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AbstractNaturally occurring speech contains only a limited amount of complex recursive structure,and this is reected in the empirically documented di�culties that people experience whenprocessing such structures. We present a connectionist model of human performance in pro-cessing recursive language structures. The model is trained on simple arti�cial languages. We�nd that the qualitative performance pro�le of the model matches human behavior, both onthe relative di�culty of center-embedded and cross-dependency, and between the processingof these complex recursive structures and right-branching recursive constructions. We analyzehow these di�erences in performance are reected in the internal representations of the modelby performing discriminant analyses on these representation both before and after training.Furthermore, we show how a network trained to process recursive structures can also generatesuch structures in a probabilistic fashion. This work suggests a novel explanation of peo-ple's limited recursive performance, without assuming the existence of a mentally representedcompetence grammar allowing unbounded recursion.
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1 IntroductionNatural language is standardly viewed as involving a range of rarely occurring but importantrecursive constructions. But it is empirically well-documented that people are only able todeal easily with relatively simple recursive structures. Thus, for example, a doubly center-embedded sentence like (1) below is extremely di�cult to understand.(1) The mouse that the cat that the dog chased bit ran away.In this paper, we present a connectionist network which models the limited human abilities toprocess and generate recursive constructions. The \quasi-recursive" nature of the performanceof the connectionist network qualitatively models experimental evidence on human languageprocessing.The notion of recursion in natural language originates not from the project of trying tounderstand human linguistic performance which is the focus of this paper, but from the verydi�erent enterprise of specifying a \competence grammar"|a set of rules and/or principleswhich specify the legal strings of a language. It is standardly assumed that, if the competencegrammar allows a recursive construction to apply at all, it can apply arbitrarily many times.Thus, if (2) is sanctioned by a recursive analysis with one level of recursion, then the grammarmust thereby also sanction (1) with two levels of recursion and (3) with three levels of recursion.(2) The mouse that the cat bit ran away.(3) The mouse that the cat that the dog that the man frightened chased bit ran away.Thus, the very idea that natural language is recursive requires a broadening of the notionof which sentences are in the language, to sentences like (3) which would presumably never beuttered or understood. In order to resolve the di�erence between language so construed andthe language that humans are able to produce and comprehend, a distinction is typically madebetween linguistic competence and human performance. Competence in this context refers toa speaker/hearer's knowledge of the language, and is the subject of linguistic inquiry. In con-trast, psycholinguists study performance|i.e., how linguistic knowledge is used in producingand understanding language, and also how extrinsic, non-linguistic factors may interfere withthe use of that knowledge. It is here that \performance factors", such as memory limitations,can be invoked to show that some sentences, while consistent with linguistic competence,will never actually be said, or understood. The competence/performance distinction is alsoembodied in many symbolic models of language processing, such as CC-READER (Just &Carpenter, 1992). In this model, grammatical competence consists of a set of recursive pro-duction rules which are applied to produce state changes in a separate working memory. Byimposing constraints on the capacity of the working memory system, performance limitationscan be simulated without making changes to the competence part of the model.1 The con-nectionist model we propose provides an alternative account of people's limited ability to1See MacDonald & Christiansen (1998) for a critical discussion of CC-READER and similar languageprocessing models based on production systems (Newell & Simon, 1976).2



do recursion, without assuming an internally represented grammar which allows unboundedrecursion|i.e., without invoking the competence/performance distinction.2In the light of this discussion, it is clear that, from the point of view of modeling psycho-logical processes, we need not take the purported unbounded recursive structure of naturallanguage as axiomatic. Nor need we take for granted the suggestion that a speaker/hearer'sknowledge of the language captures such in�nite recursive structure. Rather, the view that\unspeakable" sentences which accord with recursive rules form a part of the knowledge oflanguage is an assumption of the standard view of language developed by Chomsky and nowdominant in linguistics and many areas of the psychology of language. The challenge fora computational model such as the connectionist model we propose is to account for thoseaspects of human comprehension/production performance which are suggestive of the stan-dard recursive picture. If this can be done without making the assumption that the languageprocessor really implements recursion, or that arbitrarily complex recursive structures are re-ally sentences of the language, then it presents an alternative to adopting this assumption.Therefore, in assessing the connectionist simulations that we report below, the benchmarkfor performance of connectionist systems will be set by human abilities to handle recursivestructures; we need not require that connectionist systems be able to handle recursion in fullgenerality.In this paper, we shall consider the phenomenon of natural language recursion in a `pure'and highly simpli�ed form. Speci�cally, we train connectionist networks on small arti�ciallanguages, which exhibit the di�erent types of recursive structure found in natural language.We do this in order to address directly the classic arguments by Chomsky (1957) that recursionin natural language in principle rules out associative and �nite state models of languageprocessing. Indeed, the languages that we consider are based directly on the structures usedin Chomsky's (1957) discussion. Considering recursion in a pure form permits us to addressthe in principle viability of connectionist networks in handling recursion, in much the same wayas simple arti�cial languages have been used, for example, to assess the feasibility of symbolicparameter-setting approaches to the learning of linguistic structure (Gibson & Wexler, 1994;Niyogi & Berwick, 1996).The structure of this paper is as follows. We begin by distinguishing varieties of recursionin natural language, considering the three kinds of recursion discussed in Chomsky (1957). Wethen summarize past connectionist research dealing with natural language recursion. Next,we introduce three arti�cial languages, based on the three kinds of recursion described byChomsky, and present and analyze a range of simulations of connectionist networks trainedon these languages. The results suggest that the networks are able to handle recursion toa degree comparable with humans. We close by drawing conclusions for the prospects ofconnectionist models of language processing.2 Varieties of RecursionChomsky (1957) proposed that a recursive generative grammar consists of a set of phrasestructure rules, complemented by a set of transformational rules (we shall not consider trans-2The competence/performance distinction also leads to certain methodological problems|see Christiansen(1992, 1994) for further discussion. 3



formational rules further below). Phrase structure rules have the form A ! BC, with theinterpretation that the symbol A can be replaced by the concatenation of B and C. A phrasestructure rule is recursive if a symbol X is replaced by a string of symbols which includesX itself (e.g., A ! BA). The new symbol can then itself be replaced by a further applica-tion of the recursive rule, and so on. Recursion can also arise through the application of arecursive set of rules, none of which need individually be recursive. When such rules are usedsuccessively to expand a particular symbol, the original symbol may eventually be derived. Arecursive construction in a natural or arti�cial language is one that is modeled using recursiverules; a language has recursive structure if it contains such constructions.Modern generative grammar employs a wide range of formalisms, some quite distantlyrelated to phrase structure rules. Nevertheless, corresponding notions of recursion withinthose formalisms can be de�ned. We shall not consider such complexities here, but use theapparatus of phrase structure grammar throughout.There are a number of kinds of recursion relevant to natural language. First, there arekinds of recursion which produce languages which could equally well be generated withoutusing recursion at all|speci�cally they could be generated by iteration, the application ofa single procedure arbitrarily many times. For example, consider the case of right-branchingrecursion shown in Figure 1. These rules can be used to generate the right-branching sentences(4){(6):(4) John loves Mary.(5) John loves Mary who likes Jim.(6) John loves Mary who likes Jim who dislikes Martha.But these structures can be produced or recognized by a simple iterative process, which canbe carried out by a �nite state machine. The recursive structures of interest to Chomsky,and of interest here, are those which cannot be replaced by iteration, and thus which appearto go beyond the capacities of �nite state machines. Chomsky (1957) invented three simplearti�cial languages, generated by recursive rules, and which cannot be generated or parsed,at least in full generality, by a �nite state machine using iteration.||||{insert �gure 1 about here||||{The �rst arti�cial language can be de�ned by the following two phrase structure rulesrules (where fg denotes the empty string; we shall not consider this \degenerate" case in thesimulations below):1. X ! aXbX ! fgwhich generate the strings:fg, ab, aabb, aaabbb, aaaabbbb, . . . 4



We call this counting recursion, because in order to parse such strings from left to right it isnecessary to count the number of `a's and note whether it equals the number of `b's. Thisimplies that full-scale counting recursion cannot be parsed by any �nite device processingfrom left to right, since the number that must be stored can be unboundedly large (becausethere can be unboundedly large numbers of `a's), and hence will exceed the memory capacityof any �nite machine.Chomsky's second arti�cial language can be characterized in terms of the phrase structurerules:2. X ! aXaX ! bXbX ! fgwhich generate the strings:fg, aa, bb, abba, baab, aaaa, bbbb, aabbaa, abbbba, . . .We call this mirror recursion, because the strings exhibit mirror symmetry about their mid-point.The �nal recursive language, which we call identity recursion, unlike counting and mirrorrecursion, cannot be captured by a context-free phrase structure grammar. Thus, in order tocapture the �nal non-iterative recursive language we need to annotate our notion of rewriterules. Here we adapt the meta-grammatical notation of Vogel, Hahn & Branigan (1996) tode�ne the third arti�cial language in terms of the following rule set:3. S ! WiWiW ! XX ! aXX ! bXX ! fgwhich generates the strings:fg, aa, bb, abab, aaaa, bbbb, aabaab, abbabb, . . .We call this identity recursion, because strings consist of the concatenation of two identicalcopies of an arbitrary sequence of `a's and `b's. The index on W ensures that the two W's inthe �rst rule are always the same.Chomsky (1957) argued that each of these types of recursive language can be identi�edwith phenomena in natural language. He suggested that counting recursion corresponds tosentence constructions such as `if S1, then S2' and `either S1, or S2'. These constructions can,Chomsky assumed, be nested arbitrarily deeply, as indicated by (7){(9):(7) if S1 then S2.(8) if if S1 then S2 then S3.(9) if if if S1 then S2 then S3 then S4. 5



Mirror recursion is assumed to correspond to center-embedded constructions which occurin many natural languages (although typically with low frequency), as illustrated already insentences (1){(3). In these sentences, the dependencies between the subject nouns and theirrespective verbs are center-embedded, such that the �rst noun is matched with the last verb,the second noun with the second but last verb, and so on. Chomsky (1957) used the existenceof center-embedded constructions to argue that natural language must be at least context-free,and hence beyond the scope of any �nite state automaton.In much the same way, identity recursion can be mapped on to a less common patternin natural language, cross-dependency, which is found in Swiss-German and in Dutch,3 asexempli�ed in (10)-(12) (from Bach, Brown & Marslen-Wilson, 1986):(10) De lerares heeft de knikkers opgeruimd.Literal: The teacher has the marbles collected upGloss: The teacher collected up the marbles.(11) Jantje heeft de lerares de knikkers helpen opruimen.Literal: Jantje has the teacher the marbles help collect up.Gloss: Jantje helped the teacher collect up the marbles.(12) Aad heeft Jantje de lerares de knikkers laten helpen opruimen.Literal: Aad has Jantje the teacher the marbles let help collect up.Gloss: Aad let Jantje help the teacher collect up the marbles.In (10){(12), the dependencies between the subject nouns and their respective verbs are crossedsuch that the �rst noun is matched with the �rst verb, the second noun with the second verb,and so on. The fact that cross-dependencies cannot be handled using a context-free phrasestructure grammar has meant that this kind of construction, although rarely produced evenin the small number of languages in which they occur, has assumed considerable importancein linguistics, because it appears to demonstrate that natural language is not context-free.4Turning from linguistics to language processing, it is clear that, whatever the linguisticstatus of complex recursive constructions, they are very di�cult to process, in contrast toright-branching structures. The processing of structures analogous to counting recursion hasnot been studied in psycholinguistics, but sentences such as (13) are plainly di�cult to makesense of, though containing just one level of recursion (see also Reich, 1969).(13) If if the cat is in, then the dog cannot come in then the cat and dog dislike each other.The processing of center-embedded constructions has been studied extensively in psy-cholinguistics. These studies have shown, for example, that English sentences with more thanone center-embedding (e.g., sentences (1) and (3) presented above) are read with the same in-tonation as a list of random words (Miller, 1962), cannot easily be memorized (Foss & Cairns,3Cross-dependency has also been alleged, controversially, to be present in \respectively" constructions inEnglish, such as `Anita1 and the girls2 walks1 and skip2, respectively'. Church (1982) questions the acceptabilityof these constructions with two cross-dependencies, and indeed, even one cross-dependency, as in this example,seems bizarre.4Pullum & Gazdar (1982) have argued that natural language is, nonetheless, context-free, although theirarguments are controversial (see Shieber, 1985, for a critique and Gazdar & Pullum, 1985, for a defense).6



