
A Connectionist View on Document Classification

Dieter Merkl

Department of Information Engineering, University of Vienna
Liebiggasse 4/3, A-1010 Vienna, AUSTRIA

dieter@ifs.univie.ac.at

• Software libraries should be organized in
such a way that locating the most
appropriate component is easy for the
actual user. Particularly, the library should
provide assistance to the user in locating
components that meet some specified
functionality.

In this paper we address the second requirement,
namely structuring the contents of software libraries in
such a way that locating the needed component is
facilitated. For a more detailed discussion of other
aspects of software reuse we refer to [2], [13], [22].

In the remainder of this paper we will describe an
approach relying on artificial neural network
technology to achieve a semantically structured
software library. By the termsemantically structured
we denote structuring according to the functional
similarity of the stored software components. In other
words, components that exhibit similar behavior
should be stored near to each other and thus be
identifiable. From a rather global point of view, our
approach employs a keyword-based software
representation where the various keywords are
extracted automatically from the manual of the
software components. Specifically, each component is
described by using a set of terms extracted from the
full-text of the respective part of the manual. During
the indexing process we utilize only a small list of
stop-words to clean up the resulting index.
Subsequently, each software component is represented
as a binarily-valued vector according to the vector
space model. These vectors are further used as the
input data for an artificial neural network adhering to
the unsupervised learning paradigm. The artificial
neural network is responsible for the structuring of the
software library.

The rest of this paper is organized as follows. In
the next section we will provide a brief overview on
related work concerning software representation and
library structuring. In Section 3 we will describe the
architecture and the learning rule of the artificial
neural network which we used for our experiments.
Section 4 in its turn will contain the results of
structuring a software library. Finally, in Section 5 we
will draw some conclusions.

Abstract
Properly structured software libraries are crucial for
the success of software reuse. Specifically, the
structure of the software library ought to reflect the
functional similarity of the stored software
components in order to facilitate the retrieval process.
We propose the application of artificial neural network
technology to achieve such a structured library. In
more detail, we rely on full-text indexing of the
software manual in order to obtain the software
representation. This software representation is further
used as the input data during the training process of
an artificial neural network adhering to the
unsupervised learning paradigm. The distinctive
feature of this very model is to make the semantic
relationship between the stored software components
geographically explicit. Thus, the actual user of the
software library gets a notion of the semantic
relationship between the components in terms of their
geographical closeness.

1 Introduction

Software reuse is concerned with the technological
and organizational issues of using already existing
software components to build new applications. There
is common agreement that the reuse of software
increases both the productivity of the software
suppliers and the quality of the software itself. The
former is due to the amount of time that is saved each
time a component is reused. The latter is due to the
fact that the same component is used and tested in
many different contexts. However, in order to make
software reuse operational, the actual software
developers ought to be equipped with libraries
containing reusable software components. Concerning
these so-called software libraries, the most stringent
requirements are the following.

• Software libraries should provide a large
number of reusable components in a wide
spectrum of application domains. These
components may be either reused as they
are or may easily be adapted to the needs of
the application currently under
consideration.

Proc. of the 6th Australasian Database Conference (ADC’95). Adelaide. Jan 30-31. 1995. pp 153-161.

2 Related Work

Related work may roughly be assigned to two groups.
First, approaches to classify reusable software
components and second, approaches to structure
software libraries.

An approach to software classification which has
received much attention is faceted classification as
proposed in [24], [25]. This classification schema may
be described as consisting of a set of categories, i.e.
the so-called facets, each of which has several terms
that may possibly be filled in. Thus, the classification
schema remains flexible with respect to extensibility
in such a way that components derived from new
applications may easily be classified by using the
same categories, yet with adjusted terms. Only
recently, faceted classification has been adapted to
meet the requirements of object-oriented software
components [9], [27], [28]. Other approaches rely on
indexing techniques from the area of information
retrieval, namely manual assignment of keywords [1],
scanning the source code and extracting comments
[3], scanning the full-text of the documentation and
assigning document descriptors automatically [4], [5].
In [15] an approach is described that relies on the
concept of lexical affinities which may be paraphrased
as the selection of pairs of words that occur frequently
together within one sentence of the documentation
[14]. These pairs of words are further used as the
index to the respective software components. An
approach to software classification by using a
connectionist model is suggested in [21]. In particular,
feed-forward and recurrent artificial neural networks
are used to assign comments and identifiers which are
extracted from the source code to concepts. Thus, the
artificial neural network performs an analysis of the
informal information contained in a program.

