
Appeared in Working Notes of the 1991 AAAI Spring Symposium, pp. 151{155, and SIGART Bulletin, 2, pp. 160-163, 1991Dyna, an Integrated Architecturefor Learning, Planning, and ReactingRichard S. SuttonGTE Laboratories IncorporatedWaltham, MA 02254sutton@gte.comAbstractDyna is an AI architecture that integrates learning,planning, and reactive execution. Learning meth-ods are used in Dyna both for compiling planningresults and for updating a model of the e�ects ofthe agent's actions on the world. Planning is incre-mental and can use the probabilistic and ofttimesincorrect world models generated by learning pro-cesses. Execution is fully reactive in the sense thatno planning intervenes between perception and ac-tion. Dyna relies on machine learning methods forlearning from examples|these are among the ba-sic building blocks making up the architecture|yetis not tied to any particular method. This paperbriey introduces Dyna and discusses its strengthsand weaknesses with respect to other architectures.1 Introduction to DynaThe Dyna architecture attempts to integrate� Trial-and-error learning of an optimal reactive policy, amapping from situations to actions;� Learning of domain knowledge in the form of an actionmodel, a black box that takes as input a situation andaction and outputs a prediction of the immediate nextsituation;� Planning: �nding the optimal reactive policy given do-main knowledge (the action model);� Reactive execution: No planning intervenes betweenperceiving a situation and responding to it.In addition, the Dyna architecture is speci�cally designedfor the case in which the agent does not have complete andaccurate knowledge of the e�ects of its actions on the worldand in which those e�ects may be nondeterministic.Dyna assumes the agent's task can be formulated as a rewardmaximization problem (Figure 1). At each discrete time in-terval, the agent observes a situation, takes an action basedon it, and then, after one clock tick, observes a resultant re-ward and new situation. The agent's objective is to chooseactions so as to maximize the total reward it receives in thelong-term.1 This problem formulation has been used in stud-ies of reinforcement learning for many years and is also be-ing used in studies of planning and reactive systems (e.g.,Russell, 1989). Although somewhat unfamiliar, the rewardmaximization problem is easily mapped onto most problemsof interest.1Most systems actually slightly discount delayed rewardrelative to immediate reward.

Agent

World

Reward
Situation/

State
ActionFigure 1: The Problem Formulation Used in Dyna. Theagent's object is to maximize the total reward it receives overtime.1REPEAT FOREVER:1. Observe the world's state and reactively choose anaction based on it;2. Observe resultant reward and new state;3. Apply reinforcement learning to this experience;4. Update action model based on this experience;5. Repeat K times:5.1 Choose a hypothetical world state and action;5.2 Predict resultant reward and new state using actionmodel;5.3 Apply reinforcement learning to this hypotheticalexperience.Figure 2: A Generic Dyna Algorithm.The main idea of Dyna is the old, commonsense idea thatplanning is `trying things in your head,' using an internalmodel of the world (Craik, 1943; Dennett, 1978; Sutton &Barto, 1981). This suggests the existence of a more primitiveprocess for trying things not in your head, but through directinteraction with the world. Reinforcement learning is thename we use for this more primitive, direct kind of trying,and Dyna is the extension of reinforcement learning to includea learned world model.The essence of Dyna is given by the generic algorithm in Fig-ure 2. In this algorithm, an \experience" is a single unit ofexperience consisting of a starting state, an action, a resultingstate, and a resulting reward. The �rst step of the algorithmis simply that of a reactive system; the agent reads o� ofits reactive policy what to do in the current situation. The�rst three steps together comprise a standard reinforcementlearning agent. Given enough experience, such an agent canlearn the optimal reactive mapping from situations to action.The fourth step is the learning of domain knowledge in theform of an action model (Lin, 1991) that can be used to pre-dict the results of actions. The �fth step of the algorithm isessentially reinforcement learning from hypothetical, model-generated experiences; this is in e�ect a planning process.

