
Stop-and-copy and One-bit Reference Counting�Technical Report 360David S. WiseIndiana UniversityBloomington, Indiana 47405 USAFax: +1 (812) 855-4829Email: dswise@cs.indiana.edu(revised) March 1993AbstractA stop-and-copy garbage collector updates one-bit reference count-ing with essentially no extra space and minimalmemory cycles beyondthe conventional collection algorithm. Any object that is uniquely ref-erenced during a collection becomes a candidate for cheap recoverybefore the next one, or faster recopying then if it remains uniquelyreferenced. Since most objects stay uniquely referenced, subsequentcollections run faster even if none are recycled between garbage col-lections. This algorithm extends to generation scavenging, it admitsuncounted references from roots, and it corrects conservatively stuckcounters, that result from earlier uncertainty whether references wereunique.CR categories and Subject Descriptors:D.4.2 [Storage Management]: Allocation/Deallocation strategies;E.2 [Data Storage Representations]: Linked representations.General Term: Algorithms.Additional Key Words and Phrases: multiple reference bit, MRB.�Research reported herein was sponsored, in part, by the National Science Foundationunder Grant Number CCR 90-02797. 1

1 One-bit Reference CountsThe most commonly used garbage collector is the stop and copy algorithmdue to Minsky, Finichel, and Yokelson [15, 8]. Sometimes it is a generationscavenging [22, 26] variant that more frequently recovers shorter-lived struc-tures with less e�ort. Reference counting [12] is an orthogonal strategy forstorage management [11] that again is receiving attention in the context ofparallel heap management because its transactions are all local [21, 30, 32].Reference counting is best used along with a garbage collector as a hybridmanager [28, 20, 13, 29]. Although counting is too weak to handle certaincircular structures [20, 16], garbage collection can back it up. On the otherhand, successful reference counting can postpone need for garbage collection,or accelerate that collection [3]. Recovery of zero-count objects is worthwhileonly when the per-node cost of reference-counting recovery undercuts thatfor garbage collecting [1]. The cost, however, must include the impact ofsynchronization in a real-time or multiprocessor environment. One way toimprove the performance of both is to use hardware [32] to maintain thecounts without any extra cycles.Clark and Green [10] present experimental results showing that less than3% of Lisp's nodes have reference counts above one. Therefore, it is usualto use a very small �eld for such counts, with its maximal value designatedsticky, a limit which neither increments nor decrements can change. Theonly way to recover an object with a sticky count is via garbage collection;a full collection, traversing all live links, can determine that a sticky countreally should be zero. Moreover, that same traversal can also recompute allcounts from zero (unmarked)|perhaps reducing a sticky count to a lowervalue without yet recovering that space [29]. In this way, a small-but-stuckcounter can be reset, so that reference counting could recover that spacebefore the next collection.The smallest reference-count �eld is only a single bit, whose value canonly represent \uniquely referenced" or \shared." The terms unique andsticky will be associated with these two alternatives, which are indicatedas u and s in the �gures.The �rst proposal for one-bit reference counting [31] only addresses theneed to save space for the counter; it uses the mark bit, already in everynode, as a reference count between garbage collections. The second formu-lation [24] is far superior. It has since been rediscovered [9] and developed[18, 23, 19] in logic programming, where it is called a multiple reference bitor MRB. 2

Stoye, Clarke, and Norman [24] designated one bit within every pointer(rather than one at every node); thus, a binary node has two such bits.Similar to run-time tags that identify type, it a�ords information abouteach pointer: \This reference is unique." The remarkable feature about atag in the pointer is that it anticipates the usual memory reference needed toaccess a reference count from the address of the object itself. For example,if a count-tag is sticky then no memory fetch is necessary to determinethat all reference-count transactions can be skipped.Unique referencing is important to copy avoidance, a term sometimesused to elide a node's allocation, duplication, and recovery into a singlein-place side-e�ect. An applicative program might specify that a \model"node is copied except for a single �eld, but if the compiler or the run-time environment ascertains that the model node is uniquely referenced andthat the current environment|the source of the reference|is about to beabandoned (as in tail recursion), then it can side-e�ect that �eld, instead [6].In e�ect, the model node is pre-allocated, and much of its initialization|reexive copying|is annihilated; the only di�erence results from the side-e�ect. So many unshared, intermediate structures (like Lisp's bignums) canbe overwritten in place|saving not only the time to collect them, but alsothat to reallocate and to rebuild them. Thus, copy avoidance is a specialcase of storage management and is implicit in the discussion that follows.An important feature of unique reference counts appears in a multipro-cessing environment. Privileges obtained in critical code at the head of auniquely referenced chain are still valid after traversing unique links, evenvia non-critical code. If a process holds privilege to the only path to anobject, then the privilege is valid on that object. More than one bit inreference counts is superuous to such control.2 SpeedMuch of this paper deals with speed of transactions supporting storage man-agement. In all cases the emphasis is on counting memory cycles, rather thanprocessor cycles. Dominant RISC architectures make a large distinction be-tween the two; extra processor cycles are essentially free because they arefast and usually overlapped with memory transactions. On the other hand,random access to memory is expensive because it almost surely misses thecache and requires a full memory cycle, causing a processor-wait in the caseof a read. Somewhere between is the cost of serial access because many3