The organization of software libraries is
commonly performed either by applying techniques of
information retrieval, namely cluster analysis, or by
utilizing semantic networks to model the semantic
similarity between components. An approach adhering
to information retrieval techniques is described in
[15]. The authors describe the organization of a
software library containing operating system
commands by using hierarchical agglomerative
clustering methods. The clustering is based on the
lexical affinities extracted from the software
documentation as described above. An approach
combining faceted classification with semantic
networks is reported in [23]. More precisely, the
similarity between components is indicated by using
weighted connections within a semantic network
which describes the various facets of the software
classification schema.

3 Self-Organizing Feature Maps

The self-organizing feature map [10], [11], [12] is one
of the major unsupervised learning models in the area
of artificial neural networks. Unsupervised learning
may roughly be described as adapting the structure of
an artificial neural network to enable the construction
of internal models that capture regularities present in
the input domain without any additional information
beyond the input data.

The self-organizing feature map consists of a layer
of n so-called input units and a grid of so-called output
units. Each input unit is connected to every output
unit. The purpose of the input layer is to collect the
input data in form of ann-dimensional feature vector
and to propagate this input vector onto the output
units. Concerning the output units, each of them is
assigned a weight vector withn weight components.
Initially, the weight components are assigned random
values in the range of [0, 1]. Each of the output units
produces one output value which is proportional to the
similarity between the current input vector and the
unit’s weight vector. This value is commonly referred
to as the unit’s activation or the unit’s response to a
given input. Similarity between the vectors is usually
measured in terms of Euclidean distance.

The adaptation of the weight vectors is performed
in an unsupervised learning process. This process may
be described in three steps which are performed
repeatedly. Together, these three steps are referred to
as one learning iteration. First, one input vector at a
time is randomly selected out of the set of input
vectors. Second, this input vector is mapped onto the
grid of output units of the self-organizing feature map
and the unit with the strongest response is determined.
This unit is referred to as the winning unit or the best-
matching unit, the winner in short. Third, the weight
vector of the winning unit as well as the weight
vectors of units in topological neighborhood of the
winning unit are adapted in such a way that these units
will exhibit an even stronger response with the same
input vector in future.

More formally, we may describe the learning rule
of a self-organizing feature map as follows.
(1) Random selection of one input-vectorx.
(2) Determination of the best matching uniti by using

the Euclidean distance measure.
i: ||wi - x || ≤ ||wj - x || ∀ j∈O
In this formulawi (wj) denotes the weight vector
assigned to uniti (j) in output spaceO.

(3) Adaptation of the weight vectorswj in the
neighborhood of the best matching uniti.
∆wj = ε ⋅ δ(i, j) ⋅ [x - wj] ∀ j∈O
The strength of the adaptation is determined with
respect to parameterε, i.e. learning-rate, the
neighborhood relation between the best matching
unit i and the output unitj which is currently under

consideration, and the difference between input
vector x and weight vectorwj assigned to unitj.
The function δ has to guarantee the following
property: the larger the distance between unitsi
and j, i.e. ||i-j || in the output spaceO, the smaller
the adaptation of the weight vectorwj.

(4) Repeat steps (1) thru (3) until no more changes to
the weight vectors are observed.
To guarantee convergence of the map the learning-

rate ε as well as the adapted neighborhood have to
shrink in the course of time. Hence, the adaptation of
the weights as well as the set of units that are subject
to weight changes decrease gradually.