The theory of Dyna is based on the theory of dynamic pro-gramming (e.g., Bertsekas, 1987) and on the relationship ofdynamic programming to reinforcement learning (Watkins,1989; Barto, Sutton &Watkins, 1990), to temporal-di�erencelearning (Sutton, 1988), and to AI methods for planning andsearch (Korf, 1990). Werbos (1987) has previously arguedfor the general idea of building AI systems that approxi-mate dynamic programming, and Whitehead (1989) and oth-ers have presented results for reinforcement learning systemsaugmented with with an action model used for planning.More recently, Riolo (1991) and Grefenstette et al. (1990)have explored in di�erent ways the use of action models to-gether with reinforcement learning methods based on clas-si�er systems. Mahadevan and Connell (1990) have appliedreinforcement learning methods together with ideas from sub-sumption architectures to a real robotic box-pushing task.Lin has explored Dyna architectures and related ideas onboth simulated (Lin, 1991) and real robot tasks (Lin, per-sonal communication).2 Components of DynaInstantiating the Dyna architecture involves selecting threemajor components:� The structure of the action model and its learning algo-rithms;� An algorithm for selecting hypothetical states and ac-tions (Step 5.1, search control).� A reinforcement learning method, including a learning-from-examples algorithm and a way of generating vari-ety in behavior.The structure and learning of the action model lie mostlyoutside the the scope of the Dyna architecture. Recall thatthe action model is meant to be simply a mimic of the world;it takes in a description of a state and an action and emitsa prediction of the immediate resulting state and reward.Actual experience with the world continually produces ex-amples of desired behavior for such a model. These can beused in conjunction with any of a large number of learningalgorithms for supervised learning (learning from examples).The design of that algorithm, its knowledge representationand generalization capabilities will of course have a large ef-fect on the quality of the learned model, on how e�cientlyit is learned, and on how easily it can be primed with priordomain knowledge. Nevertheless, we consider those issues tobe outside the scope of the Dyna architecture per se. BecauseDyna makes no strong assumptions about the action model,it can use a wide variety of methods now existent or yet to bedeveloped. One assumption Dyna does make that is not trueof some supervised learning methods is that they can operateincrementally, that is, processing examples one by one ratherthan saving them up and making multiple passes.At this time little can be said about how hypothetical startingstates and actions should be selected. It can be done in alarge variety of ways, but there has been little experiencewith any but the simplest. For example, in my previous workI have selected among previously observed states at random,either uniformly or in proportion to their frequency of prioroccurrence. This is essentially the issue of search control|what part of the state space shall be worked on (plannedabout) next? Larger problems will of course require thatthe search be controlled more carefully. For some choices ofsearch control method, the form of planning done in Dyna

may be essentially the same as traditional kinds of planning,but for others it is clearly di�erent. The following sectiondiscusses planning in Dyna further.Among the reinforcement learning algorithms that can beused in Steps 3 and 5.3 of the Dyna algorithm (Figure 2)are the adaptive heuristic critic (Sutton, 1984), the bucketbrigade (Holland, 1986), and other genetic algorithm meth-ods (e.g., Grefenstette et al., 1990). For concreteness, con-sider the simplest, most recent, and perhaps most promisingmethod, Q-learning (Watkins, 1989). The basic idea in Q-learning is to learn an evaluation function that gives the valueof performing each action in each state. This function is usu-ally denoted Q(x; a), where x is a state and a is an action(the name \Q-learning" comes from this choice of notation).When using Q-learning, the action chosen in a state x is usu-ally simply the action a for which Q(x; a) is maximal.The update algorithm for Q-learning can be expressed in ageneral form as a way of moving from a unit of experience toa training example for the evaluation function. This train-ing example is then input to a supervised learning algorithm.Just as in learning the action model, the choice of supervisedlearning algorithm will have a strong e�ect on the perfor-mance of the Dyna architecture, but is not a part of thearchitecture itself. Recall that a unit of experience consistsof a starting state (x), an action (a), a next state (y), and areward (r). From this one forms the training example:Q(x; a) should be r + maxb Q(y; b);where , 0 � < 1, is a constant that determines the relativevalue of short-term versus long-term reward. Strong formalresults are available for the case in which the Q function isimplemented as a table. For that case, Watkins (1989) hasshown that Q-learning from real experiences|direct agent-environment interaction without using an action model|willconverge to the optimal behavior under weak conditions.3 Planning and Reacting in DynaJust as reinforcement learning with real experience (Steps 1{3) is meant to learn the optimal way of behaving for the realworld, reinforcement learning with hypothetical experience(Steps 5.1{5.3) is meant to learn the optimal way of behavinggiven the action model. Reinforcement learning with hypo-thetical experience is in fact an incremental form of planningthat is closely related to dynamic programming. Here wewill call it incremental dynamic programming, after Watkins(1989), or IDP planning for short. Assuming IDP planningsteps can be done relatively quickly and cheaply comparedto real steps (i.e., K >> 1) and that the model is correct,IDP planning will greatly speed the �nding of the optimalpolicy. In small tasks this has been shown to be true evenif the model must be learned as well or if the world changes(Sutton, 1990).Results from dynamic programming (Bertsekas & Tsitsiklis,1989) can be adapted to show that IDP planning based onthe tabular version of Q-learning converges onto the opti-mal behavior given the action model. This is a strong resultbecause it applies to nondeterministic environments and nomatter how deep a search is required to �nd the optimal ac-tions. Strictly, it applies only to the tabular case, but theresults should be similar for supervised learning methods tothe extent that they can accurately approximate the desiredfunctions.Dyna is fully reactive in the sense that no planning intervenesbetween observing a state and taking an action dependent

