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Introduction

The aim of this article i1s to describe recent advances and improvements on the tangent cone algorithm
of T. Mora. This tangent cone algorithm is itself a variant of B. Buchberger’s celebrated algorithm for
constructing a Grobner basis of an ideal in a polynomial ring over a field. Tn the same manner as the
knowledge of a Grobner basis allows the computation of numerous invariants of the coordinate ring of a
projective algebraic variety, a standard basis (computed by the tangent cone algorithm) does so for invariants
of the local ring of an algebraic variety at a given point. In this paper we describe a generalization which
includes Buchberger’s and Mora’s algorithm as special cases. That is, we prove with an appropriate
definition of ecart  that Mora’s algorithm terminates for any ordering on the monomials of K[z1, ... z,],
which is compatible with the natural semigroup structure (a fact which was found independently by Grabe
[G]), in particular, the variables may have as well negative, positive or zero weights (cf. §1). More or
less all algorithms using Grobner bases (such as computation of syzygies, ideal theoretic operations, etc.)
are now available in this general context. Our generalization provides also an easy manner to implement
standard bases for modules over the Weyl algebra and for D modules. The general standard basis algorithm
is described in §1.

In §2 we prove that Schreyer’s method to compute syzygies generalizes to arbitrary semigroup orderings.
It seems to be the first algorithmic proof of the fact that the length of a free resolution is equal to the
number of variables which actually occur in the equations (and not on all variables of the ring) in the local
and mixed (local global) case. Tt follows basically Schreyer’s original proof [S] but contains some new ideas,
since Macaulay’s lemma, which is usually applied, does not hold for orderings which are not well orderings.
As a consequence we obtain that the rings Locc K[z] (see below) are regular.

Chapter §3 contains a partial positive answer to Zariski’s multiplicity conjecture. Although there are other
partial positive answers known, e.g. by Zariski, I.e, Lipmann, Laufer, O’Shea, Yau and the first named
author, it has basically resisted all attacks. Our result, which supports the conjecture, was prompted by
computer experiments with an implementation of the above described algorithm in the computer algebra
system SINGUTLAR. The proof (given in §3) does not use any computer computation but the computer
experiments were essential in guessing the result. We include a proof that the module of leading terms, even
in the case of general semigroup orderings, is a flat specialization of the original module. This is the basis of
most applications, e.g. for computing Milnor numbers or multiplicities and Hilbert functions of singularities.

For a description of an implementation of the standard basis algorithm described in this paper, special
strategies and many comparisons, also for syzygies, cf. [Gr et all.

1 A standard basis algorithm for any semigroup ordering

This algorithm is a generalization of Buchberger’s algorithm (which works for wellorderings cf. [B1], [B2])
and Mora’s tangent cone algorithm (which works for tangent cone orderings, cf. [M1], [MPT]) and which
includes a mixture of both (which is useful for certain applications cf. [M2]). Tn fact, it is an easy extension
of Mora’s idea by introducing the “correct” definition of ecart. But we present it in a new way which, as we
hope, makes the relation to the existing standard basis algorithms transparent.
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Tet K be afield, 2 = (21,...,2,) and o, 8,y column vectors in N? N = {0, 1,2, ...}. Let < be a semigroup
ordering on the set of monomials {z®|a € N} of K[z], that is, < is a total ordering and = < z? implies
Yz < V2P for any ¥ € N”. Robbiano proved that any semigroup ordering can be defined by a matrix
A€ GL(n,R) as follows:

Let ay,..., a, be the rows of A, then z” < 2% if and only if there is an i with a; - =a; - B for j <1
and a; - < a; - 8. Thus, 2 < 2° if and only if A is smaller than AS with respect to the lexicographical
ordering of vectors in R”.

For g € K[x], g # 0, let L(g) be the leading monomial with respect to the ordering < and ¢(g) the
leading coefficient of g, that is ¢ = ¢(g)L(g)+ smaller terms with respect to <.

Definition 1.1 We define Loc K[x] := S_' K[z] to be the localization of K[x] with respect to the multi-
plicative closed set Sc :=={1+4+¢g|g=0o0rge K[z]\{0} and 1 > L(g)}.

Remark 1.2 1) K[x] C Loce K[x] C K[x](,), where K[x](,) denotes the localization of K[z] with respect

to the maximal ideal (x1,...,2,). In particular, Locc K[z] is noetherian and K[z] flat and K[x], is
TLoce K[z] flat.