machines use block transfers between cache and memory; under such a pro-tocol, several adjacent words are transferred after strobing a single address,and neighboring addresses can appear in cache after the required transferhas been completed. The behavior is reminiscent of page migration undervirtual memory.To account for various cache/memory protocols, a memory cycle is hereassociated with an address strobe. Thus, both a four-byte and an eight-bytetransfer counts as a single memory cycle; although such block transfers ac-celerate serial access, they can actually slow the random-heap access thatis our concern here. Furthermore, random reading is arguably more expen-sive than random writing because the latter can be delayed, perhaps elided,using cache. Nonetheless, we count either as an (eventual) memory cycle.Under Stoye's scheme, an object is initially allocated as uniquely refer-enced; its birth address is tagged unique. His only additional memory cycleoccurs upon creating a second reference to that object. Whenever a pointeris stored, an extra processor cycle checks the reference count within it. Ifthe tag indicates unique then a second reference is being created. In thatcase the tag is reset sticky, and the tagged pointer is stored both in theimmediate destination and in the original �eld whence it was fetched. Thus,an extra random-access write is necessary.The delicate problem about his scheme is determining the latter address;it may still be available in some processor register, because stores to memoryclosely follow fetches. However, our experience with similar coding problemsdemonstrates that the reference may be passed through several registers (orthe stack) before landing as a counted reference. Such threads through thecode can sometimes be unwound and split, but they are, in general, quitetortuous: more di�cult to engineer correctly than are garbage collectors[32]. Although low-level systems coding like this is touchy, thank goodnessit needs to be coded only rarely even though it is used frequently.All of the above paraphrases Stoye's contribution. The following is new;it shows how an intervening garbage collection can accurately restore asticky count back to unique. This feature considerably relaxes the rigoron the code, which is now freer to raise a unique tag to sticky, defendingagainst uncertain sharing. As appropriate, the collector can later restore itto unique, compensating somewhat for earlier conservatism.4

3 Collection and Count TagsThe previous section reviews how one-bit reference counts can be sustainedby the mutator [14] with few memory cycles|one more for every stickycount as it rises from unique. This section shows that the collector [14]can recompute all tags accurately for nearly the same cost: one less mem-ory cycle for every uniquely referenced object entering collection, and twoextra memory cycles for each sticky count. Nodes with only one referencerequire no more cycles than a conventional stop-and-copy collection, andprobably less. Counts that are sticky, which the mutator had renderedunique without being able to tag as unique, will be redecorated as uniquefor free; those objects might be recovered after the present garbage collec-tion but before the next one, thereby postponing it or, if they survive untilthen, they will make it run faster.A new requirement, but not a disruptive one, is that every addressableobject must be large enough to contain two pointers. That is, Lisp's consbox is the smallest heap object; the rare \boxed address" must be repre-sented as a cons box, tolerating 50% internal fragmentation. This constraintis necessary to provide room for two \forwarding" addresses per node, in-stead of just one. The forwarding pointers will be called forward andsource.Euphemistically, the magnitude of forward is treated as a mark bit.If it points into the range of to space, we say mark is \set"; if it has anyother value|including a pointer into from space|then it is \clear." Thisconvention is consistent with the role of marking in all garbage collectors.The stop-and-copy collector [8, 2] is a \two �nger" algorithm, whosee�ect is to move all nodes out of the from semispace, compacting theminto the to semispace. Initially, all \root" nodes are copied into one end ofthe to space, without changing any content; rooting is discussed in detailin the next section. Thereafter, one \�nger," called next, always points tothe �rst unused address in to space. The other, called scan, starts at thebeginning of to space and updates every pointer in sequence until it catchesup with next. For a complete description and �gure, see Appel [2]. Nextand scan are denoted N and S in the �gures; this description focuses onscan.Figure 1 illustrates the e�ects of scanning the �rst and then later stickyreferences to a binary node at address A. Blank entries there indicate \don'tcare." Figure 1.1 is the situation before scanning the �rst reference, Figure1.2 shows unique tags between the two, and Figure 1.3 shows updating all5