Situation ActionPlanner

Situation ActionReactive
Policy

A)

B)

C) Situation ActionReactive
Policy

PlannerFigure 3: Simplistic Comparison of Architectures: A) Con-ventional Planning, B) Reactive Systems, C) IDP Planning(incremental compiling into reactions).on that state. In the Dyna algorithm given in Figure 2, IDPplanning takes place after action selection, but conceptuallythese processes proceed in parallel.2 The critical issue is thatplanning and reacting processes are not strongly coupled: theagent never delays responding to a situation in order to plana response to it. Although the agent always responds reac-tively and instantly, this does not mean it must immediatelyrespond decisively; for example, it may choose the responseof sitting still. Figure 3 contrasts this approach to combiningplanning and execution with that of conventional planningsystems and of reactive systems.IDP planning has both advantages and disadvantages com-pared to other planning methods. The primary advantageis that it is totally incremental; any time spent planning re-sults in an improvement in the agent's immediate reactionsor evaluation function for some state. Thus, performancecontinually improves, and arbitrarily long optimal sequencesof actions can be found. In addition, it readily handles non-deterministic tasks and is extremely general in that it makesno assumptions about the world other than that is can be atleast partially predicted.The primary disadvantage of IDP planning is that it mayrequire large amounts of memory. Whereas traditional plan-ning methods are based on constructing search trees andbacking-up evaluations on demand, IDP planning is based onstoring backed-up evaluations (and possibly reactions) associ-ated with each state or state-action pair. Even if supervisedlearning methods are used instead of tables, this is still amemory-intensive approach. It will require far more memorythan depth-�rst search, for example.4 Potential Problems with DynaIn the rest of this paper we briey discuss a number of po-tential problems with the Dyna architecture.2The Dyna algorithm given in Figure 2 also sacri�ces re-activity somewhat for the sake of pedagogy. A more fully re-active version of the algorithm would move Step 5 inbetweenSteps 1 and 2. More generally, the four main functions of thealgorithm|reacting, reinforcement learning, model learning,and IDP planning|should be thought of as running simul-taneously and independently.

