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ABSTRACT

A chromatic-index-critical graph G on n vertices is non-trivial if it has at most A|Z | edges.
We prove that there is no chromatic-index-critical graph of order 12, and that there are
precisely two non-trivial chromatic index critical graphs on 11 vertices.
Together with known results this implies that there are precisely three non-trivial chromatic-
index-critical graphs of order < 12.



1 Introduction

A famous theorem of Vizing [20] states that the chromatic index x'(G) of a simple graph G
is A(G) or A(G) + 1, where A(G) denotes the maximum vertex degree in G. A graph G is
class 1if ¥'(G) = A(G) and it is class 2 otherwise. A class 2 graph G is (chromatic indez)
critical if X'(G — e) < X'(G) for each edge e of G. If we want to stress the maximum vertex
degree of a critical graph G we say G is A(G)-critical.

Critical graphs of odd order are easy to construct while not much is known about critical
graphs of even order. One reason for this is that an overfull graph of odd order — that is a
graph with more than AL‘—‘Q/U edges obviously is class 2, since it has too many edges. Thus
it is not the specific structure of the graph which causes its colouring properties. The same
holds true for many critical graphs with an odd number of vertices and AL%J + 1 edges.
We are interested in graphs which are class 2 for structural reasons, and define a critical
graph with at most AL‘—‘Q/U edges to be non-trivial. Clearly, each critical graph of even order
is non-trivial.

Nevertheless the critical graph conjecture, independently formulated by Jakobsen [15]
and Beineke, Wilson [1], claiming that every critical graph has odd order, is false.

Goldberg [12] constructed an infinite family of 3-critical graphs of even order. The
smallest graph of this family has 22 vertices. Another counterexample — a 4-critical graph
on 18 vertices — was independently found by Chetwynd and Fiol, cf. [14, 21]. Recently
Griinewald and Steffen [13] constructed k-critical graphs of even order for each k > 3. Tt is
still of interest which are the smallest k-critical graphs of even order, and Yap [21] posed the
problem whether there are k-critical graphs of order 12, 14 or 16.

In [5] the authors showed that the graphs found by Goldberg and by Chetwynd, Fiol are
the smallest 3- and 4-critical graphs of even order, respectively.

Based on results of [2] the first complete list of critical graphs of order n < 8 and of even
order n < 10 was given in [10].

The gap for n = 9 was closed in [6] and hence for all n < 10 the critical graphs of order
n are known.

It turned out that the Petersen graph minus a vertex is the only non-trivial critical graph
on up to 10 vertices.

The aim of this paper is to determine all non-trivial critical graphs of order 11 or 12.

Theorem 1.1 There are precisely two non-trivial critical graphs on 11 vertices.

These two graphs are shown in Figure 1. Both can be obtained from the Petersen graph
minus a vertex by replacing a vertex by a triangle.

Theorem 1.2 There is no critical graph on 12 vertices.
Together with the aforementioned results our theorems imply:

Corollary 1.3 There are precisely three non-trivial critical graphs on up to 12 vertices.
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Corollary 1.4 The smallest non-trivial critical graph is the Petersen graph minus a vertex,
which s 3-critical.
Corollary 1.4 motivates the following problem.

Problem 1.5 For each k > 4, determine the smallest non-trivial k-critical graphs.

Figure 1

2 Proof of Theorem 1.1

For £ = 1,2 there are no non-trivial k-critical graphs on 11 vertices.
Let 3 < k < 10. The following lower bounds for the number of edges in a k-critical graph
are given by Corollary 5.4 and Theorem 5.7 in [21], and Theorems 13.2, 13.3 in [10].

Lemma 2.1 Let G be a non-trivial k-critical graph on 11 vertices.

1. If k = 3, then |E(G)| = 15.

2. If k = 4, then 19 < |E(G)| < 20
3. If k =5, then 23 < |E(G)| < 25.
4. If k=6, then 25 < |E(G)| < 30
5 If k=71, then 28 < |E(G)| < 35

6. If k =8,9,10, then §(3k* + 6k — 1) < |E(G)| < 5k.

Using the graph generator makeg ([16]), for each maximum degree, we generated all
graphs on 11 vertices and edges within the range of possible numbers given by Lemma 2.1.

