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1 IntroductionIn recent years we and others have argued that the task of learning from examples can beconsidered in many cases to be equivalent to multivariate function approximation, thatis, to the problem of approximating a smooth function from sparse data, the examples.The interpretation of an approximation scheme in terms of networks and vice versa hasalso been extensively discussed (Barron and Barron, 1988; Poggio and Girosi, 1989, 1990,1990b; Girosi, 1992; Broomhead and Lowe, 1988; Moody and Darken, 1988, 1989; White,1989, 1990; Ripley, 1994; Omohundro, 1987; Kohonen, 1990; Lapedes and Farber, 1988;Rumelhart, Hinton and Williams, 1986; Hertz, Krogh and Palmer, 1991; Kung, 1993;Sejnowski and Rosenberg, 1987; Hurlbert and Poggio, 1988; Poggio, 1975).In a series of papers we have explored a quite general approach to the problemof function approximation. The approach regularizes the ill-posed problem of functionapproximation from sparse data by assuming an appropriate prior on the class of approx-imating functions. Regularization techniques (Tikhonov, 1963; Tikhonov and Arsenin,1977; Morozov, 1984; Bertero, 1986; Wahba, 1975, 1979, 1990) typically impose smooth-ness constraints on the approximating set of functions. It can be argued that someform of smoothness is necessary to allow meaningful generalization in approximationtype problems (Poggio and Girosi, 1989, 1990). A similar argument can also be used(see section 9.1) in the case of classi�cation where smoothness is a condition on theclassi�cation boundaries rather than on the input-output mapping itself. Our use ofregularization, which follows the classical technique introduced by Tikhonov, identi�esthe approximating function as the minimizer of a cost functional that includes an errorterm and a smoothness functional, usually called a stabilizer. In the Bayesian interpre-tation of regularization (see Kimeldorf and Wahba, 1971; Wahba, 1990; Bertero, Poggioand Torre, 1988; Marroquin, Mitter and Poggio, 1987; Poggio, Torre and Koch, 1985)the stabilizer corresponds to a smoothness prior, and the error term to a model of thenoise in the data (usually Gaussian and additive).In Poggio and Girosi (1989, 1990, 1990b) and Girosi (1992) we showed that regulariza-tion principles lead to approximation schemes which are equivalent to networks with one\hidden" layer, which we call Regularization Networks (RN). In particular, we describedhow a certain class of radial stabilizers { and the associated priors in the equivalentBayesian formulation { lead to a subclass of regularization networks, the already-knownRadial Basis Functions (Powell, 1987, 1990; Franke, 1982, 1987; Micchelli, 1986; Kansa,1990a,b; Madych and Nelson, 1990; Dyn, 1987, 1991; Hardy, 1971, 1990; Buhmann,1990; Lancaster and Salkauskas, 1986; Broomhead and Lowe, 1988; Moody and Darken,1988, 1989; Poggio and Girosi, 1990, 1990b; Girosi, 1992). The regularization networkswith radial stabilizers we studied include many classical one-dimensional (Schumaker,1981; de Boor, 1978) as well as multidimensional splines and approximation techniques,such as radial and non-radial Gaussian, thin-plate splines (Duchon, 1977; Meinguet,1



1979; Grimson, 1982; Cox, 1984; Eubank, 1988) and multiquadric functions (Hardy,1971, 1990). In Poggio and Girosi (1990, 1990a) we extended this class of networks toHyper Basis Functions (HBF). In this paper we show that an extension of Regulariza-tion Networks, which we propose to call Generalized Regularization Networks (GRN),encompasses an even broader range of approximation schemes including, in addition toHBF, tensor product splines, many of the general additive models, and some of theneural networks. As expected, GRN have approximation properties of the same type asalready shown for some of the neural networks (Girosi and Poggio, 1990; Cybenko, 1989;Hornik, Stinchcombe and White, 1989; White, 1990; Irie and Miyake, 1988; Funahashi,1989, Barron, 1991, 1994; Jones, 1992; Mhaskar and Micchelli, 1992, 1993; Mhaskar,1993, 1993a).The plan of the paper is as follows. We �rst discuss the solution of the variationalproblem of regularization. We then introduce three di�erent classes of stabilizers { andthe corresponding priors in the equivalent Bayesian interpretation { that lead to di�erentclasses of basis functions: the well-known radial stabilizers, tensor-product stabilizers,and the new additive stabilizers that underlie additive splines of di�erent types. It isthen possible to show that the same argument that extends Radial Basis Functions toHyper Basis Functions also leads from additive models to some ridge approximationschemes, de�ned as f(x) = KX�=1h�(w� � x)where h� are appropriate one-dimensional functions.Special cases of ridge approximation are Breiman's hinge functions (1993), Projec-tion Pursuit Regression (PPR) (Friedman and Stuezle, 1981; Huber, 1985; Diaconis andFreedman, 1984; Donoho and Johnstone, 1989; Moody and Yarvin, 1991) and Multi-layer Perceptrons (Lapedes and Farber, 1988; Rumelhart, Hinton and Williams, 1986;Hertz, Krogh and Palmer, 1991; Kung, 1993; Sejnowski and Rosenberg, 1987). Simplenumerical experiments are then described to illustrate the theoretical arguments.In summary, the chain of our arguments shows that some ridge approximationschemes are approximations of Regularization Networks with appropriate additive stabi-lizers. The form of h� depends on the stabilizer, and includes in particular cubic splines(used in typical implementations of PPR) and one-dimensional Gaussians. Perceptron-like neural networks with one-hidden layer and with a Gaussian activation function areincluded. It seems impossible, however, to directly derive from regularization principlesthe sigmoidal activation functions typically used in feedforward neural networks. Wediscuss, however, in a simple example, the close relationship between basis functions ofthe hinge, the sigmoid and the Gaussian type.The appendices deal with observations related to the main results of the paper and2



more technical details.2 The regularization approach to the approxima-tion problemSuppose that the set g = f(xi; yi) 2 Rd � RgNi=1 of data has been obtained by randomsampling a function f , belonging to some space of functions X de�ned on Rd, in thepresence of noise, and suppose we are interested in recovering the function f , or anestimate of it, from the set of data g. This problem is clearly ill-posed, since it has anin�nite number of solutions. In order to choose one particular solution we need to havesome a priori knowledge of the function that has to be reconstructed. The most commonform of a priori knowledge consists in assuming that the function is smooth, in the sensethat two similar inputs correspond to two similar outputs. The main idea underlyingregularization theory is that the solution of an ill-posed problem can be obtained froma variational principle, which contains both the data and prior smoothness information.Smoothness is taken into account by de�ning a smoothness functional �[f ] in such a waythat lower values of the functional correspond to smoother functions. Since we look for afunction that is simultaneously close to the data and also smooth, it is natural to chooseas a solution of the approximation problem the function that minimizes the followingfunctional: H[f ] = NXi=1(f(xi)� yi)2 + ��[f ] : (1)where � is a positive number that is usually called the regularization parameter. The�rst term is enforcing closeness to the data, and the second smoothness, while theregularization parameter controls the tradeo� between these two term, and can be chosenaccording to cross-validation techniques (Allen, 1974; Wahba and Wold, 1975; Golub,Heath and Wahba, 1979; Craven and Wahba, 1979; Utreras, 1979; Wahba, 1985) or tosome other principle, such as Structural Risk Minimization (Vapnik, 1988).It can be shown that, for a wide class of functionals �, the solutions of the mini-mization of the functional (1) all have the same form. Although a detailed and rigorousderivation of the solution of this problem is out of the scope of this paper, a simplederivation of this general result is presented in appendix (A). In this section we justpresent a family of smoothness functionals and the corresponding solutions of the varia-tional problem. We refer the reader to the current literature for the mathematical details(Wahba, 1990; Madych and Nelson, 1990; Dyn, 1987).We �rst need to give a more precise de�nition of what we mean by smoothness andde�ne a class of suitable smoothness functionals. We refer to smoothness as a measure3



of the \oscillatory" behavior of a function. Therefore, within a class of di�erentiablefunctions, one function will be said to be smoother than another one if it oscillates less.If we look at the functions in the frequency domain, we may say that a function issmoother than another one if it has less energy at high frequency (smaller bandwidth).The high frequency content of a function can be measured by �rst high-pass �ltering thefunction, and then measuring the power, that is the L2 norm, of the result. In formulas,this suggests de�ning smoothness functionals of the form:�[f ] = ZRd ds j ~f(s)j2~G(s) (2)where~ indicates the Fourier transform, ~G is some positive function that tends to zeroas ksk ! 1 (so that 1~G is an high-pass �lter) and for which the class of functions suchthat this expression is well de�ned is not empty. For a well de�ned class of functionsG (Madych and Nelson, 1990; Dyn, 1991; Dyn et al., 1989) this functional is a semi-norm, with a �nite dimensional null space N . The next section will be devoted to givingexamples of the possible choices for the stabilizer �. For the moment we just assumethat it can be written as in equation (2), and make the additional assumption that ~Gis symmetric, so that its Fourier transform G is real and symmetric. In this case it ispossible to show (see appendix (A) for a sketch of the proof) that the function thatminimizes the functional (1) has the form:f(x) = NXi=1 ciG(x� xi) + kX�=1 d� �(x) (3)where f �gk�=1 is a basis in the k dimensional null space N of the functional �, that inmost cases is a set of polynomials, and therefore will be referred to as the \polynomialterm" in equation (3). The coe�cients d� and ci depend on the data, and satisfy thefollowing linear system: (G + �I)c+	Td = y (4)	c = 0 (5)where I is the identity matrix, and we have de�ned(y)i = yi ; (c)i = ci ; (d)i = di ;(G)ij = G(xi � xj) ; (	)�i =  �(xi)Notice that if the data term in equation (1) is replaced by PNi=1 V (f(xi) � yi) where Vis any di�erentiable function, the solution of the variational principle has still the form4



