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AbstractPart of this work has been presented in [17].This paper analyzes the performances of portable distributed priority queues by examin-ing the theoretical features required and by comparing various implementations.In spite of intrinsic bottlenecks and induced hot-spots, we argue that tree topologies areattractive to manage the natural centralized control required for the deletemin operationin order to detect the site which holds the item with the largest priority. We introduce anoriginal perfect balancing to cope with the load variation due to the priority queue operationswhich continuously modify the overall number of items in the network.For comparison, we introduce the d-heap and the binomial distributed priority queue.The purpose of this experiment is to convey, through executions on Cray-T3D and Meiko-T800, an understanding of the nature of the distributed priority queues, the range of theirconcurrency and a comparison of their e�ciency to reduce requests latency. In particular,we show that the d-heap combines an adjustable degree with a small depth, which make ite�cient in both theory and practice. The Message Passing Interface (MPI) provides us withan adequate portable code.Keywords Cray-T3D, Distributed Data Structure, Message-Passing Interface, Meiko-T800,Priority Queue.1 IntroductionPriority queue is recognized as a useful abstraction due to the wide variety of computer applica-tions in which it arises. As de�ned by Knuth [12], a priority queue is an abstract data structureconsisting of a set ofm items: a data item i is composed of a pair of �eld (Keyi; Recordi), whereKeyi is a numerical value from an ordered domain, and Recordi is a record �eld containing thedata. The basic operations are:insert(i,h) : insert a new item i with prede�ned priority Keyi into priority queue h,deletemin(h) : delete an item of minimum value (highest priority) from h and return it.Numerous subtle priority queue implementations have been investigated to improve speci�capplications [10]: implicit heap [31], leftist heap [4], binomial queue [2], skew heap [29], etc.In parallel, e�cient applications require that several processors should be able to manipulatethe priority queue simultaneously. Various e�orts to implement concurrent accesses for thebasic operations for tightly-coupled multiprocessors have been achieved successfully. We do notpresent an exhaustive bibliography of these implementations in this paper; some implementationsand surveys are given in [5, 6, 11, 15, 26]. However, the availability of an addressable shared-memory, virtual or not, limits the concurrency problem to a trade-o� between reducing thecontention for shared priority queue and decreasing the number of processor synchronizations.In a loosely-coupled multiprocessors model, where processors are distributed among a net-work and communicate only through message-passing, the problem of an e�cient implementationof the global data structure has to be re-considered. There is no common memory, and algo-rithms are event-driven (i.e., processors can not access a global clock in order to decide on theiraction).In this model, a distributed data structure (denoted DDS) is a data structure which isdistributed among the sites of a communication network and may be accessed by many processessimultaneously, [25]. It is composed of a data organization that speci�es a collection of local datastructures storing copies of data item at various sites in the network, and of a set of distributedaccess protocols that enables processes to issue queries and modi�cation instructions to the1



network and to get appropriate responses. To be e�cient, a distributed data structure mustminimize the communication cost while requiring reasonable overall space and balancing thememory loads over the sites of the network. We do not consider here implementation withsome speci�c processors managing the data structure for other distributed working processors(our purpose is neither a dictionary machine nor a VLSI implementation; these �elds have beenintensively explored [1, 7, 20, 23]).In this paper, we deal speci�cally with priority queue data structures{they supports ex-clusively the operations insert and deletemin. Compared with data structures used for otherapplications, such as Distributed Databases or Dictionary machines, the main di�erence arisesfrom the natural centralized control required to detect the site which holds the item with thelargest priority. For this reason, the tenet that a tree topology is not appropriate (by creatinghot-spots and bottlenecks) no longer makes sense for distributed priority queues.We have developed a simple portable distributed priority queue (denoted DPQ) whichallows extensions. By portable we mean that the implementation code of the DPQ does not needto be modi�ed for the targeted platform: programs written with the Message Passing Interface(MPI) [21], and several users parameters are provided to adapt e�ciently the logical structureto the physical network. The MPI standard provides source-code