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be objecti�ed and thus be treated as objects. There is no distinction made between entities andattributes (as in the ER Approach), only between so-called lexical and non-lexical objects. Finally,in NIAM many types of constraints can be expressed graphically.Up to now there does not exist a formal speci�cation of object-role data models. Some attemptshave been made (e.g. [5], [19], [22]), however they are not complete. This lack of formality results inseveral problems. Firstly, ambiguity may arise. Di�erent analysts may have di�erent ideas aboutthe meaning of a certain model, thus increasing the possibility of an erroneous design. Secondly,veri�cation of models is hardly possible. Current CASE-tools that support object-role data models,such as RIDL* ([23]), SDW ([16]), ADDS ([20]), ProNIAM ([4]), can only detect some syntactical
aws. They are not capable of detecting all semantical inconsistencies in a model speci�ed by theinformation analyst. Thirdly, properties of object-role data modelling techniques or of the modelsexpressed in such a technique, can not be proven. Comparison with other techniques or datamodels is impossible on a formal basis. For a more detailed discussion on these issues, see [11].The organisation of this paper is as follows. First we introduce the Predicator Model. ThePredicator Model is used to describe an information structure. The meaning of an informationstructure is described by the concept of instantiation (or population). We make a distinctionbetween the structure and its instantiations: instantiations are not part of the information struc-ture. Next we introduce, in the style of relational algebra, a primitive language to reason aboutthe Predicator Model. Relational expressions describe relations that can be derived from a giveninformation structure. As a consequence, a relational expression describes the type of the derivedrelation, and gives a rule how its instantiation (population) can be derived from a given pop-ulation of the information structure. An advantage of relational algebra is that it is su�cientlyelementary to allow the description of more sophisticated languages (for example RIDL and SQL).Relational expressions (derived fact types) form the basis for describing the semantics of staticconstraints. We introduce a powerful set of constraint types. The so-called total role constraintand the uniqueness constraint turn out to be rather complex, when applied sophisticatedly (forexample uniqueness constraint in combination with objecti�cation). We introduce the UniquestAlgorithm as the semantics for uniqueness constraints. In the next section we focus on identi�ca-tion of object occurrences within populations. A minimal requirement is weak identi�cation. Onthe schema level however, we have structural identi�cation, which is powerful enough to guaranteeweak identi�cation for any population. After this we consider properties of schemas, mainly inthe context of checking schema consistency. Simple properties are easily checked, and will detecta major part of usual errors made by (unexperienced) information system analysts. Complexity ofchecking schema properties is addressed in the last section. We show that the relevant propertiesare NP-complete problems.2 The Predicator Model2.1 IntroductionIn this section we will introduce the notion of relation type as is usual in the world of databases,where it is also denoted as fact type. The term relation suggests a connection with the corre-sponding mathematical notion. In classic approaches, this leads to the de�nition of a relationas a subset of a Cartesian product. This approach is known as the tuple oriented approach. Adisadvantage of this approach is that algebraic operators lack useful properties as commutativityand associativity. The modern approach is to use the mapping mechanism to describe relations(the mapping oriented approach). See also [13].In ER and NIAM a relation type is considered to be an association between object types. Thegraphical representation of a relation type, drawn in the NIAM style, is shown in �gure 1. Thecorresponding ER diagram is shown in �gure 2. We prefer the NIAM style for the rest of thispaper, as this makes the concept of role more explicit. A role denotes a particular function thatis played by an object type in a relation type.In �gure 1 we see that the roles r1 and r2 are ordered. The mapping oriented approach2



����X1 Rr1 r2 ����X2Figure 1: A NIAM relation typeX1 ��@@��@@Rr1 r2 X2Figure 2: The corresponding ER diagramcorresponds to disconnecting the relation R, yielding the situation of �gure 3. Note that R isrepresented in this �gure according to the same format as X1 and X2. In this �gure, the basicbuilding element is the connection between an object type and a role, the so-called predicator (thisterm was �rst introduced in [7]). In �gure 3, p1 is the predicator connecting X1 to r1, and p2 thepredicator that connects X2 to r2. Note that the concept of predicator appears itself in a NIAMschema (as an unnamed drawing object), while in an ER schema it cannot be visualised.We go a step further, and consider a relation type as a set of predicators. A direct consequenceis that we consider a relation type as an association between predicators, rather than betweenobject types.We will not take the full consequence of this when drawing information structures. We willprefer the style of �gure 1 or 3 rather than the style of �gure 4 or �gure 5. In �gure 4 objecttypes are drawn in a nested fashion. The functional drawing style from �gure 5 abstracts fromthe internal structure of relation type R. This internal structure is captured by the directionof the arrows that represent the predicators. This style will be very useful to describe complexoperations on a schema.2.2 The information structureThe discussion in the previous section leads to the following de�nition: an information structureis a structure consisting of the following basic components:1. A �nite set P of predicators.2. A set O of object types.3. A partition F of the set P. The elements of F are called fact types.Object types are classi�ed as follows. First we have: F � O. The object types in F are thecomposed object types, the object types in O n F are the atomic object types (A). There are twodi�erent sorts of atomic object types: entity types (E) and label types (L). The di�erence is thatlabels can, in contrast with entities, be represented (reproduced) on a communication medium.Depending on the medium, we distinguish text, graphics, sound and video. The term multimediais used as a collective noun.����X1 p1 r1 r2 p2 ����X2'&$%RFigure 3: Disconnecting the roles3



����X1 p1 r1����X2 p2 r2'& $%RFigure 4: A relation type as a set of predicators����X1 ����R ����X2-p1 � p2Figure 5: The functional drawing styleIt is important to note that instances (occurrences) of object types are not within the infor-mation structure. Instantiations (populations) will be introduced in a later section.2.3 SubtypingThe concept of subtype is de�ned as a partial order Sub on atomic object types (Sub � E�E[L�L),with the convention that a Sub b is interpreted as: a is a subtype of b. This partial order shouldhave the property that with each element of A a (unique) top element can be associated. Thispater familias is found by the function u : A ! A (which is similar to the top operator fromlattice theory). Each subtype has a subtype de�ning rule. This will be introduced in section 4.7.
����carni-vore ����omni-vore ����herbi-vore����
esh-eating ����plant-eating����animal@@@I ������������ @@@I@@@IFigure 6: Example of a subtype hierarchyExample 2.1 In �gure 6 we have the following subtype hierarchy:
esh-eating animal Sub animalplant-eating animal Sub animalcarnivore Sub 
esh-eating animalomnivore Sub 
esh-eating animalomnivore Sub plant-eating animal 4



