
LISP AND SYMBOLIC COMPUTATION: An International Journal, 6, 453{484, 1993c
 1993 Kluwer Academic Publishers { Manufactured in The Netherlands
Subcontinuations�ROBERT HIEByR. KENT DYBVIG (dyb@cs.indiana.edu)Indiana University Computer Science DepartmentBloomington, IN 47405CLAUDE W. ANDERSON, III (anderson@cs.rose-hulman.edu)Rose-Hulman Institute of Technology Computer Science DepartmentTerre Haute, Indiana 47803(Received: November, 1992)(Revised: June, 1993)Keywords: Continuations, Control Structure, Control Delimiters, Concurrency, En-gines, SchemeAbstract. Continuations have proven to be useful for implementing a variety of controlstructures, including exception handling facilities and breadth-�rst searching algorithms.However, traditional continuations are not useful in the presence of concurrency, becausethe notion of the rest of the computation represented by a continuation does not in gen-eral make sense. Traditional continuations can also be di�cult to use in nonconcurrentsettings, since their global nature is sometimes problematic. This article presents a newtype of continuation, called a subcontinuation. Just as a traditional continuation repre-sents the rest of a computation from a given point in the computation, a subcontinuationrepresents the rest of a subcomputation from a given point in the subcomputation. Sub-continuations may be used to control tree-structured concurrency by allowing nonlocalexits to arbitrary points in a process tree and allowing the capture of a subtree of acomputation as a composable continuation for later use. In the absence of concurrencythe localized control achievable with subcontinuations makes them more useful than tra-ditional continuations.1. IntroductionA continuation is an abstract entity that represents the rest of the computa-tion from a given point in the computation. A language such as Scheme [4]that provides access to continuations as �rst-class values need not directly�This material is based on work supported by the National Science Foundation undergrant number CCR-88-03432 and by Sandia National Laboratories under contract number06-06211. This article is a revised and extended version of a paper presented at the 1990ACM Conference on Principles and Practice of Parallel Programming.yRobert Hieb died in an automobile accident in April 1992.

454 HIEB, DYBVIG, AND ANDERSONsupport many traditional imperative control structures such as loops, \go-tos," exception handlers, and coroutines. This simpli�es the language andallows the programmer to create new control structures not anticipated bythe language designer.Traditional continuations, however, do not work well in the presence ofconcurrency, since the notion of the rest of the computation represented bya continuation does not in general make sense. If we use traditional contin-uations in the presence of tree-structured concurrent operators, such as aparallel call operator, we must decide whether the \current continuation"includes the rest of the computation back to the root of the process tree orwhether it includes only the rest of the computation of the current (leaf)process. Neither approach is adequate in all cases. Restricting continua-tions to use within the leaves of a process tree makes exception handlingdi�cult, since exceptions may need to propagate all of the way to the rootprocess. On the other hand, if control is not localized to a leaf process,it is di�cult to use nonlocal exits or other continuation-based control fea-tures within the leaf process. Furthermore, neither approach allows us toconsider an intermediate portion of the process tree as a single unit; thatis, we cannot exit from an arbitrary subtree of the process tree, nor can weuse continuations to save the state of an arbitrary subtree. We must havesome way to specify how far back in a process tree a continuation extends.Traditional continuations can also be di�cult to use even in the absenceof concurrency, since their global nature sometimes results in undesirablenonlocal e�ects. For example, it is di�cult to suspend a subcomputationand later restart it in a di�erent continuation and still ensure that controlreturns to the new continuation when the subcomputation completes. Do-ing so typically requires a seemingly redundant continuation capture andan additional continuation invocation to go along with it (and several ad-ditional lines of comments). Again, we would like to have some way tospecify how much of a computation is included in a continuation.In this article we present a new type of continuation, called a subcontin-uation, that allows us to do exactly that. Just as a traditional continuationrepresents the rest of a computation from a given point in the compu-tation, a subcontinuation represents the rest of a subcomputation from agiven point in the subcomputation. Because of this, subcontinuations aremore useful than traditional continuations both in the presence and ab-sence of concurrency. Subcontinuations provide complete control over treesof processes, allowing nonlocal exits to arbitrary points in a process treeand allowing the capture of a subtree of a computation as a composablecontinuation for later use. In the absence of concurrency, subcontinuationso�er the ability to localize the e�ects of control operations.Not all concurrency is tree-based. A good example of the distinction be-

SUBCONTINUATIONS 455tween tree-based and other forms of concurrency can be found in Halstead'sMultilisp [1], which supports both parallel calls (with pcall) and futures(with future). pcall introduces tree-based concurrency, since it evaluatesits arguments in parallel and then applies the value of the �rst argumentto the values of the remaining arguments as in a normal procedure call.On the other hand, future initiates an independent parallel process thatdoes not \return" a value; instead, the value is requested when needed,which may not be until after the parent process has returned from the codethat created the future. It is the notion of returning, with or without val-ues, to the point of creation that distinguishes tree-based concurrency fromother forms of concurrency. Other examples of tree-based concurrency areMcCarthy's amb operator [20] and related constructs such as parallel andand or operators. Although our mechanism does not apply to nontree-structured concurrency, we do discuss how our mechanism can be used inlanguages that allow both forms of concurrency.The remainder of the article is organized as follows. In Section 2, wedescribe traditional continuation control strategies along with a few newercontinuation control mechanisms, and we discuss some of the shortcomingsof these strategies that subcontinuations are designed to solve. In Sections 3and 4, we introduce subcontinuations and show how they can be used tocontrol subcomputations, both concurrent and sequential, in a simple, con-sistent manner. In Section 5, we describe control �lters, which allow usto specify entry and exit handlers similar to those established by CommonLisp's unwind-protect and Scheme's dynamic-wind control structures. InSection 6, we describe an implementation of engines, which provide mul-titasking capability, in terms of subcontinuations and control �lters. InSection 7, we present a simple operational semantics for a call-by-valuevariant of the �-calculus extended with subcontinuations, assignments, andcontrol �lters. In Section 8, we describe how subcontinuations are imple-mented. Finally, in Section 9, we make some concluding remarks.2. BackgroundContinuations are commonly used in denotational semantics as a basis forderiving the meaning of control operations in imperative languages [25].Many programming languages provide control operations such as jumps andexits that modify a program's continuation. Scheme makes continuationsavailable as procedures via the procedure call-with-current-continuation,commonly abbreviated call/cc [4, 24]. The argument to call/cc is a proce-dure of one argument. The application (call/cc p) causes p to be appliedto a procedure representing the current continuation. When a continuationcreated by call/cc is applied to a value, execution of the program continues