3, but the coe�cients cannot be found anymore by solving a linear system of equations(Girosi, 1991; Girosi, Poggio and Caprile, 1991).The existence of a solution to the linear system shown above is guaranteed by theexistence of the solution of the variational problem. The case of � = 0 corresponds topure interpolation. In this case the existence of an exact solution of the linear systemof equations depends on the properties of the basis function G (Micchelli, 1986).The approximation scheme of equation (3) has a simple interpretation in terms of anetwork with one layer of hidden units, which we call a Regularization Network (RN).Appendix B describes the extension to the vector output scheme.In summary, the argument of this section shows that using a regularization networkof the form (3), for a certain class of basis functions G, is equivalent to minimizing thefunctional (1). In particular, the choice of G is equivalent to the corresponding choiceof the smoothness functional (2).2.1 Dual representation of Regularization NetworksConsider an approximating function of the form (3), neglecting the \polynomial term"for simplicity. A compact notation for this expression is:f(x) = c � g(x) (6)where g(x) is the vector of functions such that (g(x))i = G(x�xi). Since the coe�cientsc satisfy the linear system (4), solution (6) becomesf(x) = (G + �I)�1y � g(x) :We can rewrite this expression asf(x) = NXi=1 yibi(x) = y � b(x) (7)in which the vector b(x) of basis functions is de�nedb(x) = (G + �I)�1g(x) (8)and now depends on all the data points and on the regularization parameter �. Therepresentation (7) of the solution of the approximation problem is known as the dualof equation (6), and the basis functions bi(x) are called the equivalent kernels, becauseof the similarity between equation (7) and the kernel smoothing technique that we willde�ne in section 2.2 (Silverman, 1984; H�ardle, 1990; Hastie and Tibshirani, 1990). Whilein equation (6) the \di�cult" part is the computation of the vector of coe�cients ci, theset of basis functions g(x) being easily built, in equation (7) the \di�cult" part is the5



computation of the basis functions b(x), the coe�cients of the expansion being explicitlygiven by the yi. Notice that b(x) depends on the distribution of the data in the inputspace and that the kernels bi(x), unlike the kernels G(x�xi), are not translated replicasof the same kernel. Notice also that, as shown in appendix B, a dual representation of theform (7) exists for all the approximation schemes that consists of linear superpositionsof arbitrary numbers of basis functions, as long as the error criterion that is used todetermine the parameters of the approximation is quadratic.The dual representation provides an intuitive way of looking at the approximationscheme (3): the value of the approximating function at an evaluation point x is explicitlyexpressed as a weighted sum of the values yi of the function at the examples xi. Thisconcept is not new in approximation theory, and has been used, for example, in thetheory of quasi-interpolation. The case in which the data points fxig coincide with themulti-integers Zd, where Z is the set of integers number, has been extensively studied inthe literature, and it is also known as Schoenberg's approximation (Schoenberg, 1946a,1946b, 1969; Rabut, 1991, 1992; Madych and Nelson, 1990a; Jackson, 1988; de Boor,1990; Buhmann, 1990, 1991; Dyn et al., 1989). In this case, an approximation f� to afunction f is sought of the form:f�(x) = Xj2Zd f(j) (x� j) : (9)where  is some fast-decaying function that is a linear combination of Radial BasisFunctions. The approximation scheme (9) is therefore a linear superposition of RadialBasis Functions in which the functions  (x � j) play the role of equivalent kernels.Quasi-interpolation is interesting because it could provide good approximation withoutthe need of solving complex minimization problems or solving large linear systems. For adiscussion of such non iterative training algorithms see Mhaskar (1993a) and referencestherein.Although di�cult to prove rigorously, we can expect the kernels bi(x) to decreasewith the distance of the data points xi from the evaluation point, so that only theneighboring points a�ect the estimate of the function at x, providing therefore a \local"approximation scheme. Even if the original basis function G is not \local", like the mul-tiquadric G(x) = q1 + kxk2, the basis functions bi(x) are bell shaped, local functions,whose locality will depend on the choice of the basis function G, on the density of datapoints, and on the regularization parameter �. This shows that apparently \global" ap-proximation schemes can be regarded as local, memory-based techniques (see equation7) (Mhaskar, 1993a). It should be noted however, that these techniques do not havethe highest possible degree of locality, since the parameter that controls the locality isthe regularization parameter �, that is the same for all the kernels. It is possible todevise even more local techniques, in which each kernel has a parameter that controlsits locality (Bottou and Vapnik, 1992; Vapnik, personal communication).6



When the data are equally spaced on an in�nite grid, we expect the basis functionsbi(x) to become translation invariant, and therefore the dual representation (7) becomesa convolution �lter. For a study of the properties of these �lters in the case of onedimensional cubic splines see the work of Silverman (1984), who gives explicit resultsfor the shape of the equivalent kernel.Let us consider some simple experiments that show the shape of the equivalent kernelsin speci�c situations. We �rst considered a data set composed of 36 equally spaced pointson the domain [0; 1]� [0; 1], at the nodes of a regular grid with spacing equal to 0.2. Weuse the multiquadric basis functions G(x) = q�2 + kxk2, where � has been set to 0.2.Figure 1a shows the original multiquadric function, and �gure 1b the equivalent kernelb16, in the case of � = 0, where, according to de�nition (8)bi(x) = 36Xj=1(G�1)ijG(x� xj) :All the other kernels, except those close to the border, are very similar, since the dataare equally spaced, and translation invariance holds approximately.Consider now a one dimensional example with a multiquadric basis function:G(x) = p�2 + x2 :The data set was chosen to be a non uniform sampling of the interval [0; 1], that is theset f0:0; 0:1; 0:2; 0:3; 0:4; 0:7; 1:0g :In �gure 1c, 1d and 1e we have drawn, respectively, the equivalent kernels b3, b5 andb6, under the same de�nitions. Notice that all of them are bell-shaped, although theoriginal basis function is an increasing, cup-shaped function. Notice, moreover, that theshape of the equivalent kernels changes from b3 to b6, becoming broader in moving froma high to low sample density region. This phenomenon has been shown by Silverman(1986) for cubic splines, but we expect it to appear in much more general cases.The connection between regularization theory and the dual representation (7) be-comes clear in the special case of \continuous" data, for which the regularization func-tional has the form: H[f ] = Z dx (f(x)� y(x))2 + ��[f ] : (10)where y(x) is the function to be approximated. This functional can be intuitively seenas the limit of the functional (1) when the number of data points goes to in�nity andtheir spacing is uniform. It is easily seen that, when the stabilizer �[f ] is of the form(2), the solution of the regularization functional (10) is7



f(x) = y(x) �B(x) (11)where B(x) is the Fourier transform of~B(s) = ~G(s)� + ~G(s) ;(see Poggio, Voorhes and Yuille, (1988) for some examples of B(x)). The solution (11)is therefore a �ltered version of the original function y(x) and, consistently with theresults of Silverman (1984), has the form (7), where the equivalent kernels are translatesof the function B(x) de�ned above. Notice the e�ect of the regularization parameter:for � = 0 the equivalent kernel B(x) is a Dirac delta function, and f(x) = y(x) (nonoise) , while for �!1 we have B(x) = G(x) and f = G � y (a low pass �lter).The dual representation is illuminating and especially interesting for the case of amulti-output network { approximating a vector �eld { that is discussed in Appendix B.2.2 Normalized kernelsAn approximation technique very similar to Radial Basis Functions is the so-calledNormalized Radial Basis Functions (Moody and Darken, 1988, 1989). A NormalizedRadial Basis Functions expansion is a function of the form:f(x) = Pn�=1 c�G(x � t�)Pn�=1G(x� t�) : (12)The only di�erence between equation (12) and Radial Basis Functions is the normaliza-tion factor in the denominator, which is an estimate of the probability distribution ofthe data. A discussion about the relation between normalized Gaussian basis functionnetworks, Gaussian mixtures and Gaussian mixture classi�ers can be found in the workof Tresp, Hollatz and Ahmad (1993). In the rest of this section we show that a particu-lar version of this approximation scheme has again a tight connection to regularizationtheory.Let P (x; y) be the joint probability of inputs and outputs of the network, and let usassume that we have a sample of N pairs f(xi; yi)gNi=1 randomly drawn according to P .Our goal is to build an estimator (a network) f that minimizes the expected risk:I[f ] = Z dxdyP (x; y)(y� f(x))2 : (13)This cannot be done, since the probability P is unknown, and usually the empirical risk:Iemp[f ] = 1N NXi=1(yi � f(xi))2 (14)8



is minimized instead. An alternative consists in obtaining an approximation of theprobability P (x; y) �rst, and then in minimizing the expected risk. If this option ischosen, one could use the regularization approach to probability estimation (Vapnikand Stefanyuk, 1978; Aidu and Vapnik, 1989; Vapnik, 1982), that leads to the wellknown technique of Parzen windows. A Parzen window estimator P � for the probabilitydistribution of a set of data fzigNi=1 has the form:P �(z) = 1Nh NXi=1��z� zih � (15)where � is an appropriate kernel, for example a Gaussian, whose L1 norm is 1, andwhere h is a positive parameter, that, for simplicity, we set to 1 from now on. If thejoint probability P (x; y) in the expected risk (13) is approximated with a Parzen windowestimator P �, we obtain an approximated expression for the expected risk, I�[f ], thatcan be explicitly minimized. In order to show how this can be done, we notice thatwe need to approximate the probability distribution P (x; y), and therefore the randomvariable z of equation (15) is z = (x; y). Hence, we choose a kernel of the followingform2: �(z) = K(kxk)K(y)whereK is a standard one-dimensional, symmetric kernel, like the Gaussian. The Parzenwindow estimator to P (x; y) is therefore:P �(x; y) = 1N NXi=1K (kx� xik)K(y � yi) (16)An approximation to the expected risk is therefore obtained as:I�[f ] = 1N NXi=1 Z dxdyK (kx� xik)K(y � yi)(y � f(x))2 :In order to �nd an analytical expression for the minimum of I�[f ] we impose the sta-tionarity constraint: � ~I[f ]�f(s) = 0 ;that leads to the following equation:2Any kernel of the form �(z) = K(x; y) in which the function K is even in each of the variables xand y would lead to the same conclusions that we obtain for this choice.9