DM, 2 < 1 and @pyq,... 2, > 1 then 1+ (24,0 2,)K[z,...,2,] C S C 1+
(z1,...,2,)K[2] =1 S, hence Klzy, ..., 2], aol@rgr, ..o 0] C© ToccK[z] C S TK[a].

Note that < is a wellordering if and only if z” = 1 is the smallest monomial and in this case Locc K[z] = K[z].
We call such orderings also global orderings. If 1 > x; for all i, then Locc K[x] = K[x](,). Such orderings
are called local orderings. Orderings, where some of the variables are > 1 and others are < 1 are called
mixed orderings. Tmportant are degree orderings where each variable has an integer weight (positive or
negative but not zero) and where the ordering refines the partial ordering induced by the weighted degree.
Examples include the orderings w degrevlex with w = (wq,...,w,), w; # 0, where £ < 2f ifw-a < w3
or w-a = w- 3 and the last non zero entry of § — « is negative. We just write degrevlex (respectively
degrevlex™) if all w; = 1 (respectively all w; = —1).

Many applications require an elimination ordering for, say, x,41,...,2,, which means that L(g) €
Klx1,...,z.] implies g € K[z1,...,%.:]. Since 2% < 1 implies x* € K[z1,...,x,] we see that this ordering
is necessarily a wellordering on the set of monomialsin K[z.41,...,%,]. The usual lexicographical ordering
lex, given by the matrix A = id, is an elimination ordering for all 0 < » < n, but the “local lexicographical”
ordering lex™ given by A = — id is not an elimination ordering. If A; is an ordering for monomials in
21, ..., 2. and Ag for monomials in x,.41,...,2,, then the product ordering given by the direct sum
A1 @ Ag of the matrices A7 and Ag is an elimination ordering for =1, ... z,.

We consider also module orderings <,,, on the set of monomials {z%e;} of K[2]" =5%"._,  Klx]e; which
are compatible with the ordering < on KJ[z]. That is for all monomials f, f’ € K[z]" and p,q € K[z] we
have: f <,, [ implies pf <,, pf’ and p < q implies pf <, qf.

We now fix an ordering <, on K[z]" compatible with < and denote it also with <. Again we have the
notion of coefficient ¢(f) and leading monomial L(f). < has the important property:

Ligf) = L(g)L(f) for ¢ € K[z] and f € K[z]",
L(f+¢9) <max(L(f), L(g)) for f,g € K[z]".

Definition 1.3 Tet | C K[z]" be a submodule.

1) L(T) denotes the submodule of K[x]" generated by {L(f)|f € T\{0}}.

2) A finite set G={f1,..., [} C T is called a standard basis of T if {L(f1),..., L(fs)} generates the
K[z] submodule L(T) C K[x]".

3) A standard basis {f1, ..., fs} is called veduced if, for any i, L(f;) does not divide any of the monomials
Of f1 gy fs (emcept 7f9€>]f)

4) A finite set {fr,..., fs} is called interreduced, if L(f;) 1 L(f;) for all i £ j.

Note that an interreduced standard basis does, while a reduced standard basis does not necessarily exist (cf.

Remark 1.12).



Proposition 1.4 If {fi,..., fs} is a standard basis of T then TLocc K[x] = (f1,..., fs)Loce K[2].

The proof will be deduced from the normal form used in the standard basis algorithm (cf. Corollary 1.11).
Tn general it is not true that fi,..., f, generate T as K[z] module (take T = (2)K[z], n =1, f = = + 2?
with lex™). This is also not true if T C K[z] is (21,...,2,) primary and if {fi,..., fs} is a reduced
standard basis (which answers a question of T. Mora): consider the ideal T C K[x,y] generated by
20— 22 y® — 2%y7 2'%7 which is (x,y) primary. The first two elements are a reduced standard basis
of I'Loce K[z, y] = I K[x,yl(s,y) where < is degrevlex™ und hence generate I K[z, ], ,) but they do not
generate T K[z, y]. (Cf. also Remark 1.8.)

Notations: Let f,g € K[z]", L(f) = #%¢; and L(g) = zPe;. Tf i = j and 2”|2° then we write L(f)

I.(g).

Ifi = jand 27 = lem(x®,2"), v = (max(ay, 31),... ,max(a,, 3,)) then the lowest common multiple
and the S polynomial are defined as follows:

lem(L(f),L(g)) := «” and

spoly(f,g) == 2" f — Mﬂﬁ*ﬁg.

elg)”

Tf i % j then, by definition, L(f) JTL(g), spoly(f,¢) := 0 and lem(L(f), L(g)) := 0.