456 HIEB, DYBVIG, AND ANDERSONfrom the point at which the call to call/cc occurred, with the value returnedas the result of the call to call/cc. For example,(call/cc (lambda (k) (+ (k 0) 1)))evaluates to 0.Suppose we wish to compute the product of a list of numbers, avoidingany multiplications if one or more elements of the list are zero. We can dothis by traversing the list recursively, performing the multiplications onlyafter the end of the list has been found, and exiting if we �nd zero beforewe �nd the end of the list:(de�ne product0(lambda (ls exit)(cond((null? ls) 1)((= (car ls) 0) (exit 0))(else (� (car ls) (product0 (cdr ls) exit))))))Using call/cc, we can provide product0 with an appropriate continuationthat can be used as the value of exit:(de�ne product(lambda (ls)(call/cc(lambda (exit)(product0 ls exit)))))In the presence of concurrent processing, the simplest uses of continua-tions can present di�culties. Suppose we wish to add the products of twolists:(+ (product list1) (product list2))The fact that product is de�ned using call/cc need not concern the program-mer who uses it. However, in a concurrent system, it is no longer clear whatis meant by a given call/cc or continuation application. Suppose pcall isused to allow the products of the lists to be computed concurrently:

SUBCONTINUATIONS 457(pcall + (product list1) (product list2))In order for this to work properly, the e�ects of obtaining and invoking thecurrent continuation within product must be local to the corresponding armof the pcall expression.But suppose we wish to multiply rather than sum the products of thetwo lists. If the product of one list is zero the combined product will bezero, so the entire calculation may as well be aborted. This can be achievedby passing a suitable escape continuation to product0:(call/cc(lambda (k)(� (product0 list1 k)(product0 list2 k))))However, if we attempt to compute the product of the two lists concurrentlyusing the same approach we �nd that we can no longer restrict the e�ectsof continuations to a single branch of the process tree:(call/cc(lambda (k)(pcall �(product0 list1 k)(product0 list2 k))))The intent here is to abort all branches of the pcall, whereas before wewished to a�ect only a single branch. There is, however, no way to makesuch distinctions with call/cc. Continuation operations must a�ect eitherthe entire process tree or single branches of the process tree; there is noway to designate subtrees.Problems also arise when continuations are used for modeling processabstractions, such as coroutines [13] and engines [8, 6]. In such cases,continuations must be saved so that processes can be resumed. Again, itis di�cult to specify how much of the process tree is to be a�ected, butanother problem also arises. Such applications typically involve a two-partoperation: �rst, the current continuation is captured, and second, anothercontinuation is invoked. Once concurrency is introduced, the delay betweenthe capture of one continuation and the invocation of the other continuationbecomes signi�cant and may result unexpectedly in repeated side e�ects.For example,

458 HIEB, DYBVIG, AND ANDERSON(call/cc (lambda (k) (k e)))may no longer be equivalent to e in all contexts. If it occurs while otherprocesses are executing, side e�ects might occur between the capture of thecontinuation and its subsequent invocation, and these side e�ects might berepeated when the continuation is later invoked. Although this problemcan be alleviated by introducing concurrency control operators to give aprocess exclusive control by suspending other processes, the use of suchoperators is likely to be expensive and error-prone.Some of the problems inherent in abortive continuations can be solvedby using \functional" continuations. Felleisen, et al. [11], introduced anew control operator, F, that is similar to call/cc in that it captures thecurrent continuation and passes it to its argument. However, F di�ersfrom call/cc in two ways. One di�erence is that the captured continuationis compositional rather than abortive. When a functional continuation isinvoked, it does not replace the current continuation; instead, the value ofthe computation originally captured by F is returned to the continuationin which the functional continuation was invoked. The other di�erence isthat, although the continuation created by F does not abort the currentcontinuation, F does. That is, the current continuation is aborted at thesame time it is captured, rather than when another continuation is invoked.Consequently, none of the functionality of call/cc is lost.The abortive nature of F solves one of the concurrency problems. SinceF, rather than the invoked continuation itself, aborts the current continu-ation, we no longer have to protect against changes to the computationalstate during the interval between the capturing of the continuation and theinstallation of a new continuation. Instead, we can require that F, in thepresence of concurrency, halt all computation before it captures the currentcontinuation and passes it to its argument. However, since F always abortsthe complete computation, it still su�ers from some of the same problemsas traditional continuations.In a later paper Felleisen introduced the notion of a \prompt" operator(written \#") to provide �ner control over F [9]. The prompt establishesthe base of a computation for subsequent calls to F. The continuation cap-tured by F extends only to the last prompt, and the current continuation isaborted only to the last prompt. When a value �nally returns to a promptapplication, it simply falls through to the continuation of the prompt appli-cation. Unfortunately, prompts replace the problem of capturing too muchof a continuation with the problem of capturing too little of a continuation.Since the continuation captured and aborted by F extends only to the lastprompt, we have control only over the subtree with the last prompt as itsbase. Achieving control over larger portions of a process tree requires ei-