herbivore Sub plant-eating animalEach subtype relation is represented as an arrow in �gure 6. As a consequence, the pater familiasof object type carnivore is animal, or: u(carnivore) = animal.Remark 1: Subtype requirements at the fact level are expressed by subset constraints, that areintroduced in a later section. ����variable ��������formula���� @@@I f eeeeeeFigure 7: Example of disjoint unionRemark 2: In this approach, subtyping is a mechanism for re�ning atomic object types. It doesnot provide such a thing as disjoint union. In programming languages this concept is used as aconstruction mechanism, to describe data types such as formula. A formula may be either a singlevariable, or constructed by some function (say f) from simpler formulas. This is displayed in�gure 7. The usefulness of the disjoint union in information structures has been discussed in [28].2.4 BasicsThe base of a predicator is the object part of that predicator. The associated object type is foundby the following elementary operator: Base : P ! OWe call predicators p and q attached to each other (p � q), when u(Base(p)) = u(Base(q)). Thefact type that corresponds with a predicator is obtained by the operator:Fact : P ! Fwhich is de�ned by: Fact(p) = f , p 2 f .Usually (NIAM, ER), relation types are restricted to fact types and reference types. A referencetype (or attribute type) is a binary relation between an entity type and a label type, i.e. a setof predicators fp; qg, where Base(p) 62 L and Base(q) 2 L. A fact type is a relation type betweenentity types only, i.e. a set of predicators f , such that: 8p2f [Base(p) 62 L]. In this paper, we willuse the term fact type as a generic term for relation types in information structures.����X1 ����X2 ����X3 ����X4 ����X5�����* HHHHHYp q r s t u vf g hFigure 8: Example information structure5



Example 2.2In �gure 8 we see an example of an information structure. We have:P = fp; q; r; s; t; u; vgO = fX1; X2; X3; X4; X5; f; g; hgF = ff; g; hgwhere f = fp; qg, g = fr; s; tg and h = fu; vg. With respect to the predicators wehave: Base(p) = X1 Fact(p) = fBase(q) = X2 Fact(q) = fBase(r) = X2 Fact(r) = getc.The subtype hierarchy is given by: X2 Sub X3X4 Sub X32.5 The Object Relation NetworkThe functional drawing style (see �gure 5) presents object types as the nodes of a labelled graph.For the Object Relation Network, we restrict ourselves (in case of atomic objects) to those thatare pater familias (u(x) = x). The predicators are the labelled edges of this graph: there is anedge from x (or u(x) if x atomic) to y with label p, if p 2 P , Base(p) = x and Fact(p) = y. Theresulting network is called the Object Relation Network. We call an information structure cyclicif the associated Object Relation Network contains a (directed) cycle.Example 2.3 The Object Relation Network corresponding to the information structure from �g-ure 1 is drawn in �gure 5.Example 2.4 The Object Relation Network, corresponding to �gure 8 is given in �gure 9.����X1 ����X3 ����X5����f ����g ����h6p HHHHHHY q 6s���@r @@I� t 6v������*uFigure 9: Example information structure as Object Relation Network2.6 PopulationsAn information structure is used as a frame for some part of the (real) world, the so-calledUniverse of Discourse (UoD). A state of the UoD then corresponds with a so-called instantiationor population of the information structure, and vice versa. The idea of states was previouslymentioned in [8], [26], [22]. Furthermore, a state transition of the UoD has a correspondingtransition on populations of the information structure. This can be formulated as:The Universe of Discourse is isomorphic with the set of possible populations of theinformation structure and a transition relation hereupon.6



This is called the conceptuality property of information structures.In our approach, a population Pop of an information structure I = hP;O; Sub;Fi is a valueassignment to the object types in O, conforming to the structure as prescribed in P and F ,respecting the subtype hierarchy Sub. This is denoted as IsPop(I;Pop). In the sequel of this paperwe will omit quanti�cations over Pop.Respecting the subtype hierarchy is re
ected by the Subtype Rule:8x;y2A [x Sub y ) Pop(x) � Pop(y)]The population of an atomic object type is just a set of values. The population of a composedobject type is a set of tuples. A tuple t of a fact type f is a mapping of all its predicators to valuesof the appropriate type. This is referred to as the Conformity Rule:8f2F8t2Pop(f)8p2f [t(p) 2 Pop(Base(p))]This latter property can be extended with the notion of connected populations, de�ned in theConnectivity Rule. This rule requires that atomic object occurrences can only exist by the virtueof having properties.Connected(Pop) � 8a2A;u(a)=a8x2Pop(a)9p2P9t2Pop(Fact(p)) [t(p) = x]This rule is typical for NIAM, but is not required in ER.Usually atomic values within populations are required to be strongly typed. This is formulatedas follows: 8x;y2A [Pop(x) \ Pop(y) 6= ; ) u(x) = u(y)]This rule is referred to as the Strong Typing Rule.3 Derived Fact TypesThe relational algebra has been introduced as a retrieval language for the relational model. Weintroduce this algebra also for the Predicator Model, as a mechanism to describe so-called derivedrelation types (derived fact types). Derived fact types are described by an algebraic expression,from which the type of the fact type can be derived, and that gives a rule for calculating itsvalue (instantiation) in any population of the information structure. Using this basic language,more sophisticated retrieval languages can be described, for example languages based on pathexpressions (such as RIDL, see [24] or [27]).The relational algebra R(I), associated with an information structure I, consists of the set ofrelational expressions on I. This set is introduced by an inductive de�nition. This gives us theopportunity to use structural induction over R(I).3.1 Relational ExpressionsA relational expression (derived fact type) r is either a fact type or a relational operator appliedto one (or more) expression(s). If it is a fact type, say f , the schema Schema(r) of this expressionis the set of predicators in f (Schema(f) = f). Otherwise, the schema can be derived from thefact types contained in it. The value of expression r can be calculated by the operator Pop, whichyields a set of tuples over Schema(r).The basic relational operators are union, di�erence, join, projection, selection, extension andunnesting. The expressions that can be derived from the base relations by these operators form therelational algebra associated with the actual information structure I, and is denoted asR(I). Westart with union and di�erence. Suppose r and s are compatible relational expressions, meaningSchema(r) = Schema(s). Then r [ s and r n s both are relational expressions, having schemaSchema(r), and having the following value respectively:� Pop(r [ s) = Pop(r) [ Pop(s) 7