NXi=1 Z dxdyK (kx� xik)K(y � yi)(y � f(x))�(x� s) = 0 :Performing the integral over x, and using the fact that kKkL1 = 1 we obtain:f(x) = PNi=1K (kx� xik) R dyK(y � yi)yPNi=1K (kx� xik) :Performing a change of variable in the integral of the previous expression and using thefact that the kernelK is symmetric, we �nally conclude that the function that minimizesthe approximated expected risk is:f(x) = PNi=1 yiK(kx� xik)PNi=1K(kx� xi)k : (17)The right hand side of the equation converges to f when the number of examples goes toin�nity, provided that the scale factor h tends to zero at an appropriate rate. This formof approximation is known as kernel regression, or Nadaraya-Watson estimator, and ithas been the subject of extensive study in the statistics community (Nadaraya, 1964;Watson, 1964; Rosenblatt, 1971; Priestley and Chao, 1972; Gasser and M�uller, 1985;Devroye and Wagner, 1980). A similar derivation of equation (17) has been given bySpecht (1991), but we should remark that this equation is usually derived in a di�erentway, within the framework of locally weighted regression, assuming a locally constantmodel (Hardle, 1990) with a local weight function K.Notice that this equation has the form of equation (12), in which the centers coincidewith the examples, and the coe�cients ci are simply the values yi of the function at thedata points xi. On the other hand, the equation is an estimate of f which is linear inthe observations yi and has therefore also the general form of equation (7).The Parzen window estimator, and therefore expression (17), can be derived in theframework of regularization theory (Vapnik and Stefanyuk, 1978; Aidu and Vapnik,1989; Vapnik, 1982) under a smoothness assumption on the probability distribution thathas to be estimated. This means that, in order to derive equation (17), a smoothnessassumption has to be made on the joint probability distribution P (x; y), rather than onthe regression function as in (2).3 Classes of stabilizersIn the previous section we considered the class of stabilizers of the form:�[f ] = ZRd ds j ~f(s)j2~G(s) (18)10



and we have seen that the solution of the minimization problem always has the sameform. In this section we discuss three di�erent types of stabilizers belonging to theclass (18), corresponding to di�erent properties of the basis functions G. Each of themcorresponds to di�erent a priori assumptions on the smoothness of the function thatmust be approximated.3.1 Radial stabilizersMost of the commonly used stabilizers have radial symmetry, that is, they satisfy thefollowing equation: �[f(x)] = �[f(Rx)]for any rotation matrix R. This choice re
ects the a priori assumption that all thevariables have the same relevance, and that there are no privileged directions. Rotationinvariant stabilizers correspond to radial basis function G(kxk). Much attention hasbeen dedicated to this case, and the corresponding approximation technique is known asRadial Basis Functions (Powell, 1987, 1990; Franke, 1982, 1987; Micchelli, 1986; Kansa,1990a,b; Madych and Nelson, 1990; Dyn, 1987, 1991; Hardy, 1971, 1990; Buhmann,1990; Lancaster and Salkauskas, 1986; Broomhead and Lowe, 1988; Moody and Darken,1988, 1989; Poggio and Girosi, 1990, 1990b; Girosi, 1992). The class of admissible RadialBasis Functions is the class of conditionally positive de�nite functions (Micchelli, 1986)of any order, since it has been shown (Madych and Nelson, 1990; Dyn, 1991) that inthis case the functional of equation (18) is a semi-norm, and the associated variationalproblem is well de�ned. All the Radial Basis Functions can therefore be derived in thisframework. We explicitly give two important examples.Duchon multidimensional splinesDuchon (1977) considered measures of smoothness of the form�[f ] = ZRd ds ksk2mj ~f(s)j2 :In this case ~G(s) = 1ksk2m and the corresponding basis function is thereforeG(x) = ( kxk2m�d ln kxk if 2m > d and d is evenkxk2m�d otherwise. (19)In this case the null space of �[f ] is the vector space of polynomials of degree at mostm in d variables, whose dimension is 11



k =  d+m� 1d ! :These basis functions are radial and conditionally positive de�nite, so that they representjust particular instances of the well known Radial Basis Functions technique (Micchelli,1986; Wahba, 1990). In two dimensions, for m = 2, equation (19) yields the so called\thin plate" basis function G(x) = kxk2 ln kxk (Harder and Desmarais, 1972; Grimson,1982).The GaussianA stabilizer of the form �[f ] = ZRd ds e ksk2� j ~f(s)j2 ;where � is a �xed positive parameter, has ~G(s) = e� ksk2� and as basis function theGaussian function (Poggio and Girosi, 1989; Yuille and Grzywacz, 1988). The Gaussianfunction is positive de�nite, and it is well known from the theory of reproducing ker-nels (Aronszajn, 1950) that positive de�nite functions (Stewart, 1976) can be used tode�ne norms of the type (18). Since �[f ] is a norm, its null space contains only the zeroelement, and the additional null space terms of equation (3) are not needed, unlike inDuchon splines. A disadvantage of the Gaussian is the appearance of the scaling parame-ter �, while Duchon splines, being homogeneous functions, do not depend on any scalingparameter. However, it is possible to devise good heuristics that furnish sub-optimal,but still good, values of �, or good starting points for cross-validation procedures.Other Basis FunctionsHere we give a list of other functions that can be used as basis functions in the RadialBasis Functions technique, and that are therefore associated with the minimization ofsome functional. In the following table we indicate as \p.d." the positive de�nite func-tions, which do not need any polynomial term in the solution, and as \c.p.d. k" theconditionally positive de�nite functions of order k, which need a polynomial of degreek in the solution. It is a well known fact that positive de�nite functions tend to zero atin�nity whereas conditionally positive functions tend to in�nity.12



G(r) = e��r2 Gaussian, p.d.G(r) = pr2 + c2 multiquadric, c.p.d. 1G(r) = 1pc2+r2 inverse multiquadric, p.d.G(r) = r2n+1 thin plate splines, c.p.d. nG(r) = r2n ln r thin plate splines, c.p.d. n3.2 Tensor product stabilizersAn alternative to choosing a radial function ~G(s) in the stabilizer (18) is a tensor producttype of basis function, that is a function of the form~G(s) = �dj=1~g(sj) (20)where sj is the j-th coordinate of the vector s, and ~g is an appropriate one-dimensionalfunction. When g is positive de�nite the functional �[f ] is clearly a norm and its nullspace is empty. In the case of a conditionally positive de�nite function the structure ofthe null space can be more complicated and we do not consider it here. Stabilizers with~G(s) as in equation (20) have the form�[f ] = ZRd ds j ~f(s)j2�dj=1~g(sj)which leads to a tensor product basis functionG(x) = �dj=1g(xj)where xj is the j-th coordinate of the vector x and g(x) is the Fourier transform of ~g(s).An interesting example is the one corresponding to the choice:~g(s) = 11 + s2 ;which leads to the basis function:G(x) = �dj=1e�jxj j = e�Pdj=1 jxj j = e�kxkL1 :This basis function is interesting from the point of view of VLSI implementations, be-cause it requires the computation of the L1 norm of the input vector x, which is usuallyeasier to compute than the Euclidean norm L2. However, this basis function is not very13



smooth, and its performance in practical cases should �rst be tested experimentally.Notice that if the approximation is needed for computing derivatives smoothness of anappropriate degree is clearly a necessary requirement (see Poggio, Vorhees and Yuille,1988).We notice that the choice ~g(s) = e�s2leads again to the Gaussian basis function G(x) = e�kxk2.3.3 Additive stabilizersWe have seen in the previous section how some tensor product approximation schemescan be derived in the framework of regularization theory. We now will see that it is alsopossible to derive the class of additive approximation schemes in the same framework,where by additive approximation we mean an approximation of the formf(x) = dX�=1 f�(x�) (21)where x� is the �-th component of the input vector x and the f� are one-dimensionalfunctions that will be de�ned as the additive components of f (from now on Greek letterindices will be used in association with components of the input vectors). Additive mod-els are well known in statistics (Hastie and Tibshirani, 1986, 1987, 1990; Stone, 1985;Wahba, 1990; Buja, Hastie and Tibshirani 1989) and can be considered as a general-ization of linear models. They are appealing because, being essentially a superpositionof one-dimensional functions, they have a low complexity, and they share with linearmodels the feature that the e�ects of the di�erent variables can be examined separately.The simplest way to obtain such an approximation scheme is to choose, if possible,a stabilizer that corresponds to an additive basis function:G(x) = nX�=1 ��g(x�) (22)where �� are certain �xed parameters. Such a choice would lead to an approximationscheme of the form (21) in which the additive components f� have the form:f�(x) = �� NXi=1 ciG(x� � x�i ) (23)Notice that the additive components are not independent at this stage, since there isonly one set of coe�cients ci. We postpone the discussion of this point to section (4.2).14