portability of message-passingprograms written in C or Fortran across a variety of architectures. In this preliminary approach,we detect the impact of the structural factors (both physical and logical) on each DPQ. Our ma-jor goal is the design and analysis of concurrent methodologies which point out the relationshipbetween e�ciency and scalability. The next phase, not considered here, consists of supportingFault-tolerance (through replication and lazy update [9, 14]) and topologically-dynamic network,i.e., with a growing or decreasing number of processors [13]. Simultaneously, the DPQ is used tosolve some scienti�c problems requiring high performance computing, e.g., Branch and Boundfor Combinatorial Optimization problems, Event-Set model for Discrete Event Simulation, etc.The rest of the paper is organized as follows. Section 2 gives an overview of the problemsand constraints raised by distributing a data structure, and more speci�cally a priority queue.Section 3 presents the distributed priority queue implementation based on tree topologies. Sec-tion 4 discusses the experimentations results on the Cray T3D and the Meiko T800 ComputingSurface. Finally, Section 5 contains some conclusive remarks and presents detailed perspectives.2 Distributed Data StructuresNetworks of processors with the message passing paradigm are increasingly popular for parallelcomputing implementations. Reasons for this are mainly due to the availability of autonomy,the ease of scalability, the increased of reliability, and the ability to incorporate heterogeneousresources. The centerless organization of the control in the network arises di�erent design issues.This section outlines the di�erent features of e�cient distributed data structures. The speci�cityof distributed priority queues is outlined when exists.2.1 Distributed computing modelIn this paper, we are dealing with arbitrary communication network. We do not make assump-tions on the topology in a sense that the priority queue must be e�cient, independently ofthe targeted network. All processors have distinct identities. Messages arrive within �nite butunpredictable time and in a FIFO order. The network communication is free of errors.In all applications using a distributed data structure, the computing model is the following:the processors eventually generate data that need to be stored in the global structure andmay be needed by other processors. Each processor runs two intertwined processes: one for2
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Figure 1: Processus Design in a Network Sitethe application and one which maintains the distributed data structure by local access andcommunication request (see �gure 1). The structure is composed of:� a data organization scheme which speci�es how and where to store,� a set of distributed access protocols that enable a processor to issue modi�cation and queryto get appropriate responses.The set of instructions supported by the DPQ slightly changes from the sequential de�nitionand is de�ned as follows:insert(i,h) : insert a new item i with priority Keyi into distributed priority queue h,deletemin(h) : search the node which detains the item of minimum value (highest priority),delete it, and return it to the querying processor.2.2 Design choiceThe distributed extension of the de�nition from the sequential (or shared-memory) case doesnot encompass the intrinsic constraints and functions of a distributed data structure. Even forperfectly de�ned distributed applications, some aspects of the expected behavior of the datastructure are not explicit and, most of the time, are let to the programmer. Most of thosechoices will not be signi�cant, but some are e�ective.Most applications assume that a processor can make a new request only after the processingof the previous one has been completed, or is assumed locally to have been so. Though thede�nition of the completion of an insert query is non trivial, since this operation does notrequest an acknowledgment for an obvious performance reason. In this case, it is not howeverpossible to manage a peculiar event (e.g., when an identical item already exists).The deletemin operation consists of an Extract min primitive: the data must be deleted fromthe host site and forwarded to the requesting processor. When the deletemin request reachesa processor in which the item with minimal key is supposed to be, two kinds of actions canbe taken by this processor when detecting emptiness in its local queue: (a) assume a potentialempty DPQ and initiate an appropriate action (e.g., initiate a termination, start a new problem,etc.); (b) return a failure message to the requesting processor, which will take the appropriatedecision (e.g., try again later after a time-out or after receiving a message suggesting that such3



