A Uniform Treatment of Order of Evaluation and Aggregate Update”

M. Draghicescu S. Purushothaman
EECS Department Dept. of Computer Science
University of Michigan The Pennsylvania State University
Ann Arbor, MI 48109-2122 University Park, PA 16802

December 16, 1993

Abstract

The article presents an algorithm for the destructive update optimization in first-order lazy
functional languages. The main component of the method is a new static analysis of the order of
evaluation of expressions which, compared to other published work, has a much lower complexity
and is not restricted to pure lazy evaluation. The other component, which we call reduction to
variables, is a method of detecting the variables which denote locations where the result of an
expression might be stored.

Starting with the operational semantics of the language, we introduce some markers for the
values in the basic domain. By appropriately choosing the set of markers A/ and the method
of propagating them during evaluation, we can extract some property of the evaluation in
which an expression can participate in by looking at the marker of its value. We define then an
equivalent denotational semantics and derive the above analyses, in an uniform way, by abstract
interpretation over a subdomain of P(M ).

1 Introduction

A characteristic feature of functional languages is their referential transparency which makes them
suitable for parallel execution. On sequential machines, however, this quality becomes a serious
obstacle to an efficient implementation. The impossibility to compute through side-effects greatly
reduces the efficiency of functional languages which manipulate large data structures, such as arrays,
records, or lists. In a functional language an object, once created, is never changed, so modifying
such a structure implies making a new copy. This is inefficient not only because large structures
must be copied, but also because of the additional load on the garbage collector. Traditionally,
designers of functional languages either do not provide these data structures or introduce “impure”
operations which destroy the referential transparency.

To efficiently use such structures in a pure functional language we must detect the structure
modifications (updates) which can be done destructively or in place without affecting the semantics
of the language. This can be done either by some run-time checks (e.g., by keeping track of reference
counts) or through compile-time analysis. The latter approach is the topic of the present work.

The destructive update optimization has been considered in the literature before, one of the
early works being Mycroft [13]. In Hudak [9] the problem is discussed in an operational model based
on graph reduction. An applicative-order language is treated in Hudak [11] using an abstraction of
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reference counting (reference counting offers a run-time solution to this optimization problem). A
related analysis (detection of single threaded definitions), is presented in Schmidt [17, 18], also in an
applicative-order setting. The problem is also discussed in Bloss [4, 5] as an application of the path
analysis (see below); the method thus obtained is very expensive computationally. A variation of
path analysis is also used in Gopinath [8] for a language with call-by-value semantics.

We present here another solution to this problem. The general idea used in this article and in
most of the works cited above is the following: an object can be updated destructively only if it is
not accessed after the update. To detect this at compile-time we need some information about (a)
the possible sharing of this object and (b) the run-time order of evaluation of expressions.

The article presents new solutions to these two static analysis problems for lazy functional
languages. They are needed for the destructive update procedure and they are also of independent
interest. Our method is based on abstract interpretation, a semantically based general technique
for compile-time analysis.

Sharing information can be presented under different forms; we called our analysis reduction to
variables. It detects the variables which may denote the location where the result of an expression
evaluation will be stored at run-time and is related to targeting (Gopinath [8]). The analysis is also
related to aliasing, a much-studied problem, especially for imperative languages (a solution based
on abstract interpretation is presented in Neirynck [14]).

The evaluation-order analysis is simple in an applicative-order model. The first solution for
normal-order languages that use pure lazy evaluation is presented in Hudak [1]. The most general
solution to-date is path analysis presented in Bloss and Hudak [2] and Bloss [4]. Unlike these
works, our analysis is not restricted to lazy evaluation, but applies to all evaluation strategies
compatible with the semantics of the language (for example strict arguments can be evaluated in
any order or even in parallel). The method can also be adapted, yielding a sharper analysis, to any
predefined order of evaluation of arguments to primitive functions. Its complexity is exponential in
the number of variables, which is a significant improvement over the (’)(ZN NV _1)!"'"""1) complexity
of path analysis. The most important application of evaluation-order analysis is to the destructive
update problem; other optimizations based on this information are mentioned in Bloss [3, 4].

The article is organized as follows: Section 2 describes the syntax and semantics of the language
used for illustration. We define two equivalent semantics: an operational and a denotational one.
A general non-standard semantic scheme (both operational and denotational) which constitutes
the starting point of the analyses developed in the following sections is also defined. The non-
standard semantic scheme is intended to capture information that can be gleaned from the standard
operational semantics, but in a more accessible form. The idea is to mark the values in the basic
domain and define the method of propagating the markers during evaluation so that we can extract
some property of the evaluation in which an expression can participate in by looking at the marker
of its value. The section also contains some examples which give a motivation to the present work.

Section 3 contains a short presentation of abstract interpretation and its classical application to
strictness analysis. We also introduce some definitions and notations used in the rest of the article
and we compute, by abstract interpretation of the non-standard semantics, a general relation
between the variables of an expression.

The reduction to variables and evaluation order analyses are presented in Section 4 and 5,
respectively. They are first defined as predicates over the reduction sequences engendered by
the standard operational semantics. It is then shown how this information can be obtained as
particularizations of the general relation mentioned above.

The procedure for the destructive update problem is discussed in Section 6. The use of the
procedure is shown with several examples; for the functional version of the quicksort algorithm
considered in Hudak [11] the procedure yields a linear space complexity.



The conclusions and plans for future work are presented in Section 7. To summarize, the contri-
butions of the paper are: (a) order of evaluation analysis, (b) reduction to variables and destructive
update, and, importantly, (c) a methodology for static analysis starting from the operational se-
mantics.

2 A First-Order Language

We will consider a language L of first-order recursion equations with normal-order semantics. The
data types include integers, booleans, and one-dimensional arrays of integers with fixed lower and
upper bounds; the lower bound is always 1.

This section contains formal definitions of the syntax and semantics of L. We also define
a general non-standard semantics on which the analyses developed in the following sections are

based.

2.1 Abstract Syntax

¢, [e1,. .. ¢,),p € Con  (constants, primitive functions)
x € Var  (variables)
f € Fn  (function names)
e,body € Fxp |
pr € Prog (

expressions)
programs)

where

ex=c|[er,...,co] | 2| pler,....en) | fler, .. en)
pra= fi(z11,. .., 21k ) = body
f2(96217 .- -7962k2) = bodys

fn(wnlv .- '7$nkn) = bOdyn

[c1,...,¢,] denotes the constant array of size n with elements ¢y, ..., ¢,. For simplicity we did
not include an expression in the definition of a program, but instead we will require that f;, the
first function, takes no arguments and a program is “run” by calling f;. We assume that the formal
parameters of all user defined functions are distinct variables. Let P be a given program.

Notations
bodyy is the body of the function f in P.
FEzp is the set of expressions in P.
M = cardinality( EFzp).
Fzpy is the set of subexpressions of body;.
Var is the set of variables in P.
N = cardinality( Var).
Var, is the set of variables which occur in the expression e.

Vary is the set of variables which are formals of the function f (Varbodyf C Vary).



We will use lower case letters from the end of the alphabet to denote variables and capital letters
for sets of variables. We will denote arbitrary expressions by e (possibly with subscripts or
superscripts), non-functional constants by ¢, general primitive functions by p, and user-defined
functions by f, ¢, or h.

