
UNIVERSIT�AT DES SAARLANDESFACHBEREICH INFORMATIKD-66041 SAARBR�UCKENGERMANYWWW: http://jswww.cs.uni-sb.de/pub/www/SEKI Report
TheMechanizationofthe

DiagonalizationProofStrategy
LassaadCheikhrouhou

SEKIReportSR-96-14

The Mechanization of the Diagonalization Proof StrategyLassaad CheikhrouhouFachbereich InformatikUniversit�at des SaarlandesD-66041 Saarbr�ucken, Germanylassaad@cs.uni-sb.dehttp://jswww.cs.uni-sb.de/~lassaadAbstractWe present an empirical study of mathematical proofs by diagonalization, the aim istheir mechanization based on proof planning techniques. We show that these proofs canbe constructed according to a strategy that (i) �nds an indexing relation, (ii) constructsa diagonal element, and (iii) makes the implicit contradiction of the diagonal elementexplicit. Moreover we suggest how diagonal elements can be represented.1 IntroductionIn classical (automated) theorem proving the reasoning process is carried out at the objectlevel, i.e. the level of the (�rst order) logic representation of the mathematical objectsunder study. Searching for a proof means applying calculus inference rules to manipulatethe initial problem situation which at the beginning consists of the negated theorem to beproved and the given assertions (de�nitions, axioms, and other theorems) in order to �nd a�nal situation, for instance ?. This guarantees that the theorem is a logical consequence ofthe given assertions. Tactical theorem proving applies tactics, i.e. composition of calculusinference rules. The reasoning remains however at the object level.Proof planning [Bun91] is the search for a sequence of tactics (a proof plan) which can beapplied to construct an object level proof. The used operators (methods) are speci�cationsof tactics represented in a meta-language. They state in this meta-language when a tacticcan be applied and what its e�ects are. Reasoning is therefore carried out at a metalevel. The two main aspects, that make this approach interesting, can be demonstrated forinductive theorem proving in CLAM [BvHHS90] as follows.The �rst aspect of proof planning is that the search for a proof plan is often done in thecontext of a well known mathematical proof technique such as induction or diagonalization.Such a proof technique characterizes a whole proof schema which is then instantiated to asequence of planning steps (which in turn generate object level proofs). Similar to speci�-cations of basic tactics, these proof schemata are called (proof) methods in the terminologyof CLAM. As a mathematical proof technique implicitly comprises instructions on how toglobally perform the associated part of a proof, we want to extend the proof schema in therepresentation of a technique with additional knowledge which expresses such instructions.In our approach we call these structures for the representation of mathematical proof tech-niques proof strategies, whereas speci�cations of basic tactics which correspond to ground1

proof plan steps are called proof methods as in CLAM. For instance an induction proofstrategy consists of� the induction method which computes an induction schema and reduces the theoremto the well-known subgoals of the base and the step case,� some basic methods, for instance the symbolic evaluation method, and eventually theinduction proof strategy to prove the subgoals of the base case,� the rippling proof strategy to rewrite the subgoal of a step case, which correspondsto an induction conclusion, so that an induction hypothesis can be used to close thisproof path. Wave methods choose the appropriate rewriting rules.� and some basic methods, for instance the fertilize method, to close the proof path ofthe step case employing induction hypothesis.The second aspect of proof planning is the abstraction from mere logical manipulationof formulae by calculus inference rules. For instance the task of proving an inductionconclusion in CLAM is treated as reducing the syntactical di�erences to an inductionhypothesis by the rippling proof strategy with the intention of employing this to close theproof path.The point of proof planning is to analyze proof techniques in order to determine theirtypical proof steps and to �nd a suitable control to perform these steps within the proofplanning process. In this report we present some properties of the diagonalization strategywhich we noticed from an empirical study of several well-known proofs, that are basedon the diagonalization principle. We give the essential proof steps of the diagonalizationtechnique and suggest how to implement these steps in a proof planning environment.2 Cantor DiagonalizationIn order to show the main principles of the diagonalization technique, consider the Cantortheorem. This is where the diagonalization technique was �rst invented and it is thereforeoften called Cantor diagonalization [Kle43]. This theorem states that the power set of eachset M has greater cardinality than the set itself, which is equivalent to the conjecture thatthere is no surjective function from the set into its power set:8M :9f surj(f;M; 2M)To prove the above conjecture, we assume that there is a surjective function f0 fromsome set M0 into its power set 2M0 and deduce a contradiction by diagonalization. In[DSW94] a proof by diagonalization is described as follows:The diagonalization method turns on the demonstration of two assertions ofthe following sort:1. A certain set A can be enumerated in a suitable fashion.2. It is possible, with the help of the enumeration, to de�ne an object b thatis di�erent from every object in the enumeration, i.e. b =2 A.2

Below is the diagonalization part of the Cantor proof, where 2M0 is the enumerableset. This set can be enumerated with the help of the indexing relation f0 and the diagonalelement D is the object which is de�ned with the help of the enumeration. It is di�erentfrom every object f0(x) in the enumeration:The set D = fx 2 M0jx =2 f0(x)g belongs to 2M0 , there is also an element y0of M0 which is the index of D in M0 (D = f0(y0) with y0 2 M0). By thede�nition of D y0 belongs to D i� y0 is in M0 and does not belong to f0(y0).This is obviously a contradiction to D = f0(y0).In order to formulate the characteristic proof steps of the above diagonalization proof,we consider the formal proof in Figure 1 of the Cantor theorem which was interactivelyconstructed in the
-mkrp environment [HKK+94] using the problem description in Ta-ble 1 1. This proof was interactively constructed at the level of the natural deduction (ND)calculus, i.e. was generated by the application of ND rules [Gen35]. It is then abstractedto the so-called assertion level [Hua94], where assertions, in addition to ND rules, can beused as justi�cations.TND 8xo x _ :x=-Refl 8xo x = x=-Equiv 8xo 8yo x = y ! [x$ y]Surj-Def 8f�!(�!o) 8a�!o 8b(�!o)!o surj(f; a; b)$8x�!o x 2 b! 9y� y 2 a ^ x = f(y)PSet-Def 8a�!o 8x�!o x 2 P (a)$ x � a�-Def 8a�!o 8b�!o a � b$ 8x� x 2 a! x 2 bPowerset 8M�!o :9f�!(�!o) surj(f;M; P (M))Table 1: A formulation of the `Powerset' problemThe key steps in the diagonalization part of the proof in Figure 1 are:� the property, that the diagonal element belongs to the power set, is stated in line 9,� the application of the de�nition of surjectivity (`Surj-Def') in line 10 to prove theexistence of an index for the diagonal element, which is assumed to be y0, is statedin line 11,� applying the diagonal element, which is a function, on the index y0 is done in line 14to obtain an implicit contradiction in line 16,� the contradiction is made explicit by a case analysis in lines 17 .. 25.Analyzing the above key proof steps we now want to suggest a systematic way, how tosearch for a diagonalization proof:The central point of diagonalization is the construction of the diagonal element. InFigure 1 the diagonal element is represented by a lambda expression that has the indexingfunction f0 as a sub-term (see line 9). It is therefore convenient to search for the indexingfunction �rst before trying to construct the diagonal element.1This example is taken from [HKC95]. 3

