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Abstract

Massively distributed computing is a challenging problem
for garbage collection algorithm designers as it raises the
issue of scalability. The high number of hosts involved in
a computation can require large tables for reference listing,
whereas the lack of information sharing between hosts in a
same locality can entail redundant GC traffic. In this paper,
we argue that a conceptual hierarchical organisation of mas-
sive distributed computations can solve this problem. By
conceptual hierarchical organisation, we mean that proces-
sors are still able to communicate in a peer to peer manner
using their usual communication mechanism, but GC mes-
sages will be routed as if processors were organised in hi-
erarchy. We present an extension of a distributed reference
counting algorithm that uses such a hierarchical organisa-
tion. It allows us to bound table sizes by the number of
hosts in a domain, and it allows us to share GC information
between hosts in a same locality in order to reduce cross-
network GC traffic.

1 Introduction

Massively distributed computing has emerged over the last
few years as a potentially powerful paradigm of computa-
tion. It has taken different shapes: (i) In the -Way ex-
periment [9], multiple sites, communicating over wide-area
networks across the American continent, are involved in a
distributed computation. (ii) The World Wide Web is
regarded by many as a support for planet-wide computing:
amongst others, WWW programming [5], object systems
on the WWW, such as Java and RMI [36], Globe [14, 18] or
W3Objects [16], (7ii) Software agents are autonomous pro-
grams, possibly relying on mobility [3, 22] to achieve a task
delegated to them; they may cooperate with other agents in
order to form agent societies [26].  (iv) Amorphous com-
puting [1] involves a multitude of individuals cooperating
together to provide a coherent behaviour.

For a long time, the programming language community
has defended the idea that garbage collection is an automatic
memory management technique that provides the program-
mer with a powerful abstraction of memory resources, which
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eases programming. This idea has been taken on board in
many languages, including the recent and widespread lan-
guage Java. Distributed garbage collection, which extends
the idea of automatic memory management to distributed
memory, has been the focus of much attention [17, 30]. Dis-
tributed reference counting has been a popular implemen-
tation technique of distributed garbage collection because it
is simple to implement and can be nicely integrated with
sequential garbage collectors [2, 24, 28, 39]. Its variant, ref-
erence listing, [4, 30, 34, 36], associates objects not only with
reference counters, but also with the list of hosts that have
references to them; reference listing is useful to offer some
fault-tolerance.

Designing a garbage collector for massively distributed
computations is, however, a challenging task. We have iden-
tified two problems that hamper the scalability of distributed
garbage collection.

1. Reference listing does not scale. In the presence of
massively distributed computations on the Internet,
the number of hosts that have access to a given refer-
ence can become very high, which requires the garbage
collector to maintain very large tables.

2. Locality is not taken into account. Distributed GC al-
gorithms usually offer no mechanism by which sites
in a same neighbourhood, e.g., two hosts in a clus-
ter, may share information to reduce GC-related traf-
fic with another distant host, e.g., another cluster on
another continent.

The first problem is typical of any algorithm that must main-
tain tables of hosts; the second one is true for all reference
counting algorithms that we have encountered.

Our thesis is that massively distributed computations
may be conceptually organised in a hierarchy [19, 38] and
that distributed garbage collection may rely on this organi-
sation to overcome the two aforementioned scalability prob-
lems. An example of hierarchical organisation derived from
network interconnectivity is as follows: at the lowest level,
we have a COP, i.e. a cluster of PCs, connected to a labo-
ratory network, itself in contact with a departmental back-
bone, which takes part in a nation-wide network, from which
international connections depart. Other hierarchical organ-
isation are conceivable, more specific to the problem being
solved.

For every hierarchy, we identify a distinguished site called
the gateway. The intuition of our algorithm is that the
gateway acts, in the hierarchy, as the representative of the



rest of the computation; symmetrically, it acts in the rest of
the computation, as the representative of the hierarchy. For
instance, if a host in a COP has access to a reference, the rest
of the computation does not have to identify the precise host,
but the COP gateway as holder of the reference. Similarly, a
pointer being duplicated between two sites in the UK does
not have to be observed by its owner in the US, as long
as reference counters are correctly maintained by the UK
gateway.