an item exists, etc.). However, the action does not depend on the de�nition of the emptiness.Formally, the DPQ is empty if and only if:� all the local priority queues of the sites are empty,� there is no current insert request on the communication links.Another example of fuzzy choices concerns the management of items with same priority.Despite the impressive amount of studies of sequential or parallel priority queues, little attentionhas been paid to the problem of priority ties. For applications in which such a case occurs, theorder of extraction of same priority items has an impact on e�ectiveness (e.g., [19]). This is allthe more relevant in a distributed context where the occurrence of several sites with an itemwith maximum priority is clearly possible and can lead to erroneous results if the protocol is notconsistent. The DPQ must be stable: able to enforce both the prediction and the prescriptionof this order to the data structure{a random pick-up with arbitrary result is not adequate,whereas FIFO or LIFO can be achieved. Some studies avoid the problem of priority ties byforbidding them, in this case the detection problem of inserting an item with same priority mustbe perfectly de�ned in order to take the appropriate fault-tolerant action.If the essence of the design of a data structure is correctness, the quest concerns performance.The communication complexity considered must represent both the worst case (an arbitrary pro-cessor requesting an arbitrary item) and the amortized case (average cost over the worst sequenceof operations performed consecutively on the data structure). This approach distinguishes thetwo intrinsic components of the DDS: a query performed correctly and immediately (responsetime and availability), and the maintenance of some properties which guarantee future perfor-mances (accessibility and concurrency). To provide fairness to the accessibility, load-balancingis required but concerns future performances; it can be delayed, or spread over a longer period,according to the expected sequence of queries. A level of replication resulting in redundancy maybe suitable for availability (reducing the distance to requested item and avoiding bottlenecks byallowing di�erent location access), and for reliability (allowing node failure).It is worth noting that, by now, none of the studies have considered the local cost of dis-tributed priority queue (except as an implicit constant and identical charge in each processor).Load-balancing is required in two cases: when the amount of data is extremely large (i.e., num-ber of items much larger than number of processors and the amount of main memory needed ina processor may be unacceptable) and when the load changes often in a non-uniform way. Thelocal memory is �nite and the memory load, by in
uencing the local computation, can alter theglobal computation. The choice between perfect or rough load-balancing is subtle but it is easyto show that for speci�c sequences, it is not possible for a non-centralized protocol to achieve aperfect load-balancing (this issue is omitted here for brevity).2.3 Analytic communication measureWe are dealing with time complexity Tquery , i.e., the number of time units from the start of aquery to its completion, and the communication complexity Cquery , i.e., the sum of the sizes ofall messages sent for the completion of the query.Other parameters are the number of items m, the memory Load, the size in bits of an item�, and the maximal amount of memory m� required in total. The notion is fragile: the globalload m can change at anytime. The DDS is balanced if the Load = mn or Load = mn + 1 in everysite.A brief presentation of some basic bounds on the communication for the DPQ is furnished,they are immediate extensions of Peleg's results for DDS [25]. The network is described by anundirected graph G = (V;E), consisting of n (= jV j) vertices and jEj edges.4



Lemma 2.1 For every graph G with diameter D(G), the lower bounds of a request in a DPQh of items of size � areTins + Tdeletemin = 
(D(G)) and Cins + Cdeletemin = 
(�D(G))Proof Immediate. Assume two processors v and w at maximal distance D. The analysis ofinsert(i,h) from v and deletemin(h) from w prove the lemma. 23 Tree Structure: a Portable TopologyThe DPQ introduced here is our point of departure for developing a solution in a more generalenvironment.In [24], Peleg introduced a distributed heap tree: the m items are perfectly load-balancedon a (minimum distance) spanning tree of the n processors network. The two alternatives ofthe heap invariant, [31], are considered: all items stored at a vertex have a larger, (respectivelya lower) priority than all those stored at any of its children. The heap invariant is maintainedafter each query (this is denoted as re-heapi�cation in the following). The root labeled 0 isthe center of the network. The tree nodes are labeled in a Depth-First order (DFS) from 0 to(n � 1) in order to embed any shortest path tree spanning the network. This ordering givesimmediately the position p where an extra-item must be inserted or deleted: p = mmodn,and this scheme respects a perfect load-balancing. This processor labeling provides also ane�cient compact routing as shown in [27]; namely, it does need an explicit but exhaustive,routing tables in each node (only O(degree) information table), and is scalable with the growthof