1970; Miller & Isard, 1964), and are judged to be ungrammatical (Marks, 1968). Bach etal. (1986) found the same behavioral pattern in German, reporting a marked deterioration ofcomprehension for sentences with more than one embedding. It has been shown that usingsentences with a semantic bias or giving people training can improve performance on suchstructures, but only to a limited extent (Blaubergs & Braine, 1974; Stolz, 1967).There has been much debate concerning how to account for the di�culty of center-embedded constructions in accounts of human natural language processing (e.g., Berwick& Weinberg, 1984; Church, 1982; Frazier & Fodor, 1978; Gibson, in press; Gibson & Thomas,1996; Kimball, 1973; Pulman, 1986; Reich, 1969; Stabler, 1994; Wanner, 1980), typicallyinvolving postulating some kind of \performance" limitation on an underlying in�nite com-petence. Cross-dependencies have received less empirical attention, but appear to presentsimilar processing di�culties to center-embeddings (Bach et al., 1986; Dickey & Vonk, 1997),and we shall consider this data in a more detail when assessing our connectionist simulationsagainst human performance, below.3 Connectionism and RecursionWe aim to account for human performance on recursive structures as emerging from intrinsicconstraints on the performance of a particular connectionist architecture, namely the SimpleRecurrent Network (SRN) (Elman, 1990). But before presenting our simulation results, we�rst review previous connectionist approaches to natural language recursion.One way of approaching the problem of dealing with recursion in connectionist mod-els is to \hardwire" symbolic structures directly into the architecture of the network (e.g.,Fanty, 1985; McClelland & Kawamoto, 1986; Miyata, Smolensky & Legendre, 1993; Small,Cottrell & Shastri, 1982). The network can therefore be viewed as a non-standard imple-mentation of a symbolic system, and can solve the problem of dealing with recursive naturallanguage structures by virtue of its symbol processing abilities, just as do standard symbolicsystems in computational linguistics. Connectionist re-implementations of symbolic systemsmay potentially have novel computational properties and even be illuminating regarding theappropriateness of a particular style of symbolic model for distributed computation (Chater& Oaksford, 1990). Such models do not �gure here, because we are interested in exploringthe viability of connectionist models as alternatives to symbolic approaches to recursion.5There are two classes of models which may potentially provide such alternatives|both ofwhich learn to process language from experience, rather than implementing a prespeci�ed setof symbolic rules. The �rst, less ambitious, class (e.g., Chalmers, 1990; Hanson & Kegl, 1987;Niklasson & van Gelder, 1994; Pollack, 1988, 1990; Stolcke, 1991) attempts to learn grammarfrom \tagged" sentences. Thus, the network is trained on sentences which are associatedwith some kind of grammatical structure and the task is to learn to assign the appropriategrammatical structure to novel sentences. This means that much of the structure of thelanguage is not learned by observation, but is built into the training items. These models are5The possibility remains, of course, that connectionist models might, on analysis, be found to achieve whatsuccess they do in virtue of having learned to approximate, to some degree, symbolic systems. Smolensky(in press) has argued that connectionist networks can only capture the generalizations in natural languagestructure in this way. 7



related to statistical approaches to language learning such as stochastic context-free grammars(Brill, Magerman, Marcus & Santorini, 1990; Jelinek, La�erty, & Mercer, 1990) in whichlearning sets the probabilities of each grammar rule in a prespeci�ed context-free grammar,from a corpus of parsed sentences.The second class of models, which includes the model presented in this paper, attempts themuch harder task of learning syntactic structure from strings of words. The most inuentialapproach, which we shall follow in the simulations reported below, has been based on SRNs(Elman, 1990). An SRN involves a crucial modi�cation to a feedforward network (see Figure2)|the current set of hidden unit values is \copied back" to a set of additional input units,and paired with the next input to the network. This means that the current hidden unit valuescan directly a�ect the next state of the hidden units; more generally, this means that thereis a loop around which activation can ow for many time-steps. This gives the network amemory for past inputs, and therefore the ability to deal with integrated sequences of inputspresented successively. This contrasts with standard feedforward networks, the behavior ofwhich is determined solely by the current input. SRNs are thus able to tackle tasks suchas sentence processing in which the input is revealed gradually over time, rather than beingpresented at once. ||||{insert �gure 2 about here||||{Recurrent neural networks provide a powerful tool with which to model the learning ofmany aspects of linguistic structure, particularly below the level of syntax (e.g., Allen & Chris-tiansen, 1996; Christiansen, Allen & Seidenberg, in press; Cottrell & Plunkett, 1991; Elman,1990, 1991; Norris, 1990; Shillcock, Levy & Chater, 1991). Moreover, SRNs seem well-suited tolearning �nite state grammars (e.g., Cleeremans, Servan-Schreiber & McClelland, 1989; Giles,Miller, Chen, Chen, Sun & Lee, 1992; Giles & Omlin, 1993; Servan-Schreiber, Cleeremans &McClelland, 1991). But relatively little headway has been made towards grammars involvingcomplex recursion that are beyond simple �nite-state devices. Previous e�orts in modelingcomplex recursion have fallen within two general categories: simulations using language-likegrammar fragments and simulations relating to formal language theory.In the �rst category, networks are trained on relatively simple arti�cial languages, pat-terned on English. For example, Elman (1991, 1993) trained SRNs on sentences generatedby a small context-free grammar incorporating center-embedding and a single kind of right-branching recursive structures. The behavior of the trained networks are reported to bequalitatively comparable with human performance in that a) the SRN predictions for right-branching structures are more accurate than on sentences of the same length involving center-embedding, and b) performance degrades appropriately when the depth of center-embeddingincreases. Weckerly & Elman (1992) corroborate these results and suggest that semanticbias (incorporated via co-occurrence restriction on the verbs) can facilitate network per-formance as they have been found to be in human processing (Blaubergs & Braine, 1974;Stolz, 1967). These results are encouraging, but preliminary. They show that SRNs can dealwith speci�c examples of recursion, but provide no systematic analysis of their capabilities.Within the same framework, Christiansen (1994, 1998) trained SRNs on a recursive arti�ciallanguage incorporating four kinds of right-branching structures, a left branching structure,and center-embedding. Again, the desired degradation of performance on center-embedded8



constructions as a function of embedding depth was found, as were appropriate di�erencesbetween center-embedding and right-branching structures.6 However, a closer study of therecursive capabilities of the SRNs showed that the prediction accuracy for the right-branchingstructures also degraded with depth of recursion|albeit not as dramatically as in the center-embedding case. Additional simulations involving a variant of this language, in which cross-dependency constructions substituted for the center-embedded sentences (rendering a mock\Dutch" grammar) provided similar results. Together these simulation results indicate thatSRNs can embody constraints which limit their abilities to process center-embeddings andcross-dependencies to levels similar to human abilities. This suggests that SRNs can cap-ture the quasi-recursive structure of actual spoken language. One of the contributions of thepresent paper is to show that the SRN's general pattern of performance is relatively invariantover variations in network parameters and training corpus|thus, we claim, the human-likepattern of performance arises from intrinsic constraints of the SRN architecture.While work pertaining to recursion within the �rst category has been suggestive but inmany cases relatively unsystematic, the second category of simulations related to formal lan-guage theory has seen more detailed investigations of a small number of arti�cial tasks, typi-cally using very small networks. For example, Wiles & Elman (1995) made a detailed studyof what we have called counting recursion using the simplest possible language anbn. Theystudied recurrent networks with 2 hidden units,7 and found a network that was able to gener-alize successfully to inputs far longer than those on which they had been trained. They alsopresented a detailed analysis of the nature of the solution found by one of the networks. Batali(1994) used the same language, but employed SRNs with 10 hidden units and showed thatnetworks could reach good levels of performance, when selected by a process of \simulatedevolution" and then trained using conventional methods. Based on a mathematical analy-sis, Steijvers & Gr�unwald (1996) \hardwired" a second order recurrent network (Giles et al.,1992) with 2 hidden units such that it could process the context-sensitive counting languageb(a)kb(a)k. . . for values of k between 1 and 120. An interesting outstanding question, whichwe address in the simulations below, is whether these levels of performance can be obtained ifthere are more than two vocabulary items|e.g., if the network must learn to assign items intodi�erent lexical categories (\noun" and \verb") as well as paying attention to dependenciesbetween these categories. This question is important with respect to the potential relevanceof these results for natural language processing.No comparable detailed study has been conducted with either center-embedding or crossed-dependency type (mirror and identity recursion) constructions.8 In the studies below, wetherefore aimed to comprehensively study and compare all three types of recursion discussedin Chomsky (1957)|that is, counting, mirror, and identity recursion|with the less complexright-branching recursion as a baseline. We also used syntactic categories which contained6The networks also demonstrated sophisticated generalization abilities, ignoring local word co-occurrenceconstraints while appearing to comply with structural information at the constituent level. Some of theseresults were reported in a reply by Christiansen & Chater (1994) to Hadley's (1994) criticism of connectionistlanguage learning models such as that of Elman (1990, 1991).7The nets were trained using back-propagation through time (Rumelhart, Hinton & Williams, 1986) ratherthan the standard method for training SRNs|for a discussion of di�erences and similarities between the twotypes of networks, see Chater & Conkey (1992) and Christiansen (1994).8The only exception we know of is our own preliminary work regarding Chomsky's (1957) three arti�ciallanguages reported in Christiansen (1994). 9



a number of di�erent vocabulary items, rather than de�ning the grammar over single lexicalitems, as in the detailed studies of counting recursion and the context-sensitive countinglanguage described above. Using these simple abstract languages allows recursion to be studiedin a \pure" form, without interference from other factors. Despite the idealized nature of theselanguages, the SRN's performance qualitatively conforms to human performance on similarnatural language structures.Another novel aspect of the present studies is that we provide a statistical benchmarkagainst which the performance of the networks can be compared. This is a simple predictionmethod borrowed from statistical linguistics based on n-grams, i.e., strings of n consecutivewords. The benchmark program is \trained" on the same stimuli used by the networks, andsimply records the frequency of each n-gram in a look-up table. It makes predictions fornew material by considering the relative frequencies of the n-grams which are consistent withthe previous n� 1 words. The prediction is a vector of relative frequencies for each possiblesuccessor item, scaled to sum to 1, so that they can be interpreted as probabilities, and aretherefore directly comparable with the output vectors produced by the networks. Below,we report the predictions of bigram and trigram models and compare them with networkperformance.9 Although not typically used for comparison in connectionist research, thesesimple models might provide insight into the sequential information to which the networksmay be responding, as well as a link to non-connectionist corpus-based approaches to languagelearning in computational linguistics (e.g., Charniak, 1993).4 Three Benchmark Tests Concerning RecursionWe constructed three benchmark test languages for connectionist learning of recursion, basedon Chomsky's three arti�cial languages. Each language involved two kinds of recursive struc-ture: one of the three complex recursive constructions and the right-branching constructionas a baseline. Vocabulary items were divided into \nouns" and \verbs", incorporating bothsingular or plural forms. An end of sentence marker completed each sentence.1. Counting recursion aabb NNVVFor counting recursion, we treat Chomsky's symbols `a' and `b' as corresponding to theword categories of noun and verb, respectively, while ignoring singular/plural agreement.2. Center-embedding recursion the boy girls like runsa b b a SNPNPV SVIn center-embedding recursion, we map Chomsky's symbols `a' and `b' in mirror re-cursive constructions onto the categories of singular and plural words (whether nouns9Intuition would suggest that higher order n-grams models should fare better than simple bigram andtrigram models. However, computational results using large text corpora have shown that higher order n-grams provide for poor predictions because of the frequent occurrence of \singletons"; i.e., n-grams with onlya single or very few instances (Gale & Church, 1990; Redington, Chater & Finch, in press).10