In this paper, we first present a flat and reference-listing
variant of our algorithm for distributed reference counting
and diffusion tree reorganisation (Section 2). We then con-
vey the intuition of a hierarchical organisation (Section 3).
Afterwards, we illustrate the design of hierarchical reference
counting by several scenarios (Section 4). This is followed
by a formal presentation of the algorithm (Section 5) and
some implementation issues (Section 6). The paper ends by
a discussion of related work (Section 7) and a conclusion
(Section 8).

Terminology This algorithm has been designed as part
of NeXeme [25], a distributed implementation of Scheme,
based on the message-passing library Nexus [10]. In NeX-
eme, computations can proceed in different memory spaces,
called sites. As in Nexus, there is a notion of global pointer
GP which is a first-class name for an object; a GP specifies
a destination to which a communication can be directed via
a form of remote method invocation. As far as garbage col-
lection is concerned, G Ps are references to possibly remote
objects. In addition, NeXeme provides a function owner
that returns the site that owns the object at which a GP is
pointing.

2 Flat Distributed Reference Counting

We previously sketched a new algorithm for distributed
reference counting [25]. We formalised this algorithm and
proved its safety and liveness [24]. In this section, we briefly
explain a variant of this algorithm that uses reference list-
ing [4, 30]; we also discuss some of its problems if used in
massively distributed computations.

Each site owns two tables called Receive and Send ta-
bles, noted Rec.T and Send_T in the algorithm. A Send-
table records triples of information: the global pointers that
were sent to remote sites, the sites where they were sent to,
and the number of times they were sent; according to the
terminology of [4, 30], a Send-table maintains a reference
listing. Symmetrically, a Receive-table also records triples
of information composed of the global pointers that were
received from remote sites, the sites that emitted them, and
the number of times they were received; in addition, we as-
sume that a GP constructed (and therefore owned) by a site
is entered in its Receive table.

Figure 1.1 displays the situation where a global pointer
GP, owned by s1, is copied from s; to s2, which we model
by the message COPY (s1,s2,GP). If the GP is copied
for the first time, a new entry is created in the Send-table
of s1 for GP, the destination s>, and the initial value 1;
for every new copy towards s», the counter is incremented.
Symmetrically, a GP received by s» from its owner s; is
entered in the Receive-table; multiply receiving a GP from
s1 increments the counter.

As the Send-table is implemented as a root of the local
garbage collector, the presence of GP in the Send-table pre-
vents its space to be reclaimed on s;. When GP becomes

garbage on s2, GP is removed from the Receive-table of s»;
then, a decrement message DEC(s2, s1, GP, s2) is sent from
$2 to s1, which in turn removes the entry in the Send-table
of s1, as displayed in Figure 1.2.

The novelty of our algorithm is exhibited in Figure 1.3,
when a site sz, which does not own a GP, sends a copy
to a third site ss. (i) An entry for GP and s3 is
added to the Send-table of s;. (i) When GP is received
by sz for the first time, an entry is added for GP in its
Receive-table. However, the entry records si, the owner of
the GP, and not sy, the GP’s emitter. (i11) A new message
INC_DEC(ss,s1,GP,s2) is sent from s3 to the owner si,
to inform the owner of the arrival on s3 of a GP originating
from so (Figure 1.3). (iv) When receiving the INC_DEC
message, the owner s; adds a new entry for GP and s3 in its
Send-table, and then sends a DEC(s1,s2, GP, s3) message
to s2.  (v) The decrement message sent to s» decrements
the entry in its Send-table, and removes the entry because
it becomes null.

The effect of the INC_DEC message (followed by the
DEC message) is to reorganise the diffusion tree of GP. GP
was diffused from s; to s2 and then to sz, but the tables are
now recording that two copies of GP owned by s; exist on
s2 and s3. The benefit of this reorganisation is that if GP
becomes garbage on s2, its space can be reclaimed, whereas
in Piquer’s indirect reference counting [29], a zombie pointer
would have to be maintained on s, as long as GP is used
on s3. Note that the algorithm correctness relies on in-order
message delivery; indeed, it is essential to prevent a DEC
message from overtaking an ITNC_DEC message, as this
may result in an undesirable object reclaiming.