Definition 1.5 Let F = {G C K[2]"|G finite and ordered }. A function NF : K[z]" x F — K[z]", (p, G) —
N F(p|G), is called a normal form if for any p € K[z]" and any G € F the following holds: if N F(p|G) # 0
then L(g) fL(NF(p|G)) for all g € G. NF(p|G) is called a normal form of p with respect to G.

Example 1.6 Let < be a wellordering then the following procedure NFBuchberger is a normal form:

h := NFBuchberger (p|G)
h:=p
WHILE exist f € (7 such that L(f)|.(h) DO
choose the first f € (F with this property

h = spoly(h, /)

The principle for many standard basis algorithms depending on a chosen normal form is the following:

S := Standard (G, NF)
S =G
P = {(f,9)lf,g €S}
WHILE P # ) DO
choose (f,g) € P; P:= P\{(f,9)}
h := NF(spoly (f,g) | S)
IF h #+ () THEN
P:=PU{(h f)| feS}
S:=S5uU{h}

In this language Buchberger’s algorithm is just
Buchberger(G) = Standard (G, NFBuchberger).

If < is any ordering (not necessarily a wellordering) and A the corresponding matrix, then the matrix



defines a wellordering on the monomials of K[t, 2] which we denote also by <. For f € K[x] let f* be the
homogenization of f with respect to t and for G C K[z]let G" = {f" | f e G}. f f € K[2]", f = fiei,
we define f =S 1% fle; where deg fl' 4+ a; = deg f7h +a; for all £, j and the a; minimal with this property.

We set G" = {f" | f € G} for G C K[z]".
This ordering has the following property:

Lemma 1.7 If there exists o and v = (y1,...,9n) such that 1% > 27 and o = vy + - - -+ 7, then 27 < 1.
Especially, < is not a wellordering in this case on K[z].

The Lazard method (cf. [I.]) to compute a standard basis is the following:
S := Lazard (G)

S:=Gh
S := Buchberger (5)
S:=8t=1)

Remark 1.8 The result S of Lazard’s method is, in general, much bigger than a standard basis computed
by the algorithm “Standard basis” below. Tf we are only interested in a standard basis of () this algorithm
computes usually too much and this might be the reason why it is often too slow. In Lazard’s algorithm
one may, and usually does, take an interreduced standard basis of (G") by deleting superfluous elements.
The result still has the property that the K[z] module (G) = GK[z] is generated by G (we need not pass to
Locc K[x]). This is not necessarily true if we take an interreduced standard basis of (G): let G = {z, 2+ 27},
which is a standard basis of (G) = (z)K[z] C K[z] for lex”. We may delete either # or x + 2? to obtain
an interreduced standard basis of {((G) but if we delete z, then x 4+ 2% does not. generate () (but, of course,

GLocc K[2]).

For tangent cone orderings and some mixed orderings (cf. [M1], [MPT]) Mora found an algorithm which
computes a standard basis over Loc. K[z]. This algorithm can be generalized to any ordering and we can
describe it as follows:

S := Standard basis (G)

S =Gt
S := Standard (.5, NFMora)
S:=8t=1)

Tet G C KJt,x]" be a finite and ordered set of homogeneous elements and p € KT, 2]" homogeneous. Note
that an element of K[, z]" is homogeneous if its components are homogeneous polynomials of the same
degree. The generalization of Mora’s normal form to any semigroup ordering is as follows:

h = NFMora (p|G)
h:=p
T: =G
WHILE exist f € T, such that L(f) |1*L(h) for some o DO
choose the first f € T with L(f) |41*L(h) and o minimal
IF o > () THEN

T:=TU{h}

h = spoly (1%h, f)

IF ¢ | h THEN
choose o maximal such that ¢® divides h
h = TLO

Theorem 1.9 I) NFEMora terminaies.

2) If h is a normal form of p with respect to G = {fi,..., [} computed by NFMora then there are
homogeneous polynomials g, &1, ... & € K[t x] such that
-gp=2.&fi+h
- L(g) =1t~

- deg p+a =deg & + deg f; = deg(h) (if & # 0, h #0)



- L(fi) ft*L(h) for all i, o

If < is a wellordering on K[r] then g = 1.

