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ABSTRACT 

We explore methods for managing conversational engagement in 
open-world, physically situated dialog systems. We investigate a 
self-supervised methodology for constructing forecasting models 
that aim to anticipate when participants are about to terminate their 
interactions with a situated system. We study how these models can 
be leveraged to guide a disengagement policy that uses linguistic 
hesitation actions, such as filled and non-filled pauses, when 
uncertainty about the continuation of engagement arises. The 
hesitations allow for additional time for sensing and inference, and 
convey the system’s uncertainty. We report results from a study of 
the proposed approach with a directions-giving robot deployed in 
the wild.  

Categories and Subject Descriptors 

H.1.2 [Models and Principles]: User/Machine System – Human 

Information Processing; H.5.2 [Information Interfaces and 

Presentation]: Multimedia Information Systems – Audio 

input/outputs; User Interfaces – Natural Language; I.4.8 [Scene 

Analysis]: Tracking, Sensor Fusion 

General Terms 

Algorithms, Human Factors 

Keywords 

Engagement; hesitation actions; filled pauses; forecasting models; 
human-robot interaction; multimodal interaction; self-supervision. 

1. INTRODUCTION 
Situated, multimodal interactive systems typically grapple with 
multiple uncertainties as they perceive, infer, and act. In addition to 
challenges with speech recognition, such systems face uncertainties 
in the visual space, and in the multimodal inferences they make 

such as tracking the location of users, their focus of attention, 
gestures, engagement, floor control actions, and intentions. Beyond 
real-time inferences about the state of world, the systems may 
leverage the ability to forecast future states, and use such forecasts 
for planning and decision making. For instance, in making a 
decision about taking a turn in a multiparty conversation, a robot or 
virtual agent may need to consider who is likely to start talking next 
and when? Similarly, the ability to anticipate that people are about 
to enter or leave a conversation, or that their focus of attention may 
shift, can help support the planning of verbal and gestural outputs 
in a manner that leads to more fluid interactions. 

We explore the construction and use of forecasting models that 
enable interactive systems to make inferences about the near-term 
future. In particular, we investigate a self-supervised approach to 
constructing these models that does not require manual annotations. 
Furthermore, we investigate the use of linguistic hesitation actions 
that can signal the system’s state of confusion and generate 
additional time for collecting evidence and resolving uncertainties. 
We explore the use of forecasts and hesitations both separately and 
together, showing how forecasts can guide hesitations. 

While the proposed forecasting and hesitation mechanisms are 
applicable to a variety of interaction problems, we explore their use 
in the context of managing conversational disengagement in a 
physically situated interactive system. Starting with a conservative, 
heuristic model for disengagement, we present methods for 
learning a forecasting model that is guided by this heuristic and that 
aims to anticipate whether participants will terminate their 
interactions with the system. We show how this self-supervised 
model can guide disengagement policies that use hesitations when 
situations of high uncertainty about the future arise. Specifically, if 
the model indicates that participants might disengage, the system 
may insert a filled pause, “So …”, and, as it collects more evidence, 
the next contribution can be generated accordingly, for instance: 
“Anything else I can do for you?” if the participants remain 
engaged, or “Well, I’ll catch you later then.” if they disengage.  

We begin with a review of related work. Next, in Section 3, we 
motivate and articulate the open-world disengagement challenge. 
We outline the proposed approach in Section 4, present empirical 
results in Section 5, and discuss limitations, lessons learned and 
future opportunities in Section 6. Section 7 summarizes the paper. 

2. RELATED WORK 
The ability to establish and maintain an open communication 
channel is a foundational competency for spoken language 
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interaction. In physically situated settings, participants committed 
to an interaction typically enter into and maintain a certain spatial 
orientation, or f-formation [1], and actively signal and manage their 
conversational engagement by a variety of verbal and non-verbal 
cues, including gaze, gesture and body language. 

Several strands of research have investigated various aspects of the 
engagement process in situated interactive systems. Sidner and 
colleagues [2] showed that people direct their attention to a robot 
more often if the robot performed engagement behaviors. A model 
of engagement for human-robot interaction based on connection 
events is proposed and implemented in [3]. In [4] a model of 
engagement based on proxemics was proposed and evaluated with 
a receptionist robot. In our own previous work, we have proposed 
a computational model for managing engagement with a situated 
agent in multiparty, open-world settings [5]. Furthermore, in [6], 
we have showed how, by starting with a conservative heuristic for 
detecting when people are initiating their engagement with a 
conversational agent, we can learn to predict this event from visual 
features. In this work, we focus instead on the problem of 
disengagement, and show how a similar, self-supervised 
forecasting approach can be used to anticipate when participants 
are about to finish their interactions. In addition, we conduct an 
online evaluation of the learned model, and investigate how it can 
guide disengagement policies that leverage hesitation actions to 
mitigate situations of high uncertainty.  