We filtered out the candidates, which are graphs with at least two vertices of maximum
degree k, no vertex of degree 1, and which have 5k edges or adding an edge increases the
maximum vertex degree.
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We computed the class 2 graphs among the candidates and checked whether they had
critical subgraphs of the same order.
Our results are given in the following table. They prove Theorem 1.1.

‘ k ‘ #graphs ‘ # candidates ‘ # class 2 graphs ‘ # k-critical graphs ‘

3 671 482 22 2
4 118600 30037 278 0
Y 3521278 323325 972 0
6| 66250465 695751 527 0
71170091250 302921 107 0
8 | 221586717 28485 21 0
9 7251796 893 0 0
10 9700 25 0 0

3 Proof of Theorem 1.2

3.1 Basic Results

We will need the following results. If we do not prove them or cite a paper explicitely their
proofs could be found e.g. in [10, 21].

Lemma 3.1 (Vizings Adjacency Lemma) Let k > 0 and vw be an edge of a k-critical
graph G with dg(v) = d. Then w is adjacent to at least k — d + 1 vertices of degree k.
Furthermore dg(v) + da(w) > k + 2.

Let v be a vertex of a graph G. We define s(v) = A(G) — dg(v) to be the deficiency of
v. The deficiency of G is s(G) = X ,cv () s(v). The minimum vertex degree in G is denoted
by §(G).

Lemma 3.2 A critical graph G = (V, E) of even order has deficiency at least 2(A(G) —
I(G) +1).

Lemma 3.3 For all k > 3, a k-critical graph of even order contains at least 3 vertices of
degree smaller than k.

The following is a generalization of the well known Parity Lemma [3].

Lemma 3.4 (Parity Lemma) Let G be a graph whose edges are coloured with colours
1,...,¢, and let a; be the number of vertices v in G such that no edge incident to v is
coloured i. Then for alli=1,...,c:a; = |[V(G)| (mod 2).

Proof. For i =1,...clet E; be the set of edges coloured i. Then a; = |V(G)| — 2|E;],
and hence a; = |[V(G)| (mod 2).
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Lemma 3.5 Let G be a k-critical graph (k > 4) of even order which has precisely three
vertices vy, vy, vg of degree smaller than k and dg(vi) = 2. Then dg(ve) + dg(vs) = k.

Proof. Both neighbours of v; have degree k, and G — v, is k-colourable. Let {1,...k}
be the set of colours. Since |V(G — v;)]| is odd it follows from the Parity Lemma that each
colour is missing in an odd number of vertices. Since G is critical it follows that at the
neighbours of v; the same colour is missing. Thus each colour is missing either in vy or vs
and therefore dg(vs) + de(vs) = k.

The following theorem is due to Yap [21]:

Theorem 3.6 ([21]) For all integers k > 5, r > 0, there is no k-critical graph with degree
sequence 2"k*".

Let G = (V, E) be a graph. We define V; to be the set of vertices having degree i in G,
and n; = |V;].

Theorem 3.7 Let G be a k-critical graph. Then
k+2
> omp>max{il2<i< L%J and  n; # 0} + 2ns.

|2 | <i<k

Proof. Given a k-critical graph G. Since dg(v) + dg(w) > k + 2 it vw € E(G), it
follows that Uzgiq%J V; is an independent set in (G. Furthermore each neighbour of a
vertex of degree two is not adjacent to a vertex of degree 7, for 2 < 7 < k. Hence there are
2n9 + ZZSKL#J n; vertices in G which are not neighbour of a vertex of degree i for 3 <

i < [E2]. Therefore max{i]2 < i < [2£2| and n; # 0} < |G|~ (2ny + Pocic| k2] n;) =
ZL%JSiSk n; — 2ny, proving the Theorem.

Let GG be a critical graph and G* a graph obtained from GG by adding a maximum number
of edges such that A(G*) = A(G). With V™~ we denote the set of vertices of G* with degree
smaller than A(G).