1. 1 ` 9f surj(f;M0; P (M0)) (Hyp)2. 1,2 ` surj(f0;M0; P (M0)) (Hyp)3. 3 ` x 2 �z [z 2M0 ^ :[z 2 f0(z)]] (Hyp)4. 3 ` [x 2M0 ^ :[x 2 f0(x)]] (LambdaE 3)5. 3 ` x 2M0 (AndE 4)6. ` [x 2 �z [z 2M0 ^ :[z 2 f0(z)]]! x 2M0] (ImpI 5 3)7. ` 8x x 2 [�z [z 2M0 ^ :[z 2 f0(z)]]! x 2M0] (ForallI 6)8. ` �z [z 2M0 ^ :[z 2 f0(z)]] �M0 (�-Def 7)9. ` �z [z 2M0 ^ :[z 2 f0(z)]] 2 P (M0) (PSet-Def 8)Proof of 1610. 1,2 ` 9y [y 2M0 ^ �z [z 2M0 ^ :[z 2 f0(z)]] = f0(y)] (Surj-Def 2 9)11. 1,2,11 ` [y0 2M0 ^ �z [z 2M0 ^ :[z 2 f0(z)]] = f0(y0)] (Hyp)12. 1,2,11 ` �z [z 2M0 ^ :[z 2 f0(z)]] = f0(y0) (AndE 11)13. ` y0 2 f0(y0) = y0 2 f0(y0) (=-Re
)14. 1,2,11 ` y0 2 �z [z 2M0 ^ :[z 2 f0(z)]] = y0 2 f0(y0) (=-Subst 12 13)15. 1,2,11 ` [y0 2 �z [z 2M0 ^ :[z 2 f0(z)]]$ y0 2 f0(y0)] (=-Equiv 14)16. 1,2,11 ` [[y0 2M0 ^ :[y0 2 f0(y0)]]$ y0 2 f0(y0)] (LambdaE 15)Case 117. 1,2,11,17 ` y0 2 f0(y0) (Case 1)18. 1,2,11,17 ` :[y0 2 f0(y0)] (16 17)19. 1,2,11,17 ` ? (NotE 18 17)Case 220. 1,2,11,20 ` :[y0 2 f0(y0)] (Case 2)21. 1,2,11 ` y0 2M0 (AndE 11)22. 1,2,11,20 ` y0 2 f0(y0) (16 21 20)23. 1,2,11,20 ` ? (NotE 20 22)24. ` [y0 2 f0(y0) _ :[y0 2 f0(y0)]] (TND)25. 1,2,11 ` ? (OrE 24 19 23)End of Case Analysis26. 1,2 ` ? (ExistsE 10 25)27. 1 ` ? (ExistsE 1 26)28. ` :[9f surj(f;M0; P (M0))] (NotI 27)29. ` 8M :[9f surj(f;M; P (M))] (ForallI 28)Figure 1: A formal proof of the `Powerset' exampleIn the Cantor proof, the function f0 binds not only the diagonal element but also eachelement of the enumerable set P (M0) to an element (its index) in M0. This propertyfollows from the surjectivity of the function f0 from M0 into P (M0) and is represented bythe formula: 8x�!o x 2 P (M0)! 9y� y 2M0 ^ x = f0(y)The indexing property provides important information for the speci�cation of the diagonalelement: its type (a functional type corresponding to the element type of P (M0)), and itsdomain type (same type as the element type of M0).In addition to these type constraints, the diagonal element must be di�erent from eachelement of the enumerable set P (M0), i.e. from each f0(z). In the Cantor proof this isachieved by enforcing that for each z the diagonal element di�ers from the element f0(z) insome property. We call this property the diagonal property which is represented by z 2 f0(z)in the Cantor proof. The diagonal element inverts this diagonal property (occurrence of:z 2 f0(z) in the lambda expression representing the diagonal element in line 9).4

In order to get a contradiction, the diagonal element is constructed in such a way, thatit belongs to the enumerable set P (M0) (occurrence of z 2 M0 in the lambda expressionrepresenting the diagonal element in line 9). Consequently, the diagonal element has anindex y0 and the diagonal property for this element of M0 (y0 2 f0(y0)) is contradictedaccording to the construction principle of the diagonal element.To summarize, a diagonalization proof can be carried out in the following way:1. First we search for an indexing property by ensuring that the formula schema8x�!� P [x]! 9y� Q[y] ^ x = F [y] 2matches a provable formula.2. Then we construct a function D (the diagonal element) that belongs to P and invertsthe diagonal property F (x)(x). It is not necessary that the function D inverts theproperty F (x)(x) for each x from the set of indices Q, but it is su�cient to invertthe proposition F (i)(i) where i is the index of D in Q. The inverting property of Dcan therefore be formulated as: D(i)$:F (i)(i)The lambda expression schema �x R[F (x); x] for a higher-order variable R partiallyspeci�es the diagonal element D. Its actual term structure is constructed by in-stantiating the meta-variable R so that it belongs to P and satis�es the invertingproperty.3. Finally, we consider the index i of the diagonal element, which exists due to theindexing property. We make the implicit contradiction inD explicit by a case analysiswith the cases F (i)(i) and :F (i)(i): One has to deduce :F (i)(i) from F (i)(i) andF (i)(i) from :F (i)(i) using the equality D(i) = F (i)(i) and the inverting propertyD(i)$:F (i)(i).Next let us now look at some other diagonalization examples in order to verify theobservations of this section and patch the suggested proof construction.3 Other Diagonalization ExamplesIn this section we consider other diagonalization proofs for which the diagonalization ar-gument is somewhat di�erent from that of the Cantor theorem. These di�erences areimportant, as we want to extend the diagonalization strategy as suggested in the previoussection.3.1 The Halting ProblemThe Halting theorem states that there is no binary computable function (there is no h withT2(h)) which decides for unary computable functions, whether they halt or not. Formally2A term of the form X[y1; ::; yn] stays for the lambda expression schema (::((�z1; ::; zn X)(y1))::)(yn),where the higher-order variable X denotes a not yet instantiated meta-variable. Whereas a term of the formX(y1; ::; yn) stays for the application (::((�z1; ::; zn X)(y1))::)(yn), where X denotes a term of the objectlevel. 5