Proof: 2) By induction suppose that after the v th step in NFMora we have

- gvp = Zgnzﬁ + hl/7
- r’(ql/) = t()/u7
-degpta, =deg & +deg fi =deg hy, (if & #0, hy £0)

-t L(hy) >t L(hy) for p < v.

6 L(f:) ft*L(h,) for all i, then we have finished.
Since T consists of elements fi, € (7 and of h), constructed in previous steps we have to consider two cases:

(a) Tf L(fx) | t*L(hy) and a is minimal for all possible choices for fi € (G then

gup =3 1% fi +1"hy — nfs +nf

with L(fy)n =1“L(h,). We obtain

hypr = 1%hy, —nfi
Jv+1 = ta.(]u

giu+1 = t(ygiu it v ;A k
gkl/+1 = t(ygky + n

and the induction step follows with a1 = a4+ ay.

(b) Tf L(h,) | t*L(hy) for some g < v and o is minimal for all possible choices from T then

ta.ql/p = Zf(ygu/ﬁ + tahu - nhu + nhu

with L(hy)n =1*1L(h,). We have

hyyr = 1%h, — nh,
Gog1 = 1% — gy
giu+1 - t(ygiu - 77€7u

Now t*»~* [(h,) > L(h,) implies t*T* > L(n)t* that is t*T* = L(g,41). This proves 2).

To prove 1) let I, = (L(f) | f € T.), T, be the set T after the v th reduction. Tet N be an integer such
that Ty = Ing1 = ... (such N exists because KJt,x]" is noetherian). This implies Ty = Tiyy1 = .... The
algorithm continues with fixed 7" and terminates because < is a wellordering on K[t, z]".

Remark 1.10 1) Tf the ordering < on K[z] is global, then the standard basis algorithm is equivalent to
Buchberger’s algorithm because then 2 | 2% implies * < 7. This shows that only elements from G are
used for the reduction in NFMora. Moreover, if (7 is homogeneous but < arbitrary, the standard basis
algorithm even coincides with Buchberger’s algorithm.

2) Tf < is a tangent cone ordering then the algorithm is Mora’s tangent cone algorithm. Tn his algorithm
Mora uses the same normal form, just in another language. Tnstead of passing from K[z] to K[, z] by
(p"). During the
( h

p")) terminates
).

homogenizing and extending the ordering, he uses the notion of ecart, where ecart(p) = deg,
implementation of SINGULAR we discovered that the normal form with ecart(p) := deg, (.
for any ordering, not only for tangent, cone orderings. This was found also by Grabe (cf. [G]

Corollary 1.11 et S ={f1,..., fs} be a finite subset of the submodule T C K[z]".

1) If S is a standard basis of T then:



(i) For any f € K[x]" there are ¢9,& € K([z], h € K[x]", such that

(1+g)f =D &fi+h,

L(g) < 1ifg #0, L f) < L(f) if & # 0 and, for all i, L(f;) JT.(h) if h # 0.
(it) f € I if and only if NFMora (f" | S*) = 0.

(ii°) f e T if and only if (14 g)f = >"& fi for suitable g,& € Kx], L(g) <1 ifg # 0 and L(& f;) <
L(f) if& # 0.

(ii1) T Loce K[x] = (S) Loce K[x] that is S generates T Loce K[x] as Loce K[2] module.
2) The following are equivalent:

(i) S is a standard basis of T.

(i) S" = Standard (S", NFMora).
(i1i) NFMora (spoly(f,g), S") =0 for all f,g € S".
(iv) One of the conditions (ii), (ii’) of 1).

The corollary 1s an easy consequence of 1.9.

Remark 1.12 1) Tf one extends the ordering < given by the matrix A on K[z] to K[t, 2] by

T wy, ..., wy
0
,allw; >0
: A
0
and uses homogenization with respect to the weights wy, ..., w, then the standard basis algorithm works as

well. Griabe discovered (cf. [G]) that for a suitable choice of the weights adapted to the input (the polynomials
should become as homogeneous as possible with respect to these weights) the algorithm can become faster.
We call this the (weighted) ecartMethod. Tt is implemented in SINGULAR with an automatic choice of
an “optimal” weight vector.

2) Given < and (G there exist, of course, many normal forms NF(—|(F) (choose, for instance, in the described
NF algorithms not the first element). But if < is a global ordering, we can apply the normal form algorithm
to each monomial of & and we can achieve that for any f € K[z]",

(%) f=32&1+h,

for suitable & € Kx], h € K[z]" such that L(& f;) < L(f) if& # 0 and, for all i, no monomial of h is divisible
by L(f:); h is then unique. Hence, there exists a distinguished normal form NF(—|G), characterized by
the property that L(g) does not divide any monial of NF(p,G) for any ¢ € G and any p € K[z]" with
NF(pl) 0.

