
Advances and improvements in the theory of standardbases and syzygiesGreuel, G.-M., P�ster, G.�IntroductionThe aim of this article is to describe recent advances and improvements on the tangent cone algorithmof T. Mora. This tangent cone algorithm is itself a variant of B. Buchberger's celebrated algorithm forconstructing a Gr�obner basis of an ideal in a polynomial ring over a �eld. In the same manner as theknowledge of a Gr�obner basis allows the computation of numerous invariants of the coordinate ring of aprojective algebraic variety, a standard basis (computed by the tangent cone algorithm) does so for invariantsof the local ring of an algebraic variety at a given point. In this paper we describe a generalization whichincludes Buchberger's and Mora's algorithm as special cases. That is, we prove | with an appropriatede�nition of ecart | that Mora's algorithm terminates for any ordering on the monomials of K[x1; : : : ; xn],which is compatible with the natural semigroup structure (a fact which was found independently by Gr�abe[G]), in particular, the variables may have as well negative, positive or zero weights (cf. x1). More orless all algorithms using Gr�obner bases (such as computation of syzygies, ideal theoretic operations, etc.)are now available in this general context. Our generalization provides also an easy manner to implementstandard bases for modules over the Weyl algebra and for D{modules. The general standard basis algorithmis described in x1.In x2 we prove that Schreyer's method to compute syzygies generalizes to arbitrary semigroup orderings.It seems to be the �rst algorithmic proof of the fact that the length of a free resolution is equal to thenumber of variables which actually occur in the equations (and not on all variables of the ring) in the localand mixed (local{global) case. It follows basically Schreyer's original proof [S] but contains some new ideas,since Macaulay's lemma, which is usually applied, does not hold for orderings which are not well{orderings.As a consequence we obtain that the rings Loc<K[x] (see below) are regular.Chapter x3 contains a partial positive answer to Zariski's multiplicity conjecture. Although there are otherpartial positive answers known, e.g. by Zariski, Lê, Lipmann, Laufer, O'Shea, Yau and the �rst namedauthor, it has basically resisted all attacks. Our result, which supports the conjecture, was prompted bycomputer experiments with an implementation of the above described algorithm in the computer algebrasystem SINGULAR. The proof (given in x3) does not use any computer computation but the computerexperiments were essential in guessing the result. We include a proof that the module of leading terms, evenin the case of general semigroup orderings, is a 
at specialization of the original module. This is the basis ofmost applications, e.g. for computing Milnor numbers or multiplicities and Hilbert functions of singularities.For a description of an implementation of the standard basis algorithm described in this paper, specialstrategies and many comparisons, also for syzygies, cf. [Gr et al].1 A standard basis algorithm for any semigroup orderingThis algorithm is a generalization of Buchberger's algorithm (which works for wellorderings cf. [B1], [B2])and Mora's tangent cone algorithm (which works for tangent cone orderings, cf. [M1], [MPT]) and whichincludes a mixture of both (which is useful for certain applications cf. [M2]). In fact, it is an easy extensionof Mora's idea by introducing the \correct" de�nition of ecart. But we present it in a new way which, as wehope, makes the relation to the existing standard basis algorithms transparent.�Acknowledgement: The authors were partially supported by the VW-Stiftung, the Stiftung f�ur Innovation Rheinland{Pfalz, the DFG and the ESPRIT BRA contract 6846 POSSO.