 A

 Y

 B

 A

 W

 S N

 A

 A

 A

 W X Y

 Y

 Y

 W

 W

 X

 X

 B C

 C B

 S N

 S N

 A

s

 C

 Y

‘‘From’’ space ‘‘To’’ space

u

 1.1

 1.2

 Y Y

 Y

ss

u

 1.3

 B

 B

 B

s s

s

Figure 1: Scanning two references to ConsNode A.
6

references to sticky counts. A description of changes to the stop-and-copyalgorithm follows.When scan encounters a unique pointer to from space, it copies thecontent at next, but does not install any forwarding information. (Sincethe object is uniquely referenced, there aren't any other references to for-ward.) Thus, every unique reference (even if just installed during a previouscollection) accelerates conventional collection [3].Scan also encounters sticky pointers to locations in from space, someof whose contents have been copied|but some not yet copied|into tospace. The di�erence is determined by mark on that node. When scan�nds a pointer into from space, it performs a long-read (e.g. 64-bit read)of forward (mark) and source at that address. If mark is clear, thenthe contents of that node|perhaps a lengthy vector|are transferred tonext, and next is incremented by its length. Then, in a single long-write,that node in from space is overwritten with a forward pointer (taggedunique) to the next location whither the node was copied (a set mark bit)and the source address|scan|where this initially unique reference wasfound. Finally, the address of the node, now relocated in to space and stilltagged unique, is stored back at scan. None of this yet introduces a newmemory cycle into stop-and-copy collection.If, after the long-read from the contents of scan, mark is found set butthe forwarding address is tagged sticky, then forward is overwrittenat scan, forwarding the reference as always. While this test introduces aprocessor cycle to test the tag, still no new memory cycles are needed.If, however, mark is set but forward is tagged unique, then a secondreference to that node has been discovered. In this case, the tag is changedto sticky, the forwarding address itself, is overwritten (to change its tag),overwritten at scan (to forward the second reference), and overwritten atthe source of the hitherto unique reference. The �rst and last of thesethree writes are the new cost of this algorithm. However, they only occuronce for each sticky pointer.When implemented over virtual memory, the only to-space pages thatneed be memory-resident are indicated by S and N. Then source ad-dresses should not be overwritten immediately. In order to avoid extra pagefaults they should instead be accumulated on temporary pages, sorted thereafter scanning completes, and then overwritten to sticky in sequentialorder.The above description is readily adapted to generation scavenging. Anyreference to an older generation, however, should be forced sticky unless7

both generations are being collected.In summary, the following invariant governs this version of stop-and-copy. If no references to a node in from space have been scanned, then thenode retains its pre-collection content and remains unmarked. If exactly onereference has been scanned, then it is marked, its contents have migratedinto to space, its already scanned reference|tagged as unique|containsthat address in to space, as does its forward �eld (unless that referencewas tagged unique when collection began.) Its source �eld identi�es thelocation of that unique, already forwarded reference from to space. If twoor more references have been scanned, then it is marked, its contents havemigrated, and its forward �eld and all scanned references are taggedsticky.4 RootingNow we return to the beginning of garbage collection: how to \root" thestop-and-copy collector. Roots are those references from the running systemthat are known to be live. Thus, those roots are the �rst to be copied fromfrom space to to space. Some ephemeral roots may not be counted at allin the reference counting scheme. Of those, some may never be in use wheregarbage collection is possible. This section shows how to handle those thatare in use across collection.Quite appropriately certain shared references may go uncounted. Thisrelaxation allows, for instance, a unique reference to be relocated \atomi-cally" without its count rising from unique to sticky. A similar idea isused in some usual patterns of coding [6], in simple list manipulations [25],in tail-recursion protocols [7, 1, 4], and in linear languages [17, 27, 5]. How-ever, run-time management like this can be more comprehensive than anyof these.Often uncounted references reside on a sequentially-allocated recursionstack, because it is so fast to pop it without �rst decrementing referencescounted therefrom.1 Such stack-resident references may, in fact, be the bestroots for collection. The following protocol shows how to initiate a collectionunder Stoye's scheme without counting the root's reference. See Figure 2.Uncounted references are \scanned" di�erently from heap-resident ref-1In the hardware reference-counter [32], popping is just as fast because a decrement ispostponed until the stack cell is overwritten [28] later|contemporary with an increment|during a subsequent push. 8

