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Abstract + Software libraries should be organized in
Properly structured software libraries are crucial for such a way that locating the most
the success of software reuse. Specifically, the appropriate component is easy for the
structure of the software library ought to reflect the actual user. Particularly, the library should
functional similarity of the stored software provide assistance to the user in locating
components in order to facilitate the retrieval process. components that meet some specified
We propose the application of artificial neural network functionality.

technology to achieve such a structured library. In  In this paper we address the second requirement,
more detail, we rely on full-text indexing of the namely structuring the contents of software libraries in
software manual in order to obtain the softwaresuch a way that locating the needed component is
representation. This software representation is furtheifacilitated. For a more detailed discussion of other
used as the input data during the training process ofspects of software reuse we refer to [2], [13], [22].
an artificial neural network adhering to the  Inthe remainder of this paper we will describe an
unsupervised learning paradigm. The distinctiveapproach relying on artificial neural network
feature of this very model is to make the semanti¢echnology to achieve a semantically structured
relationship between the stored software componentgoftware library. By the terrsemantically structured
geographically explicit. Thus, the actual user of thewe denote structuring according to the functional
software |ibrary gets a notion of the semanticSim"arity of the stored software components. In other
relationship between the components in terms of theiwords, components that exhibit similar behavior
geographical closeness. should be stored near to each other and thus be
identifiable. From a rather global point of view, our
approach employs a keyword-based software
representation where the various keywords are
Software reuse is concerned with the technologica¢xtracted automatically from the manual of the
and organizational issues of using already existingoftware components. Specifically, each component is
software components to build new applications. Therelescribed by using a set of terms extracted from the
is common agreement that the reuse of softwaréull-text of the respective part of the manual. During
increases both the productivity of the softwarethe indexing process we utilize only a small list of
suppliers and the quality of the software itself. Thestop-words to clean up the resulting index.
former is due to the amount of time that is saved eacBubsequently, each software component is represented
time a component is reused. The latter is due to thas a binarily-valued vector according to the vector
fact that the same component is used and tested space model. These vectors are further used as the
many different contexts. However, in order to makeinput data for an artificial neural network adhering to
software reuse operational, the actual softwarehe unsupervised learning paradigm. The artificial
developers ought to be equipped with librariesneural network is responsible for the structuring of the
containing reusable software components. Concerningoftware library.
these so-called software libraries, the most stringent The rest of this paper is organized as follows. In
requirements are the following. the next section we will provide a brief overview on
» Software libraries should provide a large  related work concerning software representation and
number of reusable components in a wide library structuring. In Section 3 we will describe the
spectrum of application domains. These architecture and the learning rule of the artificial
components may be either reused as they neural network which we used for our experiments.
are or may easily be adapted to the needs of Section 4 in its turn will contain the results of
the application currently under structuring a software library. Finally, in Section 5 we
consideration. will draw some conclusions.