or verbs). Nouns and verbs agree for number as in center-embedded constructions innatural language.3. Cross-dependency recursion the boy girls runs likea b a b SNPNSV PVIn cross-dependency recursion we map Chomsky's symbols `a' and `b' in identity recur-sive constructions onto the categories of singular and plural words. Nouns and verbsagree for number as in cross-dependency constructions in natural language.4. Right-branching recursion girls like the boy that runsa a b b PNPV SNSVFor right-branching recursion, we map the symbols `a' and `b' onto the categories ofsingular and plural words. Nouns and verbs agree for number as in right-branchingconstructions in natural language.Thus, the counting recursive language consisted of both counting recursive constructions (1)interleaved with right-branching recursive constructions (4), the center-embedding recursivelanguage of center-embedded recursive constructions (2) interleaved with right-branching re-cursive constructions (4), and the cross-dependency recursive language of cross-dependencyrecursive constructions (3) interleaved with right-branching recursive constructions (4).How can we assess to what degree a connectionist net has mastered these simple lan-guages? By analogy with standard linguistic methodology, we could train the net to makeexplicit \grammaticality judgments", i.e., to distinguish legal and non-legal sentences of thelanguages. But the concern of this paper is people's performance on recursive structures,rather than judgments concerning grammaticality (which is often assumed to relate to lin-guistic competence).10 Therefore, we chose to use a task which directly addressed the wayin which the system processes sentences of the languages, rather than requiring it to makemeta-linguistic judgments about sentence legality.Elman (1990) suggested such an approach, which has become standard in many of theSRN studies of natural language described above. The approach is to train the network topredict the next item in a sequence given previous context. That is, the SRN gets a word asinput at time t and then has to predict the next word at time t+ 1. Although the predictiontask is not deterministic, the structure of the languages imposes a number of regularitieswhich make prediction a meaningful task. At the beginning of a sentence it is impossible toknow whether the sentence will involve a complex recursive construction (1-3 depending onthe language) or a right-branching recursive construction (4). However, once the second wordis encountered it becomes clear whether the sentence involves a complex or right-branchingconstruction: A verb indicates a right-branching construction whereas another noun indicatesa complex recursive construction. A right-branching construction may end after the �rst10The relation between grammaticality judgments and processing mechanisms both within linguistics andpsycholinguistics is a matter of much controversy (for further discussion, see Christiansen, 1994; Sch�utze,1996). 11



noun/verb pair, or continue with one or more embeddings. For none of the three complexrecursive constructions is it possible to determine precisely how many more nouns will beencountered in a sentence or whether they will be singular or plural. Once the nouns havebeen encountered, however, it is possible to determine exactly how many verbs a sentence willhave and which (singular/plural) form each of them will have (except, of course, for countingrecursion). Assuming that the system can learn to distinguish nouns from verbs, it should beable to make correct predictions about subsequent verbs as well as the end of sentence markeronce it receives the �rst verb as input. Speci�cally, the number of verbs will correspond to thenumber of nouns, and the form of the verbs will agree with the form of the nouns as speci�edby each particular language. The end of sentence marker should be predicted after the lastverb.Bearing this in mind, we briey consider the demands of learning each of the four recur-sive constructions. Construction 1, counting recursion, should be the easiest of the complexrecursive structures to process. Because this construction does not have any agreement con-straints imposed on it, correct performance can be achieved simply by counting the number ofoccurring nouns, and then predicting the same number of verbs. The simplest way to processconstruction 2, center-embedding recursion, is to develop a last-in-�rst-out memory or \stack"to store agreement information. Thus, the agreement information for each noun is retrievedin the opposite order in which it was stored|leading to the mirror agreement pattern. Themost obvious way to process construction 3, cross-dependency recursion, is to develop a �rst-in-�rst-out memory or \queue". Thus, the agreement information of each noun is retrieved inthe same order in which it was stored|leading to the identity agreement pattern. Finally, inconstruction 4, right-branching recursion, in contrast to the processing of the three complexkinds of recursion mentioned above, processing unbounded right-branching structures doesnot involve unbounded memory load because each noun is immediately followed by a verbwhich agrees with it.In practice, a connectionist network is unlikely to learn to implement any standard symbolicparsing method, which has unbounded competence, limited by memory restrictions (e.g.,as in CC-READER, Just & Carpenter, 1992). Nonetheless, an appreciation of how thesemethods work is useful in assessing the nature and di�culty of the task that the network faces.Parsing each of these languages using symbolic means requires quite elaborate computationalmachinery. However, as we show below, networks are able to obtain good levels of performanceon each of the three languages, each containing complex recursive constructions of a given kind(1-3) interleaved with the right-branching base-line constructions (4).5 Simulation ResultsWe trained SRNs on each of the three languages, using a sixteen word vocabulary with foursingular nouns, four singular verbs, four plural nouns, and four plural verbs.11 All SRNs had17 input and output units, where each unit corresponded to a single word, or to the end of11Most of the simulations presented here were carried out using the Tlearn neural network simulator availablefrom the Center for Research on Language at the University of California, San Diego. For the sentence gener-ation simulations reported in Section 5.6 we used the Mlearn simulator developed from the Tlearn simulatorby Morten Christiansen. 12



sentence marker. We used SRNs in which the hidden layer contained between 2 and 100 units.Except when explicitly noted otherwise, the training corpora consisted of 5000 sentences ofvariable length, and the test corpora of 500 novel sentences, generated in the same way as thetraining sentences and excluded from the original training corpora. Each corpus of sentenceswas concatenated into a single, long string which was presented to the SRN one word at a time.Both training and test corpora were comprised of 50% complex recursive constructions of theappropriate kind for a given language interleaved with 50% right-branching constructions.The distribution of depth of embedding is shown in Table 1. The mean sentence length inboth training and test corpora was approximately 4.7 words (SD: 1.3).||||{insert table 1 about here||||{Since the input consists of a single concatenated string of words (including end of sentencemarkers), the network has to discover that the input consists of sentences; that is, nounsfollowed by verbs (ordered according to the constraints of the language being learned) anddelineated by end of sentence markers. Consider, as an example, an SRN being trained onthe center-embedding language and presented with the two sentences: `n1v5#N3n8v2V4#'.12First, the network gets `n1' as input and is expected to produce `v5' as output. The weights arethen adjusted depending on the discrepancy between the actual output that the net producedand the desired output using the back-propagation learning algorithm (Rumelhart, Hinton& Williams, 1986). Next, the SRN receives `v5' as input and is required to output the end-of-sentence marker (`#'). At the next time-step, `#' is provided as input and `N3' is thetarget output, followed by the input/output pairs: `N3/n8', `n8'/`v2', `v2'/`V4', and `V4'/`#'.Training continues in the same manner for the remainder of the training corpus.During the test phase, test corpora were presented to the SRNs and the output recordedfor each input word while the weights remain frozen. In any interesting language-like task, thenext item is not deterministically speci�ed by the previous items. In the above example at thestart of the second sentence, the grammar for the center-embedding language permits bothnoun categories, `n' and `N', to occur at the beginning of a sentence. If the SRN has acquiredthe relevant aspects of the grammar which generated the training sentences, then it shouldactivate all word tokens in both `n' and `N' following an end of sentence marker. Hence, it isappropriate for the prediction to take the form of a probability distribution of possible nextitems. We can assess the degree to which the network has succeeded in learning this probabilitydistribution by comparing the output of the network against some estimation of the conditionalprobabilities given the previous input (note that this gives a less noisy indication of networkperformance than comparing the predictions against the actual next items in the trainingcorpus). Next, we use empirically derived conditional probabilities for global performancecomparisons, whereas in Section 5.2 we introduce a measure of Grammatical Prediction Errorto evaluate the SRN's performance in more detail.12Here and in the following, we adopt the convention that `n' and `N' corresponds to categories of nouns, `v'and `V' to categories of verbs with capitalization indicating plural agreement where required by the languagein question. The end of sentence marker is denoted by `#'. Individual word tokens are denoted by adding asubscript to a word category, e.g., `N3'.
13



5.1 Overall performanceIn order to asses the overall performance of the SRNs, we made comparisons between networkoutput probability distributions and the full conditional probabilities given prior context. Tosee how this comparison is done, consider the prediction of the next word at a particularpoint in the test corpus. For example, the full conditional probabilities given the context,`N6n1v3', can be represented as a vector containing the probabilities of being the next itemfor each of the tokens in the categories `n', `N', `v', `V', and `#'. Because there are nostatistical dependencies between sentences, the conditional probability distribution need onlytake account of the previous words in the sentence. More formally, the probability of the pthitem, wp, in a sentence is conditional on the previous p� 1 items:13P (wpjw1;w2; : : : ;wp�1) (1)Following Elman (1991), these values can be estimated empirically from the training corpus,according to the relation:P (wpjw1;w2; : : : ;wp�1) ' Freq(w1;w2; : : : ;wp�1;wp)Freq(w1;w2; : : : ;wp�1) (2)However, empirical word-based conditional probabilities as determined by Equation 2 arenot useful to assess performance on corpora consisting entirely of novel sentences. Considera novel string, `N2V5n1v3n2v6N4V4#', in which only the substring, `N2V5n1v3' has occurredin the training corpus. Empirical word-based probability estimation can be carried out forthe �rst four words, but not for the second half of the string because there are no priorcontext which can be relied upon. One solution to this problem is to estimate the conditionalprobabilities based on the prior occurrence of lexical categories|i.e., `NVnvnvNV#' in theabove example|rather than individual words. Thus, with ci denoting the category of the ithword in the sentence we have the following relation:P (cpjc1; c2; : : : ; cp�1) ' Freq(c1; c2; : : : ; cp�1; cp)Freq(c1; c2; : : : ; cp�1) (3)where the probability of getting some member of a given lexical category as the pth item,cp, in a sentence is conditional on the previous p � 1 lexical categories. Note that for thepurpose of performance assessment singular and plural nouns are assigned to separate lexicalcategories throughout this paper as are singular and plural verbs.Given that the choices of lexical item for each category are independent, and that eachword in the category is equally frequent,14 the probability of encountering a particular wordwn, which is a member of a category cp, is simply inversely proportional to the number ofitems, Cp, in that category. So, overall,P (wnjc1; c2; : : : ; cp�1) ' Freq(c1; c2; : : : ; cp�1; cp)Freq(c1; c2; : : : ; cp�1)Cp (4)13We use bold for random variables.14These assumptions are true in these arti�cial languages, although they will not be in natural language, ofcourse. 14