Further copying of GP from s> to s3, which do not own
GP, increase the respective Send and Receive tables (Figure
1.5). Note that it is no longer required to involve the owner
with an INC_DEC message, because this only has to be
performed the first time the GP is received. At any time, a
DEC message may be sent to erase those entries and restore
the system in the situation of Figure 1.4.

Thanks to this reorganisation mechanism, this algorithm
is able to avoid zombie pointers resulting from computations
jumping from node to node. This algorithm however suffers
from some defects if used in the context of massively parallel
computations [9, 13, 14].

1. Reference listing does not scale. The reference listing
method requires Send-tables to record all the sites that
have access to a given GP. In the presence of the
Internet, this may potentially imply very large tables.

2. The algorithm does not take locality into account. In
Figures 1.3 and 1.4, let us assume that sites s» and s3
are connected via fast communication lines, and that
communication with s; is slow. The technique to reor-
ganise diffusion trees may force a communication with
a site with slow communication. Similarly, in Figure
1.5, sites s2 and s3 may be poorly connected and DEC
messages from s3 could be grouped with other mes-
sages from sites in the neighbourhood of s3. The lack
of locality awareness also hampers the scalability of
other algorithms, such as [4, 28, 36].

In the next section, we present a hierarchical organisation
of sites that allows us to avoid these two problems.
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Figure 1: Flat Distributed Reference Counting
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Figure 2: Hierarchical Message Forwarding

3 Hierarchical Organisation

Sites that are in the same proximity or in a same logical or-
ganisation are said to be grouped in domains; for instance,
COPs, i.e. clusters of PCs, or NOWs, i.e. networks of work-
stations, may be regarded as domains. As domains are de-
signed to follow a hierarchical organisation, domains are de-
fined as sets of sites or subdomains. Sites (or subdomains)
that belong to a domain are said to be siblings. We associate
each domain with a distinguished site that acts as a gateway
to the parent domain. For instance, in Figure 2, s1, s2, s3 are
siblings and belong to a same domain A, with gateway sa;
sites s4, S5,584 are siblings and belong to domain B whose
gateway is sg.

For garbage collection purposes, we regard the gateway
as a key component of a domain: (i) The gateway sa of
domain A acts as the representative in domain B of all the
sites of domain A. In other words, elements of domain B are
only aware of the existence of s4 and not of its children sites
$1,82,83. (i1) Symmetrically, the gateway sa of domain A
acts as the representative in domain A of all the sites that
do not belong to domain A. In other words, sites of A are
only aware of their sibling sites and of s4 which acts as a
proxy for all the other sites.

We want to use this hierarchical organisation in order to
guarantee that: (i) reorganisation as in Figure 1.3 can
be hidden by a domain gateway, (7i) table sizes for a given
GP are bounded by domain sizes. Figure 2 presents a
conceptual way of implementing such a hierarchical organi-
sation: gateways between domains could also act as message
forwarders. For instance, in order to send a message from
s1 to sg, s1 sends it to the gateway sa because sg is out-
side domain A, which in turn forwards it to sg for the same
reason, etc.

In practice such a solution is not acceptable because it po-
tentially delays the sending of messages as it involves several
domain gateways in message forwarding'. However, from a
theoretical point of view, this solution is suitable because a
GP copied from s; to sa would create an entry for s4 in
the Send-table of s1, and reciprocally for the Receive-table

1We assume here that we are using a network layer, such as
TCP/IP, which already efficiently performs routing between networks.
Every GC gateway acting as a forwarder would introduce delays. Note
also that hierarchical domains may also be different from the network
organisation.

of sa. Such a property would also hold for every gateway,
which would guarantee that table sizes are bounded by do-
main sizes.

In the next Section, we present an extension of the flat
GC that does not increase the cost of sending mandatory
messages, but maintains a hierarchical organisation as we
just described.