TND 8xo x _ :xExt 8fN!U 8gN!U 8xN f = g ! f(x) = g(x)G�odel 8tN!U T1(t)! 9nN e(n) = tifComp 8f((N!U);N)!B T2(f)!8xU 8yU T1(�zN if(f(e(z); z) = 0; x; y))ifDef 8Po 8xU 8yU P ! if(P; x; y) = x^:P ! if(P; x; y) = ydefined :de�ned(u) ^ de�ned(0)Halting :9h((N!U);N)!B T2(h) ^ 8tN!U T1(t)! 8xN de�ned(t(x)) $ h(t; x) = 0Table 2: A formulation of the Halting problemexpressed: de�ned(t(x)) i� h(t; x) = 0 for all t with T1(t) and for all x in N. The problemis formulated in Table 2 3. In this formalization we use the following sorts: N denotes theset of natural numbers. The symbol u represents the non-terminating function. U is theunion of N and fug. B denotes the set f0; 1g.In order to prove the theorem, we need the G�odel enumeration theorem which states thatthere is an enumeration function e so that for every unary computable function t there is anatural number n so that e(n) corresponds to t. The application of e to any natural numberis always a computable function. Furthermore, we use some obvious de�nitions and thelemma that for a total and computable function f , the function �zN if(f(e(z); z) = 0; x; y)is computable too, where \if(condition,then,else)" has the usual semantics.Figure 2 shows a formal proof at the assertion level of the Halting problem as formalizedin Table 2. This proof was interactively constructed in
-mkrp. In the �rst proof steps (lines3,4) we assume that there is a computable function halt which returns 0 i� a function t haltson an input x. The rest of the proof consists of inferring a contradiction by diagonalization.We want to examine this part of the proof to �nd the key proof steps noticed in the Cantordiagonalization:1. The indexing relation is given by the G�odel lemma. This delivers the enumerableset T1, the indexing function e, and the set of indices N.2. The diagonal element in line 6 is represented by a lambda expression that has e(z)and z as sub-terms. Here the term e(x)(x) does not denote a proposition, the diagonalproperty is therefore a predicate de�ned on this term (de�ned(e(x)(x))). The invert-ing property of the diagonal element is guaranteed by the conventional semantics ofif and the properties:� 8x halt(e(x); x) = 0 $ de�ned(e(x)(x)) which implies after substituting y0 forx the conjecture halt(e(y0); y0) = 0$ de�ned(e(y0)(y0)) in line 13,� :de�ned(u) (in line 1), and� de�ned(0) (in line 2).3. With the help of the last three properties and of the equality in line 10, the implicitcontradiction in the diagonal element is made explicit in the case analysis (lines 14 ..29).3This formalization is taken from [HKC95]. 6

1. 1 ` :[de�ned(u)] (Hyp)2. 2 ` de�ned(0) (Hyp)3. 3 ` 9h:[T2(h) ^ 8t:[T1(t)! 8x:[h(t; x) = 0$ de�ned(t(x))]]] (Hyp)4. 4 ` [T2(halt) ^ 8t:[T1(t)! 8x:[halt(t; x) = 0$ de�ned(t(x))]]] (Hyp)5. 4 ` T2(halt) (4)6. 4 ` T1(�z:if(halt(e(z); z) = 0; u; 0)) (ifComp 5)Proof of 10 and 137. 4 ` 9n:e(n) = �z:if(halt(e(z); z) = 0; u; 0) (G�odel 6)8. 8 ` e(y0) = �z:if(halt(e(z); z) = 0; u; 0) (Hyp)9. 8 ` e(y0)(y0) = (�z:if(halt(e(z); z) = 0; u; 0))(y0) (Ext 8)10. 8 ` e(y0)(y0) = if(halt(e(y0); y0) = 0; u; 0) (LambdaE 9)11. 8 ` �z:if(halt(e(z); z) = 0; u; 0) = e(y0) (=Com 8)12. 4,8 ` T1(e(y0)) (=Subst 11 6)13. 8,4 ` [halt(e(y0); y0) = 0$ de�ned(e(y0)(y0))] (4 12)Case 114. 14 ` halt(e(y0); y0) = 0 (Case 1)15. 14 ` if(halt(e(y0); y0) = 0; u; 0) = u (ifDef 14)16. 14,8 ` e(y0)(y0) = u (=Trans 10 15)17. 8,14 ` u = e(y0)(y0) (=Com 16)18. 1,14,8 ` :[de�ned(e(y0)(y0))] (=Subst 17 1)19. 14,4,8 ` de�ned(e(y0)(y0)) ($SubE 13 14)20. 8,4,14,1 ` ? (NotE 18 19)Case 221. 21 ` :[halt(e(y0); y0) = 0] (Case 2)22. 21 ` if(halt(e(y0); y0) = 0; u; 0) = 0 (ifDef 21)23. 21,8 ` e(y0)(y0) = 0 (=Trans 10 22)24. 8,21 ` 0 = e(y0)(y0) (=Com 23)25. 2,21,8 ` de�ned(e(y0)(y0)) (=Subst 24 2)26. 21,4,8 ` :[de�ned(e(y0)(y0))] ($SubE 13 21)27. 8,21,2,4 ` ? (NotE 26 25)28. ` [halt(e(y0); y0) = 0 _ :[halt(e(y0); y0) = 0]] (TND)29. 4,2,8,1 ` ? (OrE 28 20 27)End of Case Analysis30. 1,2,4 ` ? (ExistsE 7 29)31. 2,1,3 ` ? (ExistsE 3 30)32. 1,2 ` :[9h:[T2(h) ^ 8t:[T1(t)! 8x:[h(t; x) = 0$ de�ned(t(x))]]]] (NotI 31)Figure 2: A formal proof of the Halting exampleCompared to the proof of the Cantor theorem, the inverting property of the diagonal el-ement is more complicated here. The diagonal element is represented by an if -term, whosecondition-sub-term halt(e(z); z) = 0 is equivalent to the diagonal property de�ned(e(x)(x)).The else-sub-term 0 belongs to the relation of the diagonal property predicate, but thethen-sub-term u does not.Consequently, we can specify the diagonal element, in case the term F (x)(x) does notdenote a proposition, by the lambda expression schema �x if(R[F (x); x]; Y [x]; Z[x]). Theinverting property holds if the following three properties can be satis�ed:� R[F (i); i]$ U [F (i)(i)] where U [F (x)(x)] denotes the diagonal property,� :U [Y [i]], and� U [Z[i]]. 7