SUBCONTINUATIONS 459ther complete knowledge of all prompts in the process tree or complicatedprotocols for recognizing when a control operation arrives at the desiredpoint in the process tree.3. SubcontinuationsWhat we lack is a mechanism that allows the program to request the cur-rent continuation back to any given point. Prompts allow us to requestonly the continuation back to a single point, the one established by thelast prompt, since all other prompts are \shadowed." It is as if we wereprogramming in a block-structured language that restricts us to one vari-able name. In order to allow a program �ner control over continuations, weintroduce the notion of a subcomputation. Abstractly, a subcomputationrepresents a partial computation that can be controlled independently ofthe computation as a whole. A subcontinuation is simply the continuationof that subcomputation, i.e., an abstract entity representing the rest of thesubcomputation from a given point in the subcomputation.The operator spawn is used to establish the root of a subcomputation.When applied to a procedural argument, spawn invokes (spawns) the pro-cedure as a subcomputation. spawn passes the procedure one argument, asubcomputation controller. If the controller is never used, the spawn has noe�ect other than to evaluate the body of the procedure. For example, thefollowing evaluates to #t:(spawn (lambda (c) #t))If the controller is invoked, it captures and aborts the current continuationback to and including the root established by the spawn invocation. Inthis manner, the spawn invocation and subsequent controller invocationdelimit the subcontinuation. If the controller is invoked but the capturedcontinuation is not, the only e�ect is to abort the part of the continuationbetween the calls to spawn and the controller. For example:(cons 1 (spawn (lambda (c)(cons 2 (c (lambda (k)(cons 3 '())))))))evaluates to the list (1 3), since the cons of 2 is aborted. The cons of 1remains, since it is outside of the call to spawn and therefore not a part ofthe subcomputation controlled by c.Invocation of a subcontinuation does not replace (abort) the current con-tinuation; instead, the subcontinuation is composed with the current con-tinuation, as with F.

460 HIEB, DYBVIG, AND ANDERSONConsider the following similar expression, which evaluates to the list(1 3 2):(cons 1 (spawn (lambda (c)(cons 2 (c (lambda (k)(cons 3 (k '()))))))))When the controller c is invoked, the current continuation includes the consof 1, which is outside of the spawn, and the cons of 2, which is inside ofthe spawn. The continuation k, therefore, represents the cons of 2, and thismuch of the current continuation is aborted. Thus, the current continuationat the cons of 3 is just the cons of 1. When k is invoked, the currentcontinuation includes the cons of 1 and the cons of 3. The value of thecall to k is the list (2), which is returned to the cons of 3, whose valueis returned, �nally, to the cons of 1. As above, the cons of 1 is neitherincluded in the continuation k nor aborted by the controller, since it is notwithin the subcomputation.The root of a subcontinuation is removed either by a normal return fromthe subcomputation or by the application of the corresponding controller.As implied above, application of a controller is valid only when the corre-sponding root is in the continuation of the application. Once the root hasbeen removed, further invocations of the controller are invalid. However,since a subcontinuation includes, at its base, the root of the suspendedsubcomputation, the controller is again valid when the continuation is re-instated. For instance, in the following example the controller is returnedas the result of the call to spawn and then applied:((spawn (lambda (c) c))(lambda (k) k))Since the controller's root no longer exists, its application is invalid. Thefollowing example is also invalid, but for a di�erent reason:(spawn (lambda (c)(c (lambda (k)(c (lambda (k) k))))))Here the controller is applied twice. The �rst application (in the secondline) is valid. The second application (in the third line) is not valid, sincethe controller's root has been removed from the current continuation bythe �rst application. On the other hand, in the following example bothcontroller applications are valid, since the subcontinuation, including itsroot, is reinstated before the outermost application occurs:

SUBCONTINUATIONS 461(spawn (lambda (c)(c (c (lambda (k)(k (lambda (k) k)))))))The result of this expression is a procedure that returns its argument, sinceafter the second call to the controller nothing remains to be done in thecontinuation except to return. Several more interesting and useful examplesare given in the following section.In the presence of concurrency, the e�ect of a control operation mustbe de�ned in terms of the branches of a process tree. By \process tree,"we mean simply a tree-structured continuation record. Since traditionalcontinuation control operators are derived from the notion of representingcontinuations as stacks, it is not surprising that such operators are inade-quate for controlling concurrency. The spawn operator, on the other hand,is designed speci�cally for the control of tree-structured concurrency.Each spawn application establishes the root of a new subtree, logicallyrepresenting a subcomputation, and each application of a concurrent oper-ator adds two or more branches to the tree. The application of a controlleris valid only if the application occurs in a subtree of the controller's root.Similarly, the continuation created (and aborted) by a controller consistsof the entire subtree of its root.Since subcontinuations can be applied more than once, more than oneinstance of the same root can occur in a process tree. It is even possiblefor the subcomputation resumed by a subcontinuation to invoke the sub-continuation itself. (This is true even in the absence of concurrency.) Con-sequently, we add one more rule: the continuation captured (and aborted)by a controller consists of the smallest complete subtree containing boththe controller's root and the controller's application.One can think of spawn as a version of # that creates a new F each timeit is used; the new F recognizes only the root established by this use of #,and the new root is recognized only by the new F. If we had an inde�nitesupply of matched# and F operators, we could de�ne spawn approximatelyas (�p:#i(pFi)). However, this de�nition does not accurately re
ect whenapplication of the controller Fi is valid. F captures a continuation only upto a # application; the # application itself is left as part of the contin-uation of the F application. If, instead, F captured a continuation up toand including a # application, the approximate de�nition would be moreaccurate.

462 HIEB, DYBVIG, AND ANDERSON4. ExamplesUsing spawn, nonlocal exits can be established that do not su�er fromdefects inherent in the use of call/cc or # and F. Unlike call/cc, spawncan be constrained easily to ensure that the continuation used to exit froma computation cannot also be used to resume the parent computation.Furthermore, since spawn does not need to capture the continuation of itsinvocation, establishing an exit point with spawn does not a�ect concurrentprocesses. Also, there is no restriction to a single level of exits as there iswith # and F. The following example shows how spawn can be used toprovide a general-purpose nonlocal exit capability:(de�ne spawn/exit(lambda (proc)(spawn (lambda (c)(proc (lambda (exit-value)(c (lambda (p)exit-value))))))))Here proc is spawned as a subcomputation that is not given complete accessto its controller. Instead, it is given a modi�ed controller that it can useonly to abort its computation and return a value. The modi�ed controllerinvokes the original controller with a procedure that throws away the sub-continuation and returns exit-value as the value of the spawned process.Using spawn/exit, a computation may exit from any level, since spawn op-erations may be nested arbitrarily. Furthermore, once a computation hasreturned or has been suspended, use of the exit procedure is invalid.We can use spawn/exit with the product0 procedure de�ned in Section 2to add the concurrently-computed products of two lists:(pcall +(spawn/exit (lambda (exit)(product0 list1 exit)))(spawn/exit (lambda (exit)(product0 list2 exit))))By placing the spawn/exit outside of the pcall, we can also use it to com-pute the product of the concurrently-computed products of two lists, abort-ing both intermediate computations if a zero element is found in either list:

SUBCONTINUATIONS 463(spawn/exit(lambda (exit)(pcall �(product0 list1 exit)(product0 list2 exit))))By the placement of spawn, or in this case spawn/exit, we specify exactlyhow much of the computation is aborted, avoiding the problems with tra-ditional continuations described in Section 2.As was the case with the inclusion of call/cc in Scheme, including spawnin a concurrent programming language reduces the number of control op-erators that must be supplied as primitives. We can start with a simpleforking operator and use it with spawn to create sophisticated concurrencyoperators. For example, it is straightforward to derive parallel-or usingspawn and pcall. The semantics of parallel-or resemble the semantics ofthe regular Scheme or. The distinction is that or evaluates its argumentsfrom left to right, returning the �rst nonfalse value without evaluating therest of its arguments, whereas parallel-or evaluates its arguments concur-rently, returning the value of the �rst argument to complete with a nonfalsevalue (and abandoning evaluation of any remaining arguments).First we de�ne �rst-true using pcall and the spawn/exit procedure de-�ned above. The �rst-true procedure invokes two zero-arity proceduresconcurrently and returns either the value of the �rst procedure to returnwith a true value, or false if both procedures return false.(de�ne �rst-true(lambda (proc1 proc2)(spawn/exit(lambda (return)(let ((return-if-true (lambda (x) (if x (return x)))))(pcall (lambda (x1 x2) #f)(return-if-true (proc1))(return-if-true (proc2))))))))�rst-true spawns a subcomputation that uses pcall to invoke the proceduresproc1 and proc2 concurrently. If either procedure returns a true value,the controller is used to abort the subcomputation and return that value.Otherwise, if both procedures return, their values are discarded and #f isreturned. It is now straightforward to de�ne parallel-or as a syntacticextension:

464 HIEB, DYBVIG, AND ANDERSON(de�ne-syntax parallel-or(syntax-rules ()((e1 e2)(�rst-true (lambda () e1) (lambda () e2)))))Because the examples above use the controller for nonlocal exits, thesubcontinuation created by the controller has not been used. The nextexample shows how subcontinuations can be used to allow processes to besuspended and resumed:(de�ne parallel-search(lambda (tree predicate?)(spawn(lambda (c)(letrec ((search(lambda (tree)(if (not (empty? tree))(pcall(lambda (x y z) #f)(if (predicate? (node tree))(c (lambda (k)(list (node tree)(lambda () (k #f))))))(search (left tree))(search (right tree)))))))(search tree)#f)))))The parallel-search procedure takes a tree and a predicate as arguments.Before initiating the search it uses spawn to set up a controller that it canuse to suspend the search whenever a suitable node is found. pcall is usedto allow the branches of the tree to be searched concurrently. Since thereal results are returned through the controller, the procedure applied bypcall ignores the values of its arguments. When predicate? is satis�ed for anode, the controller is invoked to suspend the search and return a tentativeanswer along with a procedure that can be used to resume the search. Falseis returned when there are no more nodes in the tree.The following procedure uses parallel-search to return (in some order) allof the nodes of a tree that satisfy a given predicate:

SUBCONTINUATIONS 465(de�ne �nd-all(lambda (tree predicate?)(letrec ((next(lambda (result)(if result(cons (car result)(next ((cadr result))))'()))))(next (parallel-search tree predicate?)))))Since we have argued that spawn is more useful than call/cc even in theabsence of concurrency, it is natural to wonder whether spawn can be usedto implement call/cc. It can, but in order to do so, we need to have someway to wrap the evaluation of all top-level Scheme expressions with a callto spawn to establish the root of the entire computation. The followingassumes that we can do so by rede�ning the top-level read-eval-print loopby altering the value of the variable top-level-repl:(let ((old-repl top-level-repl))(set! top-level-repl(lambda ()(spawn (lambda (c)(set! call/cc (controller->call/cc c))(old-repl))))))(de�ne controller->call/cc(lambda (c)(lambda (p)((c (lambda (k)(k (lambda ()(p (lambda (v)(c (lambda (kk)(k (lambda () v))))))))))))))Most of the complexity in this code stems from the fact that call/cc doesnot abort the current continuation, whereas spawn does, and from the factthat the continuations created by call/cc abort the current continuation,whereas those created by spawn do not. The call to c on the fourth lineof the de�nition of controller->call/cc captures and aborts the continua-tion; the call to k on the following line puts it back, then calls p (thecall/cc argument) with an aborting version of the continuation. The abort-ing version of the continuation uses c to abort the current continuation,