4 Hierarchical Distributed Reference Counting

As in every garbage collector design, it is essential to min-
imize the impact of garbage collection activity on manda-
tory computation. In particular, remote method invoca-
tion, which copies global pointers, should be executed as ef-
ficiently as possible. Therefore, instead of hierarchical mes-
sage forwarding of Figure 2, we prefer the organisation of
Figure 3, where we see that the mandatory message is di-
rectly sent from s; to sg, but a conceptual hierarchy is kept
for GC purposes. Two new messages, introduced to inform
gateways of cross-domain messages, are asynchronously sent
to gateways of the hierarchy; they are defined in terms of
three sites s1, s2, s3:

e With DOM _SEND(s1,s2,GP, s3), site (or subdo-
main) s; informs its gateway s, that GP was sent to
s3 belonging to another domain.

e With DOM_RECV (s1,82,GP, s3), site (or subdo-
main) s; informs its gateway s» that GP was received
from sz belonging to another domain.

In Figure 3, DOM _SEND and DOM _RECYV messages are
repeatedly sent till they respectively reach sg and sp, such
that sp is an ancestor of s1, sp is an ancestor of sg, and sp
is sibling of sp.

When messages are exchanged within a domain, the flat
garbage collection algorithm of Figure 1 is used. If global
pointers are sent to or received from sites belonging to other
domains, then Figure 4 summarises the hierarchical proto-
col.

In Figure 4.1, site s» sends a copy of GP to ss, a site
outside the domain A. A new entry is added to the Send-
table of s2, with GP and the gateway sa, as if the message
had been routed via the gateway sa. In addition, a message
DOM_SEND is sent to the gateway, which acts as if it was
forwarding the message. Gateways also maintain Receive
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Figure 3: Hierarchical Update of Tables

and Send tables: (i) Within domain A, the flat GC algo-
rithm applies. If this is the first time that sa receives a copy
of GP, and if s; owns GP, then INC_DEC and DEC mes-
sages are sent in the usual triangular mode, and the Receive-
table of sa records that GP comes from s;. (ii) If s3 (or
one of its gateways) is a sibling of sa, then the Send-table
entry of s4 records this gateway. Otherwise, if s3 (or one of
its gateways) is not a sibling of s 4, then the same mechanism
applies recursively, and sa sends a DOM _SEND message
to its gateway, etc. Figure 3 illustrates a succession of such
DOM _SEND messages. A DOM_SEND message is suc-
cessively sent to gateways of the hierarchy till it reaches a
gateway sp (in Figure 3), which is a sibling of a gateway
sp, itself an ancestor of the GP receiver ss.

Figure 4.2 describes the symmetric situation where a site
s1 receives a copy of a GP from s3 outside the domain A.
The system should behave as if GP had been received from
the gateway sa. Hence, a DOM _RECYV is sent to the gate-
way sa, which implies that the Send-table of s records that
GP is sent to s1, and symmetrically for the Receive-table
of si. If it is the first time that GP is received by si and
if GP is owned by s2, a sequence of INC_DEC and DEC
messages is required as in the flat GC algorithm?. If s3 (or
one of its gateways) is not a sibling of s4, then we proceed
recursively as illustrated in Figure 3. A DOM _RECYV mes-
sage is successively sent to gateways of the hierarchy till it
reaches a gateway sp (in Figure 3), which is a sibling of a
gateway sg, itself an ancestor of the GP emitter s;.

In summary, gateways act as the Receive- and Send- ta-
bles of domains. The DOM _SEND or DOM_RECYV mes-
sages consist of incrementing the Send or Receive tables in
the gateway, respectively, possibly entailing a triangular re-
organisation as in the flat version of the algorithm.

5 The Algorithm

We formalise the algorithm using an abstract machine,
called the HGC machine, whose configuration is defined at

2The DOM_RECYV message to s 4 is in competition with the DEC
message which respectively increments and decrements the counter
for GP in the Send-table of ss4. Even though this may decrement
the counter before it is increased, and hence result in a temporary
negative value, this has no consequence on the correctness because
the DEC message sent from the owner has previously increased a
counter on the owner, hereby preventing undesirable reclaiming.

the top of Figure 5. A configuration # is a tuple composed
of a set of sites,; a set of global pointers, Receive and Send
tables for every site, and a bag of messages. Receive and
Send tables are functions which for a site s1, a GP, a site s2
respectively return the number of times G P was received by
s1 from so, or sent from s; to s2. The bag of messages de-
notes messages that are in transit in the system, i.e. already
posted but not yet handled.

