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ABSTRACTA chromatic-index-critical graph G on n vertices is non-trivial if it has at most �bn2 c edges.We prove that there is no chromatic-index-critical graph of order 12, and that there areprecisely two non-trivial chromatic index critical graphs on 11 vertices.Together with known results this implies that there are precisely three non-trivial chromatic-index-critical graphs of order � 12.



1 IntroductionA famous theorem of Vizing [20] states that the chromatic index �0(G) of a simple graph Gis �(G) or �(G) + 1, where �(G) denotes the maximum vertex degree in G. A graph G isclass 1 if �0(G) = �(G) and it is class 2 otherwise. A class 2 graph G is (chromatic index)critical if �0(G� e) < �0(G) for each edge e of G. If we want to stress the maximum vertexdegree of a critical graph G we say G is �(G)-critical.Critical graphs of odd order are easy to construct while not much is known about criticalgraphs of even order. One reason for this is that an overfull graph of odd order { that is agraph with more than �b jV j2 c edges { obviously is class 2, since it has too many edges. Thusit is not the speci�c structure of the graph which causes its colouring properties. The sameholds true for many critical graphs with an odd number of vertices and �b jV j2 c + 1 edges.We are interested in graphs which are class 2 for structural reasons, and de�ne a criticalgraph with at most �b jV j2 c edges to be non-trivial. Clearly, each critical graph of even orderis non-trivial.Nevertheless the critical graph conjecture, independently formulated by Jakobsen [15]and Beineke, Wilson [1], claiming that every critical graph has odd order, is false.Goldberg [12] constructed an in�nite family of 3-critical graphs of even order. Thesmallest graph of this family has 22 vertices. Another counterexample { a 4-critical graphon 18 vertices { was independently found by Chetwynd and Fiol, cf. [14, 21]. RecentlyGr�unewald and Ste�en [13] constructed k-critical graphs of even order for each k � 3. It isstill of interest which are the smallest k-critical graphs of even order, and Yap [21] posed theproblem whether there are k-critical graphs of order 12, 14 or 16.In [5] the authors showed that the graphs found by Goldberg and by Chetwynd, Fiol arethe smallest 3- and 4-critical graphs of even order, respectively.Based on results of [2] the �rst complete list of critical graphs of order n � 8 and of evenorder n � 10 was given in [10].The gap for n = 9 was closed in [6] and hence for all n � 10 the critical graphs of ordern are known.It turned out that the Petersen graph minus a vertex is the only non-trivial critical graphon up to 10 vertices.The aim of this paper is to determine all non-trivial critical graphs of order 11 or 12.Theorem 1.1 There are precisely two non-trivial critical graphs on 11 vertices.These two graphs are shown in Figure 1. Both can be obtained from the Petersen graphminus a vertex by replacing a vertex by a triangle.Theorem 1.2 There is no critical graph on 12 vertices.Together with the aforementioned results our theorems imply:Corollary 1.3 There are precisely three non-trivial critical graphs on up to 12 vertices.



{ 2 {Corollary 1.4 The smallest non-trivial critical graph is the Petersen graph minus a vertex,which is 3-critical.Corollary 1.4 motivates the following problem.Problem 1.5 For each k � 4, determine the smallest non-trivial k-critical graphs.

Figure 12 Proof of Theorem 1.1For k = 1; 2 there are no non-trivial k-critical graphs on 11 vertices.Let 3 � k � 10. The following lower bounds for the number of edges in a k-critical graphare given by Corollary 5.4 and Theorem 5.7 in [21], and Theorems 13.2, 13.3 in [10].Lemma 2.1 Let G be a non-trivial k-critical graph on 11 vertices.1. If k = 3, then jE(G)j = 15.2. If k = 4, then 19 � jE(G)j � 20.3. If k = 5, then 23 � jE(G)j � 25.4. If k = 6, then 25 � jE(G)j � 30.5. If k = 7, then 28 � jE(G)j � 35.6. If k = 8; 9; 10, then 18(3k2 + 6k � 1) � jE(G)j � 5k.Using the graph generator makeg ([16]), for each maximum degree, we generated allgraphs on 11 vertices and edges within the range of possible numbers given by Lemma 2.1.We �ltered out the candidates, which are graphs with at least two vertices of maximumdegree k, no vertex of degree 1, and which have 5k edges or adding an edge increases themaximum vertex degree.