If we try the same for local or mixed orderings, this procedure will, in general, not terminate. We can only
derive a presentation () with & € K[[z]] and h € K[[2]]" (formal power series) having the above properties.
In particular, a distinguished normal form does only exist as a function with values in K[[z]]".

3) A reduced standard basis is uniquely determined by 7 and <. Tf < is a wellordering or if

r

dimg Loce K[2]"/T < oo then there exists always a reduced standard basis in K[z]". Tn general, it ex-

ists only in K[[z]]".

2 On Schreyer’s method to compute syzygies

Tn this chapter we shall prove that Schreyer’s method to compute syzygies (cf. [S], [E]) extends to any
semigroup ordering < on K[z]" = Y.._, K[z]e;. For the treatment of syzygies in a different context, or for
different, algorithms see [Ba], [MM1], [MM2] and [MMT].

Tet S ={g1,...,94} be astandard basis of T C K[x]".
For K[z]? = ?i:w K[z]e; we choose the following Schreyer ordering <y (depending on S): 2%¢; 4, <4

mﬁej_l_T if and only if either L(2%¢;) < f/(mﬁgj) or L(x%g;) = f/(mﬁgj) and i > j.



For g;,¢; having the leading term in the same component, that is L(g:) = 2% ex, L(g;) = ©% e we consider
. lem(T.(g:), T.(g4
spoly(gi, ;) = mjigi — myjgy with my; = e(g;) 2GR

Because S is a standard basis we obtain (Corollary 1.11)

(14 hig)(myjigi — mijg;) = > &g
with L(h;;) < 1if h;; # 0 and L(E7g,) < L(m;ig:)-

For j > i such that g;, g; have leading term in the same component, let
7ij = (V4 hig)(mjieigr — mijejpn) — Y EFeupn.

Let ker(K[x]? = K[2]", > wie;i1r — Y w;gi) denote the module of syzygies, syz(7), of {g1,...,94} The
following proposition is essentially due to Schreyer.

Proposition 2.1 With respect to the ordering <1 the following holds:

1) L(Tij) = mjieipr.

2) {ri; | i< j s.t. L(g:), L(g;) are in the same component } is a standard basis for syz(T).

Proof: 1) L(r;) = L(mjieirr — mijeitr) = mjieipy holds by definition of <;. To prove 2) it has to be
shown that L(syz(7)) = ({mjieitr}).

Tet > w;g; = 0, that is 7:= > w;e;4, € syz(T), and let megy, = L(r) with respect to <;. Tet
T :={ne,y; | ne,4; be a monomial of 7, L(ng;) = L(mygg)}.

Then, obviously, 7|7 := Zner+zeT nepqq 18 a syzygy of L(gh),..., L(gq). FEspecially, #7 > 2. Choose [
such that ne,q; € T for some n and ne,q; # megy,. Because L(7) = megy, and the definition of < we
have k < . Since mL(gx) = nL(g:) we have my, | m. But L(ry) = mygegq, implies L(rg) | 7, that is

L(r) € L({{mjieiqr})), which proves the proposition.

The algorithm “Standard basis” of paragraph 1, together with repeated application of the algorithm “Syz”,
provides an effective way to construct finite Loce K[z] free resolutions and gives a sharpened version of
Hilbert’s syzygy theorem which generalizes Schreyer’s proof (cf. [E], [S]).

Lemma 2.2 Tet {g1,...,94} be a standard basis of I C K[z]" = 5 ,_, , Klxle;. We assume that the
leading terms are a basis vector of K[x]", that is L(g;) = e,, for suitable v, We set J = {v|3istv=ry}
and for v € J we choose exactly one g;, such that I(g;,) = e,. Then TLocc K[2] is a free Loce K[x]

module with basis {g;, | v € J} and (Loce K[2])" /T Loce K[x] is Loce K[x] free with basis represented by the

tejligJ}

Proof: Tet us renumber the ¢; such that ¢; = g, for v € J. First of all, the subset {g, | v € J} C
{91,.-. .94} remains a standard basis of T since the set of leading terms is not changed. Hence, we may
assume that all leading terms are different. By Proposition 1.4, {g, | v € J} generates ITocc K[z]. Now

& =3 &gy & € Locc Kal.