During the numerous repetitions of these three
steps of the learning process, the weight vectors get
better approximations to the input distribution.
Furthermore, neighboring units respond similarly to
input vectors, thus resulting in a global order. In other
words, the weight vectors of the units are tuned to
specific features of the input space in such a way that
topological relations which are present in the input
domain are retained as faithfully as possible in the
output space, i.e. the grid of output units. Apparently,
due to the mapping from a high dimensional input
space to a much lower dimensional output space some
distortion is unavoidable. Yet, nearby vectors in the
input space are mapped onto nearby units in the output
space. To conclude, the response of the self-organizing
map to the presentation of an input vector is a
localized pattern of activity which is similar for
closely related input vectors.

4 Structuring Software Libraries

4.1 The Software Representation

Throughout the remainder of this paper we will use
the NIH Class Library, the NIHCL in short, as an
example of a software library. NIH is the acronym for
National Institutes of Health, a US governmental
organization. The NIHCL is a collection of classes
developed in the C++ programming language. The
NIH Class Library includes generally useful data
types such asString, Date, andTime, as well as a
number of container classes such asOrderedCltn,
LinkedList, Set, Dictionary which are
similar to the Smalltalk-80 classes. Moreover, the
NIHCL provides the facilities to store arbitrarily
complex data structures comprised of NIH Library
and user-defined objects on disk. For more detailed
information about the NIH Class Library we refer to
[6] and to the reference manual of Version 3.10 [7].

In order to build the software representation we
rely on the textual description of the various classes
that are contained in the NIHCL. As an illustrative
example consider Figure 1 containing the description

of the classSet as contained in [7]. These manual
entries are further full-text indexed by omitting only a
very small set of stop-words. The stop-word list, in
fact, comprises only articles, conjunctions, and
pronouns. All other words are included in the index of
the respective class. Just to give the concrete figure,
489 distinct terms were extracted from the various
textual descriptions of the classes.

 To provide the means to interpret the results of
library structuring we show the NIHCL class
hierarchy in Figure 2. Furthermore, we provide a
graph representing the ‘related-class’ relationship in
Figure 3 which is derived from the respective sections
in the manual.

The final software representation follows the
vector space model where input data and queries are
represented as vectors in ann-dimensional hyperspace
[29]. More specifically, each component of the vectors
corresponds to a possible document feature, i.e. index
term, and is binarily-valued. Thus an entry of zero
denotes the fact that the corresponding feature is not
used in the description of the software component.
Contrary to that, an entry of one means that the
corresponding feature is used to describe the software
component. To conclude, the software components are
represented by vectors of a 489-dimensional
hyperspace. These feature vectors are used as the input
data during the learning process of the self-organizing
feature map.

4.2 The Structured Software Library
Based on the component representation as outlined
above we trained a self-organizing feature map to
structure the classes of the NIHCL according to their
functional relationship. The main reasons for choosing

Set - Unordered Collection of Non-Duplicate
Objects
Base Class: Collection
Derived Classes: Dictionary, IdentSet
Related Classes: Iterator
A Set is an unordered collection of objects. The
objects cannot be accessed by a key as can the
objects in a Dictionary, for example. Unlike a
Bag, in which equal objects may occur more than
once, a Set ignores attemps to add any object that
duplicates one already in the Set. A Set considers
two objects to be duplicates if they are isEqual()
to one another.
Class Set is implemented using a hash table with
open addressing. Set::add() calls the virtual
member function hash() and uses the number
returned to compute an index to the hash table at
which to begin searching, and isEqual() is called
to check for equality.