4.1 Reliance on Supervised LearningOn realistic problems, the state space is obviously far toolarge for table-based approaches, and thus Dyna must rely onmethods for learning and generalizing from examples. How-ever, despite enormous amounts of work in several disciplines,fully satisfactory methods for supervised learning remain tobe found. For example, there remain di�cult issues in gener-alization and knowledge representation that must be solved.Nevertheless, I do not feel it is inappropriate to base an in-tegrated architecture on a capability for e�ectively learningfrom examples. Would not any integrated architecture relyon such a capability at some level? Any architecture usinganalogy, compilation, reminding, or even similarity would doso. If the answer is clearly `yes,' then why not build this inas a basic part of the architecture?4.2 Hierarchical PlanningDyna as described is a very at system. It plans at the level ofindividual actions. If those actions are muscle twitches, thenDyna will be of no help planning a trip across the country|and neither will any other planner that operates at a singlelevel. Planning must be done at several levels and the resultscombined in some way. We have had lots of experience doingthis with conventional planners, but it has not been tried withDyna. To my knowledge there is no reason as yet to thinkthat hierarchical planning will be either easier or harder inDyna than it is in conventional planners.4.3 Ambiguous and Hidden StateSo far we have assumed that the agent can observe the rele-vant aspects of the world's state at no cost and on every timestep, assumptions that are clearly violated in many tasks ofinterest. This is a limitation that Dyna shares with mostother planning and problem solving systems|they are allbased on state. For example, a robot may not be able to de-termine from its immediate surroundings which of two similarrooms it is in, or whether a door is locked, or whether thereis a person in the room on the other side of the door. In thesecases the robot cannot unambiguously determine the world'sstate, as much of it is hidden from him.There are a number of techniques for dealing with this prob-lem, though none is clearly a general solution. In some cases,uncertainty about the true state on the world can be mod-eled as probabilistic state transitions (Kaelbling, 1990). Ap-proaches such as Dyna that can handle stochastic tasks canthen be used without change. In other cases, the state de-scription can be augmented with past inputs to disambiguatestate. For example, a robot may not be able to sense a wallin front of it, but if it remembers that it just bumped intoit and backed o�, and makes that memory part of the cur-rent state description, then the situation can be handled bystate-based methods.Whitehead and Ballard (1991) have proposed learning per-ceptual strategies for disambiguating state descriptions cre-ated by a marker-based visual system. Ming Tan (per-sonal communication) has also explored the use of Cost-Sensitive learning in reinforcement learning for a similar pur-pose. There is considerable relevant work in the dynamicprogramming literature, but that direction has not been ex-plored yet.

4.4 Ensuring Variety in BehaviorIn order to maintain an accurate action model, the agentmust try actions that it believes to be inferior. If it onlytries those that it believes are best, and the world changes,it may never discover the change and never discover what-ever new actions are really best. The simplest way to ensurebehavioral variety is to require the agent to choose an ac-tion at random a small percentage of the time. This crudestrategy has many disadvantages, but is adequate for manyproblems. Another approach is to choose actions based ona probability distribution, such as a Boltzmann distribution,that favors the apparently best actions, but does not selectthem 100% of the time. If desired, the `temperature' of thedistribution can be reduced over time to increase the prefer-ence for the apparent best actions (Watkins, 1989), but thiscreates again the inability to handle long-term changes in theworld. The `adaptive heuristic critic' architecture (Sutton,1984) also has this problem. Perhaps the best solution devel-oped so far, though still far from perfect, is the explorationbonus proposed by Sutton (1990).4.5 TaskabilitySuper�cially, the Dyna architecture is not taskable. Dyna isbased on the reward maximization problem (Figure 1) whichrecognizes only one goal, the maximization of total rewardover time. In addition, the object of the planning and learn-ing processes are to learn one policy function that maps statesto actions with no explicit `goal' input. However, this maymerely mean that the goal speci�cation must be part of thestate description. For example, consider a Dyna robot re-warded for picking up trash, but which must recharge itsbattery occassionally. When its battery is running low theoptimal behavior will be to search out the recharger, whereaswhen it has plenty of power the optimal behavior will be tosearch out more trash. If the charge on the battery is part ofthe state description then these two apparent goals can easilybe part of a single policy.Similarly, to train a dog, e.g., to heel or to roll over, one pro-vides distinctive cues, e.g., movements or sounds, that signalto the animal which of its actions will be rewarded now. It canbe time-consuming to teach animals new behaviors becauseof the absence of a common language. It may be possibleto task Dyna agents more directly than that. If one directlymodi�es the part of the action model that predicts reward,that could in turn cause the policy to change substantiallythrough IDP planning.4.6 Incorporation of Prior KnowledgePrior knowledge can be incorporated in Dyna systemsthrough the initial values of the policy and internal evalu-ation functions such as the Q function. In principle thiscould be a very exible and e�cient method, but there islittle work with it yet. Lin (personal communication) hasdemonstrated in preliminary results a very e�ective methodthat he calls `teaching' in which an outside agent, say a hu-man expert, takes control over the agent and demonstrates acorrect solution to the problem. This experience is processedby the Dyna system (or, in Lin's case, Dyna-like system) inthe normal way, and greatly speeds subsequent learning.ReferencesBarto, A. G., Sutton, R. S., & Watkins, C. J. C. H. (1990)Learning and sequential decision making. In Learning and