We would like then to write stabilizers corresponding to the basis function (22)in the form (18), where ~G(s) is the Fourier transform of G(x). We notice that theFourier transform of an additive function like the one in equation (22) exists only in thegeneralized sense (Gelfand and Shilov, 1964), involving the � distribution. For example,in two dimensions we obtain~G(s) = �x~g(sx)�(sy) + �y~g(sy)�(sx) (24)and the interpretation of the reciprocal of this expression is delicate. However, almostadditive basis functions can be obtained if we approximate the delta functions in equation(24) with Gaussians of very small variance. Consider, for example in two dimensions,the stabilizer: �[f ] = ZRd ds � j ~f(s)j2�x~g(sx)e�( sy� )2 + �y~g(sy)e�( sx� )2 (25)This corresponds to a basis function of the form:G(x; y) = �xg(x)e��2y2 + �yg(y)e��2x2 : (26)In the limit of � going to zero the denominator in expression (25) approaches equation(24), and the basis function (26) approaches a basis function that is the sum of one-dimensional basis functions. In this paper we do not discuss this limit process in arigorous way. Instead we outline another way to obtain additive approximations in theframework of regularization theory.Let us assume that we know a priori that the function f that we want to approximateis additive, that is: f(x) = dX�=1 f�(x�)We then apply the regularization approach and impose a smoothness constraint, not onthe function f as a whole, but on each single additive component, through a regulariza-tion functional of the form (Wahba, 1990; Hastie and Tibshirani, 1990):H[f ] = NXi=1(yi � dX�=1 f�(x�i ))2 + � dX�=1 1�� ZR ds j ~f�(s)j2~g(s)where �� are given positive parameters which allow us to impose di�erent degrees ofsmoothness on the di�erent additive components. The minimizer of this functional isfound with the same technique described in appendix (A), and, skipping null spaceterms, it has the usual form 15



f(x) = NXi=1 ciG(x� xi) (27)where G(x� xi) = dX�=1 ��g(x� � x�i ) ;as in equation (22).We notice that the additive component of equation (27) can be written asf�(x�) = NXi=1 c�i g(x� � x�i )where we have de�ned c�i = ci�� :The additive components are therefore not independent because the parameters �� are�xed. If the �� were free parameters, the coe�cients c�i would be independent, as wellas the additive components.Notice that the two ways we have outlined for deriving additive approximation fromregularization theory are equivalent. They both start from a priori assumptions ofadditivity and smoothness of the class of functions to be approximated. In the �rsttechnique the two assumptions are woven together in the choice of the stabilizer (equation25); in the second they are made explicit and exploited sequentially.4 Extensions: from Regularization Networks to Gen-eralized Regularization NetworksIn this section we will �rst review some extensions of regularization networks, and thenwill apply them to Radial Basis Functions and to additive splines.A fundamental problem in almost all practical applications in learning and patternrecognition is the choice of the relevant input variables. It may happen that some of thevariables are more relevant than others, that some variables are just totally irrelevant, orthat the relevant variables are linear combinations of the original ones. It can thereforebe useful to work not with the original set of variables x, but with a linear transfor-mation of them, Wx, where W is a possibily rectangular matrix. In the framework ofregularization theory, this can be taken into account by making the assumption that16



the approximating function f has the form f(x) = F (Wx) for some smooth functionF . The smoothness assumption is now made directly on F , through a smoothness func-tional �[F ] of the form (18). The regularization functional is expressed in terms of Fas H[F ] = NXi=1(yi � F (zi))2 + ��[F ]where zi = Wxi. The function that minimizes this functional is clearly, accordingly tothe results of section (2), of the form:F (z) = NXi=1 ciG(z� zi) :(plus eventually a polynomial in z). Therefore the solution for f is:f(x) = F (Wx) = NXi=1 ciG(Wx�Wxi) (28)This argument is rigorous for given and known W, as in the case of classical RadialBasis Functions. Usually the matrix W is unknown, and it must be estimated fromthe examples. Estimating both the coe�cients ci and the matrix W by least squares isusually not a good idea, since we would end up trying to estimate a number of parametersthat is larger than the number of data points (though one may use regularized leastsquares). Therefore, it has been proposed (Moody and Darken, 1988, 1989; Broomheadand Lowe, 1988; Poggio and Girosi, 1989, 1990) to replace the approximation scheme ofequation (28) with a similar one, in which the basic shape of the approximation schemeis retained, but the number of basis functions is decreased. The resulting approximatingfunction that we call the Generalized Regularization Network (GRN) is:f(x) = nX�=1 c�G(Wx�Wt�) : (29)where n < N and the centers t� are chosen according to some heuristic, or are consideredas free parameters (Moody and Darken, 1988, 1989; Poggio and Girosi, 1989, 1990).The coe�cients c�, the elements of the matrix W, and eventually the centers t�, areestimated according to a least squares criterion. The elements of the matrix W couldalso be estimated through cross-validation (Allen, 1974; Wahba and Wold, 1975; Golub,Heath and Wahba, 1979; Craven and Wahba, 1979; Utreras, 1979; Wahba, 1985), whichmay be a formally more appropriate technique.In the special case in which the matrixW and the centers are kept �xed, the resultingtechnique is one originally proposed by Broomhead and Lowe (1988), and the coe�cientssatisfy the following linear equation: 17



GTGc = GTy ;where we have de�ned the following vectors and matrices:(y)i = yi ; (c)� = c� ; (G)i� = G(Wxi �Wt�) :This technique, which has become quite common in the neural network community,has the advantage of retaining the form of the regularization solution, while being lesscomplex to compute. A complete theoretical analysis has not yet been given, but someresults, in the case in which the matrix W is set to identity, are already available(Sivakumar and Ward, 1991; Poggio and Girosi, 1989).The next sections discuss approximation schemes of the form (29) in the cases ofradial and additive basis functions.4.1 Extensions of Radial Basis FunctionsIn the case in which the basis function is radial, the approximation scheme of equation(29) becomes: f(x) = nX�=1 c�G(kx� t�kw)where we have de�ned the weighted norm:kxkw � xWTWx : (30)The basis functions of equation (29) are not radial anymore, or, more precisely, they areradial in the metric de�ned by equation (30). This means that the level curves of thebasis functions are not circles, but ellipses, whose axis do not need to be aligned with thecoordinate axis. Notice that in this case what is important is not the matrix W itself,but rather the symmetric matrix WTW. Therefore, by the Cholesky decomposition,it is su�cient to consider W to be upper triangular. The optimal center locations t�satisfy the following set of nonlinear equations (Poggio and Girosi, 1990, 1990a):t� = Pi P �i xiPi P �i � = 1; : : : ; n (31)where P �i are coe�cients that depend on all the parameters of the network and are notnecessarily positive. The optimal centers are then a weighted sum of the example points.Thus in some cases it may be more e�cient to \move" the coe�cients P �i rather thanthe components of t� (for instance when the dimensionality of the inputs is high relativeto the number of data points). 18



The approximation scheme de�ned by equation (29) has been discussed in detail inPoggio and Girosi (1990) and Girosi(1992), so we will not discuss it further. In the nextsection we will consider its analogue in the case of additive basis functions.4.2 Extensions of additive splinesIn the previous sections we have seen an extension of the classical regularization tech-nique. In this section we derive the form that this extension takes when applied toadditive splines. The resulting scheme is very similar to Projection Pursuit Regression(Friedman and Stuezle, 1981; Huber, 1985; Diaconis and Freedman, 1984; Donoho andJohnstone, 1989; Moody and Yarvin, 1991).We start from the \classical" additive spline, derived from regularization in section (3.3):f(x) = NXi=1 ci dX�=1 ��G(x� � x�i ) (32)In this scheme the smoothing parameters �� should be known, or can be estimated bycross-validation. An alternative to cross-validation is to consider the parameters �� asfree parameters, and estimate them with a least square technique together with thecoe�cients ci. If the parameters �� are free, the approximation scheme of equation (32)becomes the following: f(x) = NXi=1 dX�=1 c�iG(x� � x�i )where the coe�cients c�i are now independent. Of course, now we must estimate N � dcoe�cients instead of just N , and we are likely to encounter an over�tting problem.We then adopt the same idea presented in section (4), and consider an approximationscheme of the form f(x) = nX�=1 dX�=1 c��G(x� � t��) ; (33)in which the number of centers is smaller than the number of examples, reducing thenumber of coe�cients that must be estimated. We notice that equation (33) can bewritten as f(x) = dX�=1 f�(x�)where each additive component has the form:19



f�(x�) = nX�=1 c��G(x� � t��) :Therefore another advantage of this technique is that the additive components arenow independent, each of them being a one-dimensional Radial Basis Functions.We can now use the same argument from section (4) to introduce a linear transfor-mation of the inputs x!Wx, where W is a d0� d matrix. Calling w� the �-th row ofW , and performing the substitution x!Wx in equation (33), we obtainf(x) = nX�=1 d0X�=1 c��G(w� � x� t��) : (34)We now de�ne the following one-dimensional function:h�(y) = nX�=1 c��G(y � t��)and rewrite the approximation scheme of equation (34) asf(x) = d0X�=1h�(w� � x) : (35)Notice the similarity between equation (35) and the Projection Pursuit Regressiontechnique: in both schemes the unknown function is approximated by a linear super-position of one-dimensional variables, which are projections of the original variables oncertain vectors that have been estimated. In Projection Pursuit Regression the choiceof the functions h�(y) is left to the user. In our case the h� are one-dimensional RadialBasis Functions, for example cubic splines, or Gaussians. The choice depends, strictlyspeaking, on the speci�c prior, that is, on the speci�c smoothness assumptions madeby the user. Interestingly, in many applications of Projection Pursuit Regression thefunctions h� have been indeed chosen to be cubic splines but other choices are Flexi-ble Fourier Series, rational approximations and orthogonal polynomials (see Moody andYarvin, 1991).Let us brie
y review the steps that bring us from the classical additive approximationscheme of equation (23) to a Projection Pursuit Regression-like type of approximation:1. the regularization parameters �� of the classical approximation scheme (23) areconsidered as free parameters;2. the number of centers is chosen to be smaller than the number of data points;3. the true relevant variables are assumed to be some unknown linear combination ofthe original variables; 20