� Pop(r n s) = Pop(r) n Pop(s)If r and s are relational expressions, then the join r./ s is a relational expression, identi�edby:1. Schema(r./ s) = Schema(r) [ Schema(s)2. Pop(r./ s) = � t j t[r] 2 Pop(r) ^ t[s] 2 Pop(s) 	Suppose r is a relational expression, p1; : : : ; pn and q1; : : : ; qn are predicators, all q1; : : : ; qndi�erent, such that pi � qi for 1 � i � n, then �q1:p1 ;:::;qn :pn r is a relational expression, identi�edby:1. Schema(�q1 :p1;:::;qn:pn r) = fq1; : : : ; qng2. Pop(�q1:p1 ;:::;qn :pn r) = n t ��� 9s2Pop(r)81�i�n [t(qi) = s(pi)] oThis de�nition is in style with [18]. Note that the projection can be used to \rename" a predicator.Furthermore, the projection operator can be used to extend relations with new predicators. Thisis especially useful, when more sophisticated expressions are possible, to describe the value in a\new" predicator. We will use �p1;:::;pn r as a shorthand for �p1:p1 ;:::;pn :pn r. If � is a set ofpredicators, then the notation �� r is also used.If r is a relational expression, and F a selection formula, then �F r is also a relational expres-sion, according to:1. Schema(�F r) = Schema(r)2. Pop(�F r) = � t 2 Pop(r) j F (t) 	The extension operator � extends a relational expression r with a new predicator a, countingthe number of tuples with an equal � -value, in the following way:1. Schema(�(r; �; a)) = Schema(r) [ fag2. Pop(�(r; �; a))= n t ��� t[Schema(r)] 2 Pop(r) ^ t(a) = #s2Pop(r)(t[� ] = s[� ]) oThis operator is a restricted version of the extension operator introduced in [2], which was intro-duced to handle GROUP BY queries in SQL.����X1 : : : ����Xn����f���� @@@I ����Y1 : : : ����Yk����g������*6 HHHHHHY - ����X1 : : :����Xn ����Y1 : : :����Yk�� ���pr1:p1 ;:::;rn:pn (g)������*



� HHHHHHY JJJJ]p1 pnp q1 qk r1 rn q1 qkFigure 10: The functional look at unnesting an objecti�ed relationThe unnest operator is used to 
atten objecti�ed relation types. This operator is de�ned forthe NF 2 data model in [18]. In the predicator model, we need an alternative de�nition. Let f; gbe relational expressions, and p 2 Schema(g) a predicator such that Base(p) = Schema(f) (see�gure 10). Let Schema(f) = fp1; : : : ; png. Furthermore, r1; : : : ; rn are predicators not occurringin Schema(f) or Schema(g). Let S = Schema(g) n fpg. Then �pr1:p1;:::;rn:pn (g) is a relationalexpression, de�ned by: 8



1. Schema(�pr1 :p1 ;:::;rn :pn (g)) = fr1; : : : ; rng [ S2. Pop(�pr1 :p1 ;:::;rn :pn (g)) = � t [ s[S] j t 2 Pop(f) ^ s 2 Pop(g) ^ s(p) = t 	In this de�nition the expression t [ s[S] relies on the introduction of a tuple as a mapping, whilea mapping is mathematically de�ned as a set of pairs.3.2 Boolean operationsIn this section we look at boolean expressions. We start with the test IsEmpty to �nd out whethera relational expression has an empty population:IsEmpty(r) � Pop(r) = ;A very important notion in relational algebra theory is functional dependency. Let r be a relationalexpression and let �; � � Schema(r). Then � r! � is a boolean expression which holds in apopulation Pop i� in this population, Pop(r) can be seen as a mapping from Pop(��(r)) intoPop(�� (r)) in the obvious way. We then call � functionally dependent on � via r.Comparing relational expressions is only useful in case of relational expressions with di�erentschema's, but particularly when the bases of the predicators can be matched to each other. Thisis especially of importance for set relations.We start with the subset operator. Let r and s be relational expressions, then we call � amatch between Schema(r) and Schema(s) if � is a bijection between Schema(r) and Schema(s),such that 8p2Schema(r) [p � �(p)]. Then r �� s is a boolean expression according to:8t2Pop(r)9u2Pop(s)8p2Schema(r) [t(p) = u(�(p))]The equality operator can be de�ned in terms of subset relations:r =� s, r �� s ^ s ���1 rThe exclusion test 
� is de�ned as:8t2Pop(r):9u2Pop(s)8p2Schema(r) [t(p) = u(�(p))]3.3 Special operationsThe count operator is used for counting the number of tuples in a relational expression. If r is arelational expression, then INI (r) is de�ned by:INI (r) = jPop(r)jWe can also count the number of di�erent values on a set � of predicators:INI (r; � ) = INI (�� r)If the base of a predicator is an ordered set, then we can ask the extreme values for thispredicator by: min(r; p) = min(Pop(�p r))max(r; p) = max(Pop(�p r))The operator Rangep coerces a unary relation f = fpg for some predicator p into the range ofvalues that are taken by this single predicator:Pop(Rangep(r)) = nx ��� 9t2Pop(r) [t(p) = x] oUsually, this coercion is obvious from the context, and therefore omitted.9



4 ConstraintsUsually not all possible populations of an information structure are valid, i.e. correspond withsome state in the UoD. Forbidden populations are excluded by so-called static constraints. We willdiscuss total role, uniqueness, occurrence frequency, exclusion, equality, subset and enumerationconstraints. The semantics of constraints will be expressed in terms of relational expressions. Forrelated work, see [14].Dynamic constraints exclude forbidden transitions. They are not considered in this paper.Several approaches exist for dynamic constraints, for example, temporal logic ([8]), predicatetransition networks ([17], [10]) and algebraic speci�cation ([1]).A schema � = hI; Ci consists of an information structure I (the syntactical part) and a setof constraints C (the semantical part). A population of a schema should be syntactically correct,and satisfy the semantic requirements:IsPop(�;Pop) � IsPop(I;Pop) ^ 8c2C [Pop j= c]In the next sections we describe what kind of constraints are considered. The set of all possibleconstraints then is denoted by � (I). Note that C � � (I).4.1 Total role constraintAn object type may have the property that in any population, all its instances must be involvedin some set of predicators. This property is called a total role constraint.Let � be a nonempty subset of P. A total role constraint � makes only sense if all predicatorsin � have the same pater familias: 8p;q2� [p � q]A population Pop satis�es the total role constraint total(� ), denoted as Pop j= total(� ), if it satis�esthe following expression: [q2� Base(q) = [q2� �q (Fact(q))Note the implicit use of the coercion operator (see section 3.3). This condition is checked by (aftersome simpli�cations, based on the properties of the union-operator):[q2� Pop(Base(q)) = [q2� Pop(�q (Fact(q)))����A fp q ����B1 ����B2 gr s ����C����B���3 QQQk�����Figure 11: Example of total role constraintExample 4.1 Consider the total role constraint total(fq; rg) in the information structure of �g-ure 11. The meaning of this constraint is:B1 [B2 = �q f [�r g10