Hesitations and disfluencies abound in conversational speech, and 
have previously been the object of linguistic investigation. For 
instance, [7] discusses the use of filled pauses like uh and um and, 
based on a corpus analysis, conclude that they are used to signal 
short (uh) or long (um) production pauses. In [8], a survey of 
previous analyses of fillers and hesitations is presented, indicating 
that fillers occur in situations where speakers are uncertain about 
choices they need to make, and that they facilitate understanding 
and allow listeners to assess the speaker’s level of confidence.  

In human-computer interaction, methods have been proposed for 
detecting filled pauses during speech recognition [9, 10], and for 
modeling and producing them during synthesis [11]. In efforts more 
closely related to this work, filled pauses have also been used in 
incremental natural language generation systems. For instance, 
results from a Wizard of Oz study [12] indicate that an incremental 
natural language generation system leveraging filled pauses, as 
well as overt and covert self-corrections, can achieve shorter 
response times and is perceived as more efficient than a non-
incremental generator, even though it produces longer utterances. 
[13] presents an analysis of types of user reactions occurring while 
pausing by using filled pauses, gaze, and syntactic completeness. 
Reinforcement learning methods for guiding incremental 
generation of natural language were shown to avoid long waiting 
times and minimize the use of fillers and self-corrections [14]. 

We use filled pauses as hesitation devices to endow a system with 
the ability to generate additional time for perception and decision 
making, as well as to display the uncertainty the system has. In 
distinction to prior efforts, we operate in the more complex setting 
of a multimodal, physically situated interactive system. Our focus 
is on uncertainties and decisions related to managing engagement. 
The generation of filled pauses is driven by a learned model that 
uses multimodal information to continuously forecast whether 
participants are about to terminate their interactions with the 
system. Finally, we conduct and report results from an end-to-end, 
in-the-wild study of the proposed approach with a deployed human-
robot interactive system. 

3. PROBLEM 
We focus on the problem of managing conversational engagement, 
defined in [2] as “the process by which two (or more) participants 
establish, maintain and end their perceived connection during 
interactions they jointly undertake”. As an experimental platform, 
we use Directions Robot [15], a system that couples a platform of 
physically situated interaction [16] with a Nao humanoid robot 
[17]. The system uses language synchronized with gestures to 
provide directions to people’s offices, conference rooms, and other 
public areas inside our building; a video is available at 
http://sdrv.ms/15Yay8V. The robot is deployed in an open space, 
in front of the elevators on the 3rd floor, in a standing setup shown 
in Figure 1. The usual traffic in this area includes people with 
offices on the floor, as well as visitors, who come to see people or 
attend meetings in the building, and who are often unfamiliar with 
the surroundings.  

Managing engagement in physically situated settings is a 
challenging multimodal problem. Engagement is a mixed-
initiative, jointly coordinated process, involving multiple signals 
across different channels, including proxemics and body 
orientation, eye gaze, head and hand gestures, verbal and non-
verbal behaviors. The open-world deployment of the Directions 
Robot brings additional challenges: interactions often involve 
groups of people, and are sometimes driven by actual needs and 
often by curiosity about the robot. People come and go at will, and 
their focus of attention is often shared between the robot and other 
people in a group, bystanders, or people passing by.  

The Directions Robot manages engagement via a computational 
model previously described in [5]. For every person in the scene, 
the robot reasons about the engagement state, actions, and 
intentions, and makes engagement decisions based on these 
inferences. The engagement state captures whether or not a person 
is engaged in an interaction with the system. The engagement 

intention reflects whether or not the person wants to be engaged 
with the system. Finally, engagement actions model whether a 
person is performing a maintaining or disengaging action (if 
engaged), or an initiating action versus no action (if not engaged).  

In a previous set of experiments [15], we explored the use of 
heuristic and machine-learned models for inferring engagement 
actions performed by people in the scene. In addition to bringing to 
the fore some of the challenges with managing engagement that we 
have already outlined, the study also highlighted a tradeoff between 
making early, incorrect disengagement decisions, versus being 
more conservative, and making these decisions too late. We found 
that, when using a model that we had learned from data, the robot 
would sometimes disengage abruptly if a participant would turn 
their attention towards another person in their group, or towards the 
direction that the robot was pointing to while it provided directions. 
Such head turns and motions resemble the beginning of 
disengagements. Committing false-positive errors on detecting 
disengagement is very costly as the robot disengages and bids the 
user a goodbye inappropriately, while the user expects the 
conversation to continue. A more conservative approach for 
inferring disengagement (such as a heuristic rule used in the study) 
may largely avoid such false positives, but can in turn lead to late 
disengagement decisions. As a result, the robot sometimes tries to 
continue the dialog while the participants are leaving.  