1 Introduction



2 Related Work 3 Self-Organizing Feature Maps

Related work may roughly be assigned to two groupsThe self-organizing feature map [10], [11], [12] is one
First, approaches to classify reusable softwarefthe major unsupervised learning models in the area
components and second, approaches to structudd artificial neural networks. Unsupervised learning
software libraries. may roughly be described as adapting the structure of
An approach to software classification which hasan artificial neural network to enable the construction
received much attention is faceted classification asf internal models that capture regularities present in
proposed in [24], [25]. This classification schema mayhe input domain without any additional information
be described as consisting of a set of categories, i.eeyond the input data.
the so-called facets, each of which has several terms The self-organizing feature map consists of a layer
that may possibly be filled in. Thus, the classificationof n so-called input units and a grid of so-called output
schema remains flexible with respect to extensibilityunits. Each input unit is connected to every output
in such a way that components derived from newunit. The purpose of the input layer is to collect the
applications may easily be classified by using theénput data in form of am-dimensional feature vector
same categories, yet with adjusted terms. Onhand to propagate this input vector onto the output
recently, faceted classification has been adapted tanits. Concerning the output units, each of them is
meet the requirements of object-oriented softwaressigned a weight vector withweight components.
components [9], [27], [28]. Other approaches rely onnitially, the weight components are assigned random
indexing techniques from the area of informationvalues in the range of [0, 1]. Each of the output units
retrieval, namely manual assignment of keywords [1]produces one output value which is proportional to the
scanning the source code and extracting commentimilarity between the current input vector and the
[3], scanning the full-text of the documentation andunit's weight vector. This value is commonly referred
assigning document descriptors automatically [4], [5].to as the unit's activation or the unit's response to a
In [15] an approach is described that relies on thgiven input. Similarity between the vectors is usually
concept of lexical affinities which may be paraphrasedneasured in terms of Euclidean distance.
as the selection of pairs of words that occur frequently The adaptation of the weight vectors is performed
together within one sentence of the documentatiotin an unsupervised learning process. This process may
[14]. These pairs of words are further used as thée described in three steps which are performed
index to the respective software components. Anmepeatedly. Together, these three steps are referred to
approach to software classification by using aas one learning iteration. First, one input vector at a
connectionist model is suggested in [21]. In particulartime is randomly selected out of the set of input
feed-forward and recurrent artificial neural networksvectors. Second, this input vector is mapped onto the
are used to assign comments and identifiers which aggid of output units of the self-organizing feature map
extracted from the source code to concepts. Thus, thend the unit with the strongest response is determined.
artificial neural network performs an analysis of theThis unit is referred to as the winning unit or the best-
informal information contained in a program. matching unit, the winner in short. Third, the weight
The organization of software libraries is vector of the winning unit as well as the weight
commonly performed either by applying techniques ofvectors of units in topological neighborhood of the
information retrieval, namely cluster analysis, or bywinning unit are adapted in such a way that these units
utilizing semantic networks to model the semanticwill exhibit an even stronger response with the same
similarity between components. An approach adheringnput vector in future.
to information retrieval techniques is described in  More formally, we may describe the learning rule
[15]. The authors describe the organization of aof a self-organizing feature map as follows.
software library containing operating system (1) Random selection of one input-vecxor
commands by wusing hierarchical agglomerative(2) Determination of the best matching uinity using
clustering methods. The clustering is based on the the Euclidean distance measure.
lexical affinities extracted from the software inlw - x|[< [[w; - x| 00O
documentation as described above. An approach In this formulaw; (wj) denotes the weight vector
combining faceted classification with semantic assigned to unit(j) in output spac®.
networks is reported in [23]. More precisely, the (3) Adaptation of the weight vectorsy in the
similarity between components is indicated by using neighborhood of the best matching unit
weighted connections within a semantic network  Aw; =¢ [&(, j) [[x - w] 0j0O
which describes the various facets of the software The strength of the adaptation is determined with
classification schema. respect to parameteg, i.e. learning-rate, the
neighborhood relation between the best matching
uniti and the output unjtwhich is currently under



consideration, and the difference between inpubf the classSet as contained in [7]. These manual
vectorx and weight vectow; assigned to unit.  entries are further full-text indexed by omitting only a
The functiond has to guarantee the following very small set of stop-words. The stop-word list, in
property: the larger the distance between units fact, comprises only articles, conjunctions, and
andj, i.e. [i]| in the output spad®, the smaller pronouns. All other words are included in the index of

the adaptation of the weight vectar the respective class. Just to give the concrete figure,
(4) Repeat steps (1) thru (3) until no more changes td89 distinct terms were extracted from the various
the weight vectors are observed. textual descriptions of the classes.

To guarantee convergence of the map the learnin
rate € as well as the adapted neighborhood have toSet - Unordered Collection of Non-Duplicate
shrink in the course of time. Hence, the adaptation gf Objects
the weights as well as the set of units that are subjeciBase Class: Col | ecti on
to weight changes decrease gradually. Derived Classes: Di cti onary, | dent Set

During the numerous repetitions of these thre¢ Related Classes: I t er at or
steps of the learning process, the weight vectors getA Set is an unordered collection of objects. The
better approximations to the input distribution.| objects cannot be accessed by a key as can the
Furthermore, neighboring units respond similarly tg °P/ects in a Dictionary, for example. Unlike a
input vectors, thus resulting in a global order. In othet B39 in Which equal objects may occur more than
words, the weight vectors of the units are tuned t once, a Set ignores attemps to add any Ob]eCt. that

