
[BFH90] A. Bouajjani, J.C. Fernandez, and N. Halbwachs. Minimal model generation. In R.P.Kurshan and E.M. Clarke, editors, CAV 90: Automatic Veri�cation Methods for Finite-state Systems, Lecture Notes in Computer Science 531, pages 197{203. Springer-Verlag,1990.[�Cer�ans] K. �Cer�ans. Decidability of bisimulation equivalence for parallel timer processes. InCAV 92: Automatic Veri�cation Methods for Finite-state Systems, Lecture Notes inComputer Science. Springer-Verlag. To appear.[CHR91] Z. Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. InformationProcessing Letters, 40(5):269{276, 1991.[HNSY92] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time systems. In Proceedings of the Seventh Annual Symposium on Logic in ComputerScience, pages 394{406. IEEE Computer Society Press, 1992.[HPS83] D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of regular programs.Journal of Computer and System Sciences, 26(2):222{243, 1983.[Lam87] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on ComputerSystems, 5(1):1{11, 1987.[LY92] D. Lee and M. Yannakakis. Online minimization of transition systems. In Proceedingsof the 24th Annual Symposium on Theory of Computing. ACM Press, 1992.[MMP92] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In J.W. de Bakker,K. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real Time: Theory in Practice,Lecture Notes in Computer Science 600, pages 447{484. Springer-Verlag, 1992.[NSOY] X. Nicollin, J. Sifakis, A. Olivero, and S. Yovine. An approach to the description andanalysis of hybrid systems. To appear.[NSY92] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and hybrid systems.In J.W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real Time:Theory in Practice, Lecture Notes in Computer Science 600, pages 549{572. Springer-Verlag, 1992.[WME92] F. Wang, A.K. Mok, and E.A. Emerson. Real-time distributed system speci�cation andveri�cation in asynchronous propositional temporal logic. In Proceedings of the 12thInternational Conference on Software Engineering, 1992.
19

Fixpoint computation: leaking gas burnerLet A be the integrator system de�ned in Figure 5. We use the �xpoint computation procedure toprove that the formula y � 60 ! 20t � y is an invariant of A. It follows that the gas burner leaksat most one twentieth of the time in any interval of at least 60 seconds. Let Ri = hpc = 1 ^ t =0 ^ x = 0i be the region of initial states and let Rf = hy � 60 ^ 20t > yi be the region of \bad"states. Let Ri again denote the value of R = pre(Rcur) after the i-th iteration of the algorithm.Then: R0 = RfR1 = h(pc = 2 ^ �19 < 20 t� y ^ 11 < 20 t+ x� y ^ 2 < t ^ 0 � t ^ 0 � x)_ (pc = 1 ^ �19 < 20t� 19x� y ^ 2 < t� x ^ �1 � �x ^ 0 � x)iR2 = h(pc = 1 ^ �8 < 20t� 19x� y ^ 1 < t � x ^ �1 � �x ^ 0 � x)_ (pc = 2 ^ �19 < 20 t� y ^ 2 < t ^ 11 < 20 t+ x� y ^ 0 � x)iR3 = h(pc = 2 ^ �8 < 20 t� y ^ 1 < t ^ 22 < 20 t+ x� y ^ 0 � x)_ (pc = 1 ^ �8 < 20t� 19x� y ^ 1 < t� x ^ �1 � �x ^ 0 � x)iR4 = h(pc = 1 ^ 0 < t� x ^ 3 < 20t� 19x� y ^ �1 � �x ^ 0 � x)_ (pc = 2 ^ �8 < 20 t� y ^ 1 < t ^ 22 < 20 t+ x� y ^ 0 � x)iR5 = h(pc = 2 ^ 0 < t ^ 3 < 20 t� y ^ 33 < 20 t+ x� y ^ 0 � x)_ (pc = 1 ^ 0 < t � x ^ 3 < 20t� 19x� y ^ �1 � �x ^ 0 � x)iR6 = h(pc = 1 ^ �1 < t� x ^ 14 < 20t� 19x� y ^ �1 � �x ^ 0 � x)_ (pc = 2 ^ 0 < t ^ 3 < 20 t� y ^ 33 < 20 t+ x� y ^ 0 � x)iR7 = h(pc = 2 ^ 14 < 20 t� y ^ 44 < 20 t+ x� y ^ 0 � t ^ 0 � x)_ (pc = 1 ^ �1 < t� x ^ 14 < 20t� 19x� y ^ �1 � �x ^ 0 � x)iR8 = h(pc = 1 ^ 25 < 20t� 19x� y ^ �1 � t� x ^ �1 � �x ^ 0 � x)_ (pc = 2 ^ 14 < 20 t� y ^ 44 < 20 t+ x� y ^ 0 � t ^ 0 � x)iR9 = h(pc = 2 ^ 25 < 20 t� y ^ 55 < 20 t+ x� y ^ 0 � t ^ 0 � x)_ (pc = 1 ^ 25 < 20t� 19x� y ^ �1 � t� x ^ �1 � �x ^ 0 � x)iSince R9 � R8, a �xpoint is found in 9 iterations. As the �xpoint S0�i�8Ri contains no initialstates from Ri, the invariant property has been veri�ed.Acknowledgements. Amir Pnueli and Joseph Sifakis have inuenced the ideas contained in thispaper through numerous discussions.References[ACH+92] R. Alur, C. Courcoubetis, N. Halbwachs, D.L. Dill, and H. Wong-Toi. Minimizationof timed transition systems. In W.R. Cleaveland, editor, CONCUR 92: Theories ofConcurrency, Lecture Notes in Computer Science 630, pages 340{354. Springer-Verlag,1992.[AD90] R. Alur and D.L. Dill. Automata for modeling real-time systems. In M.S. Paterson,editor, ICALP 90: Automata, Languages, and Programming, Lecture Notes in ComputerScience 443, pages 322{335. Springer-Verlag, 1990.18