Figure 1: NIHCL manual entry of class Set

LinkObLink

Iterator

Integer

FDSet

IdentDictSet

Collection

Class

Bitset

Vector

AssocInt

AssocLookupKey

Date

IdentSet

KeySortCltn

LinkedList

Bag

Arraychar

Time

RegexString

Range

Random

Point

Nil

Float

Dictionary

Stack

OrderedCltn

HeapSeqCltn

ArrayOb

SortedCltn

Object

ReadFromTbl

OIOout

OIOofdStoreOnTbl

OIOifd

Exception

OIOin

OIOnihoutOIOostream

OIOnihinOIOistream

NIHCL

Figure 2: NIHCL class hierarchy

LinkOb

Link

Iterator

Integer

IdentDict

Set

Collection

AssocInt

Assoc

LookupKey

Date

IdentSet

KeySortCltn LinkedList

Bag

Time

Regex StringRange

Dictionary

Stack

OrderedCltn

Heap

SeqCltn

ArrayOb

SortedCltn

Iterator

Dictionary IdentDict KeySortCltn

Dictionary IdentDict Integer

Bag AssocInt Iterator Set

Collection Iterator

Dictionary Assoc Iterator LookupKey

Iterator

IdentDict Assoc Iterator LookupKey

Iterator

AssocInt

Iterator ArrayOb Heap

IdentSet

KeySortCltn Assoc

LinkedList

LinkedList Iterator Link

LinkOb LinkedList

LookupKey Dictionary IdentDict KeySortCltn

OrderedCltn Iterator

Regex Range

SeqCltn Iterator

Iterator

SortedCltn Iterator Range

Stack Iterator

Time Date

ReadFromTbl

OIOout

OIOofd

StoreOnTbl

OIOifd

OIOin

OIOnihout

OIOostream

OIOnihin

OIOistream

Figure 3: NIHCL related classes

an artificial neural network to structure the contents of
software libraries are the following. First, artificial
neural networks are robust in the sense of tolerating
noisy or inexact input data. This property is especially
important during query processing simply because a
query may be regarded as an inexact representation of
the needed software component. Such inexact queries
appear rather common since the software developer
might have only a limited idea of what she is actually
searching for or of the universe of components stored
in the library. Second, artificial neural networks serve
as associative memories. In other words, such models
are capable of retrieving software components when
supplied just with the description of the needed
component. Finally, artificial neural networks exhibit
the ability of generalization. Pragmatically speaking,
an artificial neural network learns conceptually
relevant features of the input domain and is thus able
to structure the software library accordingly.

From the large number of different artificial neural
network models proposed in literature we selected the
self-organizing feature map as the architecture to
represent the software library. The motivation to
utilize exactly this architecture is due to its learning
rule and additionally, to its ability to visualize the
relationship of the various software components in
terms of the two-dimensional grid of output units.
Concerning the learning rule, we feel that
unsupervised learning is convenient for that kind of
application since the adaptation of the artificial neural
network is based exclusively on the input data and no
additional information is required to guide the
learning process. With additional information we refer
to the desired output of the network which has to be
specified when using supervised learning as for
example with the multi-layer Perceptron. The benefit
of such an unsupervised learning rule is most obvious
in case of already existing yet unsatisfactorily
structured software libraries where the definition of
the proper input-output-mappings beforehand
certainly is a laborious task. However, similar results
might be achievable with other architectures, too. A
unique characteristic of self-organizing feature maps
is the representation of intra- and intercluster
relationships. In less bulky terms we may state that the
property which makes the self-organizing feature map
well suited to our application is its ability to visualize
the relationship of the input data both within and
between clusters. More precisely, the semantic
similarity of the input data corresponds to the distance
of the respective software components within the grid
of output units. Contrary to that, other artificial neural
network models behave merely as predicates whether
or not a given component is a member of a certain
cluster.

In the following we will present some results

which were obtained by applying the self-organizing
feature map to the component description. The tests
were performed with rectangular two-dimensional
self-organizing feature maps. The graphical
representation of the result contains the final position
of the various NIH classes after the learning process.
These results may be interpreted as follows. Each
entry in the graphical representation corresponds to an
output unit of the self-organizing feature map. Each of
the units is either assigned the name of a NIH class or
a dot. The assignment of a class denotes the fact that
this very unit exhibits the highest activation level with
respect to the component description corresponding to
the class, i.e. the weight vector of this unit has the
smallest Euclidean distance to the component
description in terms of the input vector. The
assignment of a dot means that none of the classes are
assigned to that unit, i.e. the unit does not exhibit for
any class the highest activation level. Note that the
topological arrangement of the NIH classes in the map
is an indication of the semantic similarity between the
various classes.

As a first result consider the map as contained in
Figure 4. This final arrangement was obtained with an
initial value of the learning-rateε of 0.7. In order to
arrive at the stable state the self-organizing feature
map needed 8,000 learning iterations. So much for the
technical details of the learning process.