4. APPROACH 
Motivated in part by lessons learned from this initial user study, we 
investigate methods for managing disengagement decisions that 
address this tradeoff. We present a methodology where the system 



 

 

automatically learns, in a self-supervised manner, to forecast 
whether participants will shortly disengage. This prediction is 
accomplished by starting with a conservative heuristic for detecting 
disengagement, and learning to predict when this heuristic will 
signal disengagement ahead of time, from available real-time 
multimodal features. In addition to this forecasting model, we 
explore the use of hesitation actions such as filled and non-filled 
pauses, in situations of high uncertainty about the future. Producing 
filled pauses can reflect the system’s state, allow for more time for 
gathering evidence, and mitigate disengagement decisions that may 
have a high cost. We describe the details of the approach below.  

4.1 Forecasting Disengagement 
The forecasting model for disengagement aims to assess the 
likelihood that a participant will disengage with the system within 
some small time interval or lookahead (e.g., 5 seconds) into the 
future. We expect that the ability to forecast disengagement can 
inform better decision-making, and help avoid late contributions.  

The self-supervised methodology for training this predictive model 
relies on initially running the system with a heuristic rule for 
assessing disengagement that is conservative, or high-precision: the 
rule aims to commit no false positives, i.e., it only indicates 
disengagement when it has indeed happened, at the cost of 
potentially being late. We construct this heuristic by leveraging 
features that capture how close the participant is, whether a 
participant is stationary or moving, and whether or not a participant 
is attending to the robot.  

As an example, Figure 2 shows a trace of key variables for a 
participant, over time. The top three plots show the location of the 
face in the x dimension (A), the width of the face (B), and the 
probability that the participant’s attention is on the system 
computed via a probabilistic model (C). These raw streams are used 
to compute measures of proximity, stability, and attention, which 
are in turn used via a heuristic rule (see more details in the next 
section) to estimate the probability of disengagement – shown in 
Figure 2.D. Based on interaction data collected by the system, we 

can automatically define a target label for the forecasting model at 
every frame: the label (also shown in Figure 2.D) is 1 if the 
conservative heuristic signals disengagement with probability > 0.8 
within the lookahead window (in this case 5 seconds), and 0 
otherwise. The disengagement forecasting model is trained to 
predict this label at every frame, from existing features. The 
probability of future disengagement computed by running a trained 
forecasting model is also shown in Figure 2.D. 

4.2 Disengagement Policy with Hesitations 
The second focus of this work is the study of a disengagement 
policy that relies on hesitation actions such as filled and non-filled 
pauses to mitigate high-cost disengagement decisions. The central 
idea is that, in situations of high uncertainty about the future 
engagement state of the participants, instead of issuing the next 
dialog contribution, the system can instead produce a hesitation, 
e.g., slowly saying “So …” as a non-committal linguistic action that 
leaves the options open for either continuing or finishing the 
engagement.  

Figure 2. User trace. A: location of face, B: width of face, C: 

inferences about attention of user on system, and D: heuristic 

inference, labels, and forecasting model 
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Figure 1. Directions Robot, from top-left to bottom-right: robot interacting with one participant; robot interacting with two 

participants; robot in offline position; sample view from system camera; system diagram. 
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The disengagement policy chooses among four possible actions by 
comparing the probability of disengagement against three 
predefined thresholds, as shown in Figure 3. As with the standard 
policy, the probability of disengagement is compared at every 
frame against a disengagement threshold, and, if it exceeds the 

threshold (�� > ����
∗ ), the system disengages. In addition, every 

time the system is about to take a turn, a decision is made about 
whether a filled or non-filled pause should be triggered instead. If 
the probability of disengagement is low, i.e. smaller than a 

corresponding engagement threshold (�� < �	
�
∗ ), the system 

takes the turn and generates its next contribution. If the probability 

of disengagement falls the middle range (�	
�
∗ < �� < ����

∗ ), the 

new policy triggers instead a hesitation action, in the form of a filled 
or a non-filled pause. Filled-pauses, i.e., “So…,” or “Let’s see…,” 
accompanied by an extended arm gesture toward the participant are 
produced when the probability of disengagement is smaller than a 

preset filled-pause threshold (�	
�
∗ < �� < �
���

∗ ); non-filled 

pauses are produced otherwise (�
���
∗ < �� < ����

∗ ).  

The filled and non-filled pauses are hesitation actions that allow the 
system to buy more time, at a relatively low cost. As the hesitation 
action is being produced, the system can gather additional evidence 
over time that will hopefully lead to resolving the uncertainty: the 
system will eventually figure out whether or not the participants are 
disengaging and can perform the correct action. The expected cost 
of these hesitations is lower compared to a potentially incorrect 
engaging or disengaging action. In addition, the production of a 
filled pause also conveys to the user the system’s difficulty with 
making a choice [8] at this time. 

If the uncertainty persists, the policy re-runs, and may produce a 
succession of hesitations. If the probability of disengagement 
remains in the filled-pause region and the system should take a turn, 
the system produces up to two successive filled pauses, i.e., 
“So…,” “Let’s see…,” followed by a non-filled pause, and 
eventually a contribution if the uncertainty still persists (blue trace 
in Figure 3) If the probability of disengagement drops back into the 
engaging region after the system produced a hesitation, and more 
than 2 seconds have elapsed since, the system inserts an overt self-
repair—“Sorry!” before issuing its next contribution, to share a 
reflection with the user about the hesitation, and prior uncertainty 
and its resolution. We believe the apology can help further mitigate 
the costs of the filled pause.  