 Y

 B C

 Y
u

‘‘From’’ space ‘‘To’’ space

 A

 Y

 A

 N

 A

s

 W Y
u

 B

 A

 C 2.0

2.1

2.2

2.3

 S N

 A A

 W X Y

 S N

 A
root

root

root

Y
u

 A

 W X

 S N

Y
s

 S

 W X

Y
s

root

 A

 A

root
Y

 A

s 2.4

 Y

B’ C’

 Y

B’ C’

 Y

B’ C’

 B

B’

B’

B’
su su

su su

susu s s

ss

s

s

s

s Figure 2: Initiating collection from an uncounted root.9

erences and, therefore, they can occur only as roots. Each uncounted ref-erence causes the usual long-read from from space; if the node is alreadymarked, nothing further happens. Otherwise, the node is copied at scaninto to space and the following forwarding information is overwritten infrom space: a unique-tagged forwarding address to scan (thus, a setmark bit), and a NIL source �eld. (If the root is to be counted, thensource is directed to any dummy address that can be clobbered.)Now the scanner needs to be modi�ed to deal with NIL sources. Thechange occurs in the previous section only in the case where mark is setbut forward is tagged unique. In that case, source must �rst be testedfor NIL; if it is non-NIL then the previous algorithm proceeds, slowed onlyby the processor cycle for the test. Otherwise, the value of scan is writtenas the source �eld in place of NIL, establishing the �rst counted reference.After the copying scan completes, every root must be visited a secondtime to update it from the forwarding addresses (and count tag) left in fromspace. It is presumed that there is a small number of roots, lest this secondtraversal become extravagant; it can coincide with reloading registers priorto resuming the mutator. If desired, it is easy to verify then that each nodereferenced from an uncounted root is also referenced by a counted pointer:that all NIL sources have been overwritten.Figure 2 shows what happens when A in Figure 1 is rooted by an un-counted reference. Figure 2.0 shows the result of rooting but before scan-ning, and Figure 2.1 illustrates scanning of the uncounted root. Figures 2.2and 2.3 are analogous to 1.2 and 1.3, and Figure 2.4 indicates the secondtraversal of the root, recovering the �nal forwarded address. The tags on B0and C 0 here are unimportant: either u or s.The remainder of the previous section is unchanged. The additional costto the garbage collector is one memory cycle for each uncounted root (tooverwrite NIL), plus one for each root (to perform the second root traversalafter scanning.) However, this section is not necessary on roots that arecounted and reside in addressable memory; in that case, source �elds canbe directed to roots as in Figure 1.5 Speed, againEstimating the relative timings for collection is a useful exercise here. Letus sketch an analysis on a heap of M binary nodes (e.g. 8-bytes big: eitherone 64-bit atom, or two 4-byte pointers or immediate values.) Let u be the10

proportion (0 � u < 1) of the heap that is actually in use. Consideringimmediate values (like nil) and both halves of an atom as \dead pointers",let p be the independent proportion of pointers that are actually \alive,"pointing to other nodes in the heap. With very few roots compared tonodes, 1=2 � p � 1; if the few structures are binary trees then p � 1=2:At issue here are the singly referenced nodes. Let q be the proportionof live nodes/atoms that are uniquely referenced. Of those, let r be theproportion that is actually tagged unique at the beginning of garbage col-lection. Consider the memory cycles (read or write) necessary to collect asemispace, recopying uM nodes to recover (1� u)M:In its naive, two-semispace version [8] a collection requires three memorycycles to copy and forward (read, write, write) each of uM binary nodes toto space. Scanning requires a read cycle, an expected 2p read cycles to getthe forwarding addresses of live pointers, plus an expected 1 � (1 � p)2 =2p�p2 write cycle to update the node. The total cost-per-node for recoveryis thus, (4 + 4p� p2) uM(1� u)M :Post-collection allocation, serial from contiguous space, requires no memorycycles.However, if the algorithm described here is used, then uniqueness ofreference nodes must be considered. Copy-and-forward now expects only 3�qr cycles, because forwarding of uniquely referenced nodes is unnecessary.However, scanning requires an additional 2(1�q) cycles to store sticky tagsonce over the forwarding address and at the source of the �rst reference;a live node has a second reference with probability 1 � q. The total cost-per-node for recovery is thus,[4 + 4p� p2 � (q(r+ 2)� 2)] u1� u:(Section 4 rooting is ignored.)The modi�cations proposed here will actually accelerate garbage collec-tion whenever q(r + 2) > 2, which is likely. De�ne � = q(r + 2) � 2 andobserve that � > 0 if r > 6% and q > 97%, as Clark and Green [10] observed,or even when r > 22% and q > 90%. Appel [1] observed u = 1=3 withoutgeneration scavenging. If we then approximate 4p � p2 as 2 (p � 59%)and � = 0 conservatively, then memory-cycles-per-collected-node becomes3. Under generation scavenging, q and r approach one, so does �, and the11