2.2 Standard Semantics

For a set 5 denote by S_ the flat domain S U {L} ordered by L C s for all s € 9.

Semantic Domains

Z ={...,11,0,1,...} (integers)

B = {true,false} (booleans)

A =Z+7Z24+. .. (arrays)

D =(Z+B+ A)_ (basic domain)

Env = Var — D (variables environment),

where ‘+’ is the separated sum operation.

Semantic Functions

F:Fn — D*— D (gives meaning to function names)
E:FExp — Fnv— D (gives meaning to expressions)
C:Con— D*— D (gives meaning to constants).

We will use the informal method of presenting the semantics from Hughes [12], which consists
in defining £ and F through a set of mutually recursive equations. F corresponds to the “function
variable environment” which is expressed as the least fixed point of an operator in a more traditional
presentation.

Semantic Equations

FUL] = My .. dy,. E[body;][d; [ x;]

Ele]p =[]

Elz]p = pla]
Elp(er, ... en)lp = Clpl€led]p . . - Elenlp
Elf(ers- - ex)lp = FLfIE[ed]p - - - Elen]p-

The following typical primitive functions will be used throughout the article:

1. if : the polymorphic conditional.

2. +,<,...: arithmetic and relational operators.

3. select(a,?) : returns the i-th element of the array a.

4. update(a,t,q) : returns an array identical to a except for the i-th element which is .
5. @ : array addition.

6. length : the length (size) of an array.



Cle]

¢ (¢ € Z + B is the semantic value of ¢)

Clle1,---5en]] = (c1,...,cn) (the constant array of size n; ¢; € Z)
Cl[+] = Adydy.dy + dy,
where the right-hand side 4+ denotes the strict addition in Z_
C[[Zf]] = Adldzdg. if d1 then d2 else d3
C[select] = Mk1,...,k,)i.if 7 > nthen L else k;
Clupdate] = Mki,.. . ki k) ig.if ¢ > nthen Lelse (ky,...,q,.... k)
C[®] = MNat, ... am){b1,...,b,).iff m # nthen L else (a1 + b1,..., 0 + by)
C[length] = Mk1,..., kn).n.

We will usually write if @ then y else z,  + y, and «a[{] instead of if(z,y,2), +(=,y), and
select(a, 1) respectively.

Note that we assumed all programs to be well-typed. The size of an array is not part of its
type. Type checking can be done statically using a Hindley-Milner type algorithm.

Throughout this paper we will assume a lazy evaluation strategy, i.e., call-by-name plus the
fact that function arguments are evaluated at most once, subsequent references using the already
computed values. We will also assume that, operationally, the value of an expression is a reference
(location, pointer). This reference might be to a newly created object (integer, boolean, or array)
or it might be to an already existing one. The same object might be created many times as the
result of evaluating different expressions, but an existing object is never explicitly duplicated. For
example evaluating 1+4 and 243 will create two copies of the object 5; however if

max(z,y) = if # > y then z else y,

then the evaluation of max(1,2+ 3) will return a reference to the unique 5 created when its second
argument is evaluated. These assumptions are valid, for example, in an execution model based on
graph-reduction (Peyton Jones [15]).

The purpose of the destructive update analysis is to determine at compile time whether a given
expression update(e,...) in a given program P can be evaluated, without affecting the meaning of
P, in place (i.e., destructively, by rewriting the array e instead of creating a new array).

Example 2.1

minus(a) = minusl(a,1)

minusi(a,i) = if i > length(a)then a else minus!(update(a,i, Lali]), i+ 1).

If called on an array of length 100, minus will generate 100 new arrays. However, it is clear
that, if the original value of a is not needed after any of the calls to minus in a given program,
all the evaluations of update can be done in place. [ |

The following examples will illustrate some of the problems that we must solve when trying to
detect (at compile-time) the updates which can be done in place. Solutions to these problems will
be discussed in the rest of the article.



Example 2.2
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f(z, update(z, . . .)).

The update can or cannot be always done in place depending on the order of evaluation of the
arguments of f. In this example the update cannot be done in place if § might evaluate its
arguments right-to-left. In general, the run-time order of evaluation cannot be computed at
compile-time; the challenge is to find a good approximation of this order which is statically
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computable.

g(z) = f(z,update(z,...)) Dz, f asabove.
The update cannot be done in place no matter what the (fixed) order of evaluation of ¢ is. ®

Example 2.3

...update(z B y,...)...

This update can always be done in place; x @ y is a new, nameless, array which cannot be
referenced anywhere else in the program, so it can be safely destroyed.

... update(update(z,...),...) ...

The first (outside) update can always be done in place. Even if the inside update is done in
place, we can consider its value to be a new object (after all we know that 2 will never be
needed again, otherwise the inside update could have not been done in place).

A key observation is that an object can be referenced in more than one place only if it is denoted
by a variable. The following example will further illustrate this idea. [ |

We will assume from now on that ¢ is always evaluated left-to-right.

Example 2.4

f(=) update(g(z),...)d
9(y) = v

We can immediately determine that the update cannot be done in place; see below.

g(y)=y®dy, [ asabove.

The update can be done in place now. The difference between these two examples is that, in
the former case ¢g(2) and x refer to the same object (operationally, # and the result returned
by g(x) are the same reference), while in the latter case they denote different objects. In the
former case we will say that g(z) reduces to x.

g(y)=1if ... thenyelsey®y, [ as above.

We cannot know, at compile-time, whether ¢g(z) will reduce to z or not, therefore the safe
decision must be that the update cannot be done in place. We will say, in this case, that ¢g(z)
might reduce to x.



f(z.y) update(z,...) Gy

g(u,v) = if ... thenuelsev

h(p,q,7) = fl9(p,q),9(q; 7))

The update cannot be done in place: both g(p,q) and ¢(¢,r) might reduce to ¢, so z and y
might denote the same object, therefore 2 cannot be destroyed. [ |

Example 2.5

f(u, update(u,...)).

The update cannot be done in place. f will evaluate = before y, but it will also access z again,
after y is evaluated. This example shows that we must also consider the relative order in which
variables are accessed and not only the order in which they are evaluated (under lazy evaluation
they are evaluated when first accessed).
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h(u) = f(g(u), update(u,...)), [ as above, g as in example 2.4.

If g(u) might reduce to u (e.g., g(y) = y) then the update cannot be done in place. On the
other hand, if g(u) never reduces to u (e.g., g(y) = y & y) then the update could be done in
place: g(u) is evaluated when z is first accessed; its (new) value is stored and the second access
to x refers to this stored value, so u is not needed after the update. [ |

The following examples will show the limits of the approach presented in this paper:

Example 2.6
f(z) = minus(z) & z,

where minus is defined in example 2.1. The update in minus! cannot be done in place because
z is needed later; this means that minus! will generate length(z) arrays all of which, except
the last one, are useless, intermediate, results which could be destroyed even if the value of = is
needed later. The optimization which consists in evaluating the update normally once and then
destructively length(z) L1 times is beyond the scope of the present work: for a given (statical)
update we only decide whether it can be always evaluated in place or not.

However, our analysis will determine that « is the variable which prevents the update of being
done destructively and an optimizing compiler could easily transform f into:

f(z) = minus(new_copy(z)) & =,

where new_copy is a special built-in function which returns a new copy of its argument!. Now
the update in minus! can be done in place, so the optimized program will do only one array
copy (by new_copy) instead of length(z). [

'Tf we would need to define it ourselves then new_copy(u) = update(u, 1, u[1]) will do the trick; new_copy(u) = u
is not good because it does not copy its argument.