Lemma 3.8 Let G be a critical graph. Then the following holds true:

1. The subgraph G*[V | induced by V~ is a complete graph.
2. [V < A(G) — 2
3. min{dg-(v)jv e V-} > [V +1

4. Let xy € E(G*). If there are v,w € V™, such that s(v) + s(w) > 2 and diste-(x,v),
distg(y,w) > 2 then zy € E(QG).
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5. Letv e V™ andlet zy € E(G*)\E(G), vy ¢ E(G*). Then G5 with V(G7) = V(G) and
E(G}) = (E(G*) —zy) U{vy} is another graph obtained from G by adding a mazimum
number of edges.

Proof. Since G* is obtained from G by adding maximum number of edges 1 is proved.
Each vertex of GG is adjacent to at least two vertices of maximum degree and hence 2 and 3
hold true.

Let zy € E(G*), v,w € V~ and let distg-(x,v),distg-(y,w) > 2. Assume that xy ¢
E(G). Then G' with vertex set V(G') = V(G) and edge set E(G') = (E(G*) —xy) U{zv,yw}
has G as subgraph, it has maximum vertex degree k¥ and |E(G')| = |E(G*)| + 1. This
contradicts the fact that G* is obtained from G by adding a maximum number of edges.
Thus zy € E(G).

[tem 5 can be proven similarly.

Theorem 3.9 (1 ]) Let G be a graph on n > 3 wvertices. If Y 1<;cpni < k for each 1 <
k<™ (andn Nao < 5 L ifn is odd), then G is hamiltonian.

It is well known that a regular graph of order 2n and vertex degree r € {2n — 1,2n — 2}
is class 1. Chetwynd and Hilton improved this result as follows.

Theorem 3.10 ([8]) Let G be a regular graph of order 2n and verter degree v € {2n —
3,2n —4,2n—5}. Ifr > 2|3(n+1)] — 1, then G is class 1.

As a simple consequence we state

Corollary 3.11 Let £k > 7 and G be a k-critical graph on 12 vertices. Then G 1is not
subgraph of a k-regular graph on 12 vertices.

3.2 The Proof

Theorem 1.2 is true for k = 2. For k = 3 and 4 this is proved in [2] and [9, 11], respectively.
For k = 8 this follows from more general results of [7], and for k£ = 9,10, 11 it is a consequence
of results of [17, 18].

Thus to prove Theorem 1.2 we have to solve the cases kK = 5,6,7,8. Our aim was to
test as few graphs as possible. So we did not want to test every possibly critical graph, but
tried to find a smaller set of supergraphs containing all these. This set was filtered for class
2 graphs and they were searched for critical subgraphs of the same order. So our aim was
to have as few class 2 graphs as possible in the set of supergraphs — in particular we tried
to avoid trivial class 2 graphs, that is: graphs containing an overfull subgraph of odd order.
We proceeded as follows:

Assume there is a k-critical graph G of order 12. We add edges to GG as long as we do
not create a vertex of degree more than k, and we do not create a graph having a subgraph
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on 11 vertices with more than 5k edges. This allows to determine the set of possible degree
sequences of such graphs. For k = 5,6 we generate all possible graphs for these degree
sequences and filter out the class 2 graphs. If there are class 2 graphs we look for k-critical
subgraphs of order 12.

For k£ = 7,8 in some cases the problem can be reduced: By theorem 3.9 these graphs
have a hamiltonian cycle and therefore a 1-factor as well. Removing such subgraphs yields
graphs having maximum vertex degree £ — 2 or k — 1 that are class 2 if the original graphs
are class 2. So some of the degree sequences can be reduced to sequences that also have to be
checked for smaller k. If for these reduced sequences no class 2 graphs exist, the non-reduced
sequences need not be tested.

In the following proofs we sometimes refer to the fact that the number of vertices of odd
degree in a graph is even. We call this the parity condition.

Lemma 3.12 For all k € {5,6,7,8} we have: If there is a k-critical graph G on 12 vertices
then there is a class-2-graph G' with degree sequence w(G') € {42510, 42610, 42710 42810,
45269, 45679, 45787, 46287 5468, 5377 52610, 52687, 56278%, 57388, 6188, 627288, 6787}, and G’ is
a supergraph of G with the maximal degree or can be obtained from a supergraph of G with
the same maximal degree by deleting a perfect matching or a hamiltonian cycle.