Perhaps even more exciting is the final
arrangement of the various classes within the two-
dimensional grid of output units. For the ease of
comparison we marked some of the clusters manually.
In general, the arrangement of the classes may be
regarded as a combination of the class hierarchy and
the ‘related-class’ relationship. Consider for example
the left upper part of the map as depicted in Figure 4.
This region consists of all classes implementing I/O
operations. Moreover, within this cluster the classes
are arranged according to the ‘related class’
relationship as indicated in their respective
descriptions in the manual. For another cluster of
related classes we refer either to the right lower corner
of the map containingRange, Regex, andString
or to the directly neighboring cluster withTime and
Date. However, the largest portion of the map is
reserved to classCollection and its derived and
related classes. This cluster is located in the left lower
and right upper corner of the map, respectively. Such a
separation appears quite natural since the former
contains virtually all sequential collections whereas
the latter comprises the unordered collections. The
only exception is raised by classKeySortCltn
which is in fact a sequential collection. Yet, due to its
very nature of providing keyed access this class is
closely related to classDictionary. It is exactly
this relationship that is visualized in the right upper

corner of the final map. Finally, we want to direct the
attention to yet another cluster which is neither
obvious from the class hierarchy nor from the ‘related-
class’ relationship. Particularly, we refer to the region
containing the classesFloat and Integer. Both
classes are used to implement basic numerical data
types and thus have a highly similar description in the
manual.

For another result consider the final map as
depicted in Figure 5. This time we used the same
learning parameters as above. However, we utilized a
slightly modified learning rule. More precisely, the
modifications are related to the adaptation of the
weight vectors. The original learning function of self-
organizing feature maps only moves the weight
vectors of the winner and neighboring units towards
the current input vector. In other words, the weight
vector of a unit is either adapted in such a way that its
distance to the current input vector decreases or the
weight vector is not changed at all. For a concrete
realization of such a function we refer to [26].
Contrary to that, we propose with our modified
learning function a more biologically plausible
process, namely the inclusion of lateral inhibition of
output units [18]. Roughly speaking, lateral inhibition
is a process where the activation of one neuron blocks
the activation of other neurons. Thus, the activation of
one neuron reduces the inclination of activating other
neurons. This phenomenon is observed, for example,
in the visual system of the brain [8]. In terms of the
self-organizing feature map as described above, the
activation of a unit corresponds to the similarity

between the unit’s weight vector and the current input
vector. Hence, by using the term ‘blocking the
activation of units’ we denote the enlargement of the
distance between the respective vectors. Thus, the
activation of this unit will be smaller in future with
respect to the current input. We perform lateral
inhibition by using the following neighborhood
function.

δ(i, j)=β(t)⋅sin(α⋅||i-j||)/(α⋅||i-j||)
This neighborhood functionδ(i, j) determines the

strength of adaptation of the weight vectorswj based
on the distance between the winneri and unitj, i.e. ||i-
j||. The parameterα is used to influence the width of
the function in terms of lateral excitation, i.e.
adaptation towards the input, and lateral inhibition, i.e.
adaptation away from the current input vector.
Pragmatically speaking, units in close vicinity to the
winning unit are pulled towards the current input
whereas distant units are pushed slightly away.
Finally, the time-varying parameterβ is used similarly
to the learning-rateε. This parameter represents an
inhibition-rate which determines the strength of the
adaptation. In analogy to the learning-rate,β is limited
within the range of [0, 1] decreasing gradually in time,
i.e. with increasing learning iterations.

The first observation regarding the final map of
Figure 5 relates to the time needed to train the self-
organizing feature map. Particularly, due to the
modifications of the learning rule, the artificial neural
network needed only 7,000 learning iterations to
arrive at the stable state.

On a closer look at the final map as shown in

. OIOofd OIOifd OIOin OIOistream . OIOnihout . Object .

ReadFromTbl . . OIOout . OIOnihin . . . Date

StoreOnTbl . LinkOb . OIOostream . FDSet . Point .