5. EXPERIMENTS AND RESULTS 
We now describe the experiments conducted with the proposed 
approach. The test-bed for these experiments is the Directions 

Robot, a robotic system deployed in the wild that can interact with 
one or multiple participants via natural language, and provide 
directions to people and offices in our building. The system 

combines a Nao humanoid robot with off-board sensors and 
computation. A high-resolution wide-angle camera and a Kinect 
sensor are placed above the robot, and a multi-core desktop 
computer runs the software infrastructure and controls the robot. 
The software subsumes components for making inferences from 
audio-visual signals (e.g., face tracking, speech recognition, etc.) 
and combines them with interaction planning, decision making, and 
output generation. In addition, the robot leverages directory 
information and a building map framework to construct spoken 
directions. A video is available at http://sdrv.ms/15Yay8V. 

5.1 Baseline Inference and Policy 
The baseline system was equipped with a conservative inference 
model for assessing disengagement. This model was manually 
crafted, taken into account lessons learned from a previous user 
study [15]. It constructed an estimate for the probability that a 
participant is disengaging by combining three continuous scores (in 
the 0-1 interval), capturing three signals of engagement: proximity 

(�), stability (�), and attention persistence (�), according to the 
equation below: 

�� = 1 − � ⋅ (1 − (1 − �) ⋅ (1 − �)) 

This heuristic requires that proximity is high and at least one of 
stability or attention is high in order for the user to be considered 
engaged. If the proximity score is low, or alternatively if both 
stability and attention are low, the probability of disengagement 
moves towards one. The scores for proximity, stability and 
attention persistence were computed by applying a sigmoid 
transform to a base feature. For proximity, the base feature was the 
size of the tracked face. For stability, the base feature measured the 
ratio between the max horizontal excursion of the face throughout 
the last one second and the size of the face. Finally, for attention 
persistence the base feature was computed by averaging over the 
past two seconds the probability that the user is attending to the 
system. The latter probability is computed by a machine learned 
model that uses face tracking and head pose information. The 
parameters of each sigmoid normalization function were manually 
tuned to ensure a conservative inference model, which aims to 
minimize the false-positive rate.  

The default policy for making engagement control decisions relies 
on the computed probability of disengagement: when this exceeds 
a preset threshold, the robot disengages with the participant. The 
interaction is terminated when the last participant is being 
disengaged. The final disengagement action performed by the robot 
depends on the current dialog state. If disengagement occurs near 
the beginning of the dialog, the robot terminates the interaction 
without any speech or gesture: this covers mostly cases when the 
engagement was incorrectly initiated with a person going by. If the 
disengagement occurs in the middle of the dialog, the robot says 
“Well, guess I’ll catch you later then!” communicating its surprise 
at the early disengagement. Finally, if the engagement terminates 
after directions were given, a simple salutation such as “Bye bye!” 
is performed, accompanied by a hand-waving gesture. In addition, 
when interrupting its own speech to terminate an interaction, the 
robot produces a synthetic disfluency (if the break did not occur on 
a word boundary) to further indicate its surprise, followed by a 
final, “Oops! Guess I’ll catch you later then.” 

Given challenges with tracking multiple participants in open-world 
settings, the vision system may sometimes lose track of an engaged 
participant. In this case, to avoid an immediate termination of 
engagement, the participant is persisted in an invisible mode for a 
short period, giving the tracker a chance to recover. While the 
participant is in this invisible mode, the heuristic rule increases the 

Figure 3. Disengagement policy with hesitation actions. 
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probability of disengagement from the last known value towards 
one, ensuring that the disengagement threshold is reached in five 
seconds since the face was lost. If the track is still not recovered at 
that point, the system disengages with the invisible participant. The 
baseline policy is adjusted to avoid producing any verbal 
contributions if all engaged participants are in this invisible state. 
Since lost faces often occur when people turn and leave abruptly, 
this policy reduces the chances of the robot issuing a late verbal 
contribution, while people are trying to disengage.  

5.2 Forecasting Disengagement 

5.2.1 Data 
The data for constructing the forecasting model for disengagement 
was collected by running the baseline system described above for a 
period of 5 days. Throughout this time, the robot initiated 133 
interactions. The resulting dataset for training the forecasting 
model contained 158 user traces (due to the multiparty interaction 
setting, there are more user traces than interactions), and ~126K 
frames or data-points. 