JET Jjed

consider a relation

After clearing denominators we may assume that & € K[z]. Since the leading terms involve different e;
on each side, we obtain & = --- = &, = 0. This shows that the g¢,, v € J are linear independent and
that the e;, j ¢ J, are independent modulo TToce K[z]. Since {L(g;) | 7 € JYU{e; | i € J} generate
LK[x]") = (e1, .yer)K[2], {g; | § € J}U{e; | 1 € J} is a standard basis of K[x]” and this set generates
(Loce K[#])" by Corollary 1.11. Therefore, {e; | j € J} generates (Loce K[x])"/T Loce K[x] over TLoce K[z].

Theorem 2.3 Tet S = {g1,...,9q} be a standard basis of T C K[z]". Order S in such a way that whenever
T.(¢:) and L(g;) involve the same component, say L(g;) = 2% ey and L(g;) = % ey, then a; > o  in the
lezicographical ordering if i < j. If L{g1),...,L(gq) do not depend on the variables x1,... x5, then the
I.(7i;) do not depend on the variables x1, ... xs41 and

M = (Loc. K[2])" /T Loce K[x]

has a Loce K[x] free resolution of length < n — 5. In particular, M always has a free resolution of length
< n and, by Serre’s theorem, Loce K[x] is a reqular ring.



Proof: For i < j and L(g;) = x%en, L(g;) = x%er we have oy = (0,...,0,065 541,...), 05 =
(0,...,0, 0 541,...) with a; 41 > o 541. Therefore, L(7;) = mjieip, does not depend on zq,...  2541.

Tet g1 := ¢ and ¢y : K[2]9" — K[2]" the morphism given by {g¢;}, > wie;y, — > w;g;, and ¢o @ K[2]> —
K[x]9 the analog morphism given by the standard basis {r;;}, go = #{7;; }. Applying the same construction
as above to syz' (I} := syz(T) = ker(¢1) and {r;; } we obtain a standard basis {77} of szy*(T) := syz(syz(I)) =
ker(¢2) such that the leading terms of Tgl do not depend on xq,...  Zyo.

Continuing in the same way we obtain an exact sequence

0= K27 /ker(pn_s) 725" K[a]™+ = . B K[]" 8 K] = K[=]"/T = 0.

Moreover, ker(p,_,) = syz” *(I) has a standard basis {r], "} such that none of the variables appear in

L(77"). Hence, by the preceding lemma, K[2]9~= /ker(¢,_;) becomes free after tensoring with Loce K[z].
Tf we tensor the whole sequence with Loc K[z] it stays exact (since Loce K[x] is K[z] flat) and is the desired
free resolution of M.

Remark 2.4 The above algorithm almost never gives a minimal free resolution (in the local or in the
homogeneous case), on the contrary, every syzygy module is generated by a standard basis. Nevertheless, it
is often quite fast (cf. [Gr et al]).

3 Zariski’s question, Milnor numbers and multiplicities

The generalization of Buchberger’s algorithm presented in this paper has many applications, in particular to
local algebra and local algebraic geometry. For instance, most of the algorithms described in [E], T1.15 can be
transferred from k[X] to Loce K[X]. Some use extra tag variables to be eliminated later, hence they require
mixed orderings even for pure local computations. Here we shall only explain how the implementation in
SINGULAR, helped to find a partial answer to Zariski’s multiplicity question and prove the theoretically
relevant results (cf. Proposition 3.3 and Corollaries 3.4, 3.6) which justify such kinds of applications.

Zariski asked in 1971 (cf. [7]) whether two complex hypersurface singularities f and g with the same embedded
topological type have the same multiplicity, where for f € C{ay, ... ja,} = C{a}, f =5 cpx®, f(0)=0,a
not constant convergent powerseries, mult(f) = min{|e| | ¢, # 0} is the multiplicity of f. Zariski’s question
(usually called Zariski’s conjecture) is, in general, unsettled but the answer is known to be yes in the case
n = 2, that is for plane curve singularities (Zariski, T.e Diing Trang), and if f is semiquasihomogeneous and
¢ is a deformation of f (Greuel, O’Shea).

Recall that f is called semiquasihomogeneous if there exists an analytic change of coordinates and positive
weights for the new coordinates such that the sum of terms of smallest weighted degree has an isolated
singularity.