Let Ri = hpc = (1; A)i be the region of initial states and let Rf = hpc = (4; D)i be the regionof \bad" states. Let Ri denote the value of R = pre(Rcur) after the i-th iteration of the algorithm.Then R0 = Rf andR1 = pre(Rcur) = h(pc1 = 3 ^ pc2 = D ^ 1 = k) _ (pc1 = 4 ^ pc2 = C ^ 2 = k)i;where pci, for i = 1; 2, denotes the i-th component of the control variable pc. We keep computingRi+1 = pre(Ri) as long as Ri and Ri are disjoint:R2 = h(pc1 = 2 ^ pc2 = D ^ x � 2) _ (pc1 = 4 ^ pc2 = B ^ y � 2)_ (pc1 = 3 ^ pc2 = B ^ y � 2 ^ 13 � 11x� 10 y ^ 1 = k)_ (pc1 = 2 ^ pc2 = C ^ x � 2 ^ 8 � �11x+ 10 y ^ 2 = k)_ (pc1 = 2 ^ pc2 = C ^ x � 2 ^ 30 � 10 y ^ 2 = k)_ (pc1 = 3 ^ pc2 = B ^ y � 2 ^ 3 � x ^ 1 = k)iR3 = h(pc1 = 1 ^ pc2 = D ^ 0 = k) _ (pc1 = 4 ^ pc2 = A ^ 0 = k)_ (pc1 = 2 ^ pc2 = C ^ 2 = k ^ x � 2 ^ 8 � �11x+ 10y)_ (pc1 = 3 ^ pc2 = B ^ 1 = k ^ y � 2 ^ �20 � �10y ^ 13 � 11x� 10y)_ (pc1 = 2 ^ pc2 = B ^ x � 2 ^ y � 2 ^ 13 � �10 y)iR4 = h(pc1 = 4 ^ pc2 = D) _ (pc1 = 3 ^ pc2 = D ^ 0 = k)_ (pc1 = 4 ^ pc2 = C ^ 0 = k) _ (pc1 = 3 ^ pc2 = D ^ 1 = k)_ (pc1 = 4 ^ pc2 = C ^ 2 = k)_ (pc1 = 2 ^ pc2 = A ^ 8 � �11x ^ 0 = k)_ (pc1 = 2 ^ pc2 = B ^ y � 2 ^ 8 � �11x)_ (pc1 = 2 ^ pc2 = B ^ x � 2 ^ y � 2 ^ 13 � �10 y)_ (pc1 = 1 ^ pc2 = B ^ 0 = k ^ y � 2 ^ 13 � �10 y)iR5 = h(pc1 = 3 ^ pc2 = D ^ 1 = k) _ (pc1 = 4 ^ pc2 = C ^ 2 = k)_ (pc1 = 2 ^ pc2 = D ^ x � 2) _ (pc1 = 4 ^ pc2 = B ^ y � 2)_ (pc1 = 2 ^ pc2 = A ^ 8 � �11x ^ 0 = k)_ (pc1 = 1 ^ pc2 = B ^ y � 2 ^ 13 � �10 y ^ 0 = k)_ (pc1 = 2 ^ pc2 = C ^ 8 � �11x ^ 38 � �11x+ 10 y ^ 0 = k)_ (pc1 = 3 ^ pc2 = B ^ y � 2 ^ 13 � 11x� 10 y ^ 1 = k)_ (pc1 = 3 ^ pc2 = B ^ y � 2 ^ 3 � x ^ 1 = k)_ (pc1 = 2 ^ pc2 = C ^ x � 2 ^ 8 � �11x+ 10 y ^ 2 = k)_ (pc1 = 2 ^ pc2 = C ^ x � 2 ^ 3 � y ^ 2 = k)_ (pc1 = 3 ^ pc2 = B ^ y � 2 ^ 13 � �10 y ^ 46 � 11x� 10 y ^ 0 = k)iR6 = h(pc1 = 1 ^ pc2 = D ^ 0 = k) _ (^ pc1 = 4 ^ pc2 = A ^ 0 = k)_ (pc1 = 2 ^ pc2 = D ^ x � 2) _ (pc1 = 4 ^ pc2 = B ^ y � 2)_ (pc1 = 2 ^ pc2 = C ^ 8 � �11x ^ 38 � �11x+ 10 y ^ 0 = k)_ (pc1 = 3 ^ pc2 = B ^ y � 2 ^ 13 � 11x� 10 y ^ 1 = k)_ (pc1 = 3 ^ pc2 = B ^ y � 2 ^ 3 � x ^ 1 = k)_ (pc1 = 2 ^ pc2 = C ^ x � 2 ^ 8 � �11x+ 10 y ^ 2 = k)_ (pc1 = 2 ^ pc2 = C ^ x � 2 ^ 3 � y ^ 2 = k)_ (pc1 = 2 ^ pc2 = B ^ x � 2 ^ y � 2 ^ 13 � �10 y)_ (pc1 = 3 ^ pc2 = B ^ y � 2 ^ 13 � �10 y ^ 46 � 11x� 10 y ^ 0 = k)iSince R6 � R3[R5, a �xpoint is found in 6 iterations. Notice that the �xpoint S0�i�5Ri containsno initial states from Ri. Therefore, the invariant property has been veri�ed.17

� j R) R0g = fC000; C001; C10g and � = fC000g. Since R = C001 is also stable in �2 and is notreaching any new states not in �, � remains the same and � = fC000; C001g. However, consideringR = C10, we obtain split(C10; �2) = fC100 = hpc = 1 ^ 0 � x < 2 ^ 1 � y � 12i;C101 = hpc = 1 ^ x � 2 ^ 1 � y � 12ig:These two regions together with the regions in �2, except for C10, constitute �3. The new � isobtained by removing fR0 2 � j R0) Rg = C000 from the old �. The new � becomes fC000; C001g.Now R = C000 is stable in �3. Hence � = fC000; C001; C100g and � = fC000; C001g. Since R = C100is stable in �3, we have � = fC000; C001; C100; C101; C20g and � = fC000; C001; C100g. R = C101 isalso stable in �3, so � = fC000; C001; C100; C101g and � remains unchanged. Considering R = C20,we obtain split(C20; �3) = f C200 = hpc = 2 ^ 5 < y � 12i;C201 = hpc = 2 ^ 1 � y � 5ig:Now �4 contains C200 and C201, and thus C100must be reconsidered. It is split into split(C100; �4) = fC1000 = hpc = 1 ^ 0 � x < 2 ^ 3 < y � 12 ^ 3 < y � x � 12i;C1001 = hpc = 1 ^ 0 � x < 2 ^ 1 � y � 5 ^ 1 � y � x � 3ig:Thus �5 contains C1000 and C1001. After �nding that C000, C1000 and C200 all are stable, we �nallyhave � = fC000; C001; C1000; C200; C201; C30g and � = fC000; C001; C1000; C200g. So let R = C201. Itis stable, so � = � [fC200g and � does not change. Then R = C30 is partitioned into fC300 = hpc = 3 ^ 0 � x < 2 ^ 1 � y � 12i;C301 = hpc = 3 ^ x � 2 ^ 1 � y � 12ig:C200 has to be considered again. It is stable with respect to the current partition. Then R = C300is considered and split(C300; �6) = fC3000 = hpc = 3 ^ 0 � x < 2 ^ 1 � y � 12 ^ 5 � y + 2x < 14i;C3001 = hpc = 3 ^ 0 � x < 2 ^ 1 � y < 5 ^ 1 � y + 2x < 5ig:We must consider C200 again. It turns out that it is still stable. After considering R = C3000, wehave � = fC000; C001; C1000; C200; C201; C3000g and � = � [fC000g. Now the partition is�7 = fC000; C001; C01; C1000; C1001; C101; C11;C200; C201; C21; C3000; C3001; C301; C31g:Since C000 is stable in �7, we have � = � = fC000; C001; C1000; C200; C201; C3000g. Notice that noregion in � contains any bad states from Rf . Therefore, the invariant property has been veri�ed.Fixpoint computation: mutual-exclusion protocolLet A be the product of the two hybrid automata de�ned in Figure 4, for a = 2 and b = 3. We usethe �xpoint computation procedure to prove that the formula pc 6= (4; D) is an invariant of A. Itfollows that the protocol ensures mutual exclusion.16