Proof of the Lemma. We check the cases succesively.

Claim 3.12.1 Fach 5-critical graph G of order 12 is subgraph of a graph G’ with degree
sequence m(G') = 42510,

Proof. If G* is 5-regular, then there is an edge e € E(G*) \ E(G) so that G is subgraph
of G' = G* — ¢, and 7(G') = 42510

Let G* be not 5-regular. It follows from Lemma 3.8 (2) and the parity condition that
V-] € {1,2}.

If V- = {v} then dg-(v) = 3. Then Lemma 3.3 implies that there is an edge zy €
E(G*)\ E(G) with distg-(v,y) > 2. Thus by Lemma 3.8 (5) there is a supergraph G’ of G
with 7(G') = 4250,

If Vo = {v,w} then dg(v) = dg-(w) € {3,4}. Assume dg-(v) = 3. Then vw ¢ E(G)
and hence dg(v) = dg(w) = 2. Since all neighbours of v or w have degree 5 in G and
they are pairwise different, vw is the only edge which is added to G to obtain G*. But this
contradicts Lemma 3.3.

Claim 3.12.2 FEach 6-critical graph G on 12 vertices is subgraph of a graph G' with degree
sequence m(G') € {426'0,45%6°,5%6'°, 516°}.

Proof. If G* is 6-regular then there is an edge e € FE(G*)\ F(G) such that G is subgraph
of ' = G* — e and 7(G') = 5%6'°.
If G* is not 6-regular, then by Lemma 3.8 (2) it follows that 1 < |V | < 4.
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If V- = {v} then due to the maximality of G* we have dg-(v) = 4. Lemmas 3.2 and 3.3
imply that there is an edge zy € F(G*) \ F(G) such that G' = G* — zy has degree sequence
45%6°.

If V- = {v,w} it follows that dg-(v),dg-(w) > 3. The only possible cases which are
not mentioned in the assertion are dg-(v) = dg«(w) = 3 and dg-(v) = 3 and dg-(w) = 5.
Lemmas 3.2 and 3.3 imply that there is an edge xy € F(G*) \ E(G) such that x # v, w.

In the first case y # v, w and hence we obtain a contradiction to the maximality of G*.

In the second case it follows that distg-(v,2) > 2. Hence by Lemma 3.8 (5), G is
subgraph of a graph G’ with 7(G") € {4%6'°, 45%6°}.

If V- = {v1,v2,v3} then Lemma 3.8 (3) implies dg-(v;) > 4,7 =1,2,3.

Assume 7(G*) # 45%6°. Then dg-(v;) = 4 for i = 1,2,3, and from Lemma 3.1 follows
that V'~ is an independent set in G. In fact, v; and v;, 1 < i < j < 3 do not even have a
neighbour in common. Thus identifying vy, v9 and v3 yields a 6-regular class 2 graph on 10
vertices. But such graphs do not exist, cf. [4].

If |V~| = 4 then follows from Lemma 3.8 (3) that 7 (G*) = 5%6".

Claim 3.12.3 If there is a 7-critical graph G on 12 vertices then there is a class 2 graph G’
with degree sequence w(G') € {42619, 42710 45269, 45677, 516°, 5379, 52610}.

Proof. We show that G is subgraph of a graph H with degree sequence w(H) €
{42719 4567°, 5379, 527'0 5627°,617%,627'°}.  In some cases we remove a l-factor from H
to reduce the sequence to one already appearing in Claim 3.12.2.

Because of the parity condition, Lemma 3.8 (2,3) and Corollary 3.11 we have 1 < |V 7| <
4.

If V- = {v} then it is easy to see that dg-(v) = 5. Lemmas 3.3 and 3.8 (4) imply that
there is xy € E(G*)\ E(G) with 2,y # v. So G is subgraph of a graph with degree sequence
5627Y.

Let V7 = {v1, v} and assume 0(G*) = dg-(v1) = 3. If vive € E(G) then dg(vy) = 6, a
contradiction to the parity condition.

