
Concurrent Programming in Haskell�V��ctor M. Gul��as, Jos�e L. Freirefgulias,freireg@dc.fi.udc.esLFCIA, Department of Computer ScienceUniversity of La Coru~na, SPAIN
AbstractIn this paper, an extension of the non-strict functional language Haskell [3] ispresented. It performs the evaluation of expressions by using multiple threads. Thesynchronous model and the event interface used are similar to Reppy's CML [11],but in this case we must deal with new factors like non-strictness, embedding thesynchronous operations into the IO monad. Lazy structures are useful to model thebehaviour of processes, in the same way as Hoare's traces in CSP [5]. A great at-tention is paid to higher-order concurrent abstractions which simplify programmer'swork. A prototype implementation has been developed in Yale Haskell.Keywords: Functional Programming, Concurrency, Higher-Order Functions,Synchronous Communication.1 IntroductionConventional languages are oriented towards an execution model typically sequential,motivated by the Von Neumann architecture. In this model, a program is viewed as astream of instructions which must be executed one after another a�ecting a global state.The solution of a problem using a sequential algorithm might be, in many cases, notappropriated. The real world is composed of many entities executing \their programs"at the same time. At some point, these programs communicate one another. To mimicthis behaviour, the programmer has to appeal to arti�cial structures that complicate thealgorithm. If the compiler is able to o�er some concurrency support to the programmer,the modelization of the word might be done simpler.Multiple execution points in an imperative language make the programs hard to under-stand and debug, and completely impossible to verify due to side-e�ects. Contrary toimperative languages, functional languages, particularly those with non-strict semanticsand an absence of side-e�ects, have often been suggested as powerful tools for program-ming parallel computer systems. Di�erent subexpressions can be evaluated in parallel�Supported by Xunta de Galicia XUGA10502B94

given that the semantics of the language guarantees that no interference among them canarise. This is the sort of parallelism that Jones and Hudak [9] call implicit parallelism.Algorithms are written in a declarative way without taking care of the execution model.Thus, the expressions to evaluate have to be scheduled by the compiler in both time(when can a subexpression be evaluated?) and space (which processor should evaluatethe expression?).Sometimes it is di�cult to exploit the implicit parallelism in a suitable way [7]. Onthe other hand, there is another kind of parallelism called explicit parallelism, in whichthe programmer explicitly requests the runtime system the concurrent evaluation of anexpression, or communication/synchronization among threads. This user-driven paral-lelism, which we are going to call concurrent programming, will be the focus of this work.The extension proposed has been strongly in
uenced by some of the ideas used in theprogramming language Occam [8] and Reppy's concurrent ML [11], which use Hoare'sCSP [5] as theoretical background.2 Spawning IO ActionsIn a single-threaded Haskell program, the computation can be viewed as the demandof an IO action which forces the evaluation of some data. The natural extension tomultiple lightweighted processes is to consider each thread as a di�erent IO demand. Theprogrammer has explicit control over the threads as well as the interaction among them.The whole computation is performed by threads which together constitute the concurrentapplication.2.1 Spawning a ThreadThe spawn :: IO a -> IO (Thread a) function creates a new IO demand which eval-uates the IO action concurrently to the caller's demand (asymmetric fork). The abstractdatatype Thread a encapsulates all the information related to a di�erent IO demand.Some of the information associated with the thread object is the result of the evaluation(a MultiLisp-like future, see section 2.3.2), and an event that is triggered when the thread�nishes its computation (see section 3).The following program forks a thread to print a message concurrently with the mainprocess:main =spawn (print "Child process") >>print "Main thread"All the threads are running (logically at least) in parallel. Each thread may be: (a)Active, the thread is ready to gain the CPU and continue its execution. The executionsof all active threads are interleaved in a non-deterministic way; (b) Waiting, the thread isblocked trying to engage in an event, to seize a resource, or to perform an I/O operation.As soon as the thread accomplishes the action that forces him to wait, it will be returned

