weare grateful to Stuart Maclean, Danius Michaelides, Chris-tian Queinnec, and the anonymous referees for their com-ments.References[1] Harold Abelson, Thomas F. Knight, Gerald Jay Suss-man, and friends. Amorphous Computing Mani-festo. Technical report, MIT, 1996. available fromhttp://www-swiss.ai.mit.edu/ �switz/amorphous.[2] David I. Bevan. Distributed Garbage Collection usingReference Counting. In PARLE Parallel Architecturesand Languages Europe, volume 259 of Lecture Notesin Computer Science, pages 176{187. Springer-Verlag,June 1987.[3] Krishna Bharat and Luca Cardelli. Migratory Appli-cations. In Mobile Object Systems: Towards the Pro-grammable Internet, pages 131{149. Springer-Verlag,April 1997. Lecture Notes in Computer Science No.1222.[4] Andrew Birrell, David Evers, Greg Nelson, Susan Ow-icki, and Edward Wobber. Distributed Garbage Collec-tion for Network Objects. Technical Report 116, Digi-tal Systems Research Center, 130 Lytton Avenue, PaloAlto, CA 94301, December 1993.[5] Luca Cardelli and R. Davies. Service Combinators forWeb Computing. In Usenix Conference on DomainSpeci�c Languages DSL97, Santa-Barbara, California,October 1997.[6] George E. Collins. A Method for Overlapping and Era-sure of Lists. Communications of the ACM, 3(12):655{657, December 1960.[7] Peter Dickman. Optimising Weighted ReferenceCounts for Scalable Fault-Tolerant Distributed Object-Support fsystems, 1992.[8] Ian Foster. A Multicomputer Garbage Collector for aSingle-Assignment Language. Intl J. of Parallel Pro-gramming, 18(3):181{203, 1989.

[9] Ian Foster. High-Performance Distributed Computing:the I-WAY Experiment and Beyond. In Euro-Par'96Parallel Processing, volume 1123 of Lecture Notes inComputer Science, pages 3{10, Lyon, France, August1996.[10] Ian Foster, Carl Kesselman, and Steven Tuecke. TheNexus Approach to Integrating Multithreading andCommunication. Journal of Parallel and DistributedComputing, 37:70{82, 1996.[11] Matthew Fuchs. Garbage Collection on an Open Net-work. In Proceedings of International Workshop onMemory Management, volume 986 of Lecture Notes inComputer Science, Kinross, Scotland, September 1995.[12] Benjamin Goldberg. Generational Reference Counting:A Reduced-Communication Distributed Storage Recla-mation Scheme. In SIGPLAN Programming LanguageDesign and Implemantation PLDI'89, pages 313{320,1989.[13] Andrew S. Grimshaw, William A. Wulf, James C.French, Alfred C. Weaver, and Paul F. Reynolds, Jr.A Synopsis of the Legion Project. Technical ReportCS-94-20, Deparment of Computer Science, Universityof Virginia, June 1994.[14] P. Homburg, M. van Steen, and A. S. Tanenbaum.Communicating in GLOBE: an Object-Based World-wide Operating System. In Proc. Fifth InternationalWorkshop on Object Orientation in Operating Systems,pages 43{47, Seattle, Washington, October 1996.[15] R.L. Hudson, R. Morrison, J.E.B. Moss, and D.S.Munro. Garbage Collecting the World: One Car ata Time. In Proceedings of OOPSLA'97, Atlanta, USA,1997.[16] D. B. Ingham, M. C. Little, S. J. Caughey, and S. K.Shrivastava. W3objects: Bringing Object-OrientedTechnology to the Web. In Proc. Fourth InternationalWorld-Wide Web Conference, pages 89{105, Boston,Mass., USA, December 1995.[17] Richard Jones and Rafael Lins. Garbage Collection.Algorithms for Automatic Dynamic Memory Manage-ment. Wiley, 1996.[18] I. Kuz, A.M. Kermarrec, M. van Steen, and H.J. Sips.Replicated Web Objects: Design and Implementation.In Proc. Fourth Annual ASCI Conference, Lommel,Belgium, June 1998.[19] Bernard Lang, Christian Queinnec, and Jos�e Piquer.Garbage Collecting the World. In Proceedings of theNineteenth Annual ACM SIGACT-SIGPLAN Sympo-sium on Principles of Programming Languages, pages39{50, Albuquerque, New Mexico, January 1992.[20] Fabrice Le Fessant, Ian Piumarta, and Marc Shapiro. ADetection Algorithm for Distributed Cycles of Garbage.In OOPSLA'97 Garbage Collection and MemoryManagement Workshop. http://www.dcs.gla.ac.uk/�huw/oopsla97/ gc/papers.html, 1997.[21] C.-W. Lermen and D. Maurer. A Protocol for Dis-tributed Reference Counting. In Lisp and FunctionalProgramming, pages 343{354, 1986.10