466 HIEB, DYBVIG, AND ANDERSONthen reinstates the saved continuation k. The seemingly redundant addi-tional zero-arity lambda expressions and the corresponding invocation online four are present to ensure that k is invoked to restore the root of thecontroller before any attempt is made to invoke the controller.5. Control FiltersThe Scheme procedure dynamic-wind [15, 6] may be used to perform set-up and clean-up actions on entry to or exit from a given computation,even if exit or entry occurs as the result of a continuation invocation. Thisprocedure accepts three arguments, each of which is a zero-arity procedure:entry, body, and exit. In the absence of continuation operations, the e�ectof dynamic-wind is to invoke �rst entry, then body, then exit, returning thevalue returned by body. The entry and exit procedures are invoked only forthe side e�ects they perform, since the values they return are ignored.When a continuation is used to exit from the computation performed bybody, exit is invoked; when a continuation created during the evaluation ofbody is used to reenter the computation, entry is invoked. Thus, wheneverbody is active, entry has been invoked most recently, and whenever body isnot active, exit has been invoked most recently. Thus, entry and exit providea \barrier" between the computation performed by body and computationsperformed outside body. This barrier may be used to set up state variablesor objects external to the Scheme system that are needed only within body.Common Lisp [2] provides a similar form, unwind-protect, which allowsan exit handler to be established within its body. There is no need for anentry handler since Common Lisp continuations are not �rst-class and canbe used only for nonlocal exits.Control �lters provide similar capability in a system with subcontinu-ations, although with more generality since they operate at a somewhatlower level. Control �lters are used to \�lter" control operations. A control�lter can a�ect controller invocation, continuation invocation, or both.A control �lter is established by the procedure control-�lter, which takestakes two arguments. The �rst argument must be a procedure of one argu-ment, representing the �lter as described below. The second argumentis a procedure of no arguments representing the body. The procedurecontrol-�lter arranges to invoke the body in a special continuation thatcontains the �lter.If the body procedure returns a value, the value is returned to the con-tinuation of the call to control-�lter and the �lter is discarded. If, however,within the body an attempt is made to invoke a controller whose subcon-tinuation contains the �lter, the �lter will be invoked in the process of

SUBCONTINUATIONS 467aborting and saving the subcontinuation. The �lter receives as an argu-ment a procedure that determines the actual continuation used to resumethe suspended subcomputation. The �lter must either return this argumentor return a new procedure de�ned in terms of the argument. If no other�lters appear within the subcomputation \closer" to the controller call, theargument received by the �lter is the identity procedure. Otherwise, it mayhave been augmented by other �lters closer to the controller call.The control �lter can return its argument after performing side e�ects torestore the program state. This is a common programming paradigm, whichwe formalize by de�ning the exit �lter on-exit in terms of control-�lter:(de�ne on-exit(lambda (exit body)(control-�lter(lambda (p) (exit) p)body)))The procedure on-exit expects two zero-arity procedures as arguments. The�rst procedure is invoked only if there is an exit during the invocation ofthe second procedure.This is similar to unwind-protect, except that unwind-protect also invokesthe exit handler upon normal exit from the body. It is simple to build ananalogous form using on-exit:(de�ne spawn-unwind-protect(lambda (exit body)(on-exitexit(lambda ()(let ((v (body)))(exit)v)))))It is also common to want to control reentry to a subcomputation. Thiscan also be accomplished using control �lters, although the mechanism isslightly more complex since the �lter's return value must be modi�ed toensure that the entry procedure is called before the continuation is invoked.To illustrate the technique, we de�ne an on-entry procedure that worksmuch like on-exit, except that the �rst argument is a zero-arity procedureto be invoked on reentry into the body instead of on abnormal exit fromthe body:

468 HIEB, DYBVIG, AND ANDERSON(de�ne on-entry(lambda (entry body)(control-�lter(lambda (p)(lambda (k)(p (lambda (x)(entry)(k x)))))body)))In place of the argument p, the return value is a shell wrapped around pthat ensures that the entry procedure is invoked before the continuation isreinstated.We are now ready to de�ne spawn-dynamic-wind, which provides func-tionality similar to that of the traditional dynamic-wind operator. Likedynamic-wind, spawn-dynamic-wind accepts three zero-arity procedures:entry, body, and exit. In the simplest case, entry is invoked, then body,then exit. In addition, when a controller is used to create a subcontin-uation that includes a spawn-dynamic-wind activation, the correspondingexit procedure is invoked, and when the subcontinuation containing thespawn-dynamic-wind activation is subsequently reinstated, the entry pro-cedure is invoked.The de�nition of spawn-dynamic-wind in terms of on-entry and on-exitis straightforward:(de�ne spawn-dynamic-wind(lambda (entry body exit)(entry)(let ((v (on-entry entry (on-exit exit body))))(exit)v)))Since on-entry and on-exit do not themselves invoke the entry and exitprocedures, this is done explicitly. The let expression is used to capturethe value returned by body through the on-exit and on-entry calls, so thatthis value can be returned from spawn-dynamic-wind after the call to exit.6. EnginesThis section demonstrates how control �lters and subcontinuations can beused to implement engines. Engines provide the means for a computation

SUBCONTINUATIONS 469to be run for a limited period of time, interrupted if it does not completein that time, and later restarted from the point of interruption [14].The procedure make-engine creates an engine from a thunk, a procedureof no arguments specifying the computation to be performed by the engine.The computation is run for a limited amount of time by providing theengine with a nonnegative integer representing the number of ticks forwhich the engine is permitted to run. A tick represents a small amount ofcomputation, but is not constrained to be any particular unit. The amountof computation associated with a tick need not be consistent from one tickto the next, although on average, a larger number of ticks results in a largeramount of computation.In addition to the ticks, an engine must be provided with complete andexpire continuations, represented as procedures. The complete continuationmust be a procedure of two arguments; it is invoked with the computation'sresult and the count of remaining ticks if the computation completes be-fore the ticks expire. The expire continuation must be a procedure of onearguments; it is invoked with a new engine capable of continuing the com-putation if the ticks expire before the computation completes.Engines may be used to implement multitasking. The following de�nes aversion of McCarthy's amb operator [20] that multitasks two computationsand returns the value of the �rst to complete:(de�ne amb(lambda (t0 t1)(let loop ((e0 (make-engine t0)) (e1 (make-engine t1)))(e0 1(lambda (value ticks) value)(lambda (new-e0) (loop e1 new-e0))))))In an earlier article, we showed that engines may be implemented usingtraditional continuations[8]. The article cites several problems inherent inthe interaction between engines and traditional continuations. These prob-lems are exactly those present in the interaction between tree-structuredconcurrency and traditional continuations. Subcontinuations solve theseproblems and simplify the engine implementation, especially the imple-mentation of nestable engines.To implement engines in terms of subcontinuations, we assume the ex-istence of an independent timer mechanism. New timers are created usingmake-timer, which takes no arguments and returns a new timer. A timeris started by invoking it with two arguments: ticks and handler. The han-dler is a thunk to be invoked after ticks units of computation have beenperformed. A timer is stopped by invoking it without arguments; in this