to the active state to continue its execution; and (c) Finished, A thread that has �nishedits IO demand.Since the parent and the child threads may mutate the same shared world, non-determinism is introduced. Although a part of the world can be duplicated to avoiddangling side-e�ects between the threads (for instance, changing operating system envi-ronment variables), this problem is not avoidable in general, and is usually desirable ininteractive systems. So, mechanisms to control the access to the shared state are neededand a proof-obligation by the programmer required.A thread is automatically terminated as soon as its IO action is computed, and then theresult is made available to the rest of the program. With some restrictions, threads canbe terminated if they are no longer useful to the rest of the program (for instance, if itis blocked in a never event, or blocked in a channel that is no longer used by any otherthread). In the event of a runtime error in any thread, the whole concurrent program isaborted. IO exceptions can be catched using handle: spawn (op `handle` handle).2.2 Result of a ThreadA thread computing an (IO a) action is denoted by the type (Thread a). A thread canaccess to the result produced by another thread using getResult :: Thread a -> a.If a thread needs the result (i.e, tries to force it), it has to wait until the value is available,so the thread result behaves in a similar way to usual lazy values1.In the following example, the contents of several �les are read concurrently. Given thename of a �le, read returns its contents as a string. Each thread executes read with adi�erent �lename. The parent thread folds all the results with the concatenation operator++.read :: String -> IO Stringread file =openFile ReadMode file >>= \hdl ->hGetContents hdl >>= \txt ->closeFile hdl >>return txtreadFiles :: [String] -> IO StringreadFiles fs =sequence [spawn (read f) | f <- fs]>>= \threads ->return (foldl (++) [][getResult t | t <- threads])In order to synchronize on the termination of a thread, wait :: Thread a -> IO ()can be used. A symmetric fork can be build as follows:1In fact, our prototype takes advantage of the actual manipulation of lazy values to implement syn-chronization points among threads

symFork :: IO a -> IO b -> IO (a,b)symFork a b =spawn a >>= \threadA ->b >>= \resB ->wait threadA >>return (getResult threadA, resB)2.3 Thread InteractionBesides the values shared due to the lexical scope (which are non-mutable values), somemeans have to be provided to make possible a richer interaction among di�erent threads:Syncronous Channels and Write-Once Variables.2.3.1 Synchronous ChannelsCommunication among threads is performed using synchronous channels, a point-to-pointcommunication in CSP-style. Channels carrying values of type a are denoted by Channela.When a thread wants to communicate on a channel, it must rendezvous with anotherthread that wants to do a complementary communication on the same channel, as otherCSP-style languages. The data is not bu�ered although there is a queue of di�erentthreads blocked, trying to use the channel. Notice that all of the values transmitted on asingle channel are required to have the same type. In contrast to most of non-functionalconcurrent languages as Occam, we allow arbitrary types to be passed down a channel,including lists, functions, arbitrary data structures, IO actions, and even other channels.Using channel :: Channel a, a channel can be created. accept :: Channel a ->IO a and send :: Channel a -> a -> IO () are used to deal with channel inputand output, respectively.2.3.2 Write-Once VariablesIn addition to channels, write-once variables are also supplied. A write-once variable isa special cell which can be written only once. Any attempt to read the value before it isavailable will block the thread. These cells are similar to Reppy's condition variables orI-structures in Id. They might be used to implement MultiLisp-like futures [4]. Multiplewrites into a write-once variable are not allowed.A writeOnce variable is a three-tuple, composed by the value stored in the cell, an event(see section 3) which is triggered when the value is available and an action to set thevalue.type WriteOnce a = (a, Event a, a -> IO ())writeOnce :: IO (WriteOnce a)

