
A Uniform Treatment of Order of Evaluation and Aggregate Update�M. DraghicescuEECS DepartmentUniversity of MichiganAnn Arbor, MI 48109-2122 S. PurushothamanDept. of Computer ScienceThe Pennsylvania State UniversityUniversity Park, PA 16802December 16, 1993AbstractThe article presents an algorithm for the destructive update optimization in �rst-order lazyfunctional languages. The main component of the method is a new static analysis of the order ofevaluation of expressions which, compared to other published work, has a much lower complexityand is not restricted to pure lazy evaluation. The other component, which we call reduction tovariables, is a method of detecting the variables which denote locations where the result of anexpression might be stored.Starting with the operational semantics of the language, we introduce some markers for thevalues in the basic domain. By appropriately choosing the set of markers M and the methodof propagating them during evaluation, we can extract some property of the evaluation inwhich an expression can participate in by looking at the marker of its value. We de�ne then anequivalent denotational semantics and derive the above analyses, in an uniform way, by abstractinterpretation over a subdomain of P (M?).1 IntroductionA characteristic feature of functional languages is their referential transparency which makes themsuitable for parallel execution. On sequential machines, however, this quality becomes a seriousobstacle to an e�cient implementation. The impossibility to compute through side-e�ects greatlyreduces the e�ciency of functional languages which manipulate large data structures, such as arrays,records, or lists. In a functional language an object, once created, is never changed, so modifyingsuch a structure implies making a new copy. This is ine�cient not only because large structuresmust be copied, but also because of the additional load on the garbage collector. Traditionally,designers of functional languages either do not provide these data structures or introduce \impure"operations which destroy the referential transparency.To e�ciently use such structures in a pure functional language we must detect the structuremodi�cations (updates) which can be done destructively or in place without a�ecting the semanticsof the language. This can be done either by some run-time checks (e.g., by keeping track of referencecounts) or through compile-time analysis. The latter approach is the topic of the present work.The destructive update optimization has been considered in the literature before, one of theearly works being Mycroft [13]. In Hudak [9] the problem is discussed in an operational model basedon graph reduction. An applicative-order language is treated in Hudak [11] using an abstraction of�Funded in part by NSF CDA-89-14587. A preliminary version of this paper appeared in the proceedings of the1990 ACM conference on Lisp and Functional Programming.1

reference counting (reference counting o�ers a run-time solution to this optimization problem). Arelated analysis (detection of single threaded de�nitions), is presented in Schmidt [17, 18], also in anapplicative-order setting. The problem is also discussed in Bloss [4, 5] as an application of the pathanalysis (see below); the method thus obtained is very expensive computationally. A variation ofpath analysis is also used in Gopinath [8] for a language with call-by-value semantics.We present here another solution to this problem. The general idea used in this article and inmost of the works cited above is the following: an object can be updated destructively only if it isnot accessed after the update. To detect this at compile-time we need some information about (a)the possible sharing of this object and (b) the run-time order of evaluation of expressions.The article presents new solutions to these two static analysis problems for lazy functionallanguages. They are needed for the destructive update procedure and they are also of independentinterest. Our method is based on abstract interpretation, a semantically based general techniquefor compile-time analysis.Sharing information can be presented under di�erent forms; we called our analysis reduction tovariables. It detects the variables which may denote the location where the result of an expressionevaluation will be stored at run-time and is related to targeting (Gopinath [8]). The analysis is alsorelated to aliasing, a much-studied problem, especially for imperative languages (a solution basedon abstract interpretation is presented in Neirynck [14]).The evaluation-order analysis is simple in an applicative-order model. The �rst solution fornormal-order languages that use pure lazy evaluation is presented in Hudak [1]. The most generalsolution to-date is path analysis presented in Bloss and Hudak [2] and Bloss [4]. Unlike theseworks, our analysis is not restricted to lazy evaluation, but applies to all evaluation strategiescompatible with the semantics of the language (for example strict arguments can be evaluated inany order or even in parallel). The method can also be adapted, yielding a sharper analysis, to anyprede�ned order of evaluation of arguments to primitive functions. Its complexity is exponential inthe number of variables, which is a signi�cant improvement over the O(2N !+(N�1)!+:::+1) complexityof path analysis. The most important application of evaluation-order analysis is to the destructiveupdate problem; other optimizations based on this information are mentioned in Bloss [3, 4].The article is organized as follows: Section 2 describes the syntax and semantics of the languageused for illustration. We de�ne two equivalent semantics: an operational and a denotational one.A general non-standard semantic scheme (both operational and denotational) which constitutesthe starting point of the analyses developed in the following sections is also de�ned. The non-standard semantic scheme is intended to capture information that can be gleaned from the standardoperational semantics, but in a more accessible form. The idea is to mark the values in the basicdomain and de�ne the method of propagating the markers during evaluation so that we can extractsome property of the evaluation in which an expression can participate in by looking at the markerof its value. The section also contains some examples which give a motivation to the present work.Section 3 contains a short presentation of abstract interpretation and its classical application tostrictness analysis. We also introduce some de�nitions and notations used in the rest of the articleand we compute, by abstract interpretation of the non-standard semantics, a general relationbetween the variables of an expression.The reduction to variables and evaluation order analyses are presented in Section 4 and 5,respectively. They are �rst de�ned as predicates over the reduction sequences engendered bythe standard operational semantics. It is then shown how this information can be obtained asparticularizations of the general relation mentioned above.The procedure for the destructive update problem is discussed in Section 6. The use of theprocedure is shown with several examples; for the functional version of the quicksort algorithmconsidered in Hudak [11] the procedure yields a linear space complexity.2

The conclusions and plans for future work are presented in Section 7. To summarize, the contri-butions of the paper are: (a) order of evaluation analysis, (b) reduction to variables and destructiveupdate, and, importantly, (c) a methodology for static analysis starting from the operational se-mantics.2 A First-Order LanguageWe will consider a language L of �rst-order recursion equations with normal-order semantics. Thedata types include integers, booleans, and one-dimensional arrays of integers with �xed lower andupper bounds; the lower bound is always 1.This section contains formal de�nitions of the syntax and semantics of L. We also de�nea general non-standard semantics on which the analyses developed in the following sections arebased.2.1 Abstract Syntaxc; [c1; : : : ; cn]; p 2 Con (constants, primitive functions)x 2 Var (variables)f 2 Fn (function names)e; body 2 Exp (expressions)pr 2 Prog (programs)where e ::= c j [c1; : : : ; cn] j x j p(e1; : : : ; en) j f(e1; : : : ; en)pr ::= f1(x11; : : : ; x1k1) = body1f2(x21; : : : ; x2k2) = body2...fn(xn1; : : : ; xnkn) = bodyn[c1; : : : ; cn] denotes the constant array of size n with elements c1; : : : ; cn. For simplicity we didnot include an expression in the de�nition of a program, but instead we will require that f1, the�rst function, takes no arguments and a program is \run" by calling f1. We assume that the formalparameters of all user de�ned functions are distinct variables. Let P be a given program.Notationsbodyf is the body of the function f in P .Exp is the set of expressions in P .M = cardinality(Exp).Expf is the set of subexpressions of bodyf .Var is the set of variables in P .N = cardinality(Var).Vare is the set of variables which occur in the expression e.Varf is the set of variables which are formals of the function f (Varbodyf � Varf).3