{ 3 {We computed the class 2 graphs among the candidates and checked whether they hadcritical subgraphs of the same order.Our results are given in the following table. They prove Theorem 1.1.k #graphs # candidates # class 2 graphs # k-critical graphs3 671 482 22 24 118600 30037 278 05 3521278 323325 572 06 66250465 695751 527 07 170091250 302921 107 08 221586717 28485 21 09 7251796 893 0 010 5700 25 0 03 Proof of Theorem 1.23.1 Basic ResultsWe will need the following results. If we do not prove them or cite a paper explicitely theirproofs could be found e.g. in [10, 21].Lemma 3.1 (Vizings Adjacency Lemma) Let k � 0 and vw be an edge of a k-criticalgraph G with dG(v) = d. Then w is adjacent to at least k � d + 1 vertices of degree k.Furthermore dG(v) + dG(w) � k + 2.Let v be a vertex of a graph G. We de�ne s(v) = �(G) � dG(v) to be the de�ciency ofv. The de�ciency of G is s(G) = Pv2V (G) s(v). The minimum vertex degree in G is denotedby �(G).Lemma 3.2 A critical graph G = (V;E) of even order has de�ciency at least 2(�(G) ��(G) + 1).Lemma 3.3 For all k � 3, a k-critical graph of even order contains at least 3 vertices ofdegree smaller than k.The following is a generalization of the well known Parity Lemma [3].Lemma 3.4 (Parity Lemma) Let G be a graph whose edges are coloured with colours1; : : : ; c, and let ai be the number of vertices v in G such that no edge incident to v iscoloured i. Then for all i = 1; : : : ; c : ai � jV (G)j (mod 2).Proof. For i = 1; : : : c let Ei be the set of edges coloured i. Then ai = jV (G)j � 2jEij,and hence ai � jV (G)j (mod 2). �



{ 4 {Lemma 3.5 Let G be a k-critical graph (k � 4) of even order which has precisely threevertices v1; v2; v3 of degree smaller than k and dG(v1) = 2. Then dG(v2) + dG(v3) = k.Proof. Both neighbours of v1 have degree k, and G � v1 is k-colourable. Let f1; : : : kgbe the set of colours. Since jV (G � v1)j is odd it follows from the Parity Lemma that eachcolour is missing in an odd number of vertices. Since G is critical it follows that at theneighbours of v1 the same colour is missing. Thus each colour is missing either in v2 or v3and therefore dG(v2) + dG(v3) = k. �The following theorem is due to Yap [21]:Theorem 3.6 ([21]) For all integers k � 5, r � 0, there is no k-critical graph with degreesequence 2rk2r.Let G = (V;E) be a graph. We de�ne Vi to be the set of vertices having degree i in G,and ni = jVij.Theorem 3.7 Let G be a k-critical graph. ThenXb k+22 c�i�k ni � maxfij2 < i < bk + 22 c and ni 6= 0g+ 2n2:Proof. Given a k-critical graph G. Since dG(v) + dG(w) � k + 2 if vw 2 E(G), itfollows that S2�i<b k+22 c Vi is an independent set in G. Furthermore each neighbour of avertex of degree two is not adjacent to a vertex of degree i, for 2 < i < k. Hence there are2n2 + P2�i<b k+22 c ni vertices in G which are not neighbour of a vertex of degree i for 3 �i � bk+22 c. Therefore maxfij2 < i < bk+22 c and ni 6= 0g � jGj � (2n2 +P2�i<b k+22 c ni) =Pb k+22 c�i�k ni � 2n2, proving the Theorem. �Let G be a critical graph and G� a graph obtained from G by adding a maximum numberof edges such that �(G�) = �(G). With V � we denote the set of vertices of G� with degreesmaller than �(G).Lemma 3.8 Let G be a critical graph. Then the following holds true:1. The subgraph G�[V �] induced by V � is a complete graph.2. jV �j � �(G)� 23. minfdG�(v)jv 2 V �g � jV �j+ 14. Let xy 2 E(G�). If there are v; w 2 V �, such that s(v) + s(w) � 2 and distG�(x; v);distG�(y; w) � 2 then xy 2 E(G).