If the network is performing optimally, then the vector of output unit activations shouldexactly match these probabilities. We evaluate the degree to which the network performssuccessfully by measuring the summed squared di�erence between the network outputs andthe conditional probabilities. More formally, we de�ne Squared Error as follows:Squared Error = Xj2W (outj � P (wn = j))2 (5)where W is the set of words in the language (including the end of sentence marker), and thereis an output unit of the network corresponding to each word. The index j runs through eachpossible next word, and compares the network output to the conditional probability of thatword. Finally, we obtain an overall measure of the network's performance by calculating theMean Squared Error (MSE) across all the items in the 500 test sentences. MSE calculatedin this way will be used to give a global measure of the performance of both networks andn-gram prediction models in the simulations below. Thus, if the network or n-gram modelhas learned the conditional probability distribution perfectly, the resulting MSE would be 0.5.1.1 Intrinsic constraints on SRN performanceEarlier simulations concerning the three languages (Christiansen, 1994) have shown perfor-mance to degrade as the depth of embedding increases. As mentioned earlier, SRN simula-tions in which center-embedded structures were included in small grammar fragments haveresulted in the same outcome (Christiansen, 1994, 1998; Elman, 1991, 1993; Weckerly & El-man, 1992)|as did the inclusion of cross-dependency structures (Christiansen, 1994, 1998).This performance degradation on complex recursive structures qualitatively �ts human perfor-mance on similar constructions (as described in section 2). Symbolic models, which embodya grammatical competence which allows unbounded recursion, are also able to mimic thehuman constraints on complex recursive structures. However, these models can only �t thehuman data by adding in otherwise arbitrary performance limitations speci�cally aimed atcapturing human limitations on doubly center-embedded construction. Examples include lim-its on stack depth (Church, 1982; Marcus, 1980), limits on the number of allowed sentencenodes (Kimball, 1973) or partially complete sentence nodes (Stabler, 1994) in a given sen-tence, the \self-embedding interference constraint" (Gibson & Thomas, 1996), and an upperlimit on sentential memory cost (Gibson, in press). On the other hand, what constrains theperformance of the SRN appears to be architectural limitations interacting with the statisticsof the recursive structures. In this connection, it is interesting to note that the di�cultyof processing center-embedded structures is not con�ned to a linguistic context. Larkins &Burns (1977) demonstrated that when subjects were asked, for example, to name pairs ofletters and digits given their center-embedded relations (e.g., the pairs L-2, G-8 and W-5, from the string `WGL285' ), they experienced the same di�culty on this task as whenprocessing center-embedded sentences. This suggests that constraints on complex recursivestructures, such as center-embedding, may derive from non-linguistic processing constraints.The well-documented human limitations on center-embedded sentences may therefore be moreappropriately modeled by non-linguistic architectural constraints|such as those exhibited bythe SRN|than the linguistically motivated extrinsic constraints of the symbolic approaches.A possible objection this suggestion is that perhaps the human-like performance limita-tions of the SRN follow from using a hidden unit layer of a particular size, rather than from15



intrinsic architectural properties. This seems reasonable by analogy with standard feedfor-ward networks where the size of the hidden unit layer is typically assumed to correlate withthe processing ability of a network. If this objection were correct, then the SRN architecturecould be compatible with almost any level of performance on recursive constructions. Thiswould mean that the size of an SRN's hidden unit layer would provide an arbitrary limitationon recursion in similar ways to the extrinsic constraints within the symbolic approaches.To address this objection, we carried out a series of simulations in which SRNs with 2, 5,10, 15, 25, 50, and 100 hidden units were trained on the three arti�cial languages. Across allsimulations, the learning rate was 0.1, no momentum was used, and the initial weights wererandomized to values in the interval [-0.25,0.25]. Although the simulation results presented inthis paper were replicated across di�erent initial weight randomizations, we focus on a typicalset of simulations for the ease of exposition. Networks of the same size were given the sameinitial random weights to facilitate comparisons across the three languages.Figure 3 shows the performance of the di�erent sized nets on test corpora consisting entirelyof novel complex recursive structures of varying length as a function of the number of epochstrained on the three languages. The SRNs performed well on the task, as reected in the lowerror scores. In the case of the counting recursion language (top panel), after some initialdi�erences|mainly within the �rst 40 epochs of training|all nets apart from those with 2hidden units settled on a similar level of performance. A similar pattern of uniformity oflearning was also found for the center-embedding recursion language (middle panel), with theexception that the SRN with 5 hidden units also showed a higher MSE. The SRNs trainedon the cross-dependency recursion language (bottom panel) followed the same trend as thecounting recursion networks. The results of this series of simulations suggest that the aboveobjection does not apply to the SRN. Increasing the hidden unit layer size did not result in anincrease in performance (i.e., lower MSE)|once the SRN had a necessary minimum of units(the number of which for the present tasks appears to lie around 5-10 hidden units).||||{insert �gure 3 about here||||{SRN performance as a function of hidden unit layer size on test corpora consisting entirelyof novel right-branching constructions of varying length can be seen in Figure 4. These resultsshowed a strong uniformity across both language type and size of hidden unit layer|with theone minor exception that the SRN with 2 hidden units trained on the center-embedding lan-guage (middle panel) performed slightly worse than the larger SRNs trained on this languageas well as worse than the 2 hidden unit SRNs trained on the counting recursion (top panel)and cross-dependency (bottom panel) languages, respectively.||||{insert �gure 4 about here||||{That SRN performance is independent of the number of hidden units is further illustratedin Figure 5 which shows MSE averaged across epochs for both complex recursion (left panels)and right-branching recursion (right panels) for each size of net (grey bars). These valueswere calculated as the average of the MSEs sampled at every second epoch (from epoch 0to epoch 100), and plotted for each construction in Figures 3 and 4. The MSE for bigramand trigram models are included (black bars) for comparison. For the nets trained on the16



counting recursion language, once a network had 15 or more hidden units they obtained a lowlevel of MSE on complex recursive structures (top left panel). Performance on right-branchingstructures (top right panel) was very similar across all hidden unit layers sizes. For both typesof recursion, the counting recursion nets outperformed the bigram and trigram models. In thecase of the nets trained on the center-embedding recursion language, all nets with 10 or morehidden units achieved essentially the same level of performance on complex recursive structures(middle left panel), whereas the nets with 5 or more hidden units performed quite similar onthe right-branching structures (middle right panel). Again, the SRNs were doing better onthe both recursion types than the bigram and trigram models|at least for hidden unit layersizes larger than 5. Nets with 15 or more hidden units trained on the cross-dependencylanguage all reached the same level of performance on complex recursive structures (bottomleft panel). As with counting recursion, performance was quite uniform on right-branchingrecursive constructions (bottom right panel) across all hidden unit layers sizes. Again, theSRNs outperformed the bigram and trigram models.||||{insert �gure 5 about here||||{Comparing across the three languages we see that the SRN found the counting recursionlanguage slightly easier to learn (as predicted in Section 4) than the two other languages.Surprisingly, the nets appeared to �nd the cross-dependency language easier to learn thanthe center-embedding language (at least in terms of their ability to reduce MSE). This isan important result because people appear to be better at dealing with cross-dependencyconstructions than equivalent center-embedding constructions. This is surprising from theperspective of linguistic theory because, as we noted above, cross-dependency constructions aretypically viewed as more complex than center-embedding constructions because they cannotbe captured by phrase-structure rules.Another interesting result is that in contrast to the SRNs the bigram and trigram modelsshowed the opposite e�ect, achieving a better level of performance on the center-embeddinglanguage than on the cross-dependency language. Finally, the SRNs with 10 or more hiddenunits had a lower MSE on complex recursive structures than on right-branching structures.This could be due to the fact that the complex recursive constructions essentially becomedeterministic (with respect to length) once the �rst verb has been encountered, but this is nottrue for the right-branching constructions at any point (except at depth 3).The above results show that the size of the hidden unit layer, when su�ciently large,does not inuence the processing capability on test corpora with constructions of varyingsize. Yet it is conceivable that hidden unit layer size may be important when processingthe crucial doubly embedded complex recursive structures which are beyond the limits ofhuman performance. To investigate this possibility we therefore retested the SRNs (trainedon complex and right-branching constructions of varying length) on corpora which consistedexclusively of novel doubly embedded structures. The results from these tests are presentedin Figure 6, showing approximately the same performance uniformity as found in Figure 5.Thus, once an SRN has a su�cient number of hidden units, the size of the hidden layer doesnot seem to matter for the performance on novel doubly embedded complex constructionsdrawn from the three languages. Figure 6 also shows that once an SRN has a su�cient size itperforms considerably better on doubly embedded constructions than both n-gram models.17



||||{insert �gure 6 about here||||{Given the lack of e�ect of hidden unit layer size on performance, we concentrate on SRNswith 15 hidden units in the remaining simulations. Inspection of Figure 3 reveals that theperformance on complex recursive constructions for these networks reached an asymptotic levelafter 35{40 epochs of training (with subsequent training resulting only in minor di�erencesin performance). From the sets of MSEs recorded for epochs 2 through 100, we chose thenumber of epochs at which the 15 hidden unit SRNs had the lowest MSE. The best levelof performance was found after 54 epochs training on the counting recursive language, 66epochs of training on the center-embedding language, and 92 epochs of training on the cross-dependency language. All results reported below are from SRNs trained for these number ofepochs (except when explicitly noted otherwise).5.2 Performance at di�erent depths of embeddingWe have seen that the overall performance of the SRNs averaged across di�erent depths ofrecursion appears comparable with the quasi-recursive structure of actual human utterances.We now consider performance at di�erent levels of embedding, measuring the di�erentiale�ects of depth of recursion on the various types of complex recursion and right-branchingrecursion. Human data would suggest that performance should rapidly degrade as embeddingdepth increases for complex recursive structures, where performance should degrade onlyslightly for right-branching recursive constructions.In the previous section we used empirical conditional probabilities based on lexical cate-gories to assess SRN performance (Equations 4 and 5). However, this measure is not useful forassessing performance on novel constructions which either go beyond the depth of embeddingfound in the training corpus, or deviate, as ungrammatical forms do, from the grammati-cal structures encountered during training. For comparisons with human performance wetherefore use the measure of Grammatical Prediction Error (GPE). This measure of SRNperformance has been shown elsewhere to provide for good approximations of two behav-ioral measures: reading times (MacDonald & Christiansen, 1998) and human grammaticalityratings (Christiansen, 1998; Christiansen & MacDonald, 1998).When evaluating how well the SRN has learned the grammar, which it was exposed to viathe sentences in the training corpus, it is important from a linguistic perspective not only todetermine whether the words that were activated given prior context are grammatical, butalso which items were not activated despite being sanctioned by the grammar. The GPEprovides an indication of how well a network is obeying the training grammar in making itspredictions, taking hits, false alarms, correct rejections and misses into account.Hits and false alarms are calculated as the accumulated activations of the set of units, G,that are grammatical and the set of ungrammatical activated units, U , respectively:hits =Xi2G ui (6)false alarms =Xi2U ui (7)Traditional sensitivity measures, such as d' (Signal Detection Theory, Green & Swets, 1966)18



or � (Choice Theory, Luce, 1959), are based on the assumption that misses can be calculatedas the di�erence between total number of relevant observations and hits. In terms of networkactivation it is not clear what would correspond to \total number of relevant observations".15Consequently, we need an alternative means of quantifying misses; that is, a way to determinean activation-based penalty for not activating all grammatical units and/or not allocatingsu�cient activation to these units. With respect to GPE, the calculation of misses involvesthe notion of a target activation, ti, computed as a proportion of the total activation (hitsand false alarms) determined by the lexical frequency, fi, of the word that unit i designatesand weighted by the sum of the lexical frequencies, fj, of all the grammatical units:ti = (hits + misses)fiPj2G fj (8)The potential missing activation for each unit can then be determined as the positive discrep-ancy, mi, between the target activation for a grammatical unit, ti, and the actual activationof that unit, ui: mi = ( 0 if ti � ui � 0ti � ui otherwise (9)Finally, the total activation for misses is calculated as the sum over all single unit missingactivation values: misses =Xi2Gmi (10)The GPE for predicting a particular word given previous sentential context can then bedetermined by: GPE = 1� hitshits + false alarms + misses (11)Thus construed, the GPE provides a measure of how much of the activation for a given itemhas been placed correctly according to the grammar (hits) in proportion to the total amountof activation (hits and false alarms) and the penalty for not activating grammatical itemssu�ciently (misses). Although not an explicit part of the above equation, correct rejectionsare also taken into account under the assumption that they correspond to zero activation forunits that are ungrammatical given previous context.The GPE score ranges between 0 and 1, and provides a very stringent measure of perfor-mance. To obtain a perfect GPE score of 0 the SRN will not only have to predict all andonly the next items prescribed by the grammar, but also be able to scale those predictionsaccording to the lexical frequencies of the legal items. Notice that to obtain a low GPE scorethe network must make the correct subject noun/verb agreement predictions. Consider �rst ahypothetical situation in which an SRN trained on the center-embedding language is violatingsubject noun/verb agreement. Given the previous context `N3n8v2' the network is incorrectlyactivating the group of singular verbs by 0.80 and the end of sentence marker by 0.10, whileonly activating the grammatically appropriate group of plural verbs by 0.10. This yields a hitactivation of 0.10, a false alarm activation of 0.90, and a miss activation of 0.90, resulting in15Note that total activation cannot be construed as corresponding to \total number of relevant observations"in these measures of sensitivity. This is because the di�erence between the total activation and hit activation(as speci�ed by Equation 6) corresponds to the false alarm activation (as speci�ed by Equation 7).19