to record which regions are reachable from the region containing the initial state. In the followingprocedure, � is the current partition, � is the set of �-regions that have been found reachablefrom (the region of) the initial state, and � is the set of �-regions that have been found stablewith respect to �. The function split(R; �) splits the �-region R into subregions that are \more"stable with respect to �: split(R; �) := fR0; R� R0g if there is some region R00 2 � such that theregion R0 = pre(R00) \ R is a proper subset of R, and split(R; �) := fRg otherwise. Since theoperation split is computed using pre, all state sets encountered by the minimization procedure areagain de�nable by linear formulas. The procedure terminates if the coarsest bisimulation has onlya �nite number of equivalence classes.If the minimization procedure terminates, we obtain a �nite bisimulation of � with respectto). As with timed automata [ACH+92], the resulting reachability graph can be used to solve alsothe emptiness problem for A, even in presence of acceptance conditions, and for model checkingbranching-time properties. The minimization procedure may be replaced by the more e�cientprocedure presented in [LY92], which can also be implemented using the primitive pre .3.3 Veri�cation examplesIn the following, we demonstrate that both the �xpoint computation procedure and the minimiza-tion procedure terminate in many cases.Minimization: water level monitorLet A be the hybrid automaton de�ned in Figure 3. We use the minimization procedure to provethat the formula 1 � y � 12 is an invariant of A. It follows that the water level monitor keeps thewater level between 1 and 12 inches.By h i, for a linear formula over V , we denote the set of all states (`; �) such that � satis-�es [pc := `]. Let the set Ri of initial states be so de�ned byRi = hpc = 0 ^ x = 0 ^ y = 1iand let the set Rf of \bad" states be de�ned byRf = hy < 1 _ y > 12i:The initial partition is �0 = f(`; true) j ` 2 f`0; `1; `2; `3gg. We next partition each region of theinitial partition into \good" and \bad" states: �1 = fC00 = hpc = 0 ^ 1 � y � 12i; C01 = hpc = 0 ^ (y < 1 _ y > 12)i;C10 = hpc = 1 ^ 1 � y � 12i; C11 = hpc = 1 ^ (y < 1 _ y > 12)i;C20 = hpc = 2 ^ 1 � y � 12i; C21 = hpc = 2 ^ (y < 1 _ y > 12)i;C30 = hpc = 3 ^ 1 � y � 12i; C31 = hpc = 3 ^ (y < 1 _ y > 12)ig:The bad states are in the regions Ci1, for i 2 f0; 1; 2; 3g. Since the initial region Ri is containedin C00, let � = fC00g. Considering R = C00 2 �, we �nd that split(C00; �1) = fC000 = hpc = 0 ^ 1 � y < 10i;C001 = hpc = 0 ^ 10 � y � 12ig:Therefore, �2 = fC000; C001; C01; C10; C11; C20; C21; C30; C31g. Now Ri � C000, so take � = fC000gand � = ;. Considering R = C000, we �nd that it is stable with respect to �2. Thus � = �[fR0 215

)l (`;) = (^ :�`) _ (9� > 0: +` � ^ 80 � � < �::�` +` �);and)lr (`;) = :�` ^)r (`;). It remains to be shown how the quanti�ers can be elimi-nated from these formulas. We �rst convert all quanti�ers into existential form and translate allquanti�er-free subformulas into disjunctive normal form. Since existential quanti�ers distribute overdisjunction, it su�ces construct a linear formula over V that is equivalent to the formula 9� 2 R: ',where ' is a conjunction of linear inequalities over V [f�g. Note that the formula 9�: ' de�nes aconvex rational polyhedron. To eliminate the existential quanti�er, (1) solve all inequalities for �and (2) construct the conjunction of all �-free inequalities that are implied by transitivity.As for timed systems [HNSY92], the �xpoint method can be extended to check properties oflinear hybrid systems that are speci�ed in real-time extensions of branching-time logics such as CTL.3.2 MinimizationLet � be a partition of the state space � into regions. A region R 2 � is stable if8R0 2 �: (R) R0 implies 8� 2 R: �) R0):The partition � is a bisimulation if every region of � is stable. The partition � respects Rf if forevery region R 2 �, either R � Rf or R \ Rf = ;. Observe that if a partition � that respects Rfis a bisimulation, then it can be used for reachability analysis: to see if Rf is reachable from Ri,check if there exists a path from some �-region R1 such that R1\Ri 6= ; to some �-region R2 suchthat R2 � Rf . Our objective is to construct the coarsest bisimulation provided it is �nite. Forthis purpose, we can adopt algorithms for performing a simultaneous reachability and minimizationanalysis of transition systems [BFH90, LY92].The minimization procedure of [BFH90] is given below. Let �0 = f(`; true) j ` 2 Qg be theinitial partition of � into regions | one region per location. The initial partition is re�ned into�1 = �0 \ fRf ;�� Rfg so that it respects Rf .Minimization:� := �1; � := fR j R \Ri 6= ;g; � := ;while � 6= � dochoose R 2 (�� �)let �0 := split(R; �)if �0 = fRg then� := � [fRg� := � [fR0 2 � j R) R0gelse� := � � fRgif 9R0 2 �0 such that R0 \ Ri 6= ; then � := � [fR0g �� := � � fR0 2 � j R0) Rg� := (� � fRg)[�0�odreturn there is R 2 � such that R � Rf .Starting from �1, the procedure selects a region R and checks if R is stable with respect to thecurrent partition; if not, then R is split into smaller regions. Additional book-keeping is needed14