Thus vive ¢ E(G) and dg(vy) = 2. Due to the maximality of G* there is an edge
voxr € E(G*)\ E(G), x # vy and xvy ¢ E(G*). Thus dg-(v2) = 5, and G is subgraph of
G' = (G* — vyx) + vz having degree sequence 42719,

If 7(G*) = 467'% (dg(vy) = 4) then there is an edge vo,x € E(G*) \ E(G) such that
x # v1. Thus G is subgraph of G* — vo2 having degree sequence 4567°. So the case |V~ | = 2
is complete.

Let V= = {vy,v9,v3}, then dg«(v;) > 4. Assume dg-(v1) = 4, then precisely one vertex
of V'~ has degree 5, say v5. We have to show that 4?57% must not be considered, so assume
dg-(v3) = 4.

If vyvy,v9v3 or V13 € E(G) then at least three neighbours of v, or vz in G have degree 7
in G. Thus dg-(v1) > 4 or dg-(v3) > 4, a contradiction.

Thus vv9, v1V3, Vo203 € E(G), and hence dg(v1) = dg(vs) = 2 and dg(v2) < 3. By Lemma
3.5 and the maximality of G* thereis x € V™, dg(z) = 6 with zvy, € G*\G. Thus dg(vs) = 2.
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Since all second neighbours of vy, vy, v3 in G have degree 7 in (G, there are 346 = 9 vertices
in G which cannot be neighbour of x. Thus dg(x) < 2, a contradiction.
All possible degree sequences with dg-(v) > 4 for all v € V™ are in the list.

Let V= = {vy,v9,v3,v4} then dg-(v;) > 5. Assume dg-(v1) = 5, then there is a second
vertex vy € V' with dg«(v9) = 5.

Assume there is an edge v1v;, 2 < ¢ < 4. Since v; is adjacent to at most two vertices
of degree 7 in G, it follows that dg(v;) = 6. Thus vyvy ¢ E(G) and v;v; € E(G) for all
1 <1< 7<4,57>2 Butthen vy, vy are adjacent to at most three vertices of degree 7 in G
and hence dg(v1) = 5, and therefore vivy € E(G), a contradiction.

Thus viv;,v9v; ¢ EG for i = 2,3,4 and j = 3,4. Hence dg(v1) = da(v2) = 2,
da(vs),de(vs) < 4. From Lemma 3.1 follows that V™~ is an independent set in G and
therefore dg(vs), dg(vs) < 3. In fact vy, vy can not even share a neighbour with vs, vy.

Identifying vy, v3 and vy, vs in G' = G* — {wv;v|1 <1 < j < 4} yields a class 2 graph H on
10 vertices having degree sequence 4°7% or 527%. This graph contains a 7-critical subgraph
of order at most 9.

By the results of [6] there are no 7-critical graphs on less than 9 vertices and those of
order 9 have one of the following degree sequences: 278, 3677, 4577, 46275, 52675, 5637° and
6°7%. None of them is exendable to H.

Claim 3.12.4 If there is an 8-critical graph G on 12 vertices then there is a class 2 graph
G with degree sequence m(G') € {426'0,428'0 4526% 45679, 4578°, 4628% 56,5377, 52687,
562788, 57388, 688, 627288, 67187}.

Proof. We show that G is subgraph of a graph H with degree sequence w(H) €
{42810 45787, 4628, 5268, 562788, 56787, 57388, 6188, 6387, 627288, 62810, 67487, 67287, 788},

Applying Theorem 3.9 we sometimes remove a hamiltonian circuit or a 1-factor from H
to obtain the desired result.

Because of Corollary 3.11 V"~ is not empty. If V5(G) # 0, then  due to Lemma 3.1 G
contains at most four vertices of degree smaller than 8 and hence |V ~| < 4 in this case.

If [V-| =6 then m(G*) = 7°8%. Let O(V ) be the set of edges with precisely one end
in V~. Since each vertex of V™ is adjacent to precisely two vertices of degree 8 it follows
0(V )| = 12.

On the other hand just six vertices of G* have degree 8, and hence each vertex of degree

8 is adjacent to at least three vertices of degree 7. Thus |0(V )| = 18, a contradiction, and
hence |V ~| < 5.

Let V= = {vy,...,vs5}. Then dg-(v;) > 6 for all i. Because of the parity condition at
least one vertex has degree 6, say v.