a very high GPE score of (1� 0:100:10+0:90+0:90 =) 0.95. Consider then the opposite hypotheticalsituation in which the SRN given the same previous context instead highly activates the groupof grammatically correct plural verbs by 0.8, and the (incorrect) group of singular verbs by 0.1and the (incorrect) end of sentence marker by 0.1. This yields a hit activation of 0.80, a falsealarm activation of 0.20, and a miss activation of 0.20, resulting in a relatively low GPE scoreof (1 � 0:800:80+0:20+0:20 =) 0.33. Thus, in order to obtain low GPE scores the SRN predictionsmust comply with subject noun/verb agreement along with other grammatical constraints.The GPE value for an individual word reects the di�culty that the SRN experiencedfor that word given the previous sentential context. Previous studies using the GPE measureof SRN performance (Christiansen, 1998; MacDonald & Christiansen, 1998) have found thatindividual word GPE can be mapped qualitatively onto word reading times, with low GPEvalues reecting a prediction for short reading times and high values indicating long predictedreading times. The average GPE across a whole sentence expresses the di�culty that the SRNexperienced across the sentence as a whole, and this measure has been found to map ontosentence grammaticality ratings, with low average GPE scores indicating a high \goodness"rating and high scores reecting low ratings (Christiansen & MacDonald, 1998) .5.2.1 Embedding depth performanceWith the GPE measure in hand, we now turn to SRN performance on di�erent depths ofembedding. Figure 7 shows the average GPE on complex and right-branching recursive struc-tures as a function of embedding depth for 15HU SRNs, bigram models, and trigram models(trained on complex and right-branching constructions of varying length). Each data pointrepresents the mean GPE measured across 10 novel sentences. For the SRN trained on thecounting recursion language there was little di�erence between the performance on complexand right-branching recursive constructions, and performance only deteriorated slightly acrossembedding depth. In contrast, the n-gram models (and especially the trigram model) exhib-ited better performance (i.e., lower GPE scores) on right-branching structures than on complexrecursive structures. Both n-gram models showed a sharper decrease in performance acrossdepth of recursion than the SRN. The SRN trained on the center-embedding language alsoperformed better than the n-grammodels, although it, too, had greater di�culty with complexrecursive structures than with right-branching structures. Interestingly, SRN performance onright-branching recursive structures decreased slightly with depth of recursion. This contrastswith what would be expected from symbolic models in which in�nite depth of right-branchingrecursion pose no processing problems (e.g., Church, 1982; Gibson, in press; Marcus, 1980;Stabler, 1994). However, the pattern of performance deterioration of the SRN appears tobe in line with human data (see Section 5.4.3). A comparison between the n-gram models'performance on the center-embedding recursion language shows that whereas both exhib-ited a similar pattern of performance decrease on the complex recursive constructions acrossembedding depth, the trigram models performed considerably better on the right-branchingconstructions than the bigram model. As with the MSE results presented above in Section5.1.1, SRN performance on the cross-dependency language was better than on the center-embedding language. Although the SRN, as in the previous case, obtained lower GPE scoreson right-branching constructions compared with complex recursive structures, the increase inGPE across embedding depth on the latter was considerably less for the cross-dependency net20



than for its center-embedding counterpart. The bigram model performed rather poorly on thecross-dependency language both on right-branching and complex recursive structures. The tri-gram model performed substantially better, although it was no match for the SRN on complexrecursive constructions|even though the SRN performed slightly worse on right-branchingstructures compared with the trigram models.||||{insert �gure 7 about here||||{The di�erential SRN performance on the complex recursive and right-branching construc-tions from both the center-embedding and the cross-dependency languages provides a good �twith human data.16 We will discuss the lack of such di�erence in the SRN performance on thecounting recursion language in Section 5.4.4. Finally, it should be noted that constructionsof recursive depth 4 did not exist in any of the training corpora. Yet, there was no abruptbreakdown in performance for any of the three languages at this point, and this was true ofboth SRNs and n-gram models. This suggests that these models are able to generalize to atleast one extra level of recursion beyond what they have been exposed to during training (andthis despite only 1% of the training items being of depth 3).5.3 Training exclusively on doubly embedded complex construc-tionsAn alternative objection to the idea of intrinsic constraints being the source of SRN limitationson multiple embeddings of complex recursive structures is that perhaps the constraints stemfrom the speci�c statistics of the training corpora. Thus, one can concede that the size ofthe hidden unit layer is not the source of the constraint, but contend that the fact that only7% of the sentences involved doubly embedded complex recursive structures is what explainsthe observed limitations of the nets with these structures. Thus, if the percentage of doublyembedded constructions was to be increased considerably the networks would perhaps be ableto process these constructions without noticeable di�culty.To investigate this possibility, we trained SRNs with 15 hidden units on versions of the threelanguages consisting exclusively of doubly embedded complex recursive constructions withoutinterleaving right-branching constructions. Using the same number of words in each epoch asin the previous simulations, best performance was found for the counting recursion depth 2trained SRN (D2-SRN) after 48 epochs, after 60 epochs for the center-embedding D2-SRN, andafter 98 epochs for the cross-dependency D2-SRN. When tested on the test corpora containingonly novel doubly embedded sentences (also used to produce the results in Figure 6), the16It could be objected that the GPE measure may hide a failure to make correct agreement predictions forsingly center-embedded sentences, such as `The man1 the boys2 chase2 likes1 cheese'. If correct, one wouldexpect a high degree of agreement error for the two verb predictions in the singly center-embedded (complexdepth 1) constructions in Figure 7. Agreement error can be calculated as the percentage of verb activationallocated to verbs which do not agree in number with their respective nouns. The agreement error for the �rstand second verbs were 1.00% and 16.85%, respectively. This result also follows from the earlier discussion of theGPE measure, establishing that a high degree of agreement error will result in high GPE scores. Moreover,note that the level of SRN agreement error is comparable with human performance: For example, Larkin& Burns (1977) found that when subjects were asked to paraphrase singly center-embedded constructionspresented auditorily they made errors nearly 15% of the time.21



average MSE found for the counting recursion network was 0.045 (vs. 0.080 for the previous15HU SRN), 0.066 for the center-embedding net (vs. 0.092 for the previous 15HU SRN),and 0.073 for the cross-dependency net (vs. 0.079 for the previous 15HU SRN). Interestingly,although there were signi�cant di�erences between the MSE scores for the SRNs and D2-SRNstrained on the counting recursion (t(98) = 3:13; p < 0:003) and center-embedding recursion(t(98) = 3:04; p < 0:004) languages, the di�erence between the two nets was not signi�cant forthe cross-dependency language (t(98) = :97; p > 0:3). The performance of the D2-SRNs thusappear to be somewhat better than the performance of the SRNs trained on the corpora ofvarying length|at least for the counting and center-embedding recursion languages. However,a closer look at the predictions that the nets made show that D2-SRNs are only slightly betterthan their counterparts trained on sentences of varying length.Figure 8 shows GPE scores as a function of word position across doubly embedded complexrecursive constructions from the three languages, averaged over 10 novel sentences. On thedoubly embedded counting recursive sentences (top panel), both SRN and D2-SRN performedwell, with a slight advantage for the D2-SRN on the last verb. Both networks obtained lowerlevels of GPE than the n-gram models which was relatively inaccurate, especially at thelast two verbs. On doubly center-embedded sentences (middle panel), the two SRNs showeda gradual pattern of performance degradation across the sentence, but with the D2-SRNachieving somewhat better performance, especially on the last verb. The bigram and trigrammodels performed quite similarly, and again had great di�culty with the two �nal verbs. Whenprocessing doubly embedded cross-dependency sentences (bottom panel) the SRNs exhibited apattern of performance resembling that found for counting recursion. The GPE scores for bothSRNs increased gradually, and close to each other, until the �rst verb was encountered. Atthis point, the SRN GPE for the second verb dropped whereas the D2-SRN GPE continued togrow. At the third verb, the GPE for the D2-SRN dropped whereas the SRN GPE increased.Although the pattern of SRN GPE scores may seem puzzling at �rst, it appears to �t recentresults concerning the processing of similar cross-dependency constructions in Dutch. Using aphrase-by-phrase self-paced reading task with stimuli adapted from Bach et al. (1986), Dickey& Vonk (1997) found a signi�cant jump in reading times between the second and third verb,preceded by a (non-signi�cant) decrease in reading times between the �rst and second verb.When the GPE scores for individual words are mapped onto reading times, the GPE pattern ofthe SRN, but not the D2-SRN, provides a reasonable approximation of the pattern of readingtimes found by Dickey & Vonk. Returning to Figure 8, the trigram model|although notperforming as well as the SRN|displayed a somewhat similar pattern to the SRN, whereas thebigram model performed very poorly. Together, the results presented in Figure 8 reveal thatdespite being trained exclusively on doubly embedded complex recursive constructions anddespite not having to acquire the regularities underlying the right-branching structures, theD2-SRN only performed slightly better on doubly embedded complex recursive constructionsthan the SRN trained on both complex and right-branching recursive constructions of varyinglength. This suggests that the performance of the SRN does not merely reect the statisticsof the training corpus, but that intrinsic architectural constraints also play a crucial role indetermining prediction behavior.||||{insert �gure 8 about here||||{An encouraging aspect of the simulations is that the SRNs performed a good deal better22



than the n-gram based models. This is particularly important because the material that wehave used in these studies is the most favorable possible for n-gram models, since there isno intervening material at a given level of recursion. In natural language, of course, thereis generally a considerable amount of material between changes of depth of recursion, whichcauses problems for n-gram models because they concentrate on short-range dependencies.While n-gram models do not generalize well to more linguistically natural examples of re-cursion, SRN models, by contrast, do show a good level of performance on such material.We have found in other work (Christiansen, 1994, 1998; Christiansen & Chater, 1994) thatthe addition of intervening non-recursive linguistic structure does not appear to signi�cantlyalter the pattern of results found with the arti�cial languages reported here. Thus, we mayconclude that SRNs are not merely learning bigram and trigram information, but appear toacquire grammatical regularities that, at least on a qualitative level, allow them to exhibitbehaviors similar to humans. We now consider the match with human data in more detail.5.4 Fitting Human DataWe have seen that the performance of the SRN in processing deeply embedded complexrecursive structures appears to be limited by intrinsic constraints, which are independent ofthe number of hidden units. Moreover, we have shown that these limitations are not overcomeeven when the network is trained only on deeply embedded sentences.17 As we have mentionedalready, the level of embedding which the SRNs can process is roughly in line with humanprocessing limitations. In this section, we consider in more detail the relation between theSRN's performance and the psychological data on processing recursive structures, using thesame 15 hidden unit SRNs as in the previous sections.5.4.1 Center-embedding vs. cross-dependencyIn a classic study, Bach et al. (1986) found that cross-dependencies in Dutch were compar-atively easier to process than center-embeddings in German. We have noted that this resultis linguistically interesting and surprising, because cross-dependencies cannot be captured byphrase structure rules and are therefore typically viewed as more complex. Moreover, it is in-teresting from the point of view of language processing, because it suggests that the languageprocessor cannot be primarily based on a stack-like memory store. This is because cross-dependencies, which require a queue, are easier to process than center embeddings, whichrequire a stack.Bach et al. had native Dutch speakers listen to sentences in Dutch involving varying depthsof recursion in the form of cross-dependency constructions and corresponding right-branchingparaphrases with the same meaning. Native German speakers were tested using similar ma-terials in German, but with the cross-dependency constructions replaced by center-embeddedconstructions. Because of disagreement among German informants concerning whether the�nal verb should be in an in�nitive form or in a past participle form, two versions of the17Earlier work by Christiansen (1994) has additionally shown that these results are not signi�cantly alteredby training the SRNs exclusively on complex recursive structures of varying length (without interleavingright-branching constructions) or by using the back-propagation through time learning algorithm (Rumelhart,Hinton & Williams, 1986). 23