We will use lower case letters from the end of the alphabet to denote variables and capital lettersfor sets of variables. We will denote arbitrary expressions by e (possibly with subscripts orsuperscripts), non-functional constants by c, general primitive functions by p, and user-de�nedfunctions by f , g, or h.2.2 Standard SemanticsFor a set S denote by S? the
at domain S [f?g ordered by ? < s for all s 2 S.Semantic Domains Z = f: : : ;�1; 0; 1; : : :g (integers)B = ftrue; falseg (booleans)A = Z+ Z2 + : : : (arrays)D = (Z+B+A)? (basic domain)Env = Var ! D (variables environment),where `+' is the separated sum operation.Semantic FunctionsF : Fn ! D� ! D (gives meaning to function names)E : Exp ! Env ! D (gives meaning to expressions)C : Con! D� ! D (gives meaning to constants).We will use the informal method of presenting the semantics from Hughes [12], which consistsin de�ning E and F through a set of mutually recursive equations. F corresponds to the \functionvariable environment" which is expressed as the least �xed point of an operator in a more traditionalpresentation.Semantic Equations F [[fi]] = �d1 : : : dki : E [[bodyi]][dj=xij]E [[c]]� = C[[c]]E [[x]]� = �[[x]]E [[p(e1; : : : ; en)]]� = C[[p]]E [[e1]]� : : :E [[en]]�E [[f(e1; : : : ; en)]]� = F [[f]]E [[e1]]� : : :E [[en]]�:The following typical primitive functions will be used throughout the article:1. if : the polymorphic conditional.2. +; <; : : : : arithmetic and relational operators.3. select(a; i) : returns the i-th element of the array a.4. update(a; i; q) : returns an array identical to a except for the i-th element which is q.5. � : array addition.6. length : the length (size) of an array. 4

C[[c]] = c (c 2 Z+B is the semantic value of c)C[[[c1; : : : ; cn]]] = hc1; : : : ; cni (the constant array of size n; ci 2 Z)C[[+]] = �d1d2: d1+ d2;where the right-hand side + denotes the strict addition in Z?C[[if]] = �d1d2d3: if d1 then d2 else d3C[[select]] = �hk1; : : : ; kni i: if i > n then ? else kiC[[update]] = �hk1; : : : ; ki; : : : ; kni i q: if i > n then ? else hk1; : : : ; q; : : : ; kniC[[�]] = �ha1; : : : ; amihb1; : : : ; bni: ifm 6= n then ? else ha1 + b1; : : : ; am + bmiC[[length]] = �hk1; : : : ; kni: n:We will usually write if x then y else z, x + y, and a[i] instead of if (x; y; z), +(x; y), andselect(a; i) respectively.Note that we assumed all programs to be well-typed. The size of an array is not part of itstype. Type checking can be done statically using a Hindley-Milner type algorithm.Throughout this paper we will assume a lazy evaluation strategy, i.e., call-by-name plus thefact that function arguments are evaluated at most once, subsequent references using the alreadycomputed values. We will also assume that, operationally, the value of an expression is a reference(location, pointer). This reference might be to a newly created object (integer, boolean, or array)or it might be to an already existing one. The same object might be created many times as theresult of evaluating di�erent expressions, but an existing object is never explicitly duplicated. Forexample evaluating 1+4 and 2+3 will create two copies of the object 5; however ifmax(x; y) = if x � y then x else y;then the evaluation of max(1; 2+3) will return a reference to the unique 5 created when its secondargument is evaluated. These assumptions are valid, for example, in an execution model based ongraph-reduction (Peyton Jones [15]).The purpose of the destructive update analysis is to determine at compile time whether a givenexpression update(e; : : :) in a given program P can be evaluated, without a�ecting the meaning ofP , in place (i.e., destructively, by rewriting the array e instead of creating a new array).Example 2.1 minus(a) = minus1 (a; 1)minus1 (a; i) = if i > length(a) then a elseminus1 (update(a; i;�a[i]); i+ 1):If called on an array of length 100, minus will generate 100 new arrays. However, it is clearthat, if the original value of a is not needed after any of the calls to minus in a given program,all the evaluations of update can be done in place.The following examples will illustrate some of the problems that we must solve when trying todetect (at compile-time) the updates which can be done in place. Solutions to these problems willbe discussed in the rest of the article. 5

Example 2.2 f(u; v) = u� vg(x) = f(x; update(x; : : :)):The update can or cannot be always done in place depending on the order of evaluation of thearguments of f . In this example the update cannot be done in place if � might evaluate itsarguments right-to-left. In general, the run-time order of evaluation cannot be computed atcompile-time; the challenge is to �nd a good approximation of this order which is staticallycomputable. g(x) = f(x; update(x; : : :))� x; f as above:The update cannot be done in place no matter what the (�xed) order of evaluation of � is.Example 2.3 : : :update(x� y; : : :) : : :This update can always be done in place; x � y is a new, nameless, array which cannot bereferenced anywhere else in the program, so it can be safely destroyed.: : :update(update(x; : : :); : : :) : : :The �rst (outside) update can always be done in place. Even if the inside update is done inplace, we can consider its value to be a new object (after all we know that x will never beneeded again, otherwise the inside update could have not been done in place).A key observation is that an object can be referenced in more than one place only if it is denotedby a variable. The following example will further illustrate this idea.We will assume from now on that � is always evaluated left-to-right.Example 2.4 f(x) = update(g(x); : : :)� xg(y) = y:We can immediately determine that the update cannot be done in place; see below.g(y) = y � y; f as above:The update can be done in place now. The di�erence between these two examples is that, inthe former case g(x) and x refer to the same object (operationally, x and the result returnedby g(x) are the same reference), while in the latter case they denote di�erent objects. In theformer case we will say that g(x) reduces to x.g(y) = if : : : then y else y � y; f as above:We cannot know, at compile-time, whether g(x) will reduce to x or not, therefore the safedecision must be that the update cannot be done in place. We will say, in this case, that g(x)might reduce to x. 6

f(x; y) = update(x; : : :)� yg(u; v) = if : : : then u else vh(p; q; r) = f(g(p; q); g(q; r)):The update cannot be done in place: both g(p; q) and g(q; r) might reduce to q, so x and ymight denote the same object, therefore x cannot be destroyed.Example 2.5 f(x; y) = x� y � xh(u) = f(u; update(u; : : :)):The update cannot be done in place. f will evaluate x before y, but it will also access x again,after y is evaluated. This example shows that we must also consider the relative order in whichvariables are accessed and not only the order in which they are evaluated (under lazy evaluationthey are evaluated when �rst accessed).h(u) = f(g(u); update(u; : : :)); f as above, g as in example 2.4:If g(u) might reduce to u (e.g., g(y) = y) then the update cannot be done in place. On theother hand, if g(u) never reduces to u (e.g., g(y) = y � y) then the update could be done inplace: g(u) is evaluated when x is �rst accessed; its (new) value is stored and the second accessto x refers to this stored value, so u is not needed after the update.The following examples will show the limits of the approach presented in this paper:Example 2.6 f(x) = minus(x)� x;where minus is de�ned in example 2.1. The update in minus1 cannot be done in place becausex is needed later; this means that minus1 will generate length(x) arrays all of which, exceptthe last one, are useless, intermediate, results which could be destroyed even if the value of x isneeded later. The optimization which consists in evaluating the update normally once and thendestructively length(x)� 1 times is beyond the scope of the present work: for a given (statical)update we only decide whether it can be always evaluated in place or not.However, our analysis will determine that x is the variable which prevents the update of beingdone destructively and an optimizing compiler could easily transform f into:f(x) = minus(new copy(x))� x;where new copy is a special built-in function which returns a new copy of its argument1. Nowthe update in minus1 can be done in place, so the optimized program will do only one arraycopy (by new copy) instead of length(x).1If we would need to de�ne it ourselves then new copy(u) = update(u; 1; u[1]) will do the trick; new copy(u) = uis not good because it does not copy its argument. 7