LetK be a �eld, x = (x1; : : : ; xn) and �; �; 
 column vectors in Nn, N= f0; 1; 2; : : :g. Let < be a semigroupordering on the set of monomials fx�j� 2 Nng of K[x], that is, < is a total ordering and x� < x� impliesx
x� < x
x� for any 
 2 Nn. Robbiano proved that any semigroup ordering can be de�ned by a matrixA 2 GL(n;R) as follows:Let a1; : : : ; an be the rows of A, then x� < x� if and only if there is an i with aj � � = aj � � for j < iand ai � � < ai � �. Thus, x� < x� if and only if A� is smaller than A� with respect to the lexicographicalordering of vectors in Rn.For g 2 K[x], g 6= 0, let L(g) be the leading monomial with respect to the ordering < and c(g) theleading coe�cient of g, that is g = c(g)L(g)+ smaller terms with respect to <.De�nition 1.1 We de�ne Loc<K[x] := S�1< K[x] to be the localization of K[x] with respect to the multi-plicative closed set S< := f1 + g j g = 0 or g 2 K[x]nf0g and 1 > L(g)g.Remark 1.2 1) K[x] � Loc<K[x] � K[x](x), where K[x](x) denotes the localization of K[x] with respectto the maximal ideal (x1; : : : ; xn). In particular, Loc<K[x] is noetherian and K[x]{
at and K[x](x) isLoc<K[x]{
at.2) If x1; : : : ; xr < 1 and xr+1; : : : ; xn > 1 then 1 + (x1; : : : ; xr)K[x1; : : : ; xr] � S< � 1 +(x1; : : : ; xr)K[x] =: S, hence K[x1; : : : ; xr](x1;::: ;xr)[xr+1; : : : ; xn] � Loc<K[x] � S�1K[x].Note that < is a wellordering if and only if x0 = 1 is the smallest monomial and in this case Loc<K[x] = K[x].We call such orderings also global orderings. If 1 > xi for all i, then Loc<K[x] = K[x](x). Such orderingsare called local orderings. Orderings, where some of the variables are > 1 and others are < 1 are calledmixed orderings. Important are degree orderings where each variable has an integer weight (positive ornegative but not zero) and where the ordering re�nes the partial ordering induced by the weighted degree.Examples include the orderings w{degrevlex with w = (w1; : : : ; wn), wi 6= 0, where x� < x� if w �� < w ��or w � � = w � � and the last non{zero entry of � � � is negative. We just write degrevlex (respectivelydegrevlex�) if all wi = 1 (respectively all wi = �1).Many applications require an elimination ordering for, say, xr+1; : : : ; xn, which means that L(g) 2K[x1; : : : ; xr] implies g 2 K[x1; : : : ; xr]. Since x� < 1 implies x� 2 K[x1; : : : ; xr] we see that this orderingis necessarily a wellordering on the set of monomials in K[xr+1; : : : ; xn]. The usual lexicographical orderinglex, given by the matrix A = id, is an elimination ordering for all 0 � r < n, but the \local lexicographical"ordering lex� given by A = � id is not an elimination ordering. If A1 is an ordering for monomials inx1; : : : ; xr and A2 for monomials in xr+1; : : : ; xn, then the product ordering given by the direct sumA1 �A2 of the matrices A1 and A2 is an elimination ordering for x1; : : : ; xr.We consider alsomodule orderings<m on the set of monomials fx�eig of K[x]r =Pi=1;::: ;r K[x]ei whichare compatible with the ordering < on K[x]. That is for all monomials f; f 0 2 K[x]r and p; q 2 K[x] wehave: f <m f 0 implies pf <m pf 0 and p < q implies pf <m qf .We now �x an ordering <m on K[x]r compatible with < and denote it also with <. Again we have thenotion of coe�cient c(f) and leading monomial L(f). < has the important property:L(qf) = L(q)L(f) for q 2 K[x] and f 2 K[x]r;L(f + g) � max(L(f); L(g)) for f; g 2 K[x]r:De�nition 1.3 Let I � K[x]r be a submodule.1) L(I) denotes the submodule of K[x]r generated by fL(f)jf 2 Inf0gg.2) A �nite set G = ff1; : : : ; fsg � I is called a standard basis of I if fL(f1); : : : ; L(fs)g generates theK[x]{submodule L(I) � K[x]r.3) A standard basis ff1; : : : ; fsg is called reduced if, for any i, L(fi) does not divide any of the monomialsof f1; : : : ; fs (except itself).4) A �nite set ff1; : : : ; fsg is called interreduced, if L(fi) - L(fj) for all i 6= j.Note that an interreduced standard basis does, while a reduced standard basis does not necessarily exist (cf.Remark 1.12). 1