Backward �xpoint computation:Rold := ;; Rcur := Rfwhile Rcur \Ri = ; and Rcur 6� Rold doR := pre(Rcur)Rold := Rold [Rcur ; Rcur := Rodreturn Rcur \ Ri 6= ;.The crucial step is the computation of the state setpre(R) = f� 2 � j �) Rg:This computation is possible due to the fact that all state sets encountered by the procedure arede�nable by linear formulas, and hence, for two state sets R and R0, the problems of decidingwhether R � R0 and whether R\R0 = ; have algorithmic solutions. A data region RD � � is a setof data states of the form f� 2 �D j �(�)g, for some linear formula � over VD. A region (`; RD) � �consists of a location ` 2 Q and a data region RD. The union R � � of regions (`; RD̀), one foreach location ` 2 Q, is called a region family. The following central lemma ensures that for linearhybrid systems, all required state sets are computable:Lemma 1 If R � � is a region family, then so is pre(R).Proof. It su�ces to show that if RD is a data region, then so is the setpree(RD) = f� 2 �D j (`1; �)) (`2; RD)g;for each pair e = (`1; `2) of locations. Let be the linear formula that de�nes RD. We construct alinear formula pree() that de�nes the set pree(RD). If contains n variables, we can think of as de�ning a set of points in n-dimensional space. This set is an n-dimensional polyhedron whosebounding hyperplanes are linear functions with rational coe�cients.First let us extend the time-step and transition-step relations to linear formulas. For any linearformula and location ` of A:.(e;) = f� 2 �D j 9�0 2 �D: ((�0) ^ (`1; �) . (`2; �0))g;! (`;) = f� 2 �D j 9�0 2 �D: ((�0) ^ (`; �)! (`; �0))gfor !2 f)l;)r;)lrg. Then the linear formula pree() is the following disjunction:pree() =)lr (`1; .(e;)r (`2;)))_)l (`1; .(e;)lr (`2;))):The transition-step relation . can be computed by substitution. Let � be the guard of �3(e) andfor all x 2 VD, let �3(e; x) = �x. Then:.(e;) = � ^ ([x := �x]);where the linear formula [x := �x] is obtained by replacing all occurrences of x in with �x.The time-step relations can be computed by quanti�er elimination. For all locations ` of A, let�2(`) = �`. If �1(`; x) = kx for all x 2 VD, then the linear formulas +` � and �` � result from by replacing all occurrences of x with x + kx �� or x� kx ��, respectively. Then:)r (`;) = (9� � 0: (^ :�`) +` � ^ 80 < � < �::�` +` �);13

The single-step reachability relation can be extended to sets of states. For a state � 2 � and aset R � � of states, let �) R i� �) �0 for some �0 2 R; for two sets R1; R2 � � of states, de�neR1) R2 i� �) R2 for some � 2 R1. Again,)� denotes the transitive closure of).Given two sets Ri; Rf � � of states, we wish to �nd out if the reachability relation Ri)� Rfholds. A solution to this reachability problem allows the veri�cation of safety properties of thehybrid system A. Suppose the initial condition is given by the labeling function �4, then take Ri tobe the set de�ned by (`; �) 2 Ri i� � 2 �4(`). To check whether a linear formula � is an invariantof A, we consider the set Rf of \bad" states: � 2 Rf i� :�(�). Now � is an invariant i� thereachability relation Ri)� Rf does not hold.From the undecidability of the emptiness problem, it follows that the reachability problem isundecidable for linear hybrid automata. As the state space � of A is generally in�nite, we willattempt to work on a quotient of the state-transition graph (�;)). Our method will succeedonly if there is a �nite quotient of the state space in which states are identi�ed whenever they are\equivalent" with respect to the given reachability problem (Ri; Rf). This problem can be attackedin many di�erent ways:� We can choose from two de�nitions of state equivalence. We can move \forward" from theinitial set Ri and identify two states whenever they can be reached from Ri by the samesequence of single steps. Alternatively, we can move \backward" from the �nal set Rf andidentify two states whenever they can reach Rf by the same sequence of single steps.� Working forward from Ri (backward from Rf), we can choose to add one equivalence classof states at a time until either the current set intersects with Rf (or Ri, respectively) orno new states can be added. We refer to this category of veri�cation methods as �xpointmethods, because the computation can be viewed as the iterative approximation of a �xpointthat de�nes the class of reachable states.Alternatively, we can start with an initial partition of the state space and re�ne it until itrespects the equivalence relation, and thus can be used for checking reachability. The veri�-cation methods in this category are called minimization methods, because the computationcan be viewed as constructing a bisimulation relation, namely, the minimal (coarsest) statepartition that respects single-step reachability.In this paper, we present one instance of the �xpoint computation approach and one instance ofthe minimization approach. Both procedures rely on the same set of primitive operations.3.1 Fixpoint computationWe de�ne a backward �xpoint computation procedure that solves the reachability problem (Ri; Rf)provided it terminates. The procedure starts with the set Rcur = Rf and repeatedly adds statesfrom which any state in Rcur can be reached. The procedure terminates with the answer YES(indicating that Rf is reachable from Ri) if at some stage an initial state in Ri is added, and itterminates with the answer NO if no new states can be added. The procedure may, of course,not terminate at all; it is a semidecision procedure for the reachability problem of linear hybridsystems. 12

time i; when z reaches 1 in the interval [i; i+ 1), reset x. Given an NCM M , we can so constructa 2-rate timed system that has a run i� M halts. (Indeed, using acceptance conditions, we canconstruct a 2-rate timed automaton that has a run i� a counter is 0 in�nitely often along some runof M ; this shows that the emptiness problem is �11-complete for 2-rate timed automata [HPS83].)The second part of the theorem follows from an undecidability result for timed systems withmemory cells [�Cer�ans].We point out that the emptiness problem is decidable for simple n-rate timed automata. This isbecause any simple asynchronous timed automaton can be transformed into a timed automaton by(1) factoring into 1-process timed automata, (2) scaling all 1-process timed automata to the sameclock rate, and (3) constructing the product. An analogous result holds for real-time temporallogics [WME92].3 Veri�cation ProceduresConsider a linear hybrid system A = (VD; Q; �1; �2; �3). Given a linear formula � over VD, we wishto determine whether � is an invariant of A:\Is � true in all states that occur on some trace of A?"Recall that � = Q � �D is the state space of A. We de�ne the following reachability relationsbetween states:� Time step. For all locations ` 2 Q and data variables x 2 VD, let �1(`; x) = kx and let �2(`) =�. For all data states � 2 �D and nonnegative reals � 2 R+, de�ne (� + �) 2 �D to be thedata state that assigns to each data variable x 2 VD the value �(x) + � �kx. Then)l� �2 isthe smallest relation such thatif :(� + �0)(�) for all 0 � �0 < �, then (`; �))l (`; �+ �);)r � �2 is the smallest relation such thatif :(� + �0)(�) for all 0 < �0 � �, then (`; �))r (`; �+ �);and)lr � �2 is the smallest relation such thatif :(� + �0)(�) for all 0 � �0 � �, then (`; �))lr (`; � + �).In other words,)lr =)l \)r .� Transition step. The relation . � �2 is the smallest relation such that for all pairs (`; `0) 2 Q2and all data states �1; �2 2 �D,if (�1; �2) 2 �3(`; `0), then (`; �1) . (`0; �2).Note that the relation . is reexive.� Single step. For all states �1; �2 2 �,�1) �2 i� there exist �01; �02 2 � with either �1)lr �01 . �02)r �2 or �1)l�01 . �02)lr �2.� The reachability relation)�� �2 is the transitive closure of the single-step relation).11