{ 5 {5. Let v 2 V � and let xy 2 E(G�)nE(G), vy 62 E(G�). Then G�1 with V (G�1) = V (G) andE(G�1) = (E(G�)�xy)[fvyg is another graph obtained from G by adding a maximumnumber of edges.Proof. Since G� is obtained from G by adding maximum number of edges 1 is proved.Each vertex of G is adjacent to at least two vertices of maximum degree and hence 2 and 3hold true.Let xy 2 E(G�), v; w 2 V � and let distG�(x; v); distG�(y; w) � 2. Assume that xy 62E(G). Then G0 with vertex set V (G0) = V (G) and edge set E(G0) = (E(G�)�xy)[fxv; ywghas G as subgraph, it has maximum vertex degree k and jE(G0)j = jE(G�)j + 1. Thiscontradicts the fact that G� is obtained from G by adding a maximum number of edges.Thus xy 2 E(G).Item 5 can be proven similarly. �Theorem 3.9 ([19]) Let G be a graph on n � 3 vertices. If P1�i�k ni < k for each 1 �k < n�12 (and nn�12 � n�12 if n is odd), then G is hamiltonian.It is well known that a regular graph of order 2n and vertex degree r 2 f2n� 1; 2n� 2gis class 1. Chetwynd and Hilton improved this result as follows.Theorem 3.10 ([8]) Let G be a regular graph of order 2n and vertex degree r 2 f2n �3; 2n� 4; 2n� 5g. If r � 2b12(n+ 1)c � 1, then G is class 1.As a simple consequence we stateCorollary 3.11 Let k � 7 and G be a k-critical graph on 12 vertices. Then G is notsubgraph of a k-regular graph on 12 vertices.3.2 The ProofTheorem 1.2 is true for k = 2. For k = 3 and 4 this is proved in [2] and [9, 11], respectively.For k = 8 this follows from more general results of [7], and for k = 9; 10; 11 it is a consequenceof results of [17, 18].Thus to prove Theorem 1.2 we have to solve the cases k = 5; 6; 7; 8. Our aim was totest as few graphs as possible. So we did not want to test every possibly critical graph, buttried to �nd a smaller set of supergraphs containing all these. This set was �ltered for class2 graphs and they were searched for critical subgraphs of the same order. So our aim wasto have as few class 2 graphs as possible in the set of supergraphs { in particular we triedto avoid trivial class 2 graphs, that is: graphs containing an overfull subgraph of odd order.We proceeded as follows:Assume there is a k-critical graph G of order 12. We add edges to G as long as we donot create a vertex of degree more than k, and we do not create a graph having a subgraph



{ 6 {on 11 vertices with more than 5k edges. This allows to determine the set of possible degreesequences of such graphs. For k = 5; 6 we generate all possible graphs for these degreesequences and �lter out the class 2 graphs. If there are class 2 graphs we look for k-criticalsubgraphs of order 12.For k = 7; 8 in some cases the problem can be reduced: By theorem 3.9 these graphshave a hamiltonian cycle and therefore a 1-factor as well. Removing such subgraphs yieldsgraphs having maximum vertex degree k � 2 or k � 1 that are class 2 if the original graphsare class 2. So some of the degree sequences can be reduced to sequences that also have to bechecked for smaller k. If for these reduced sequences no class 2 graphs exist, the non-reducedsequences need not be tested.In the following proofs we sometimes refer to the fact that the number of vertices of odddegree in a graph is even. We call this the parity condition.Lemma 3.12 For all k 2 f5; 6; 7; 8g we have: If there is a k-critical graph G on 12 verticesthen there is a class-2-graph G0 with degree sequence �(G0) 2 f42510; 42610; 42710; 42810;45269; 45679; 45789; 46289; 5468; 5379; 52610; 52689; 562788; 57388; 6488; 627288; 67487g, and G0 isa supergraph of G with the maximal degree or can be obtained from a supergraph of G withthe same maximal degree by deleting a perfect matching or a hamiltonian cycle.Proof of the Lemma. We check the cases succesively.Claim 3.12.1 Each 5-critical graph G of order 12 is subgraph of a graph G0 with degreesequence �(G0) = 42510.Proof. If G� is 5-regular, then there is an edge e 2 E(G�) nE(G) so that G is subgraphof G0 = G� � e, and �(G0) = 42510.Let G� be not 5-regular. It follows from Lemma 3.8 (2) and the parity condition thatjV �j 2 f1; 2g.If V � = fvg then dG�(v) = 3. Then Lemma 3.3 implies that there is an edge xy 2E(G�) n E(G) with distG�(v; y) � 2. Thus by Lemma 3.8 (5) there is a supergraph G0 of Gwith �(G0) = 42510.If V � = fv; wg then dG�(v) = dG�(w) 2 f3; 4g. Assume dG�(v) = 3. Then vw 62 E(G)and hence dG(v) = dG(w) = 2. Since all neighbours of v or w have degree 5 in G andthey are pairwise di�erent, vw is the only edge which is added to G to obtain G�. But thiscontradicts Lemma 3.3.Claim 3.12.2 Each 6-critical graph G on 12 vertices is subgraph of a graph G0 with degreesequence �(G0) 2 f42610; 45269; 52610; 5468g.Proof. If G� is 6-regular then there is an edge e 2 E(G�)nE(G) such that G is subgraphof G0 = G� � e and �(G0) = 52610.If G� is not 6-regular, then by Lemma 3.8 (2) it follows that 1 � jV �j � 4.