Connectedness of a population can be expressed as the conjunction of total role constraints foratomic objects:Lemma 4.1 Connected(Pop), 8a2A;u(a)=a �Pop j= total(� p 2 P j Base(p) = a 	)�Proof: Let Ba = � p 2 P j Base(p) = a 	, then we can rewrite the righthand side as:8a2A;u(a)=a 24Pop(a) = [q2Ba Pop(�q Fact(q))35Now the result easily follows.24.2 Uniqueness constraintThe uniqueness of values in some set of predicators has become a widely used concept in databasetechnology, for guaranteeing integrity and as a base for e�cient access mechanisms. In this sectionwe will de�ne some well-known concepts, such as functional dependency, candidate keys anduniqueness constraints.Let r be a relational expression and let �; � � Schema(r). Then, in population Pop, we call �functionally dependent on � over r, if relation � r! � holds in population Pop:Pop j= � r! �The following properties are obvious:Lemma 4.2 � r! � , max(�(r; �; a); a) = 1Lemma 4.3 Schema(r) r! Schema(r)A set of predicators � � Schema(r) is called a candidate key of relational expression r if � r!Schema(r) and � is minimal for this property:8� h� r! Schema(r)) � 6� �iA candidate key is also referred to as an identi�er ([15]). We use identi�er(r; �) as an expressionto denote that � is an identi�er of r.Lemma 4.4 8f2F9��f [Pop j= identi�er(f; �)]Proof: From lemma 4.3 we know Schema(f) f! Schema(f). Then either Schema(f) is a candidatekey, or some subset K � Schema(f) has the property K f! Schema(f), in which case theargument is recursively applied. The �niteness of P (see section 2.2) guarantees terminationof this argument.2Remark: Using structural induction on the construction of relational expressions, this property iseasily extended to all relational expressions.A uniqueness constraintU(�) is a non-empty set of predicators � � P. The semantics of thisconstraint will be expressed as an identi�er of the form identi�er(�(�); �). The operator � will beintroduced in the rest of this section. 11



4.2.1 Single fact typeWhen � does not exceed the boundaries of a single fact type f (i.e. � � f), the uniquenessconstraint is bound to this relation: �(�) = f .4.2.2 Joinable via common object typesWhen more than one fact type is involved, these fact types may be joinable via common objecttypes: Jn(�) � jFacts(�)j > 1) 9p2� " 9q2�nFact(p) [Fact(p) n � � Fact(q) n �]^ Jn (� n Fact(p)) #Two sets of predicators �1 and �2 are joinable via commonobject types (�1 � �2) if 9p2�19q2�2 [p � q].A direct consequence is that in this type of uniqueness constraint, no entire fact type can be in-volved. The uniqueness constraint � then speci�es a candidate key for the derived relation:�(�) = �C(�) ./f2Facts(�) fwhere Facts(�) is the set of fact types that are involved in the uniqueness constraint: �Fact(p) j p 2 � 	.Let � (�) = SFacts(�)n� be the set of predicators that are not involved in the uniqueness condition.The selection condition then is de�ned as follows:C(�) = ^p;q2�(�);p�q p = q����X1 ����X2 ����X3 ����X4 ����X5p q r s t u vf g h����uFigure 12: An example uniqueness constraintExample 4.2 In �gure 12 uniqueness constraint � = fp; s; vg is speci�ed. Consequently Facts(�) =ff; g; hg, � (�) = fq; r; t; ug and thus C(�) = (q = r ^ t = u). The conditionU(�) requires that � isa candidate key of �(�) = �q=r^t=u (f ./ g./h)The condition `joinable via common object types' is easily interpreted in the Object Relation Net-work (see �gure 13) as an (undirected) path connecting all fact types involved.Example 4.3 In �gure 14 we have a peculiar uniqueness constraint: � = fr; tg. Our interpreta-tion leads to � (�) = fp; q; sg, and consequently:identi�er(�p=s^q=s (f ./g); fr; tg)From this example, it is clear that the graphical notation as used in NIAM, is not powerful enoughto allow for alternative join conditions, e.g. q = s. This problem can be solved by the speci�cationof a subset � (�) of predicators that are to be joined.12



����X1 ����X2 ����X3 ����X4 ����X5����f ����g ����h@@I ����* HHHHY ��������� 66 @@I@@Ip q r s t u vFigure 13: The same uniqueness constraint drawn functionally����X1PPPPPP     ������ ����X2����X3fgp q rs t����uFigure 14: Another uniqueness constraint
����B ����C�� ��f@@@ �������A ����D����g ����h����i j���� AAAAAAAp qt ru svw x����uFigure 15: A uniqueness constraint over objecti�cation13



4.2.3 Uniqueness and Objecti�cationNext we consider uniqueness constraints in relation with objecti�cation. In �gure 15 we see anexample of a rather bizar nature. The functional representation is found in �gure 16. In thisexample,U(fu; sg) is a joinable uniqueness constraint. This is not the case for � = fv; sg. Inorder to make Facts(�) joinable, we look for the highest common descendants of the involved facttypes Fact(v) = i and Fact(s) = h, and �nd f as the bridge between these fact types (joinable viacommon descendants). We then 
atten (unnest) the ancestor fact types, until they have f as animmediate descendant, and arrive at the premises of the previous section.
����B ����C����f����A ����D���� @@@I����g ����h���� @@@I ��*��� @@@I @@@I @@@I����i������������ ����j���� CCCCCCCCOp qu t r sv w x

Figure 16: The functional view4.2.4 The Uniquest AlgorithmThe general interpretation of a uniqueness constraint can now be formulated, and is called theUniquest Algorithm. ConsiderU(�) for � 6= ;. Let G(�) be the subgraph of the Object RelationNetwork that is relevant for �, or, the minimal connected subgraph containing �. Then �(�) iscomputed as �(�;G(�)), where:�(�;G) =if all edges in � have same destination fthen return felif some top f with heigth > 1 in G has incoming edge p 62 �then return � ��;G �f := �pL(f)��for some proper rename list Lelif all tops have height 1, and connected via common object typesthen return�C(�) �./f2Facts(�) f�else error: no joinable descendants�The rename list L should be such that renamings are only performed when required. A renamingof predicators is only required when the top f has more predicators between Base(p) and Fact(p).Example 4.4 The uniqueness constraintU(fp; s; ug) in the information structure of �gure 17 hasthe following semantics: identi�er ��rp:p;q:q (g)./ f ./�tp:p;q:q (h); fp; s; ug�14