result approaches 2:5; but u also becomes very small, further reducing thisapproximation.Henry Baker suggests a further analysis to consider the impact of cachingor, more archaically, paging. If there are c nodes in a cache line, thensequential traversal of the to semispace causes a memory cycle for only 1=cof every read/write of a node at next or scan. Cache hits may elide morememory access, but the e�ect of random hits is ignored here. The naive,two-semispace collection requires 2+1=c cycles to copy and forward, plus atmost 1=c to read, 2p to fetch forwarding addresses, and 1=c cycles to write2the node back at scan. The total cost-per-node falls to[2 + 2p+ 3=c] u1� u:Similarly, The cost-per-node for the algorithm described here falls to[2 + 2p+ 3=c� �] u1� u:Caching accelerates memory cycles other than those counted in �, becausethose deal with only non-sequential access. If c = 4, again p � 59%, � = 0,and u = 1=3 the cost already drops to 1:96, from 3.The e�ect of caching on these algorithms becomes apparent if we com-pare the ratios of their costs: of each algorithm with caching to that withoutcaching. Using the sample arguments, such a ratio for the original stop-and-copy algorithm is (6��)=6, while that for the new algorithm is (3:92��)=3:92.Thus, caching ampli�es the relative improvement, �, from the new collectionalgorithm. The relative improvement in the �-term of this ratio is 2:08=3:92here, already above one-half; this improvement more generally is4 + 4p� p22 + 2p+ 3=c � 1 = 2 + 2p� (3=c+ p2)2 + 2p+ (3=c) :So this algorithm yields even more speed with larger caches.6 What to do with free nodes?All the discussion so far has focused on maintaining accurate one-bit refer-ence counts, and particularly by restoring them during stop-and-copy collec-tion. With cheap and valuable information located so conveniently within2More accurately, the likelihood of a write cycle is only c� = 1� (1� p)2c per cacheline. However, p � 2�1 and so (1�2�2c)=c � � � 1=c, making this per-node upper boundquite close. 12

pointers, what can software a�ord to do with them? Not much. Having soidenti�ed unique references at the point they are destroyed, we discover thatthe popular solution, an available-space list, is remarkably expensive.An inexpensive remedy is to dedicate a register or a cache-resident vectorto holding a few available addresses. A poor-man's available-space list, thiscan be e�ected with no memory cycles. When a node is allocated fromsuch a register its stale contents should be inspected for additional uniquereferences [28]. Depending on hardware, this requires another memory cycle(for the binary node illustrated), or if read-modify-write is available it canbe e�ected by the existing write that initially �lls the new node. The ideahere is to enable reuse of released nodes on-the-spot.The impact of Stoye's algorithm is minor, less than two cycles-per-node-recovered. However, the cost for his run-time reallocation becomes signi�-cant when an available-space list is used.Building and decomposing an available-space list costs three or morememory cycles per node, unfavorable compared to the estimates above. Itcosts n+1 memory cycles to return a uniquely referenced chain of n nodesto available space (n reads and a write), but often n is only one. Moreover, anew node must be read again before it is written (in absence of read-modify-write) [28], so the cost is above three memory-cycles per node-recycled,before that node can be �lled.Finally, variable sizing of nodes creates problems for any run-time re-cycling. One can use di�erent registers or di�erent available-space lists fordi�erent ranges of size, but maintaining several available-space lists [20, x2.5]requires yet more memory cycles.7 ConclusionExperiments with real systems are necessary to determine the success ofthese algorithms in di�erent applications. For instance, a parallel, real-timeprogram that uses constant-sized objects should �nd this technique quiteuseful.Practical comparisons with generation scavenging and linear logic areboth open questions. It is entirely possible that the bulk of the uniquelyreferenced nodes, that Clark and Green observed and upon which generationscavenging preys, correspond to the same nodes that Stoye's algorithm canrecover,3 especially if assisted by the garbage-collector support described3\The results of applying this technique have been spectacular|on average, about13