470 HIEB, DYBVIG, AND ANDERSONcase, it returns the number of ticks remaining. Two timers running si-multaneously are independent in the sense that starting or stopping onedoes not a�ect the other, i.e., the other remains stopped or continues torun. Independent timers may be implemented in terms of a single timerprovided by the host operating environment. It is also straightforward togeneralize the single-timer mechanism described in [8], which relies upona syntactic extension for lambda that causes one tick to be consumed foreach procedure call.The following code implements nestable engines:(de�ne make-engine(lambda (thunk)(let ((timer (make-timer)) (ticks 0))(spawn(lambda (c)(letrec ((new-engine(lambda (k)(lambda (t complete expire)(set! ticks t)((k #f) complete expire))))(handler(lambda ()(c (lambda (k)(lambda (complete expire)(expire (new-engine k))))))))(c new-engine)(spawn-dynamic-wind(lambda ()(timer ticks handler))(lambda ()(let ((value (thunk)))(lambda (complete expire)(complete value ticks))))(lambda ()(set! ticks (timer))))))))))Each call to make-engine creates a new timer, initializes a variable to holdthe count of ticks remaining while the engine is idle, and spawns a newsubcomputation. The controller for the subcomputation is immediatelyinvoked to return from make-engine with a new engine. When this engineis invoked, ticks is set to the value of the �rst argument to the engine,and the saved continuation is used to continue from the point where thecontroller was invoked. spawn-dynamic-wind is used to start and stop the

SUBCONTINUATIONS 471timer whenever control enters or leaves the engine. The timer handleremploys the controller to abort the computation and passes a new enginecreated from the resulting continuation to the expire procedure. If thecomputation completes before the ticks expire, the value and remainingticks are passed to the complete procedure.Care is taken to invoke the complete and expire procedures in the propercontinuation, i.e., the continuation of the call to the engine. Otherwise, tailrecursion within the complete and expire procedures would not be treatedproperly. This is done by returning to that continuation to invoke thecomplete or expire argument. Furthermore, the value of ticks for the call tocomplete is obtained within the continuation of the call to the engine ratherthan from within the engine itself since only then will the timer be disabledand the ticks variable set appropriately, by the \out" handler establishedby the call to spawn-dynamic-wind.An engine family consists of an engine created by make-engine and anyengines created as a result of invoking an engine in the same family withinsu�cient ticks for the computation to complete. In the implementationabove, each engine shares a controller, timer, and ticks variable with otherengines in the same family. As a result, only one engine in an engine familycan be active at a time, i.e., an engine cannot invoke directly or indirectlyanother engine in the same family. The need to nest engines in the samefamily arises rarely, if ever, in practice, so the added complexity requiredto relax this restriction does not seem warranted.The style of nesting implemented by the code above is termed fair nest-ing [14]. With fair nesting, each tick charged to an engine is charged aswell to each of its ancestors. Fair nesting results from leaving the timer ofa parent engine running while the timer of a child engine is running. Othernesting styles can be implemented by altering the engine implementationor the timer mechanism.7. Operational SemanticsTo clarify the semantics of spawn we provide an operational semantics fora call-by-value variant of the �-calculus extended with assignments andcontrol operators. Although such a language is unrealistically simple, asemantic speci�cation for it can be extended naturally to more completelanguages containing spawn and control-�lter. We develop the semantics bystarting with a core language consisting of a set of expressions (e) de�nedover sets of constants (c) and variables (x). Expressions are constants,variable references, procedures, applications or assignments:e! c j x j �x : e j e e j x := e

472 HIEB, DYBVIG, AND ANDERSONSince we wish to de�ne a call-by-value variant of the �-calculus we mustdistinguish those expressions that denote values in the language; namely,constants and procedures: v ! c j �x : eWe de�ne a set of global rewrite rules over expression{store pairs. Eval-uation proceeds by rewriting an expression{store pair until a value is ob-tained. The rewrite rules are expressed in terms of evaluation contexts [10].A context is an expression containing a \hole," written . C[e] denotes theexpression formed by �lling the context C with the expression e. Evaluationcontexts in the core language are de�ned as:C ! j C e j v C j x := CEvaluation contexts serve to specify when a term may be evaluated. Herewe have speci�ed left-to-right evaluation of applications, because the argu-ment is in an evaluation context only when the procedure has been reducedto a value.To allow side e�ects, we include a store �, which maps variables to values.We avoid introducing a distinct set of locations by assuming �-conversionwhen necessary to preserve hygiene. We also assume the existence of somemap: � : (constants � values)! valuesto evaluate primitive function applications. Following are the rules forevaluating the core language:hC[x] ; �i) hC[�x] ; �i (1)hC[(�x : e)v] ; �i) hC[e] ; �[x v]i; x =2 dom(�) (2)hC[x := v] ; �i) hC[v] ; �[x v]i; x 2 dom(�) (3)hC[c v] ; �i) hC[�(c; v)] ; �i (4)In conjunction with the de�nition of an evaluation context, these rulesde�ne a left-to-right, applicative order semantics. The distinction betweenRule 2 and Rule 3 is that in Rule 2 the store is being extended with afresh variable (consequently, �-substitution may be necessary), whereasin Rule 3, the variable is assumed to already exist in the store and theassignment merely maps it to a new value.We now introduce a set of labels and a set of operations on labels andexpressions that allow us to de�ne the semantics of subcontinuations. Todescribe these operations, we add to our language labeled expressions andcontrol expressions:e! c j x j �x : e j e e j x := e j l : e j e " l