����Cg s���r ����D hu@@@ t����A p q ����B�� ��f����uFigure 17: The information structureExample 4.5 Applying the Uniquest Algorithm to the situation of �gure 16 yields the error: nojoinable descendants.For an extended set of examples of the behaviour of the Uniquest Algorithm, see [29].4.3 Occurrence frequency constraintUniqueness constraints are used to express that instances of object types may play a certaincombination of roles at most once. This restriction can be generalised as follows: if a certaincombination of object type instances occurs in a set � of predicators, then this combinationshould occur at least n and at most m times in this set. This is denoted as:frequency(�; n;m)The semantics of this expression are:: IsEmpty(�(�)) ) � min (�(�(�); �; a); a) � nmax (�(�(�); �; a); a) � mOf course we have: U(�) , frequency(�; 0; 1), frequency(�; 1; 1)Note that the constraint frequency(�; 0; 0) is a very strong condition, as it constrains �(�) to theempty population. As a result, it can be used to exclude unwanted situations.����A ����C����B����HHHHpr qsfg�� ��0 : : :0Figure 18: Example of an occurrence frequency constraintExample 4.6 The occurrence frequency constraint frequency(fq; sg ; 0; 0) in �gure 18 enforces:�p f \�r g = ;We will come back to this example in the next section.15



4.4 Set constraintsAnother type of frequently occurring constraints are so-called set constraints. Let � and � setsof predicators, and � a match between � and � . Then the constraints ��(�; � ), equal�(�; � ),exclusion�(�; � ) have the following interpretation respectively:1. �� (�(�)) �� �� (�(� ))2. �� (�(�)) =� �� (�(� ))3. �� (�(�))
� �� (�(� )) ����X��PPqp PP��st�� ��
p:t;q:s�� ��Figure 19: An example exclusion constraintUsually, the bijection � is immediate from the context, and is omitted. In �gure 19 however,we see an example where � is not clear from the context.����X PP��pq�� ��=p:q;q:p�� ��Figure 20: A symmetric homogeneous relationThe power of our approach is demonstrated best by the elegant way in which a symmetrichomogeneous relation can be speci�ed (see �gure 20).����A ����C����B����HHHHpr qsfg�����Figure 21: Occurrence frequency constraint as exclusion constraintExample 4.7 The occurrence frequency constraint of �gure 18 is speci�ed as an exclusion con-straint in �gure 21.4.5 Enumeration constraintAn enumeration constraint is used to bind a label type to an enumerated domain. If l is a labeltype, and V a set of values, then the constraint enumeration(l; V ) requires:Pop(l) � V16



4.6 SubtypingLet � � E be a family of entity types, i.e.:8x;y2� [u(x) = u(y)]The lowest common ancestor of � is denoted as u(�).A population Pop satis�es the exclusion subtype constraint exclusion(�), denoted as Pop j=exclusion(�), i�: 8x;y2� [Pop(x) \ Pop(y) = ;]A population Pop satis�es the total subtype constraint total(�), denoted as Pop j= total(�), i�:Pop(u(�)) = [q2�Pop(q)4.7 Subtype De�ning RulesA subtype de�ning rule is a constraint SubRule(s; t; r), where s and t are object types, such thats Sub t, and r a relational expression, having a singleton schema fpg with Base(p) = t. Themeaning of this rule is: s = r(using the implicit coercion from section 3.3). A subtype de�ning rule is intended as a criterionfor deciding whether an element of a (super)type t also belongs to the subtype s. As a result, weneed a subtype de�ning rule for each subtype. More than one subtype de�ning rule is not allowed,as this may lead to contradictions. We denote the unique subtype de�ning rule for subtype t asSubRule(t).As a consequence, the subtype de�ning rule should not depend on any subtype of s. Further-more, cyclic subtype de�ning rules are also not possible. We formalise this by introducing Facts(r)as the set of fact types needed to evaluate r. An inductive de�nition of this operator is easilydone, and is omitted here.The condition that a subtype cannot be de�ned in terms of its own subtypes (if any) can nowbe formulated as: 8f2Facts(r)8p2f [:Base(p) Sub s]The requirement that cyclic subtype de�ning rules are not allowed is handled by the introduc-tion of a relation Uses over entities:aUses b, b 2 Facts(SubRule(a))The requirement then states that the resulting network should not contain a (directed) cycle.Example 4.8 Consider the subtype hierarchy in �gure 11. The latter rule then excludes thefollowing set of subtype de�ning rules:� SubRule(B1; B;�r g)� SubRule(B2; B;�q f)5 Identi�cationWe discuss the identi�cation for each class of object types. First we consider identi�cation at theinstance level. We call this weak identi�cation. Then we consider structural identi�cation.17



����ux uy ����u zp qFigure 22: x and y both related to z5.1 Weak identi�cationLabels are the elementary data types, and are considered to be representable directly. As a result,each label can be identi�ed by itself. Also we assume an equality operator for labels. This operatordecides on the equality of label values.Entities on the other hand can only be represented by their properties. As a consequence,entities with the same properties are not distinguishable, and therefore considered to be the same.The properties of an entity are recorded by the facts in which they play a role. As a consequence,in any population Pop we have for all entity values x and y (see also �gure 22):8p2P ;x;y2Pop(Base(p))8q2Fact(p) [Identical(x; y; p; q)]) x = ywhere Identical(x; y; p; q) is de�ned as:Identical(x; y; p; q)� 8z2Pop(Base(q)) hRelatedPop(x; p; q; z), RelatedPop(y; p; q; z)iand RelatedPop is de�ned by:RelatedPop(x; p; q; z) � 9t2Pop(Fact(p)) [t(p) = x ^ t(q) = z]This rule is referred to as the Weak Identi�cation Rule, and is denoted as WeakId(I;Pop). Therule is typical for systems that deal only with complete knowledge.Composite objects were introduced as tuples, and are identi�ed by their components. As aconsequence, in any population Pop we have for all values s and t of any fact type f :8p2f [s(p) = t(p)] ) s = tThis is called the Extensionality Rule. Note that composite objects are considered only in thecase of complete knowledge. The reason is that tuples are de�ned as (total) functions, rather thanpartial functions.The Weak Identi�cation Rule guarantees that no naming con
icts for objects can occur. How-ever, the rule does not enforce that every object has a name. So, in general, weak identi�cationdoes not guarantee connectedness. '&$%ux AFigure 23: Population weakly identi�edExample 5.1 In �gure 23 we see a very simple information structure, with a population that isweakly identi�ed. Note that x is an anonymous object.Example 5.2 In �gure 24 this information structure has a population that is not weakly identi�edsince it contains more than one anonymous object.18