networks. It is also independent of any underlying topology. In both heap invariant cases,the operations are complex and the root regiments all the queries. In the �rst proposal, upon areceipt of a deletemin query, the root has to locate the processor with the item of minimum valueamong the leaves (this is done by sending one message in each subtree of the root, to report theanswers, extract the item, and at last re-balance) and, therefore, generates numerous messagesand high latency. The deletemin of the second proposal, more natural, since the deletemin value(available at the root) is sent immediately to the requesting processor by the root while the re-balancing is done on background. In any case, the insert query completion is immediate, but itsbackground re-heapi�cation is less complex in the �rst proposal. These proposals are reasonableon a communication complexity approach since they both respect the bounds introduced inSection 2, but it is obvious to predict low concurrency in a real implementation.The merit of (minimum) spanning trees of processors lies in the facts that they can bedesigned in any network, and that, by de�nition, there is no cycle which is suitable to avoiddeadlock. The major drawback arises from the root as a bottleneck. However, regarding theintrinsic function of priority queues, the natural centralized control of the site detaining the itemwith the highest priority forces this behavior: the set of deletemin queries initiated concurrentlycreates a message congestion in the neighborhood of this particular processor.In [24], Peleg proposes to run an initial protocol to compute the desired minimum spanningtree and to label the processors accordingly. This is however rarely possible (speci�cally onheterogeneous networks where distances change arbitrarily) since logical and physical layers ofdistributed systems do not share the same level of information.Our implementation uses prede�ned trees of n processors with heap invariant on the itempriorities which is maintained along the sequence of queries. The root retains items with min-imum values. The protocol uses di�erent topologies: the d-heap and the binomial tree whichboth provide a completely implicit routing (no routing information is required as shown in thefollowing). 5
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BINOMIAL TREEFigure 2: 3-ary Tree and Binomial Tree with 14 processors.For the d-heap, we use the usual d-ary complete tree labeling: the processor root is labeled 1,the children of a processor i are labeled d � (i� 1) + 2; d � (i� 1) + 3; : : : ;min(d � i+ 1; n), andthe parent of a processor i is d(i� 1)=de (left �gure 2 with heap labeling outside of the nodes).The name binomial tree (right �gure 2) originated from the fact that, if n is a power of 2, thenumber of nodes at level i of the tree is the binomial coe�cient (ni ). The processor root islabeled 0 and has children labeled 2j from j = 0 to dlog ne, the children of a processor i arelabeled i+ 2j (if < n) with j from 0 to k� 1, where k is the power associated to 2 in the primefactor decomposition of i (the number of times that i can be divided by 2). The binomial treeis known to have optimal communication complexity when broadcasting from the root and iswidely used in hypercube or complete networks.3.1 Load-balancingThe distribution of the data respects a perfectly balanced scheme: each processor inserts ordeletes an item in a round-robin procedure. In the above proposal of Peleg [24], the positionp where an extra-item must be inserted or deleted is set to (mmodn). Unfortunately, anysequence of the same query generates a congestion along the path from the root to the positionp: the position p + 1 (or p � 1) has a high probability of locating a node of the same subtree(only 2 (log n � 1) nodes over n are not in this case). Hence, we introduce a step value s inthe round-robin where s is the smallest relatively prime number with n chosen between dn=4eand n. When an extra-node must be inserted (resp. deleted) the consecutive position p is setto (p+ s)modn (resp. (p� s)modn). (Of course, care must be taken if m < n, then to respectthe heap invariant s is set to 1). By de�nition of the relatively prime, the common divisorbetween n and s is 1 and each processor will be visited in a round-robin scheme but not in thelabeling order. The appropriate choice of the value (close to n=4) based on observation of thestructure of the d-heap or the binomial trees, will adequately spread the consecutive accesses indi�erent subtrees. For instance, with 14 processors, s is set to 5 and a sequence of n insertionsconsecutively locates processors:h0; 5; 10; 1; 6; 11; 2; 7; 12; 3; 8; 13; 4; 9i3.2 ProtocolTo complete an insert, a processor sends the new item to the root. Upon receipt of the query,the root computes the position p of the future host processor, selects the appropriate path, andinitiates the insertion along the path. In each node, if the priority of the new item is greater thanthe lowest priority item in the currently visited processor (i.e., if the heap invariant is violated),the new item and this item are exchanged. The remaining item is relayed along the path untilthe host processor is reached. If necessary, the host processor initiates a re-heapi�cation among6