We notice that in the extreme case in which each additive component has just onecenter (n = 1), the approximation scheme of equation (34) becomes:f(x) = d0X�=1 c�G(w� � x� t�) : (36)When the basis function G is a Gaussian we call { somewhat improperly { a networkof this type a Gaussian Multilayer Perceptron (MLP) Network, because if G were athreshold function sigmoidal function this would be a Multilayer Perceptron with onelayer of hidden units. The sigmoidal functions, typically used instead of the threshold,cannot be derived directly from regularization theory because it is not symmetric, butwe will see in section (6) the relationship between a sigmoidal function and the absolutevalue function, which is a basis function that can be derived from regularization.There are a number of computational issues related to how to �nd the parametersof an approximation scheme like the one of equation (34), but we do not discuss themhere. We present instead, in section (7), some experimental results, and will describethe algorithm used to obtain them.5 The Bayesian interpretation of Generalized Reg-ularization NetworksIt is well known that a variational principle such as equation (1) can be derived notonly in the context of functional analysis (Tikhonov and Arsenin, 1977), but also in aprobabilistic framework (Kimeldorf and Wahba, 1971; Wahba, 1980, 1990; Poggio, Torreand Koch, 1985; Marroquin, Mitter and Poggio, 1987; Bertero, Poggio and Torre, 1988).In this section we illustrate this connection informally, without addressing the relatedmathematical issues.Suppose that the set g = f(xi; yi) 2 Rn�RgNi=1 of data has been obtained by randomsampling a function f , de�ned on Rn, in the presence of noise, that isf(xi) = yi + �i; i = 1; : : : ; N (37)where �i are random independent variables with a given distribution. We are interestedin recovering the function f , or an estimate of it, from the set of data g. We take aprobabilistic approach, and regard the function f as the realization of a random �eldwith a known prior probability distribution. Let us de�ne:{ P[f jg] as the conditional probability of the function f given the examples g.21



{ P[gjf ] as the conditional probability of g given f . If the function underlying thedata is f , this is the probability that by random sampling the function f at the sitesfxigNi=1 the set of measurement fyigNi=1 is obtained. This is therefore a model of the noise.{ P[f ]: is the a priori probability of the random �eld f . This embodies our a prioriknowledge of the function, and can be used to impose constraints on the model, assign-ing signi�cant probability only to those functions that satisfy those constraints.Assuming that the probability distributions P[gjf ] and P[f ] are known, the posteriordistribution P[f jg] can now be computed by applying the Bayes rule:P[f jg] / P[gjf ] P[f ]: (38)We now make the assumption that the noise variables in equation (37) are normallydistributed, with variance �. Therefore the probability P[gjf ] can be written as:P[gjf ] / e� 12�2 PNi=1(yi�f(xi))2where � is the variance of the noise.The model for the prior probability distribution P[f ] is chosen in analogy with thediscrete case (when the function f is de�ned on a �nite subset of a n-dimensional lattice)for which the problem can be formalized (see for instance Marroquin, Mitter and Poggio,1987). The prior probability P[f ] is written asP[f ] / e���[f ] (39)where �[f ] is a smoothness functional of the type described in section (3) and � a positivereal number. This form of probability distribution gives high probability only to thosefunctions for which the term �[f ] is small, and embodies the a priori knowledge thatone has about the system.Following the Bayes rule (38) the a posteriori probability of f is written asP[f jg] / e� 12�2 [PNi=1(yi�f(xi))2+2��2�[f ]]: (40)One simple estimate of the function f from the probability distribution (40) is the socalled MAP (Maximum A Posteriori) estimate, that considers the function that maxi-mizes the a posteriori probability P[f jg], and therefore minimizes the exponent in equa-tion (40). The MAP estimate of f is therefore the minimizer of the following functional:H[f ] = NXi=1(yi � f(xi))2 + ��[f ] :22



where � = 2�2�. This functional is the same as that of equation (1), and from hereit is clear that the parameter �, that is usually called the \regularization parameter"determines the trade-o� between the level of the noise and the strength of the a prioriassumptions about the solution, therefore controlling the compromise between the degreeof smoothness of the solution and its closeness to the data. Notice that functionals ofthe type (39) are common in statistical physics (Parisi, 1988), where �[f ] plays the roleof an energy functional. It is interesting to notice that, in that case, the correlationfunction of the physical system described by �[f ] is the basis function G(x).As we have pointed out (Poggio and Girosi, 1989; Rivest, pers. comm.), prior prob-abilities can also be seen as a measure of complexity, assigning high complexity to thefunctions with small probability. It has been proposed by Rissanen (1978) to measurethe complexity of a hypothesis in terms of the bit length needed to encode it. It turnsout that the MAP estimate mentioned above is closely related to the MinimumDescrip-tion Length Principle: the hypothesis f which for given g can be described in the mostcompact way is chosen as the \best" hypothesis. Similar ideas have been explored byothers (for instance Solomono�,1978). They connect data compression and coding withBayesian inference, regularization, function approximation and learning.6 Additive splines, hinge functions, sigmoidal neu-ral netsIn the previous sections we have shown how to extend RN to schemes that we havecalled GRN, which include ridge approximation schemes of the PPR type, that isf(x) = d0X�=1h�(w� � x) ;where h�(y) = nX�=1 c��G(y � t��):The form of the basis function G depends on the stabilizer, and a list of \admissible"G has been given in section (3). These include the absolute value G(x) = jxj { corre-sponding to piecewise linear splines, and the function G(x) = jxj3 { corresponding tocubic splines (used in typical implementations of PPR), as well as Gaussian functions.Though it may seem natural to think that sigmoidal multilayer perceptrons may be in-cluded in this framework, it is actually impossible to derive directly from regularizationprinciples the sigmoidal activation functions typically used in Multilayer Perceptrons.23



In the following section we show, however, that there is a close relationship betweenbasis functions of the hinge, the sigmoid and the Gaussian type.6.1 From additive splines to ramp and hinge functionsWe will consider here the one-dimensional case, since multidimensional additive approx-imations consist of one-dimensional terms. We consider the approximation with thelowest possible degree of smoothness: piecewise linear. The associated basis functionG(x) = jxj is shown in �gure 2a, and the associated stabilizer is given by�[f ] = Z 1�1 ds s2j ~f (s)j2This assumption thus leads to approximating a one-dimensional function as the linearcombination with appropriate coe�cients of translates of jxj. It is easy to see thata linear combination of two translates of jxj with appropriate coe�cients (positive andnegative and equal in absolute value) yields the piecewise linear threshold function �L(x)also shown in �gure 2b. Linear combinations of translates of such functions can be usedto approximate one-dimensional functions. A similar derivative-like, linear combinationof two translates of �L(x) functions with appropriate coe�cients yields the Gaussian-likefunction gL(x) also shown in �gure 2c. Linear combinations of translates of this functioncan also be used for approximation of a function. Thus any given approximation in termsof gL(x) can be rewritten in terms of �L(x) and the latter can be in turn expressed interms of the basis function jxj.Notice that the basis functions jxj underlie the \hinge" technique proposed by Breiman(1993), whereas the basis functions �L(x) are sigmoidal-like and the gL(x) are Gaussian-like. The arguments above show the close relations between all of them, despite the factthat only jxj is strictly a \legal" basis function from the point of view of regularization(gL(x) is not, though the very similar but smoother Gaussian is). Notice also that jxjcan be expressed in terms of \ramp" functions, that is jxj = x+ + x�. Thus a one-hidden layer perceptron using the activation function �L(x) can be rewritten in termsof a generalized regularization network with basis function jxj. The equivalent kernelis e�ectively local only if there exist a su�cient number of centers for each dimension(w� �x). This is the case for Projection Pursuit Regression but not for usual one-hiddenlayer perceptrons.These relationships imply that it may be interesting to compare how well each ofthese basis functions is able to approximate some simple function. To do this we usedthe model f(x) = Pn� c�G(w�x � t�) to approximate the function h(x) = sin(2�x)on [0; 1], where G(x) is one of the basis functions of �gure 2. Fifty training points and10,000 test points were chosen uniformly on [0; 1]. The parameters were learned using theiterative back�tting algorithm (Friedman and Stuezle, 1981; Hastie and Tibshirani, 1990;24