German materials were used. After the presentation of each sentence, subjects were asked torate the comprehensibility of the sentence on a 9-point scale (1 = easy, 9 = di�cult). Subjectswere also asked comprehension questions after two-thirds of the sentences. In order to removee�ects of processing di�culty due to length, Bach et al. subtracted the ratings for the right-branching paraphrase sentences from the matched complex recursive test sentences. The sameprocedure was applied to the error scores from the comprehension questions. The resultingdi�erence should thus reect the di�culty caused by the complex recursive constructions.Figure 9 (left panel) shows the di�erence in mean test/paraphrase ratings for singlyand doubly embedded cross-dependency sentences in Dutch and singly and doubly center-embedded sentences in German (with the �nal verb in a past participle form). We focus onthe past participle German results because these were consistent across both the rating andthe comprehension tasks, providing the same pattern of results in comparison with the Dutchdata. As the mean GPE across a sentence reects the processing di�culty that the SRN ex-periences across the sentence as a whole, we can map these scores onto the human rating databecause the latter are thought to reect the processing di�culty that people experience whenprocessing a given sentence. We used the mean GPE scores from Figure 7 for the SRNs trainedon the center-embedding and cross-dependency languages to model the Bach et al. results.For recursive depth 1 and 2, the mean GPE scores for the right-branching constructions weresubtracted from the average GPE scores for the complex recursive constructions, and the dif-ferences plotted in Figure 9 (right panel).18 The net trained on the cross-dependency languagemaps onto the Dutch data and the net trained on the center-embedding language maps ontothe German (past participle) data. At a single level of embedding, Bach et al. found no dif-ference between Dutch and German. This is also true of the SRN data (t(18) = 0:36; p > 0:7).However, at two levels of embedding Bach et al. found a signi�cant di�erence between Dutchand German with the Dutch cross-dependency stimuli being rated better than their Germancounterparts. The SRN data also shows a signi�cant di�erence between center-embeddedconstructions at depth 2 and their cross-dependency counterparts (t(18) = 4:08; p < 0:01).Thus, SRN performance on center-embedding and cross-dependency of depth 1 and 2 �tshuman performance on similar constructions quite closely. Next, the performance on doublycenter-embedded sentences is studied in more detail.||||{insert �gure 9 about here||||{5.4.2 Grammatical vs. ungrammatical double center-embeddingsThe study of complex English sentences with multiple center-embeddings has long been an im-portant source of information about the limits of human sentence processing (e.g., Blaubergs& Braine, 1974; Foss & Cairns, 1970; Marks, 1968; Miller, 1962; Miller & Isard, 1964; Stolz,1967). A particularly interesting recent �nding is due to Gibson & Thomas (1997). Their re-sults from an o�-line rating task suggest that some ungrammatical sentences involving doublycenter-embedded object relative clauses may be perceived as grammatical.18The human data presented here and in the next two sections involve three di�erent scales of measurement(i.e., di�erences in mean test/paraphrase comprehensibility ratings, mean grammaticality ratings on a scale1-7, and mean comprehensibility ratings on a scale 1-9). It was therefore necessary to adjust the scales for thecomparisons with the mean GPE scores accordingly. 24



(14) The apartment that the maid who the service had sent over was cleaning every week waswell decorated.(15)*The apartment that the maid who the service had sent over was well decorated.In particular, they found that when the middle VP was removed (as in 15), the resultingconstruction was rated no worse than the grammatical version (in 14). Gibson & Thomas in-terpreted this as an indication that people �nd doubly center-embedded relative clause struc-tures just as acceptable when only two verb phrases are included instead of the grammatically-required three.It is possible to investigate this result using the SRN trained on the center-embedding lan-guage. Within this abstract language, (14) corresponds to a grammatical 3VP (`NNNVVV')construction (with singular subject noun/verb agreements), whereas the ungrammatical (15)corresponds to a 2VP (`NNNVV') construction (again with singular subject noun/verb agree-ments). By looking at the output activation following `NNNVV' we can determine whether theSRN can �t the Gibson & Thomas data. Figure 10 shows this activation averaged over 10 novelsentences and grouped into the four lexical categories and the end of sentence marker (EOS).It is clear that, in contrast to the results of Gibson & Thomas, the network demonstrateda signi�cant preference for the ungrammatical 2VP construction over the grammatical 3VPconstruction, predicting that (14) actually should be rated worse than (15). This explains,in part, the high GPE score for the third verb in Figure 8 (middle panel). The erroneousactivation of the nouns and the plural verbs also contribute to the high GPE.||||{insert �gure 10 about here||||{The Gibson & Thomas study employed an o�-line task which may explain why (14) wasrated no worse than (15). Christiansen & MacDonald (1998) pursued this observation by con-ducting an on-line self-paced word-by-word (center presentation) grammaticality judgmenttask using the stimuli from Gibson & Thomas (1997). At each point in a sentence subjectswere asked to use their intuition to judge whether what they had read so far was a gram-matical sentence or not. Following the presentation of each sentence (whether accepted orrejected), subjects rated the sentences on a 7-point scale (1 = good, 7 = bad). Christiansen &MacDonald found that the grammatical 3VP construction was rated signi�cantly worse thanthe ungrammatical 2VP construction.One potential problem with this experiment is that the 2VP and 3VP stimuli were notof the same length, and hence that the result could be an artifact of mere length di�erences.In addition, the Gibson & Thomas stimuli also incorporated noun/verb semantic biases (e.g.,apartment/decorated, maid/cleaning, service/sent over in (14)) which may make the 2VPstimuli more plausible than they would have been otherwise. Christiansen & MacDonaldtherefore replicated their �rst experiment using stimuli controlled for length and withoutnoun/verb biases, such as (16) and (17):(16) The chef who the waiter who the busboy o�ended appreciated admired the musicians.(17)*The chef who the waiter who the busboy o�ended frequently admired the musicians.25



Figure 11 shows the rating results from the second experiment in comparison with SRN pre-dictions in terms of mean GPE. The GPE scores for the 2VP and 3VP constructions wererecorded for 10 novel sentences with singular subject noun/verb agreements similarly to theagreement patterns in the human stimuli (and the lack of semantic noun/verb bias). To controlfor length the GPE scores for the 3VP constructions were only averaged over the �rst 6 words(i.e., for `NNNVVV' vs. `NNNVV#' for the 2VP constructions). As in the �rst study, Chris-tiansen & MacDonald found in their second study that the grammatical 3VP constructionswere rated signi�cantly worse than the ungrammatical 2VP constructions. The SRN data�tted this pattern of human grammaticality ratings, with signi�cantly higher GPE scoreselicited by 3VP constructions compared with 2VP constructions (t(18) = 2:34; p < 0:04). Inthe next section, we investigate a possible match between human and SRN performance onright-branching structures.||||{insert �gure 11 about here||||{5.4.3 Right-branching subject relative constructionsTraditional symbolic models suggest that right-branching (and left-branching) recursion shouldnot cause any processing problems. In contrast, as we mentioned in connection with SRN per-formance across depth of recursion on the center-embedding language shown in Figure 7, theSRN model suggests that some decrement in performance may occur. Unfortunately, this issuehas not received much attention in the experimental literature|even though right-branchingconstructions are often used as control items in studies of center-embedded sentences. How-ever, it is possible to glean some relevant information from some of these studies. Thus, Bachet al. (1986) report comprehensibility ratings for their right-branching paraphrase items. Fig-ure 12 shows as a function of recursion depth the comprehensibility ratings for the Germanpast participle paraphrase sentences and the mean GPE scores produced for right-branchingconstructions (from Figure 7) by the SRN trained on the center-embedding language. Boththe human and the SRN data show the same pattern of increasing processing di�culty withincrease in the depth of recursion.||||{insert �gure 12 about here||||{A similar �t with human data can be found by comparing the human comprehension errorsas a function of recursion depth reported in Blaubergs & Braine (1974) with mean GPE forthe same depths of recursion (again for the SRN trained on the center-embedding language).Christiansen & MacDonald (1998) present on-line rating data concerning right-branching PPmodi�cations of nouns in which the depth of recursion varied from 0 to 2 by modifying a nounby either one PP (18), two PPs (19), or three PPs (20):(18) The nurse with the vase says that the [owers by the window] resemble roses.(19) The nurse says that the [owers in the vase by the window] resemble roses.(20) The blooming [owers in the vase on the table by the window] resemble roses.26



The stimuli were controlled for length and generally constructed to be of similar propositionaland syntactic complexity. The results showed that subjects rated sentences with recursionof depth 2 (20) worse than sentences with recursion depth 1 (19), which, in turn, were ratedworse than sentences with no recursion (18). Although these results do not concern subjectrelative constructions, they suggest together with data from the Bach et al. and the Blaubergs& Braine studies that the processing of right-branching recursive constructions is a�ected byrecursion depth|albeit to a much lesser degree than for complex recursive constructions. Im-portantly, this dovetails with the SRN model of language processing that we have presentedhere and elsewhere (Christiansen, 1994, 1998; Christiansen & MacDonald, 1998). In con-trast, traditional symbolic models of language (e.g., Church, 1982; Gibson, in press; Marcus,1980; Stabler, 1994) do not predict an increase in processing di�culty for right-branchingconstructions as a function of depth of recursion, except perhaps for a mere length e�ect.5.4.4 Counting recursionIn the �nal part of this section, we briey discuss the relationship between counting re-cursion and natural language. We could �nd no experimental data which relate to naturallanguage constructions corresponding to counting recursion. The good performance of theSRNs trained on counting recursion might suggest the prediction that people should be ableto handle relatively deep embeddings of corresponding natural language constructions (e.g.,the SRN handles doubly embedded structures successfully). However, we contend that, de-spite Chomsky (1957), such structures may not exist in natural language. Indeed, the kind ofstructures that Chomsky had in mind (e.g., nested `if{then' structures) may actually be closerto center-embedded constructions than to counting recursive structures. Consider the earliermentioned depth 1 example (13), repeated here as (21):(21) If1 if2 the cat is in, then2 the dog cannot come in then1 the cat and dog dislike each other.As the subscripts indicate, the `if{then' pairs are nested in a center-embedding order. Thisstructural ordering becomes even more evident when we mix `if{then' pairs with `either{or'pairs (as suggested by Chomsky, 1957: p. 22):(22) If1 either2 the cat dislikes the dog, or2 the dog dislikes the cat then1 the dog cannot comein.(23) If1 either2 the cat dislikes the dog, then1 the dog dislikes the cat or2 the dog cannot comein.The center-embedding ordering seems necessary in (22) because if we reverse the order of`or' and `then' then we get the obscure sentence in (23). Given these observations, we canmake the empirical prediction that human behavior on nested `if{then' structures are likelyto follow the same breakdown pattern as observed in relation to the nested center-embeddedconstructions (perhaps with a slightly better overall performance).
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5.5 Probing the Internal RepresentationsThe intrinsic constraints of the SRN appear to provide a good qualitative match with the lim-itations on human language processing. We now consider how these constraints arise by con-ducting an analysis of the hidden unit representations with which the SRNs store informationabout previous linguistic material. We focus on the case of doubly embedded constructions,which represent the limits of performance for both people and the SRN. Moreover, we focuson what information the hidden units of the SRN maintain about the number agreement ofthe three nouns encountered in doubly embedded constructions (recording the hidden units'activations immediately after the three nouns have been presented).Before giving our formal measure, we provide an intuitive motivation for our approach.Suppose that we aim to assess how much information the hidden units maintain about thenumber agreement of the last noun in a sentence; that is, the noun that the net has justseen. If the information is maintained very well, then the hidden unit representations ofinput sequences that end with a singular noun (and thus belong to the lexical category com-binations: nn-n, nN-n, Nn-n and NN-n) will be well-separated in hidden unit space fromthe representations of the input sequences that end with a plural noun (i.e., NN-N, Nn-N,nN-N and nn-N). This means that we should be able to split the hidden unit representa-tions along the plural/singular noun category boundary such that input sequences endingin plural nouns are separated from input sequences ending in singular nouns. It is impor-tant to contrast this with a situation in which the hidden unit representations instead re-tain information about the agreement number of individual nouns. In this case, we shouldbe able to split the hidden unit representations across the plural/singular noun categoryboundary such that input sequences ending with particular nouns, say, N1; n1; N2 or n2(i.e., nn-fN1; n1; N2; n2g,19 nN-fN1; n1; N2; n2g, Nn-fN1; n1; N2; n2g and NN-fN1; n1; N2; n2g)are separated from input sequences ending with remaining nouns N3; n3; N4 or n4 (i.e., nn-fN3; n3; N4; n4g, nN-fN3; n3; N4; n4g, Nn-fN3; n3; N4; n4g and NN-fN3; n3; N4; n4g). Note thatthe above separation along lexical categories is actually a special case of across category sepa-ration in which input sequences ending with the particular (singular) nouns n1; n2; n3 or n4 areseparated from input sequences ending with the remaining (plural) nouns N1; N2; N3 or N4.Only by comparing the separation along and across the lexical categories of singular/pluralnouns can we assess whether the hidden unit representations merely maintain agreement in-formation about individual nouns, or whether more abstract knowledge has been encodedpertaining to the categories of singular and plural nouns. In both cases, information is main-tained relevant to the prediction of correctly agreeing verbs, but only in the latter case aresuch predictions based on a generalization from the occurrences of individual nouns to theirrespective categories of singular and plural nouns.We can measure the degree of separation by attempting to split the hidden unit repre-sentations generated from the (8 � 8 � 8 =) 512 possible sequences of three nouns into twoequal groups. We attempt to make this split using a plane in hidden unit space; the degreeto which two groups can be separated either along or across lexical categories therefore pro-vides a measure of what information the network maintains about the number agreement ofthe last seen noun. A standard statistical test for the separability of two groups of items is19We use curly brackets to indicate that any of the four nouns may occur in this position, thus creating thefollowing four combinations: nn-N1, nn-n1, nn-N2 and nn-n2.28