. . . duplicates one already in the Set . A Set considers
specmc. features. of the mput space in suc;h a way that, o objects to be duplicates if they are i sEqual ()
topological relations which are present in the input 5 one another.
domain are retained as faithfully as possible in the class Set is implemented using a hash table with
output space, i.e. the grid of output units. Apparently, open addressing. Set::add() calls the virtual
due to the mapping from a high dimensional input member function hash() and uses the number
space to a much lower dimensional output space someeturned to compute an index to the hash table at
distortion is unavoidable. Yet, nearby vectors in the which to begin searching, and i sEqual () is called
input space are mapped onto nearby units in the output® check for equality.
space. To conclude, the response of the self-organizine Figure 1: NIHCL manual entry of class Set
map to the presentation of an input vector is a
localized pattern of activity which is similar for To provide the means to interpret the results of
closely related input vectors. library structuring we show the NIHCL class
hierarchy in Figure 2. Furthermore, we provide a
graph representing the ‘related-class’ relationship in
Figure 3 which is derived from the respective sections
in the manual.

4.1 The Software Representation The final software representation follows the
i . . vector space model where input data and queries are
Throughout the remainder of this paper we will use;gpresented as vectors inmdimensional hyperspace

the NIH Class Library, the NIHCL in short, as an»9) more specifically, each component of the vectors
example of a software library. NIH is the acronym for o responds to a possible document feature, i.e. index

Natior_lal _Institutes of He"?‘lth' a US.governmentaIterm, and is binarily-valued. Thus an entry of zero
organization. The NIHCL is a collection of classesygnqtes the fact that the corresponding feature is not
developed in the C++ programming language. Th§seq in the description of the software component.
NIH Class lergry includes geqerally useful dataContrary to that, an entry of one means that the
types such aString, Dat e, andTi me, aswell as @ oo rresponding feature is used to describe the software
number of container classes suctCasler edQ tn,  component. To conclude, the software components are
LinkedList, Set, Dictionary which are tohecented by vectors of a 489-dimensional
similar to the Smalltalk-80 classes. Moreover, the,ynerspace. These feature vectors are used as the input

NIHCL provides the facilities f[o store arbitr.arily data during the learning process of the self-organizing
complex data structures comprised of NIH Librarysoaire map.

and user-defined objects on disk. For more detailed
information about the NIH Class Library we refer to .
[6] and to the reference manual of Version 3.10 [7]. 4.2 The Structured Software Library

In order to build the software representation weBased on the component representation as outlined
rely on the textual description of the various classesbove we trained a self-organizing feature map to
that are contained in the NIHCL. As an illustrative structure the classes of the NIHCL according to their
example consider Figure 1 containing the descriptioriunctional relationship. The main reasons for choosing

4  Structuring Software Libraries
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an artificial neural network to structure the contents ofvhich were obtained by applying the self-organizing
software libraries are the following. First, artificial feature map to the component description. The tests
neural networks are robust in the sense of toleratingrere performed with rectangular two-dimensional
noisy or inexact input data. This property is especiallyself-organizing feature maps. The graphical
important during query processing simply because aepresentation of the result contains the final position
guery may be regarded as an inexact representation of the various NIH classes after the learning process.
the needed software component. Such inexact querid$hese results may be interpreted as follows. Each
appear rather common since the software developamtry in the graphical representation corresponds to an
might have only a limited idea of what she is actuallyoutput unit of the self-organizing feature map. Each of
searching for or of the universe of components storethe units is either assigned the name of a NIH class or
in the library. Second, artificial neural networks servea dot. The assignment of a class denotes the fact that
as associative memories. In other words, such modethis very unit exhibits the highest activation level with
are capable of retrieving software components whenespect to the component description corresponding to
supplied just with the description of the neededthe class, i.e. the weight vector of this unit has the
component. Finally, artificial neural networks exhibit smallest Euclidean distance to the component
the ability of generalization. Pragmatically speaking,description in terms of the input vector. The
an artificial neural network learns conceptuallyassignment of a dot means that none of the classes are
relevant features of the input domain and is thus ablassigned to that unit, i.e. the unit does not exhibit for
to structure the software library accordingly. any class the highest activation level. Note that the