Proposition 1.4 If ff1; : : : ; fsg is a standard basis of I then ILoc<K[x] = (f1; : : : ; fs)Loc<K[x].The proof will be deduced from the normal form used in the standard basis algorithm (cf. Corollary 1.11).In general it is not true that f1; : : : ; fs generate I as K[x]{module (take I = (x)K[x]; n = 1; f = x + x2with lex�). This is also not true if I � K[x] is (x1; : : : ; xn){primary and if ff1; : : : ; fsg is a reducedstandard basis (which answers a question of T. Mora): consider the ideal I � K[x; y] generated byx10 � y2x9; y8 � x2y7; x10y7 which is (x; y){primary. The �rst two elements are a reduced standard basisof I Loc<K[x; y] = I K[x; y](x;y) where < is degrevlex� und hence generate I K[x; y](x;y) but they do notgenerate I K[x; y]. (Cf. also Remark 1.8.)Notations: Let f; g 2 K[x]r, L(f) = x�ei and L(g) = x�ej . If i = j and x�jx� then we write L(f)jL(g).If i = j and x
 = lcm(x�; x�); 
 = (max(�1; �1); : : : ;max(�n; �n)) then the lowest common multipleand the S{polynomial are de�ned as follows:lcm(L(f );L(g)) := x
 andspoly(f ;g) := x
��f � c(f)c(g)x
��g:If i 6= j then, by de�nition, L(f) 6 jL(g), spoly(f; g) := 0 and lcm(L(f); L(g)) := 0.De�nition 1.5 Let F = fG � K[x]rjG �nite and ordered g. A function NF : K[x]r�F ! K[x]r; (p;G) 7!NF (pjG), is called a normal form if for any p 2 K[x]r and any G 2 F the following holds: if NF (pjG) 6= 0then L(g) 6 jL(NF (pjG)) for all g 2 G. NF (pjG) is called a normal form of p with respect to G.Example 1.6 Let < be a wellordering then the following procedure NFBuchberger is a normal form:h := NFBuchberger (pjG)h := pWHILE exist f 2 G such that L(f)jL(h) DOchoose the first f 2 G with this propertyh := spoly(h; f)The principle for many standard basis algorithms depending on a chosen normal form is the following:S := Standard (G;NF)S := GP := f(f; g)jf; g 2 SgWHILE P 6= ; DOchoose (f; g) 2 P ; P := Pnf(f; g)gh := NF(spoly (f; g) j S)IF h 6= 0 THENP := P [ f(h; f) j f 2 SgS := S [ fhgIn this language Buchberger's algorithm is justBuchberger(G) = Standard (G, NFBuchberger).If < is any ordering (not necessarily a wellordering) and A the corresponding matrix, then the matrix0BBB@ 1 1 : : :10... A0 1CCCA2



de�nes a wellordering on the monomials of K[t; x] which we denote also by <. For f 2 K[x] let fh be thehomogenization of f with respect to t and for G � K[x] let Gh = ffh j f 2 Gg. If f 2 K[x]r, f =P fiei,we de�ne fh =P t�ifhi ei where deg fhi +�i = deg fhj +�j for all i; j and the �i minimal with this property.We set Gh = ffh j f 2 Gg for G � K[x]r.This ordering has the following property:Lemma 1.7 If there exists � and 
 = (
1; : : : ; 
n) such that t� > x
 and � = 
1 + � � �+ 
n then x
 < 1.Especially, < is not a wellordering in this case on K[x].The Lazard method (cf. [L]) to compute a standard basis is the following:S := Lazard (G)S := GhS := Buchberger (S)S := S(t = 1)Remark 1.8 The result S of Lazard's method is, in general, much bigger than a standard basis computedby the algorithm \Standard basis" below. If we are only interested in a standard basis of hGi this algorithmcomputes usually too much and this might be the reason why it is often too slow. In Lazard's algorithmone may, and usually does, take an interreduced standard basis of hGhi by deleting super
uous elements.The result still has the property that the K[x]{module hGi = GK[x] is generated by G (we need not pass toLoc<K[x]). This is not necessarily true if we take an interreduced standard basis of hGi: let G = fx; x+x2g,which is a standard basis of hGi = (x)K[x] � K[x] for lex�. We may delete either x or x + x2 to obtainan interreduced standard basis of hGi but if we delete x, then x+ x2 does not generate hGi (but, of course,GLoc<K[x]).For tangent cone orderings and some mixed orderings (cf. [M1], [MPT]) Mora found an algorithm whichcomputes a standard basis over Loc<K[x]. This algorithm can be generalized to any ordering and we candescribe it as follows:S := Standard basis (G)S := GhS := Standard (S, NFMora)S := S(t = 1)Let G � K[t; x]r be a �nite and ordered set of homogeneous elements and p 2 K[t; x]r homogeneous. Notethat an element