Example 2.7
f(z) = length(update(z, . ..) + length(z)).

Assuming + is evaluated left-to-right we will decide that the update cannot be done in place
because x is accessed after the update. We do not treat separately functions like length which
are not affected by any updates of their argument. It is not too difficult to modify our procedure
to take into account such situations; the following example, however, illustrates a much more
interesting and difficult problem:

fla,i,2) = update(a, i, z)[t] + a[t + 1].

The first operand of + is equivalent to z, but the point here is that we will again conclude that
the update cannot be done in place because a is accessed after the update. In reality the update
could be safely made in place: only the 2 + 1-th element of « is needed after the i-th one is lost.
We make no attempt to statically analyze the possible values of array indices. [ |

2.3 Operational Semantics

The notions of order of evaluation and sharing can be defined only in an operational manner. The
operational semantics presented in this section is a simplified version (adapted to our first order
language) of the operational semantics of PCF presented in Plotkin [16]. The only difference is the
presence of an environment and the rule (1) which allows the reduction of expressions containing
free variables. Note however that the variables are used only at the first level; function calls do not
introduce new variables nor do they change the environment (rule (6)).

For each boolean, integer, or array d € D, denote by d its syntactic representation. We have
d € Con and C[[J]] = d. Let, by definition, 1= w, where w is some expression whose standard value
is L, for example

w = f(), where f is a function with no arguments defined as f() = f().

For each p € Env the reduction relation —, between expressions is defined by the following

rules:
v = ple) (x € Var) "
€i —p € ,
! 2
pler...ei...eq) =, pler...e...e,) (p# i) (2)
!
: S (3)
Flerrenes) s Ta )
ey —, € €5 —, ¢

if (true, eq, e3) —, if (true, ey, e3)’  if (false, ea, e3) —, if (false, €3, €h)
if (true, c,e) —, ¢, if(false,e,c¢) —, c (c € Con) (5)

fler...e,) —, bodysle/x;]. (6)

To these rules we will also add the following rule scheme specifying the action of the primitive
functions other than if on all possible combinations of constant arguments:

pler...cn) — d where d = Clpler...cn, p # if, ¢; € Con. (7)



Note that rule (6) specifies call-by-name as the evaluation strategy. Note also that the condition
of if must be completely reduced before any reduction can take place in one of the branches (rules
(3)—(5)); therefore the evaluation proceeds in a pure lazy manner (as opposed, for example, to an
evaluation which uses strictness information to change the order of evaluation; a strategy which
allows such changes will be discussed in Subsection 5.3). A reduction sequence might not be unique
because we do not impose any order on the reduction of arguments of the primitive functions other
than if. An expression will either reduce to a constant or its reduction will not terminate. We
can easily prove that if ¢ is a constant and if e — , ¢ then any reduction of ¢ will terminate in
¢ (=, is the transitive-reflexive closure of —,). We can therefore define the evaluation function
Pval : Exp — Env — D by:

d ife>,d

1 otherwise.

Fval(e, p) = {

The following theorem states the equivalence between the denotational and operational seman-
tics (for a proof see Stoy [19]).

Theorem 2.1 For all e € Fzp, p € Fnv,

Eval(e, p) = E[e]p.

2.4 Non-Standard Semantics

The standard semantics of I, does not contain all the information needed for the analyses which will
be presented in this article. We will define now a general non-standard semantics by adding some
extra information to the standard one. The idea is to “mark” the elements of ). The marker of an
expression is computed from the markers of its components following some rules. By appropriately
choosing these rules we will obtain different particularizations of this general semantics.

Let M = {mq,...,m,} be a finite set of markers. The non-standard basic domain is

D,=(Z+B+ A)x M)_
and the non-standard domain of environments is
Env, = Var — D,,.

By identifying L € D, with (1, 1) € D x M_, we will consider D,, to be a subdomain of D x M_.
Define the two projections

content : D, — D, marker : D, — M_
content({d,m)) = d, marker({d, m)) = m.

Note that marker(xz) = L iff content(z) = L iff @ = L. For t = (d,m) € D,, t # L, let
t = (d,m) € Con x M (its “syntactic representation” and let L = w. The markers associated with
constants and primitive functions are given by the strict functions:

p: M — M_ (for all p # if of arity n > 0)
if t M2 — M_.
In particular, the marker of a constant ¢ is ¢ € M.

It is more convenient to define the new reduction relations —,, for p,, € Env, between expres-
sions in a new language, Lj;. The set of constants of Lp; is C'on X M; the rest of the syntax is



identical to that of L. For an expression ¢ in I we will denote by e,; the expression in L ; obtained
from e by replacing each ¢ € Con by (c,&). To define —,, we will introduce the computations on
markers into the rules (1)—(7). The new rules are:

JE—

v = po(2) (€ Var) (8)

i S (v # if) (9)

pler...ei . en) —,, pler...eh. . e,)

€1 —pn 6/1 (10)
if(€17€27€3) —pn if(€/17€27€3)

€y —p, €5

if ((true, m), eq, e3) —,, if ({true, m), e, e3)’ (11)
€3 _>Pn eé

if ((false,m), €2, €3) —,. if ({false,m), eq, €f)

n

if ((true,mq), (¢, ma), €) —,. {c, z}”(ml, ma)),

- ce Con
if ({false,m1), €, (¢, ma)) —,, {c, if (m1, m2)) (c € Con) (12)

fler...en) —,, bodysle; /] (13)

(e, ma) (e mp)) =, (d,p(my . ..my)), d=C[pley...cn, p# if, ¢; € Con. (14)

The non-standard reductions mirror exactly the standard ones. The markers are computed
in parallel with the standard values but they do not influence the reduction sequence. The non-
standard reduction is therefore confluent and we can define the evaluation function Fval, : Fxp —

Env, — D, by:

(d,m) if enr =, (d, m)
L otherwise.

Fval, (e, p,) = {

It is easy to prove that the standard semantics can be obtained from the non-standard one by

ignoring the markers:
Theorem 2.2 For all e € Fzp, p, € Env,,

content( Fval, (e, p,)) = Fval(e, content o p,,),
where o denotes the left-to-right function composition.

We will define now an equivalent non-standard denotational semantics. The semantic functions &,
and F,, are defined similarly to £ and F from the standard semantics (Subsection 2.2), while C,,
will include now the action on markers given by j:

C.lpl = (C[p] o content™,po marker™) for any n-argument p # if, n > 0 (15)

Colif] = Azyz. case content(x): (16)
true :: (content(y), if (marker(z), marker(y)))
false :: (content(2), if (marker(z), marker(z)))
I

The analogue of Theorem 2.1 also holds for the two non-standard semantics:

10



Theorem 2.3 For all e € Fzp, p, € Env,,
Fval, (e, pn) = Enle]pn-

The non-standard semantics defined above depends on the set of markers M and the marker
propagation functions . By specifying M and p for each primitive function p we can obtain different
semantics. Two such particularizations will be used for the order of evaluation and reduction to
variables analyses.

3 Abstract Interpretation

This section presents some classical results from the theory of abstract interpretation of first-order
functional languages first developed in Mycroft [13].