l l

30 <_ x x:=0

t=0 x=0

y’= 1
x’= 1
t’ = 1
x <_ 1

y’= 1
x’= 1
t’ = 0

1 2
x:=0Figure 5: Leaking gas burnerinterval of at least 60 seconds. The system is modeled by the hybrid automaton in Figure 5. Theautomaton has two locations: in location `1, the gas burner leaks; `2 is the nonleaking location.The integrator t records the cumulative leakage time; that is, the accumulated amount of timethat the system has spent in location `1. The clock x records the time the system has spent inthe current location; it is used to specify the properties (1) and (2). The clock y records the totalelapsed time. In the next section, we will prove that y � 60 ! 20t � y is an invariant of thesystem.2.4 Undecidability of veri�cationThe design of veri�cation algorithms for hybrid systems is impaired by the fact that the emptinessproblem (\Does a hybrid system have a run?") is undecidable already for very restricted classes ofsystems. On the positive side, the emptiness problem for timed automata (only propositions andclocks) is PSPACE-complete [AD90]. On the negative side, the emptiness problem is undecidablefor asynchronous timed systems (propositions and skewed clocks that proceed at di�erent rates)and for integrator systems (propositions and integrators).To obtain strong undecidability results, we restrict the classes of multirate timed systems andintegrator systems further. A linear hybrid system is simple if all linear atoms in exceptions andtransition guards are of the form x � k, and all assignments are of the form x := x or x := k,for x 2 VD and k 2 Z. In particular, for n-rate timed systems the simplicity condition prohibitsthe comparison of clocks with di�erent rates.Theorem 1 The emptiness problem is undecidable for 2-rate timed systems and for simple inte-grator systems.Proof. The �rst part of the theorem follows from the undecidability of the halting problem fornondeterministic 2-counter machines (NCMs). Given any two distinct clock rates, a 2-rate timedsystem can encode the computations of an NCM. Suppose we have three \accurate" clocks of rate 1and two skewed clocks x1 and x2 of rate 2. Then we can encode the values of two counters in thei-th machine con�guration by the values of x1 and x2 at accurate time i: the counter value n isencoded by the clock value 1=2n.The accurate clock y is reset whenever it reaches 1 and thus marks intervals of length 1. It isobvious how a counter can be initialized to 0 and tested for being 0. Hence it remains to be shownhow a counter can be incremented and decremented. To increment the counter represented by theskewed clock x from time i to time i+ 1, start an accurate clock z with x in the interval [i� 1; i)and reset z when it reaches 1; then nondeterministically reset x in the interval [i; i+ 1) and testx = z at time i + 1. To decrement the counter represented by the skewed clock x from time i totime i+ 1, nondeterministically start an accurate clock z in the interval [i� 1; i) and test x = z at10

1 2 3 4

x’ = 1 x’ = 1

k = 0 x:=0 k:=1; x:=0

k <> 1

k := 0

k = 0

k := 0

k <> 2

y:=0

y’ = 1.1 y’ = 1.1

k:=2; y:=0

A B C D

k=0

k=0 x <_ a

y a<_ k = 2

k = 1bx >_

y b>_

bx >_

y b>_ Figure 4: Mutual-exclusion protocolrepeatrepeatawait k = 0k := idelay buntil k = iCritical sectionk := 0foreverThe two processes P1 and P2 share a variable k and process Pi is allowed to be in its criticalsection i� k = i. Each process has a private clock. The instruction delay b delays a process forat least b time units as measured by the process's local clock. Furthermore, each process takesat most a time units, as measured by the process's clock, for a single write access to the sharedmemory (i.e., for the assignment k := i). The values of a and b are the only information we haveabout the timing behavior of instructions. Clearly, the protocol ensures mutual exclusion only forcertain values of a and b. If both private processor clocks proceed at precisely the same rate, thenmutual exclusion is guaranteed i� a < b.To make the example more interesting, we assume that the two private clocks of the processes P1and P2 proceed at di�erent rates, namely, the local clock of P2 is 1:1 times faster than the clockof P1. The resulting system can be modeled by the product of the two hybrid automata presentedin Figure 4.Each of the two automata models one process, with the two critical sections being representedby the locations 4 and D. The private clocks of the processes P1 and P2 determine the rate ofchange of the two skewed-clock variables x and y, respectively. In the next section, we will provethat mutual exclusion is guaranteed if a = 2 and b = 3: in this case, it will never happen that thecontrol of P1 is in location 4 while the control of P2 is in location D.Leaking gas burnerNow we consider an integrator system. In [CHR91], the duration calculus is used to prove that agas burner does not leak excessively. It is known that (1) any leakage can be detected and stoppedwithin 1 second and (2) the gas burner will not leak for 30 seconds after a leakage has been stopped.We wish to prove that the accumulated time of leakage is at most one twentieth of the time in any9

l0 1l

m x M

x’ = K(h-x)x’ = -Kx

x = M

x = m

< x <x=M Figure 2: Temperature controller
y=10 x:=0

y=5 x:=0

x=2x=2

y > 5x < 2

y < 10 x < 2

x’ = 1
y’=-2

x’ = 1
y’=-2

x’ = 1
y’ = 1

x’ = 1
y’ = 1

l l

l l

0 1

23

y=1

Figure 3: Water level monitorpump is turned on. We wish to keep the water between 1 and 12 inches. But from the time thatthe monitor signals to change the status of the pump to the time that the change becomes e�ective,there is a delay of 2 seconds. Thus the monitor must signal to turn the pump on before the waterlevel falls to 1 inch, and it must signal to turn the pump o� before the water level reaches 12 inches.The linear hybrid automaton of Figure 3 describes a water level monitor that signals wheneverthe water level passes 5 and 10 inches, respectively. The automaton has four locations: in loca-tions `0 and `1, the pump is turned on; in locations `2 and `3, the pump is o�. The clock x is usedto specify the delays: whenever the automaton control is in location `1 or `3, the signal to switchthe pump o� or on, respectively, was sent x seconds ago. In the next section, we will prove thatthe monitor indeed keeps the water level between 1 and 12 inches.Mutual-exclusion protocolThis example describes a parameterized multirate timed system. We present a timing-based algo-rithm that implements mutual exclusion for a distributed system with skewed clocks. Consider anasynchronous shared-memory system that consists of two processes P1 and P2 with atomic readand write operations. Each process has a critical section and at each time instant, at most one ofthe two processes is allowed to be in its critical section. Mutual exclusion is ensured by a versionof Fischer's protocol [Lam87], which we describe �rst in pseudocode. For each process Pi, wherei = 1; 2: 8