The idea for the search for a counter example to Zariski’s conjecture is as follows: let fi(x) = f(2)+1fi (2)+
12 fo(x) + ... be a deformation of f(x) and u(f:) = dime C{z}/(0f: /=1, ..., df:/Oz,) the Milnor number
of fi which we assume to be finite for £ = 0 (then it is finite for ¢ close to 0). Then, if the topological type
of f; is independent of , the Milnor number p(f;) is independent of ¢ (for ¢ sufficiently close to 0). The
converse is also known to be true if n # 3. Hence, if u(f;) is constant but mult(f;) is not, we get a counter
example (at least if n # 3). Because of the above mentioned positive results, a candidate for a counter
example must have a big Milnor number which cannot be computed by hand. The standard basis algorithm
of §1, together with a good choice of strategies and special improvements for zero dimensional ideals (cf.
[Gr et al]), as implemented in SINGULAR, allowed these Milnor numbers to be computed for several series
of candidates (all other systems failed). The failure to find a counter example led to the following positive
result.

Tet fi(x) be a (1 parameter) holomorphic family of isolated hypersurface singularities, that is 0 € C”
is an isolated critical point of f; for each # close to 0 € C. The polar curve of such a family is the curve

singularity in C" x C defined by the ideal (9f;/0x1,...,df;/0x,) C Cla,1}.

Lemma 3.1 Let f, be a family of isolated hypersurface singularities. Let H = C"~" be a hyperplane through
0 such that formation of the polar curve is compatible with restriction to H. That is: polar curve(f, | H) =
polar curve(f;) N H. Then

w(fe) = constant = p(fi|H) = constant.



Proof: We may assume that H = {x, = 0} and then the polar curve(fi|H) is given by

(0f/0xq,...,0fi/0xn_1,2,) while polar curve(fy) N H is given by (9f:/0x,... 0f;/0x,, x,). Hence,
the assumption is equivalent to 8f; [0z, € (Of: /0w, ..., 0fi/0xn_1,2,).

We shall use the valuation test for u constant by T.é and Saito ([1.S]):

u(fy) = constant < for any holomorphic curve v : (C,0) — (€ x C,0) we have val(df,/0t(y(s))) >
min{val(df;/0x;(v(s))), i = 1,...,n}. Moreover, this is equivalent to “>” replaced by “>". (val denotes
the natural valuation with respect to s.)

Now let ¥(s) be any curve in H = {x,, = 0}. Then df;/0x, € (0f;/0x1,...,0f/0xn_1,2,) implies that
val(3fi/0x,(v(s)) > min{val(0f; /0x;(v(s))), i=1,...,n— 1}

Applying the valuation test to f; and to f; | H, the result follows.

Proposition 3.2 Tet fi(z1,...,70) = ge(21, .. 2n_1)F22hi(z1,.. . 20) be a family of isolated hypersur-
face singularities. Let gy be semiquasthomogeneous or let n = 3. If the topological type of f: is constant then
the multiplicity of g; is constant (fort close to 0). In particular, if mult(g;) < mult(x2h;) then mult(f;) is
constant.

Proof: Since f; has an isolated singularity we may add terms of sufficiently high degree without changing
the analytic type of f;. If n = 3 we may replace g; by g:(x1,22) + 2V + x, N sufficiently big, which
has an isolated singularity and the same multiplicity as g;(21,22). Hence, in any case we may assume
that g has an isolated singularity. Applying the preceding lemma to the hyperplane {z, = 0} we obtain
u(ge) constant. But since Zariski’s conjecture is true for plane curve singularities and for deformations of
semiquasihomogeneous singularities ([Gr]), mult(g;) is constant.

The Milnor number u(f) of an isolated singularity can be computed as the number of monomials in
Klzy,...,a,]/L(T) where T is the leading ideal of (8f/da1,...,0f/dz,) with respect to any local ordering.
This follows from Corollary 3.4, for which we need the following construction:

Let g1,...,gq be a standard basis of T C K[z]" =5"._,

with the point (a1,...,00,0,...,1,...0) € N?*" For a weight vector w = (w1,...,wny,) € Z"F" we
define

, K[z]e;. Any monomial 2%e;, may be identified

deg, e = wiay + -+ -+ Wpovy + Wh ik

to be the weighted degree of 2%ey. Tet in, (f) the initial term of f € K[z]", that is the sum of terms
(monomial times coefficient) of f with maximal weighted degree and in,, (T) the submodule generated by all

in“,(f), f el

Tt is not difficult to see that there exists a weight vector w € 7"+ (indeed almost all w will do) such that
ing(g:) = c(9:)L(g:), i =1,...,q, and, moreover, in,, (I) = L(T).