Example 2.7 f(x) = length(update(x; : : :) + length(x)):Assuming + is evaluated left-to-right we will decide that the update cannot be done in placebecause x is accessed after the update. We do not treat separately functions like length whichare not a�ected by any updates of their argument. It is not too di�cult to modify our procedureto take into account such situations; the following example, however, illustrates a much moreinteresting and di�cult problem:f(a; i; x) = update(a; i; x)[i]+ a[i+ 1]:The �rst operand of + is equivalent to x, but the point here is that we will again conclude thatthe update cannot be done in place because a is accessed after the update. In reality the updatecould be safely made in place: only the i+1-th element of a is needed after the i-th one is lost.We make no attempt to statically analyze the possible values of array indices.2.3 Operational SemanticsThe notions of order of evaluation and sharing can be de�ned only in an operational manner. Theoperational semantics presented in this section is a simpli�ed version (adapted to our �rst orderlanguage) of the operational semantics of PCF presented in Plotkin [16]. The only di�erence is thepresence of an environment and the rule (1) which allows the reduction of expressions containingfree variables. Note however that the variables are used only at the �rst level; function calls do notintroduce new variables nor do they change the environment (rule (6)).For each boolean, integer, or array d 2 D, denote by bd its syntactic representation. We havebd 2 Con and C[[bd]] = d. Let, by de�nition, b? = !, where ! is some expression whose standard valueis ?, for example! = f(); where f is a function with no arguments de�ned as f() = f():For each � 2 Env the reduction relation !� between expressions is de�ned by the followingrules: x!� d�(x) (x 2 Var) (1)ei !� e0ip(e1 : : :ei : : : en)!� p(e1 : : : e0i : : :en) (p 6= if) (2)e1 !� e01if (e1; e2; e3)!� if (e01; e2; e3) (3)e2 !� e02if (true ; e2; e3)!� if (true ; e02; e3) ; e3 !� e03if (false; e2; e3)!� if (false; e2; e03) (4)if (true ; c; e)!� c; if (false; e; c)!� c (c 2 Con) (5)f(e1 : : : en)!� bodyf [ei=xi]: (6)To these rules we will also add the following rule scheme specifying the action of the primitivefunctions other than if on all possible combinations of constant arguments:p(c1 : : : cn)!� bd where d = C[[p]]c1 : : :cn, p 6= if , ci 2 Con: (7)8

Note that rule (6) speci�es call-by-name as the evaluation strategy. Note also that the conditionof if must be completely reduced before any reduction can take place in one of the branches (rules(3){(5)); therefore the evaluation proceeds in a pure lazy manner (as opposed, for example, to anevaluation which uses strictness information to change the order of evaluation; a strategy whichallows such changes will be discussed in Subsection 5.3). A reduction sequence might not be uniquebecause we do not impose any order on the reduction of arguments of the primitive functions otherthan if. An expression will either reduce to a constant or its reduction will not terminate. Wecan easily prove that if c is a constant and if e �!� c then any reduction of e will terminate inc (�!� is the transitive-re
exive closure of !�). We can therefore de�ne the evaluation functionEval : Exp ! Env ! D by: Eval(e; �) = (d if e �!� bd? otherwise:The following theorem states the equivalence between the denotational and operational seman-tics (for a proof see Stoy [19]).Theorem 2.1 For all e 2 Exp, � 2 Env,Eval(e; �) = E [[e]]�:2.4 Non-Standard SemanticsThe standard semantics of L does not contain all the information needed for the analyses which willbe presented in this article. We will de�ne now a general non-standard semantics by adding someextra information to the standard one. The idea is to \mark" the elements of D. The marker of anexpression is computed from the markers of its components following some rules. By appropriatelychoosing these rules we will obtain di�erent particularizations of this general semantics.Let M = fm1; : : : ; mng be a �nite set of markers. The non-standard basic domain isDn = ((Z+B+ A)�M)?and the non-standard domain of environments isEnvn = Var ! Dn:By identifying ? 2 Dn with h?;?i 2 D�M?, we will consider Dn to be a subdomain of D�M?.De�ne the two projections content : Dn ! D; marker : Dn !M?content(hd;mi) = d; marker (hd;mi) = m:Note that marker (x) = ? i� content(x) = ? i� x = ?. For t = hd;mi 2 Dn, t 6= ?, letbt = h bd;mi 2 Con�M (its \syntactic representation" and let b? = !. The markers associated withconstants and primitive functions are given by the strict functions:~p : Mn? !M? (for all p 6= if of arity n � 0)~if :M2? !M?:In particular, the marker of a constant c is ~c 2M .It is more convenient to de�ne the new reduction relations!�n for �n 2 Envn between expres-sions in a new language, LM . The set of constants of LM is Con �M ; the rest of the syntax is9

identical to that of L. For an expression e in L we will denote by eM the expression in LM obtainedfrom e by replacing each c 2 Con by hc; ~ci. To de�ne !�n we will introduce the computations onmarkers into the rules (1){(7). The new rules are:x!�n d�n(x) (x 2 Var) (8)ei !�n e0ip(e1 : : :ei : : : en)!�n p(e1 : : : e0i : : :en) (p 6= if) (9)e1 !�n e01if (e1; e2; e3)!�n if (e01; e2; e3) (10)e2 !�n e02if (htrue ; mi; e2; e3)!�n if (htrue; mi; e02; e3) ;e3 !�n e03if (hfalse; mi; e2; e3)!�n if (hfalse; mi; e2; e03) (11)if (htrue ; m1i; hc;m2i; e)!�n hc; ~if (m1; m2)i;if (hfalse; m1i; e; hc;m2i)!�n hc; ~if (m1; m2)i (c 2 Con) (12)f(e1 : : : en)!�n bodyf [ei=xi] (13)p(hc1; m1i : : :hcn; mni)!�n h bd; ~p(m1 : : :mn)i; d = C[[p]]c1 : : :cn; p 6= if ; ci 2 Con: (14)The non-standard reductions mirror exactly the standard ones. The markers are computedin parallel with the standard values but they do not in
uence the reduction sequence. The non-standard reduction is therefore con
uent and we can de�ne the evaluation function Evaln : Exp !Envn ! Dn by: Evaln(e; �n) = (hd;mi if eM �!�n h bd;mi? otherwise:It is easy to prove that the standard semantics can be obtained from the non-standard one byignoring the markers:Theorem 2.2 For all e 2 Exp, �n 2 Envn,content(Evaln(e; �n)) = Eval(e; content � �n);where � denotes the left-to-right function composition.We will de�ne now an equivalent non-standard denotational semantics. The semantic functions Enand Fn are de�ned similarly to E and F from the standard semantics (Subsection 2.2), while Cnwill include now the action on markers given by ~p:Cn[[p]] = hC[[p]] � contentn; ~p �markerni for any n-argument p 6= if ; n � 0 (15)Cn[[if]] = �xyz: case content(x) :true :: hcontent(y); ~if (marker(x);marker(y))ifalse :: hcontent(z); ~if (marker(x);marker(z))i? :: ?: (16)The analogue of Theorem 2.1 also holds for the two non-standard semantics:10

Theorem 2.3 For all e 2 Exp, �n 2 Envn,Evaln(e; �n) = En[[e]]�n:The non-standard semantics de�ned above depends on the set of markers M and the markerpropagation functions ~p. By specifyingM and ~p for each primitive function p we can obtain di�erentsemantics. Two such particularizations will be used for the order of evaluation and reduction tovariables analyses.3 Abstract InterpretationThis section presents some classical results from the theory of abstract interpretation of �rst-orderfunctional languages �rst developed in Mycroft [13].The idea of the abstract interpretation method is to obtain some information about a functionf by projecting the semantic domain D on some abstract domain D# and then computing theabstract semantic value of f in D#. Under the conditions described below there is a relationbetween the normal semantic value and the abstract one. D# is chosen such that (a) the abstractsemantic value of f gives us the required information, and (b) computing the abstract semanticvalues can be done at compile-time. (b) is satis�ed, for example, if D# is �nite, which is usuallythe case.The classic example is the rule of signs in arithmetic which enables us to �nd the sign of a multi-plication knowing the signs of the operands, without having to actually perform the multiplication.Here D = Z and D# = f0;+;�g.The following are some simple facts from domain theory: for a
at domain X , the Hoarepowerdomain P (X) is de�ned as P (X) = fA � X j ? 2 Ag;ordered by subset inclusion. For A � X denote by A = A [f?g 2 P (X) (the closure of A). If Xand Y are
at domains, a function f : Xn ! Y can be extended to a function f : P (X)n ! P (Y)by de�ning f(A1; : : : ; An) = ff(a1; : : : ; an) j ai 2 Aig:In Mycroft's abstract interpretationmethod the powerdomain P (D) is projected on the abstractdomain D#. More exactly, we de�ne the continuous abstraction and concretization functionsAbs : P (D)! D#; Conc : D# ! P (D);which must satisfy Abs �Conc = idD#; Conc �Abs � idP (D): (17)The abstract valuation functions E# and F# are de�ned in the same way as E and F (seeSubsection 2.2). For each n-argument primitive p we de�ne:C#[[p]] = Abs � C[[p]] � Concn: (18)Under these conditions the correctness theorem of Mycroft is:Theorem 3.1 (Mycroft) For each n-argument user-de�ned function f ,F [[f]] � Conc � F#[[f]] �Absn;where F [[f]] is lifted to P (D). 11