. Assoc . Class . Exception . Nil . Time

AssocInt . LookupKey . Link . Iterator . Random .

. Dictionary . . LinkedList . . Collection . Integer

. KeySortCltn . OrderedCltn . SeqCltn . . Float .

IdentDict . SortedCltn . Stack . . Arraychar . .

. Set . Heap . . Arrayob . String .

IdentSet . Bag . Bitset Vector . Range . Regex

Figure 5: 10×10 map of the NIHCL

Figure 4: 10×10 map of the NIHCL

OIOistreamOIOostream . OIOnihin . . AssocInt LookupKey . KeySortCltn

OIOin OIOout . OIOnihout . LinkOb . . Assoc .

OIOifd . StoreOnTbl Bag Dictionary IndentDict

OIOofd . ReadFromTbl . Class . Set . . IdentSet

. Exception . Bitset .

SortedCltn Heap . Arrayob . Nil . Object . Vector

OrderedCltn . Arraychar . Link . Random . . String

Stack Point . FDSet . .

. SeqCltn . Collection . . Time . . Regex

LinkedList . Iterator . Float Integer . Date Range .

Figure 5 we notice that similar clusters to Figure 4
were formed. Again the keyed data structures such as
Dictionary, IndentDict and KeySortCltn
are grouped together. Additionally, the classes
implementing such a keyed access are arranged in
close vicinity, i.e. Assoc, AssocInt, and
LookupKey. Similarly, the classes contained in the I/
O cluster mirror the ‘related-class’ relationship. The
remaining clusters of Figure 4 have their counterparts
in Figure 5 as well. Just to direct the attention to yet
another observation, classRandom is mapped
neighboring ofFloat. As may be guessed by the
names of the classes,Random produces pseudo-
random numbers ofFloat data type.

A more expansive view on the learning process of
self-organizing feature maps as well as examples of
the retrieval efficiency as compared to cluster analysis
is contained in [19]. The results of structuring other
software libraries are reported in [16] and [17]. A
more detailed exposition of the effects related to the
learning functions is published in [20].

4.3 A Comparison with Cluster Analysis

In this subsection we address the comparison of the
results obtained by using the self-organizing feature
map with results obtained by applying a more
traditional approach to structure software libraries,
namely hierarchical agglomerative clustering. In order

to make the results comparable we utilized the same
software representation as input to the cluster
algorithm. Again, the cluster algorithm is based on the
Euclidean distance between the various vectors
representing the software components. Tests were
performed with single linkage, complete linkage, and
Ward method. As expected, single linkage completely
failed to uncover any meaningful clusters. Since
complete linkage and Ward method produced
comparable results, we will summarize the former in
this subsection.

The following figures present the arrangement of
classes within a varying number of clusters. In
particular, Figure 6 provides the assignment of the
classes to six clusters by using complete linkage. At
first sight, we observe a rather large cluster labeled #1.
This cluster contains more than half of the NIHCL
classes. As expected, cluster #1 comprises a highly
unrelated mix of classes. More precisely, most of the
data structure classes are merged with the classes for I/
O operations. Moreover, the classes for keyed-access
are assigned to cluster #2 together with a number of
other, yet unrelated, classes.

With more clusters complete linkage tends to
produce more isolated clusters. In other words, a
number of clusters are formed containing one class
only. Even worse, cluster analysis fails in uncovering
the close relationship of classIterator to the
various container classes. Moreover, the data structure

(#1) Arraychar, Arrayob, Bag, Bitset, Class, Heap, IdentDict, IdentSet, KeySortCltn, LinkedList, LinkOb,
OIOifd, OIOin, OIOistream, OIOnihin, OIOnihout, OIOofd, OIOostream, OIOout, OrderedCltn,
ReadFromTbl, Regex, SeqCltn, Set, SortedCltn, Stack, StoreOnTbl

(#2) Assoc, AssocInt, Date, Dictionary, Exception, FDSet, Float, Integer, Link, LookupKey, Nil, Point,
Random, Range