5.2.2 Labels and Features 
For each frame in a user trace, labels indicating whether 
disengagement would occur (according to the baseline heuristic) 
within a future time window were automatically constructed, as 
described in Section 4.1. We explored the use of models with 
different lookaheads, ranging from 3 to 6 seconds. We also 
investigated the use of different classes of features, spanning 
multiple knowledge sources and modalities:  

• FaceLocation (51 features): the horizontal location and the 
size of the tracked face, and derived feature streams capturing 
statistics of these signals such as average, slope, standard 
deviation, excursion over past time windows ranging from 
250ms to 8 seconds. In addition, we added the base stability 
feature that was used in the baseline heuristic.  

• TrackingConfidence (18 features): the tracking confidence 
score, and derived feature streams capturing the average and 
slope of this signal over past time windows; in addition we 
used information about whether the face was currently 
invisible, and for long this situation persisted. 

• Focus-of-Attention (19 features): the probability that the user 
is attending to the system produced by the attention inference 
model, together with derived streams capturing un-weighted 
and time-based exponentially weighted averages, as well as 
the slope of this signal across past time windows.  

• Interaction/Dialog (116 features): features that encode the 
current dialog state as well as derived features that describe 
and how long the system has been in that state; the dialog state 
generally corresponds to the system’s semantic output, e.g., 
DoYouNeedHelp, LocationConfirm, WhatAreYouLooking-

For. We also include here turn-taking information such as 
whether the system or a user is currently speaking, and related 
timing information. Finally, we include the total number of 
people detected in the scene and the number of users engaged 
in the interaction.  

• BaselineHeuristic (1 feature): the baseline heuristic described 
above was also considered as a feature.  

5.2.3 Model Training and Selection 
We trained logistic regression and boosted decision tree models, 
with various parameterizations: for logistic regression we explored 
the use of different L1 and L2 regularization weights, while for 
boosted trees we changed the number of leaves (2, 4, 8), the number 
of trees constructed (500, 1000, 2000), and the learning rate. We 

identified the best logistic regression and boosted tree model across 
these different parameterizations for each specified lookahead.  

Each of these models implements a particular tradeoff between the 
false-positive rate and how early the future disengagement may be 
detected. To illustrate this, consider again the trace representing the 
predictions from a given model shown in Figure 2.D. By applying 
a disengagement threshold, such as 0.8, a correct prediction of 
disengagement is made 2.8 seconds ahead of the moment that the 
heuristic signals disengagement. We refer to this time as the early-

detection-time. If we use a lower disengagement threshold, the 
prediction might be made even earlier. At the same time, lowering 
the threshold too much, for instance to 0.3, can lead to false-
positives, as marked by the red dot in Figure 2.D.  

For each of the pre-selected models, we conducted an analysis 
where we varied the disengagement threshold and plotted the mean 
early-detection-time versus the false-positive rate. In this analysis, 
false positives were defined as any detection earlier than 6 seconds 
before the heuristic detection; if a user engaged and disengaged 
multiple times, we considered only the first disengagement event 
on the user trace. Figure 4 shows the plots for the heuristic baseline, 
and the best performing logistic regression and boosted trees 
models. Based on this analysis, we selected the 5-second lookahead 
logistic regression model. In an effort to keep the false-positives to 
a minimum, we chose a high disengagement threshold, based on a 
methodology that aimed to minimize false-positives: we 
incrementally lowered the threshold from 1.0, until a first false-
positive error at a large early-detection-time was found. 

Finally, for the chosen model setup, we also investigated how 
performance varies when using different subsets of features. The 
frame-based classification error and mean squared error attained by 
using different subsets of the features are shown in Table 1. 

Figure 4. False-positive rate versus mean  

early-detection-time at different thresholds. 
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Baseline-Heuristic

Logistic regression (5sec)

Boosted trees (5sec)

Model 
Classification 

error 
Mean squared 

error 

Majority Baseline 24.9% 0.1880 

Heuristic based model (H) 13.9% 0.1134 

Focus-of-Attention (A) 17.0% 0.1249 
FaceLocation (L) 16.3% 0.1265 
TrackingConfidence (C) 18.8% 0.1468 
Interaction/Dialog (D) 21.3% 0.1526 

A+L 13.5% 0.1057 
A+L+C 11.7% 0.0955 
A+L+C+D 11.5% 0.0924 

Full model (A+L+C+D+H) 10.9% 0.0863 

 

Table 1. Performance with different feature sets 



 

 

Training a model using the manually engineered baseline heuristic 
as a feature produces a model (H) that outperforms the models 
trained on any of the other feature classes in isolation: focus-of-
attention (A), face-location (L), tracking-confidence (C) and 
interaction/dialog (D). Of these, the focus-of-attention and location 
features seem to be most informative. Adding them together leads 
to a model (A+L) that already exceeds the model based on the 
heuristic (H). Adding the other two feature classes (tracking-
confidence and interaction/dialog) further improves performance—
see A+L+C+D model in Table 1. Finally, the results indicate that the 
manually constructed heuristic contains information orthogonal to 
the models constructed with the other feature classes, as adding it 
as a feature yields further performance gains for the Full model.  