The idea of the abstract interpretation method is to obtain some information about a function
f by projecting the semantic domain D on some abstract domain D# and then computing the
abstract semantic value of f in D#. Under the conditions described below there is a relation
between the normal semantic value and the abstract one. D# is chosen such that (a) the abstract
semantic value of f gives us the required information, and (b) computing the abstract semantic
values can be done at compile-time. (b) is satisfied, for example, if D# is finite, which is usually
the case.

The classic example is the rule of signs in arithmetic which enables us to find the sign of a multi-
plication knowing the signs of the operands, without having to actually perform the multiplication.
Here D = Z and D# = {0, +, L}.

The following are some simple facts from domain theory: for a flat domain X, the Hoare
powerdomain P(X) is defined as

P(X)={ACX|Le A}

ordered by subset inclusion. For A C X denote by A = AU {1} € P(X) (the closure of A). If X
and Y are flat domains, a function f: X” — Y can be extended to a function f: P(X)” — P(Y)
by defining

f(Alv"'vAn):{f(alv"'van)|ai GAZ}

In Mycroft’s abstract interpretation method the powerdomain P( D) is projected on the abstract
domain D#. More exactly, we define the continuous abstraction and concretization functions

Abs : P(D) — D¥; Conc: D¥ — P(D),

which must satisfy

Abs o Conc = idpg; Conco Abs 2 idp(p). (17)

The abstract valuation functions £# and F# are defined in the same way as & and F (see
Subsection 2.2). For each n-argument primitive p we define:

C#[p] = Abs o C[p] o Conc™. (18)
Under these conditions the correctness theorem of Mycroft is:
Theorem 3.1 (Myecroft) For each n-argument user-defined function f,
FLf] C Conc o F#[f] o Abs™,
where F[f] is lifted to P(D).

11



F#[f] can be computed at compile-time by finite fixpoint iteration, yielding some information
about f. The following subsection will illustrate the application of this method for computing
strictness information.

3.1 Strictness Analysis

We will say that a function f: D™ — D is strict in its ¢-th argument if
Vd] ebD f(dlv---vdi—laJ—adH—l,---,dn) = 1.

Strictness analysis allows us to detect such information. The importance of the analysis is that the
parameters in which a function is strict can be passed by value, avoiding the need for building a
closure. Not all cases will be discovered because strictness is, in general, undecidable.

The abstract domain is 2 = {0,1} with 0 C 1. Intuitively, 0 represents the undefined ele-
ment (non-termination) and 1 represents possible termination. The abstraction and concretization
functions are:

Abs: P(D) — 2, Conc:2— P(D)
Abs(S)=0iff S = {L}
Cone(0) = {L}, Cone(1) = D.

Equation (18) translates to:

# = 1 (ceCon)
x—l—#y = x Ay, etc.
if*(z,y,2) = xA(yV2),
where we denoted C#[p] by p*.
Example 3.1
fac(z) = ifz =0thenlelsex * fac(z L 1)
fac*(z) = (zA1)A(QVzA fac®(z A1) =a.

The equation defining fac# is not recursive, so there is no need for fixpoint iteration. We can
conclude that fac is strict because fac#(O) = 0 which implies, by the correctness theorem of
abstract interpretation, fac(L) = L (more exactly, F[fac]L = L). [

We can consider an arbitrary expression to be a function of its free variables. The relation |
(read “is strict in”) between expressions and variables is defined as follows:

Definition 3.1 For e € Fxp; and x € Vary,
ela iff E¥[e][0/2,1/y(y # )] = 0. n
The correctness of strictness analysis implies that

elt = Vp € Env&le]p[L/z] = L.

12



3.2 Abstractions of the Non-Standard Semantics

The analyses developed in the rest of the paper are expressed as particularizations of the following
general problem. For each expression e we want to approximate some property of the variables
of ¢ which cannot be computed at compile time. The properties that we are interested in can
be formulated using the non-standard semantics defined in Section 2: the variables of ¢ have the
desired property iff whenever we mark them in a certain way we obtain a certain marker of the
(non-standard) value of e. More exactly, we are interested in the k-ary relations r between variables
of the following general form:

Definition 3.2 Let £ > 1 and My, My, ..., My, M1 € P(M_) be fixed.
For e € Fxps, x1,...,%, € Vary, and p € Env,

<$17 ) $k> € T(@,p) iff marker(gn[[e]]pn) € Mk-l—lv
for all p,, € Env,, satisfying:
content o p, = p; marker(p,(2;)) € M; (i = 1...k); marker(p,(z)) € Mo (z # 2,1 =1...k).m

In other words, (z1,...,zx) € 7(e, p) iff the marker of the value of € in a non-standard environment
obtained from p by marking ; with something in M; (and everything else with something in M)
is in My41. Note that the M,;’s are not just sets of markers, but elements of P(M_), i.e., L € M;
(this is necessary because L can only be marked with L). We are interested only in the behavior
of terminating computations; L € M4, therefore if the evaluation of e in p does not terminate
(e, p) is the total relation.

By abstracting the non-standard semantics we will obtain a statically computable approximation
(a subset) of r which does not depend on an environment. The idea is to ignore the standard values
and consider only the markers. The abstract values are sets of possible markers; more exactly,
the abstract domain A is an arbitrary subset of P(M_) which contains M_ and is closed under
set intersection (A = P(M_) is such a domain). Different abstract domains generate, in general,
different approximations; the relationship between them is discussed later in this subsection. For
S C M_ let a(5) be the least element of A such that S C a(5) (it always exists because M_ € A
and A is closed under intersection). The abstractization and concretization functions are:

Abs = a o marker : P(D,) — A; Conc = marker™' : A — P(D,). (19)

We will use the superscript a to denote the abstractions of the valuation functions. The abstractions
of the predefined functions are given by the following Lemma:

Lemma 3.1

Cilpl=aop (p# i)
Califl = /\xyz'a(if(xvy) U zf(x,z))

Proof Immediate from (18), (15), (16), and the definitions of Abs and C'onc. |

The definition of the relation ¢ is:

Definition 3.3 For e € Fxp; and 24,...,2, € Vary,

(z1,...,25) € r(e) T Exfe]la(M;)/z; (i =1,...,k),a(Mo)/z (x # ;)] C M. n

13



The correctness of the approximation is given by the following Theorem:

Theorem 3.2 For all e € Expy and p € Env,
r*(e) C r(e. p).

Proof Let e € Fap; and 24,...,2, € Vary such that (zq,...,24) € r*(e). From definition (3.3)
we have

Enlella(Mi) )z (i=1,...,k),a(Mo)/x (z # ;)] C Mpiq.
C'onc is monotonic, therefore:
Conce(Eple]la(M;)/x; (1 =1,...,k),a(Mo)/z (z # 2;)]) C Cone(My41),
or, using the first equality in (17),
Conc(&EL[e][Abs(Conc(a(M;)))/z; (i = 1,..., k), Abs(Conc(a(My)))/x (z # z;)]) C Conc(Mpy1).
We can apply now Theorem 3.1 to obtain:
EnlellConec(a(M;))/z; (¢ = 1,..., k), Conc(a(My))/x (z # ;)] C Cone(Mpy1).
Using the definition of C'onc in (19), this is equivalent to:
marker(E.[e]pn) € Mitq,

for all p,, € Env,, such that marker(p,(z;)) € a(M;), marker(p,(z)) € a(My) (z # @, i=1,...,k).
But a(M;) O M;, therefore, from definition (3.2), (21,...,2x) € (e, p) for all p € Env. |

The theoretical complexity of computing the abstractions of all user defined functions by fixpoint
iteration is O(|A|") with the constant depending on the structure of A (the maximum number of
fixpoint iterations is the height of the domain of monotonic functions from AV to A which is
O(JA[Y)). In some instances, due to some special properties of A, the exact complexity can be
much lower (such a case will be discussed in the next section).