SUBCONTINUATIONS 473We also extend the de�nition of evaluation contexts to include the newexpressions: C ! j C e j v C j x := C j l : C j C " lBased on these extensions, we add two more rewrite rules:hC[l : v] ; �i) hC[v] ; �i (5)hC1[l : C2[v " l]] ; �i) hC1[v (�x : l : C2[x])] ; �i (6)where l does not label C2Rule 5 states that a label is removed once the labeled expression has beenevaluated. Rule 6 shows how a subcontinuation is created. A controlexpression is reducible only if it occurs within a labeled expression with amatching label. If it does, the body of the control expression is appliedto an abstraction created from the context of the control expression up toand including the matching label. The application itself occurs in a contextthat does not include the abstracted context. Since a control operation canoccur in a context in which there is more than one matching label, the rulespeci�es that the innermost label determines the applicable context. Wesay that l labels a context C if C = C1[l : C2] for some contexts C1 and C2.Using these label operations, we can de�ne the action of the spawn op-erator: hC[spawn v] ; �i) hC[l : v �x : x " l] ; �i (7)where l is a fresh labelA spawn operation installs a new label and invokes its argument with acontroller that can be used to capture a continuation up to the point atwhich the subcomputation was spawned. The new label l must be distinctfrom all other labels in C, v, and � to prevent inadvertent \label capturing."We can now add control-�lter operations to our semantics. Once againwe must extend the sets of expressions and evaluation contexts allowed inour language:e! c j x j �x : e j e e j x := e j l : e j e " l j cf e eand C ! j C e j v C j x := C j l : C j C " l j cf C e j cf v CThe rules for rewriting control-�lter operations are rather complex:hC[cf v1 v2] ; �i) hC[v2] ; �i (8)hC1[cf v1 C2[v2 " l]] ; �i) (9)hC1[((v1 �xk : v2 �xv : xk �x� : cf v1 C2[xv]) " l) �] ; �iwhere l does not label C2

474 HIEB, DYBVIG, AND ANDERSONRule 8 is straightforward. It returns the value of the body (v2) as the resultof the control-�lter operation. Note that, as indicated by the extendedevaluation contexts, the control �lter is actually evaluated before the body.It is invoked, however, only if the evaluation of the body results in a controloperation that attempts to capture a context that includes the control-�lteroperation, as shown in Rule 9. The control �lter v1 is passed a procedureto be used to reinstate the continuation. The dummy parameter � is usedto force the evaluation of the body of the corresponding abstraction, whichmust be delayed until the subcomputation is resumed.8. ImplementationContinuations are usually represented as a stack of procedure activationrecords. In the presence of continuations, this stack is often implementedas a linked list to facilitate the capture and invocation of continuations asobjects. It is also possible to employ a true stack by copying continuationsthat have been captured before they are modi�ed [7, 5, 3]. With eitherimplementation, it is possible to place a constant bound on the amount ofwork that must be performed by the continuation operations regardless ofthe size of the current continuation[17].Subcontinuations can be implemented in a similar manner with littleadditional overhead. Instead of a single stack of activation records, thesystem maintains a stack of labeled stacks1. A call to spawn results in theaddition of an empty stack to the stack of labeled stacks; this new stackis assigned a unique label associated with the controller created by thecall to spawn. This label de�nes the root of the subcomputation. When acontroller is invoked, all stacks down to and including the stack with theassociated label are removed from the stack of labeled stacks and packagedinto a subcontinuation. It is an error if no stack with the appropriate labelexists.When a subcontinuation is invoked, its saved stacks are pushed onto thecurrent stack of labeled stacks. Because the base of the saved stacks is thestack with the label associated with the controller that created the subcon-tinuation, invocation of the controller is again valid. As mentioned earlier,it is possible to invoke a subcontinuation from within its own subcompu-tation, resulting in more than one occurrence of the associated label. Inthis case, the controller removes only the stacks down to and including thetopmost stack with the associated label.A concurrent implementation of subcontinuations can be accomplished1For e�ciency, the stack of labeled stacks should be represented as a stack of label{address pairs, where each address is a pointer to a stack segment stored elsewhere.

SUBCONTINUATIONS 475by using a tree instead of a stack of labeled stacks. A call to spawn addsan empty labeled stack to the branch of the tree corresponding to wherethe call occurs. When the controller is subsequently invoked, the subtreeof stacks rooted at the corresponding labeled stack is pruned from the treeand packaged into a continuation. This operation may require cooperationfrom other processors to suspend concurrently executing branches of thesubtree. Some mechanism for mutual exclusion is needed to prevent morethan one processor from attempting to remove the same subtree at thesame time. When a continuation is invoked, the saved subtree is graftedonto the current tree of stacks.Because subcontinuations are represented as stacks or trees of stacks, op-erations involving controllers and subcontinuations are linear with respectto the number of control points (labels and forks) within the subcontinua-tion rather than with respect to the total number of frames or words withinthe subcontinuation.Control �lters are implemented straightforwardly using a mechanism sim-ilar to that described by Haynes and Friedman for dynamic-wind [15]. Alist of currently active �lters is maintained by the system, and each timea controller is created or reestablished, a pointer to the topmost elementof the list of �lters is saved with the controller. When a controller is in-voked, the elements of the current list above the saved pointer are invoked,topmost element �rst. Recall that �lters receive and return a procedurethat may be used to modify the subcontinuation representing the rest ofthe subcomputation. The �rst �lter is passed the identity procedure; eachsubsequent �lter is passed the procedure returned by the preceding �lter.The resulting procedure is passed a representation of the subcontinuation,and the resulting, possibly modi�ed, continuation is used to resume thesubcomputation after its root is reestablished. The sublist of �lters abovethe controller's saved pointer is also saved, so that these �lters can bereestablished when the root is reestablished.9. ConclusionsThis article has presented subcontinuations, which are based upon a no-tion of subcomputations, and has demonstrated their usefulness in bothconcurrent and nonconcurrent settings.We have limited our discussions of concurrency to tree-structured con-currency, where concurrent subcomputations eventually return (if they ter-minate) to the parent process that initiates them. The spawn operatorprovides a program with precise control over the tree-structured continu-ations that result from programming with concurrent operators similar topcall. Using spawn, a program is able to achieve nonlocal exits without