of K[t; x]r is homogeneous if its components are homogeneous polynomials of the samedegree. The generalization of Mora's normal form to any semigroup ordering is as follows:h := NFMora (pjG)h := pT := GWHILE exist f 2 T , such that L(f) j t�L(h) for some � DOchoose the first f 2 T with L(f) j t�L(h) and � minimalIF � > 0 THENT := T [ fhgh := spoly (t�h; f)IF t j h THENchoose � maximal such that t� divides hh := ht�Theorem 1.9 1) NFMora terminates.2) If h is a normal form of p with respect to G = ff1; : : : ; fsg computed by NFMora then there arehomogeneous polynomials g; �1; : : : ; �s 2 K[t; x] such that- gp =P �ifi + h- L(g) = t�- deg p+ � = deg �i + deg fi = deg(h) (if �i 6= 0; h 6= 0)3



- L(fi) 6 jt�L(h) for all i; �If < is a wellordering on K[x] then g = t�.Proof: 2) By induction suppose that after the �{th step in NFMora we have- g�p =P �i�fi + h� ,- L(g�) = t�� ;- deg p+ �� = deg �i;� + deg fi = deg h� (if �i;� 6= 0; h� 6= 0)- t���L(h�) > t���L(h�) for � < �.If L(fi) 6 jt�L(h�) for all i; � then we have �nished.Since T consists of elements fk 2 G and of h� constructed in previous steps we have to consider two cases:(a) If L(fk) j t�L(h�) and � is minimal for all possible choices for fk 2 G thent�g�p =X t��i�fi + t�h� � �fk + �fkwith L(fk)� = t�L(h�). We obtain h�+1 = t�h� � �fkg�+1 = t�g��i�+1 = t��i� if � 6= k�k�+1 = t��k� + �and the induction step follows with ��+1 = �+ ��.(b) If L(h�) j t�L(h�) for some � < � and � is minimal for all possible choices from T thent�g�p =X t��i�fi + t�h� � �h� + �h�with L(h�)� = t�L(h�). We have h�+1 = t�h� � �h�g�+1 = t�g� � �g��i�+1 = t��i� � ��i�:Now t�����L(h�) > L(h�) implies t�+�� > L(�)t�� , that is t�+�� = L(g�+1). This proves 2).To prove 1) let I� = hL(f) j f 2 T�i; T� be the set T after the �{th reduction. Let N be an integer suchthat IN = IN+1 = : : : (such N exists because K[t; x]r is noetherian). This implies TN = TN+1 = : : : . Thealgorithm continues with �xed T and terminates because < is a wellordering on K[t; x]r.Remark 1.10 1) If the ordering < on K[x] is global, then the standard basis algorithm is equivalent toBuchberger's algorithm because then x� j x� implies x� < x�. This shows that only elements from G areused for the reduction in NFMora. Moreover, if G is homogeneous but < arbitrary, the standard basisalgorithm even coincides with Buchberger's algorithm.2) If < is a tangent cone ordering then the algorithm is Mora's tangent cone algorithm. In his algorithmMora uses the same normal form, just in another language. Instead of passing from K[x] to K[t; x] byhomogenizing and extending the ordering, he uses the notion of ecart, where ecart(p) = degt(ph). During theimplementation of SINGULAR we discovered that the normal form with ecart(p) := degt(L(ph)) terminatesfor any ordering, not only for tangent cone orderings. This was found also by Gr�abe (cf. [G]).Corollary 1.11 Let S = ff1; : : : ; fsg be a �nite subset of the submodule I � K[x]r.1) If S is a standard basis of I then: 4



(i) For any f 2 K[x]r there are g; �i 2 K[x], h 2 K[x]r, such that(1 + g)f =X �ifi + h;L(g) < 1 if g 6= 0, L(�ifi) � L(f) if �i 6= 0 and, for all i, L(fi) 6 jL(h) if h 6= 0.(ii) f 2 I if and only if NFMora (fh j Sh) = 0.(ii') f 2 I if and only if (1 + g)f = P �ifi for suitable g; �i 2 K[x]; L(g) < 1 if g 6= 0 and L(�ifi) �L(f) if �i 6= 0.(iii) I Loc<K[x] = hSi Loc<K[x] that is S generates I Loc<K[x] as Loc<K[x]{module.2) The following are equivalent:(i) S is a standard basis of I.(ii) Sh = Standard (Sh , NFMora).(iii) NFMora (spoly(f; g); Sh) = 0 for all f; g 2 Sh .