The result of a thread is implemented using write-once variables as shown in the followingexample. The primitive spawnPrim :: IO a -> IO () creates a new demand for thegiven IO action:spawn op =writeOnce >>= \(a, _, set) ->spawnPrim (op >>= set) >>return (Thread a)3 Event Based InteractionThe previous section presents di�erent mechanisms which allow the threads to interactone another. Sometimes, a more complex interaction is required. In CML, the notion of�rst-class synchronous operations, an implementation of Hoare's events, was introduced.An event is a description of a synchronous operation, such as an operation on a channel;it is represented as a value of type Event a. Some basic events are provided, as well asevent combinators to de�ne more complex relations.Note that each event name denotes an event class; there may be many occurrences ofevents in a single class, separated in time. The di�erence between an event and theoccurrence of the event is similar to the di�erence between an IO action and the actualexecution of that action.3.1 Basic Events� Trivial Events. The event that never happens never :: Event a, and the eventthat always happens always :: a -> Event a.� Channels. Two events: (a) receive :: Channel a -> Event a, to get a valuefrom a channel, and (b) transmit :: Channel a -> a -> Event (), to outputa value. accept and send are the synchronous versions of receive and transmit,respectively.� Timers. timeout :: Int -> Event () is an event that is triggered n units oftime after synchronization. timer :: Int -> IO (Event ()) is an action thatdelivers an event that is triggered n units of time after executing it.� Other Events. An event handler is provided with write-once variables and threads(using isFinished :: Thread a -> Event ()). These events are triggered whentheir values are available. That can be useful to block a thread until the requiredvalues are ready to be used. Other basic events can be implemented such as userinterface events, network events and many other stimuli which are interesting forthe reactive system.

3.2 Event combinatorsSimpler events can be combined to form more complex ones. Two di�erent combinatorsare provided: alternative selection and wrappers.� Alternative Selection of Events. Sometimes it is interesting to de�ne an event as thenon-deterministic selection of many possible asynchronous events. Typical CSP-likelanguages, such as Amber [1] or Occam, include an alternative selection from mul-tiple sources. Two combinators are included: choose, choosePrio :: [Eventa] -> Event a. The choose event combines a list of events in a unique event. Theresult is the selection of the �rst event that happens, or the non-deterministic selec-tion whenever multiple events occur simultaneously. The non-deterministic selectionis not appropriated in many cases, hence a priority scheme should be introduced.choosePrio uses the order in the list to select an event in the case that multipleevents happen.� Wrapping. The (==>) :: Event a -> (a -> b) -> Event b combinator ap-plies a function to the result of an event. It is specially useful to unify the type ofmany events to build a choose event.3.3 Engaging on EventsAn Event value describes a potential synchronous operation. Two functions are providedto let the thread synchronize on an event: (a) poll :: Event a -> IO (Maybe a) �rstestablishes whether the event can or cannot be commited. If the event can be commitedinmediately, poll carries out the synchronization, returning the value wrapped with theconstructor Just2. Otherwise, the Nothing constructor is inmediately returned; and (b)sync :: Event a -> IO a, which is the blocked version of poll. If the event cannotbe commited inmediatly, the thread will be forced to wait until the event happens.3.4 Event Abstractions3.4.1 Operations on ChannelsThe synchronous operations on channels can be implemented using the events receiveand transmit. In the example, the in�x operator (.) denotes the composition of func-tions:accept = sync . receivesend c = sync . transmit c2Maybe is a datatype de�ned in Haskell's prelude as data Maybe a = Nothing | Just a

3.4.2 Selection of multiple eventsAs said, CSP-like languages usually include a select sentence for alternative selection frommultiple choices. That sentence can be implemented as follows:sel :: [Event a] -> IO asel = sync . chooseThe following code shows a server with two channels: c1 is used to output its currentstate, c2 is used to receive a function to update its state. The non-deterministic selectionis used to determine the next state.server c1 c2 s =sel [transmit c1 st ==> const s,receive c2 ==> \f -> f s] >>= \s' ->server c1 c2 s'3.4.3 Synchronization on a set of eventsIt is often needed to synchronize on all the events from a given set. Sometimes, the relativeorder of the events is known, but sometimes the events can happen in non-deterministicorder. syncSequence and syncAccumulate engage in all the events in a given list insequence, while syncAll makes it so in non-deterministic order:syncSequence :: [Event a] -> IO ()syncSequence = sequence . (map sync)syncAccumulate :: [Event a] -> IO [a]syncAccumulate = accumulate . (map sync)syncAll :: [Event a] -> IO ()syncAll es =accumulate [spawn (sync e)| e <- es] >>= \ts ->syncSequence [isFinished t | t <- ts]In Hoare's work, traces are used to describe the behaviour of a process by signaling thesequence of events which the process engages on. trace creates a new thread which willengage on a sequence of events. Thread execution is �nished as soon as the thread reachesthe end of the list.trace :: [Event a] -> IO (Thread ())trace = spawn . syncSequence