The hybrid automaton (A; �4; F) is linear if A is a linear hybrid system and for all locations ` 2 Q,the initial condition is de�ned by a linear formula � over VD (i.e., � 2 �4(`) i� �(�)).Parallel compositionA hybrid system typically consists of many components operating concurrently and coordinatingwith each other. Such a system can be constructed from the descriptions of its components usinga product operation. Let A1 = (V 1D; Q1; �11; �12; �13) and A2 = (V 2D; Q2; �21; �22; �23) be two hybridsystems. The product A1 � A2 of A1 and A2 is the hybrid system (V 1D [V 2D; Q1 � Q2; �1; �2; �3)such that� An activity f belongs to �1(`1; `2) i� the restriction of f to the data variables V 1D, denotedby f jV 1D , is in �11(`1), and f jV 2D is in �21(`2);� A data state � over V 1D [V 2D is in �2(`1; `2) i� �jV 1D , the projection of � onto the variablesV 1D, is in �12(`1), or �jV 2D is in �22(`2);� (�; �0) 2 �3((`1; `2); (`01; `02)) i� (�jV 1D; �0jV 1D) 2 �3(`1; `01) and (�jV 2D ; �0jV 2D) 2 �3(`2; `02).It is not hard to see that traces of the product system are precisely those hybrid traces whoseprojections are traces of the component systems. It follows that the product of two linear hybridsystems is again linear, etc. An accepting run of a product automaton must meet the initial andacceptance conditions of both component automata.2.3 Examples of hybrid systemsWe model a thermostat, a water level monitor, a clock-based mutual-exclusion protocol, and aleaking gas burner as hybrid systems.Temperature controllerOur �rst example describes a nonlinear hybrid system. The temperature of a plant is controlledthrough a thermostat, which continuously senses the temperature and turns a heater on ando� [NSY92]. The temperature is governed by di�erential equations. When the heater is o�, the tem-perature, denoted by the variable x, decreases according to the exponential function x(t) = �e�Kt,where t is the time, � is the initial temperature, and K is a constant determined by the plant;when the heater is on, the temperature follows the function x(t) = �e�Kt + h(1 � e�Kt), whereh is a constant that depends on the power of the heater. Suppose that initially the temperatureis M degrees and the heater is turned o�. We wish to keep the temperature between m and Mdegrees. The resulting system can be described by the hybrid automaton of Figure 2 (note therepresentation of the initial condition x = M). The automaton has two locations: in location `0,the heater is turned o�; in location `1, the heater is on.Water level monitorOur next example describes a linear system. The water level in a tank is controlled through amonitor, which continuously senses the water level and turns a pump on and o�. Unlike thetemperature, the water level changes as a piecewise-linear function over time. When the pump iso�, the water level, denoted by the variable y, falls by 2 inches per second; when the pump is on,the water level rises by 1 inch per second. Suppose that initially the water level is 1 inch and the7

x<6l l

<_ x5

x’ = 2
x = 10

x:=x-1
1 2

x < 10

x’ = -1Figure 1: Graphical representation� If �1(`; x) 2 f0; 1g for each location ` and �3(e; x) 2 f0; xg for each pair e 2 Q2, then x isan integrator. Thus an integrator is like a clock that can be stopped and restarted, and canmeasure accumulated durations. An integrator system is a linear hybrid system all of whosedata variables are propositions and integrators.� A discrete variable is a parameter if �3(e; x) = x for all pairs e 2 Q2. Thus a parameter isa symbolic constant which can be used, for instance, in the guards of the transitions. Fordi�erent special types of linear hybrid automata de�ned above, we can de�ne its parameterizedversion also. For instance, a parameterized timed system is a linear hybrid system all of whosedata variables are propositions, parameters, and clocks.Clearly, if A is linear (discrete; timed; multirate timed; integrator) system, then all traces in SAare piecewise linear (step traces; timed traces; skewed-clock traces; integrator traces, respectively).Graphical representationInstead of using exceptions, we label locations with their invariants. We suppress location labelsof the form x0 = 0 for activities and true for invariants. For transition labels, we suppress theguard true and assignments of the form x := x. Reexive transitions with the label true aresuppressed altogether.As an example, consider the linear hybrid system of Figure 1 with the single data variable x.This system has two locations, `1 and `2. In location `1, the value of x decreases at a constant rateof 1. The transition from `1 to `2 may be taken at any time after the value of x has fallen below 6,and it must be taken before the value of x falls below 5. When the transition is taken, the valueof x is instantaneously decreased by 1. Once in location `2, the rate of x starts to increase at theconstant rate of 2. The transition back to location `1 is taken exactly when the value of x hits 10.Indeed, at the very time instant when x = 10, the control of the system is already in location `1,because location `2 has the invariant x < 10.Initial and acceptance conditionsWe can turn a hybrid system A into an automaton by adding initial and acceptance conditions.The initiality criterion is given by a labeling function �4 that assigns to each location ` 2 Q aninitial condition �4(`) � �D. The Muller acceptance criterion is given by a collection F � 2Q ofacceptance sets of locations. The run � (y) of the hybrid Muller automaton (A; �4; F) is acceptingif 4. �0 2 �4(`0);5. either � is �nite with �nal location `n and f`ng 2 F , or �1 2 F for the set �1 of locations thatare visited in�nitely often during � (i.e, �1 is the set f` j ` = `i for in�nitely many i � 0g).6