(iv) One of the conditions (ii), (ii') of 1).The corollary is an easy consequence of 1.9.Remark 1.12 1) If one extends the ordering < given by the matrix A on K[x] to K[t; x] by0BBB@ 1 w1; : : : ; wn0... A0 1CCCA ; all wi > 0and uses homogenization with respect to the weights w1; : : : ; wn then the standard basis algorithm works aswell. Gr�abe discovered (cf. [G]) that for a suitable choice of the weights adapted to the input (the polynomialsshould become as homogeneous as possible with respect to these weights) the algorithm can become faster.We call this the (weighted) ecartMethod. It is implemented in SINGULAR with an automatic choice ofan \optimal" weight vector.2) Given < and G there exist, of course, many normal forms NF(�jG) (choose, for instance, in the describedNF{algorithms not the �rst element). But if < is a global ordering, we can apply the normal form algorithmto each monomial of h and we can achieve that for any f 2 K[x]r,(�) f =P �ifi + h,for suitable �i 2 K[x], h 2 K[x]r such that L(�ifi) � L(f) if �i 6= 0 and, for all i, no monomial of h is divisibleby L(fi); h is then unique. Hence, there exists a distinguished normal form NF(�jG), characterized bythe property that L(g) does not divide any monial of NF(p;G) for any g 2 G and any p 2 K[x]r withNF(pjG) 6= 0.If we try the same for local or mixed orderings, this procedure will, in general, not terminate. We can onlyderive a presentation (�) with �i 2 K[[x]] and h 2 K[[x]]r (formal power series) having the above properties.In particular, a distinguished normal form does only exist as a function with values in K[[x]]r.3) A reduced standard basis is uniquely determined by I and <. If < is a wellordering or ifdimK Loc<K[x]r=I < 1 then there exists always a reduced standard basis in K[x]r. In general, it ex-ists only in K[[x]]r.2 On Schreyer's method to compute syzygiesIn this chapter we shall prove that Schreyer's method to compute syzygies (cf. [S], [E]) extends to anysemigroup ordering < on K[x]r =Pri=1K[x]ei. For the treatment of syzygies in a di�erent context, or fordi�erent algorithms see [Ba], [MM1], [MM2] and [MMT].Let S = fg1; : : : ; gqg be a standard basis of I � K[x]r.For K[x]q =Pq+ri=r+1K[x]ei we choose the following Schreyer ordering <1 (depending on S): x�ei+r <1x�ej+r if and only if either L(x�gi) < L(x�gj) or L(x�gi) = L(x�gj) and i > j.5



For gi; gj having the leading term in the same component, that is L(gi) = x�iek; L(gj) = x�jek we considerspoly(gi; gj) := mjigi �mijgj with mji = c(gj) lcm(L(gi); L(gj ))x�i .Because S is a standard basis we obtain (Corollary 1.11)(1 + hij)(mjigi �mijgj) =X �ij� g�with L(hij) < 1 if hij 6= 0 and L(�ij� g�) < L(mjigi).For j > i such that gi; gj have leading term in the same component, let�ij := (1 + hij)(mjiei+r �mijej+r)�X �ij� e�+r :Let ker(K[x]q ! K[x]r;Pwiei+r 7!Pwigi) denote the module of syzygies, syz(I), of fg1; : : : ; gqg. Thefollowing proposition is essentially due to Schreyer.Proposition 2.1 With respect to the ordering <1 the following holds:1) L(�ij) = mjiei+r .2) f�ij j i < j s.t. L(gi); L(gj) are in the same component g is a standard basis for syz(I).Proof: 1) L(�ij) = L(mjiei+r � mijej+r) = mjiei+r holds by de�nition of <1. To prove 2) it has to beshown that L(syz(I)) = hfmjiei+rgi.Let Pwigi = 0, that is � :=Pwiei+r 2 syz(I), and let mek+r = L(� ) with respect to <1. LetT := fner+l j ner+l be a monomial of �; L(ngl) = L(mgk)g:Then, obviously, � jT := Pner+l2T ner+l is a syzygy of L(g1); : : : ; L(gq). Especially, #T � 2. Choose lsuch that ner+l 2 T for some n and ner+l 6= mek+r . Because L(� ) = mek+r and the de�nition of <1 wehave k < l. Since mL(gk) = nL(gl) we have mlk j m: But L(�kl) = mlkek+r implies L(�kl) j � , that isL(� ) 2 L(hfmjiei+rgi), which proves the proposition.The algorithm \Standard basis" of paragraph 1, together with repeated application of the algorithm \Syz",provides an e�ective way to construct �nite Loc<K[x]{free resolutions and gives a sharpened version ofHilbert's syzygy theorem which generalizes Schreyer's proof (cf. [E], [S]).Lemma 2.2 Let fg1; : : : ; gqg be a standard basis of I � K[x]r = Pi=1;::: ;rK[x]ei. We assume that theleading terms are a basis vector of K[x]r, that is L(gi) = e�i for suitable �i. We set J = f� j 9i s.t. � = �igand for � 2 J we choose exactly one gi� such that L(gi� ) = e� . Then ILoc<K[x] is a free Loc<K[x]{module with basis fgi� j � 2 Jg and (Loc<K[x])r=ILoc<K[x] is Loc<K[x]{free with basis represented by thefej j j 62 Jg.Proof: Let us renumber the gi such that gi� = g� for � 2 J . First of all, the