While decreasing the complexity of the computation, the use of a smaller abstract domain
will generate, in general, a weaker approximation (more information is lost by abstraction). More
precisely, the approximation over the smaller domain can be obtained by abstract interpretation
from the approximation over the larger domain. We have thus a hierarchy of approximations
corresponding to the hierarchy of subdomains of P(M_). This result is presented in the following
Lemma:

Lemma 3.2 If A and A’ are two subsets of P(M_) closed under intersection such that
M_ € AC A then r* C r¢.

Proof The functions

Abs: A" — A 5 Abs(S') = a(S),
Conc: A— A" 5 Conc(S)=S5
satisfy the conditions (17), therefore, from Theorem 3.1,
£ elp’ € Exfelac g,
for all expressions ¢ and abstract environments p’ over A’. The Lemma is proven by taking

pl=d (M) (i=1,....k),d(Mp)/x (z # z;)]. [ |
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Under the conditions specified in the following Lemma the approximation over a smaller domain
is the same as the approximation over a larger one. This fact can be used to simplify the abstraction
without loosing any information.

Lemma 3.3 If A and A’ are two subsets of P(M_) closed under intersection such that {M_, M1} C
A C A and, for all predefined p of n arguments, a o C¥'[p] = C*[p] o a™ (as functions from A'™ to
A) then r* = 1.

Proof &7 and 5;;’ are the (finite) limits of their fixpoint approximations and the following equality
can be easily proven by induction on these approximations:

(& [elp) = Exlelao p',

for all expressions ¢ and abstract environments p’ over A’. The Lemma then follows from the fact
that a is monotonic and a(Mj41) = My41 (because Myiq € A). ]

4 Reduction to Variables

Under our assumption that expressions evaluate to references (locations, pointers) it is easy to see
that the value of an expression e is either (a) a reference to a newly created object, or (b) the
reference denoted by some variable = in e. In the second case we will say that e reduces to z.

As mentioned before, we assume that no object is copied during evaluation; more precisely, we
assume that

1. if never creates a new object but just returns the reference of the selected branch,

2. all primitive functions except if always create a new object as their result, i.e., a call to such
a function can never reduce to a variable, and

3. user defined functions return the references obtained by evaluating their bodies.

The purpose of the analysis defined in this section is to define a statically computable approx-
imation (superset) of the reduction to variables relation. To consider that every expression might
reduce to any of its variables is an approximation which is safe, but too coarse to be useful. The
analysis is an essential component of the destructive update algorithm presented in Section 6 (see
examples 2.3 and 2.4).

The standard semantics does not offer all the necessary information—in particular we cannot
determine when new locations are accessed. Consider for example the expressions if true then z else
0 and z + 0. The standard values of these two expressions are equal, but the first one reduces to x,
while the second one generates a new reference.? In order to differentiate between such expressions
we will use a particularization of the non-standard semantics defined in Subsection 2.4. We will
then derive the desired approximation by abstract interpretation.

4.1 Exact Reduction to Variables

We will denote by ellz(p) the fact that e reduces to # when evaluated in environment p. Using the
operational semantics defined in Subsection 2.3 we can define || as follows:

Definition 4.1 For e € Exps, v € Vary, and p € Env, ellz(p) iff all reduction sequences of e
in p terminate and the last step in any such sequence is a reduction of z based on rule (1). =

2We will assume that any constant folding is carried out before the update analysis.
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In order to obtain an equivalent definition without explicitly mentioning the reduction sequences
we will mark the value of » with a special marker which will be propagated to the final result iff
rule (1) is used for the last reduction. We will take

M = {old, new},

where old is used to mark the variable x and new is used for everything else and also for all “newly
generated” markers.®> All primitive functions generate new and all constants are marked with new,
therefore we define:

p(ma,...,m,) =if 3im; = L then L else new (p # if, n > 0). (20)
The marker generated by if is the marker of the respective alternative, i.e.,
if (my, ma) = if my = L then L else ma. (21)
Theorem 4.1 For all e € Frpy, x € Vary, p € Env,

ellz(p) iff marker(Eval,(e,p,)) = old,
where p, € Env, is defined by:
content(p,) = p, marker(p,(z)) C old, marker(p,(y)) C new (y # z).

Proof The left-to-right implication follows immediately from the definition of ||. We will prove
the other implication by induction on the number of reduction steps of e.

e = ¢ (0 reduction steps): marker(FEval,(e, p,)) = ¢ = new (definition (20)).

e is not a constant: the last step in any finite reduction of ¢ is obtained by one of the rules
(1), (12), or (14). In the first case, if the reduced variable is not z, and also in the last case,
marker( Fval, (e, p,)) C new by the definition of p,, and, respectively, definition (20). In the second
case use definition (21) and the induction hypothesis applied to the selected branch of the if. m

Corollary 4.1 For all e € Exp;, x € Vary, p € Env, and p, as above,

ellz(p) iff marker(E,[e]pn) = old.

Example 4.1

e1 = if true then z else 0
ey u= x+0.
For any p € Env such that p(z) # L, e;lz(p), ez Jz(p). |

®These names are justified by the fact that we can interpret these markers as special “references”. new corresponds
to the “newly generated” references, while old corresponds to all other references. An equivalent analysis can be
indeed obtained by abstracting a store semantics along this idea.
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4.2 Approximative Reduction to Variables

We will obtain now a statically computable approximation of the reduction to variables relation
defined in the previous subsection.

Let r be the complement of ||, i.e., the relation “does not reduce to a variable”. We are interested
in 7 because we will need an approximation to || from above (i.e., with a weaker relation), which is
the same thing as the complement of an approximation of r from below (7* defined in Subsection 3.2
is such an approximation). We can put the relation r in the form presented in Subsection 3.2 by
choosing k = 1, My = My = { L, new}, My = {L, old}. We obtain the following definition:

x € r(e, p) (or e Ju(p)) iff marker(E,[e]pn) € {L, new}

for all p,, € Env, such that content(p,) = p, marker(p,(z)) C old, marker(p,(y)) C new, y # x.
For the approximation r* we will choose the abstract domain

A ={{L,new},{L,old, new}}.

We can easily check that the conditions in Lemma 3.3 (for A’ = P(M_)) are satisfied, so we do
not lose any information by abstracting over A instead of P(M_). Denoting {1, new} by 0 and
{L,old,new} by 1 we have A = {0,1} with 0 C 1. The abstractions of the primitive functions are
obtained from the definitions (20) and (21) using Lemma (3.1):

Cilpl = Ax1...2,.0(p # if, n>0)
Celif] = Azyz.y V .