In the above formulae, i denotes the index of the diagonal element. Note that R[F (x); x]and U [F (x)(x)] can be instantiated with the same object term.3.2 The `Total' ProblemConsider the theorem `Total':The set TOT = fx 2 Nj8y de�ned(�(x; y))g of indices for total computablefunctions is not recursively enumerable. � denotes the universal function whichtakes two natural numbers x, and y as arguments and delivers the result ofthe call of the xth computable function in the G�odel enumeration with y asargument.The informal proof of this theorem is given in [DSW94], page 90. This theorem is formalizedin Table 3 and a formal proof is given in Figure 3.TOTdef1 8nN TOT(n)! totcomp(�xN �(n; x))TOTdef2 8fN!Res totcomp(f)! 9nN TOT(n) ^ f = �xN �(n; x)totcomp1 8fN!Res totcomp(f)$ 8xN de�ned(f(x))totcomp2 8fN!Res totcomp(f)! totcomp(�xN f(x) + 1)r.e.Lem 8sN!o r:e:(s) ^ nempty(s)!9gN!N 8xN s(g(x)) ^ 8yN s(y)! 9zN y = g(z)nempty nempty(TOT)=Axiom 8xRes :(x + 1 = x)Total :r:e:(TOT)Table 3: A formulation of the `Total' problemAfter assuming that the set TOT is r.e. (line 2) and after applying the lemma r.e.Lemto get the conjecture in line 3, a contradiction is derived using the diagonalization techniqueas follows:� Construct the diagonal element and show that this belongs to the set totcomp (line15). The function �x �y �(g(y); x) is the indexing function.� Prove the existence of an index i for the diagonal element (lines 16 .. 22).� Deduce the equality in line 25 which contradicts the equality axiom =Axiom fromthe equality in line 22.The diagonalization part of the proof in Figure 3 di�ers from that of the Cantor problemand Halting problem in two aspects: First, the actual indexing property in this example isrepresented by the conjecture8fN!Res totcomp(f)! 9nN f = �xN �(g0(n); x) (1)and therefore cannot be directly proved by the application of an assertion from the problemdescription. Although the assertionTOTdef2 satis�es the property of an indexing relation,the second conjunct in line 4 of Figure 3 allows the deduction of a second possible indexingproperty (1). Consequently, we have to deal with problem situations when there is morethan one indexing property. Moreover the examination of the hypotheses in the problem8

1. 1 ` nempty(TOT) (Hyp)2. 2 ` r:e:(TOT) (Hyp)3. 1,2 ` 9g:[8x:TOT(g(x))^ 8y:[TOT(y)! 9z:y = g(z)]] (r.e.Lem 2 1)4. 4 ` [8x:TOT(g0(x)) ^ 8y:[TOT(y)! 9z:y = g0(z)]] (Hyp)5. 4 ` TOT(g0(y0)) (4)6. 4 ` totcomp(�x:�(g0(y0); x)) (TOTdef1 5)7. 4 ` 8y:totcomp(�x:�(g0(y); x)) (8I 6)8. 4 ` totcomp(�z:�(g0(x0); z)) (8E 7)9. 4 ` de�ned((�z:�(g0(x0); z))(x0)) (totcomp1 8)10. 4 ` de�ned(�(g0(x0); x0)) (LambdaE 9)11. 4 ` de�ned((�y:�(g0(y); y))(x0)) (LambdaI 10)12. 4 ` 8x:de�ned((�y:�(g0(y); y))(x)) (8I 11)13. 4 ` totcomp(�y:�(g0(y); y)) (totcomp1 12)14. 4 ` totcomp(�x:(�y:�(g0(y); y))(x) + 1) (totcomp2 13)15. 4 ` totcomp(�x:�(g0(x); x) + 1) (LambdaE 14)Proof of 2416. 4 ` 9p:[TOT(p) ^ �x:�(g0(x); x) + 1 = �x:�(p; x)] (TOTdef2 15)17. 17 ` [TOT(p0) ^ �x:�(g0(x); x) + 1 = �x:�(p0; x)] (Hyp)18. 17 ` TOT(p0) (^E 17)19. 17 ` �x:�(g0(x); x) + 1 = �x:�(p0; x) (^E 17)20. 4,17 ` 9z:p0 = g0(z) (L8 18)21. 21 ` p0 = g0(i) (Hyp)22. 17,21 ` �x:�(g0(x); x) + 1 = �x:�(g0(i); x) (=Subst 21 19)23. 17,21 ` 8x:(�x:�(g0(x); x) + 1)(x) = (�x:�(g0(i); x))(x) (Ext-I 22)24. 17,21 ` (�x:�(g0(x); x) + 1)(i) = (�x:�(g0(i); x))(i) (8E 23)Explicit Contradiction25. 17,21 ` �(g0(i); i) + 1 = �(g0(i); i) (LambdaE 24)26. ` :[�(g0(i); i) + 1 = �(g0(i); i)] (=Axiom)27. 17,21 ` ? (:E 26 25)End of explicit Contradiction28. 4,17 ` ? (9E 20 27)29. 4 ` ? (9E 16 28)30. 1,2 ` ? (9E 3 29)31. 1 ` :[r:e:(TOT)] (:I 30)Figure 3: A formal proof of the `Total' exampledescription to verify whether one of them can assert (can be used as assertion to prove) anindexing property is incomplete relative to this task. That is, it is not enough to check theavailability of an indexing relation in the problem situation.The second di�erence concerns the construction of the implicit contradiction in thediagonal element: In the �rst two examples the diagonal element should contradict thediagonal property (the term U [F (x)(x)] with type o), but in this example the type of thediagonal term F (x)(x) is di�erent from the truth value type o. The diagonal elementshould be a term containing F (x)(x) as a sub-term and never equal F (x)(x). Actually,it is enough to satisfy the inequality of the diagonal element to the term F (x)(x) only atthe position (F (i); i) in the diagonal, where i denotes the index of the diagonal element.This means the diagonal element should be represented by the lambda expression schema�x G[F (x)(x)] and satisfy the inequality G[F (i)(i)] 6= F (i)(i). In general, this alternativehas to be taken into account for the construction of a diagonal element.9