{ 7 {If V � = fvg then due to the maximality of G� we have dG�(v) = 4. Lemmas 3.2 and 3.3imply that there is an edge xy 2 E(G�) nE(G) such that G0 = G�� xy has degree sequence45269.If V � = fv; wg it follows that dG�(v); dG�(w) � 3. The only possible cases which arenot mentioned in the assertion are dG�(v) = dG�(w) = 3 and dG�(v) = 3 and dG�(w) = 5.Lemmas 3.2 and 3.3 imply that there is an edge xy 2 E(G�) n E(G) such that x 6= v; w.In the �rst case y 6= v; w and hence we obtain a contradiction to the maximality of G�.In the second case it follows that distG�(v; x) � 2. Hence by Lemma 3.8 (5), G issubgraph of a graph G0 with �(G0) 2 f42610; 45269g.If V � = fv1; v2; v3g then Lemma 3.8 (3) implies dG�(vi) � 4, i = 1; 2; 3.Assume �(G�) 6= 45269. Then dG�(vi) = 4 for i = 1; 2; 3, and from Lemma 3.1 followsthat V � is an independent set in G. In fact, vi and vj, 1 � i < j � 3 do not even have aneighbour in common. Thus identifying v1; v2 and v3 yields a 6-regular class 2 graph on 10vertices. But such graphs do not exist, cf. [4].If jV �j = 4 then follows from Lemma 3.8 (3) that �(G�) = 5468.Claim 3.12.3 If there is a 7-critical graph G on 12 vertices then there is a class 2 graph G0with degree sequence �(G0) 2 f42610; 42710; 45269; 45679; 5468; 5379; 52610g.Proof. We show that G is subgraph of a graph H with degree sequence �(H) 2f42710; 45679; 5379; 52710; 56279; 6478; 62710g. In some cases we remove a 1-factor from Hto reduce the sequence to one already appearing in Claim 3.12.2.Because of the parity condition, Lemma 3.8 (2,3) and Corollary 3.11 we have 1 � jV �j �4. If V � = fvg then it is easy to see that dG�(v) = 5. Lemmas 3.3 and 3.8 (4) imply thatthere is xy 2 E(G�)nE(G) with x; y 6= v. So G is subgraph of a graph with degree sequence56279.Let V � = fv1; v2g and assume �(G�) = dG�(v1) = 3. If v1v2 2 E(G) then dG(v2) = 6, acontradiction to the parity condition.Thus v1v2 62 E(G) and dG(v1) = 2. Due to the maximality of G� there is an edgev2x 2 E(G�) n E(G), x 6= v1 and xv1 62 E(G�). Thus dG�(v2) = 5, and G is subgraph ofG0 = (G� � v2x) + v1x having degree sequence 42710.If �(G�) = 46710 (dG(v1) = 4) then there is an edge v2x 2 E(G�) n E(G) such thatx 6= v1. Thus G is subgraph of G�� v2x having degree sequence 45679. So the case jV �j = 2is complete.Let V � = fv1; v2; v3g, then dG�(vi) � 4. Assume dG�(v1) = 4, then precisely one vertexof V � has degree 5, say v2. We have to show that 42579 must not be considered, so assumedG�(v3) = 4.If v1v2,v2v3 or v1v3 2 E(G) then at least three neighbours of v1 or v3 in G have degree 7in G. Thus dG�(v1) > 4 or dG�(v3) > 4, a contradiction.Thus v1v2; v1v3; v2v3 62 E(G), and hence dG(v1) = dG(v3) = 2 and dG(v2) � 3. By Lemma3.5 and the maximality of G� there is x 2 V �, dG(x) = 6 with xv2 2 G�nG. Thus dG(v3) = 2.