F#[[f]] can be computed at compile-time by �nite �xpoint iteration, yielding some informationabout f . The following subsection will illustrate the application of this method for computingstrictness information.3.1 Strictness AnalysisWe will say that a function f : Dn ! D is strict in its i-th argument if8dj 2 D f(d1; : : : ; di�1;?; di+1; : : : ; dn) = ?:Strictness analysis allows us to detect such information. The importance of the analysis is that theparameters in which a function is strict can be passed by value, avoiding the need for building aclosure. Not all cases will be discovered because strictness is, in general, undecidable.The abstract domain is 2 = f0; 1g with 0 < 1. Intuitively, 0 represents the unde�ned ele-ment (non-termination) and 1 represents possible termination. The abstraction and concretizationfunctions are: Abs : P (D)! 2; Conc : 2! P (D)Abs(S) = 0 i� S = f?gConc(0) = f?g; Conc(1) = D:Equation (18) translates to: c# = 1 (c 2 Con)x+# y = x ^ y; etc.if #(x; y; z) = x ^ (y _ z);where we denoted C#[[p]] by p#.Example 3.1 fac(x) = if x = 0 then 1 else x � fac(x� 1)fac#(x) = (x ^ 1) ^ (1 _ x ^ fac#(x ^ 1)) = x:The equation de�ning fac# is not recursive, so there is no need for �xpoint iteration. We canconclude that fac is strict because fac#(0) = 0 which implies, by the correctness theorem ofabstract interpretation, fac(?) = ? (more exactly, F [[fac]]? = ?).We can consider an arbitrary expression to be a function of its free variables. The relation #(read \is strict in") between expressions and variables is de�ned as follows:De�nition 3.1 For e 2 Expf and x 2 Varf ,e#x i� E#[[e]][0=x; 1=y (y 6= x)] = 0:The correctness of strictness analysis implies thate#x =) 8� 2 Env E [[e]]�[?=x] = ?:12

3.2 Abstractions of the Non-Standard SemanticsThe analyses developed in the rest of the paper are expressed as particularizations of the followinggeneral problem. For each expression e we want to approximate some property of the variablesof e which cannot be computed at compile time. The properties that we are interested in canbe formulated using the non-standard semantics de�ned in Section 2: the variables of e have thedesired property i� whenever we mark them in a certain way we obtain a certain marker of the(non-standard) value of e. More exactly, we are interested in the k-ary relations r between variablesof the following general form:De�nition 3.2 Let k � 1 and M0;M1; : : : ;Mk;Mk+1 2 P (M?) be �xed.For e 2 Expf , x1; : : : ; xn 2 Varf , and � 2 Env ,hx1; : : : ; xki 2 r(e; �) i� marker(En[[e]]�n) 2Mk+1;for all �n 2 Envn satisfying:content � �n = �; marker(�n(xi)) 2Mi (i = 1 : : :k); marker (�n(x)) 2M0 (x 6= xi; i = 1 : : :k):In other words, hx1; : : : ; xki 2 r(e; �) i� the marker of the value of e in a non-standard environmentobtained from � by marking xi with something in Mi (and everything else with something in M0)is in Mk+1. Note that the Mi's are not just sets of markers, but elements of P (M?), i.e., ? 2 Mi(this is necessary because ? can only be marked with ?). We are interested only in the behaviorof terminating computations; ? 2 Mk+1, therefore if the evaluation of e in � does not terminater(e; �) is the total relation.By abstracting the non-standard semantics we will obtain a statically computable approximation(a subset) of r which does not depend on an environment. The idea is to ignore the standard valuesand consider only the markers. The abstract values are sets of possible markers; more exactly,the abstract domain A is an arbitrary subset of P (M?) which contains M? and is closed underset intersection (A = P (M?) is such a domain). Di�erent abstract domains generate, in general,di�erent approximations; the relationship between them is discussed later in this subsection. ForS � M? let a(S) be the least element of A such that S � a(S) (it always exists because M? 2 Aand A is closed under intersection). The abstractization and concretization functions are:Abs = a �marker : P (Dn)! A; Conc = marker�1 : A! P (Dn): (19)We will use the superscript a to denote the abstractions of the valuation functions. The abstractionsof the prede�ned functions are given by the following Lemma:Lemma 3.1 Can[[p]] = a � ~p (p 6= if)Can[[if]] = �xyz: a(~if (x; y)[~if (x; z)):Proof Immediate from (18), (15), (16), and the de�nitions of Abs and Conc.The de�nition of the relation ra is:De�nition 3.3 For e 2 Expf and x1; : : : ; xn 2 Varf ,hx1; : : : ; xki 2 ra(e) i� Ean [[e]][a(Mi)=xi (i = 1; : : : ; k); a(M0)=x (x 6= xi)] �Mk+1:13

The correctness of the approximation is given by the following Theorem:Theorem 3.2 For all e 2 Expf and � 2 Env,ra(e) � r(e; �):Proof Let e 2 Expf and x1; : : : ; xn 2 Varf such that hx1; : : : ; xki 2 ra(e). From de�nition (3.3)we have Ean [[e]][a(Mi)=xi (i = 1; : : : ; k); a(M0)=x (x 6= xi)] �Mk+1:Conc is monotonic, therefore:Conc(Ean[[e]][a(Mi)=xi (i = 1; : : : ; k); a(M0)=x (x 6= xi)]) � Conc(Mk+1);or, using the �rst equality in (17),Conc(Ean [[e]][Abs(Conc(a(Mi)))=xi (i = 1; : : : ; k); Abs(Conc(a(M0)))=x (x 6= xi)]) � Conc(Mk+1):We can apply now Theorem 3.1 to obtain:En[[e]][Conc(a(Mi))=xi (i = 1; : : : ; k); Conc(a(M0))=x (x 6= xi)] � Conc(Mk+1):Using the de�nition of Conc in (19), this is equivalent to:marker(En[[e]]�n) 2Mk+1;for all �n 2 Envn such thatmarker (�n(xi)) 2 a(Mi), marker(�n(x)) 2 a(M0) (x 6= xi; i = 1; : : : ; k).But a(Mi) �Mi, therefore, from de�nition (3.2), hx1; : : : ; xki 2 r(e; �) for all � 2 Env .The theoretical complexity of computing the abstractions of all user de�ned functions by �xpointiteration is O(jAjN) with the constant depending on the structure of A (the maximum number of�xpoint iterations is the height of the domain of monotonic functions from AN to A which isO(jAjN)). In some instances, due to some special properties of A, the exact complexity can bemuch lower (such a case will be discussed in the next section).While decreasing the complexity of the computation, the use of a smaller abstract domainwill generate, in general, a weaker approximation (more information is lost by abstraction). Moreprecisely, the approximation over the smaller domain can be obtained by abstract interpretationfrom the approximation over the larger domain. We have thus a hierarchy of approximationscorresponding to the hierarchy of subdomains of P (M?). This result is presented in the followingLemma:Lemma 3.2 If A and A0 are two subsets of P (M?) closed under intersection such thatM? 2 A � A0 then ra � ra0.Proof The functions Abs : A0 ! A ; Abs(S 0) = a(S 0);Conc : A! A0 ; Conc(S) = Ssatisfy the conditions (17), therefore, from Theorem 3.1,Ea0n [[e]]�0 � Ean [[e]]a � �0;for all expressions e and abstract environments �0 over A0. The Lemma is proven by taking�0 = [a0(Mi)=xi (i = 1; : : : ; k); a0(M0)=x (x 6= xi)].14