its descendants (i.e., makes sure that its maximum priority item is smaller than the minimumpriority item of all the minimum priority items of its children, and exchanges those two if not).To complete a deletemin, a processor sends the request to the root (this processor cannotinitiate another query before receiving the extracted item). Upon receipt of the query, dependingon the status of its local queue, the root either (a) immediately sends back its minimum valueitem, or (b) stores the number of the requesting processor in the waiting list. Case (b) occurswhen the DPQ is empty, the item of the next incoming insert query is sent immediately to the�rst waiting processor. In case (a) the root has to respect the load-balancing by requestinga (minimum priority) item from its processor child on the path to position p. This processis repeated along the path until the processor labeled p is reached and its Load decreased.Simultaneously, if the item extracted from the child has a greater priority than the other children,a re-heapi�cation is required with other children.Clearly, all the modi�cations (even re-heapi�cation) are done downward from the root, andat a given time involve only two nodes on the same path. Indeed, a processor can check locally,in a priority array, the minimum value of the items in each of its children and can initiatethe exchange with the appropriate son. This fact lies on the protocol feature which guarantee,by induction, that an item can not be inserted in a subtree without passing through its root.Assuming that the initial heapi�cation builds these priority arrays, a processor can maintaininformation of the minimum priority value of each of its children. Obviously, this can be donewithout any communication overhead and requires only O(degree) memory space in each node.3.3 Concurrency and consistencyThe protocol presented above adapts to message-passing a well-known concurrent technic inglobal shared-memory tree data structure: the user view serialization, [3, 16]. Considering thata basic operation on a data structure is usually made of successive elementary operations, eachprocessor sees and modi�es the shared structure as if it could hold the entire tree excludingaccess. The processors access the data structure downward, inspect a part of the structurethat the previous processors make no further changes to, and leave parts of the data structure(modi�ed or not) in a consistent state for incoming processors.In our message-passing context, the role of the processors and the requests are exchanged.The processors cannot execute a process along the path of the data structure, but relay a re-quest in a top-down scheme. Moreover, the processors deal with one request at a time, providingatomicity of modi�cations in each node. The root by managing the requests forces serializibil-ity, providing consistency and concurrency among di�erent subtrees. The proof of correctnessis similar to the shared-memory case.Except for the initial requests directly sent to the root, a bottom-up message can only bean immediate answer to a top-down message initiated by a processor waiting for it (exchangingan item, asking for minimum priority value,...), and, hence cannot create a waiting cycle. Allthe messages sent are non-blocking: the processor does not wait for the completion of thecommunication and can immediately manage incoming messages. To guarantee fairness betweenthe request messages and the control, all the receptions are blocking and respect a FIFO scheme.The top-down scheme and the FIFO ordering of messages guarantee atomicity and correctness,without either lock mechanisms or collective communications.3.4 Local priority queues: the splay treeEach processor uses a Splay Tree as a local priority queue [28]. Some extra-operations havebeen de�ned and implemented to serve the above protocol: InsertSplay, Deletemin, Deletemax,7



Findmin and Findmax. Each operation has an amortized cost of O(log t) for a t-items localpriority queue.Splay trees are self-adjusted data structures and are related to Red-Black trees and AVLtrees, [12]. Splay trees maintain balance without explicit balance condition. A Splay operationis performed at each access. The Splay operation consists of restructuring heuristically the accesspath when searching an item i. When top-down splaying at an internal item i, the path fromthe root x to i is traversed performing a single rotation at each item until x = i. If x has a sony but no grandson, we rotate at y (ZIG, see �gure 3 (a)). If x has a grandson z, we rotate at zdepending of the structure of the path (see �gure 3 ZIG-ZIG (b) and ZIG-ZAG (c)). Symmetricvariant are omitted. Assembled subtrees, R and L are used, where R (resp. L) contains valuesgreater (resp. lower) to the value i. The overall e�ect of the splay is to move i to the root whilerearranging the rest of the original path to i.