'&$%ux uy AFigure 24: Population not weakly identi�ed5.2 Structural identi�cationWeak identi�cation is an important property for information systems, as it ensures that all objectscan be addressed uniquely. In this section we consider how this can be guaranteed from propertiesof the schema.We call an information structure structural identi�able when there are no dangling objects:1. Each label type occurs in some total role constraint:8x2L9p2P9total(�)2C [Base(p) = x ^ p 2 � ]The motivation behind this is to enforce the absence of unused label values.2. All entities can be identi�ed: 8x2E [Identi�able(x)]The underlying idea is that entities that can not be distinguished from each other, areconsidered to be identical.The predicate Identi�able is de�ned by:1. If x is a label type, then obviously Identi�able(x).2. If x is a composed object type (or, generally, a set of predicators), then we may concludeIdenti�able(x) if all components of x are identi�able:8p2x [Identi�able(Base(p))]3. If x is an entity type, then we have the following cases:(a) If x is a subtype, i.e. u(x) 6= x, then x is identi�able if its associated pater familias is.Besides, there should be a unique subtype de�ning rule (see section 4.7).(b) In the other case u(x) = x. Then x can be identi�ed, if there exists a set � of predicatorsthat can be used for this purpose, a so-called identi�er for x, i.e.:� Identi�able(� )� U(� )� 8f2Facts(�)9p2Compl(�;x)\f [U(p) ^ total(p)]The set Compl(�; x) of co-roles with respect to x is de�ned as:Compl(�; x) = � p 2 SFacts(� ) n � j Base(p) = x 	Example 5.3 Consider the schema of �gure 25. Assume that A and B are identi�able. In orderto identify X, we choose � = fpg, then Identi�able(� ) andU(� ). Furthermore Compl(�;X) = fqg,while total(q) Û(q).In order to identify Y , we choose � = ftg, then Identi�able(� ) andU(� ). Furthermore Compl(�; Y ) =fr; sg, while total(r) Û(r). 19



����A p q ����Xr r�-�- ����Y ����Br ?6?6rs tFigure 25: Simple identi�cationThis de�nition of identi�ability is rather strong: it does not allow cyclic information structures(as a result of the second rule). A direct consequence of the third rule is:Corollary 5.1 If � is identi�able, then it satis�es the Atomic Anchorage Rule:8x2A9p2P [Base(p) = x]For entity types this can be sharpened to:8x2E9p2P [Base(p) = x ^ total(fpg) 2 C]For label types, it is su�cient that it is the base of a predicator, that occurs in some total roleconstraint.Theorem 5.1 8x2E [Identi�able(x)]) 8x2O [Identi�able(x)]Proof: If all entity types of an information structure are identi�able, this structure is acyclic,and therefore we can de�ne the depth of an object as the maximal distance in the ObjectRelation Network to an atomic object type. As a consequence, this distance is 0 for atomicobjects. The statement is now easily proved by induction on the depth of objects.2An important consequence of identi�ability is that it guarantees that each population will beweakly identi�ed.Theorem 5.2 I identi�able) each population weakly identi�edProof: Suppose I is identi�able. Now let e1 and e2 be occurrences of an object type x, havingprecisely the same properties. Let � be an identi�er for x, then e1 and e2 maintain via �relations with the same objects. From the unicity of � , we then conclude e1 = e2.2Another important consequence of identi�ability is that it guarantees that each population willbe connected.Theorem 5.3 Identi�able(�)) 8Pop [IsPop(�;Pop)) Connected(Pop)]Proof: Suppose Identi�able(�), and let Pop be a population of �. Now let a 2 A with u(a) =a. From the Atomic Anchorage Rule we conclude that there exists a predicator p withBase(p) = a, that is part of some total role constraint. From this, the result is easily derived.2Example 5.4 In �gure 26 we see an example of complex identi�cation. The bases of predicatorsp1; p5 and p9 are label types. Entity type House can be identi�ed by identi�er fp7; p9g, whichrecursively calls for the identi�cation of Street. This can be done by identi�er fp3; p5g, whichrecursively calls for the identi�cation of Community.20



����Commu-nity rr����(C-name)r ����Streetr rr����(S-name)r ����Houser r����(H-nr)r?6?6 �- ?6 �- ?6p1p2 p5p6 p9p10p3 p4 p7 p8f1 f3 f5f2 f4����u ����uFigure 26: Complex identi�cation5.3 Cyclic Object StructuresIn this section we consider cyclic information structures, i.e. information structures for which theassociated Object Relation Network contains a directed cycle.�������p AFigure 27: The elementary cyclic objectExample 5.5 In �gure 27 we see the most simple cyclic information structure, consisting ofa single object, that is cyclic in itself: a predicator p with Base(p) = Fact(p). Note that this(sub)schema is populatable, for example, Pop(Base(p)) = fxg and Pop(Fact(p)) = fxg.In �gure 28 we see another example of a cyclic information structure. This schema is alsopopulatable, as can be easily veri�ed.'&$%'&$%������PPPPPPPPPPPP ������f gp rq sFigure 28: Two fact types contained in a cycleThe major problem with these cycles is, that structural identi�cation is impossible (see sec-tion 5.2). Cycles can be easily detected by the topological sort algorithm (see [12]), applied onthe Object Relation Network:Theorem 5.4 Let G = hN;Ei be a directed graph, then G is acyclic i� there exists a functionh : N !N, such that: 8hs;di2E [h(s) < h(d)]Example 5.6 This theorem excludes the cycles in �gure 27 and 28. We will show that a function his impossible for the structure in �gure 28. Let h be such a function. On the one hand Base(p) = fand thus h(f) < h(g). On the other hand Base(r) = g, which results in h(g) < h(f), leading to acontradiction. 21



6 Schema Properties6.1 The Empty PopulationLet schema � = hI; Ci be composed of an information structure I and a set of constraints C. Theempty population of �, is characterized by:GlobEmpty(�;Pop) � IsPop(I;Pop) ^ 8x2O [Pop(x) = ;]Note that we only require Pop to be a syntactically correct population, as we can prove that theempty population is also semantically correct (i.e. all constraints are satis�ed). We �rst showthat the law of the excluded miracle holds for information systems, stating that we can not deriveanything (any fact) when we have no information (no facts) at our disposal. This is a directconsequence of the closed world assumption.Theorem 6.1 (law of the excluded miracle)GlobEmpty(�;Pop)) 8r2R(I) [Pop(r) = ;]Proof: Let Pop be an empty population of �. We use structural induction on the constructionof relational expressions. Atomic relational expressions, being fact types, obviously have anempty population.To prove the induction step, we suppose that r and s are relational expressions with anempty population. Then, the union, di�erence, projection, selection, extension and unnestoperators applied to r and s obviously yield an empty population.2As a result, the empty population is semantically correct:Theorem 6.2 GlobEmpty(�;Pop)) IsPop(�;Pop)Proof: Let Pop be an empty population of � = hI; Ci. Then IsPop(I;Pop). The constraints in Cenforce certain relationships between (populations of) relational expressions. As all relationalexpressions on I have an empty population (lemma 6.1), all constraints are satis�ed. Thisis easily checked for each type of constraint. As a result we have IsPop(�;Pop).26.2 Non-empty PopulationsNow, we focus on non-empty populations or, more speci�cally, on the question whether a schemaallows non-emptiness, and to what extent. We introduce several forms of non-emptiness, anddescribe how they relate to each other. First, we ask ourselves whether each atomic object typecan be populated at all. If so, the schema is called local atomic populatable:LocAtomPop(�) � 8a2A9Pop [IsPop(�;Pop) ^ Pop(a) 6= ;]For composed object types we de�ne an analogous property. A schema is called local fact popu-latable, if each fact type can be populated:LocFactPop(�) � 8f2F9Pop [IsPop(�;Pop) ^ Pop(f) 6= ;]Populatability at the fact level is a stronger property than at the atomic level.Lemma 6.1 LocFactPop(�)) LocAtomPop(�)22