Under the conditions speci�ed in the following Lemma the approximation over a smaller domainis the same as the approximation over a larger one. This fact can be used to simplify the abstractionwithout loosing any information.Lemma 3.3 If A and A0 are two subsets of P (M?) closed under intersection such that fM?;Mk+1g �A � A0 and, for all prede�ned p of n arguments, a � Ca0n [[p]] = Can[[p]] � an (as functions from A0n toA) then ra = ra0.Proof Ean and Ea0n are the (�nite) limits of their �xpoint approximations and the following equalitycan be easily proven by induction on these approximations:a(Ea0n [[e]]�0) = Ean [[e]]a � �0;for all expressions e and abstract environments �0 over A0. The Lemma then follows from the factthat a is monotonic and a(Mk+1) = Mk+1 (because Mk+1 2 A).4 Reduction to VariablesUnder our assumption that expressions evaluate to references (locations, pointers) it is easy to seethat the value of an expression e is either (a) a reference to a newly created object, or (b) thereference denoted by some variable x in e. In the second case we will say that e reduces to x.As mentioned before, we assume that no object is copied during evaluation; more precisely, weassume that1. if never creates a new object but just returns the reference of the selected branch,2. all primitive functions except if always create a new object as their result, i.e., a call to sucha function can never reduce to a variable, and3. user de�ned functions return the references obtained by evaluating their bodies.The purpose of the analysis de�ned in this section is to de�ne a statically computable approx-imation (superset) of the reduction to variables relation. To consider that every expression mightreduce to any of its variables is an approximation which is safe, but too coarse to be useful. Theanalysis is an essential component of the destructive update algorithm presented in Section 6 (seeexamples 2.3 and 2.4).The standard semantics does not o�er all the necessary information|in particular we cannotdetermine when new locations are accessed. Consider for example the expressions if true then x else0 and x+0. The standard values of these two expressions are equal, but the �rst one reduces to x,while the second one generates a new reference.2 In order to di�erentiate between such expressionswe will use a particularization of the non-standard semantics de�ned in Subsection 2.4. We willthen derive the desired approximation by abstract interpretation.4.1 Exact Reduction to VariablesWe will denote by e+x(�) the fact that e reduces to x when evaluated in environment �. Using theoperational semantics de�ned in Subsection 2.3 we can de�ne + as follows:De�nition 4.1 For e 2 Expf , x 2 Varf , and � 2 Env , e+x(�) i� all reduction sequences of ein � terminate and the last step in any such sequence is a reduction of x based on rule (1).2We will assume that any constant folding is carried out before the update analysis.15

In order to obtain an equivalent de�nition without explicitly mentioning the reduction sequenceswe will mark the value of x with a special marker which will be propagated to the �nal result i�rule (1) is used for the last reduction. We will takeM = fold ; newg;where old is used to mark the variable x and new is used for everything else and also for all \newlygenerated" markers.3 All primitive functions generate new and all constants are marked with new,therefore we de�ne:~p(m1; : : : ; mn) = if 9imi = ? then ? else new (p 6= if ; n � 0): (20)The marker generated by if is the marker of the respective alternative, i.e.,~if (m1; m2) = if m1 = ? then? elsem2: (21)Theorem 4.1 For all e 2 Expf , x 2 Varf , � 2 Env,e+x(�) i� marker (Evaln(e; �n)) = old;where �n 2 Envn is de�ned by:content(�n) = �; marker(�n(x)) v old ; marker (�n(y)) v new (y 6= x):Proof The left-to-right implication follows immediately from the de�nition of +. We will provethe other implication by induction on the number of reduction steps of e.e = c (0 reduction steps): marker (Evaln(e; �n)) = ~c = new (de�nition (20)).e is not a constant: the last step in any �nite reduction of e is obtained by one of the rules(1), (12), or (14). In the �rst case, if the reduced variable is not x, and also in the last case,marker(Evaln(e; �n)) v new by the de�nition of �n and, respectively, de�nition (20). In the secondcase use de�nition (21) and the induction hypothesis applied to the selected branch of the if.Corollary 4.1 For all e 2 Expf , x 2 Varf , � 2 Env, and �n as above,e+x(�) i� marker (En[[e]]�n) = old:Example 4.1 e1 ::= if true then x else 0e2 ::= x+ 0:For any � 2 Env such that �(x) 6= ?, e1+x(�), e2 6 +x(�).3These names are justi�ed by the fact that we can interpret these markers as special \references". new correspondsto the \newly generated" references, while old corresponds to all other references. An equivalent analysis can beindeed obtained by abstracting a store semantics along this idea.16

4.2 Approximative Reduction to VariablesWe will obtain now a statically computable approximation of the reduction to variables relationde�ned in the previous subsection.Let r be the complement of +, i.e., the relation \does not reduce to a variable". We are interestedin r because we will need an approximation to + from above (i.e., with a weaker relation), which isthe same thing as the complement of an approximation of r from below (ra de�ned in Subsection 3.2is such an approximation). We can put the relation r in the form presented in Subsection 3.2 bychoosing k = 1, M0 = M2 = f?; newg, M1 = f?; oldg. We obtain the following de�nition:x 2 r(e; �) (or e 6 +x(�)) i� marker(En[[e]]�n) 2 f?; newgfor all �n 2 Envn such that content(�n) = �, marker(�n(x)) v old , marker(�n(y)) v new , y 6= x.For the approximation ra we will choose the abstract domainA = ff?; newg; f?; old; newgg:We can easily check that the conditions in Lemma 3.3 (for A0 = P (M?)) are satis�ed, so we donot lose any information by abstracting over A instead of P (M?). Denoting f?; newg by 0 andf?; old ; newg by 1 we have A = f0; 1g with 0 < 1. The abstractions of the primitive functions areobtained from the de�nitions (20) and (21) using Lemma (3.1):Can[[p]] = �x1 : : : xn: 0 (p 6= if ; n � 0)Can[[if]] = �xyz: y _ z:The desired approximation to + is the complement of ra. It will be denoted also by +; noconfusion is possible because the approximation does not depend on an environment:De�nition 4.2 For e 2 Expf and x 2 Varf ,e+x i� x 62 ra(e) i� Ean [[e]] [1=x; 0=y (y 6= x)] = 1:Example 4.2 f(x; y; z) = if x = 0 then y else f(x� 1; z; y):Let e ::= f(7; v; w). If �(w) 6= ? then e+w(�). Ean [[e]] = v _ w; therefore e+v and e+w.The following correctness theorem for + is a direct consequence of the correctness of ra withrespect to r.Theorem 4.2 For any e 2 Exp, x 2 Var, and � 2 Env,e+x(�) =) e+x:Both the strictness relation # and the reduction to variables relation + are de�ned by abstractinterpretation over a two-element domain. The height of the domain of n-argument monotonicfunctions over this domain is 2n + 1; therefore 2N + 1 is an upper limit on the number of �xpointiterations needed to compute the abstraction of an arbitrary function. While the complexity ofstrictness analysis was indeed proven in Hudak [10] to be O(2N), the complexity of the reduction tovariables analysis is much lower because its de�ning abstraction has the following special property:17