5.3 In-the-Wild Study 
The performance assessment presented above indicates that the 
forecasting model can indeed anticipate disengagement, as signaled 
by the conservative heuristic, while maintaining a low false-
positive rate. In order to understand the effect of this model and 
hesitation-based policy on the end-to-end system, we deployed the 
selected model in the live system, and ran an observational user 
study. To tease apart the effects of the forecasting model and of the 
hesitation policy, we implemented and contrasted four different 
conditions for managing disengagement: 

• Baseline (B): the system uses the baseline, conservative 
heuristic for inferring disengagement and the baseline policy. 

• Baseline+Hesitations (B+H): the system uses the baseline 
heuristic for inferring disengagement in conjunction with the 
hesitation-action policy. 

• Forecast (F): the system uses the forecasting model for 
disengagement, and the baseline policy. 

• Forecast+Hesitations (F+H): the system uses the forecasting 
model for disengagement, and the hesitation-action policy.  

The study ran for 19 days, and each time an interaction was 
initiated, the robot randomly chose one of the four conditions above 
to use for disengagement. Throughout this time, the robot initiated 
589 interactions. 80 of them were eliminated from the analysis: 19 
due to various crashing bugs, and 61 due to false initiations of 
engagement. The remaining corpus contains 509 interactions: 133 
(26.1%) in the Baseline condition, 123 (24.2%) in the 
Baseline+Hesitations condition, 125 (24.6%) in the Forecast 
condition, and 128 (25.1%) in the Forecast+Hesitations condition.  

During the user study, we found a subtle bug that postponed the 
termination of the interaction by a single frame for the F and F+H 
conditions, in situations where the probability computed by the 
forecasting model exceeded the disengagement threshold. We 
believe this very small delay does not affect the results.  

We focused the assessment on the system’s behavior during the 
final moments of the interaction, when the last engaged participant 
was disengaging. The goal was to identify situations where the 
system continued the dialog inappropriately while participants 
were leaving, but also situations where the system terminated the 
interaction too early, prior to the moment participants wished to 
disengage. An inherent tradeoff exists between these categories: 
when using a conservative disengagement model and policy, the 
robot can avoid incorrect, early disengagements, but this comes at 
the expense of producing more late disengagements, i.e., the system 
will tend to continue the interaction after participants have already 
terminated their engagement, as they are on their way out. Also, the 
system often interrupts itself on these contributions, as the 
disengagement model finally indicates that users are leaving. We 
expect that, with use of the forecasting model and hesitations, the 

number of late disengagements would be reduced, without a 
significant increase in the number of early disengagements. 

To identify late disengagements, we developed a tagging scheme 
that focused on the last system contribution that was not a departure 
salutation, and identified whether this contribution was produced 
late with respect to the engagement state of the participants. A 
contribution was denoted late if it was started after the last engaged 
participant broke the f-formation and terminated their engagement 
– LateStart, or if it was started correctly, while at least one 
participant was engaged, but continued after the last participant had 
left the engagement – LateContinue. Otherwise, if at least one 
participant maintained engagement throughout the system’s 
contribution, the contribution was denoted OnTime.  

The annotations were performed by a professional tagger, who had 
access to the video and audio of the interactions from the system’s 
viewpoint, as shown in Figure 1. If the last contribution was a 
LateStart, the annotator also inspected the previous contributions, 
in order to identify the earliest one that might have been started or 
continued late. In addition, the annotator also identified early 
disengagements, i.e., situations when the system stops the 
conversation early, before the participants actually disengaged; 
these were assessed at the moment the system started its departure 
salutation or finished the interaction non-verbally. 

To gain a better understanding of the effect of the hesitation actions, 
we also instructed the annotator to inspect each hesitation action 
produced (including the non-filled pauses), and mark whether it 
was acceptable or costly in terms of perceived awkwardness and 
overall influence on the interaction, when viewed in context. We 
asked the annotator to write down their observations about how 
costly hesitation actions influenced the interactions. This analysis 
aimed to shed more light on classes of problems that occur with 
hesitation actions, and to identify other aspects that should be taken 
into account when constructing hesitation policies.  

With respect to the perceived naturalness and cost to the interaction, 
a complex interplay exists between the verbal outputs and 
hesitations produced by the robot, the timing of their production 
with respect to the engagement status of the participants, and the 
broader dialog and situational context. From a disengagement 
perspective, we considered interactions that contain a late 
contribution that tries to advance the dialog while participants are 
disengaging to be unnatural or costly. There are two types of dialog 
acts however that we believe are less costly if produced even while 
participants are disengaging. One of them is the NoProblem dialog 
act. Oftentimes, after receiving directions, people thank the robot, 
and leave. If the thank you is confidently understood, the robot 
responds with a no-problem dialog act, rendered by saying “You’re 

welcome!”, or “No problem!” This contribution is acceptable even 
when participants are on their way out as it does not attempt to 
move the dialog forward and can be seen as a closure. Such closures 
at a distance occur naturally among people after a disengagement. 
We denote these contributions Late(NoProblem). 