From the large number of different artificial neural topological arrangement of the NIH classes in the map
network models proposed in literature we selected this an indication of the semantic similarity between the
self-organizing feature map as the architecture twarious classes.
represent the software library. The motivation to As a first result consider the map as contained in
utilize exactly this architecture is due to its learningFigure 4. This final arrangement was obtained with an
rule and additionally, to its ability to visualize the initial value of the learning-rate of 0.7. In order to
relationship of the various software components imarrive at the stable state the self-organizing feature
terms of the two-dimensional grid of output units. map needed 8,000 learning iterations. So much for the
Concerning the learning rule, we feel thattechnical details of the learning process.
unsupervised learning is convenient for that kind of Perhaps even more exciting is the final
application since the adaptation of the artificial neurabrrangement of the various classes within the two-
network is based exclusively on the input data and ndimensional grid of output units. For the ease of
additional information is required to guide the comparison we marked some of the clusters manually.
learning process. With additional information we referin general, the arrangement of the classes may be
to the desired output of the network which has to beegarded as a combination of the class hierarchy and
specified when using supervised learning as fothe ‘related-class’ relationship. Consider for example
example with the multi-layer Perceptron. The benefithe left upper part of the map as depicted in Figure 4.
of such an unsupervised learning rule is most obvioughis region consists of all classes implementing 1/0
in case of already existing yet unsatisfactorilyoperations. Moreover, within this cluster the classes
structured software libraries where the definition ofare arranged according to the ‘related class’
the proper input-output-mappings beforehandrelationship as indicated in their respective
certainly is a laborious task. However, similar resultsdescriptions in the manual. For another cluster of
might be achievable with other architectures, too. Arelated classes we refer either to the right lower corner
unique characteristic of self-organizing feature map®f the map containinange, Regex, andSt ri ng
is the representation of intra- and interclusteror to the directly neighboring cluster witfi me and
relationships. In less bulky terms we may state that thBat e. However, the largest portion of the map is
property which makes the self-organizing feature mapeserved to clas€ol | ecti on and its derived and
well suited to our application is its ability to visualize related classes. This cluster is located in the left lower
the relationship of the input data both within andand right upper corner of the map, respectively. Such a
between clusters. More precisely, the semantiseparation appears quite natural since the former
similarity of the input data corresponds to the distanceontains virtually all sequential collections whereas
of the respective software components within the gridhe latter comprises the unordered collections. The
of output units. Contrary to that, other artificial neuralonly exception is raised by claséeySortC tn
network models behave merely as predicates whethevhich is in fact a sequential collection. Yet, due to its
or not a given component is a member of a certaivery nature of providing keyed access this class is
cluster. closely related to clasBi cti onary. It is exactly

In the following we will present some results this relationship that is visualized in the right upper



corner of the final map. Finally, we want to direct thebetween the unit's weight vector and the current input
attention to yet another cluster which is neithervector. Hence, by using the term ‘blocking the
obvious from the class hierarchy nor from the ‘related-activation of units’ we denote the enlargement of the
class’ relationship. Particularly, we refer to the regiondistance between the respective vectors. Thus, the
containing the classesl oat and| nt eger. Both  activation of this unit will be smaller in future with
classes are used to implement basic numerical dataspect to the current input. We perform lateral
types and thus have a highly similar description in thenhibition by using the following neighborhood
manual. function.