In�nite process, i.e., threads that engages on an in�nite number of events, can be modelledusing lazy lists as traces. All the prelude functions on lists are available to perform traceoperations. For example, repeat :: a -> [a] creates an in�nite trace by repeating thesame event; cycle :: [a] -> [a] creates an in�nite trace by cyclicing a list of events;or (++) :: [a] -> [a] -> [a] creates a new trace as the sequence of two traces.Another useful abstraction is to think in the result of the event as a �nalization condition.syncWhile takes a trace of Event Bool and engages on all the events while all the resultsare True and there are more events.sequenceWhile :: [IO Bool] -> IO ()sequenceWhile ops = loop ops Truewhere loop _ False = return ()loop [] _ = return ()loop (op:ops) True = op >>= loop opssyncWhile :: [Event Bool] -> IO ()syncWhile = sequenceWhile . (map sync)For example, the following function reads values from the channel c until the value x isreceived:t :: (Eq a) => a -> Channel a -> IO ()t x c = syncWhile(repeat (receive c ==> (/= x)))4 Dinning PhilosophersThis is a classical problem of communicating sequential processes which is going to beimplemented using this extension. A detailed description of this problem and its solutionin CSP is presented in [5]. A simpler implementation might be done considering each forkas a one bit bu�er. Given a fork, pickUp and putDown provides the philosopher's eventsrelated to this fork. The one bit bu�er is a process that cyclically transmits and receives avalue from the channel. In this case, the value is per se irrelevant (we are only interestedin the synchronization), so ? is used.type Fork = Channel ()fork :: IO Forkfork =channel >>= \c ->trace (cycle [transmit c _,receive c]) >>return cpickUp :: Fork -> Event ()pickUp = receive

putDown :: Fork -> Event ()putDown f = transmit f _Each philosopher uses two forks, which are picked up in order. A list of integers isused to simulate timeouts for both thinking and eating. The events associated with thephilospher's sitting down and getting up have no real interest in this model, so the trivialevent always is used.philo :: (Fork,Fork)->[Int]->IO (Thread ())philo (fst, snd) ts =trace (events ts)whereevents (t1:t2:ts) =[thinking t1,sitDown, pickUp fst, pickUp snd,eating t2,putDown fst, putDown snd, getUp] ++ events tsthinking = timeouteating = timeoutsitDown = always _getUp = always _A fork ordering is introduced to prevent deadlock. Given a list of n forks [f1; ::; fn],ordering produces a list of pairs with forks (fi,fi+1) for 1 � i < n, and a special pair(f1,fn) instead of (fn,f1) to avoid the circular wait.ordering :: [Fork] -> [(Fork,Fork)]ordering forks = (head forks, last forks): zip forks (tail forks)The following function initializes the philosopher's dinning. It creates as many forks asneeded, establishes the ordering of the forks and then creates the philosophers. Besidesthe number of philosophers (n), a list with the \random" behaviour for each philosopheris required.dinning :: Int -> [[Int]] -> IO ()dinning n rs =accumulate[fork | _ <- [1..n]] >>= \forks ->sequence(zipWith philo (ordering forks) rs)Notice that replacing the philosopher's events by more complex ones, it would be straight-forward to implement a graphical interface, for instance, by sending the current stateinformation to a broadcast process which gathers information from all the philosophers.