Lemma 4.1 For any e 2 Expf and �1; �2 2 Envan,Ean [[e]](�1 _ �2) = Ean [[e]]�1 _ Ean [[e]]�2:Proof It is easy to prove by induction on k that the equality holds for all �xpoint approximationsEakn of Ean , etc.Corollary 4.2 Ean can be computed in O(N) time.Proof Follows from the fact that the height of the domain of n-argument monotonic functions on(0; 1) satisfying f(x1; : : : ; xn) _ f(y1; : : : ; yn) = f(x1 _ y1; : : : ; xn _ yn)is n.5 Evaluation OrderInformation about the order in which di�erent expressions will be evaluated when the program is runcan be used for several compile-time optimizations. Unfortunately, this order cannot be completelydetermined at compile-time. This is true for all run-time evaluation strategies (assuming, of course,that the strategy preserves the normal-order semantics of the language). This section will exploredi�erent ways of de�ning the evaluation order and methods of obtaining statically computableapproximations.5.1 Exact Evaluation Order of VariablesIn this subsection we will formally de�ne an exact order of evaluation relation between variablesand in Subsection 5.2 we will obtain a statically computable approximation of this relation.We will assume a pure lazy evaluation strategy, as de�ned by the operational semantics inSubsection 2.3; other strategies will be considered in Subsection 5.3.We will say that a terminating reduction sequence e1 !� : : :!� en !� c evaluates a variablex at step i if the reduction ei !� ei+1 is speci�ed either by rule (1) or by one of the rules (2) or(3) with (1) as precondition. For a given � either all reductions of e evaluate x or none does.The operational order-of-evaluation relation � between variables is de�ned as follows:De�nition 5.1 For e 2 Expf , x; y 2 Varf , x 6= y, � 2 Env :x � y (e; �) i� all reductions of e in � terminate evaluating both x and y and at least one suchreduction evaluates �rst x and then y.Example 5.1 e ::= if x then y else y + z:For all environments � in which e terminates, x � y (e; �). If also �(x) = false then x � z (e; �),y � z (e; �), and z � y (e; �).This de�nition of � is not very useful since it depends on all steps of all reduction sequences ofe. We will develop another de�nition which depends only on the �nal results of the reductions byusing the non-standard semantics de�ned in Subsection 2.4. LetM = fmx; my; mxy; mzg:18

The non-standard semantics is based on the following idea: reduce e in an environment in which xand y are marked with mx and my respectively and all other variables are marked with mz . De�ne~p such that a possible evaluation of x before y will generate the marker mxy which is propagatedto the �nal result. Then x � y (e; �) i� e reduces to a constant marked with mxy . The de�nitionsof ~p are:~p(m1 : : :mn) = 8>>>>><>>>>>: ? if 9imi = ?mx if 8imi 2 fmx; mzg ^ 9imi = mxmy if 8imi 2 fmy; mzg ^ 9imi = mymz if 8imi = mzmxy if 9imi = mxy _ 9i; j mi = mx; mj = my (p 6= if ; n � 0) (22)~if (m1; m2) = 8>>>>><>>>>>: ? if m1 = ? _m2 = ?mx if m1; m2 2 fmx; mzg ^ hm1; m2i 6= hmz; mzimy if m1 = my _ (m1 = mz ^m2 = my)mz if m1 = m2 = mzmxy if m1 = mxy _ (m1 6= ?; my ^m2 = mxy) _ (m1 = mx ^m2 = my):(23)Note that ~c = mz for all constants c. We can now de�ne � in terms of Evaln without explicitlymentioning the reduction sequences:Theorem 5.1 For any e 2 Expf , x; y 2 Varf , � 2 Env,x � y (e; �) i� marker (Evaln(e; �n)) = mxy ; wherecontent � �n = �; marker (�n(x)) v mx; marker(�n(y)) v my ; marker(�n(z)) v mz (z 6= x; y):Proof Immediate from the following Lemma.Lemma 5.1 For any e, x, y, �, and �n as in Theorem 5.1, all reduction sequences of e1. terminate without evaluating either x or y i� marker (Evaln(e; �n)) = mz.2. terminate, evaluate x, and do not evaluate y i� marker(Evaln(e; �n)) = mx.3. terminate, evaluate y, and either do not evaluate x or evaluate x after y i�marker(Evaln(e; �n)) = my.Proof By induction on the number of reduction steps of e.Corollary 5.1 For any e 2 Expf , x; y 2 Varf , � 2 Env, and �n as in Theorem 5.1,x � y (e; �) i� marker(En[[e]]�n)) = mxy :5.2 Approximative Order of EvaluationTo obtain a statically computable approximation of � from above we will, again, (a) de�ne thecomplement of � as a particularization of the general relation r from Subsection 3.2, (b) de�ne anapproximation ra, and (c) take the complement of ra as the desired approximation of �.The complement of � is a relation r as in Subsection 3.2 if we take k = 2, M0 = f?; mzg,M1 = f?; mxg, M2 = f?; myg, M3 = f?; mx; my; mzg. For obtaining the approximation ra wewill choose the abstract domain A = fz; xz; yz; xyz;>g;19

wherez = f?; mzg; xz = f?; mx; mzg; yz = f?; my; mzg; xyz = f?; mx; my; mzg;> = f?; mx; my; mz; mxyg:We can again check that the conditions in Lemma 3.3 are satis�ed, so we do not loose any in-formation by choosing this abstract domain instead of P (M?). The abstractions of the primitivefunctions are obtained from the de�nitions (22) and (23) using Lemma 3.1:Can[[p]](x1 : : :xn) = 8>>>>><>>>>>: z if 8i xi = zxz if 8i xi � xzyz if 8i xi � yzxyz if 9i xi = xyz ^ 8j 6= i xj = z> otherwise (p 6= if) (24)Can[[if]](a; b; c) = 8>>>>><>>>>>: z if a = b = c = zxz if a; b; c� xzyz if (a; b; c� yz)_ (a = yz; b; c 6= >)xyz if (a = xyz; b = c = z) _ (a = z; b; c 6= >)> otherwise; (25)where on each line we assume that the conditions on the previous lines are not satis�ed. Themaximum number of iterations needed for computing all abstractions is 3 � 5N + 1 (the height ofthe domain of monotonic functions from AN to A).The approximation to � is the complement of ra and will be denoted also by �; no confusionis possible because the approximation does not depend on any environment. From de�nition 3.3we obtain:De�nition 5.2 For e 2 Expf and x; y 2 Varf ,x � y (e) i� Ean [[e]][xz=x; yz=y; z=z (z 6= x; y)] = >:Intuitively, x � y (e) if x might be evaluated before y. Other order relations between variables canbe de�ned in a similar manner. For x; y 2 Varf we will usually write x � y instead of x � y (bodyf).Other order relations between variables can be de�ned in a similar manner. In particular thefollowing relation will be needed for the destructive update algorithm:De�nition 5.3 For e 2 Expf , x; y 2 Varf , x 6= y, � 2 Env :x ��y (e; �) i� all reductions of e in � terminate, evaluate x, and either (a) no reduction evaluatesy, or (b) there is a reduction which evaluates x before y.Using Lemma 5.1 and the de�nition of � we can characterize �� as follows:x ��y (e; �) i� marker(En[[e]]�n)) 2 fmx; mxyg i� x � y (f(e; y); �);where f is any function which evaluates its arguments from left to right, e.g.,f(u; v) = if u = u then v else v:This relation can be used to �nd an approximation for �� in terms of the approximation of �. Wecan also approximate �� directly by abstract interpretation. Using the same markers and the sameabstract domain as for � we obtain the following approximation:De�nition 5.4 For e 2 Expf and x; y 2 Varf ,x ��y (e) i� Ean[[e]][xz=x; yz=y; z=z (z 6= x; y)] � xz:Intuitively, x ��y (e) if there might be a reduction sequence which either evaluates x before y orevaluates x but not y. 20