Computational Neuroscience, M. Gabriel and J.W. Moore(Eds.), 539{602, MIT Press.Bertsekas, D. P. (1987) Dynamic Programming: Determinis-tic and Stochastic Models, Prentice-Hall.Bertsekas, D. P. & Tsitsiklis, J. N. (1989) Parallel DistributedProcessing: Numerical Methods, Prentice-Hall.Craik, K. J. W. (1943) The Nature of Explanation. Cam-bridge University Press, Cambridge, UK.Dennett, D. C. (1978) Why the law of e�ect will not go away.In Brainstorms, by D. C. Dennett, 71{89, Bradford Books.Grefenstette, J. J., Ramsey, C. L., & Schultz, A. C. (1990)Learning sequential decision rules using simulation modelsand competition. Machine Learning 5, 355{382.Holland, J. H. (1986). Escaping brittleness: The possibil-ities of general-purpose learning algorithms applied to par-allel rule-based systems. In R. Michalski, J. Carbonell &T. Mitchell, Eds., Machine learning II, Morgan Kaufmann.Kaelbling, L. P. (1990) Learning in Embedded Systems.Ph.D. thesis, Stanford University.Korf, R. E. (1990) Real-Time Heuristic Search. Arti�cialIntelligence 42: 189{211.Lin, Long-Ji. (1991) Self-improving reactive agents: Casestudies of reinforcement learning frameworks. In: Proceed-ings of the International Conference on the Simulation ofAdaptive Behavior, 297{305, MIT Press.Mahadevan, S. & Connell, J. (1990) Automatic programmingof behavior-based robots using reinforcement learning. IBMtechnical report.Riolo, R. (1991) Lookahead planning and latent learning in aclassi�er system. In: Proceedings of the International Con-ference on the Simulation of Adaptive Behavior, MIT Press.Russell, S. J. (1989) Execution architectures and compilation.Proceedings of IJCAI-89, 15{20.Sutton, R. S. (1984) Temporal credit assignment in reinforce-ment learning. PhD thesis, COINS Dept., Univ. of Mass.,Amherst, MA 01003.Sutton, R.S. (1988) Learning to predict by the methods oftemporal di�erences. Machine Learning 3: 9{44.Sutton, R. S. (1990) Integrated architectures for learning,planning, and reacting based on approximating dynamic pro-gramming. Proceedings of the Seventh International Confer-ence on Machine Learning, 216{224.Sutton, R.S., Barto, A.G. (1981) An adaptive network thatconstructs and uses an internal model of its environment.Cognition and Brain Theory Quarterly 4: 217{246.Watkins, C. J. C. H. (1989) Learning with Delayed Rewards.PhD thesis, Cambridge University Psychology Department.Werbos, P. J. (1987) Building and understanding adaptivesystems: A statistical/numerical approach to factory au-tomation and brain research. IEEE Transactions on Systems,Man, and Cybernetics, SMC-17, No. 1, 7{20.Whitehead, S. D., Ballard, D.H. (1991) Learning to perceiveand act by trial and error. Machine Learning 7:, 45-83.Whitehead, S. D. (1989) Scaling reinforcement learning sys-tems. Technical Report 304, Dept. of Computer Science, Uni-versity of Rochester, Rochester, NY 14627.