{ 8 {Since all second neighbours of v1; v2; v3 in G have degree 7 in G, there are 3+ 6 = 9 verticesin G which cannot be neighbour of x. Thus dG(x) � 2, a contradiction.All possible degree sequences with dG�(v) > 4 for all v 2 V � are in the list.Let V � = fv1; v2; v3; v4g then dG�(vi) � 5. Assume dG�(v1) = 5, then there is a secondvertex v2 2 V � with dG�(v2) = 5.Assume there is an edge v1vi, 2 � i � 4. Since v1 is adjacent to at most two verticesof degree 7 in G, it follows that dG(vi) = 6. Thus v1v2 62 E(G) and vivj 2 E(G) for all1 � i < j � 4; j > 2. But then v1; v2 are adjacent to at most three vertices of degree 7 in Gand hence dG(v1) = 5, and therefore v1v2 2 E(G), a contradiction.Thus v1vi; v2vj 62 EG for i = 2; 3; 4 and j = 3; 4. Hence dG(v1) = dG(v2) = 2,dG(v3); dG(v4) � 4. From Lemma 3.1 follows that V � is an independent set in G andtherefore dG(v3); dG(v4) � 3. In fact v1; v2 can not even share a neighbour with v3; v4.Identifying v1; v3 and v2; v4 in G0 = G��fvivjj1 � i < j � 4g yields a class 2 graph H on10 vertices having degree sequence 4278 or 5278. This graph contains a 7-critical subgraphof order at most 9.By the results of [6] there are no 7-critical graphs on less than 9 vertices and those oforder 9 have one of the following degree sequences: 278, 3677, 4577, 46276, 52676, 56375 and6574. None of them is exendable to H.Claim 3.12.4 If there is an 8-critical graph G on 12 vertices then there is a class 2 graphG0 with degree sequence �(G0) 2 f42610; 42810; 45269; 45679; 45789; 46289; 5468; 5379; 52689;562788; 57388; 6488; 627288; 67487g.Proof. We show that G is subgraph of a graph H with degree sequence �(H) 2f42810; 45789; 46289; 52689; 562788; 56789; 57388; 6488; 6389; 627288; 62810; 67487; 67289; 7488g.Applying Theorem 3.9 we sometimes remove a hamiltonian circuit or a 1-factor from Hto obtain the desired result.Because of Corollary 3.11 V � is not empty. If V2(G) 6= ;, then { due to Lemma 3.1 { Gcontains at most four vertices of degree smaller than 8 and hence jV �j � 4 in this case.If jV �j = 6 then �(G�) = 7686. Let @(V �) be the set of edges with precisely one endin V �. Since each vertex of V � is adjacent to precisely two vertices of degree 8 it followsj@(V �)j = 12.On the other hand just six vertices of G� have degree 8, and hence each vertex of degree8 is adjacent to at least three vertices of degree 7. Thus j@(V �)j = 18, a contradiction, andhence jV �j � 5.Let V � = fv1; : : : ; v5g. Then dG�(vi) � 6 for all i. Because of the parity condition atleast one vertex has degree 6, say v1.Since dG(v1) � 3 it follows that there is another vertex of V �, say v2, so that v1v2 2 E(G).In addition v1 is adjacent to precisely two vertices of degree 8 in G. Therefore dG(v2) = 7and hence v2vi 2 E(G) for all i 6= 2 and v2 is adjacent to at most three vertices of degree 8in G. This implies dG(v1) = 6 and hence v1vi 2 E(G) for all i 6= 1. Therefore dG(vi) = 7 fori 6= 1 and hence �(G�) = �(G) = 67487 in this case.