discriminant analysis (Cli�, 1987; see Bullinaria, 1994; Wiles & Bloesch, 1992; Wiles & Ollila,1993 for earlier applications to the analysis of neural networks).Figure 13(a) gives a schematic illustration of a separation along lexical categories with aperfect di�erentiation of the two groups, corresponding to a 100% correct classi�cation of thehidden unit vectors. The same procedure can be used to assess the amount of informationthat the hidden units maintain concerning the number agreement of the nouns in second and�rst positions. We split the same hidden unit activations generated from the 512 possibleinput sequences into groups both along and across lexical categories. The separation of thehidden unit vectors along the lexical categories according to the number of the second nounshown in Figure 13(b) is also perfect. However, as illustrated by Figure 13(c), the separationof the hidden unit activations along the lexical categories according to the �rst encounterednoun is less good, with 75% of the vectors correctly classi�ed, because N-Nn is incorrectlyclassi�ed with the singulars and n-nN with the plurals.||||{insert �gure 13 about here||||{We recorded hidden unit activations for the 512 possible noun combinations for bothcomplex and right-branching recursive constructions of depth 2 (ignoring the interleavingverbs in the right-branching structures). Table 2 lists the percentage of correctly classi�edhidden unit activations for the 512 possible combinations of nouns. Classi�cation scores werefound for these noun combinations both before and after training, and both for separationalong and across singular/plural noun categories. Scores were averaged over di�erent initialweight con�gurations and collapsed across the SRNs trained on the three languages (therewas no signi�cant di�erences between individual scores). The results from the separationsacross singular/plural noun categories show that prior to any training the SRN was ableto retain a considerable amount of information about the agreement number of individualnouns in the last and middle positions. Only for the �rst encountered noun was performanceessentially at chance (that is, close to the level of performance achieved through a randomassignment of the vectors into two groups). The SRN had, not surprisingly, no knowledgeof lexical categories of singular and plural nouns before training, as indicated by the lackof di�erence between the classi�cation scores along and across noun categories. The goodclassi�cation performance of the untrained nets on the middle noun in the right-branchingconstructions is, however, somewhat surprising because this noun position is two words (averb and a noun) away from the last noun. In terms of absolute position from the point wherethe hidden unit activations were recorded, the middle noun in right-branching constructions(e.g., `N1V3�N3�V2n4') corresponds to the �rst noun in complex recursive constructions (e.g.,`N1�N3n4'). Whereas untrained classi�cation performance for this position was near chanceon complex recursion, it was near perfect on right-branching recursion. This suggests thatin the latter case information about the verb, which occurs between the last and the middlenouns, does not interfere much with the retention of agreement information about the middlenoun. Thus, prior to learning the SRN appears to have an architectural bias which facilitatesthe processing of right-branching structures over complex recursive structures (at least for thepresent implementation of the two kinds of recursion).||||{insert table 2 about here||||{29



After training, the SRNs retained less information in its hidden unit representations aboutindividual nouns. Instead, lexical category information was maintained as evidenced by the bigdi�erences in classi�cation scores between groups separated along and across singular/pluralnoun categories. Whereas classi�cation scores along the two noun categories had increasedconsiderably as a result of training, the scores for classi�cations made according to groups sep-arated across the categories of singular and plural nouns had actually decreased|especiallyfor the middle noun position. The SRN appears to have acquired knowledge about the im-portance of the lexical categories of singular and plural nouns for the purpose of successfulperformance on the prediction task, but at the cost of retaining information about individualnouns in the middle position.We have suggested that SRNs embody intrinsic architectural constraints which make themsuitable for the modeling of recursive structure|in particular the human limitations on com-plex recursion documented in many empirical studies. The results of the discriminant analysessuggest that the SRN is well-suited for learning sequential dependencies. Importantly, thefeedback loop between the context layer and the hidden layer allows the net to retain informa-tion relevant to making appropriate distinctions between previously encountered plural andsingular items even prior to learning. Of course, a net has to learn to take advantage of thisinitial separation of the hidden unit activations to produce the correct output, and this is anontrivial task. Prior to learning, the output of an SRN consist of random activation patterns.Thus, it has to discover the lexical categories and learn to apply agreement information in theright order to make correct predictions for center-embedded and cross-dependency complexrecursive structures. As a consequence of training, the SRN is able to retain a signi�cantamount of information about even the �rst noun in complex recursive constructions, as wellas exhibiting an output behavior very much in line with human data.On a methodological level, the results from the discriminant analyses of the untrainednetworks suggests that when conducting analyses of hidden unit representations in recurrentnetworks after training it is advisable to make comparisons with the representations as theywere prior to training. This may provide insight into which aspects of network performanceare due to architectural biases and which arise due to learning. A network always has somebias with respect to a particular task, and this bias is dependent on a number of factors,such as, overall network con�guration, the nature of the activation function(s), the propertiesof the input/output representations, the initial weight setting, etc. As evidenced by ourdiscriminant analyses, even prior to learning hidden unit representations may display somestructural di�erentiation, emerging as the combined product of this bias (also cf. Kolen,1994) and the statistics of the input/output relations in the test material (also cf. Chater& Conkey, 1992). However, all too often hidden unit analyses|such as cluster analyses,multi-dimensional scaling analyses, principal component analyses|are conducted with noattention paid to the potential amount of structure that can be found in the hidden unitrepresentations before any learning takes place. But by making comparisons with analyses ofhidden unit patterns elicited prior to training, not only may over-interpretation of trainingresults be avoided, but it is also possible to gain more insight into the kind of architecturalconstraints that a given network brings to a particular task.
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5.6 Sentence GenerationWe have so far considered how recursive structures are processed, and studied the hidden unitrepresentations that the SRN has before and after training. We now briey show how SRNscan also be used to model the generation of recursive structures. This provides additionalinsight into what the networks have learned, and also provides a possible starting point formodeling how people produce recursive constructions.The basic idea is to interpret the output of the SRNs not as a set of predictions, butas a set of possible sentence continuations. One of these possible continuations can then bechosen stochastically, and fed back as the next input to the SRN. This is illustrated in Figure14. The process starts from a randomly chosen noun given as input to the network. Thenetwork then produces a distribution of possible successors. The stochastic selection process(SSP) �rst normalizes the outputs so that they sum to 1 (and hence can be interpreted asprobabilities), and then chooses one of the outputs randomly, according to these probabilities.This item is given as the next input to the network, and the process is repeated. Eventually,the end of sentence marker will be selected, and a sentence will be completed. However, thegeneration process need not be halted at this point, as the end of sentence marker can serveas an input from which the �rst word of the next sentence can be produced. In this way,the generation process can be continued inde�nitely to produce an arbitrarily large corpus ofsentences from the SRN. A similar approach was used by Mozer & Soukup (1991) to generatemusical sequences.20 ||||{insert �gure 14 about here||||{Table 3 presents the distribution of the grammatical sentences obtained from a sample of100 sentences generated for each language by the SRNs with 15 hidden units. The countingrecursion net generated 67% grammatical sentences, the center-embedding net 69% grammat-ical sentences, and the cross-dependency net 73% grammatical sentences. Thus, once againthe cross-dependency net performed better than the center-embedding net (and the countingrecursion net). The table is further divided into three subgroups, depending on whether theconstructions are of depth 0, complex recursive or right-branching. Across the three languagesthere was a larger proportion of grammatical sentences of depth 0 (35{42%) than found inthe training corpora (30%), suggesting a weak tendency to generate shorter strings. Therewas also a some tendency towards producing more grammatical right-branching sentences(50{67%) than complex recursive sentences (especially for the counting recursion net) despitethe fact both kinds of recursion occurred equally often in the training corpora. For complexrecursion, both the counting recursive net and the cross-dependency net generated severalstructures of depth 2, whereas the center-embedding net generated none. Thus, the center-embedding net appeared to have acquired a slightly stronger bias toward shorter strings thanthe two other nets. In the case of right-branching recursion, all nets were able to generate atleast two sentences of depth 2, again indicating that the SRN found these structures easier todeal with than the complex recursive structures.||||{insert table 3 about here||||{20We thank Paul Smolensky for bringing this work to our attention.31



The ungrammatical strings from the 100 sentence samples are listed in Table 4. Agree-ment errors accounted for less than a quarter of the ungrammatical strings: 24% for countingrecursion, 13% for center-embedding recursion, and 19% for cross-dependency recursion. Theungrammatical strings were divided into four subgroups on the assumption that the combi-nation of a single noun and a single verb counted as depth 0, the initial occurrence of two ormore nouns as complex recursion, and the initial occurrence of a noun and a verb followedby other material as right-branching recursion. The fourth subgroup, \Other", consisted ofstrings which either started with a verb or were null strings (i.e., just an end of sentencemarker). Few errors were made on depth 0 constructions. The counting recursion net mademore errors on right-branching structures than on complex recursive structures, whereas theopposite is true of the center-embedding net. The cross-dependency net made about samenumber of errors on both kinds of constructions. Whereas many of the non-agreement errorsare hard to interpret, the nets did make some interesting errors involving a combination ofboth a complex recursive construction and a right-branching construction, whose individualparts were otherwise grammatical (counting recursion: `NnvVnv'; center-embedding recursion:`NVNNVV' and `NVNNNVVV'; cross-dependency recursion: `nvnNvV' and `NVnnvv').||||{insert table 4 about here||||{On the whole, the networks performed reasonably well on the stochastic sentence genera-tion task; that is, their acquired knowledge of the structural regularities provided a good basisfor the probabilistic generation of sentences|though performance does not reach human levelsof production. Nonetheless, given these encouraging initial results, we can speculate that therepresentations that the SRNs acquire through training may form a good common representa-tional substrate for both sentence recognition and production. That is, knowledge acquired inthe service of comprehension may form the basis for production (see Dell, Chang & Gri�n, inpress, for a similar perspective on SRN sentence production). It is worth noting that viewed inthis way, the SRN embodies the asymmetry typically found between human language compre-hension and production. The nets predominantly generated sentences of depth 0 and 1, butare able to process sentences of depth 2 (albeit to a very limited degree). Thus, the nets havea comprehension basis which is wider than their productive capabilities. Of course, sentencegeneration in these nets is not driven by semantics contrary to what one would assume tobe the case for people. Adding semantics to guide the generation process may help eliminatemany of the existing ungrammatical sentences because the selection of words would then beconstrained not only by probabilistic grammatical constraints but also by semantic/contextualconstraints.6 General DiscussionWe have shown that an SRN can be trained to process recursive structures with similarperformance limitations regarding depth of recursion as found in human language processing.The limitations of the network do not appear sensitive to the size of the network, nor tothe frequency of deeply recursive structures in the training input. The qualitative pattern ofresults from the SRN for center-embedding, cross-dependency and right-branching recursionmatch human performance on natural language constructions with these structures. The32