We choose such a w and shall now construct a deformation from L(T) to I:
For f € K[x]" we can write f = f, + fp—1 + fp—2 + --- such that the weighted degree of each monomial of
f,1s v. Let t be one extra variable and put

f(TJL) = fp(T) + t.fpf1 (T) +t2.fp72(m) +--€ K[m,f,]T.

Let T C K[x,1]” be the submodule generated by all f, fel. On K[x,1]" we choose the following ordering:
2 tPey, < xPt9e; if p 4 deg,, £%, < q + deg,, ¥%¢; or, if these terms are equal and 2%y, < zPe;.

With respect to this ordering we have L(f) = L(f) and, moreover, §1,...,§q is a standard basis of I. (1f
helthen h=14"f, fel, hence, L(h) =" L(f) € {L(d1),- -, T(3q))). Tn addition, setting t =0 or 1, we
obtain sections of the inclusion of multiplicative sets S (K[z]) C S<(K[x,1]).

Tet R:= TLoccK[x], S := Loce K[2,1] and K () the quotient field of KTi].
Proposition 3.3 If I # R” then S’“/fﬁ is a faithfully flat K[t] module with special fibre
(S"/1S) Qg K = R"/L(IR

and generic fibre

(S"/1S) @k K(t) = R" /IR @ K(1).



Proof: The statements regarding the special and the generic fibres are easy. Note that for A #
0, (S7/1S5) @rp K[t]/(t — A) = R"/IR. Therefore, if T # R" then the support of S"/IS is surjective

over Spec K[t] and hence it remains to show that ¢ is a non zero divisor of S’“/fS’. Tet feS andif e TS,
By Corollary 1.11 we have (after clearing denominators)

NFMora (tf* [{g7,...,g0}) =+ NFMora (f" | {g7,...,4,}) =0,

hence, f € TS.

Corollary 3.4 let either < be a wellordering or R" /TR a finite dimensional K vector space. Then the
monomials in K[z]"\L(T) represent a K basis of R"/TR.

Proof: Tf < is a wellordering, the monomials not in 7,(T) are a basis of the free module S” /TS (Theorem of
Macaulay, cf. [E]), hence the result. Tn general, it is easy to see that these monomial are linear independent
modulo TR. (Use a standard basis of 7 and Corollary 1.11.) Tf R"/TR is finite dimensional, there are
only finitely many monomials in K[#]"\L(I). The proposition implies that S"/7S is K[t] free with these
monomials as basis, hence they also generate R"/TR.

Remark 3.5 Tn general, the monomials not in L(7) are not a basis of Locc K[z]/I. Take, for example, K[z]
with lex™ and 7 = (0). Then Locc K[z] = K[z](,) is not K generated by monomials. If < is a wellordering,

then S"/TS is even free over K[t] (cf. [F]).

Corollary 3.6 For any module ordering dim R” /TR = dim K[2]"/L(T) where dim denotes the Krull dimen-

sion.

Proof: T = R" implies L(I) = KJ[z]", hence we may assume | # R". Faithful flatness implies that
dimR" /TR =dim R"/L(IR, hence the result.

Let us finish with a final remark about multiplicites in the local case:

Consider the local ring R = Kl[z]) with maximal ideal (x) = (x1,...,2,) and M = R"/IR a finitely
generated R module, where T is given as a submodule of K[2]" by finitely many generators. et mult(MM)
denote the (Samuel Ymultiplicity of M with respect to (2). Consider

grM = (2)' M/(x) "M,

i>0

which is a graded module over gr R = K[z]. For any graded module N let hx denote the Hilbert function
of N and degree(hy) the degree of the corresponding Hilbert polynomial.

The following proposition now follows easily.

Proposition 3.7 Let < be a degree ordering (cf. Chapter 1) on the monomials of K[x] such that w; =
degree (x;) = —1 for i = 1,...  n which is extended to a module ordering on K[x]" arbitrarily. Let M =
R"/IR be as above and T(I) be the leading ideal of T. Then the Hilbert function hge pr coincides with the
Hilbert function hgpp)-/rry of the graded module K[x]"/L(I). In particular, dim M = dim K[x]"/L(I) and
mult( M) = degree(h 21 /1.(1))-
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