Since dg(v1) > 3 it follows that there is another vertex of V| say v9, so that v1v, € E(G).
In addition v; is adjacent to precisely two vertices of degree 8 in G. Therefore dg(vy) = 7
and hence vyv; € E(G) for all i # 2 and vy is adjacent to at most three vertices of degree 8
in G. This implies di(v1) = 6 and hence v,v; € E(G) for all i # 1. Therefore dg(v;) = 7 for
i # 1 and hence 7(G*) = n(G) = 678" in this case.
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Let V= ={v1,...,v4}. Then dg«(v;) > 5 for all i.

All possible degree sequences with dg-(v) > 5 for all v € V'~ are listed, so assume
dg-(v1) = 5.

If V7 is an independent set in G, then dg(v;) < 4 (i = 2,3,4) and dg(vi) = 2. Thus
G contains precisely four vertices with degree smaller than 8. Theorems 3.6 and 3.7 imply
7(G) € {23%48%,22328% 224288}, In case m(G) = 23%48% we have 7(G*) = 56%78%, which is
in the list. Otherwise there are two pairs of vertices with deficiency so that identifying the
two vertices of a pair yields a class 2 graph H on 10 vertices with degree sequence 528% or
628%. This graph contains an 8-critical subgraph H’. By the results of [6] H' has one of the
following degree sequences: 57387, 6385, 627285, 6748%, 7682, and none of them is extendable
to H. Thus V™ is not an independent set in GG.

If viv; € E(G) (i € {2,3,4}) then v; is adjacent to precisely four vertices of degree 8
in G, and hence dg(v1) = 5 and dg(v;) = 7. Therefore vivy, v1v3, v104 € E(G), dg(vy) =
dg(vs) = dg(vs) = 7, and G[V ] = K,. Since all neighbours of v1,...,v, in V(G) \ V™~ have
degree 8 in GG, by maximality we have 7(G) = 5738%. But then s(G) = 6, a contradiction to
Lemma 3.2, and hence v;v; ¢ E(G) for v;,v; € V™ with dg-(v;) = 5.

Thus we have dg(v1) = 2, and G has precisely four vertices with degree smaller than
8. Since V'~ is not independent in G there is an edge between two vertices of V'~ say
vovs € E(G). Thus dg-(vs), dg-(vs) > 6. If dg«(v9) = 6 then — since v1v, € E(G) and w3
is adjacent to at most four vertices of degree 8 — dg(vy) = 5 and hence vyvy € E(G), too.
Thus vy is adjacent to at most three vertices of degree 8 in G and since v,v3, v1v4 € E(G),
dg(v3) = dg(vs) = 6 in contradiction to the parity condition. Hence dg-(v;) = 7 for any
vertex v; which is adjacent in G to another vertex of V' ~.

Thus 7(G*) = 527?8% or 57°8%. In the first case we have 7(G) = 225%8%. Identifying each
vertex of degree 2 with one of the degree 5 vertices yields a class 2 graph on ten vertices
with degree sequence 728%. As above we obtain a contradiction by applying the results of
[6]. Thus 7(G*) = 57°8® in this case.

Let V= = {v1,v2,v3}. Then dg-(v;) > 4 for all i.

Assume dg-(v1) = 4.

If vyyju, € E(G) then since vy is adjacent to at most two vertices of degree 8 in G
dg(ve) =7, and dg(vi) = 4. Thus vivs, vov3 € E(G), too. All neighbours of vy, vy or vz not
in V'~ have degree 8 in G. Hence 7(G) = 47*8° and s(G) = 7, in contradiction to Lemma
3.2.

Thus dg(v1) = 2, G contains at most 4 vertices with deficiency and if dg-(v) = 4 then
dg(v) = 2.

If G contains precisely three vertices with deficiency then Lemma 3.5 implies dg(vy) +
de(vs) = 8. Thus 7(G) € {2358%,2428"}. Furthermore V™~ is an independent set in G and
hence 7(G*) € {4578, 4628%} in this case.