(#3) Collection, Iterator
(#4) Object
(#5) String
(#6) Vector

Figure 6: Assignment of NIHCL classes to 6 clusters

(#1) Arraychar, Arrayob, Bag, Bitset, KeySortCltn, LinkedList, OIOifd, OIOin, OIOistream, OIOnihin,
OIOnihout, OIOofd, OIOostream, OIOout, OrderedCltn, Regex, SeqCltn, SortedCltn, Stack

(#2) Assoc, AssocInt, Date, Dictionary, Exception, FDSet, Float, Integer, Link, LookupKey, Nil, Point,
Random, Range, Time

(#3) Class, ReadFromTbl, StoreOnTbl
(#4) Collection
(#5) Heap, IdentDict, IdentSet, Set
(#6) Iterator
(#7) LinkOb
(#8) Object
(#9) String
(#10) Vector

Figure 7: Assignment of NIHCL classes to 10 clusters

and I/O classes are still assigned to the same cluster as
can be observed from Figure 7 containing the
assignment of NIHCL classes to ten clusters. As yet
another deficiency of complete linkage consider the
classes representing collections with keyed-access.
These classes are spread over three distinct clusters,
namely KeySortCltn is included in cluster #1,
Dictionary in cluster #2, andIdentDict in
cluster #5.

To summarize the observations, the self-organizing
feature map is obviously superior in uncovering the
relations within and between the various clusters. In
other words, the self-organizing feature map is less
susceptible to noisy input data which is common in an
environment relying on full-text indexing with a
limited stop-word list.

5 Conclusion

In this paper we described a novel approach to
structure the contents of a software library according
to the functional similarity of the stored software
components. As an illustrative example we used a
C++ class library. The software representation of the
various classes was built by full-text indexing of the
textual description of the classes as contained in the
software manual. The resulting index was cleaned up
by means of a small-sized stop-word list. This
software description was used as the input data during
the learning process of a self-organizing feature map,
i.e. an artificial neural network adhering to the
unsupervised learning paradigm. As a result of the
learning process, the self-organizing feature map
proved to be successful in structuring the software
library according to the intended functionality of the
various components. The final arrangement of the
classes resembled their association as provided by the
inheritance hierarchy and a ‘related-class’
relationship. Moreover, the results were clearly
superior to those obtained by means of hierarchical
agglomerative clustering of the same input data. This
fact is especially remarkable since hierarchical cluster
analysis represents the traditional way to achieve
structured software libraries in case of a software
representation that is based on keywords extracted
automatically from the software manual.

Acknowledgment

Thanks are due to Brigitta Galian for her patient
assistance in shaping the English.

References

[1] S. P. Arnold and S. L. Stepoway. The REUSE
System: Cataloging and Retrieval of Reusable
Software. Proceedings of the IEEE Int’l
Computer Conference (COMPCON’87). 1987.

[2] T. J. Biggerstaff and A. J. Perlis (Eds.).Software
Reusability. Volume I: Concepts and Models.
Volume II: Applications and Experience.
Addison-Wesley. Reading, MA. 1989.

[3] B. A. Burton, R. Wienk Aragon, S. A. Bailey, K.
D. Koehler, and L. A. Mayes. The Reusable
Software Library.IEEE Software 4(7). 1987.

[4] Y. F. Chang and C. M. Eastman. An Information
Retrieval System for Reusable Software.
Information Processing & Management 29(5).
1993.

[5] W. B. Frakes and B. A. Nejmeh. An Information
System for Software Reuse.Proceedings of the
10th Minnowbrook Workshop on Software Reuse.
1987.

[6] K. E. Gorlen, S. Orlow, and P. Plexico.Data
Abstraction and Object-Oriented Programming
in C++ . John Wiley & Sons. New York. 1990.

[7] K. E. Gorlen. NIH Class Library Reference
Manual (Revision 3.10). National Institutes of
Health. Bethesda, MD. 1990.

[8] E. R. Kandel, S. A. Siegelbaum, and J. H.
Schwartz. Synaptic Transmission. in:Principles
of Neural Science (E. R. Kandel, J. H. Schwartz,
and T. M. Jessel, Eds.). Elsevier. New York.
1991.