Linear hybrid systemsA linear term � over a set of variables V is a linear combination of the variables in V with rationalcoe�cients. A linear formula � over V is a boolean combination of inequalities between linearterms over V .The hybrid system A = (VD; Q; �1; �2; �3) is linear if its activities, exceptions, and transitionrelations can be de�ned by linear expressions over the set VD of data variables:1. For all locations ` 2 Q, the possible activities are linear functions de�ned by a set of di�erentialequations of the form x0 = kx, one for each data variable x 2 VD, where kx is a rationalconstant:f 2 �1(`) i� all t 2 R+ and x 2 VD, f(t)(x) = f(0)(x) + kx �t.We write �1(`; x) = kx to de�ne the activities of the linear hybrid system A.2. For all locations ` 2 Q, the exception is de�ned by a linear formula � over VD: � 2 �2(`) i��(�).3. For all pairs e 2 Q2 of locations, the transition relation �3(e) is de�ned by a guarded set ofassignments � ! fx := �x j x 2 VDg;where � is a linear formula over VD and each �x is either a linear term over VD or \?":(�; �0) 2 �3(e) i� �(�) and for all x 2 VD, either �x =? or�0(x) = �(�x).An assignment of the form x :=? indicates that the value of the variable x is changed nonde-terministically to an arbitrary value. We write �3(e; x) for the term �x.Various special cases of linear hybrid systems are of particular interest:� If �1(`; x) = 0 for each location ` 2 Q, then x is a discrete variable. Thus a discrete variablechanges only when the location of control changes. A discrete system is a linear hybrid systemall of whose data variables are discrete variables.� A discrete variable x is a proposition if �3(e; x) 2 f0; 1g for all pairs e 2 Q2. If all the datavariables are propositions, then a linear hybrid automaton is same as a �nite-state systemwhose states are labeled with propositions.� If �1(`; x) = 1 for each location ` and �3(e; x) 2 f0; xg for each pair e 2 Q2, then x is aclock. Thus the value of a clock variable increases with time uniformly; a transition of theautomaton either resets it to 0, or leaves it unchanged. A (�nite-state) timed system is alinear hybrid system all of whose data variables are propositions and clocks.� If there is a constant k 2 R such that �1(`; x) = k for each location ` and �3(e; x) 2 f0; xgfor each pair e 2 Q2, then x is a skewed clock. Thus a skewed clock is similar to a clockvariable except that it changes with time at some (�xed) rate di�erent from 1. A multiratetimed system is a linear hybrid system all of whose data variables are propositions and skewedclocks. An n-rate timed system is a multirate timed system whose skewed clocks proceed atn di�erent rates. 5

The fusion closure of S ensures that each state contains all information necessary to determine thefuture evolution of the system.We de�ne sets of traces by graphs whose edges represent discrete transitions and whose verticesrepresent continuous activities. A hybrid system A = (VD; Q; �1; �2; �3) is given by six components:� A �nite set VD of real-valued data variables. A data state is an interpretation of all variablesin VD. We write �D for the set of data states.� A �nite set Q of vertices called locations. We use the variable pc 62 VD as a control variablethat ranges over the set Q of locations (properly encoded in R), and let V = fpcg [VD.Thus, � = Q��D ; that is, a (system) state is a pair (`; �) consisting of a location ` 2 Q anda data state � 2 �D.� A labeling function �1 that assigns to each location in Q a set of possible activities. Eachactivity is a C1-function from R+ to �D.� A labeling function �2 that assigns to each location ` 2 Q an exception set �2(`) � �D. Thesystem control must leave location ` before an exception �2(`) occurs. The complement �D��2(`) is called the invariant of the location `.� A labeling function �3 that assigns to each pair e 2 Q2 of locations a transition rela-tion �3(e) � �2D. We require that for all locations ` 2 Q and all data states � 2 �D,(�; �) 2 �3(`; `). The state (�0; `0) is called a successor of the state (`; �) i� (�; �0) 2 �3(`; `0).At any time instant, the state of a hybrid system speci�es a control location and values for all datavariables. The state can change in two ways: (1) by an instantaneous transition that changes theentire state according to the successor relation, and (2) by elapse of time that changes only thevalues of data variables in a continuous manner according to the activities of the current location.The exceptions of a hybrid system enforce the progress of the underlying discrete transition system:some transition must be taken before an exception occurs. Typical exceptions are timeouts andsensor readings that trigger a discrete state change.Formally, a run of the hybrid system A is a �nite or in�nite sequence� : 7!�0 (`0; I0; f0) �00 !�1 (`1; I1; f1) �01 !�2 (`2; I2; f2) �02 ! � � � (y)of data states �i; �0i 2 �D, locations `i 2 Q, intervals Ii, and activities fi such that1. for all i � 0, the state (`i+1; �i+1) is a successor of the state (`i; �0i);2. I0I1I2 : : : is an interval sequence;3. for all i � 0, the activity fi is in �1(`i), and (1) fi(0) = �i andfi(rIi � lIi) = �0i, and (2) for all t 2 Ii, fi(t� lIi) 62 �2(`i).Each run � of A uniquely determines a trace ��: for all i � 0 and t 2 Ii, let �(t) = (`i; fi(t� lIi)).Observe that, for all i > 0, if Ii is left-closed, then the state at time lIi , that is, at the time oftransition from state �0i�1 to state �i, is de�ned to be �i. On the other hand, if Ii is left-open, thenthe state at time lIi is de�ned to be �0i�1.By SA we denote the set of all traces �� that correspond to runs � of the system A. Theset SA is fusion-closed, because at any time instant during a run, the con�guration of the systemis completely determined by the location in which the control resides and the values of all datavariables. 4

2.1 Hybrid tracesAn interval is a nonempty convex subset of the nonnegative real line R+. Intervals may be open,halfopen, or closed; bounded or unbounded. The left end-point of an interval I is denoted by lIand the right end-point, for bounded I , is denoted by rI . Two intervals I1 and I2 are adjacent if(1) rI1 = lI2 , and (2) either I1 is right-open and I2 is left-closed, or I1 is right-closed and I2 is left-open. An interval sequence I0I1I2 : : : is a �nite or in�nite sequence of intervals that partitions R+:1. Any two neighboring intervals Ii and Ii+1 are adjacent.2. For all t 2 R+, there is some interval Ii with t 2 Ii.In particular, I0 is left-closed and lI0 = 0. The last interval of any �nite interval sequence isunbounded. The interval sequence I1 re�nes the interval sequence I2 if I1 is obtained from I2by splitting some intervals. We henceforth identify an interval sequence I with its re�nementclosure fJ j J re�nes Ig. Clearly, for any �nite set I of interval sequences there is an intervalsequence T I that re�nes all sequences in I.Let V be a �nite set of real-valued variables. A state is an interpretation of all variables in V .We write � for the set of states. A trace is a function from R+ to �. Equivalently, a trace � is acollection of functions �(x) from R+ to R, one for each variable x 2 V . We say that the trace �has property P if all of its constituent functions �(x), for x 2 V , have property P . We will use thefollowing properties of functions:� A function f : R+ ! R is piecewise smooth if there exists an interval sequence If = I0I1I2 : : :and a sequence f0f1f2 : : : of C1-functions such that the restriction of f to each interval Iicoincides with the restriction of fi to Ii. Each restriction of f to an interval Ii is called aphase of f . The phases of a piecewise-smooth trace � are the restrictions of � to the intervalsof the sequence I� = TfI�(x) j x 2 V g.� A piecewise-smooth function f : R+ ! R is piecewise linear if each phase of f is linear.� A piecewise-linear function f : R+ ! R is a step function if the slope of all phases of f is 1.� A piecewise-linear function f : R+ ! R is a clock function if the slope of all phases of f is 1.� A piecewise-linear function f : R+ ! R is a skewed-clock function if there is some constantk 2 R such that the slope of all phases of f is k.� A piecewise-linear function f : R+ ! R is an integrator function if the slope of each phaseof f is either 0 or 1.A timed trace � is a trace each of whose constituent functions �(x), for x 2 V , is either a stepfunction or a clock function. A set S of traces is fusion-closed if for all traces �1; �2 2 S andall t1; t2 2 R+, if �1(t1) = �2(t2), then � 2 S for the trace � with �(t) = �1(t) for all t � t1 and�(t) = �2(t+ t2 � t1) for all t > t1.2.2 Hybrid automataWe model a hybrid system as fusion-closed set S of piecewise-smooth traces. Each trace � 2 Srepresents a possible behavior of the system over real time. The piecewise smoothness of � ensuresthat in any bounded interval of time, there are only �nitely many discontinuous state changes.3