We write owner(GP) to denote the site that owns GP.
Initially, all table entries are zero, except for hosts that own
G Ps:

send T (s1,GP,s2) = 0,VYs1,82,GP,
rec.T(s,GP,s) = 1if owner(GP)=s
rec.T(s1,GP,s2) = 0, Vs1,s2, GP,otherwise.

We allow HGC-configurations to perform four transitions.
Let H1 be (S,G, send_T,rec.T, M), and let us assume that
51,582,853 €S, GP € G, m € M, then:

Hi = MAKE_COPY (s1,582,GP) = H> (make-copy)

Hi = RECEIVE(m)= H» (receive)
if m= DEC(s1,82,GP), then
INC_DEC(s1,82,GP,s3) ¢ M,Vs3

Hi = RELEASE(s1,GP) = H- (release)

Hi1 = DELETE(s1,82,GP) = H> (delete)

The configuration transformers MAKE_COPY , RECEI-
VE, RELEASE and DELETE are defined in Figures 5 and
6. In Figure 5, if H1 = (S,G, send T, rec.T, M), post(m)
denotes the configuration H, such that Ha. = (S, G, send_T,
rec.T, M U {m}). Similar notational conventions are used
for assignments to Send and Receive tables. In the rules
above, let us note the side-condition of (receive), which may
be implemented by in-order message delivery. We also as-
sume that transitions are executed atomically.

In addition, in order to model the hierarchical domain
organisation, we use the following relations:

e parent(z,y): node y is parent of node z.

e descendant(z,y): node y is a descendant of node =z, if
x =y or Iz, parent(z,z) A descendant(z,y).
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e sibling(z,y): node y is a sibling of node z, if Iz,
parent(x, z) = parent(y, z).

e proxy(x,y): the representative of y in the domain of
z. For the time being, we consider a static hierarchical
organisation; the proxy relation is defined as follows.

prozy(z,y)
if sibling(z,y)
if —sibling(x,y) A —~descendant(x,y)
= A parent(z, z)
z  if =sibling(x,y) A descendant(z,y)
A parent(z,)

ISIINSS

Let us first consider the particular case where all sites
belong to the same domain, which means that sibling(z,y)
holds and that prory(z,y) = y for any z,y. In such a sit-
uation, Figure 5 describes the algorithm for “flat” garbage
collection.

Rule (make-copy) associated with configuration trans-
former MAKE _COPY models the actions that site s; has
to take before sending a copy of GP to s». The send T is
updated and a COPY message is posted.

Rule (receive) and its associated configuration transfor-
mer RECEIV E describe how messages are received. When
so receives a COPY message from s;, a triangular reorgani-
sation is initiated if it is the first time G P is received, i.e. the

entry in the receive table for the owner s, is empty. The tri-
angular reorganisation involves sending an INC_DEC mes-
sage to the owner, which is followed by a DEC message.

An entry in the receive table pointing at a site that is not
the owner of a GP may always be cleared by rule (release),
which sends a decrement message to the site. Finally, a local
garbage collector that proves that a GP has become garbage
on site s initiates the transition (delete); such a transition
can only be fired if Receive and Send tables (except for the
owner sg) are empty, and it results in a DEC message sent
to the owner.

If the sites involved in the transitions do not belong to
the same domain, rules of Figure 5 remain still applicable,
but are now involving proxies of the sites. For instance,
receiving a COPY message from s;, which does not belong
to the same domain as s, potentially results in a triangular
reorganisation with s, and sg, respectively proxies of s; and
the owner (cf. Figure 4.2). In addition, a DOM _RECV
message is sent, when s» is not sibling with (the proxy of)
S1.

Figure 6 displays how the two messages for hierarchical
GC  are  handled. Receiving a  message
DOM_RECV (s1, 82, GP, s3) is similar to receiving a mes-
sage COPY (s3,82,GP). The only difference is that the
gateway s» has to act as if it was forwarding the message
originating from s3 to s1 (as in Figure 2). As a result, the
entry for s; in the send_T of s, has to be incremented.