The desired approximation to || is the complement of r*. It will be denoted also by |}; no
confusion is possible because the approximation does not depend on an environment:

Definition 4.2 For e € Fxp; and x € Vary,

ellz iff © ¢ re) iff El[e][1/x,0/y(y # )] =1. n
Example 4.2
f(z,y,2z) =if « = 0O then yelse f(z L 1,z,y).
Let e := f(7,v,w). If p(w) # L then ellw(p). £2[e] = v V w; therefore ellv and ellw. |

The following correctness theorem for || is a direct consequence of the correctness of r* with
respect to 7.

Theorem 4.2 For any e € Fxp, x € Var, and p € Env,

elz(p) = ellz.

Both the strictness relation | and the reduction to variables relation |} are defined by abstract
interpretation over a two-element domain. The height of the domain of n-argument monotonic
functions over this domain is 2" 4 1; therefore 2" + 1 is an upper limit on the number of fixpoint
iterations needed to compute the abstraction of an arbitrary function. While the complexity of
strictness analysis was indeed proven in Hudak [10] to be O(2"V), the complexity of the reduction to
variables analysis is much lower because its defining abstraction has the following special property:
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Lemma 4.1 For any e € Expy and py,pa € Envy,
&21el(pr V p2) = Ex1eln v €21l

Proof It is easy to prove by induction on % that the equality holds for all fixpoint approximations
k
&y of &£7, ete. ]

Corollary 4.2 £% can be computed in O(N) time.

Proof Follows from the fact that the height of the domain of n-argument monotonic functions on
(0,1) satisfying
f(xlv"'vxn)\/f(ylv"'vyn) = f(xl \/ylv"'vxn\/yn)

5 Evaluation Order

Information about the order in which different expressions will be evaluated when the program is run
can be used for several compile-time optimizations. Unfortunately, this order cannot be completely
determined at compile-time. This is true for all run-time evaluation strategies (assuming, of course,
that the strategy preserves the normal-order semantics of the language). This section will explore
different ways of defining the evaluation order and methods of obtaining statically computable
approximations.

5.1 Exact Evaluation Order of Variables

In this subsection we will formally define an exact order of evaluation relation between variables
and in Subsection 5.2 we will obtain a statically computable approximation of this relation.

We will assume a pure lazy evaluation strategy, as defined by the operational semantics in
Subsection 2.3; other strategies will be considered in Subsection 5.3.

We will say that a terminating reduction sequence ¢; —, ... —, ¢, —, ¢ evaluates a variable
x at step ¢ if the reduction e¢; —, e, is specified either by rule (1) or by one of the rules (2) or
(3) with (1) as precondition. For a given p either all reductions of e evaluate z or none does.

The operational order-of-evaluation relation < between variables is defined as follows:

Definition 5.1 For e € Exps, x,y € Vary, x #y, p € Env:
z < y (e, p) iff all reductions of e in p terminate evaluating both 2 and y and at least one such
reduction evaluates first + and then y. [ |

Example 5.1
e = if x then y else y + z.

For all environments p in which e terminates, z < y (e, p). If also p(z) = false then = < z (e, p),
y < z(e,p),and z < y (e, p). u

This definition of < is not very useful since it depends on all steps of all reduction sequences of
e. We will develop another definition which depends only on the final results of the reductions by
using the non-standard semantics defined in Subsection 2.4. Let

M = {mgy, my, mgy, m}.
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The non-standard semantics is based on the following idea: reduce € in an environment in which z
and y are marked with m, and m, respectively and all other variables are marked with .. Define
p such that a possible evaluation of z before y will generate the marker m,, which is propagated
to the final result. Then = < y(e, p) iff e reduces to a constant marked with m,,. The definitions
of j are:

1L if dim; = L

my i Vim; € {m,,m,} AJim; = m,

plmy...my) = my i Vem; € {my, m,} AJim; = my (p#if, n>0) (22)
m, ifVim; =m,

Mgy if Jem; = myy V 30, jmy = my,m; = my

1 if mq = 1V mg = 1

) my  if my,me € {my,m.} A (my, ma) # (m,, m.)

if(my,mg) = my i myg =my V(mg = m, Amg = my) (23)
m, i my = mg = m,

Myy I my = Mgy V(Mg # L,my Amg = myy) V (mg = mg A mg = my).

Note that ¢ = m, for all constants ¢. We can now define < in terms of Fuval,, without explicitly
mentioning the reduction sequences:

Theorem 5.1 For any e € Frpy, x,y € Vary, p € Env,
< y(e,p) iff marker(Lval,(e,p,)) = myy, where
content o p, = p, marker(p,(z)) C my, marker(p,(y)) C my, marker(p,(2)) C m, (2 # z,y).
Proof Immediate from the following Lemma. [
Lemma 5.1 For any e, z, y, p, and p, as in Theorem 5.1, all reduction sequences of e
1. terminate without evaluating either x or y iff marker(Fval, (e, p,)) = m..
2. terminate, evaluate x, and do not evaluate y iff marker(Eval, (e, pn)) = my.

3. terminate, evaluate y, and either do not evaluate x or evaluate x after y iff
marker(LEval, (e, pn)) = my.

Proof By induction on the number of reduction steps of e. [ |
Corollary 5.1 For any e € Expy, x,y € Vary, p € Env, and p, as in Theorem 5.1,

x<y(e,p) iff marker(E,[e]pn)) = Mmyy.

5.2 Approximative Order of Evaluation

To obtain a statically computable approximation of < from above we will, again, (a) define the
complement of < as a particularization of the general relation r from Subsection 3.2, (b) define an
approximation 7%, and (c) take the complement of 7® as the desired approximation of <.

The complement of < is a relation r as in Subsection 3.2 if we take k = 2, My = {L.m.},
My = {L,mg}, My = {L,my}, M3 = {L,m;, my, m.}. For obtaining the approximation r* we
will choose the abstract domain

A=Azxz,yz,2yz, T},
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where
Z = {J—vmz}vxz = {J_,mx,mz},yz = {J_,my,mz},xyz = {J—vmxvmyvmz}v T = {J—vmxvmyvmzvmxy}-

We can again check that the conditions in Lemma 3.3 are satisfied, so we do not loose any in-
formation by choosing this abstract domain instead of P(M_). The abstractions of the primitive
functions are obtained from the definitions (22) and (23) using Lemma 3.1:

z ifVie, =z
xz ifVie, Caz
Colpl(zr...2n) = yz ifViwx;, Cyz (p # if) (24)

vyz if ia; =wyz AVj #rx; =2

T otherwise
z ifa=b=c==z
xz ifa,b,ceCaz
Colifl(a,b,c) = yz  if (a,b,cCyz)V(a=yz,bc#T) (25)
zyz f(a=zyz,b=c=2)V(a=2b,c#T)
T otherwise,

where on each line we assume that the conditions on the previous lines are not satisfied. The
maximum number of iterations needed for computing all abstractions is 3 - 5" + 1 (the height of
the domain of monotonic functions from AV to A).

The approximation to < is the complement of r* and will be denoted also by <; no confusion
is possible because the approximation does not depend on any environment. From definition 3.3
we obtain:

Definition 5.2 For e € Fxp; and z,y € Vary,

x<yle) iff Ele]lzz/x,yz/y,z/z(z# x,y)]=T. u

Intuitively, < y(e) if # might be evaluated before y. Other order relations between variables can

be defined in a similar manner. For 2,y € Vary we will usually write 2 < y instead of z < y (bodyy).