Breiman, 1993) that will be described in section 7. We looked at the function learnedafter �tting 1, 2, 4, 8 and 16 basis functions. Some of the resulting approximations areplotted in �gure 3.The results show that the performance of all three basis functions is fairly close asthe number of basis functions increases. All models did a good job of approximatingsin(2�x). The absolute value function did slightly worse and the \Gaussian" functiondid slightly better. It is interesting that the approximation using two absolute valuefunctions is almost identical to the approximation using one \sigmoidal" function whichagain shows that two absolute value basis functions can sum to equal one \sigmoidal"piecewise linear function.7 Numerical illustrations7.1 Comparing additive and non-additive modelsIn order to illustrate some of the ideas presented in this paper and to provide some prac-tical intuition about the various models, we present numerical experiments comparingthe performance of additive and non-additive networks on two-dimensional problems.In a model consisting of a sum of two-dimensional Gaussians, the model can be changedfrom a non-additive Radial Basis Function network to an additive network by \elongat-ing" the Gaussians along the two coordinate axis x and y. This allows us to measurethe performance of a network as it changes from a non-additive scheme to an additiveone.Five di�erent models were tested. The �rst three di�er only in the variances of theGaussian along the two coordinate axis. The ratio of the x variance to the y variancedetermines the elongation of the Gaussian. These models all have the same form andcan be written as: f(x) = NXi=1 ci[G1(x� xi) +G2(x� xi)]where G1 = e�(x2�1+ y2�2 ) ; G2 = e�(x2�2+ y2�1 ) :The models di�er only in the values of �1 and �2. For the �rst model, �1 = :5 and�2 = :5 (RBF), for the second model �1 = 10 and �2 = :5 (elliptical Gaussian), and forthe third model, �1 = 1 and �2 = :5 (additive). These models correspond to placingtwo Gaussians at each data point xi, with one Gaussian elongated in the x directionand one elongated in the y direction. In the �rst case (RBF) there is no elongation, in25



Model 1 f(x; y) =P20i=1 ci[e�� (x�xi)2�1 + (y�yi)2�2 � + e�� (x�xi)2�2 + (y�yi)2�1 �] �1 = �2 = 0:5Model 2 f(x; y) =P20i=1 ci[e�� (x�xi)2�1 + (y�yi)2�2 � + e�� (x�xi)2�2 + (y�yi)2�1 �] �1 = 10; �2 = 0:5Model 3 f(x; y) =P20i=1 ci[e� (x�xi)2� + e� (y�yi)2� ] � = 0:5Model 4 f(x; y) =Pn�=1 c�e�(w��x�t�)2 {Model 5 f(x; y) =Pn�=1 c��(w� � x� t�) {Table 1: The �ve models we tested in our numerical experiments.the second case (elliptical Gaussian) there is moderate elongation, and in the last case(additive) there is in�nite elongation.The fourth model is a Generalized Regularization Network model, of the form (36),that uses a Gaussian basis function:f(x) = nX�=1 c�e�(w��x�t�)2 :In this model, to which we referred earlier as a Gaussian MLP network (equation 36),the weight vectors, centers, and coe�cients are all learned.In order to see how sensitive were the performances to the choice of basis function, wealso repeated the experiments for model (4) with a sigmoid (that is not a basis functionthat can be derived from regularization theory) replacing the Gaussian basis function.In our experiments we used the standard sigmoid function:�(x) = 11 + e�x :Models (1) to (5) are summarized in table 1: notice that only model (5) is a MultilayerPerceptron in the standard sense.In the �rst three models, the centers were �xed in the learning algorithm and equalto the training examples. The only parameters that were learned were the coe�cientsci, that were computed by solving the linear system of equations (4). The fourth andthe �fth model were trained by �tting one basis function at a time according to thefollowing recursive algorithm with back�tting (Friedman and Stuezle, 1981; Hastie andTibshirani, 1990; Breiman, 1993) 26



� Add a new basis function;� Optimize the parametersw�, t� and c� using the \random step" algorithm (Caprileand Girosi, 1990) described below;� Back�tting: for each basis function � added so far:{ hold the parameters of all other functions �xed;{ re-optimize the parameters of function �;� Repeat the back�tting stage until there is no signi�cant decrease in L2 error.The \random step" (Caprile and Girosi, 1990) is a stochastic optimization algorithm thatis very simple to implement and that usually �nds good local minima. The algorithmworks as follows: pick random changes to each parameter such that each random changelies within some interval [a; b]. Add the random changes to each parameter and thencalculate the new error between the output of the network and the target values. If theerror decreases, then keep the changes and double the length of the interval for pickingrandom changes. If the error increases, then throw out the changes and halve the size ofthe interval. If the length of the interval becomes less than some threshold, then resetthe length of the interval to some larger value.The �ve models were each tested on two di�erent functions: a two-dimensional ad-ditive function: hadd(x; y) = sin(2�x) + 4(y � 0:5)2and the two-dimensional Gabor function:gGabor(x; y) = e�kxk2 cos(:75�(x+ y)):The training data for the functions hadd and gGabor consisted of 20 points picked from auniform distribution on [0; 1] � [0; 1] and [�1; 1] � [�1; 1] respectively. Another 10,000points were randomly chosen to serve as test data. The results are summarized in table2 (see Girosi, Jones and Poggio, 1993 for a more extensive description of the results).As expected, the results show that the additive model (3) was able to approximatethe additive function, hadd(x; y) better than both the RBF model (1) and the ellipticalGaussian model (2), and that there seems to be a smooth degradation of performanceas the model changes from the additive to the Radial Basis Function. Just the oppositeresults are seen in approximating the non-additive Gabor function, gGabor(x; y), shownin �gure 4a. The RBF model (1) did very well, while the additive model (3) did avery poor job, as shown in �gure 4b. However, �gure 4c shows that the GRN scheme27



Model 1 Model 2 Model 3 Model 4 Model 5hadd(x; y) train: 0.000036 0.000067 0.000001 0.000170 0.000743test: 0.011717 0.001598 0.000007 0.001422 0.026699gGabor(x; y) train: 0.000000 0.000000 0.000000 0.000001 0.000044test: 0.003818 0.344881 67.95237 0.033964 0.191055Table 2: A summary of the results of our numerical experiments. Each table entrycontains the L2 errors for both the training set and the test set.(model 4) gives a fairly good approximation, because the learning algorithm �nds betterdirections for projecting the data than the x and y axis as in the pure additive model.Notice that the �rst three models we considered had a number of parameters equalto the number of data points, and were supposed to exactly interpolate the data, sothat one may wonder why the training errors are not exactly zero. The reason is theill-conditioning of the associated linear system, which is a typical problem of RadialBasis Functions (Dyn, Levin and Rippa, 1986).8 Hardware and biological implementation of net-work architecturesWe have seen that di�erent network architectures can be derived from regularizationby making somewhat di�erent assumptions on the classes of functions used for approx-imation. Given the basic common roots, one is tempted to argue { and numericalexperiments support the claim { that there will be small di�erences in average perfor-mance of the various architectures (see also Lippmann 1989, 1991). It becomes thereforeinteresting to ask which architectures are easier to implement in hardware.All the schemes that use the same number of centers as examples { such as RBFand additive splines { are expensive in terms of memory requirements (if there are manyexamples) but have a simple learning stage. More interesting are the schemes thatuse fewer centers than examples (and use the linear transformation W). There areat least two perspectives for our discussion: we can consider implementation of radialvs. additive schemes and we can consider di�erent activation functions. Let us �rstdiscuss radial vs. non-radial functions such as a Gaussian RBF vs. a Gaussian MLPnetwork. For a VLSI implementations, the main di�erence is in computing a scalarproduct rather than a L2 distance, which is usually more expensive both for digital andanalog VLSI. The L2 distance, however, might be replaced with the L1 distance, thatis a sum of absolute values, which can be computed e�ciently. Notice that a Radial28



Basis Functions scheme that uses the L1 norm has been derived in section (3.2) from atensor-product stabilizer.Let us consider now di�erent activation functions. Activation functions such asGaussian, sigmoid or absolute values are equally easy to compute, especially if look-uptable approaches are used. In analog hardware it is somewhat simpler to generate asigmoid than a Gaussian, although Gaussian-like shapes can be synthesized with lessthan 10 transistors (J. Harris, personal communication).In practical implementations other issues, such as trade-o�s between memory andcomputation and on-chip learning, are likely to be much more relevant than the speci�cchosen architecture. In other words, a general conclusion about ease of implementationis not possible: none of the architectures we have considered holds a clear edge.From the point of view of biological implementations the situation is somewhat dif-ferent. The hidden unit in MLP networks with sigmoidal-like activation functions is aplausible, albeit much over-simpli�ed, model of real neurons. The sigmoidal transforma-tion of a scalar product seems much easier to implement in terms of known biophysicalmechanisms than the Gaussian of a multidimensional euclidean distance. On the otherhand, it is intriguing to observe that HBF centers and tuned cortical neurons behavealike (Poggio and Hurlbert, 1993). In particular, a Gaussian HBF unit is maximallyexcited when each component of the input exactly matches each component of the cen-ter. Thus the unit is optimally tuned to the stimulus value speci�ed by its center. Unitswith multidimensional centers are tuned to complex features, made of the conjunction ofsimpler features. This description is very like the customary description of cortical cellsoptimally tuned to some more or less complex stimulus. So-called place coding is thesimplest and most universal example of tuning: cells with roughly bell shaped receptive�elds have peak sensitivities for given locations in the input space, and by overlapping,cover all of that space. Thus tuned cortical neurons seem to behave more like GaussianHBF units than like the sigmoidal units of MLP networks: the tuned response functionof cortical neurons mostly resembles exp(�kx� tk2) more than it does �(x �w). Whenthe stimulus to a cortical neuron is changed from its optimal value in any direction,the neuron's response typically decreases. The activity of a Gaussian HBF unit wouldalso decline with any change in the stimulus away from its optimal value t. For thesigmoid unit, though, certain changes away from the optimal stimulus will not decreaseits activity, for example when the input x is multiplied by a constant � > 1.How might, then, multidimensional Gaussian receptive �elds be synthesized fromknown receptive �elds and biophysical mechanisms?The simplest answer is that cells tuned to complex features may be constructed froma hierarchy of simpler cells tuned to incrementally larger conjunctions of elementaryfeatures. This idea { popular among physiologists { can immediately be formalized interms of Gaussian radial basis functions, since a multidimensional Gaussian functioncan be decomposed into the product of lower dimensional Gaussians (Ballard, 1986;29