At the onset, we also started with the assumption that the filled 
pause dialog act – Late(Hesitation), is less costly than a regular 
dialog act when produced during moments of disengagement. For 
instance, “So…,” followed often by a departure salutation like 
“Well, guess I’ll catch you later!” generally has a lower cost than 
issuing a contribution that tries to advance the dialog. Subsequent 
data inspection and the annotator analysis revealed however that 
filled pauses produced late were sometimes judged as costly / 
awkward; often this had to do with the filled pause causing the 
disengaging participants to turn their attention back to the system, 
and sometimes even stop in their tracks. We therefore further 



 

 

decomposed these Late(Hesitation) acts into Late(Hesitation)-

Costly, and Late(Hesitation)-Acceptable.   

Overall, we believe there are various cost differences between 
interactions that end with a LateContinue, LateStart, Late(No-

Problem), Late(Hesitation)-Acceptable, Late(Hesitation)-Costly, 

or with an OnTime output. As such, for completeness, we present 
the corresponding statistics for each of these classes across 
conditions in Table 2. As a simplifying first order approximation, 
we considered as Costly disengagements the interactions with 
disengagements ending with a LateContinue, LateStart and 
Late(Hesitation)-Costly contributions. We also grouped together as 
Acceptable disengagements the ones with OnTime, Late(No-

Problem) and Late(Hesitation)-Acceptable contributions. Finally, 
the third, Early disengagement class captures the interactions 
where the system terminated the engagement prematurely. With 
this grouping, the proportions of interactions in each of these 
categories across the four conditions are shown in Table 2 and 
Figure 5, together with the 95% confidence bounds. Statistically 
significant differences at a level below 0.05, based on a chi-squared 
test are shown with the corresponding p-values in Figure 5. 

When comparing the baseline and forecasting model conditions, no 
significant differences are observed in the percentage of Acceptable 
disengagements. The percentage of Costly disengagements 
decreases slightly when using the forecasting model, but the 
difference appears at the expense of a corresponding increase in 
Early disengagements.  

Using the hesitations-based policy leads however to larger 
reductions in the percentages of Costly disengagements: 47.4% (B) 
> 40.7% (B+H), and 41.6% (F) > 22.7% (F+H). The smallest 
percentage of Costly disengagements is attained when using the 
forecasting disengagement models in conjunction with the 
hesitation policy (F+H). The results indicate that a large proportion 
of these gains stem from reducing the number of LateStart 
contributions. As Table 5 indicates, the reductions in Costly 
disengagements when using the hesitation policy happen largely in 
conjunction with corresponding increasing in the Acceptable 

disengagements, rather than the Early ones. The decomposition of 
Acceptable disengagements in Table 5 indicates that in part, the 
gains observed when using the hesitation policy, i.e. when moving 
from B to B+H, or F to F+H, correspond to interactions where 
hesitations are inserted late in a manner that does not appear costly 
to the interaction – the Late(Hesitation)-Acceptable line.  

Finally, with respect to Early disengagements, these can be 
triggered not only by false-detections of disengagement by the 
inference model, but also by speech recognition errors: for instance, 
the system asks “Is there anything else?” the participant responds 
“Yes”, and this is misunderstood as “No”; the system then 
terminates the interaction and bids the user goodbye. We report 
these incorrect Dialog-based terminations separately. The results 

indicate that with the forecasting model (F and F+H conditions) 
leads to a slightly increased percentage of Model-based early 
(compared to the B and B+H conditions); the observed differences 
do not reach statistical significance.  

This analysis indicates that overall, the hesitation-based policies 
based on the forecasting model led to better behaviors on 
disengagement. However, these policies may also sometimes 
inadvertently trigger filled and non-filled pauses during the dialog, 
at times when participants are not disengaging. We therefore also 
took a closer look at the hesitations triggered by the system. Recall 
that the annotator tagged each hesitation as costly or not. We 
eliminated from the analysis below a set of 15 hesitation actions 
that were triggered in succession within a single interaction, where 
the robot incorrectly continued an engagement with a person that 
was close to the robot but involved in a conversation with someone 
else. Over the remaining hesitation actions, 81% were judged 
acceptable. This proportion was larger when using the forecasting 
model than when using the baseline heuristic: 86% (F+H) > 63% 
(B+H). A significantly larger number of hesitations were triggered 
when using the forecasting model: 130 (F+H) > 38 (B+H).  

The annotator’s observations revealed several classes of problems. 
Perhaps not unexpected, the production of hesitations actions at 
inopportune moments keeps the participants waiting too long for an 
answer that they expect to get immediately, or appears awkward, 
e.g., when produced after a departure salutation from the user. At 
other times, the production of a filled pause appears to interrupt the 
users. Finally, sometimes, filled pauses produced while participants 
are actually disengaging can cause them to turn their attention back 
to the system, and sometimes stop in their tracks – the already 
discussed Late(Hesitation)-Costly case. An inspection of the 
Late(Hesitation) actions produced by the robot while participants 
were disengaging showed that 60% (6 out of 10 total) were costly 
when using the baseline heuristic (B+H), whereas on 33% (5 out of 
15 total) were costly when using the forecasting model (F+H).  