{ 9 {Let V � = fv1; : : : ; v4g. Then dG�(vi) � 5 for all i.All possible degree sequences with dG�(v) > 5 for all v 2 V � are listed, so assumedG�(v1) = 5.If V � is an independent set in G, then dG(vi) � 4 (i = 2; 3; 4) and dG(v1) = 2. ThusG contains precisely four vertices with degree smaller than 8. Theorems 3.6 and 3.7 imply�(G) 2 f232488; 223288; 224288g. In case �(G) = 232488 we have �(G�) = 562788, which isin the list. Otherwise there are two pairs of vertices with de�ciency so that identifying thetwo vertices of a pair yields a class 2 graph H on 10 vertices with degree sequence 5288 or6288. This graph contains an 8-critical subgraph H 0. By the results of [6] H 0 has one of thefollowing degree sequences: 57385; 6386; 627285; 67484; 7683, and none of them is extendableto H. Thus V � is not an independent set in G.If v1vi 2 E(G) (i 2 f2; 3; 4g) then vi is adjacent to precisely four vertices of degree 8in G, and hence dG(v1) = 5 and dG(vi) = 7. Therefore v1v2; v1v3; v1v4 2 E(G), dG(v2) =dG(v3) = dG(v4) = 7, and G[V �] = K4. Since all neighbours of v1; : : : ; v4 in V (G) n V � havedegree 8 in G, by maximality we have �(G) = 57388. But then s(G) = 6, a contradiction toLemma 3.2, and hence vivj 62 E(G) for vi; vj 2 V � with dG�(vi) = 5.Thus we have dG(v1) = 2, and G has precisely four vertices with degree smaller than8. Since V � is not independent in G there is an edge between two vertices of V �, sayv2v3 2 E(G). Thus dG�(v2); dG�(v3) � 6. If dG�(v2) = 6 then | since v1v2 62 E(G) and v3is adjacent to at most four vertices of degree 8 | dG(v2) = 5 and hence v2v4 2 E(G), too.Thus v2 is adjacent to at most three vertices of degree 8 in G and since v1v3; v1v4 62 E(G),dG(v3) = dG(v4) = 6 in contradiction to the parity condition. Hence dG�(vi) = 7 for anyvertex vi which is adjacent in G to another vertex of V �.Thus �(G�) = 527288 or 57388. In the �rst case we have �(G) = 225288. Identifying eachvertex of degree 2 with one of the degree 5 vertices yields a class 2 graph on ten verticeswith degree sequence 7288. As above we obtain a contradiction by applying the results of[6]. Thus �(G�) = 57388 in this case.Let V � = fv1; v2; v3g. Then dG�(vi) � 4 for all i.Assume dG�(v1) = 4.If v1v2 2 E(G) then { since v1 is adjacent to at most two vertices of degree 8 in G {dG(v2) = 7, and dG(v1) = 4. Thus v1v3; v2v3 2 E(G), too. All neighbours of v1; v2 or v3 notin V � have degree 8 in G. Hence �(G) = 47289 and s(G) = 7, in contradiction to Lemma3.2.Thus dG(v1) = 2, G contains at most 4 vertices with de�ciency and if dG�(v) = 4 thendG(v) = 2.If G contains precisely three vertices with de�ciency then Lemma 3.5 implies dG(v2) +dG(v3) = 8. Thus �(G) 2 f23589; 24289g. Furthermore V � is an independent set in G andhence �(G�) 2 f45789; 46289g in this case.If G has a fourth vertex x with degree smaller than 8, then dG(x) � 6, v2x or v3x 2E(G�) n E(G), say v2x, and therefore dG�(v2) � 5. Since dG(x) � 6 there is at most onevertex with degree 2 in G, namely v1. The only two possible degree sequences of G� whichare not asserted are 45289 and 47289.



{ 10 {Let �(G�) = 45289, then v2v3 62 E(G) and hence dG(v2) = dG(v3) = 3. Thus there is noedge v2x 2 E(G�) n E(G), a contradiction.If �(G�) = 47289 then G0 = (G� � v2x) + v1x is a maximum graph and �(G0) = 56789.All sequences with dG�(vi) > 4 for 1 � i � 3 are contained in the list of possible degreesequences.Let V � = fv1; v2g.If dG�(v1) = 3 then v1v2 62 E(G). Thus dG(v1) = 2 and G has at most four vertices withdegree smaller than 8. Since G must have de�ciency 14, we get �(G) = 227288. So thereare 6 vertices in G having only neighbours with degree 2 or 8. Thus G cannot contain twovertices of degree 7. Hence dG�(v1); dG�(v2) � 4.Assume dG�(v1) = 4. The only sequence not contained in the list is if dG�(v2) = 6. Sinces(G) � 10, there must be a vertex x 62 V �, v2x 2 E(G�) n E(G). So G is subgraph ofG0 = G� � v2x and �(G0) = 45789.Thus we may assume �(G�) � 5.Let �(G�) = 52810. If v1v2 62 E(G) then G is subgraph of G� � v1v2 having degreesequence 42810. If v1v2 2 E(G) then dG(v1) = dG(v2) = 5 and hence all neighbours of v1; v2not contained in V � have degree 8 in G in contradiction to the maximality of G�.Let �(G�) = 57810. Let dG�(v2) = 7. Then there is an edge v2x 2 E(G�) n E(G) withx 6= v1. Thus G is subgraph of G0 = G� � v2x having degree sequence 56789.If �(G�) = 72810 then G is subgraph of a graph having degree sequence 7488 or 67289.Let V � = fvg, then dG�(v) is even and dG�(v) � 4.If dG�(v) = 6. Then by Lemma 3.3 there is an edge xy 2 E(G�)nE(G) such that G��xyhas degree sequence 67289.Thus let us assume that dG�(v) = 4.If dG(v) = 2 then s(G) � 14 and Lemma 3.5 implies that G has four vertices with degreesmaller than 8. Since dG�(v) is even, vw 62 E(G�) for exactly one vertex w with dG(w) < 8.So �(G) = 252688 and the set of vertices of degree smaller than 8 is independent. Hencethree edges can be added to G to obtain a graph with degree sequence 45789.If dG(v) = 3 then s(G) � 12. In this case there are vertices w; x; y such that vw; wx; wy 2E(G�) nE(G) and vx; vy 62 E(G�). Thus G is subgraph of G0 = (G�� fwx;wyg)+ fvx; vygand �(G0) = 62810.If dG(v) = 4 then s(G) � 10. But G� is maximum and hence only one edge was addedto obtain G� from G. Thus s(G) � 6, a contradiction. �Lemma 3.13 There is no class 2 graph G with degree sequence �(G) 2 f42610; 42710; 42810;45269; 45679; 45789; 46289; 5468; 5379; 52610; 52689; 562788; 57388; 6488; 627288; 67487g,and there is no 5-critical graph on 12 vertices which is subgraph of a graph with degreesequence 42510.Proof. With a computer aided check we proved that there are no class 2 graphs withdegree sequence in the given set.