3.3 The `Kset' problemWe consider the theorem `Kset':The set K = fx 2 Nj:de�ned(�(x; x))g is not recursively enumerable (anexercise from [DSW94], page 94).The formalization of this theorem and the necessary assertions is given in Table 4.Kdef 8nN K(n)$:de�ned(�(n; n))compLem 8fN!Res comp(f)! 9nN f = �xN �(n; x)r.e.Def 8sN!o r:e:(s)$9gN!Res comp(g) ^ 8xN s(x)$ de�ned(g(x))TND 8�o � _ :�Kset :r:e:(K)Table 4: A formulation of the `Kset' problemFigure 4 shows a formal proof of the `Kset' problem at the assertion level, that was con-structed interactively in
-mkrp. After assuming that the set K is recursively enumerable(line 1) and applying the recursive enumerability de�nition (line 2) we show a contradictionby diagonalization as follows:� We state that the diagonal element g0 belongs to the set comp (line 4),� We prove the existence of an index n0 for the diagonal element (lines 5,6), and� We deduce the obvious contradiction in line 11 with the help of the equality in line6, the second conjunct in line 3, and the de�nition Kdef.The diagonalization proof part in Figure 4 di�ers from the previous diagonalizationproofs in that the diagonal element (the function g0) is directly given by the problemsituation and does not need to be constructed. Consequently such an alternative shouldbe taken into account when searching for a diagonal element. The lambda expressionschemata, that were suggested in the previous examples to specify the diagonal elementD, can be instantiated to a function symbol which belongs to the enumerable set. Theinverting property of D can be stated if one of the conjectures U [D(i)]$:U [F (i)(i)] andD(i) 6= F (i)(i) can be proved from the current hypotheses. U is a meta-variable, F denotesthe indexing function, and i is the index of the diagonal element D.More examples are given in the appendix.4 A Diagonalization StrategyIn this section we summarize the properties of the presented diagonalization proofs. First,we give the essential proof steps and then suggest how these steps can be performed andimplemented within a proof planning process.The goal of the diagonalization strategy is a contradiction, i.e. ?. A diagonalizationproof plan can now be constructed in the following way:10

1. 1 ` r:e:(K) (Hyp)2. 1 ` 9g:[comp(g) ^ 8x:[K(x)$ de�ned(g(x))]] (r.e.Def 1)3. 3 ` [comp(g0) ^ 8x:[K(x)$ de�ned(g0(x))]] (Hyp)4. 3 ` comp(g0) (3)Proof of 115. 3 ` 9n:g0 = �x:�(n; x) (compLem 4)6. 6 ` g0 = �x:�(n0; x) (Hyp)7. 3 ` [K(n0)$ de�ned(g0(n0))] (3)8. 3,6 ` [K(n0)$ de�ned((�x:�(n0; x))(n0))] (=Subst 6 7)9. 3,6 ` [K(n0)$ de�ned(�(n0; n0))] (LambdaE 8)10. ` [K(n0)$:[de�ned(�(n0; n0))]] (Kdef)11. 3,6 ` [de�ned(�(n0; n0))$:[de�ned(�(n0; n0))]] ($SubE 9 10)Case 112. 12 ` de�ned(�(n0; n0)) (Case 1)13. 3,6,12 ` :[de�ned(�(n0; n0))] ($SubE 11 12)14. 3,6,12 ` ? (:E 13 12)Case 215. 15 ` :[de�ned(�(n0; n0))] (Case 2)16. 3,6,15 ` de�ned(�(n0; n0)) ($SubI 11 15)17. 3,6,15 ` ? (:E 15 16)18. ` [de�ned(�(n0; n0)) _ :[de�ned(�(n0; n0))]] (TND)19. 3,6 ` ? (_E 18 14 17)End of Case Analysis20. 3 ` ? (9E 5 19)21. 1 ` ? (9E 2 20)22. ` :[r:e:(K)] (:I 21)Figure 4: A formal proof of the `Kset' example1. Verify that the formula schema8x�!� P [x]! 9y� Q[y] ^ x = F [y]matches a provable formula from the hypotheses in order to obtain an indexing prop-erty,2. Check whether a function D (the diagonal element) belongs to P and satis�es aninverting property relative to the term F (x)(x). The speci�cation of D and thecorresponding inverting property for the index i of D depend on the type of P in thisconstruction:� If the type of P is (�! o)! o, i.e. the term F (x)(x) denotes a proposition, thenD is a predicate and must unify the lambda expression schema �x� R[F (x); x].The inverting property of D is ensured by the formula D(i)$:F (i)(i).� Otherwise, D is a function and must unify either:{ a lambda expression of the form �x� if(R[F (x); x]; Y [x]; Z[x]); The invert-ing property of D is guaranteed by the formulae: R[F (i); i] $ U [F (i)(i)],:U [Y [i]], and U [Z[i]],{ or a lambda expression of the form �x� G[F (x)(x)], whereG di�ers from theidentity �x� x; The inverting property is satis�ed if one of the conjecturesD(i) 6= F (i)(i) and U [D(i)]$:U [F (i)(i)] can be proven.11

3. Find the proof plan for making the implicit contradiction of the diagonal elementexplicit; the structure of this plan can be determined from the instantiation of thediagonal element and the corresponding inverting property,4. Generate a proof plan for the whole diagonalization proof by using the partial planscomputed in the previous three steps.The success of the diagonalization proof strategy depends mainly on the �rst and thesecond proof step, i.e. on the existence of an indexing property and the existence of afunction (the diagonal element) that satis�es an inverting property relative to the termF (i)(i) (i is the index of this diagonal element.) and belongs to the enumerable set P .Depending on the task at hand we need special methods for the special planning task.Furthermore, we need control knowledge to solve con
ict situations, i.e. situations withmany applicable methods.Verifying the existence of an indexing property amounts to the general and complex taskwhether a formula schema matches a provable formula from the hypotheses. It is di�cult toobtain all provable formulae which match the schema. We suggest therefore to restrict thistask to �nd the formulae which can be proved by assertion application of the hypothesesand which match the schema. The methods to be used for planning assertion applicationsshould specify whether a hypothesis can be an assertion to prove a formula schema andshould specify the resulted subgoals, i.e. the premises of this assertion application.Assertion application alone is not enough to determine all possible indexing properties.For instance, in the `Total' example one has to combine several assertions to get theright indexing property. Therefore we must extend the procedure of assertion applicationwith the possibility to combine assertions. For this purpose we must investigate how anindexing property could be proved by combining assertions. Moreover we must providecontrol knowledge to choose one indexing property, if several are available. A control rulecould state that hypotheses which do not belong to the original proof assumptions (i.e.which are introduced during the proof) are more important in proving the current goalif this goal depends on them: Indexing properties whose proof involves such hypothesesshould be preferred.The second main step in a diagonalization proof is the construction of the diagonalelement. In the given diagonalization strategy, the function that corresponds to the diagonalelement is partially speci�ed. It must be an element of the enumerable set P , it has tounify with some lambda expression schemata, and �nally a proposition that depends on it,i.e. the inverting property, must hold. We suggest to use middle out reasoning [KBB93] forthe construction of this function. The goals in this process are the formula schema P (D),where P is the enumerable set and D is the meta-variable which represents the function tobe constructed, and �nally the conjectures that specify the inverting property.We suggest to prove these goals by assertion application and higher order uni�cation.For instance, in the Halting problem, the membership of the diagonal element D to theenumerable set T1, i.e. the formula schema T1(D), can be reduced by applying the assertionifComp 8f((N!U);N)!B T2(f)! 8xU 8yU T1(�zN if(f(e(z); z) = 0; x; y))after unifying D with �zN if(F1(e(z); z) = 0; x; y), to the subgoal T2(F1). F1 is a meta-variable which can be instantiated while proving the resulted subgoal T2(F1).12