[9] E.-A. Karlsson, S. Sørumgård, and E.
Tryggeseth. Classification of Object-Oriented
Components for Reuse.Proceedings of the
Conference on Technology of Object-Oriented
Languages and Systems (TOOLS 7). Dortmund.
Germany. 1992.

[10] T. Kohonen. Self-organized formation of
topologically correct feature maps.Biological
Cybernetics 43. 1982.

[11] T. Kohonen.Self-Organization and Associative
Memory (3rd edition). Springer. Berlin. 1989.

[12] T. Kohonen. The Self-Organizing Map.
Proceedings of the IEEE 78(9). 1990.

[13] C. W. Krueger. Software Reuse.ACM
Computing Surveys 24(2). 1992.

[14] Y. S. Maarek and F. A. Smadja. Full Text
Indexing Based on Lexical Relations - An
Application: Software Libraries.Proceedings of
the 12th Int’l ACM SIGIR Conf. on Research and
Development in Information Retrieval. 1989.

[15] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An
Information Retrieval Approach For
Automatically Constructing Software Libraries.
IEEE Transactions on Software Engineering
17(8). 1991.

[16] D. Merkl. Structuring Software for Reuse - The
Case of Self-Organizing Maps.Proceedings of
the Int’l Joint Conference on Neural Networks
(IJCNN’93). Nagoya. Japan. 1993.

[17] D. Merkl, A M. Tjoa, and G. Kappel. A Self-
Organizing Map that Learns the Semantic
Similarity of Reusable Software Components.
Proceedings of the 5th Australian Conference on
Neural Networks (ACNN’94). Brisbane. 1994.

[18] D. Merkl, A M. Tjoa, and G. Kappel.
Application of Self-Organizing Feature Maps
With Lateral Inhibition to Structure a Library of
Reusable Software Components.Proceedings of
the IEEE Int’l Conference on Neural Networks
(ICNN’94). Orlando, FL. 1994.

[19] D. Merkl, A M. Tjoa, and G. Kappel. Learning
the Semantic Similarity of Reusable Software
Components. Proceedings of the 3rd Int’l
Conference on Software Reuse. Rio de Janeiro.
IEEE Computer Society Press. 1994.

[20] D. Merkl. The Effects of Lateral Inhibition on
Learning Speed and Precision of a Self-
Organizing Feature Map.Proceedings of the 6th
Australian Conference on Neural Networks
(ACNN’95). Sydney. 1995.

[21] E. Merlo, I. McAdam, and R. De Mori. Source
code informal information analysis using
connectionist models.Proceedings of the 13th
Int’l Joint Conference on Artificial Intelligence
(IJCAI’93). Chambéry. France. 1993.

[22] R. T. Mittermeir and W. Rossak. Reusability. in:
Modern Software Engineering - Foundations and
Current Perspectives (P. A. Ng and R. T. Yeh,
Eds.). Van Nostrand Reinhold. New York. 1990.

[23] E. Ostertag, J. Hendler, R. Prieto-Díaz, and C.
Braun. Computing Similarity in a Reuse Library.
ACM Transactions on Software Engineering and
Methodology 1(3). 1992.

[24] R. Prieto-Díaz and P. Freeman. Classifying
software for reusability.IEEE Software 4(1).
1987.

[25] R. Prieto-Díaz. Implementing Faceted
Classification for Software Reuse.
Communications of the ACM 34(5). 1991.

[26] H. Ritter and T. Kohonen. Self-Organizing
Semantic Maps.Biological Cybernetics 61.
1989.

[27] G. Sindre, E.-A. Karlsson, and P. Paul. Heuristics
for Maintaining Term Structures for Relaxed
Search. in: Database and Expert Systems
Applications (A M. Tjoa and I. Ramos, eds.).
Springer. Wien. 1992.

[28] G. Sindre and S. Sørumgård. Terminology
evolution in component libraries.Proceedings of
the 3rd Int’l Congress on Terminology and
Knowledge Engineering. Köln. Germany. 1993.

[29] H. R. Turtle and W. B. Croft. A Comparison of
Text Retrieval Models.The Computer Journal
35(3). 1992.