here. It conjectured that Stoye's one-bit counter is more powerful thancompile-time linear-logic [27], but both can be hobbled by obfuscated code.The former may prove more appropriate in general packages (interpretedcode) and the latter in general-purpose programming (compiled code).Appel [1, p. 206] claims fractional cycle-per-node e�ciency for generation-scavenging garbage-collection recovery. His arguments are valid with a heapmuch larger than active data structure, and when generation scavengingis e�ective; his application, a strict (eager) language on a large, dedicateduniprocessor, meets these criteria. Moreover, his use of continuation-passingstyle, which generates tons of garbage, is successful, in part, because his col-lector thrives on that sort of trash. That is, he enjoys a brilliant symbiosisbetween his mutator and his collector. Much of his garbage would neverbe generated under another style, that neither could attain his frequency ore�cacy of collection, nor would su�er their absence. Other contexts (e.g.caches) have di�erent constraints on, and di�erent requirements of, heapmanagement.Some applications are space bound|if only by address space|and lo-cality has again become desirable under cached memory, just as it once wasunder virtual memory. If unique references dominate (as they seem to), thenthis strategy may be even more e�cient on a con�ned heap than generationscavenging is. When garbage collection is more frequent or less tolerable,as in real-time or parallel applications, then reference counting is the betterstrategy|and decidedly better with the counting o�-processor in memoryhardware [30, 32].The idea here is to modify each garbage collection in a cost-e�ciente�ort to postpone and to accelerate the next one. This modi�cation toa stop-and-copy collector makes it run faster even if no nodes are recycledbetween collections through reference counting. Once again, the best storagemanager is a symbiosis between reference counting and garbage collection.Acknowledgement: Carl Bruggeman pointed out that the collector's laterreinstallation of unique tags ameliorates a mutator's earlier dilemma whethersome references remain unique. Henry Baker observed that a uniquely ref-erenced node needs no forwarding pointer, accelerating collection by mini-mizing \dirty" cache lines and pages.seventy percent of wasted cells are immediately reclaimed [24]." \We have found 40 to90 percent of garbage data is incrementally reclaimed by the MRB [Stoye's] scheme inbenchmark [committed-choice logic] programs [18]."14

References[1] A. Appel. Compiling with Continuations , Cambridge Univ. Press(1992), 205-206.[2] A. Appel. Garbage collection. In P. Lee (ed.), Topics in Advanced Lan-guage Implementation, Cambridge MA, M.I.T. Press (1991) 89-100.[3] H.G. Baker. Cache-conscious copying collectors. OOPSLA '91 GCWorkshop. (October 1991). cNimble Computer Corp, 16231 MeadowRidge Way, Encino, CA 91436, USA.[4] H.G. Baker. Cons should not cons its arguments. SIGPLAN Notices27, 3 (March 1992), 24{34.[5] H.G. Baker. Lively linear lisp|`Look Ma, no garbage!' SIGPLAN No-tices 27, 8 (August 1992), 89{98.[6] J. Barth. Shifting garbage collection overhead to compile time. Comm.ACM 20, 7 (July 1977), 513{518.[7] A. Bloss & P. Hudak. Variations on strictness analysis. Conf. Rec. 1986ACM Symp. on Lisp and Functional Programming , 132{142.[8] C.J. Cheney. A nonrecursive list compacting algorithm. Comm. ACM13, 11 (November 1970), 677{678.[9] T. Chikayama & Y. Kimura. Multiple reference management in atGHC. In J.{L. Lassez (ed.), Logic Programming, Proc. 4th Intl. Conf.1. Cambridge, MA, M.I.T. Press (1987), 276{293.[10] D.W. Clark & C.C. Green. A note on shared list structure in Lisp. Inf.Proc. Lett. 7, 6 (October 1978), 312{315.[11] J. Cohen. Garbage collection of linked data structures. Comput Surveys13, 3 (September 1981), 341{367.[12] G.E. Collins A method for overlapping and erasure of lists. Comm.ACM 3, 12 (December 1960), 655{657.[13] L.P. Deutsch & D.G. Bobrow. An e�cient, incremental, automaticgarbage collector. Comm. ACM 19, 9 (September 1976), 522{526.15