Figure 5. Breakdown of disengagement types. 

� < 10�� 

 

� = 0.0022 

  

� = 0.0012 
  

� = 0.0032 
  � = 0.0016 

  

� = 0.0389 
  

B B+H F F+H
0%

20%

40%

60%

80%

100%
A. All interactions

 

 

Early

Acceptable

Costly

B B+H F F+H
0%

20%

40%

60%

80%

100%
B. Costly disengagement

 

 

LateContinue

LateStart

Late(Hesitation)-Costly

B B+H F F+H
0%

20%

40%

60%

80%

100%
C. Acceptable disengagement

 

 

OnTime

Late(NoProblem)

Late(Hesitation)-Acceptable

B B+H F F+H
0%

20%

40%

60%

80%

100%
D. Early disengagement

 

 

Dialog-based

Model-based

Table 2. Breakdown of disengagement types 

Disengagement type B B+H F F+H 

Costly  47.4% 40.7% 41.6% 22.7% 
  LateContinue 20.3% 21.1% 16.8% 10.2% 
  LateStart 27.1% 14.6% 24.8% 8.6% 
  Late(Hesitation)-Costly 0.0% 4.9% 0.0% 3.9% 

Acceptable  40.6% 47.2% 41.6% 60.2% 
  On-time 36.8% 39.0% 40.0% 47.7% 
  Late(NoProblem) 3.8% 4.9% 1.6% 4.7% 
  Late(Hesitation)-Acceptable 0.0% 3.3% 0.0% 7.8% 

Early  12.0% 12.2% 16.8% 17.2% 
  Dialog-based 6.0% 4.1% 6.4% 5.5% 
  Model-based 6.0% 8.1% 10.4% 11.7% 

 



 

 

6. DISCUSSION 
Below, we discuss limitations of this study, and future directions 
that remain to be explored.  

Although the results indicate improvements in disengagement 
behaviors, recall that the baseline heuristic was designed to be 
conservative in order to avoid false disengagements and provide 
reliable labels. Future work should assess how the proposed 
approach fares in comparison to models learned based from labeled 
ground truth, or models manually tuned by other experts. 
Forecasting the actual moment of disengagement, as opposed to the 
estimate a conservative heuristic can provide automatically, may 
also be a more challenging learning problem. Finally, future work 
should assess the performance of the conservative heuristic and 
forecasting model against manually labeled ground truth. 

One advantage of the approach we have described is that it does not 
require manual supervision. The system learns by itself, guided by 
a conservative heuristic, and tunes its behaviors to the specifics of 
its environment. Future work should investigate whether the type 
of conservative heuristic that we have constructed generalizes well 
to other settings, or whether it needs to be adapted. Even if some 
tuning is required for new environments, adapting the heuristic 
might still be less costly than performing manual annotations.  

Another area of future exploration is the setting of thresholds: while 

the disengagement threshold ����
∗  was based on a method that 

aimed to minimize false positives, the other thresholds for 
disengagement in the conservative heuristic, or for producing filled 
and non-filled pauses were chosen in a fairly arbitrary manner—by 
observing the behavior of the forecasting model on a few 
interactions, and were kept the same for both the baseline (B+H) 
and forecasting conditions (F+H). Better results may be attained 
with tuning, for both the baseline heuristic and forecasting model. 

Perhaps even more importantly, the analysis of the form, function, 
and impact / cost of hesitation actions is a task that clearly deserves 
additional attention. The impact of a hesitation in dialog depends 
both on its form and on many contextual factors. Our study was 
constrained by the speech synthesis engine, but future work should 
investigate the use of other fillers, like um or uh, which might be 
more appropriate during disengagement as they don’t carry the 
interrogative and floor release function that a prolonged “So…” 
sometimes does. Hesitations implemented as non-filled pauses, 
perhaps accompanied by appropriate non-verbal behaviors may 
generally constitute a lower cost option than filled pauses. Future 
work should also investigate how the choice of hesitations may be 
contextualized based on other aspects of the situation at hand. 

7. CONCLUSION 
We have investigated a self-supervised methodology for 
constructing forecasting models for disengagement, and proposed 
the use of disengagement policies that leverage linguistic hesitation 
actions to mitigate uncertainty. An initial study of the proposed 
approach with a directions-giving robot deployed in the wild shows 
that the joint use of forecasts and hesitations can help manage 
disengagement, and points to several interesting directions for 
future work.  We believe that the study of policies for introducing 
hesitations is ripe for future exploration and that mastery of such 
policies will help systems to engage in more seamless, natural 
interactions with people in open-world settings.  
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