5.3 Other Evaluation StrategiesAssume now that we have some additional information about the evaluation strategies to whichthe evaluation-order analysis must be applied. A relation �0��, which would be valid only for thestrategies under consideration, would contain more order information and would yield a sharperanalysis.In particular, we can adapt � to evaluation strategies which impose some restrictions on theorder in which primitive functions evaluate their arguments. Suppose, for example, that + evaluatesits arguments from left to right. This information can be included in the operational semanticsde�ned in Subsection 2.2 by replacing, for +, rule (2) by the rules:e1 !� e01e1 + e2 !� e01 + e2 (26)e!� e0c+ e!� c+ e0 (c 2 Con): (27)In the non-standard semantics de�ned in Subsection 5.1 we must change the de�nition (22) for~+ and set ~+ = ~if (both specify that the �rst argument is always evaluated �rst).If, on the contrary, we want our order-of-evaluation analysis to be applicable to a larger set ofevaluation strategies than the one considered in the previous subsections, we must de�ne a weakerrelation �0��. For example we must weaken � to make it applicable to the evaluation strategieswhich might use information from strictness analysis to change the pure lazy order of evaluation.These strategies are widely used in the implementation of functional languages, so the problem of�nding a suitable order relation is important.Example 5.2 e ::= if x > 0 then y + x else y � x:According to our previous de�nition, y 6� x (e) (no reduction evaluates y before x). This is notcorrect under an evaluation strategy that uses the fact that e#y to evaluate y before x.To adapt our operational semantics to an evaluation strategy which uses strictness informationto change the order of evaluation we will replace rule (1) bye#xe!� e [d�(x)=x] : (28)Note that (1) is a particular instance of (28); therefore any reduction in the original semantics isalso a reduction in the new semantics.Unfortunately, we cannot obtain an exact semantics de�ning the new order-of-evaluation rela-tion in the same way we obtained one for pure lazy evaluation (Subsection 5.1). The problem can betraced back to rule (12) in the general operational semantics de�ned in Subsection 2.4. We wouldneed some information about the unevaluated branch (expression e) which cannot be obtained nomatter how we de�ne ~if . This information though can be easily included directly in the abstractsemantics if we replace equation (25) by:Can[[if]](a; b; c) = 8>>>>><>>>>>: z if a = b = c = zxz if a; b; c� xzyz if (a; b; c� yz) _ (a = yz; b; c 6= >; (b � yz _ c � yz))xyz if (a = xyz; b = c = z) _ (a = z; b; c 6= >)> otherwise: (29)21

5.4 Access Order of VariablesThe relation � allows us to approximate the order in which variables are evaluated, but not theorder in which they are accessed . In a graph-reduction based implementation the evaluation of avariable takes place when it is �rst accessed; subsequent references to the variable use its alreadycomputed value. A variable is evaluated only once but can be accessed many times. Moreover,for the destructive update problem we need to have some information about the order in whichreferences denoted by variables are accessed.Here and in the rest of the paper by \expression" we will mean a particular instance of anexpression; we will implicitly assume that all expressions in a given program are uniquely labeled.We will use integer superscripts to di�erentiate between occurrences of the same variable; thus, ifx is a variable, xk is an expression.We will de�ne an order-of-evaluation relation (also denoted by �) between variables and ex-pressions as follows: if e0; e 2 Expf such that e0 is a subexpressions of e and x 2 Varf ,x � e0 (e) i� x � w (e[w=e0]);where w 62 Varf is a new variable and e[w=e0] is the expression obtained from e by replacing e0by w. Intuitively, x � e0 (e) if x might be evaluated before e0. If the original � is known (i.e.,we know the abstractions of all user-de�ned functions), the new � can be computed in one step(no recursion is involved). Order-of-evaluation relations between expressions and variables andbetween expressions can be de�ned similarly. From now on we will denote by � the union of allthese relations; arguments of � can be, independently, either variables or expressions. The relation�� will be also extended to expressions in a similar way.We will de�ne now the relation �a between variables such that for x; y 2 Varf , x �a y if duringthe evaluation of bodyf the reference denoted by y might be accessed after x is evaluated. �a isthe least �xed point of the following recursive de�nition:De�nition 5.5 For x; y 2 Varf , x �a y i�1. there exists an occurrence yk of y such that x � yk (bodyf), or2. there exists a function call h(: : : eu : : : ev : : :) in bodyf such that x 2 Vareu , ev+y, andu �a v (u; v are the formals of h corresponding to eu; ev respectively).If � is known, �a can be computed in at most N2 �xpoint iterations. Similarly to �, we canextend �a to a relation between expressions and variables, also denoted by �a. Intuitively, e �a yif the reference denoted by y can be accessed after the evaluation of e.Example 5.3 f(x; y) = if x1 � 0 then y1 + x2 else y2 � x3g(u; v) = f(if u1 = 0 then 0 else u2; v1):Assuming pure lazy evaluation, x � y, u � v.x � y1 + x2, x2 � y1, x1 � y, etc.x �a y (because x � y1), y �a x (because y � x2), x �a x (because x � x2), u �a v (becauseu � v1), v �a u (because y �a x and if : : :+u), u �a u (because u � u2).u1 �a u (because u1 � u2), u2 �a u (because x �a x and if : : :+u), etc.If we replace u2 by u2 + 1 then v 6�a u, u2 6�a u.22

6 Destructive UpdateThe destructive update problem can be de�ned informally as follows: given the expressionupdate(e1; e2; e3), determine at compile time, if possible, that the object denoted by e1 will notbe referenced after the update is performed; in such a case a compiler can generate code to updatein place. The relative order in which references to di�erent objects are accessed depends on theevaluation strategy adopted.The destructive update procedure uses the analyses presented in the previous sections. Thealgorithm is based on the following observation: update(e1; e2; e3) can always be done in place ifthe value of e1 is not referenced by a variable, for then we are sure that it is not used elsewhere inthe program. The other case is when e1 reduces to a variable x; we must decide now, using order-of-evaluation information, whether the reference denoted by x is used in the rest of the program.We must also consider all actual arguments corresponding to x and see if they might reduce to avariable, etc.6.1 The Destructive Update AlgorithmThe following algorithm accepts as input a program P and an expression e0 of the form update(e; : : :)in P and decides whether the update can be done in place or not. It uses a set R of variables andtwo sets of pairs of variables, A and E, with A � E. Intuitively, x 2 R if x might denote thevalue of e and hx; yi is in A (respectively E) if x and y are formals of the same function and xmight denote the value of e while y might be accessed (respectively evaluated) after the update.The update can be done in place only if there is no variable z such that hz; zi 2 A.Algorithm1. Set R = fx j e+xg, A = fhx; yi j e+x; e0 �a yg and E = fhx; yi j e+x; e0 � yg.2. Repeat this step until all variables in R have been considered: choose x 2 R not considered sofar; suppose x 2 Varf . For each expression e00 = f(: : : ; ex; : : :) (ex is the actual correspondingto x) and for each variable u such that ex+u setR = R [fugA = A [fhu; vi j e00 �a vgE = E [fhu; vi j e00 � vg:3. If all pairs in A have been considered then stop, the update can be done in place; if 9z 2 Varsuch that hz; zi 2 A then stop, the update cannot be done in place.4. Choose hx; yi 2 A not considered so far. Suppose x; y 2 Varf .For each expression e00 = f(: : : ; ex; : : : ; ey; : : :) (ex, ey are the actuals corresponding to x, y)and for each variable u such that ex+u setA = A [fhu; vi j ey+vg:If hx; yi 2 E then set A = A [fhu; vi j v 2 Var eygE = E [fhu; vi j v 2 Var ey ; ey ��vg:Go to step 3. 23