Other order relations between variables can be defined in a similar manner. In particular the
following relation will be needed for the destructive update algorithm:

Definition 5.3 For e € Exps, x,y € Vary, x #y, p € Env:
z <y (e, p) iff all reductions of e in p terminate, evaluate z, and either (a) no reduction evaluates
y, or (b) there is a reduction which evaluates 2 before y. [ |

Using Lemma 5.1 and the definition of < we can characterize < as follows:
x <y (e, p) ff marker(E,[elpn)) € {maz, may} Hf 2 < y(f(e,y), p),
where f is any function which evaluates its arguments from left to right, e.g.,
f(u,v) =if u = u then v else v.

This relation can be used to find an approximation for < in terms of the approximation of <. We
can also approximate < directly by abstract interpretation. Using the same markers and the same
abstract domain as for < we obtain the following approximation:

Definition 5.4 For e € Fxp; and z,y € Vary,
x <y(e) it Elfellez/x,yz/y,z/z(z # x,y)] 2 2. .

Intuitively, @ <-y (e) if there might be a reduction sequence which either evaluates z before y or
evaluates = but not y.
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5.3 Other Evaluation Strategies

Assume now that we have some additional information about the evaluation strategies to which
the evaluation-order analysis must be applied. A relation <’ C <, which would be valid only for the
strategies under consideration, would contain more order information and would yield a sharper
analysis.

In particular, we can adapt < to evaluation strategies which impose some restrictions on the
order in which primitive functions evaluate their arguments. Suppose, for example, that + evaluates
its arguments from left to right. This information can be included in the operational semantics
defined in Subsection 2.2 by replacing, for +, rule (2) by the rules:

€1 —, €] (26)
61—|—€2 —>p6/1—|-€2
7
£ (c € Con). (27)

c+e—,c+e

In the non-standard semantics defined in Subsection 5.1 we must change the definition (22) for
T and set I = if (both specify that the first argument is always evaluated first).

If, on the contrary, we want our order-of-evaluation analysis to be applicable to a larger set of
evaluation strategies than the one considered in the previous subsections, we must define a weaker
relation <’ D <. For example we must weaken < to make it applicable to the evaluation strategies
which might use information from strictness analysis to change the pure lazy order of evaluation.
These strategies are widely used in the implementation of functional languages, so the problem of
finding a suitable order relation is important.

Example 5.2
eux=ifz > Otheny + zelsey L x.

According to our previous definition, y £ 2 (¢) (no reduction evaluates y before x). This is not
correct under an evaluation strategy that uses the fact that ¢|y to evaluate y before z. [ |
To adapt our operational semantics to an evaluation strategy which uses strictness information
to change the order of evaluation we will replace rule (1) by
elx
| . (28)
e —pelp(e)/z]

Note that (1) is a particular instance of (28); therefore any reduction in the original semantics is

also a reduction in the new semantics.

Unfortunately, we cannot obtain an exact semantics defining the new order-of-evaluation rela-
tion in the same way we obtained one for pure lazy evaluation (Subsection 5.1). The problem can be
traced back to rule (12) in the general operational semantics defined in Subsection 2.4. We would
need some information about the unevaluated branch (expression €) which cannot be obtained no
matter how we define if. This information though can be easily included directly in the abstract
semantics if we replace equation (25) by:

z fa=b=c=2z
xz ifa,b,cCurz
Colifl(a,b,c) = yz  if(a,b,cCyz)V(a=yz,bc# T,(bCyzVeCyz)) (29)
zyz if(a=2yz,b=c=2z)V(a=2,bc#T)
T otherwise.
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5.4 Access Order of Variables

The relation < allows us to approximate the order in which variables are evaluated, but not the
order in which they are accessed. In a graph-reduction based implementation the evaluation of a
variable takes place when it is first accessed; subsequent references to the variable use its already
computed value. A variable is evaluated only once but can be accessed many times. Moreover,
for the destructive update problem we need to have some information about the order in which
references denoted by variables are accessed.

Here and in the rest of the paper by “expression” we will mean a particular instance of an
expression; we will implicitly assume that all expressions in a given program are uniquely labeled.
We will use integer superscripts to differentiate between occurrences of the same variable; thus, if
z is a variable, 2 is an expression.

We will define an order-of-evaluation relation (also denoted by <) between variables and ez-
pressions as follows: if ¢/, e € Exp; such that ¢’ is a subexpressions of ¢ and z € Vary,

v <e(e) iff »<w(efw/e]),

where w ¢ Vary is a new variable and e[w/e’] is the expression obtained from e by replacing ¢’
by w. Intuitively, < €’ (e) if 2 might be evaluated before ¢’. If the original < is known (i.e.,
we know the abstractions of all user-defined functions), the new < can be computed in one step
(no recursion is involved). Order-of-evaluation relations between expressions and variables and
between expressions can be defined similarly. From now on we will denote by < the union of all
these relations; arguments of < can be, independently, either variables or expressions. The relation
~< will be also extended to expressions in a similar way.

We will define now the relation <, between variables such that for z,y € Var;, v <, y if during
the evaluation of body; the reference denoted by y might be accessed after z is evaluated. <, is
the least fixed point of the following recursive definition:

Definition 5.5 For z,y € Vary, z <, y iff

1. there exists an occurrence y* of y such that z < y* (bodyy), or

2. there exists a function call A(...e,...e,...) in bodys such that = € Var.,, ey, and
u <4 v (u,v are the formals of s corresponding to e,, e, respectively). [ |

If < is known, <, can be computed in at most N? fixpoint iterations. Similarly to <, we can
extend <, to a relation between expressions and variables, also denoted by <,. Intuitively, e <, ¥
if the reference denoted by y can be accessed after the evaluation of e.

Example 5.3

f(z,y) = if 2! > 0theny! + 2% elsey® L 2®
g(u,v) = f(if u! = 0then 0 else u?,v?).
Assuming pure lazy evaluation, < y, u < v.
z <yt 4+ 2% 22 <yl 2l <y, ete.

x <, y (because x < y'), y <, x (because y < z?), v <, v (because v < z?), u <, v (because
u < v), v <, u (because y <, ¥ and if ...l}u), u <, u (because u < u?).

u! <, u (because u! < u?), u* <, u (because v <,  and if ...|lu), etc.

If we replace u? by u? + 1 then v 4, u, u? £, u. [
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6 Destructive Update

The destructive update problem can be defined informally as follows: given the expression
update(eq, ez, e3), determine at compile time, if possible, that the object denoted by e; will not
be referenced after the update is performed; in such a case a compiler can generate code to update
in place. The relative order in which references to different objects are accessed depends on the
evaluation strategy adopted.

The destructive update procedure uses the analyses presented in the previous sections. The
algorithm is based on the following observation: update(eq,ez,e3) can always be done in place if
the value of e; is not referenced by a variable, for then we are sure that it is not used elsewhere in
the program. The other case is when e reduces to a variable z; we must decide now, using order-
of-evaluation information, whether the reference denoted by z is used in the rest of the program.
We must also consider all actual arguments corresponding to z and see if they might reduce to a
variable, etc.

6.1 The Destructive Update Algorithm

The following algorithm accepts as input a program P and an expression ¢’ of the form update(e, . . .)
in P and decides whether the update can be done in place or not. It uses a set R of variables and
two sets of pairs of variables, A and F, with A O F. Intuitively, « € R if  might denote the
value of e and (x,y) is in A (respectively F) if 2 and y are formals of the same function and z
might denote the value of ¢ while y might be accessed (respectively evaluated) after the update.
The update can be done in place only if there is no variable = such that (z, z) € A.