subset fg� j � 2 Jg �fg1; : : : ; gqg remains a standard basis of I since the set of leading terms is not changed. Hence, we mayassume that all leading terms are di�erent. By Proposition 1.4, fg� j � 2 Jg generates ILoc<K[x]. Nowconsider a relation Xj 62J �jej =Xj2J �jgj; �j 2 Loc<K[x]:After clearing denominators we may assume that �j 2 K[x]. Since the leading terms involve di�erent eion each side, we obtain �1 = � � � = �n = 0. This shows that the g� ; � 2 J are linear independent andthat the ej , j 62 J , are independent modulo ILoc<K[x]. Since fL(gj) j j 2 Jg [ fei j i 62 Jg generateL(K[x]r) = (e1; :::; er)K[x], fgj j j 2 Jg [ fei j i 62 Jg is a standard basis of K[x]r and this set generates(Loc<K[x])r by Corollary 1.11. Therefore, fej j j 62 Jg generates (Loc<K[x])r=I Loc<K[x] over Loc<K[x].Theorem 2.3 Let S = fg1; : : : ; gqg be a standard basis of I � K[x]r. Order S in such a way that wheneverL(gi) and L(gj) involve the same component, say L(gi) = x�iek and L(gj) = x�jek, then �i � �j in thelexicographical ordering if i < j. If L(g1); : : : ; L(gq) do not depend on the variables x1; : : : ; xs, then theL(�ij) do not depend on the variables x1; : : : ; xs+1 andM := (Loc<K[x])r=I Loc<K[x]has a Loc<K[x]{free resolution of length � n � s. In particular, M always has a free resolution of length� n and, by Serre's theorem, Loc<K[x] is a regular ring.6



Proof: For i < j and L(gi) = x�iek, L(gj) = x�jek we have �i = (0; : : : ; 0; �i;s+1; : : : ); �j =(0; : : : ; 0; �j;s+1; : : : ) with �i;s+1 � �j;s+1. Therefore, L(�ij) = mjiei+r does not depend on x1; : : : ; xs+1.Let q1 := q and '1 : K[x]q1 ! K[x]r the morphism given by fgig, Pwiei+r 7!Pwigi, and '2 : K[x]q2 !K[x]q1 the analog morphism given by the standard basis f�ijg, q2 = #f�ijg. Applying the same constructionas above to syz1(I) := syz(I) = ker('1) and f�ijg we obtain a standard basis f�2klg of szy2(I) := syz(syz(I)) =ker('2) such that the leading terms of �2kl do not depend on x1; : : : ; xs+2.Continuing in the same way we obtain an exact sequence0! K[x]qn�s=ker('n�s) 'n�s! K[x]qn�s+1 ! : : : '2! K[x]q1 '1! K[x]r ! K[x]r=I ! 0:Moreover, ker('n�s) = syzn�s(I) has a standard basis f�n�sk;l g such that none of the variables appear inL(�n�sk;l ). Hence, by the preceding lemma,K[x]qn�s=ker('n�s) becomes free after tensoring with Loc<K[x].If we tensor the whole sequence with Loc<K[x] it stays exact (since Loc<K[x] is K[x]{
at) and is the desiredfree resolution of M .Remark 2.4 The above algorithm almost never gives a minimal free resolution (in the local or in thehomogeneous case), on the contrary, every syzygy module is generated by a standard basis. Nevertheless, itis often quite fast (cf. [Gr et al]).3 Zariski's question, Milnor numbers and multiplicitiesThe generalization of Buchberger's algorithm presented in this paper has many applications, in particular tolocal algebra and local algebraic geometry. For instance, most of the algorithms described in [E], II.15 can betransferred from k[X] to Loc<K[X]. Some use extra tag variables to be eliminated later, hence they requiremixed orderings even for pure local computations. Here we shall only explain how the implementation inSINGULAR helped to �nd a partial answer to Zariski's multiplicity question and prove the theoreticallyrelevant results (cf. Proposition 3.3 and Corollaries 3.4, 3.6) which justify such kinds of applications.Zariski asked in 1971 (cf. [Z]) whether two complex hypersurface singularities f and g with the same embeddedtopological type have the same multiplicity, where for f 2 Cfx1 ; : : : ; xng = Cfxg, f =P c�x�, f(0) = 0, anot constant convergent powerseries, mult(f) = minfj�j j c� 6= 0g is the multiplicity of f . Zariski's question(usually called Zariski's conjecture) is, in general, unsettled but the answer is known to be yes in the casen = 2, that is for plane curve singularities (Zariski, Lê D~ung Trang), and if f is semiquasihomogeneous andg is a deformation of f (Greuel, O'Shea).Recall that f is called semiquasihomogeneous if there exists an analytic change of coordinates