In general, assertion application is not enough to fully instantiate all the meta-variablesthat occur in the considered subgoals. There can be subgoals that cannot be proven fromany assertion. In such situations, instantiation alternatives need to be suggested in orderto satisfy the goal at hand and continue the search process. We suggest to provide theinstantiation alternatives using special heuristics which satisfy a goal by proposing somepossible bindings of its higher-order variables. For instance, one heuristic can satisfy theformula schema 8x R[F (x); x] ! M0(x) by instantiating the higher-order variable R to�x �y M0(y) ^R1[x; y].5 Conclusion and Future WorkIn this report we presented an empirical study of proofs by diagonalization and exploitedtheir similarities to suggest a diagonalization proof strategy. In order to e�ectively plandiagonalization proofs the following should be done:� Methods have to be designed and implemented for the proof of an indexing propertyby application of assertions, and control knowledge has to be developed to apply thesemethods within a planning process. (Or a procedure has to be implemented to searchfor an indexing property using the current hypotheses.)� Methods and heuristics for the construction of the diagonal element by middle outreasoning have to be designed and implemented. Planning with such methods involvesthe use of higher-order uni�cation which in general delivers many solutions some ofwhich are not useful at all. Preferred solutions should be formally described andspeci�ed in order to apply approaches which restrict the solutions of higher-orderuni�cation (similar say to the use of HOL-uni�cation in linguistic analysis [GK96]).Other questions that need to be answered are whether an indexing property couldbe formulated using other proof schemata and whether there is another speci�cation fordiagonal elements (In three other diagonalization examples, which are presented in theAppendix, the suggested diagonalization proof strategy can be successfully applied.). Toanswer these questions, more examples and especially other problem descriptions from theliterature should be empirically examined.Moreover, we want to design a general framework for proof planning where proof strate-gies in addition to methods can be declaratively represented (including control knowledge)in an interactive proof development system such as
-mkrp.References[Bun91] Alan Bundy. A Science of Reasoning. In Computational Logic: Essays in honorof Alan Robinson. MIT Press, 1991. also presented at the 10th CADE 1990 asextended abstract.[BvHHS90] Alan Bundy, Frank van Harmelen, Christian Horn, and Alan Smaill. TheOySteR-CLaM system. In Mark E. Stickel, editor, Proceedings of the 10thCADE, pages 647{648, Kaiserslautern, Germany, 1990. Springer Verlag, Berlin,Germany, LNAI 449. 13

[DSW94] Martin D. Davis, Ron Sigal, and Elaine J. Weyuker. Computability, Complex-ity, and Languages: Fundamentals of Theoretical Computer Science. AcademicPress, second edition, 1994.[Gen35] Gerhard Gentzen. Untersuchungen �uber das logische Schlie�en I. Mathematis-che Zeitschrift, 39:176{210, 1935.[GK96] Claire Gardent and Michael Kohlhase. Higher{order coloured uni�cation andnatural language semantics. In Proceedings of the 34th Annual Meeting of theAssociation for Computational Linguistics. ACL, Santa Cruz, 1996.[HKC95] Xiaorong Huang, Manfred Kerber, and Lassaad Cheikhrouhou. Adapta-tion of declaratively represented methods in proof planning. SEKI ReportSR-95-12, Fachbereich Informatik, Universit�at des Saarlandes, Im Stadtwald,Saarbr�ucken, Germany, 1995.[HKK+94] Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Ne-smith, J�orn Richts, and J�org Siekmann.
-mkrp: A Proof Development Envi-ronment. In Alan Bundy, editor, Proceedings of the 12th CADE, pages 788{792,Nancy, 1994. Springer Verlag, Berlin, Germany, LNAI 814.[Hua94] Xiaorong Huang. Reconstructing proofs at the assertion level. In Alan Bundy,editor, Proceedings of the 12th CADE, pages 738{752, Nancy, France, 1994.Springer Verlag, Berlin, Germany, LNAI 814.[KBB93] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for program synthesis.In P. Szeredi, editor, Proceedings of the 10-th International Conference on LogicProgramming. MIT Press, 1993.[Kle43] Stephen C. Kleene. Recursive predicates and quanti�ers. In Martin Davis, ed-itor, The Undecidable: Basic Papers On Undecidable Propositions, UnsolvableProblems And Computable Functions, pages 254{287. Raven Press, Hewlett,New York, 1965, 1943.

14

Appendix A: Three additional examplesIn this appendix we present three more theorems whose proofs are mainly based on the di-agonalization technique and we re
ect upon the proof steps of the suggested diagonalizationstrategy in the given formal proofs.A.1 The 'NatReal' problemThe theorem in Table 5 whose formalization is taken from [HKC95] states that there is nosurjective function from the natural numbers onto the interval [0; 1]. In its formal proof,which is shown in Figure 5, we assume that there is such a surjective function f0 and thenwe prove a contradiction by diagonalization, where the indexing property follows from thesurjectivity of f0. The diagonal element is represented by an if -construct (line 17). Themembership of the diagonal element to the interval [0; 1] is shown in lines 4 .. 17. In theproof part from line 18 to line 23 an implicit contradiction is derived by �rst applyingthe indexing property (the surjectivity of f0) in order to get an index y0 for the diagonalelement and then applying the diagonal element to this index to deliver the equality in line23 which embodies the implicit contradiction. This contradiction is made explicit by a caseanalysis (lines 25 .. 37).TND 8xo x _ :xsurjDef 8f�!(�!�) 8D�!o 8C(�!�)!osurj(f;D;C)$8y�!� y 2 C ! 9x� x 2 D ^ y = f(x)[0,1]Def 8h�!� h 2 [0; 1]$ (8n� n 2 N! dig(h(n)))digits dig(0) ^ dig(1)=Axiom 0 6= 1ifDef 8Po 8x� 8y� P ! if(P; x; y) = x^:P ! if(P; x; y) = yNatReal :9f�!(�!�) surj(f;N; [0; 1])Table 5: A formulation of the `NatReal' problemThe diagonalization proof in this example corresponds to the type of the diagonalizationstrategy as presented in section 4 where the diagonal element is represented by the lambdaexpression schema �x� if(R[F (x); x]; Y [x]; Z[x]). The meta-variables R, Y , and Z are tobe instantiated respectively by �x �y x(y) = 1, �x 0, and �x 1. The meta-variable U inthe inverting property R[F (i); i]$ U [F (i)(i)] should be instantiated to �x x = 1.A.2 The 'totFn' problemWe consider the theorem that there is no enumeration f0, f1, f2, ... of all total unaryfunctions on N (an exercise from [DSW94], page 94). This theorem is equivalent to theconjecture that there is no surjective function from the set of natural numbers N onto theset tfn of total unary functions on N which is formalized with the necessary assertions inTable 6. In the assertion level proof of this theorem, shown in Figure 6, we assume theexistence of such a function g0 and then prove a contradiction by diagonalization. Thediagonal element corresponds to the function �z s(g0(z)(z)) (line 10) and the indexing15