Proof: Let � be such that LocFactPop(�) and let a 2 A. If a is an isolated object type, then ofcourse it can be populated. Otherwise a is the base of at least one predicator p. Since Fis a partition of P, p is involved in some fact type, say f . As � is local fact populatable, apopulation Pop exists, with Pop(f) 6= ;. Now, from the Conformity Rule we conclude thata is populated. Thus LocAtomPop(�).2 ����A ����B����HHHH HHHH ����pr qsfg �� ��\j����� ����Figure 29: A non local fact populatable schemaExample 6.1 The schema in �gure 29 is not local fact populatable.Proof: We have f = fp; qg ; g = fr; sg, with the following constraints:� exclusion(fpg ; frg).� �(fr; sg ; fp; qg).Assume � is local fact populatable. Then there exists a population Pop, that populates g.As a consequence Pop(�rg) 6= ;. From the subset constraint we derive Pop(�rg) � Pop(�pf),and thus: Pop(�rg) \ Pop(�pf) = Pop(�rg) 6= ;This however contradicts the exclusion constraint. We conclude: � is not local fact popu-latable.2 Having related both populatability properties to each other, we are ready to introduce twostronger properties of schemata. First we de�ne global atomic populatability:GlobAtomPop(�) � 9Pop [IsPop(�;Pop) ^ 8a2A [Pop(a) 6= ;]]The following lemma is trivial:Lemma 6.2 GlobAtomPop(�)) LocAtomPop(�)Global fact populatability is de�ned as:GlobFactPop(�) � 9Pop [IsPop(�;Pop) ^ 8f2F [Pop(f) 6= ;]]For this schema property we have:Lemma 6.3 GlobFactPop(�)) GlobAtomPop(�) ^ LocFactPop(�)Example 6.2 In �gure 30 we see a schema, that is local fact populatable and global atomic pop-ulatable, but not global fact populatable:Proof: Assume Pop is a population of � such that each fact type has a non-empty population.The exclusion constraint between p and r implies that the population of A contains at leasttwo elements, which contradicts the enumeration constraint on A.23



����A ����C����B����HHHHpr qsfgfag �����Figure 30: A non global fact populatable schema2 The notion of signi�cant population is an important concept during information analysis. Ac-cording to [15], a population is called signi�cant with respect to some kind of constraint if andonly if all the relevant UoD constraints of that kind may be deduced from that population. Wetake a slightly di�erent approach, and consider a population signi�cant if it makes visible preciselyall constraints of some kind D � � (I). As a consequence, constraints of that kind that are notvisible do not hold: Signif(�;Pop;D) � IsPop(�;Pop) ^ 8x2O [Pop(x) 6= ;]^ 8c2D [Pop j= c, C ` c]For example,D could be the set of all total role constraints in � (I). We will sharpen this as follows:a schema is called signi�cant populatable, denoted as SignifPop(�;D), if it can be populated witha signi�cant population with respect to D.Lemma 6.4 SignifPop(�; ;)) GlobFactPop(�)����A ����B�-�-����HHHH HHHH ����pr qsfg �� ��\j����Figure 31: A non signi�cant populatable schemaExample 6.3 Figure 31 shows a schema which is easily seen to be global fact populatable. Aclose inspection however will reveal that this schema has a problem: the combination of uniquenessconstraints does not harmonise with the subset constraint. This problem is captured as the schemais not signi�cantly populatable with respect to uniqueness constraints.Proof: Let Pop be a population such that each object type has a non-empty population. Theuniqueness constraint over g implies at least the population for g as presented in table 1,with a1 6= a2 and b1 6= b2. r sa1 b1a1 b2a2 b1Table 1: A signi�cant population for gThe subset constraint g � f now contradicts b1 6= b2, by the uniqueness constraint over f .2 24



7 Veri�cationIn this section we consider the complexity of verifying schema properties. For schema � = hI; Ciwe take jCj as size of the problem. In order to prove the NP-completeness results, we make use ofthe so-called three dimensional matching problem.7.1 The Three Dimensional Matching ProblemThe three dimensional matching problem is a very popular problem for proving NP-completenessresults. It is a generalisation of the well-known marriage problem. The matching problem M isformulated as follows ([9]):Let M � W � X � Y , where W , X and Y are disjoint sets having the same numberof elements q. The problem is to determine whether M contains a so-called matching,i.e. a subset M 0 � M with q elements, such that no two elements of M 0 agree in anycoordinate.This problem is known to be NP-complete (see [9]). Without loss of generality, we assume thatevery element of W , X and Y occurs in some element of M (which is easily checked). If this isnot the case, no matching is possible.Example 7.1 Let W = fw1; w2g, X = fx1; x2g, Y = fy1; y2g,and M = f(w1; x2; y2); (w2; x1; y1); (w1; x1; y1); (w2; x2; y2)g Then M contains several matchings,for example M 0 = f(w1; x2; y2); (w2; x1; y1)g.7.2 Global Atomic PopulatabilityIn this section we consider the complexity of verifying the schema property of global atomicpopulatability. We start with the description of a transformation of a three dimensional matchingproblemM into the veri�cation of the property of global atomic populatability of a schema �(M).����lx r ����exr�-�-px qxfxfxgFigure 32: A fact type between lx and exFor each element of x 2 W [X [ Y , we introduce a fact type fx = fpx; qxg (see �gure 32),with Base(px) = lx 2 L and Base(qx) = ex 2 E .����ew����ex����eyrrr?6?6?6 ?6?6?6���PPP PPP ���fm f 0mFigure 33: Two fact types for each m 2MEach element m 2 M is transformed into two fact types. For m = (w; x; y) we get the facttypes fm and f 0m, as shown in �gure 33. Fact type fm is intended to be populated with m. Anon-empty population of f 0m will correspond to m 2M 0.25