476 HIEB, DYBVIG, AND ANDERSONinterfering unnecessarily with concurrent computations, and is also able tosuspend and resume selected subtrees of the program's continuation. Someprogramming languages also provide operations to create independent par-allel processes, i.e., processes that do not return to a parent process. Sinceboth tree-structured and other forms of concurrency may coexist in thesame language, it is reasonable to de�ne the meaning of spawn operationsin such situations. One possibility is to treat such combinations of de-pendent and independent processes as a forest of trees, in which controloperations a�ect only the tree in which they occur.Subcontinuations were �rst introduced by the authors in an earlier paper,which referred to subcontinuations as process continuations [16]. A simi-lar mechanism, developed independently, was described in a later paper byQueinnec and Serpette [22]. Our work is based on work by Felleisen, etal. [11, 9, 12]. Johnson and Duggan [18] have developed a notion of partialcontinuations that also extends traditional continuation control in a similarmanner. In a related work, Sitaram and Felleisen [23] introduce techniquesto constrain the e�ects of prompts and functional continuations. They doso, however, by developing complicated protocols on top of primitive con-trol structures, and they do not address concurrency issues. Miller [21] doesaddress the issue of using continuations in a parallel Scheme implementa-tion. In his implementation, concurrency is based on placeholders, whichare similar to Halstead's futures, and thus he does not treat the problemsinherent in using continuations to control tree-based concurrency. Katz andWeise [19] also address the relationship between continuations and futures,but do not address control of tree-based concurrency.Acknowledgements: The authors would like to thank the anonymous re-viewers for their comments on an earlier version of this article.References1. Halstead, Jr., Robert H. Multilisp: A language for concurrent symboliccomputation. ACM Transactions on Programming Languages and Sys-tems, 7, 4 (October 1985) 501{538.2. Steele Jr., Guy L. Common Lisp, the Language. Digital Press, secondedition (1990).3. Bartley, David H. and Jensen, John C. The implementation of PCScheme. In Proceedings of the 1986 ACM Conference on Lisp andFunctional Programming (August 1986) 86{93.4. Clinger, William, Rees, Jonathan A., et al. The revised4 report on the

SUBCONTINUATIONS 477algorithmic language Scheme. LISP Pointers, 4, 3 (1991).5. Clinger, William D. and Ost, Eric M. Implementation strategies forcontinuations. In Proceedings of the 1988 ACM Conference on Lispand Functional Programming (July 1988) 124{131.6. Dybvig, R. Kent. The Scheme Programming Language. Prentice Hall(1987).7. Dybvig, R. Kent. Three Implementation Models for Scheme. PhDthesis, University of North Carolina, Chapel Hill (April 1987).8. Dybvig, R. Kent and Hieb, Robert. Engines from continuations. Com-puter Languages, 14, 2 (1989) 109{123.9. Felleisen, Matthias. The theory and practice of �rst-class prompts.In Conference Record of the Fifteenth Annual ACM Symposium onPrinciples of Programming Languages (January 1988) 180{190.10. Felleisen, Matthias and Hieb, Robert. The revised report on the syn-tactic theories of sequential control and state. Theoretical ComputerScience, 103 (1992) 235{271.11. Felleisen, Matthias, Friedman, Daniel P., Duba, Bruce, and Merrill,John. Beyond Continuations. Technical Report 216, Indiana UniversityComputer Science Department (1987).12. Felleisen, Matthias, Wand, Mitchell, Friedman, Daniel P., and Duba,Bruce F. Abstract continuations: A mathematical semantics for han-dling full functional jumps. In Proceedings of the 1988 ACM Confer-ence on Lisp and Functional Programming (July 1988) 52{62.13. Friedman, Daniel P., Haynes, Christopher T., and Wand, Mitchell. Ob-taining coroutines with continuations. Computer Languages, 11, 3/4(1986) 143{153.14. Haynes, Christopher T. and Friedman, Daniel P. Abstracting timedpreemption with engines. Computer Languages, 12, 2 (1987) 109{121.15. Haynes, Christopher T. and Friedman, Daniel P. Embedding contin-uations in procedural objects. ACM Transactions on ProgrammingLanguages and Systems, 9, 4 (1987) 582{598.16. Hieb, Robert and Dybvig, R. Kent. Continuations and concurrency. InProceedings of the Second ACM SIGPLAN Symposium on Principlesand Practice of Parallel Programming (March 1990) 128{136.

478 HIEB, DYBVIG, AND ANDERSON17. Hieb, Robert, Dybvig, R. Kent, and Bruggeman, Carl. Representingcontrol in the presence of �rst-class continuations. In Proceedings ofthe SIGPLAN '90 Conference on Programming Language Design andImplementation (June 1990) 66{77.18. Johnson, Gregory F. and Duggan, Dominic. Stores and partial con-tinuations as �rst-class objects in a language and its environment. InConference Record of the Fifteenth Annual ACM Symposium on Prin-ciples of Programming Languages (January 1988) 158{168.19. Katz, Morry and Weise, Daniel. Continuing into the future: on theinteraction of futures and �rst-class continuations. In Proceedings ofthe 1990 ACM Conference on Lisp and Functional Programming (June1990) 176{184.20. McCarthy, John. A basis for a mathematical theory of computation. InBra�ort, P. and Hirschberg, D., editors, Computer Programming andFormal Systems, North Holland (1963) 33{70.21. Miller, James S. MultiScheme: A Parallel Processing System Basedon MIT Scheme. PhD thesis, Massachusetts Institute of Technology(September 1987).22. Queinnec, Christian and Serpette, Bernard. A dynamic extent con-trol operator for partial continuations. In Conference Record of theEighteenth Annual ACM Symposium on Principles of ProgrammingLanguages (January 1991) 174{184.23. Sitaram, Dorai and Felleisen, Matthias. Control delimiters and theirhierarchies. Lisp and Symbolic Computation, 3, 1 (January 1990) 67{99.24. Springer, George and Friedman, Daniel P. Scheme and the Art ofComputer Programming. MIT Press and McGraw-Hill (1989).25. Stoy, Joseph E. Denotational Semantics: The Scott-Strachey Approachto Programming Language Theory. MIT Press (1977).