Mel, 1988,1990,1992; Poggio and Girosi, 1990). There are several biophysically plausibleways to implement Gaussian RBF-like units (see Poggio and Girosi, 1989 and Poggio,1990), but none is particularly simple. Ironically one of the plausible implementationsof a RBF unit may exploit circuits based on sigmoidal nonlinearities (see Poggio andHurlbert, 1993). In general, the circuits required for the various schemes describedin this paper are reasonable from a biological point of view (Poggio and Girosi, 1989;Poggio, 1990). For example, the normalized basis function scheme of section (2.2) couldbe implemented as outlined in �gure 5 where a \pool" cell summates the activities of allhidden units and shunts the output unit with a shunting inhibition approximating therequired division operation.9 Summary and remarksA large number of approximation techniques can be written as multilayer networks withone hidden layer. In past papers (Poggio and Girosi, 1989; Poggio and Girosi, 1990,1990b; Girosi, 1992) we showed how to derive Radial Basis Functions, Hyper BasisFunctions and several types of multidimensional splines from regularization principles.We had not used regularization to yield approximation schemes of the additive type(Wahba, 1990; Hastie and Tibshirani, 1990), such as additive splines, ridge approxima-tion of the Projection Pursuit Regression type and hinge functions. In this paper, weshow that appropriate stabilizers can be de�ned to justify such additive schemes, andthat the same extensions that leads from RBF to HBF leads from additive splines toridge function approximation schemes of the Projection Pursuit Regression type. OurGeneralized Regularization Networks include, depending on the stabilizer (that is on theprior knowledge on the functions we want to approximate), HBF networks, ridge ap-proximation, tensor products splines and Perceptron-like networks with one hidden layerand appropriate activation functions (such as the Gaussian). Figure 6 shows a diagramof the relationships. Notice that HBF networks and ridge approximation networks aredirectly related in the special case of normalized inputs (Maruyama, Girosi and Poggio,1992).We now feel that a common theoretical framework justi�es a large spectrum of ap-proximation schemes in terms of di�erent smoothness constraints imposed within thesame regularization functional to solve the ill-posed problem of function approxima-tion from sparse data. The claim is that many di�erent networks and correspondingapproximation schemes can be derived from the variational principleH[f ] = NXi=1(f(xi)� yi)2 + ��[f ] : (41)They di�er because of di�erent choices of stabilizers �, which correspond to di�erent30



assumptions of smoothness. In this context, we believe that the Bayesian interpretationis one of the main advantages of regularization: it makes clear that di�erent networkarchitectures correspond to di�erent prior assumptions of smoothness of the functionsto be approximated.The common framework we have derived suggests that di�erences between the var-ious network architectures are relatively minor, corresponding to di�erent smoothnessassumptions. One would expect that each architecture will work best for the class offunction de�ned by the associated prior (that is stabilizer), an expectation which isconsistent with numerical results in this paper (see also Donoho and Johnstone, 1989).9.1 Classi�cation and smoothnessFrom the point of view of regularization, the task of classi�cation { instead of regression{ may seem to represent a problem since the role of smoothness is less obvious. Considerfor simplicity binary classi�cation, in which the output y is either 0 or 1 and let P (x; y) =P (x)P (yjx) be the joint probability of the input-output pairs (x; y). The average costassociated to an estimator f(x) is the expected risk (see section 2.2)I[f ] = Z dxdy P (x; y)(y� f(x))2 :The problem of learning is now equivalent to minimizing the expected risk based on Nsamples of the joint probability distribution P (x; y), and it is usually solved by mini-mizing the empirical risk (14). Here we discuss two possible approaches to the problemof �nding the best estimator:� If we look for an estimator in the class of real valued functions, it is well knownthat the minimizer f0 of Q[f ] is the so called regression function, that isf0(x) = Z dy yP (yjx) = P (1jx) : (42)Therefore, a real valued network f trained on the empirical risk (14) will approxi-mate, under certain conditions of consistency (Vapnik, 1982; Vapnik and Chervo-nenkis, 1991), the conditional probability distribution of class 1, P (1jx). In thiscase our �nal estimator f is real valued, and in order to obtain a binary estimatorwe have to apply a threshold function to it, so that our �nal solution turns out tobe: f�(x) = �(f(x))where � is the Heaviside function. 31



� We could look for an estimator with range f0; 1g, for example of the form f(x) =�[g(x)]. In this case the expected risk becomes the average number of misclassi-�ed vectors. The function that minimizes the expected risk is not the regressionfunction anymore, but a binary approximation to it.We argue that in both cases it makes sense to assume that f (and g) is a smoothreal-valued function and therefore to use regularization networks to approximate it. Theargument is that a natural prior constraint for classi�cation is smoothness of classi�-cation boundaries, since otherwise it would be impossible to e�ectively generalize thecorrect classi�cation from a set of examples. Furthermore, a condition that usuallyprovides smooth classi�cation boundaries is smoothness of the underlying regressor: asmooth function usually has \smooth" level crossings. Thus both approaches describedabove suggest to impose smoothness of f or g, that is to approximate f or g with aregularization network.9.2 Complexity of the approximation problemSo far we have discussed several approximation techniques only from the point of viewof the representation and architecture, and we did not discuss how well they perform inapproximating functions of di�erent functions spaces. Since these techniques are derivedunder di�erent a priori smoothness assumptions, we clearly expect them to perform op-timally when those a priori assumptions are satis�ed. This makes it di�cult to comparetheir performances, since we expect each technique to work best on a di�erent class offunctions. However, if we measure performances by how quickly the approximation errorgoes to zero when the number of parameters of the approximation scheme goes to in�n-ity, very general results from the theory of linear and nonlinear widths (Timan, 1963;Pinkus, 1986; Lorentz, 1962; 1986; DeVore, Howard and Micchelli, 1989; DeVore, 1991;DeVore and Yu, 1991) suggest that all techniques share the same limitations. For exam-ple, when approximating an s times continuously di�erentiable function in d variableswith some function parametrized by n parameters, one can prove that even the \best"nonlinear parametrization cannot achieve an accuracy that is better than the Jacksontype bound, that is O(n� sd ). Here the adjective \best" is used in the sense de�ned by De-Vore, Howard and Micchelli (1989) in their work on nonlinear n-widths, which restrictsthe sets of nonlinear parametrization to those for which the optimal parameters dependcontinuously on the function that has to be approximated. Notice that, although thisis a desirable property, not all the approximation techniques may have it, and thereforethese results may not always be applicable. However, the basic intuition is that a classof functions has an intrinsic complexity that increases exponentially in the the ratio ds ,where s is a smoothness index, that is a measure of the amount of constraints imposed onthe functions of the class. Therefore, if the smoothness index is kept constant, we expect32



that the number of parameters needed in order to achieve a certain accuracy increasesexponentially with the number of dimensions, irrespectively of the approximation tech-nique, showing the phenomenon known as \the curse of dimensionality" (Bellman, 1961).Clearly, if we consider classes of functions with a smoothness index that increases whenthe number of variables increase, then a rate of convergence independent of the dimen-sionality can be obtained, because the increase in complexity due to the larger numberof variables is compensated by the decrease due to the stronger smoothness constraint.In order to make this concept clear, we summarized in table (3) a number of di�erentapproximation techniques, and the constraints that can be imposed on them in orderto make the approximation error to be O( 1pn), that is \indepedent of the dimension",and therefore immune to the curse of dimensionality. Notice that, since these techniquesare derived under di�erent a priori assumptions, the explicit form of the constraints aredi�erent. For example in entries 5 and 6 of the table (Girosi and Anzellotti, 1992, 1993;Girosi, 1993) the result holds in H2m;1(Rd), that is the Sobolev space of functions whosederivatives up to order 2m are integrable (Ziemer, 1989). Notice that the number ofderivatives that are integrable has to increase with the dimension d in order to keepthe rate of convergence constant. A similar phenomenon appears in entries 2 and 3(Barron, 1991, 1993; Breiman, 1993), but in a less obvious way. In fact, it can be shown(Girosi and Anzellotti, 1992, 1993) that, for example, the space of functions consideredby Barron (entry 2) and Breiman (entry 3) are the set of functions that can be writtenrespectively as f(x) = kxk1�d � � and f(x) = kxk2�d � �, where � is any function whoseFourier Transform is integrable, and � stands for the convolution operator. Notice that,in this way, it becomes more apparent that these space of functions become more andmore constrained as the dimensions increases, due to the more and more rapid fall-o�of the terms kxk1�d and kxk2�d. The same phenomenon is also very clear in the resultsof H.N. Mhaskar (1993), who proved that the rate of convergence of approximation offunctions with s continuous derivatives by multilayered feedforward neural networks isO(n� sd ): if the number of continuous derivatives s increases linearly with the dimensiond, the curse of dimensionality disappears, leading to a rate of convergence independentof the dimension.It is important to emphasize that in practice the parameters of the approximationscheme have to be estimated using a �nite amount of data (Vapnik and Chervonenkis,1971, 1981, 1991; Vapnik, 1982; Pollard, 1984; Geman, Bienenstock and Doursat, 1992;Haussler, 1989; Baum and Haussler, 1989, Baum, 1988; Moody, 1991a, 1991b). In fact,what one does in practice is to minimize the empirical risk (see equation 14), whilewhat one would really like to do is to minimize the expected risk (see equation 13).This introduces an additional source of error, sometimes called \estimation error", thatusually depends on the dimension d in a much milder way than the approximation error,and can be estimated using the theory of uniform convergence of relative frequences toprobabilities (Vapnik and Chervonenkis, 1971, 1981, 1991; Vapnik, 1982; Pollard, 1984).33