[14] E.W. Dijkstra, L. Lamport, A.J. Martin, C.S. Sholten, & E.F.M. Stef-fens. On-the-y garbage collection: an exercise in cooperation. Comm.ACM 21, 11 (November 1976), 966{975.[15] R.R. Fenichel & J.C. Yochelson. A Lisp garbage collector for virtual-memory computer systems. Comm. ACM 12, 11 (November 1969),611{612.[16] D.P. Friedman & D.S. Wise. Reference counting can manage the circularenvironments of mutual recursion. Inf. Proc. Lett. 8, 1 (January 1979),41{45.[17] J.{Y. Girard. Linear logic. Theoret. Comput. Sci. 50 (1987), 1{102.[18] Y. Inamura, N. Ichiyoshi, K. Rokusawa, & K. Nakajima. Optimizationtechniques using the MRB and their evaluation on the Multi{PSI/V2.In E.L. Lusk & R.A. Overbeek, Logic Programming, Proc. of NorthAmerican Conf. 1989 2 Cambridge, MA, M.I.T. Press (1989), 907{921.[19] Y. Kimura, T. Chikayama, T. Shigoni, & A. Goto. Incremental garbagecollection scheme in KL1 and its architectural support of PIM. InJ.G. Delgado-Frias & W.R. Moore (eds.), VLSI for Arti�cial Intelli-gence and Neural Networks , New York, Plenum (1991), 33{45.[20] D.E. Knuth The Art of Computer Programming I, Fundamental Algo-rithms (2nd ed.), Reading MA, Addison-Wesley (1975).[21] B. Lang, C. Queinnec, & J. Piquer. Garbage collecting the world. Conf.Rec. 19th ACM Symp. on Principles of Programming Languages (1992),39{50.[22] H. Lieberman & C. Hewitt. A real-time garbage collector based on thelifetimes of objects. Comm. ACM 26, 6 (June 1983), 419{429.[23] K. Nishida, Y. Kimura, A. Matsumoto, & A. Goto. Evaluation ofMRB garbage collection on parallel logic programming architectures.In D.H.D. Warren & P. Szeredi (eds.), Logic Programming, Proc. 7thIntl. Conf. , Cambridge, MA, M.I.T. Press (1990),[24] W.R. Stoye, T.J.W. Clarke, & A.C. Norman. Some practical methodsfor rapid combinator reduction. Conf. Rec. 1984 ACM Symp. on Lispand Functional Programming , 159{166.16

[25] N. Suzuki. Analysis of pointer `rotation.' Comm. ACM 25, 5 (May1982), 330{335.[26] D. Ungar. Generation scavenging: a non-disruptive high-performancestorage-reclamation algorithm. Proc. ACM SIGPLAN/SIGSOFT Soft-ware Engineering Symp. on Practical Software Development Environ-ments, SIGPLAN Notices 19, 5 & Software Engineering Notes 9, 3(May 1984), 157{167.[27] P. Wadler. Is there a use for linear logic? Proc. Symp. on Partial Evalu-ation and Semantics-Based Program Manipulation, SIGPLAN Notices26, 9 (September 1991), 255-273.[28] J. Weizenbaum. Symmetric list processor. Comm. ACM 6, 9 (Septem-ber 1963), 524{554.[29] D.S. Wise. Morris's garbage compaction algorithm restores referencecounts. ACM Trans. Progr. Lang. Sys. 1, 1 (July 1979), 115{120.[30] D.S. Wise. Design for a multiprocessing heap with on-board reference-counting. in J.{P. Jouannaud (ed.), Functional Programming and Com-puter Architecture, LNCS 201, Berlin, Springer (1985), 289{304.[31] D.S. Wise & D.P. Friedman. The one-bit reference count. BIT 17, 3(September 1977), 351{359.[32] D.S. Wise, C. Hess, W. Hunt, & E. Ost. Uniprocessor performanceof reference-counting hardware heap. Computer Science Dept., IndianaUniv., Tech. Rept. (1992).
17