SRNs trained on center-embedded and cross-dependency constructions performed well onsingly embedded sentences|although, as for people, performance was by no means perfect(Bach et al., 1986; Blaubergs & Braine, 1974; King & Just, 1991). Of particular interest isthe pattern of performance degradation on sentences involving center-embeddings and cross-dependencies of depth 2, and its close match with the pattern of human performance on similarconstructions.Overall, the qualitative match between the SRN performance and human data is encour-aging. These results suggest a reevaluation of Chomsky's (1957, 1959) arguments that theexistence of recursive structures in language rules out �nite state and associative models oflanguage processing. These arguments have been taken to indicate that connectionist net-works, which learn according to associative principles, cannot in principle account for humanlanguage processing. But we have shown that this in principle argument is not correct: Con-nectionist networks can learn to handle recursion with a comparable level of performance tothe human language processor. The simulations that we have provided are, of course, smallscale, and we have not demonstrated that this approach could be generalized to model theacquisition of the full complexity of natural language. Note, however, that this limitationapplies equally well to symbolic approaches to language acquisition (e.g., Anderson, 1983), in-cluding parameter-setting models (e.g., Gibson & Wexler, 1994; Niyogi & Berwick, 1996), andother models which assume an innate universal grammar (e.g., Berwick & Weinberg, 1984).Turning to linguistic issues, the better performance of the SRN on cross-dependency re-cursion compared with center-embedding recursion may reect the fact that the di�erencebetween learning limited degrees of context-free and context-sensitive structure may be verydi�erent from the problem of learning the full, in�nite versions of these languages; a similarconclusion with respect to processing is reached by Vogel, Hahn & Branigan (1996) from theviewpoint of formal language computation and complexity. Within the framework of Gibson's(in press) Syntactic Prediction Locality Theory, center-embedded constructions (of depth 2 orless) are harder to process than their cross-dependency counterparts because center-embeddingrequires holding information in memory over a longer stretch of intervening items than cross-dependency. Put simply, the information about the �rst noun has to be kept in memory overminimally �2D items for center-embedding, where D corresponds to depth of recursion, butonly over minimally �D items for cross-dependency. Although a similar kind of analysisis helpful in understanding the di�erence in SRN performance on the two types of complexrecursive constructions, this cannot be the full explanation. Firstly, this analysis incorrectlysuggest that singly embedded cross-dependency structures should be easier to process thancomparable center-embedded constructions. As illustrated by Figure 9, this is not true of theSRN predictions, nor does it �t with the human data from Bach et al. (1986). Secondly, theabove analysis would predict a at or slightly rising pattern of GPE across the verbs in asentence with two cross-dependencies. In contrast, the GPE pattern for the cross-dependencysentences (Figure 8) is able to �t the reading time data from Dickey & Vonk (1997) becauseof a drop in the GPE scores for the second verb. Even though there are several details stillto be accounted for, the current results suggest that we should be wary of drawing strongconclusions for language processing behavior, in networks and perhaps also in people, fromarguments concerning idealized in�nite cases.A related point touches on the architectural requirements for learning languages involving,respectively, context-free and context-sensitive structures. In the simulations reported here,33
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TABLE 1The Distribution of Embedding Depths inTraining and Test CorporaEmbedding DepthRecursion Type 0 1 2 3Complex 15% 27.5% 7% .5%Right-Branching 15% 27.5% 7% .5%Total 30% 55% 14% 1%Note. The precise statistics of the individualcorpora varied slightly from this ideal distri-bution.
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TABLE 2Percentage of Cases Correctly Classi�ed given Discriminant Analysesof Network Hidden Unit RepresentationsRecursion TypeSeparation Along Separation AcrossSingular/Plural Noun Categories Singular/Plural Noun CategoriesNoun Position Complex Right-Branching Complex Right-BranchingBefore TrainingFirst 62.60 52.80 57.62 52.02Middle 97.92 94.23 89.06 91.80Last 100.00 100.00 100.00 100.00Random 56.48 56.19 55.80 55.98After TrainingFirst 96.91 73.34 65.88 64.06Middle 92.03 98.99 70.83 80.93Last 99.94 100.00 97.99 97.66Random 55.99 55.63 54.93 56.11Notes. Noun position denotes the left-to-right placement of the noun being tested, withRandom indicating a random assignment of the vectors into two groups.
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TABLE 3The Distribution of Grammatical Sentences Generated by theNets Trained on the Three LanguagesLanguageCounting Center- Cross -Construction Recursion Embedding DependencyDepth 0 nv (16) nv (15) nv (15)NV (8) NV (14) NV (12)Complex NNVV (11) nNVv (7) nnvv (5)Recursion NNNVVV (6) nnvv (6) NnVv (5)NNVV (5) NNVV (5)NnvV (2) nNvV (3)nnnvvv (1)nNnvVv (1)NnnVvv (1)Right- NVnv (8) NVNV (7) nvNV (7)Branching NVNV (6) nvnv (5) nvnv (6)Recursion nvNV (4) nvNV (4) NVnv (5)nvnv (2) NVnv (1) NVNV (5)nvNVnv (2) nvNVnv (1) nvnvnv (1)nvnvnv (1) NVNVnv (1) NVNVNV (1)nvnvNV (1) NVnvNV (1)NVnvnv (1)NVNVNV (1)Notes. The number of instances of each construction is indicated in parentheses. Capitaliza-tion indicates plural agreement|except in the case of complex recursive structures generatedby the SRN trained on the counting recursion language where the letters stand for bothsingular and plural. The end of sentence marker (`#') is omitted for expositional purposes.
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TABLE 4The Distribution of Ungrammatical Strings Generated by theNets Trained on the Three LanguagesLanguageCounting Center- Cross -Construction Recursion Embedding DependencyDepth 0 Nv (3)Complex nnvVV (1) NNVv (3) nnvvV (1)Recursion nnnVnv (1) nnvvv (2) nnvnvVv (1)nnVvV (1) NNVNVv (2) nnvVvNV (1)nNv (1) nnvvV (1) nnv (1)nNVnv (1) nNVvv (1) nnNvVv (1)nNNVv (1) nNVV (1) nNnVv (1)NnvVV (1) Nnvnvvv (1) nNNVvv (1)NnVVV (1) NnvVV (1) NnVvn (1)NNnvV (1) Nnv (1) NnVVv (1)NnvVnv (1) NnNV (1) NnVNvVVnN (1)NNnvvnvv (1) NNVNV (1)NNnv (1) NNV (1)NNVnv (1) nNnNvNvVVNVNVNV (1)NNVNV (1)nNNVV (1)Right- nvV (3) nvV (2) NVV (4)Branching nvv (2) NVv (2) nvvV (1)Recursion nvNv (2) nvv (1) nvnvnV (1)NVv (2) nvnvVV (1) nVnv (1)NVV (2) nVV (1) nVNvVV (1)nvNVVV (1) Nvv (1) NvnVvv (1)nVnVNV (1) NVNNVV (1) NvVV (1)nVNVNVNV (1) NVNNNVVV (1) NVvV (1)nVNV (1) NVv (1)NVvv (1) nvnNvV (1)NVvV (1) NVnnvv (1)Other vnvNVNV (1) fg (1)vnvNV (1) Vnv (1)V (1)Notes. The number of instances of each construction is indicated in parentheses. Capitaliza-tion indicates plural agreement. The end of sentence marker (`#') is omitted for expositionalpurposes.
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Figure CaptionsFigure 1: A recursive set of phrase structure rules which can be used to assign syntacticstructure to sentences involving right-branching relative clauses.Figure 2: The basic architecture of a simple recurrent network (SRN). The rectangles corre-spond to layers of units. Arrows with solid lines denote trainable weights, whereas the arrowwith the dashed line denotes the copy-back connections.Figure 3: The performance for complex recursive structures of nets of di�erent sizes as afunction of number of epochs trained on the counting recursion language (top panel), thecenter-embedding recursion language (middle panel), and the cross-dependency recursion lan-guage (bottom panel).Figure 4: The performance for right-branching structures of nets of di�erent sizes as a functionof number of epochs trained on the counting recursion language (top panel), the center-embedding recursion language (middle panel), and the cross-dependency recursion language(bottom panel).Figure 5: The performance averaged across epochs on complex recursive constructions (leftpanels) and right-branching constructions (right panels) of nets of di�erent sizes as well asthe bigram and trigram models trained on the counting recursion language (top panels), thecenter-embedding recursion language (middle panels), and the cross-dependency recursionlanguage (bottom panels). Error bars indicate the standard error of the mean.Figure 6: The performance averaged across epochs on doubly embedded complex recursiveconstructions of nets of di�erent sizes as well as the bigram and trigram models trained onthe counting recursion language (top left panel), the center-embedding recursion language(top right panel), and the cross-dependency recursion language (bottom panel). Error barsindicate the standard error of the mean.Figure 7: The mean grammatical prediction error on complex (C) and right-branching (RB)recursive constructions as a function of embedding depth (0-4). Results are shown for the SRNas well as the bigram and trigram models trained on the counting recursion language (top leftpanel), the center-embedding recursion language (top right panel), and the cross-dependencyrecursion language (bottom panel).Figure 8: Grammatical prediction error for each word in doubly embedded sentences forthe net trained on constructions of varying length (SRN), the net trained exclusively ondoubly embedded constructions (D2-SRN), and the bigram and trigram models. Resultsare shown for counting recursion (top panel), center-embedding recursion (middle panel), andcross-dependency recursion (bottom panel). Subscripts indicate subject noun/verb agreementpatterns.
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Figure 9: Human performance (from Bach et al., 1986) on singly and doubly center-embeddedGerman (past participle) sentences compared with singly and doubly embedded cross-dependencysentences in Dutch (left panel), and SRN performance on the same kinds of constructions (rightpanel). Error bars indicate the standard error of the mean.Figure 10: The mean output activation for the four lexical categories and the end of sentencemarker (EOS) given the context `NNNVV'. Error bars indicate the standard error of the mean.Figure 11: Human ratings (from Christiansen & MacDonald, 1998) for 2VP and 3VP center-embedded English sentences (left ordinate axis) compared with the mean grammatical pre-diction error produced by the SRN for the same kinds of constructions (right ordinate axis).Error bars indicate the standard error of the mean.Figure 12: Human comprehensibility ratings (left ordinate axis) from Bach et al. (1996: Ger-man past participle paraphrases) compared with the average grammatical prediction error forright-branching constructions produced by the SRN trained on the center-embedding language(right ordinate axis), both plotted as a function of recursion depth.Figure 13: Schematic illustration of hidden unit state space with each of the noun combinationsdenoting a cluster of hidden unit vectors recorded for a particular set of agreement patterns(with `N' corresponding to plural nouns and `n' to singular nouns). The straight dashed linesrepresent three linear separations of this hidden unit space according the number of (a) thelast seen noun, (b) the second noun, and (c) the �rst encountered noun (with incorrectlyclassi�ed clusters encircled).Figure 14: The architecture of a simple recurrent network using a stochastic selection process(SSP) to generate sentences. Arrows with solid lines between the rectangles (correspondingto layers of units) denote trainable weights, whereas the arrow with the dashed line denotesthe copy-back connections. The solid arrows to and from the SSP do not denote weights.
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