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is partially assembled at each ZIG-ZIG rotation. A Top Tree, assembled progressively, is addedto L and R trees, as shown in �gure 5. The searched item is not always the root of the tree.A Simple-Semi-Splay, more easier to code, can be obtained when executing two ZIG rotationsinstead of one ZIG-ZAG.
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4 Experimentation and Results AnalysisWe have implemented and validated the distributed data structures on a Meiko-T800 Computingsurface and on a Cray-T3D (at EPCC, Edinburgh University).4.1 MPI and the PlatformsThe C code developed uses the MPI/CHIMP interface available at the EPCC, University ofEdinburgh. The MPI stands for Message Passing Interface [21, 22, 8]. The goal of MPI, simplystated, is to develop a consistent standard for writing message-passing programs (for Fortran 77and C). One reason for this is due to the wide number of platforms which can support messagepassing. Programs written with MPI can be executed on distributed or shared memory multi-processors (Cray, CM5, Meiko,...), networks of workstations (Sun, Dec, Silicon Graphics,...) ora combination of these. The MPI forum was opened to the whole community and was led by aworking group with in-depth experience of the use and design of message-passing systems (in-cluding PVM, PARMACS, CHIMP, LAM, etc.). More than a standard, MPI intrinsically impliesperformance by providing some e�cient routines (e.g., compared with PVM, it e�ciently man-ages message bu�ers, with memory-to-memory copy, provides a wide range of communications:synchronous and asynchronous, blocking or not, bu�ered or not,...). As such, the MPI interfaceshould establish a practical, portable, e�cient, and 
exible standard for message passing.Typically a programmer writes one program which is replicated across all the processors ofthe network. This Single-Program-Multiple-Data model (denoted SPMD) refers to a restrictionof the message-passing model which requires that all processes run the same executable. Inpractice this is not usually a problem to the programmer, who can incorporate all the di�erenttypes of process required into one overall executable.A MPI program communicates with other MPI program by calling MPI routines (MPIcomprises a library). The initial loading of the executables onto the parallel machine is out ofthe scope of the MPI interface (for instance, there is no MPI routine to assign a logical processto a speci�c processor). There are rules for datatype-matching, point-to-point and collectivecommunications, topology and group constructors.To con�rm portability, the experiments were conducted on two platforms, di�erent by theirtopologies and their hardware. TheCray-T3Dmassively parallel processing system is a scalableMIMD system with a physically distributed, globally addressable memory. The T3D standsfor the physical topology: a Torus 3-dimensions. Each node is composed of two DEC Alphaprocessors, each with CPU, local memory, and a memory control unit. The data channels arebidirectional, independent in each 3 dimensions, and have a transfer rate of 300MB/s providinglow latency. The routing scheme is a combination of \virtual-cut-through" and \wormhole".We also used a Meiko Computing Surface consisting of 150 T800 transputers (processorswith communication hardware limited to 4 neighbors). This machine, con�gured as a multi-userresource, continues to provide a MIMD service both to academia and for EPCC internal use. Inthis instance, we were limited to 51 processors.4.2 Simulation modelTypically, a priority-queue-based application consists of deletemin-work-insert cycles, in thesense that each extracted item leads to the creation of zero or more new items which must beinserted and will be extracted eventually. To model such a behavior, we tested our code througha self-scheduling application and an event-set application. In the case of the self-scheduling(commonly used in technics such as divide-and-conquer, Branch and Bound,...), the priorityqueue is initially empty; the root inserts an item with minimum value; each processor repeatedly10