The execution time of the algorithm is dominated by the time needed to compute �. Its timecomplexity is thus O(5N).Theorem 6.1 (Safety) Suppose e0 = update(e; : : :) appears in a program P . If the value of e isaccessed after e0 is evaluated during the execution of P , then the above algorithm will conclude thatthe update cannot be done in place.Proof In a graph-reduction evaluation model only the primitive functions other than if \destroy"the reference to an actual argument, i.e., neither transmit it to another functions nor propagate itas their result.A particular use of a particular reference r is characterized by a dynamic sequence of functioninvocations fn(: : : ; en; : : :); : : : ; f1(: : : ; e1; : : :);where the call to fi takes place in the body of fi+1 (i < n), f2; : : : ; fn are user de�ned functions(not necessarily distinct), and f1 is a primitive function other than if. r is created as the (store)value of en, is destroyed by f1, and is transmitted along this chain as the value of the ei's. The ei'scollect together all function calls that propagate r. For i � 2 let xi be the formal parameter of ficorresponding to ei. Then, during this sequence of function calls, all xi's denote r and each ei�1reduces to xi.Now let r be the reference to the value of e which is accessed after the update and let a sequenceas above, with f1 = update and e1 = e represent the use of r in update.If r is used after the update then there must exist a k0 such that xk0 is accessed after the update.We will prove that for all k � 2 xk is added to R, for all variables yk of fk which can be accessedafter the update hxk; yki is added to A and, if yk can be evaluated (i.e., �rst accessed) after theupdate, it is also added to E. It follows that hxk0 ; xk0i will be in A which will cause the algorithmto stop and conclude that the update cannot be done in place.The proof is by induction on k.1. k = 2. f2 is the function where update(e1; : : :) appears and e1+x2. In step 1 x2 is put intoR and for all variables y2 which can be accessed (respectively evaluated) after the updatehx2; y2i is added to A (respectively E).2. k > 2. xk�1 2 R, so xk is also added to R in step 2. If yk is accessed after the update theneither (a) it is accessed after the call to fk�1 in which case hxk; yki is added to A in step 2or (b) there exists a variable yk�1 of fk�1, accessed or evaluated after the update, such thatyk�1 and yk play the roles of y and v in step 4 of the algorithm (f , x, and ex in the algorithmare fk�1, xk�1, and ek�1, respectively). By induction hypothesis hxk�1; yk�1i is in A (and,respectively, E), so hxk; yki is added to A in step 4. The proof for E is similar.6.2 ExamplesThe following example is from Hudak [11].result() = quicksort([c1; : : : ; cn])quicksort(vect1) = qsort(vect1; 1; length(vect1))qsort(vect2; �rst; last) =if �rst � last then vect2 else scanright(vect2; �rst; last ; vect2[�rst]; �rst; last)24

scanright(v1; l1; r1; pivot1; left1; right1) =if l1 = r1 then �nish(update(v1; l1; pivot1); l1; left1; right1) elseif v1[r1] � pivot1 then scanright(v1; l1; r1� 1; pivot1; left1; right1)else scanleft(update(v1; l1; v1[r1]); l1+ 1; r1; pivot1; left1; right1)scanleft(v2; l2; r2; pivot2; left2; right2) =if l2 = r2 then �nish(update(v2; l2; pivot2); l2; left2; right2) elseif v2[l2] � pivot2 then scanleft(v2; l2+ 1; r2; pivot2; left2; right2)else scanright(update(v2; r2; v2[l2]); l2; r2 � 1; pivot2; left2; right2)�nish(vect3;mid ; left3; right3) = qsort(qsort(vect3; left3;mid � 1);mid + 1; right3):This program sorts the array [c1; : : : ; cn] using the quicksort algorithm. The only informationthat we assume about the order of evaluation of arguments of prede�ned functions other that if isthat the �rst argument of update is evaluated last. The relation � on variables is:�rst � vect2; last; last � vect2; �rst;mid � vect3; left3; right3; left3 � vect3; right3 � vect3;mid ; left3;vi � pivot i; lefti; right i; li � vi; ri; pivot i; lefti; right i; ri � vi; li; pivot i; lefti; right i;pivot i � vi; lefti; right i; left i � vi; pivot i; right i � vi; pivot i; lefti; i = 1; 2:The relation �a on variables contains all pairs except the following:vect3 6�a mid ; vect3 6�a vect3; mid 6�a mid ; left i 6�a lefti; right i 6�a right i; i = 1; 2; 3:For the �rst update in scanright the algorithm will end with E = ;,R = fv1; vect2; vect3; vect1g;and A = fhv1; l1i; hv1; left1i; hv1; right1i;hvect2; �rsti; hvect2; lasti;hvect3; left3i; hvect3; right3ig:The algorithm will terminate without detecting any con
ict, so the update can be done in place.For the second update in scanright we get the same R,A = fhv1; r1i; hv1; pivot1i; hv1; left1i; hv1; right1i;hvect2; �rsti; hvect2; lasti;hvect3; left3i; vect3; right3; gand E = fhv1; left1i; hv1; right1ig:The algorithm will conclude again that the update can be done in place. We can similarly provethat the other updates can also be done in place, so the optimized programmatches the linear spacecomplexity of Hoare's original algorithm. 25

7 Conclusions and Future WorkUsing a uni�ed framework we have presented two static analyses for a lazy �rst-order functionallanguage: reduction to variables and evaluation order. Using these analyses we developed a practicalprocedure for the important destructive update optimization. Both problems are formulated in ageneral operational semantics and the analyses are obtained by abstract interpretation from anon-standard denotational semantics equivalent to the operational one. The primary contributionsof the paper are the order of evaluation analysis and the methodology of basing the analysis onoperational semantics.The analyses can be extended to higher-order languages using the methods developed in Burn[6] and Hudak [10]. These methods were originally developed for strictness analysis which is ob-tained by abstracting the standard semantics, but they can be easily adapted to our non-standardsemantics.The destructive update algorithm uses in an essential way the fact that the language is �rst-order; its formulation for higher-order languages is the main topic of our future work. We are alsostudying the possibility of extending our work to languages with a non-
at basic domain, e.g., tolanguages which take into account the internal structure of an array.References[1] Bloss A., Hudak P. Variations on Strictness Analysis, Proceedings of the 1986 ACM Conferenceon LISP and Functional Programming, 132-142, ACM, 1986.[2] Bloss A., Hudak P. Path Semantics, Mathematical Foundations of Programming LanguageSemantics, LNCS 298, 476-489, Springer-Verlag, 1987.[3] Bloss A., Hudak P., Young J. Code Optimizations for Lazy Evaluation, Lisp and SymbolicComputation, 1, 147-164, 1988.[4] Bloss A. Path Analysis and the Optimization of Non-strict Functional Languages, PhD thesis,Yale University, 1989.[5] Bloss A. Update Analysis and the E�cient Implementation of Functional Aggregates, 4th In-ternational Conference on Functional Programming and Computer Architecture, 26-38, ACM,1989.[6] Burn G.L., Hankin C., Abramsky S. Strictness Analysis for Higher-Order Functions, Scienceof Computer Programming, 7, 250-278, 1986.[7] Draghicescu M., Purushothaman S. A Compositional Analysis of Evaluation-Order and itsApplication, Proceedings of the 1990 ACM Conference on LISP and Functional Programming,242-250, ACM, 1990.[8] Gopinath K., Hennessy J.L. Copy Elimination in Functional Languages, 16th ACM Symposiumon Principles of Programming Languages, 303-314, ACM, 1989.[9] Hudak P., Bloss A. The Aggregate Update Problem in Functional Programming Systems, 12thACM Symposium on Principles of Programming Languages, 300-314, ACM, 1985.[10] Hudak P., Young J. Higher-Order Strictness Analysis in Untyped Lambda Calculus, 13th ACMSymposium on Principles of Programming Languages, 97-109, ACM, 1986.26

[11] Hudak P. A semantic model of reference counting and its abstraction, S. Abramsky and C.Hankin, editors, Abstract Interpretation of Declarative Languages, Ellis Horwood Ltd., 1987.[12] Hughes J. Analysing strictness by abstract interpretation of continuations, S. Abramsky and C.Hankin, editors, Abstract Interpretation of Declarative Languages, Ellis Horwood Ltd., 1987.[13] Mycroft A. Abstract interpretation and optimising transformations for applicative programs,PhD thesis, University of Edinburgh, 1981.[14] Neirynck A., Panangaden P., Demers A. Computation of Aliases and Support Sets, 14th ACMSymposium on Principles of Programming Languages, 274-283, ACM, 1987.[15] Peyton Jones S.L. The Implementation of Functional Programming Languages, Prentice-Hall,1987.[16] Plotkin G.D. LCF Considered as a Programming Language, Theoretical Computer Science, 5,223-255, 1977 .[17] Schmidt D.A. Detecting Global Variables in Denotational Speci�cations, ACM Transactionson Programming Languages and Systems, 7(2), 299-310, 1985.[18] Schmidt D.A. Detecting Stack-Based Environments in Denotational De�nitions, Science ofComputer Programming, 11, 107-131, 1988.[19] Stoy J.E. Denotational Semantics: The Scott-Strachey Approach to Programming LanguageTheory, MIT Press, Cambridge, Mass., 1977.

27