5 Related WorkMost of the work on concurrency embedded into a functional language rely on the notionof synchronous communications. Thus, these works have been strongly in
uenced byHoare's CSP [5] as well as its implementation Occam [8]. PFL [6] and Amber [1] werethe �rst languages which incorporate such concurrency features. Reppy's CML [11] tookback those ideas, putting emphasis on abstraction by introducing the notion of event, animplementation of CSP's events. Our work can be viewed as an extension of CML toHaskell, by integrating the event mechanism into the IO monad, and adopting the CSPformalism to de�ne the thread behaviour (traces) using lazy lists. On the other hand,ML-threads [2] is yet another concurrency package forML, providing threads, mutexes,and condition variables.There are a few papers on concurrency using Haskell. In [9] the implicit and explicitparallel programming is discussed and a prototypeGofer implementation of synchronouscommunications is given. In [12], some primitives (quite similar to the primitives exposedin [9]) are used to implement di�erent concurrent formalisms (actors, RPCs, CML, Ada).In [10], a concurrent extension to Glasgow Haskell is introduced. That extesionfocusses on the e�cient implementation of concurrency and aynchronous communicationprimitives using cells similar to Id's I-var and M-var structures. Neither of them usesin�nite lists as traces to model thread behaviour as our work states.6 Conclusions and Further WorkAn extension of the non-strict functional language Haskell has been exposed. Thatextension allows the programmer to spawn threads that communicate by di�erent ways(mutexes, write-once variables, and synchronous channels). We have adopted Reppy'shigher order concurrency by including the notion of event. Among the combinators in-cluded, it must be pointed out the presence of a non-deterministic choice. The greaterchallange has been to include all these concepts in armony with the non-strict evaluationpolicy of Haskell by modifying properly the monadic input/output. In order to modelthe thread behaviour, lazy lists have been used as Hoare's traces in such a way thatit opens the possibility of using functions on list to compose process. Other advancedfeatures of Haskell such as list comprehension, higher-order functions and, in general,all the expresiveness of purely funcional languages have been shown to represent a greatframework for building concurrent abstractions.A prototype implementation has been developed for two of the platforms used in thedistribution of Yale Haskell and it is freely available. Many examples, includingthose in [9] as well as interactive applications such as a graphical interface for the dinningphilosophers problem, have been implemented. The greater shortcoming of this prototypeis the ine�cient execution of Yale Haskell system, an order of magnitud (at least) ifcompared with Glasgow Haskell, although Yale Haskell is user friendlier becauseof its interactive toplevel. Besides of inheriting that ine�cient execution, the expensivenature of synchronous operations makes our prototype slow. Thus, further work has tobe done in order to improve that.

Although the current prototype has been thought to be used on a monoprocessor ma-chine, it seems to be obvious the bene�ts of extending such a prototype to multiprocessormachines. In particular, we are interested in distributed execution of funcional code and,hence, a concurrency layer might be very useful to implement the underlying model forthat transparent distribution. In addition, formal semantics of the given extension shouldbe developed.References[1] L. Cardelli. Amber. In G. Cousineau, P.L. Curien, and B. Robinet, editors, Combi-nators and functional programming languages, LNCS 242. Springer Verlag, 1986.[2] E.C. Cooper and J.G. Morrisett. Adding threads to Standard ML. Technical ReportCMU-CS-90-186, Carnagie Mellon University, 1990.[3] P. Hudak et al. Report on the functional programming language Haskell, Version1.2. ACM SIGPLAN Notices, 27, May 1992.[4] R. H. Halstead. Multilisp: a language for concurrent symbolic computation. ACMTransactions on Programming Languages and Systems, 7(4):501{538, October 1985.[5] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cli�s,NJ, 1985.[6] S. Holmstrom. Polymorphic type systems and concurrent computations in functionallanguages. Ph.D. thesis, Chalmers University, Department of Computer Science,1983.[7] P. Hudak. Para-Functional Programming in Haskell. In Boleslaw K. Szymanski,editor, Parallel Functional Languages and Compilers, Frontier Series, chapter 5, pages159{196. ACM Press, NY, 1991.[8] Geraint Jones. Programming in Occam. Prentice-Hall international, 87.[9] M.P. Jones and P. Hudak. Implicit and Explicit Parallel Programming in Haskell.Research Report YALEU/DCS/RR-982, Yale University Department of ComputerScience, 1993.[10] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proceedings ofthe 23rd ACM POPL, St Petesburg Beach, Florida, 1996.[11] J.H. Reppy. Higher-Order Concurrency. Ph.D. thesis, Cornell University, June 1992.[12] E. Scholz. Four concurrency primitives for haskell. In Proceedings of the HaskellWorkshop, pages 1{12, La Jolla, CA, USA, 1995. Yale University Research ReportYALEU/DCS/RR-1075.