[22] General Magic. Telescript Technology: Mobile Agents.http://www.genmagic.com/ Telescript/Whitepapers/wp4/whitepaper-4.html, 1996.[23] Umesh Maheshwari and Barbara Liskov. CollectingCyclic Distributed Garbage by Back Tracing. In Pro-ceedings of PODC'97 Principles of Distributed Comput-ing, 1997.[24] Luc Moreau. A Distributed Garbage Collector withDi�usion Tree Reorganisation and Object Mobility. InProceedings of the Third International Conference ofFunctional Programming (ICFP'98), Septembre 1998.[25] Luc Moreau, David DeRoure, and Ian Foster. NeXeme:a Distributed Scheme Based on Nexus. In Third Inter-national Europar Conference (EURO-PAR'97), volume1300 of Lecture Notes in Computer Science, pages 581{590, Passau, Germany, August 1997. Springer-Verlag.[26] Luc Moreau and Nicholas Gray. A Community ofAgents Maintaining Links in the World Wide Web(Preliminary Report). In The Third International Con-ference and Exhibition on The Practical Applicationof Intelligent Agents and Multi-Agents, pages 221{235,London, UK, March 1998.[27] Luc Moreau and Christian Queinnec. DistributedComputations Driven by Resource Consumption. InIEEE International Conference on Computer Lan-guages (ICCL'98), pages 68{77, Chicago, Illinois, May1998.[28] Jos�e M. Piquer. Indirect Reference Counting: A Dis-tributed Garbage Collection Algorithm. In Parallel Ar-chitectures and Languages Europe (PARLE'91), pages150{165, 1991.[29] Jos�e M. Piquer. Indirect Distributed Garbage Collec-tion: Handling Object Migration. ACM Transactionson Programming Languages and Systems, 18(5):615{647, September 1996.[30] David Plainfoss�e and Marc Shapiro. A Survey of Dis-tributed Garbage Collection Techniques. In Henry G.Baker, editor, International Workshop on MemoryManagement (IWMM95), number 986 in Lecture Notesin Computer Science, pages 211{249, Kinross, Scotland,1995.[31] Christian Queinnec. Sharing Mutable Objects andControlling Groups of Tasks in a Concurrent andDistributed Language. In Takayasu Ito and Aki-nori Yonezawa, editors, Proceedings of the Work-shop on Theory and Practice of Parallel Programming(TPPP'94), number 700 in Lecture Notes in ComputerScience, pages 70{93, Sendai (Japan), November 1994.Springer-Verlag.[32] Helena C. C. D. Rodrigues and Richard E. Jones. ACyclic Distributed Garbage Collector for Network Ob-jects. In Tenth International Workshop on DistributedAlgorithms WDAG'96, number 1151 in Lecture Notesin Computer Science, Bologna, October 1996.[33] Helena C. C. D. Rodrigues and Richard E. Jones. CyclicDistributed Garbage Collection with Group Merger. In

Proceedings of 12th European Conference on Object-Oriented Programming, ECOOP98, Lecture Notes inComputer Science, pages 249{273, Brussels, 1998.[34] Marc Shapiro, Peter Dickman, and David Plainfoss�e.Robust, Distributed References and Acyclic GarbageCollection. In Symposium on Principles of DistributedComputing, Vancouver, Canada, August 1992.[35] Marc Shapiro, Peter Dickman, and David Plainfoss�e.SSP Chains: Robust, Distributed References Support-ing Acyclic Garbage Collection. Rapport de Recherche1799, INRIA-Rocquencourt, November 1992.[36] Sun MicroSystems. Java Remote Method InvocationSpeci�cation, November 1996.[37] Gerard Tel and Friedemann Mattern. The Derivationof Distributed Termination Detection Algorithms fromGarbage Collection Schemes. ACM Transactions onProgramming Languages and Systems, 15(1):1{35, Jan-uary 1993.[38] Nalini Venkatasubramanian, Gul Agha, and CarolynTalcott. Scalable Distributed Garbage Collection forSystems of Active Objects. In Proc. 1992 Interna-tional Workshop on Memory Management, pages 134{147, Saint-Malo (France), September 1992. Springer-Verlag.[39] Paul Watson and Ian Watson. An E�cient GarbageCollection Scheme for Parallel Computer Architectures.In PARLE Parallel Architectures and Languages Eu-rope, volume 259 of Lecture Notes in Computer Science,pages 432{443. Springer-Verlag, June 1987.[40] Paul R. Wilson. Uniprocessor Gargage Collection Tech-niques. In International Workshop on Memory Man-agement, Lecture Notes in Computer Science, Saint-Malo, France, September 1992.

11