and positiveweights for the new coordinates such that the sum of terms of smallest weighted degree has an isolatedsingularity.The idea for the search for a counter example to Zariski's conjecture is as follows: let ft(x) = f(x)+ tf1(x)+t2f2(x) + : : : be a deformation of f(x) and �(ft) = dimC Cfxg=(@ft=@x1; : : : ; @ft=@xn) the Milnor numberof ft which we assume to be �nite for t = 0 (then it is �nite for t close to 0). Then, if the topological typeof ft is independent of t, the Milnor number �(ft) is independent of t (for t su�ciently close to 0). Theconverse is also known to be true if n 6= 3. Hence, if �(ft) is constant but mult(ft) is not, we get a counterexample (at least if n 6= 3). Because of the above mentioned positive results, a candidate for a counterexample must have a big Milnor number which cannot be computed by hand. The standard basis algorithmof x1, together with a good choice of strategies and special improvements for zero{dimensional ideals (cf.[Gr et al]), as implemented in SINGULAR, allowed these Milnor numbers to be computed for several seriesof candidates (all other systems failed). The failure to �nd a counter example led to the following positiveresult.Let ft(x) be a (1{parameter) holomorphic family of isolated hypersurface singularities, that is 0 2 Cnis an isolated critical point of ft for each t close to 0 2 C . The polar curve of such a family is the curvesingularity in Cn � C de�ned by the ideal (@ft=@x1; : : : ; @ft=@xn) � Cfx; tg.Lemma 3.1 Let ft be a family of isolated hypersurface singularities. Let H �= Cn�1 be a hyperplane through0 such that formation of the polar curve is compatible with restriction to H. That is: polar curve(ft j H) =polar curve(ft) \H. Then �(ft) = constant ) �(ftjH) = constant:7



Proof: We may assume that H = fxn = 0g and then the polar curve(ftjH) is given by(@ft=@x1; : : : ; @ft=@xn�1; xn) while polar curve(ft) \ H is given by (@ft=@x1; : : : ; @ft=@xn; xn). Hence,the assumption is equivalent to @ft=@xn 2 (@ft=@x1; : : : ; @ft=@xn�1; xn).We shall use the valuation test for �{constant by Lê and Saito ([LS]):�(ft) = constant , for any holomorphic curve 
 : (C ; 0) ! (Cn � C ; 0) we have val(@ft=@t(
(s))) �minfval(@ft=@xi(
(s))), i = 1; : : : ; ng. Moreover, this is equivalent to \�" replaced by \>". (val denotesthe natural valuation with respect to s.)Now let 
(s) be any curve in H = fxn = 0g. Then @ft=@xn 2 (@ft=@x1; : : : ; @ft=@xn�1; xn) implies thatval(@ft=@xn(
(s)) � minfval(@ft=@xi(
(s))), i = 1; : : : ; n� 1g.Applying the valuation test to ft and to ft j H, the result follows.Proposition 3.2 Let ft(x1; : : : ; xn) = gt(x1; : : : ; xn�1)+x2nht(x1; : : : ; xn) be a family of isolated hypersur-face singularities. Let g0 be semiquasihomogeneous or let n = 3. If the topological type of ft is constant thenthe multiplicity of gt is constant (for t close to 0). In particular, if mult(gt) � mult(x2nht) then mult(ft) isconstant.Proof: Since ft has an isolated singularity we may add terms of su�ciently high degree without changingthe analytic type of ft. If n = 3 we may replace gt by gt(x1; x2) + xN1 + xN2 , N su�ciently big, whichhas an isolated singularity and the same multiplicity as gt(x1; x2). Hence, in any case we may assumethat gt has an isolated singularity. Applying the preceding lemma to the hyperplane fxn = 0g we obtain�(gt) constant. But since Zariski's conjecture is true for plane curve singularities and for deformations ofsemiquasihomogeneous singularities ([Gr]), mult(gt) is constant.The Milnor number �(f) of an isolated singularity can be computed as the number of monomials inK[x1; : : : ; xn]=L(I) where I is the leading ideal of (@f=@x1; : : : ; @f=@xn) with respect to any local ordering.This follows from Corollary 3.4, for which we need the following construction:Let g1; : : : ; gq be a standard basis of I � K[x]r =Pi=1;::: ;rK[x]ei. Any monomial x�ek may be identi�edwith the point (�1; : : : ; �n; 0; : : : ; 1; : : :0) 2 Nn+r. For a weight vector w = (w1; : : : ; wn+r) 2 Zn+r wede�ne degw x�ek = w1�1 + � � �+ wn�n + wn+kto