{ 11 {There are six class 2 graphs with degree sequence 42510, but none of them contains a5-critical subgraph on 12 vertices. �Lemmas 3.12 and 3.13 imply Theorem 1.2.4 An independent proofFor all kinds of results that are obtained with the help of a computer, an independent checkis a very useful thing to do. We want to emphasize that we do not think that an error in acomputer assisted proof is more likely than in a long proof done by hand and that all theprograms used here have been carefully programmed and checked against all data availableto us. But since computer programs are very hard to check and even hardware or compilererrors might occur, an independent implementation { or even better: an implementation ofa completely independent method { reduces the probability of a wrong result caused by aprogram error.We checked Theorem 1.2 using the following method:A graph where every additional edge that can be inserted cannot be contained in a criticalgraph due to Vizings Adjacency Lemma is called a VAL-maximal graph. Obviously everycritical graph is contained in at least one VAL-maximal graph of the same order and withthe same maximum degree.Some informal reasoning lead us to the expectation that there are less VAL-maximalgraphs than graphs where no edges at all can be inserted without changing the maximumdegree. And in fact in all the cases observed this was the case. Since for 9, 10 and 11 theresult follows theoretically and since for 3 and 4 the result is well known [11][9][21][5], we hadto generate all graphs on 12 vertices with maximum degree between 5 and 8 and �lter themfor VAL-maximal graphs. We used the graph generator makeg [16] for this. Since makegonly allows to give an upper bound for the maximum degree, we restricted the generationto graphs with maximum degree at most 8 (there are 112 458 045 313 graphs) and deletedthose with maximum degree 3 or 4 (6 800 637 graphs).The remaining graphs were �ltered for VAL-maximal graphs, which is a fast test (in theworst case quadratic in the number of vertices). In all, 74 064 621 graphs ful�lled the Vizingcriterion, 691 920 of them being VAL-maximal. They had to be tested by the colouringroutine, which determined 203 177 graphs to be class 2 graphs. They were tested for criticalsubgraphs of the same order { without �nding any. In fact it turned out that 203 168 ofthem were class 2 because of an overfull subgraph on 11 vertices, 3 of them because of anoverfull subgraph on 9 vertices (maximal valency 8) and 6 of them because of an overfullsubgraph on 7 vertices (maximal valency 5).The generator used was independent of the one used in the previous part and of coursethe �ltering for VAL-maximal graphs also is. In order to keep also the colour testing partindependent, in addition we tested the results in the �rst part using an independent programfor vertex colouring and checking the chromatic number of the edge dual graphs. Since this