If G has a fourth vertex x with degree smaller than 8, then dg(z) > 6, vex or vz €
E(G*) \ E(G), say voz, and therefore dg+(v9) > 5. Since dg(x) > 6 there is at most one
vertex with degree 2 in (G, namely v;. The only two possible degree sequences of G* which
are not asserted are 4528” and 47287,
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Let m(G*) = 45287 then vyvs € F(G) and hence dg(vy) = de(vz) = 3. Thus there is no
edge vox € E(G*) \ E(G), a contradiction.

If m(G*) = 47°8" then G’ = (G* — vox) + v1x is a maximum graph and 7(G') = 5678".

All sequences with dg-(v;) > 4 for 1 < i < 3 are contained in the list of possible degree
sequences.

Let V7 = {v1, »}.

If dg-(v1) = 3 then vjve € E(G). Thus dg(v1) = 2 and G has at most four vertices with
degree smaller than 8. Since G must have deficiency 14, we get m(G) = 227%8%. So there
are 6 vertices in GG having only neighbours with degree 2 or 8. Thus G cannot contain two
vertices of degree 7. Hence dg«(v1), dg-(ve) > 4.

Assume dg-(v1) = 4. The only sequence not contained in the list is if dg-(vy) = 6. Since
s(G) > 10, there must be a vertex © ¢ V', wux € E(G*) \ E(G). So G is subgraph of
G' = G* — voz and 7(G') = 4578°.

Thus we may assume §(G*) > 5.

Let 7(G*) = 528", If vyv; ¢ F(G) then G is subgraph of G* — v1vy having degree
sequence 428, If v;vy € E(G) then dg(vi) = dg(v2) = 5 and hence all neighbours of vy, vy
not contained in V'~ have degree 8 in (G in contradiction to the maximality of G*.

Let m(G*) = 578", Let dg-(v2) = 7. Then there is an edge vox € F(G*) \ F(G) with
x # v;. Thus G is subgraph of G' = G* — v,2 having degree sequence 5678°.

If m(G*) = 7%8'% then G is subgraph of a graph having degree sequence 7'8% or 6728".

Let V— = {v}, then dg-(v) is even and dg-(v) > 4.

If dg«(v) = 6. Then by Lemma 3.3 there is an edge zy € F(G*)\ E(G) such that G* —xy
has degree sequence 6728,

Thus let us assume that dg-(v) = 4.

If dg(v) = 2 then s(G) > 14 and Lemma 3.5 implies that G has four vertices with degree
smaller than 8. Since dg-(v) is even, vw ¢ E(G*) for exactly one vertex w with dg(w) < 8.
So 7(G) = 25%68% and the set of vertices of degree smaller than 8 is independent. Hence
three edges can be added to G to obtain a graph with degree sequence 4578°.

If de;(v) = 3 then s(G) > 12. In this case there are vertices w, z, y such that vw, wz, wy €
E(G*)\ E(G) and vz,vy ¢ E(G*). Thus G is subgraph of G' = (G* — {wz,wy}) + {vz, vy}
and 7(G') = 68'C.

If dg(v) = 4 then s(G) > 10. But G* is maximum and hence only one edge was added
to obtain G* from G. Thus s(G) < 6, a contradiction.

[ ]

Lemma 3.13 There is no class 2 graph G with degree sequence 7(G) € {426'0,4%7'0 42810,
45269, 4567°,4578%, 46287 5468, 5377 52610, 52687, 562788, 57388, 6188, 627288, 67487},

and there is no 5-critical graph on 12 vertices which is subgraph of a graph with degree
sequence 4?50

Proof. With a computer aided check we proved that there are no class 2 graphs with
degree sequence in the given set.
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There are six class 2 graphs with degree sequence 425', but none of them contains a
5-critical subgraph on 12 vertices.

Lemmas 3.12 and 3.13 imply Theorem 1.2.

4 An independent proof

For all kinds of results that are obtained with the help of a computer, an independent check
is a very useful thing to do. We want to emphasize that we do not think that an error in a
computer assisted proof is more likely than in a long proof done by hand and that all the
programs used here have been carefully programmed and checked against all data available
to us. But since computer programs are very hard to check and even hardware or compiler
errors might occur, an independent implementation or even better: an implementation of
a completely independent method — reduces the probability of a wrong result caused by a
program error.