requests a deletemin and inserts two items with the randomly incremented value (unless thisvalue is greater than a maximum value); the application terminates when the (distributed)priority queue is empty. In the case of the event-set, the priority queue is initially �lled with agiven number of nodes; each processor repeatedly requests a deletemin followed by an insertionof an item with a randomly modi�ed value; the application terminates when each processor hascompleted a given number of iterations.Di�erent features of the DPQ are outlined: for the event-set problem, the size of the datastructure is relatively constant along the execution (even with an in�nite sequence of deleteminand insert, and an initial global load m, the global load is in [m� n;m]), whereas for the self-scheduling techniques the global load increases from 0 to a large value (m� n) and down to 0;creating extreme load-balancing overheads. For this latter, since the oldest waiting deleteminrequest is served and dequeued with any incoming insertion, the root processor initiates thetermination if the waiting queue is full. Regarding the priority domain, the event-set appli-cation provides items with arbitrary values, whereas the self-scheduling application tends toprovide monotonously increasing priority values of items. In both applications, the termina-tion is broadcast asynchronously downward, and ensures that all the current modi�cations inbetween neighbors are completed. Regarding the priority domain, the event-set applicationprovides items with arbitrary values, whereas the self-scheduling application tends to providemonotonously increasing priority values of items.Detailed timing were made of the completion of the programs in each processor by using theMPI timing routines. (Startup and shutdown costs, these system-dependent components areexcluded).Nondeterminism due to random numbers can be controlled by using a reproducible generator.The value returned by the last deletemin is used as the seed number of the random numbergenerator so that the value of the items generated is independent of the processor host. Eachexecution has been repeated at least three times in order to avoid random noise and to discardperturbed data.4.3 Measuring the contentionThe severity of the contention problem is determined not by the duration of a request from aprocessor but by the time that the processor has to wait between two requests. This dependson the application, usually changes throughout the execution and, hence, is di�cult to simulate.The speed-up is limited by the ratio of the computation time associated with the application,the grain, to the time required to access items.Speedup � Tapplic + TrequestTrequestwhere Trequest is the time necessary to complete the appropriate accesses to the DistributedPriority Queue to treat an item, and Tapplic the grain.Therefore, in our model, each processor attempts a new access to the priority queue as soonthe last access is completed, which means in fact that there is no granularity. Both applications
ood the network which leads to a considerable overhead. Such an experiment gives a lowerbound of the reachable concurrency obtained by the distributed priority queue independently ofthe application. This provides the most unbiased comparison of DPQ. However, it worth notingthat, by de�nition, such a simulation cannot provide a speed-up. In practice, when the DPQ isassociated with an application, the concurrency is typically higher (the speed-up is achieved bydividing the overall load of the application between the processors).11



4.4 Results and analysisExperimental studies are used in early design stages to determine values for e�ective parametersused in models (impact of degree, diameter, message transfer costs,...).For the self-scheduling, we run the programs with di�erent maximum sizes of priority queueby modifying the random size of the gap between the initial priority and the maximum priority(the greater the gap is, the greater the size of the queue will be). For instance, all the followingMeiko curves are obtained with a gap of 120 with maximum increment of 20. Typically, themaximum DPQ sizes varies from 1372 down to 1342 with the increasing number of processors.