{ 12 {program was very slow for large vertex degrees, we had to use reduced valency sequenceswhenever possible, even if the number of graphs for the reduced sequence was much larger.This test was much slower than the one with the special routine for edge colouring, whichwas astonishingly e�cient. In both approaches only a small ratio of the CPU was used forchecking colourability. It works as follows:Suppose a graph with maximal valence k shall be checked for being k-colourable. If ithas odd order, we �rst check whether it is overfull. If it has even order we check whetherdeletion of the vertex of minimum degree gives an overfull subgraph. In both cases the graphcan of course not be coloured. If the graph has passed these tests, we proceed as follows:We are looking for a matching that is not contained in a larger one and contains a �xededge (we choose it as one containing vertices with smallest possible degree) and all verticeswith maximum degree. In some tests we made, choosing the �xed edge in a di�erent waydecreased the performance of the program. The graph is k-colourable if and only if such amatching exists so that the graph obtained when removing this matching is k�1 colourable.This recursive routine turned out to be surprisingly fast and was also used in the criticalsubgraph determining program for the tests run on these graphs.So the only program parts not checked independently are some subroutines of the criticalsubgraph determining program (in the �rst approach it was only used for the sequence 42510and k = 5). We tested some cases for both approaches on various operating systems withdi�erent compilers, but did not do two complete independent runs on di�erent machines andoperating systems.Outlook and CPU requirementThe �rst approach needed less than 13 hours (accumulated CPU) on a cluster of Alphas,DECs, Suns and 133MHZ Linux Pentium PCs. In this approach only 7 926 900 graphs weregenerated. So if it would be possible to determine all possible sequences for n = 14, it mightalso be possible to check the existence of a critical graph of order 14. Nevertheless doingthis by hand would be a very hard thing to do and errors can easily occur. So an automaticroutine would be needed for this.The second approach needed an accumulated CPU of 160 days on the same cluster.In this approach 112 458 045 313 graphs were generated, but only 691 920 were tested forcolourability. So in spite of the fact that this approach can not be applied for n = 14, a slightvariation might be successful: Almost all of the time was used for generating graphs and�ltering them for VAL-maximal ones. If this part would be replaced by a graph generationprogram generating only maximal or VAL-maximal graphs, this approach might also succeedfor 14 vertices. This would be another important step on the way to determining the smallestcritical graph of even order.References[1] L. W. Beineke, R. J. Wilson, On the edge chromatic number of a graph, Disc. Math. 5



{ 13 {(1973) 15-20[2] L. W. Beineke, S. Fiorini, On small graphs critical with respect to edge colourings,Disc. Math. 16 (1976) 109-121[3] D. Blanu�sa, Problem ceteriju boja (The Problem of four Colors), Hrvatsko PrirodoslovnoDru�stvo Glasnik Math.-Fiz. Astr. Ser. II 1 (1946) 31-42[4] G. Brinkmann, Generating cubic graphs faster than isomorphism checking SFB-Preprint92-047, Universit�at Bielefeld, (1992)[5] G. Brinkmann, E. Ste�en, 3- and 4-critical graphs of small even order, Disc. Math. 169(1997) 193-197[6] A. G. Chetwynd, H. P. Yap, Chromatic index critical graphs of order 9, Disc. Math. 47(1983) 23-33[7] A. G. Chetwynd, A. J. W. Hilton, The chromatic index of graphs of even order withmany edges J. of Graph Th. 8 (1984) 463-470[8] A. G. Chetwynd, A. J. W. Hilton, Regular graphs of high degree are 1-factorizablePro. London Math. Soc. 3, 50 (1985) 193-206[9] S. A. Choudum, K. Kayathri, There are no edge-chromatic 4-critical graphs of order 12,Disc. Math. 141 (1995) 67-73[10] S. Fiorini, R. J. Wilson, Edge-colourings of graphs, Research notes in math. no. 17,Pitman, London, San Francisco, Melbourne (1977)[11] G. P. Gavrilov, On the nonexistence of 4-critical graphs of twelfth order, DiskretnayaMathematika 4 (1992) 99-114[12] M. K. Goldberg, Construction of class 2 graphs with maximum vertex degree 3, J. ofComb. Theory, Ser. B 31 (1981), 282-291[13] S. Gr�unewald, E. Ste�en, Critical graphs of even order, DIMACS Technical Report97-39 (1997)[14] A. J. W. Hilton, R. J. Wilson, Edge-Colorings of Graphs: A Progress Report in:M. F. Cabobianco et al. (Eds.) Graph Theory and its Applications: East and West,New York (1989) 241-249[15] I. T. Jakobsen, On critical graphs with chromatic index 4, Disc. Math. 9 (1974) 265-276[16] B. D. McKay, Isomorph-free exhaustive generation to appear in Journal of Algorithms[17] M. Plantholt, The chromatic index of graphs with a spanning star, J. of Graph Th. 5(1981) 45-53



{ 14 {[18] M. Plantholt, The chromatic index of graphs with large maximum degree, Disc. Math. 47(1983) 91-96[19] L. P�osa, A theorem concerning hamilton lines, A Mat. Kut. Int. K�ozl. VII.A/1-2 (1962)225-226[20] V. G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Anal. 3 (1964)25-30[21] H. P. Yap, Some topics in graph theory, London Math. Soc. LNS 108, Cambridge Uni-versity Press (1986)