also with an invariant condition that must hold while the control resides at the location, and eachtransition is labeled with a guarded set of assignments. This model for hybrid systems is inspiredby the phase transition systems of [MMP92] and [NSY92], and can be viewed as a generalizationof timed automata [AD90].The current paper pursues three objectives. First, hybrid automata are de�ned and theirsuitability for speci�cation is demonstrated through some paradigmatic examples. Second, theveri�cation problem for hybrid automata is studied and shown to be intrinsically di�cult evenunder severe restrictions. Third, and most importantly, we successfully verify interesting propertiesof truly hybrid system behaviors. We note that Nicollin et al. have independently developed anapproach similar to ours [NSOY].For veri�cation purposes, we restrict ourselves to linear hybrid automata. In a linear hybridautomaton, for each variable the rate of change with time is constant | though this constant mayvary from location to location | and the terms involved in the invariants, guards, and assignmentsare required to be linear. An interesting special case of a linear hybrid automaton is a timedautomaton [AD90]. In a timed automaton each continuously changing variable is an accurateclock whose rate of change with time is always 1. Furthermore, in a timed automaton all termsinvolved in assignments are constants, and all invariants and guards only involve comparisons ofclock values with constants. Even though the reachability problem for linear hybrid automata isundecidable, it is PSPACE-complete for timed automata. In this paper, we show that some of thealgorithms for the analysis of timed automata can be extended to obtain semidecision procedures forsolving the veri�cation problem for linear hybrid automata. In particular, we consider the �xpointcomputation method presented in [HNSY92] and the minimization procedure for timed automatapresented in [ACH+92]. Both methods perform a reachability analysis over the in�nite state spaceof a timed automaton by computing with sets of states. We show that the primitive steps of thetwo algorithms can be performed relatively easily even in case of linear hybrid automata and, thus,both methods can be generalized. The crucial observation is that each set of states computed bythe algorithms is de�nable by a linear formula; that is, it is a union of convex polyhedra. However,as we move from timed automata to linear hybrid automata, the termination of the two proceduresis no longer guaranteed.Both methods we consider can be used to prove invariant properties of linear hybrid systems.We illustrate these methods on three examples, and in each case the procedures terminate. The�rst example involves a water level monitor. It is a truly hybrid system, since the water levelincreases and decreases continuously in phases. We show how to prove that the water level alwaysremains within the speci�ed bounds. The second example proves the mutual exclusion property ofa real-time mutual exclusion protocol. Earlier algorithmic methods based on timed automata failwhen the bounds on the various delays are not known. We show how to perform a symbolic analysisso as to deduce constraints between the various bounds. Our third example involves leakage in agas burner. This is an example of a so-called integrator system in which we are required to provea bound on the ratio of two durations.2 Modeling Hybrid SystemsWe de�ne a formal model and a speci�cation language for hybrid systems.2

Hybrid Automata:An Algorithmic Approach to the Speci�cation and Veri�cation ofHybrid Systems1Rajeev Alur2 Costas Courcoubetis3 Thomas A. Henzinger4 Pei-Hsin Ho3AbstractWe introduce the framework of hybrid automata as a model and speci�cation language forhybrid systems. Hybrid automata can be viewed as a generalization of timed automata, in whichthe behavior of variables is governed in each state by a set of di�erential equations. We show thatmany of the examples considered in the workshop can be de�ned by hybrid automata. Whilethe reachability problem is undecidable even for very restricted classes of hybrid automata, wepresent two semidecision procedures for verifying safety properties of piecewise-linear hybridautomata, in which all variables change at constant rates. The two procedures are based,respectively, on minimizing and computing �xpoints on generally in�nite state spaces. We showthat if the procedures terminate, then they give correct answers. We then demonstrate thatfor many of the typical workshop examples, the procedures do terminate and thus provide anautomatic way for verifying their properties.1 IntroductionMore and more real-life processes, from elevators to aircraft, are controlled by programs. Thesereactive programs are embedded in continuously changing environments and must react to environ-ment changes in real time. Obviously, correctness is of vital importance for reactive programs. Yettraditional program veri�cation methods allow us, at best, to approximate continuously changingenvironments by discrete sampling. A generalized formal model for computing systems is neededto faithfully represent both discrete and continuous processes within a uni�ed framework. Hybridautomata present such a framework.A hybrid system consists of a discrete program within an analog environment. Hybrid automataare generalized �nite-state machines for modeling hybrid systems. As usual, the discrete transitionsof a program are modeled by a change of the program counter, which ranges over a �nite set ofcontrol locations. In addition, we allow for the possibility that the global state of a system changescontinuously with time according to the laws of physics. For each control location, the continuousactivities of the environment are governed by a set of di�erential equations. We label each location1An abbreviated version of this paper appeared in Hybrid Systems (R.L. Grossman, A. Nerode, A.P. Ravn,H. Rischel, eds.), Lecture Notes in Computer Science 736, Springer-Verlag, 1993, pp. 209{229.2AT&T Bell Laboratories, Murray Hill, NJ 07974.3Institute of Computer Science, FORTH, and Department of Computer Science, University of Crete, Heraklion,Greece. Supported in part by the BRA ESPRIT project REACT.4Department of Computer Science, Cornell University, Ithaca, NY 14853. Supported in part by the NationalScience Foundation under grant CCR-9200794 and by the United States Air Force O�ce of Scienti�c Research undercontract F49620-93-1-0056. 1