s€S = {s0,51,-.-,5n} (Site)
GPeg = {GP,GPy,..} (Global Pointer)
m € Msg == COPY (s1,52,GP) |
DEC(S],SQ,GP, 83) ‘
INC_DEC(Sl,SQ,GP, .‘33) ‘
DOM_SEND(S],SQ,GP,S3) ‘
DOM _RECV (s1, s2,GP, s3) (Message)
M ' BagOf(Msg) (Pool of Messages)
send T : SxGx8§—IN (Send Tables)
recT : SxGxS8—IN (Receive Tables)
H € Config == (S,G,send T, rec T, M) (HGC-Configuration)

MAKE _COPY (s1,s82,GP) if s1# s2 A recT(s1,GP,prozy(s1,owner(GP))) >0
{ let sp = prozy(si,s2) //s1 prepares to copy GP to s
send T (s1,GP, sp) 1= send T (s1,GP, sp) + 1;
post(COPY (s1,s2, GP));
if —sibling(s1, s2) then
post(DOM _SEND(s1, sp, GP, s2)) }

RECEIVE(COPY (s1,82,GP)) if s1 # s2
{ let sp = prozy(ss,s1) //s2 receives a copy of GP from s;
sg = prozy(sa, owner(GP))
if rec.T'(s2, GP,sy) =0 then
{recT(s2, GP,sy) = 1;
post(INC_DEC (s2,84,GP, s1)) if sp #sg N 82 # 34 }
else
{recT(s2, GP,sp) :=recT(s2,GP,sp) +1 };
if —sibling(sa2, sp) then
{ post(DOM_RECYV (s2, $p,GP,s51)) } }

RECEIVE(INC_DEC (s, $2,GP, s3))
{ let s, = prozy(ss,ss) //s2 receives an INC_DEC message
send_T(s2,GP, s1) := send_T(s2, GP, s1) + 1; //from s1 which received GP from s3
post(DEC (s2, $p, GP, s51,1)) }

RECEIVE(DEC(s1,s2,GP, s3,n))
{ sendT(s2,GP,s3):= send T (s2,GP,s3) —n } //s2 receives an DEC message from s;

RELEASE(s1,52,GP) if s1 # s2, 82 # prozy(s1, owner(GP))
rec.T(s1,GP, s2) >0
recT'(s1, GP, prozy(si, owner(GP))) > 0

{ post(DEC(s1,s2,GP,s1,rec.T(s1,GP, s2))); //s1 annihilates receive table entry
recT(s1,GP,s2) =0 }

DELETE(s,sq,GP) if s4 = prozy(s,owner(GP)),
s # g,
Vsi, send T'(s,GP,s;) =0,
Vs; # 8,8 # sg,rec.T(s,GP,s;) =0
{ post(DEC(s,sq,GP, s, recT(s,GP,sg))); //GP becomes garbage on s
recT(s,GP,sg):=0 }

Figure 5: Flat Garbage Collection



RECEIVE(DOM-RECV(S] , 582, GP, 83))
{ let s, = prozy(ss,ss)

sg = proxy(sz, owner(GP))

if rec.T'(s2, GP, sq) = 0 A ~descendant(sg, s2) then

{recT(s2, GP,sq) = 1;

//gateway s is informed that GP
//is received by s1 from s3

post(INC_DEC (s2,84,GP, s3)) if s, #sg N 82 # 34 }

else
{ rec.T(s2,GP, sp) :=recT(s2,GP,sp) +1 };
sendT'(s2, GP, s1) := send_T(s2,GP, 51) + 1;
if —sibling(sa2, sp) then
{ post(DOM _RECYV (s2, $p, GP,s3)) } }

RECEIVE(DOM_SEND(s1, s2,GP, s3))

{ let sp = prozy(ss,ss)
sqg = proxy(sz, owner(GP))

if recT(s2, GP,sq) =0 A descendant(sg, s2) then

{rec_T(s2, GP,s4) :=1;

post(INC_DEC (s2, 84, GP,s1)) if sq #s1 }

else

{ recT(s2,GP,s1) :=recT(s3, GP,s1) + 1 };
send_T(s2, GP, sp) 1= send T (s2,GP, sp) + 1;
if —sibling(sa2, sp) then

{ post(DOM _SEND(s», sp,GP,s3)) } }

//gateway s, is informed that GP
//is copied from s; to s3

Figure 6: Hierarchical Garbage Collection

Conceptually, when a gateway s» receives a message
DOM_SEND(s1,82,GP,s3) from s1, it must act as if it
was forwarding the message to its destination s3. There-
fore, the receive table records the arrival of GP from s1 (or
sg via the usual triangular reorganisation). In addition, the
entry for the proxy of s3 is incremented in the Send-table of
S92.