����ex ?6?6?6?6?6?
6���QQQ��������CCCCCCCC f 0m1f 0m2�� ���rFigure 34: Matching conditions via constraintsThe matching conditions (each element of W , X and Y should occur in the matching, and notwo elements of M 0 may agree in any coordinate) are transformed into total role and exclusionconstraints (respectively) for each element x 2W [X [ Y (see �gure 34).Obviously this tranformation takes not more than polynomial time. The correctness of thistransformation is expressed by:Theorem 7.1 M has a matching , GlobAtomPop(�(M))Proof:=) Let M 0 �M be a matching. FromM 0 we construct a population Pop, such that every atomicobject type is populated. The population of fact type fm will consist of the single fact m.If m 2M 0, then f 0m will have the same population, otherwise it gets an empty population.It is easily veri�ed that this population sati�es all constraints. In this population obviouslyall atomic object types are populated.(= Assume GlobAtomPop(�(M)) and let Pop be such a global population. A matching can nowbe de�ned as: M 0 = �m 2M j Pop(f 0m) 6= ; 	This is indeed a matching, because exclusion and total role constraints cause the matchingconditions of M 0 to be satis�ed.2We conclude that the veri�cation of the schema property of global atomic populatability is anNP-hard problem. But the veri�cation can also be done in nondeterministic polynomial time.This can be recognised in the following way. Let m be the maximum of all frequency constraintupperbounds and all cardinalities of enumeration constraints. Elements are forced into objecttypes by total role constraints, but this forcing is bounded by m elements. The veri�cation isdone by nondeterministically choosing a population bounded in this way, and then checking theconstraints. From this we conclude that the veri�cation problem is NP-complete.26



����eW����ew1 ����ew2 ����ewq��������*����� HHHHHHHHY. . . .�� ���rFigure 35: Subtype hierarchy for W7.3 Global Fact PopulatabilityNext we consider the veri�cation of the property of global fact populatability, and describe atransformation of a matching problemM into a schema �(M). The �rst step is as in the previoussection (see �gure 32).We proceed with the creation of subtype hiearchies for the entity types associated with theelements of W , X and Y . Figure 35 shows the hierarchy for W .?6?6?6 ����ew����ex����eyrrr���PPPfmfM?6 �
�	��� ������eW����eX����eY rrr���PPPFigure 36: A fact type for each element of MNext the fact types fm (m 2M ) are incorporated as in the previous section. We also introducea fact type fM as a placeholder for the elements of M (see �gure 36). The fact types fm and fMare related via a subset constraint, expressing that each element of fm should be contained in fM .However, fM is restricted to precisely these elements by enforcing an enumeration as shown in�gure 37. ����eW����eX����eYrrr����ln r ?6�-�- ���PPPfMf1; : : : ; kMkg ����rFigure 37: A fact type for the set MWith M 0 we associate a fact type fM 0 in the same way as we introduced fM for M . Thespecial conditions of the matching problem are now represented by a combination of total role anduniqueness constraints (see �gure 38). Note that the subset constraint enforces that all instancesof fM 0 occur in fM . The following theorem is obvious:27



����eW����eX����eYrrr rrr?6 ?6?6?6���PPP PPP ���fM fM 0�
�	��� ��Figure 38: A fact type for the matchingTheorem 7.2 M has a matching , GlobFactPop(�(M))Also in this case it is easily checked that veri�cation can be done in nondeterministic polynomialtime, which proves the NP-completeness.8 ConclusionsIn this paper the Predicator Model was introduced as a platform for object-role data models. Weindicated how techniques as ER and NIAM can be embedded within the Predicator Model.A primitive language in the style of relational algebra was introduced to reason about thePredicator Model. The Law of the Excluded Miracle indicated the soundness of this algebra. Itstates that nothing can be derived from relational expressions operating on the empty population.The concept of population was de�ned as an instantiation of an information structure. Severaltypes of constraints were introduced of which the semantics were de�ned by expressing underwhat conditions a population satis�es that type of constraint. These expressions made use of thepreviously de�ned algebraic operators. Further research has to be performed on how to incorporatetransition oriented constraints in the Predicator Model.A special type of constraint was the uniqueness constraint. The most di�cult form of thisconstraint involves objecti�cation. The Uniquest Algorithm was introduced to deal with complexuniqueness constraints. The intermediate steps of this algorithm can be visualised using the ObjectRelation Network representation. We believe that this algorithm is useful as a teaching aid forexplaining the semantics of complex uniqueness constraints. Other types of constraints, such asthe total role constraint and the set constraints, were given a more powerful semantics than isusually the case.Two kinds of identi�cation were distinguished: weak and structural identi�cation. Weak iden-ti�cation is a minimal requirement for identi�cation requiring that in a population di�erent objectscan be distinguished on the basis of their properties. Structural identi�cation ensures that everypopulation is weakly identi�ed. This is a property that can be determined from the structuraldescription itself.We also considered cyclic object structures, that are not allowed in modelling techniques. Weshowed that there exist cyclic object structures that can be populated (instantiated). We havea strong feeling that these structures are worth to investigate, as they may be useful in the gapbetween information systems and knowledge based systems. Special attention has to be paid tothe identi�cation of objects in cyclic structures.The constraints turned out to be not powerful enough to exclude the empty population asvalid. Non-empty populations could be classi�ed into di�erent categories. On the basis of thisclassi�cation also a classi�cation of schemas was given. The category of a schema is determined bythe categories of populations that are possible. Each schema category requires its own veri�cation28



procedure. It was shown that two of the most important veri�cation procedures are NP-complete.This implies that CASE-tool manufacturers should concentrate on �nding good heuristics andincremental algorithms, to check these properties.AcknowledgementWe would like to thank Gert Jan Akkerman, Ernst Lippe, Wim Menting, Norbert van Oosteromand Gerard Wijers for their contributive remarks. The remarks of the anonymous referees resultedin many improvements.
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Appendix: Legend of graphical symbolsThis appendix contains an overview of the symbols used in this paper.
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Graphical symbols for information structure diagrams:

Graphical symbols for Object Relation Network:uniqueness constraintover more fact types(connected to involved predicators)uniqueness constraintover a single fact typetotal role constraintfor more predicators(connected to involved predicators)total role constraintfor a single predicatorX2 is a subtype of X1predicatorroleobject type

X1 is a composed object type, containing predicator pIf X2 is composed, it is the base of p,otherwise: X2 = u(Base(p)):
object instanceexclusion subtype constraint(connected to involved subtypes)total subtype constraint(connected to involved subtypes)enumeration constraintsubset constraint(connected to involved predicators)equality constraint(connected to involved predicators)exclusion constraint(connected to involved predicators)occurrence frequency constraint(connected to involved predicators)
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