Algorithm
1. Set R={xz|ela}, A= {(z,y) | ellz, ¢ <, y} and F = {(z,y) | ellz, e’ < y}.

2. Repeat this step until all variables in R have been considered: choose x € R not considered so
far; suppose © € Vary. For each expression €’ = f(...,e,,...) (e, is the actual corresponding
to x) and for each variable u such that e,{}u set

R = RU{u}
A = Au{{u,v)|€" <, v}
E = Eu{{u,v)|e <v}.

3. If all pairs in A have been considered then stop, the update can be done in place; if 42 € Var
such that (2, z) € A then stop, the update cannot be done in place.

4. Choose (z,y) € A not considered so far. Suppose z,y € Vary.

For each expression ¢’ = f(...,€e;,...,€y,...) (€, €, are the actuals corresponding to z, y)
and for each variable u such that e, u set

A = AU{{u0)] e o).
If (x,y) € E then set
A = Au{(u,v)|ve Var,}
E = FEu{(u,v)|ve Var, e, <v}.

Go to step 3.
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The execution time of the algorithm is dominated by the time needed to compute <. Its time
complexity is thus O(5").

Theorem 6.1 (Safety) Suppose €' = update(e,...) appears in a program P. If the value of e is
accessed after €' is evaluated during the execution of P, then the above algorithm will conclude that
the update cannot be done in place.

Proof In a graph-reduction evaluation model only the primitive functions other than if “destroy”
the reference to an actual argument, i.e., neither transmit it to another functions nor propagate it
as their result.

A particular use of a particular reference r is characterized by a dynamic sequence of function
invocations

fn(...,en,...), ,fl(...,el,...),

where the call to f; takes place in the body of fii1 (¢ < n), f2,..., f, are user defined functions
(not necessarily distinct), and f; is a primitive function other than if. r is created as the (store)
value of e,,, is destroyed by fi, and is transmitted along this chain as the value of the ¢;’s. The ¢;’s
collect together all function calls that propagate r. For ¢ > 2 let z; be the formal parameter of f;
corresponding to e;. Then, during this sequence of function calls, all x;’s denote r and each ¢;_;
reduces to z;.

Now let 7 be the reference to the value of ¢ which is accessed after the update and let a sequence
as above, with f; = update and e; = e represent the use of r in update.

If 7 is used after the update then there must exist a kg such that z, is accessed after the update.
We will prove that for all £ > 2 x is added to R, for all variables y; of f; which can be accessed
after the update (xy,y;) is added to A and, if y; can be evaluated (i.e., first accessed) after the
update, it is also added to F. It follows that (xy,,2zx,) will be in A which will cause the algorithm
to stop and conclude that the update cannot be done in place.

The proof is by induction on k.

1. k = 2. f; is the function where update(eq,...) appears and eql}zy. In step 1 5 is put into
R and for all variables y; which can be accessed (respectively evaluated) after the update
(x2,y2) is added to A (respectively F).

2. k> 2. zp_1 € R, s0 x}, is also added to R in step 2. If y; is accessed after the update then
either (a) it is accessed after the call to f;_; in which case (2, y;) is added to A in step 2
or (b) there exists a variable y;_1 of f;_1, accessed or evaluated after the update, such that
yk—1 and y; play the roles of y and v in step 4 of the algorithm (f, z, and e, in the algorithm
are fr_1, ¥x—1, and e;_1, respectively). By induction hypothesis (z;_1,y5—1) is in A (and,
respectively, ), so (2, yx) is added to A in step 4. The proof for F is similar.

6.2 Examples

The following example is from Hudak [11].
result() = quicksort([c1,...,cy))
quicksort(vecty) = gsort(vecty,1, length(vecty))

gsort(vectq, first, last) =
if first > last then vect; else scanright(vects, first, last, vecty|first], first, last)
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scanright(vy, 1y, r1, pivoty, lefty, right;) =
if Iy = rqy then finish(update(vy, 1, pivoty), 11, lefty, right,) else
if v1[r1] > pivoty then scanright(vy,ly,r1 L 1, pivoty, lefty, righty)
else scanleft(update(vy,ly,v1[r1]), 11 + 1, r1, pivoty, lefty, righty)

scanleft(vy, l3, T2, pivoty, left,, righty) =
if I3 = ry then finish(update(vz, l3, pivoty), I3, left,, righty) else
if vy[ls] < pivot, then scanleft(ve,ly + 1,1, pivoty, left,, right,)
else scanright(update(vq, v, v2[l3]), l2, 72 L 1, pivoty, left,, right,)

finish(vects, mid, lefts, rights) = qsort(qsort(vects, lefts, mid L 1), mid + 1, rights).

This program sorts the array [cy, ..., ¢,] using the quicksort algorithm. The only information

that we assume about the order of evaluation of arguments of predefined functions other that if is
that the first argument of update is evaluated last. The relation < on variables is:

first < wvectq, last, last < vectq, first,

mid < vects, lefts, rights, lefts < vects, rights < vects, mid, lefts,

v < pivot,, left;, right., l; < vy, ry, pivot,, left,, right., r; < v;, l;, pivot,, left;, right..,
pot; < v, left,, right;, left; < v;, pivot;, right;, < v, pivot,, left;, i =1,2.

The relation <, on variables contains all pairs except the following:
vects £, mid, vects £, vects, mid £, mid, left; £, left;, right; £, right;, +=1,2,3.
For the first update in scanright the algorithm will end with F = 0,
R = {vy, vecty, vects, vecty },
and

A = {(v1,lh), (v, lefty), (v, righty),
(vecty, first), (vecty, last),
(

vects, lefts), (vects, rights) }.

The algorithm will terminate without detecting any conflict, so the update can be done in place.
For the second update in scanright we get the same R,

A = {<v17 T1>7 <?}1,pi’l)0t1>, <?J1, left1>7 <?J1, Tight1>7
(vecty, first), (vecty, last),
(vects, lefts), vects, rights, }

and
E = {(v1,lefty), (v1, righty) }.

The algorithm will conclude again that the update can be done in place. We can similarly prove
that the other updates can also be done in place, so the optimized program matches the linear space
complexity of Hoare’s original algorithm.
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7 Conclusions and Future Work

Using a unified framework we have presented two static analyses for a lazy first-order functional
language: reduction to variables and evaluation order. Using these analyses we developed a practical
procedure for the important destructive update optimization. Both problems are formulated in a
general operational semantics and the analyses are obtained by abstract interpretation from a
non-standard denotational semantics equivalent to the operational one. The primary contributions
of the paper are the order of evaluation analysis and the methodology of basing the analysis on
operational semantics.

The analyses can be extended to higher-order languages using the methods developed in Burn
[6] and Hudak [10]. These methods were originally developed for strictness analysis which is ob-
tained by abstracting the standard semantics, but they can be easily adapted to our non-standard
semantics.

The destructive update algorithm uses in an essential way the fact that the language is first-
order; its formulation for higher-order languages is the main topic of our future work. We are also
studying the possibility of extending our work to languages with a non-flat basic domain, e.g., to
languages which take into account the internal structure of an array.
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