Speci�c results on the generalization error, that combine both approximation andestimation error, have been obtained by A. Barron (1991, 1994) for sigmoidal neuralnetworks, and by Niyogi and Girosi (1994) for Gaussian Radial Basis Functions. Al-though these bounds are di�erent, they all have the same qualitative behaviour: for a�xed number of data points the generalization error �rst decreases when the number ofparameters increases, then reaches a minimum and start increasing again, revealing thewell known phenomenon of over�tting. For a general description of how the approxima-tion and estimation error combine together to bound the generalization error see Niyogiand Girosi (1994).9.3 Additive structure and the sensory worldIn this last section we address the surprising relative success of additive schemes of theridge approximation type in real world applications. As we have seen, ridge approxima-tion schemes depend on priors that combine additivity of one-dimensional functions withthe usual assumption of smoothness. Do such priors capture some fundamental propertyof the physical world? Consider for example the problem of object recognition, or theproblem of motor control. We can recognize almost any object from any of many smallsubsets of its features, visual and non-visual. We can perform many motor actions inseveral di�erent ways. In most situations, our sensory and motor worlds are redundant.In terms of GRN this means that instead of high-dimensional centers, any of severallower-dimensional centers, that is components, are often su�cient to perform a giventask. This means that the \and" of a high-dimensional conjunction can be replaced bythe \or" of its components (low-dimensional conjunctions) { a face may be recognizedby its eyebrows alone, or a mug by its color. To recognize an object, we may use notonly templates comprising all its features, but also subtemplates, comprising subsets offeatures and in some situations the latter, by themselves, may be fully su�cient. Addi-tive, small centers { in the limit with dimensionality one { with the appropriate W areof course associated with stabilizers of the additive type.Splitting the recognizable world into its additive parts may well be preferable toreconstructing it in its full multidimensionality, because a system composed of severalindependent, additive parts is inherently more robust than a whole simultaneously de-pendent on each of its parts. The small loss in uniqueness of recognition is easily o�setby the gain against noise and occlusion. There is also a possible meta-argument thatwe mention here only for the sake of curiosity. It may be argued that humans wouldnot be able to understand the world if it were not additive because of the too-largenumber of necessary examples (because of high dimensionality of any sensory input suchas an image). Thus one may be tempted to conjecture that our sensory world is biasedtowards an \additive structure". 34



Function space Norm Approximation schemeRRd ds j ~f(s)j < +1 L2(
) f(x) = Pni=1 ci sin(x �wi + �i)(Jones, 1992)RRd ds kskj ~f(s)j < +1 L2(
) f(x) = Pni=1 ci�(x �wi + �i)(Barron, 1991)RRd ds ksk2j ~f(s)j < +1 L2(
) f(x) = Pni=1 cijx �wi + �ij+ + x � a+ b(Breiman, 1993)e�kxk2 � � ; � 2 L1(Rd) L1(R2) f(x) = Pn�=1 c�e�kx�t�k2(Girosi and Anzellotti, 1992)H2m;1(Rd); 2m > d L1(R2) f(x) = Pn�=1 c�Gm(kx� t�k2)(Girosi and Anzellotti, 1992)H2m;1(Rd); 2m > d L2(R2) f(x) = Pn�=1 c�e� kx�t�k2�2�(Girosi, 1993)Table 3: Approximation schemes and corresponding functions spaces with the same rateof convergence O(n 12 ). The function � in the standard sigmoidal function, the functionjxj+ in the third entry is the ramp function, and the function Gm in the �fth entry is aBessel potential, that is the Fourier Transform of (1+ksk2)�m2 (Stein, 1970). H2m;1(Rd)is the Sobolev space of functions whose derivatives up to order 2m are integrable (Ziemer,1989). 35
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APPENDICESA Derivation of the general form of solution of theregularization problemWe have seen in section (2) that the regularized solution of the approximation problemis the function that minimizes a cost functional of the following form:H[f ] = NXi=1(yi � f(xi))2 + ��[f ] (43)where the smoothness functional �[f ] is given by�[f ] = ZRd ds j ~f(s)j2~G(s) :The �rst term measures the distance between the data and the desired solution f ,and the second term measures the cost associated with the deviation from smoothness.For a wide class of functionals � the solutions of the minimization problem (43) allhave the same form. A detailed and rigorous derivation of the solution of the variationalprinciple associated with equation (43) is outside the scope of this paper. We present herea simple derivation and refer the reader to the current literature for the mathematicaldetails (Wahba, 1990; Madych and Nelson, 1990; Dyn, 1987).We �rst notice that, depending on the choice of G, the functional �[f ] can have a non-empty null space, and therefore there is a certain class of functions that are \invisible"to it. To cope with this problem we �rst de�ne an equivalence relation among all thefunctions that di�er for an element of the null space of �[f ]. Then we express the �rstterm of H[f ] in terms of the Fourier transform of f3:f(x) = ZRd ds ~f(s)eix�sobtaining the functionalH[ ~f ] = NXi=1 �yi � ZRd ds ~f (s)eixi�s�2 + � ZRd ds j ~f (s)j2~G(s) :Then we notice that since f is real, its Fourier transform satis�es the constraint:~f�(s) = ~f (�s)3For simplicity of notation we take all the constants that appear in the de�nition of the Fouriertransform to be equal to 1. 37



so that the functional can be rewritten as:H[ ~f ] = NXi=1 �yi � ZRd ds ~f(s)eixi�s�2 + � ZRd ds ~f(�s) ~f (s)~G(s) :In order to �nd the minimum of this functional we take its functional derivatives withrespect to ~f and set it to zero: �H[ ~f]� ~f(t) = 0 8t 2 Rd : (44)We now proceed to compute the functional derivatives of the �rst and second term ofH[ ~f ]. For the �rst term we have:�� ~f(t) NXi=1 �yi � ZRd ds ~f(s)eixi�s�2= 2 NXi=1 (yi � f(xi)) ZRd ds � ~f(s)� ~f(t)eixi�s= 2 NXi=1 (yi � f(xi)) ZRd ds �(s� t)eixi�s= 2 NXi=1 (yi � f(xi)) eixi�tFor the smoothness functional we have:�� ~f(t) ZRd ds ~f(�s) ~f(s)~G(s) = 2 ZRd ds ~f(�s)~G(s) � ~f(s)� ~f(t)= 2 ZRd ds ~f(�s)~G(s) �(s� t) = 2 ~f (�t)~G(t) :Using these results we can now write equation (44) as:NXi=1(yi � f(xi))eixi�t + � ~f (�t)~G(t) = 0 :Changing t in �t and multiplying by ~G(t) on both sides of this equation we get:~f(t) = ~G(�t) NXi=1 (yi � f(xi))� eixi�t :38



We now de�ne the coe�cientsci = (yi � f(xi))� i = 1; : : : ; N ;assume that ~G is symmetric (so that its Fourier transform is real), and take the Fouriertransform of the last equation, obtaining:f(x) = NXi=1 ci�(xi � x) �G(x) = NXi=1 ciG(x � xi) :We now recall that we had de�ned as equivalent all the functions di�ering by a term thatlies in the null space of �[f ], and therefore the most general solution of the minimizationproblem is f(x) = NXi=1 ciG(x� xi) + p(x)where p(x) is a term that lies in the null space of �[f ], that is a set of polynomials formost common choices of stabilizer �[f ].B Approximation of vector �elds with regulariza-tion networksConsider the problem of approximating a q-dimensional vector �eld y(x) from a set ofsparse data, the examples, which are pairs (xi;yi) for i = 1; : : : ; N . Choose a Gen-eralized Regularization Network as the approximation scheme, that is, a network withone \hidden" layer and linear output units. Consider the case of N examples, n � Ncenters, input dimensionality d and output dimensionality q (see �gure 7). Then theapproximation is y(x) = nX�=1 c�G(x� t�) (45)where G is the chosen basis function and the coe�cients c� are now q-dimensionalvectors4: c� = (c1�; : : : ; c��; : : : ; cq�).Here we assume, for simplicity, that G is positive de�nite in order to avoid the need ofadditional polynomial terms in the previous equation. Equation (45) can be rewrittenin matrix notation as4The components of an output vector will be always denoted by superscript, greek indices.39



y(x) = Cg(x) (46)where the matrix C is de�ned by (C)�;� = c�� and g is the vector with elements (g(x))� =G(x�t�). Assuming, for simplicity, that there is no noise in the data (that is equivalentto choosing � = 0 in the regularization functional (1)), the equations for the coe�cientsc� can be found imposing the interpolation conditions:yi = Cg(xi)Introducing the following notation:(Y )i;� = y�(xi) ; (C)�;� = c�� ; (G)�;i = G(xi � t�)the matrix of coe�cients C is given by:C = Y G+:where G+ is the pseudoinverse of G (Penrose, 1955; Albert, 1972). Substituting thisexpression in equation (46), the following expression is obtained:y(x) = Y G+g(x) :After some algebraic manipulations, this expression can be rewritten asy(x) = NXi=1 bi(x)yiwhere the functions bi(x),that are the elements of the vector b(x), depend on the chosenG, according to b(x) = G+g(x):Therefore, it follows (though it is not so well known) that the vector �eld y(x) is ap-proximated by the network as the linear combination of the example �elds yi.Thus for any choice of the regularization network and any choice of the (positivede�nite) basis function the estimated output vector is always a linear combination of theoutput example vectors with coe�cients b that depend on the input value. The result isvalid for all networks with one hidden layer and linear outputs, provided that the meansquare error criterion is used for training. 40
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