Our hierarchical organisation solves the problem of the
flat GC algorithm:

e Locality: Gateways are hiding reorganisations within
their domains. For instance, the copy of GP owned
by a site outside the domain results in a triangular
exchange as described by Figure 7, where the gateway
acts as a representative for the GP’s owner.

In addition, as the gateway sa of Figure 7 “centralises”
GC information about GP for domain A, we are able
to send a decrement message to its owner only when
G P has become garbage on all sites of domain A. Such
sharing of information in a domain allows us to reduce
GC traffic across domains.

e Table Size: per global pointer, a table now has a maxi-
mum number of entries given by the size of the domain.
Indeed, every access to a Send-Table (and similarly for
a Receive-Table) in the algorithm of Figures 5 and 6 is
of the form
send T'(s1,GP,s;), where s, was defined as
proxy(si, s3), for any site s3. So, entries in Send-
Tables always refer to sites in the same domain.

|
DEC(sy,s 4, GP, sg) |
; INC.DEC(sy,s4,GP,s1)
|

s1 s2

COPY (sq,s9,GP)

G P does not belong to domain A

Figure 7: Inside Domain Triangular Reorganisation

6 Implementation

This distributed GC algorithm has been designed as part
of NeXeme [25] a distributed extension of Scheme based on
the message-passing library Nexus [10]. The flat algorithm
has been fully implemented and tested, but (at the time of
writing), the hierarchical implementation is still in progress.

An important aspect of the implementation is the design
of an efficient function sibling. Currently, we define a hier-



archical pointer as a structure composed of a global pointer
and an access path, which is a datastructure representing
the path of its owner in the hierarchy. By default, the ac-
cess path is set to nil, which means that the hierarchical
pointer has not exited its domain. Every time a hierarchi-
cal pointer is serialised, we have to compare its access path
with the access path of the message destination. If the ac-
cess paths are equal, then the hierarchical pointer is being
sent to its domain. Otherwise, from the common path pre-
fix, one can derive the gateways to which the DOM _SEND
and DOM _RECYV messages must be sent.

For the time being, gateways are built as distinguished
processes. We are investigating how to implement them as
regular nodes, which could also take part in the computa-
tion. So far, we have considered a static hierarchy. We are
also studying ways of specifying the hierarchy dynamically
and of changing gateways at runtime according to the load
of the system.

We have presented here an abstract algorithm, which can
be optimised in several ways. (i) Several DOM _SEND
(or DOM_RECYV) could be merged together, in the same
spirit as DEC messages that contain a counter value. (i7)
One message could be avoided in Figure 4.2 by recognising
this particular situation, to the detriment of algorithm read-
ability; for instance, the DOM _RECYV and DEC messages
could be combined in a new message that would follow the
INC_DEC message. (ii1) We can design different strate-
gies for sending GC messages. For the time being, a regular
sites sends GC messages as soon as it becomes idle. On the
other hand, gateways infrequently send messages to their
siblings in order to avoid cross-domain traffic.

7 Related Work

Reference-counting garbage collection was initially devel-
oped for uniprocessor systems [6]. Its principle is as fol-
lows: every time a pointer is copied or deleted, a refer-
ence counter is respectively incremented or decremented. It
might seem that this algorithm can be extended straightfor-
wardly to distribution by using two control messages INC
and DEC that act on the reference counter residing on the
owner of the pointer. Unfortunately, non-causal message
delivery may reset the counter even though remote refer-
ences may still be active. Correct solutions to this problem
have been proposed, including weighted reference counting
[2, 8, 39] and its optimised version [7], generational reference
counting [12], indirect reference counting [28, 29].

Other tripartite exchange of messages including the site
that emitted a GP, the receiver of the GP and its owner
can be found in the literature, in particular by Lermen and
Maurer [21, 37], and by Birrel et al. [4]. Our algorithm
differs from theirs by the direction in which messages are
exchanged and because our solution only requires a tripar-
tite exchange the first time a GP is received. Intuitively,
our solution preserves causality because the owner sends a
DEC message only after having processed an INC_DEC
message which has increased a reference counter.