1. 1 ` :[0 = 1] (Hyp)2. 2 ` 9f:surj(f;N; [0; 1]) (Hyp)3. 3 ` surj(f0; N; [0; 1]) (Hyp)4. ` [f0(n)(n) = 1 _ :[f0(n)(n) = 1]] (TND)5. 5 ` f0(n)(n) = 1 (Case 1)6. 5 ` if(f0(n)(n) = 1; 0; 1) = 0 (ifDef 5)7. ` dig(0) (digits)8. 5 ` dig(if(f0(n)(n) = 1; 0; 1)) (=Subst 6 7)9. 9 ` :[f0(n)(n) = 1] (Case 2)10. 9 ` if(f0(n)(n) = 1; 0; 1) = 1 (ifDef 9)11. ` dig(1) (digits)12. 9 ` dig(if(f0(n)(n) = 1; 0; 1)) (=Subst 10 11)13. ` dig(if(f0(n)(n) = 1; 0; 1)) (_E 4 8 12)14. ` dig(�z:if(f0(z)(z) = 1; 0; 1)(n)) (LambdaI 13)15. ` [n 2 N ! dig(�z:if(f0(z)(z) = 1; 0; 1)(n))] (!I 14)16. ` 8n:[n 2 N ! dig(�z:if(f0(z)(z) = 1; 0; 1)(n))] (8I 15)17. ` �z:if(f0(z)(z) = 1; 0; 1) 2 [0; 1] ([0,1]Def 16)Proof of 2418. 3 ` 9y:[y 2 N ^ �z:if(f0(z)(z) = 1; 0; 1) = f0(y)] (surjDef 3 17)19. 19 ` [y0 2 N ^ �z:if(f0(z)(z) = 1; 0; 1) = f0(y0)] (Hyp)20. 19 ` �z:if(f0(z)(z) = 1; 0; 1) = f0(y0) (^E 19)21. 19 ` 8y:�z:if(f0(z)(z) = 1; 0; 1)(y) = f0(y0)(y) (Ext-I 20)22. 19 ` �z:if(f0(z)(z) = 1; 0; 1)(y0) = f0(y0)(y0) (8E 21)23. 19 ` if(f0(y0)(y0) = 1; 0; 1) = f0(y0)(y0) (LambdaE 22)24. 19 ` f0(y0)(y0) = if(f0(y0)(y0) = 1; 0; 1) (=Com 23)Case 125. 25 ` f0(y0)(y0) = 1 (Case 1)26. 25 ` if(f0(y0)(y0) = 1; 0; 1) = 0 (ifDef 25)27. 25 ` 1 = f0(y0)(y0) (=Com 25)28. 19,25 ` 1 = if(f0(y0)(y0) = 1; 0; 1) (=Trans 27 24)29. 19,25 ` 1 = 0 (=Trans 28 26)30. 19,25 ` 0 = 1 (=Com 29)31. 1,19,25 ` ? (:E 1 30)Case 232. 32 ` :[f0(y0)(y0) = 1] (Case 2)33. 32 ` if(f0(y0)(y0) = 1; 0; 1) = 1 (ifDef 32)34. 19,32 ` f0(y0)(y0) = 1 (=Trans 24 33)35. 19,32 ` ? (:E 32 34)36. ` [f0(y0)(y0) = 1 _ :[f0(y0)(y0) = 1]] (TND)37. 1,19 ` ? (_E 36 31 35)End of Case Analysis38. 1,3 ` ? (9E 18 37)39. 1,2 ` ? (9E 2 38)40. 1 ` :[9f:surj(f;N; [0; 1])] (:I 39)Figure 5: A formal proof of the `NatReal' exampleproperty follows from the surjectivity of g0. The membership of the diagonal element tothe set tfn is proved in lines 3 .. 10. In lines 11 and 12 an index y0 of the diagonal elementis determined by applying the surjectivity de�nition to the formula in line 10. With thehelp of the extensionality property we obtain from the function equality in line 12 theequality in line 16 which consists of an implicit contradiction. This implicit contradictionis made explicit in lines 17 .. 21.The diagonalization proof part here corresponds to the type of the diagonalization strat-16

tfnDef 8f�!� tfn(f)$ (8x� x 2 N! f(x) 2 N)surjDef 8f�!(�!�) 8D�!o 8C(�!�)!osurj(f;D;C)$(8y�!� y 2 C ! 9x� x 2 D ^ y = f(x))^(8z� z 2 D ! f(z) 2 C)succAx1 8x� x 2 N! s(x) 2 NsuccAx2 8x� x 2 N! s(x) 6= xtotFn :9g�!(�!�) surj(g;N; tfn)Table 6: A formulation of the `totFn' problemegy given in section 4 where the diagonal element is represented by the lambda expressionschema �x� G[F (x)(x)]. The meta-variable G has to be instantiated to �x s(x).1. 1 ` 9g:surj(g;N; tfn) (Hyp)2. 2 ` surj(g0; N; tfn) (Hyp)3. 3 ` y 2 N (Hyp)4. 2,3 ` tfn(g0(y)) (surjDef 2 3)5. 2,3 ` g0(y)(y) 2 N (tfnDef 4 3)6. 2,3 ` s(g0(y)(y)) 2 N (succAx1 5)7. 2,3 ` �z:s(g0(z)(z))(y) 2 N (LambdaI 6)8. 2 ` [y 2 N ! �z:s(g0(z)(z))(y) 2 N] (!I 7)9. 2 ` 8y:[y 2 N ! �z:s(g0(z)(z))(y) 2 N] (8I 8)10. 2 ` tfn(�z:s(g0(z)(z))) (tfnDef 9)Proof of 1611. 2 ` 9y:[y 2 N ^ �z:s(g0(z)(z)) = g0(y)] (surjDef 2 10)12. 12 ` [y0 2 N ^ �z:s(g0(z)(z)) = g0(y0)] (Hyp)13. 12 ` y0 2 N (^E 12)14. 12 ` �z:s(g0(z)(z)) = g0(y0) (^E 12)15. 12 ` 8y:�z:s(g0(z)(z))(y) = g0(y0)(y) (Ext-I 14)16. 12 ` �z:s(g0(z)(z))(y0) = g0(y0)(y0) (8E 15)Explicit Contradiction17. 2,12 ` tfn(g0(y0)) (surjDef 2 13)18. 2,12 ` g0(y0)(y0) 2 N (tfnDef 17 13)19. 2,12 ` :[s(g0(y0)(y0)) = g0(y0)(y0)] (succAx2 18)20. 12 ` s(g0(y0)(y0)) = g0(y0)(y0) (LambdaE 16)21. 2,12 ` ? (:E 19 20)End of explicit Contradiction22. 2 ` ? (9E 11 21)23. 1 ` ? (9E 1 22)24. ` :[9g:surj(g;N; tfn)] (:I 23)Figure 6: A formal proof of the `totFn' exampleA.3 The 'Aset' problemLet us �nally look at the theorem which states that the set A = fx 2 Njde�ned(�(x; x))^�(x; x) > xg is not recursive (an exercise from [DSW94], page 94). The formalization ofthis problem is listed in Table 7. In the formal proof in Figure 7 we assume that the setA is recursive and then prove a contradiction by diagonalization. The diagonal element isrepresented by the if -construct �y if(p0(y) = yes; id(y); s(y)) in line 12 and the indexing17