We checked Theorem 1.2 using the following method:

A graph where every additional edge that can be inserted cannot be contained in a critical
graph due to Vizings Adjacency Lemma is called a VAL-maximal graph. Obviously every
critical graph is contained in at least one VAL-maximal graph of the same order and with
the same maximum degree.

Some informal reasoning lead us to the expectation that there are less VAL-maximal
graphs than graphs where no edges at all can be inserted without changing the maximum
degree. And in fact in all the cases observed this was the case. Since for 9, 10 and 11 the
result follows theoretically and since for 3 and 4 the result is well known [11][9][21][5], we had
to generate all graphs on 12 vertices with maximum degree between 5 and 8 and filter them
for VAL-maximal graphs. We used the graph generator makeg [16] for this. Since makeg
only allows to give an upper bound for the maximum degree, we restricted the generation
to graphs with maximum degree at most 8 (there are 112 458 045 313 graphs) and deleted
those with maximum degree 3 or 4 (6 800 637 graphs).

The remaining graphs were filtered for VAL-maximal graphs, which is a fast test (in the
worst case quadratic in the number of vertices). In all, 74 064 621 graphs fulfilled the Vizing
criterion, 691 920 of them being VAL-maximal. They had to be tested by the colouring
routine, which determined 203 177 graphs to be class 2 graphs. They were tested for critical
subgraphs of the same order without finding any. In fact it turned out that 203 168 of
them were class 2 because of an overfull subgraph on 11 vertices, 3 of them because of an
overfull subgraph on 9 vertices (maximal valency 8) and 6 of them because of an overfull
subgraph on 7 vertices (maximal valency 5).

The generator used was independent of the one used in the previous part and of course
the filtering for VAL-maximal graphs also is. In order to keep also the colour testing part
independent, in addition we tested the results in the first part using an independent program
for vertex colouring and checking the chromatic number of the edge dual graphs. Since this



- 12 —

program was very slow for large vertex degrees, we had to use reduced valency sequences
whenever possible, even if the number of graphs for the reduced sequence was much larger.
This test was much slower than the one with the special routine for edge colouring, which
was astonishingly efficient. In both approaches only a small ratio of the CPU was used for
checking colourability. It works as follows:

Suppose a graph with maximal valence k£ shall be checked for being k-colourable. If it
has odd order, we first check whether it is overfull. If it has even order we check whether
deletion of the vertex of minimum degree gives an overfull subgraph. In both cases the graph
can of course not be coloured. If the graph has passed these tests, we proceed as follows:

We are looking for a matching that is not contained in a larger one and contains a fixed
edge (we choose it as one containing vertices with smallest possible degree) and all vertices
with maximum degree. In some tests we made, choosing the fixed edge in a different way
decreased the performance of the program. The graph is k-colourable if and only if such a
matching exists so that the graph obtained when removing this matching is £ — 1 colourable.
This recursive routine turned out to be surprisingly fast and was also used in the critical
subgraph determining program for the tests run on these graphs.

So the only program parts not checked independently are some subroutines of the critical
subgraph determining program (in the first approach it was only used for the sequence 425'°
and k£ = 5). We tested some cases for both approaches on various operating systems with
different compilers, but did not do two complete independent runs on different machines and
operating systems.

Outlook and CPU requirement

The first approach needed less than 13 hours (accumulated CPU) on a cluster of Alphas,
DECs, Suns and 133MHZ Linux Pentium PCs. In this approach only 7 926 900 graphs were
generated. So if it would be possible to determine all possible sequences for n = 14, it might
also be possible to check the existence of a critical graph of order 14. Nevertheless doing
this by hand would be a very hard thing to do and errors can easily occur. So an automatic
routine would be needed for this.

The second approach needed an accumulated CPU of 160 days on the same cluster.
In this approach 112 458 045 313 graphs were generated, but only 691 920 were tested for
colourability. So in spite of the fact that this approach can not be applied for n = 14, a slight
variation might be successful: Almost all of the time was used for generating graphs and
filtering them for VAL-maximal ones. If this part would be replaced by a graph generation
program generating only maximal or VAL-maximal graphs, this approach might also succeed
for 14 vertices. This would be another important step on the way to determining the smallest
critical graph of even order.
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