For another result consider the final map as o(i, )=RB®Sin@li-j|)/@i-jll)
depicted in Figure 5. This time we used the same This neighborhood functiod(i, j) determines the
learning parameters as above. However, we utilized atrength of adaptation of the weight vectefsbased
slightly modified learning rule. More precisely, the on the distance between the winhand unit, i.e. |i-
modifications are related to the adaptation of thg||. The parameteax is used to influence the width of
weight vectors. The original learning function of self-the function in terms of lateral excitation, i.e.
organizing feature maps only moves the weightadaptation towards the input, and lateral inhibition, i.e.
vectors of the winner and neighboring units towardsadaptation away from the current input vector.
the current input vector. In other words, the weightPragmatically speaking, units in close vicinity to the
vector of a unit is either adapted in such a way that itsvinning unit are pulled towards the current input
distance to the current input vector decreases or thehereas distant units are pushed slightly away.
weight vector is not changed at all. For a concretd=inally, the time-varying parametgris used similarly
realization of such a function we refer to [26].to the learning-rat&. This parameter represents an
Contrary to that, we propose with our modifiedinhibition-rate which determines the strength of the
learning function a more biologically plausible adaptation. In analogy to the learning-rgés limited
process, namely the inclusion of lateral inhibition ofwithin the range of [0, 1] decreasing gradually in time,
output units [18]. Roughly speaking, lateral inhibition i.e. with increasing learning iterations.
is a process where the activation of one neuron blocks The first observation regarding the final map of
the activation of other neurons. Thus, the activation ofigure 5 relates to the time needed to train the self-
one neuron reduces the inclination of activating otheorganizing feature map. Particularly, due to the
neurons. This phenomenon is observed, for examplenodifications of the learning rule, the artificial neural
in the visual system of the brain [8]. In terms of thenetwork needed only 7,000 learning iterations to
self-organizing feature map as described above, tharrive at the stable state.
activation of a unit corresponds to the similarity = On a closer look at the final map as shown in
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Figure 5 we notice that similar clusters to Figure 4to make the results comparable we utilized the same
were formed. Again the keyed data structures such aoftware representation as input to the cluster
Dictionary, | ndent Di ct and KeySortC tn algorithm. Again, the cluster algorithm is based on the
are grouped together. Additionally, the classesEuclidean distance between the various vectors
implementing such a keyed access are arranged mepresenting the software components. Tests were
close vicinity, i.e. Assoc, Assoclnt, and performed with single linkage, complete linkage, and
LookupKey. Similarly, the classes contained in the I/ Ward method. As expected, single linkage completely
O cluster mirror the ‘related-class’ relationship. Thefailed to uncover any meaningful clusters. Since
remaining clusters of Figure 4 have their counterpartsomplete linkage and Ward method produced
in Figure 5 as well. Just to direct the attention to yetomparable results, we will summarize the former in
another observation, clasRandom is mapped this subsection.
neighboring ofFl oat . As may be guessed by the  The following figures present the arrangement of
names of the classe®andom produces pseudo- classes within a varying number of clusters. In
random numbers dfl oat data type. particular, Figure 6 provides the assignment of the
A more expansive view on the learning process otlasses to six clusters by using complete linkage. At
self-organizing feature maps as well as examples dirst sight, we observe a rather large cluster labeled #1.
the retrieval efficiency as compared to cluster analysighis cluster contains more than half of the NIHCL
is contained in [19]. The results of structuring otherclasses. As expected, cluster #1 comprises a highly
software libraries are reported in [16] and [17]. Aunrelated mix of classes. More precisely, most of the
more detailed exposition of the effects related to thelata structure classes are merged with the classes for I/
learning functions is published in [20]. O operations. Moreover, the classes for keyed-access
are assigned to cluster #2 together with a number of
; : : other, yet unrelated, classes.
4.3 A Comparison with Cluster Analysis With more clusters complete linkage tends to
In this subsection we address the comparison of thproduce more isolated clusters. In other words, a
results obtained by using the self-organizing featurenumber of clusters are formed containing one class
map with results obtained by applying a moreonly. Even worse, cluster analysis fails in uncovering
traditional approach to structure software librariesthe close relationship of cladst er at or to the
namely hierarchical agglomerative clustering. In ordewarious container classes. Moreover, the data structure

(#1) Arraychar, Arrayob, Bag, Bitset, Class, Heap, IdentDict, IdentSet, KeySortCltn, LinkedList, LinkOb,
OIlQifd, OIQin, OlQistream, OlOnihin, OlOnihout, OlOofd, Ol0ostream, OlOout, OrderedCltn,
ReadFromTbl, Regex, SeqCltn, Set, SortedCltn, Stack, StoreOnTbl

(#2) Assoc, Assoclint, Date, Dictionary, Exception, FDSet, Float, Integer, Link, LookupKey, Nil, Point,
Random, Range

(#3) Collection, Iterator
(#4) Object

(#5) String

(#6) Vector

Figure 6: Assignment of NIHCL classes to 6 clusters

(#1) Arraychar, Arrayob, Bag, Bitset, KeySortCltn, LinkedList, OlOifd, OlOin, OlQistream, OIOnihin,
OlOnihout, OlOofd, OlOostream, OlOout, OrderedCltn, Regex, SeqCltn, SortedCltn, Stack

(#2) Assoc, Assoclnt, Date, Dictionary, Exception, FDSet, Float, Integer, Link, LookupKey, Nil, Point,
Random, Range, Time

(#3) Class, ReadFromThbl, StoreOnThbl
(#4) Collection

(#5) Heap, IdentDict, IdentSet, Set
(#6) Iterator

(#7) LinkOb
(#8) Object
(#9) String

(#10) Vector

Figure 7: Assignment of NIHCL classes to 10 clusters
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