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Figure 7: Location Strategy on Meiko-T800 for Self-SchedulingFigure 7 shows the performances of the DPQ using the load-balancing strategy describedearlier in Section 3, the strategy using a step spreads the requests in di�erent subtrees. We showthe results on 3-heap and binomial trees (�gure 2). The running performance (in seconds) isincreased to 15% with 48 processors when using a step not set to 1, and suggests higher bene�tswith more processors.To formulate the metric of the sensibility to network degree, we report all timings for Self-Scheduling on the Meiko in �gures 7 and 8. The degree of the d-heap have been empirically�xed for the executions with di�erent number of processors.Gradually increasing the number of processors does not change the number of initial requeststo the root but increases the number of messages due to the assignment of the items to a speci�cprocessor and the number of messages due to the according maintenance of the heap invariant. Aspeed-up study does make sense here since there is no granularity to divide in between processors.Here we test the scalability of amount of overhead induced by the heap invariance. In �gure 8,the line topology indicates the communication overhead due to the latency of the network.Gradually increasing the distance between the processors decreased the hot-spot impact, thoughit increases latency. Results curves show that the best running times occur when the degreeof the d-heap tree is greater, but close, to the degree of the physical network: 6 from 8 to 32processors, 7 above. A 6-ary tree with depth 2 includes 8 to 43 processors.The performance obtained with the binomial tree is satisfactory, although the increasingdiameter jeopardizes the e�ective exploitation of the adaptive degree. The results suggest thatthe binomial tree is less e�cient than an adequate d-heap. The binomial tree structure does12
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7-heapbinomialFigure 8: Performances of Topologies for Self-Scheduling on Meiko-T800not depend on the interconnectivity but rather depends on the number of processors and themaximum degree of a processor is dlog ne but the diameter is within [blog nc; dlog ne]. Forexample, with 40 processors, the binomial tree has maximum degree 6 which is comparable tothe suitable degree of the d-heap, but has depth 5 which degrades performances. However, it isworth mentioning that the adaptiveness of the d-heap is not dynamically scalable (in a networkwith an increasing number of processors); adding some processors extends the 'bottom' of thed-ary tree increasing the number of layers, i.e., the tree's diameter. In the binomial case, addingsome processors increases both the diameter and the degree of the tree, scaling the concurrency.A comparable degradation for the line topology occurs in the Event-Set implementationin �gure 9. For these testbeds, the DPQ is initially set with a 2000-items and the priorityare arbitrary generated in a [0; 3000] domain. The processors executed 5000 (deletemin-insert)events in total: exactly 5000=n each.To clearly understand the trends of running times while increasing the number of processors,in �gure 10 we show the impact of the degree. The e�ciency of a speci�c d-heap implementationfalls when a threshold of the number of processors is exceeded: 7 for 28 processors, 7 for 32, 6for 40, and 8 for 48. The elucidation of the phenomenon of this perturbed sequence requiredknowledge on the physical partitioning of the Meiko installation and is out of the scope of thepresent study.Figure 11 gives some run times on the Cray-T3D. The processors executed 70000 (deletemin-insert) events in total: exactly 70000=n each. In these results, because of user time limitation,it was not possible to conduct experiments with a larger number of processors. It is con�rmedthat the best performances are for degree 5 for 8 to 32 processors.13
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Figure 9: Performances of Topologies for Event-Set on Meiko-T800These experiments con�rm the trade-o� between the interconnectivity of networks and thee�ective use of the number of processors, and suggest the adoption of degree-based DPQ. Ourcurrent (and preliminary) results show that the best running times occur when the degree ofthe logical tree is close to the degree of the physical network: 6 on the T3D and 4 on the Meiko-T800. However, a second result shows that, in order to be scalable, the degree must increaseaccordingly to the diameter even if it is greater than the physical degree.
14
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