be the weighted degree of x�ek. Let inw(f) the initial term of f 2 K[x]r, that is the sum of terms(monomial times coe�cient) of f with maximal weighted degree and inw(I) the submodule generated by allinw(f), f 2 I.It is not di�cult to see that there exists a weight vector w 2Zn+r (indeed almost all w will do) such thatinw(gi) = c(gi)L(gi), i = 1; : : : ; q, and, moreover, inw(I) = L(I).We choose such a w and shall now construct a deformation from L(I) to I:For f 2 K[x]r we can write f = fp + fp�1 + fp�2 + � � � such that the weighted degree of each monomial off� is �. Let t be one extra variable and put~f (x; t) = fp(x) + tfp�1(x) + t2fp�2(x) + � � � 2 K[x; t]r:Let ~I � K[x; t]r be the submodule generated by all ~f , f 2 I. On K[x; t]r we choose the following ordering:x�tpek < x�tqel if p+ degw x�ek < q + degw x�el or, if these terms are equal and x�ek < x�el.With respect to this ordering we have L( ~f ) = L(f) and, moreover, ~g1; : : : ; ~gq is a standard basis of ~I. (Ifh 2 ~I then h = tm ~f , f 2 I, hence, L(h) = tmL(f) 2 hL(~g1); : : : ; L(~gq)i). In addition, setting t = 0 or 1, weobtain sections of the inclusion of multiplicative sets S<(K[x]) � S<(K[x; t]).Let R := Loc<K[x], S := Loc<K[x; t] and K(t) the quotient �eld of K[t].Proposition 3.3 If I 6= Rr then Sr=~IS is a faithfully 
at K[t]{module with special �bre(Sr=~IS) 
K[t] K �= Rr=L(I)Rand generic �bre (Sr=~IS) 
K[t] K(t) �= Rr=IR
K K(t):8



Proof: The statements regarding the special and the generic �bres are easy. Note that for � 6=0; (Sr=~IS) 
K[t] K[t]=(t � �) �= Rr=IR. Therefore, if I 6= Rr then the support of Sr=~IS is surjectiveover Spec K[t] and hence it remains to show that t is a non{zero divisor of Sr=~IS. Let f 2 Sr and tf 2 ~IS.By Corollary 1.11 we have (after clearing denominators)NFMora (tfh j f~gh1 ; : : : ; ~ghq g) = t NFMora (fh j f~gh1 ; : : : ; ~ghq g) = 0;hence, f 2 ~IS.Corollary 3.4 Let either < be a wellordering or Rr=IR a �nite dimensional K{vector space. Then themonomials in K[x]rnL(I) represent a K{basis of Rr=IR.Proof: If < is a wellordering, the monomials not in L(I) are a basis of the free module Sr=~IS (Theorem ofMacaulay, cf. [E]), hence the result. In general, it is easy to see that these monomial are linear independentmodulo IR. (Use a standard basis of I and Corollary 1.11.) If Rr=IR is �nite dimensional, there areonly �nitely many monomials in K[x]rnL(I). The proposition implies that Sr=~IS is K[t]{free with thesemonomials as basis, hence they also generate Rr=IR.Remark 3.5 In general, the monomials not in L(I) are not a basis of Loc<K[x]=I. Take, for example, K[x]with lex� and I = (0). Then Loc<K[x] = K[x](x) is not K{generated by monomials. If < is a wellordering,then Sr=~IS is even free over K[t] (cf. [E]).Corollary 3.6 For any module ordering dimRr=IR = dimK[x]r=L(I) where dim denotes the Krull dimen-sion.Proof: I = Rr implies L(I) = K[x]r, hence we may assume I 6= Rr. Faithful 
atness implies thatdimRr=IR = dimRr=L(I)R, hence the result.Let us �nish with a �nal remark about multiplicites in the local case:Consider the local ring R = K[x](x) with maximal ideal (x) = (x1; : : : ; xn) and M = Rr=IR a �nitelygenerated R{module, where I is given as a submodule of K[x]r by �nitely many generators. Let mult(M )denote the (Samuel{)multiplicity of M with respect to (x). ConsidergrM =Xi�0(x)iM=(x)i+1M;which is a graded module over gr R = K[x]. For any graded module N let hN denote the Hilbert functionof N and degree(hN ) the degree of the corresponding Hilbert polynomial.The following proposition now follows easily.Proposition 3.7 Let < be a degree ordering (cf. Chapter 1) on the monomials of K[x] such that wi =degree (xi) = �1 for i = 1; : : : ; n which is extended to a module ordering on K[x]r arbitrarily. Let M =Rr=IR be as above and L(I) be the leading ideal of I. Then the Hilbert function hgrM coincides with theHilbert function hK[x]r=L(I) of the graded module K[x]r=L(I). In particular, dim M = dim K[x]r=L(I) andmult(M ) = degree(hK[x]r=L(I)).
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