However, our algorithm has another major benefit as it
is able to reorganise diffusion trees: when GC messages are
all processed, the diffusion tree is completely flattened, and
every site owning a GP directly “depends” from its owner.
In the presence of mobile computations jumping from site
to site, this allows sites to reclaim the space that was oc-
cupied by a mobile program, hereby avoiding zombie refer-

ences as in indirect reference counting [28]. To the best of
our knowledge, Shapiro, Dickman, and Plainfossé [34, 35]
were the first to address the issue of short-cutting chains of
pointers. They regard migration as a primitive notion to be
supported by the GC; in this paper, we do not deal with mi-
gration, however, we have showed that support for mobility
could be added as an extra layer, like a library, on top of
the current garbage collection algorithm [24].

The distributed collector of Java with Remote Method
Invocation [36] is derived from Birrel’s network objects [4].
In addition, Java uses a mechanism of lease, by which sites
having pointer copies are forced to regularly renew their
lease. Such a mechanism supports fault-tolerance and could
also be implemented with our algorithm.

Let us note that none of the previously mentioned algo-
rithms is based on a hierarchical organisation as presented in
this paper. Therefore, those using reference listing [4, 35, 36]
potentially have to manage very large tables in Internet-
wide computation. Furthermore, they are not able to share
garbage collection information within a mneighbourhood,
which prevents them from optimising GC information trans-
fer on a local basis, such as per cluster or per network.

We are accustomed to hierarchical memories in unipro-
cessor systems and memory management has been studied
in this particular case [40]. We can regard our schema as
a hierarchical organisation of a distributed memory. Other
hierarchical organisations have been brought forward. Lang,
Queinnec, and Piquer “Garbage collecting the World” uses a
hierarchy of nodes that are willing to cooperate for garbage
collection; such a similar approach is also adopted in [38] in
order to provide scalability. Queinnec [31] also suggests to
cluster sites so that they can present a single clock to the rest
of the world; clocks are used to provide a causally-coherent
distributed memory.

Rodrigues and Jomes [32] dynamically identify
groups of processes that will collaborate to reclaim distri-
buted cyclic garbage. Their groups provide locality as com-
munication related to the garbage collection activity is only
necessary between members of the group. The same au-
thors [33] also explain how groups that have independently
initiated a collection on the same cyle may merge together.
Maheshwari and Liskov [23] use back tracing [11] to deter-
mine if an object is garbage. Back tracing as opposed to
forward tracing preserve locality of the tracing process.

Reference counting garbage collection is only able to re-
claim acyclic data structures. Other algorithms may be com-
bined with ours in order to collect cycles, such as Le Fes-
sant, Piumarta, and Shapiro’s [20], Rodrigues and Jones’
[32], or Lang, Queinnec and Piquer’s [19]. The latter seems
to be particularly appropriate because it also relies upon
a hierarchical organisation of sites that cooperate to elimi-
nate cycles between themselves. Gateways in our algorithm
contain Send and Receive tables for a domain and can be
used to perform a collaborative garbage collection of the do-
main. The distributed variant of the Train GC [15] is also
able to collect cycles; it combines a reference-counting style
pointer-tracking mechanism with a substitution protocol.

8 Conclusion

We have presented a hierarchical organisation for distributed
reference counting. Such an approach is particularly suitable
for Internet-wide programming because it is able to abstract
a whole domain of sites by a single host, which acts as its



representative for garbage collection purposes. Such a hier-
archical schema allows us to give bounds on the size of tables
involved in reference listing and to reduce cross domain GC
traffic.

This algorithm is being implemented as part of NeX-
eme, a distributed implementation of Scheme [25], offering
some support for mobile computations [24] and distributed
resource control [27]. We foresee two other applications for
this algorithm. First, in [26], we associate reference counters
with WWW documents, in order to build an agent architec-
ture that offers link integrity in a publishing environment;
the new reference counting algorithm may be used to im-
prove scalability of the system. Second, in [27], we present
a distributed model of resource control, suitable for agent-
style applications. We believe that the present algorithm
can be applied to resource control in order to facilitate re-
source management among sites in a same locality.
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