property follows from the de�nition of the total computability 'tcompDef'. The totalcomputability of the diagonal element is shown in lines 6 .. 12. In the proof part from line13 to line 18 an implicit contradiction is obtained by �rst applying the total computabilityde�nition in order to get an index y0 for the diagonal element and then applying thediagonal element to this index to deliver the equality in line 18. This equality embodiesthe implicit contradiction which is made explicit by a case analysis in the lines 19 .. 39.TND 8xo x _ :xADef 8xN x 2 A$ def(�(x; x)) ^ �(x; x) > xrecDef 8uN!o rec(u)$ 9pN!dig [tcomp p(p) ^ 8xN x 2 u$ p(x) = yes]grterAx 8xN id(x) 6> x ^ s(x) > xidAx 8xN def(id(x))succAx 8xN def(s(x))tcompDef 8fN!res tcomp(f)$ [9nN f = �xN �(n; x) ^ 8yN def(f(y))]tcompIf 8pN!dig 8fN!res 8gN!res[tcomp p(p) ^ 8yN def(f(y)) ^ 8zN def(g(z))]!tcomp(�xN if(p(x) = yes; f(x); g(x)))ifDef 8Po 8xres 8yres P ! if(P; x; y) = x^:P ! if(P; x; y) = yAset :rec(A)Table 7: A formulation of the `Aset' problemThe diagonalization proof in this example corresponds to the type of the diagonalizationstrategy described in section 4 where the diagonal element is represented by the lambdaexpression schema �x� if(R[F (x); x]; Y [x]; Z[x]). The meta-variables R, Y , and Z are tobe instantiated respectively to �x �y p0(y) = yes, �x id(x), and �x s(x). The meta-variable U in the inverting property R[F (i); i] $ U [F (i)(i)] should be instantiated to�x de�ned(x) ^ x > y0.

18

1. 1 ` 8y:de�ned(id(y)) (Hyp)2. 2 ` 8y:de�ned(s(y)) (Hyp)3. 3 ` rec(A) (Hyp)4. 3 ` 9p:[tcomp p(p) ^ 8y:[A(y)$ p(y) = yes]] (recDef 3)5. 5 ` [tcomp p(p0) ^ 8y:[A(y)$ p0(y) = yes]] (Hyp)6. 5 ` tcomp p(p0) (5)7. 1 ` 8y:de�ned(id(y)) (Abu 1)8. 2 ` 8z:de�ned(s(z)) (Abu 2)9. 1,2 ` [8y:de�ned(id(y)) ^ 8z:de�ned(s(z))] (^I 7 8)10. 1,2,5 ` [tcomp p(p0) ^ [8y:de�ned(id(y)) ^ 8z:de�ned(s(z))]] (^I 6 9)11. ` [[tcomp p(p0) ^ [8y:de�ned(id(y)) ^ 8z:de�ned(s(z))]]!tcomp(�y:if(p0(y) = yes; id(y); s(y)))] (tcompIf)12. 1,2,5 ` tcomp(�y:if(p0(y) = yes; id(y); s(y))) (!E 10 11)Proof of 1813. 1,2,5 ` 9n:�y:if(p0(y) = yes; id(y); s(y)) = �y:�(n; y) (tcompDef 12)14. 14 ` �y:if(p0(y) = yes; id(y); s(y)) = �y:�(y0; y) (Hyp)15. 14 ` 8y:�y:if(p0(y) = yes; id(y); s(y))(y) = �y:�(y0; y)(y) (Ext-I 14)16. 14 ` �y:if(p0(y) = yes; id(y); s(y))(y0) = �y:�(y0; y)(y0) (8E 15)17. 14 ` if(p0(y0) = yes; id(y0); s(y0)) = �(y0; y0) (LambdaE 16)18. 14 ` �(y0; y0) = if(p0(y0) = yes; id(y0); s(y0)) (=Com 17)Case119. 19 ` A(y0) (Case 1)20. 5,19 ` p0(y0) = yes (5 19)21. 5,19 ` if(p0(y0) = yes; id(y0); s(y0)) = id(y0) (ifDef 20)22. 5,14,19 ` �(y0; y0) = id(y0) (=Trans 18 21)23. ` :[id(y0) > y0] (grterAx)24. 5,14,19 ` :[�(y0; y0) > y0] (=Subst 22 23)25. 5,14,19 ` :[A(y0)] (ADef 24)26. 1,2,3,5,14,19 ` ? (:E 25 19)Case227. 27 ` :[A(y0)] (Case 2)28. 1,2,5 ` de�ned(�y:if(p0(y) = yes; id(y); s(y))(y0)) (tcompDef 12)29. 1,2,5 ` de�ned(if(p0(y0) = yes; id(y0); s(y0))) (LambdaE 28)30. 1,2,5,14 ` de�ned(�(y0; y0)) (=Subst 17 29)31. 5,27 ` :[p0(y0) = yes] (5 27)32. 5,27 ` if(p0(y0) = yes; id(y0); s(y0)) = s(y0) (ifDef 31)33. 5,14,27 ` �(y0; y0) = s(y0) (=Trans 18 32)34. ` s(y0) > y0 (grterAx)35. 5,14,27 ` �(y0; y0) > y0 (=Subst 33 34)36. 1,2,3,5,14,27 ` A(y0) (ADef 30 35)37. 1,2,3,5,14,27 ` ? (:E 27 36)38. ` [A(y0) _ :[A(y0)]] (TND)39. 1,2,3,5,14 ` ? (_E 38 26 37)End of Case Analysis40. 1,2,3,5 ` ? (9E 13 39)41. 1,2,3 ` ? (9E 4 40)42. 1,2 ` :[rec(A)] (:I 41)Figure 7: A formal proof of the `Aset' example
19

