
REFERENCES 29[17] E. Morreale. Recursive operators for prime implicant and irredundant normal form determina-tion. IEEE Trans. Comput., C-19:504, 1970.[18] R. Pai, N. Karmarkar, and S.S.S.P. Rao. A global router based on Karmarkar's interior pointmethod. Technical report, CSE, Indian Institute of Technology, April 1988.[19] W.V. Quine. The problem of simplifying truth functions. Am. Math. Monthly, 59, 1952.[20] W.V. Quine. A way to simplify truth functions. Am. Math. Monthly, 62, 1955.[21] J.P. Roth. A calculus and an algorithm for the multiple-output 2-level minimization problem.Technical Report RC 2007, IBM Thomas J. Watson Research Center, 1968.[22] R. Rudell and A. Sangiovanni-Vincentelli. Exact minimization of multiple-valued functionsfor PLA optimization. In Proceedings of the IEEE Int. Conf. Computer-Aided Design, pages352{355, Nov 1986.[23] B. Selman, D. Mitchell, and H.J. Levesque. A new method for solving large Satis�abilityproblems. Technical report, AT&T Bell Laboratories, Murray Hill, NJ, 1991.[24] J.R. Slagle, C.L. Chang, and R.C.T. Lee. A new algorithm for generating prime implicants.IEEE Trans. Comput., C-19:304, 1970.[25] E. Triantaphyllou, A.L. Soyster, and S.R.T. Kumara. Generating logical expressions frompositive and negative examples via a branch-and-bound approach. Technical report, Industrialand Management Systems Engineering, Pennsylvania State University, University Park, PA,1991.[26] Y. Ye. On the interior algorithms for nonconvex quadratic programming. Technical report,Integrated Systems Inc., Santa Clara, CA, 1988. To appear in Mathematical Programming.

REFERENCES 28References[1] D. Angluin and C.H. Smith. Inductive inference: Theory and methods. Computing Surveys,15:237{265, 1983.[2] E. Boros, P.L. Hammer, and J.N. Hooker. Predicting cause-e�ect relationships from incompletediscrete observations. Technical report, RUTCOR, Rutgers University, Piscataway, NJ, 1991.[3] R.K. Brayton, G.D. Hachtel, C.T. McMullen, and A.L. Sangiovanni-Vincentelli. Logic mini-mization algorithms for VLSI minimization. Kluwer Academic, 1985.[4] D.W. Brown. A state-machine synthesizer-SMS. In Proceedings of the 18th Design AutomationConference, pages 301{304, June 1981.[5] Y. Crama, P.L. Hammer, and T. Ibaraki. Cause-e�ect relationships and partially de�nedBoolean functions. Annals of O.R., 16:299{325, 1988.[6] M. Davis and H. Putnam. A computing procedure for quanti�cation theory. Journal of theACM, 7:201{215, 1960.[7] J.F. Gimpel. A method of producing a boolean function having an arbitrarily prescribed primeimplicant table. IEEE Trans. Computers, 14:485{488, 1965.[8] S.J. Hong, R.G. Cain, and D.L. Ostapko. MINI: A heuristic approach for logic minimization.IBM J. Res. Develop., pages 443{458, Sept. 1974.[9] A.P. Kamath, N.K. Karmarkar, K.G. Ramakrishan, and M.G.C. Resende. Computationalexperience with an interior point algorithm on the Satis�ability problem. Annals of O.R.,25:43{58, 1990.[10] N. Karmarkar. An interior-point approach to NP-complete problems. Contemporary Mathe-matics, 114:297{308, 1990.[11] N. Karmarkar. Riemannian geometry underlying interior-pointmethods for linear programming.Contemporary Mathematics, 114:51{75, 1990.[12] N.K. Karmarkar, M.G.C. Resende, and K.G. Ramakrishan. An interior point algorithm to solvecomputationally di�cult set covering problems. Mathematical Programming, 52:597{618, 1991.[13] N.K. Karmarkar, M.G.C. Resende, and K.G. Ramakrishnan. An interior-point approach to themaximum independent set problem in dense random graphs. In Proceedings of the XV LatinAmerican Conference on Informatics, pages 241{260, July 1989.[14] E.J. McCluskey. Minimization of Boolean functions. Bell Syst. Tech. J., 35:1417{1444, 1956.[15] R.E. Miller. Switching theory, Vol.1: Combinatorial circuits. John Wiley and Sons, 1965.[16] J.J. Mor�e and D.C. Sorensen. Computing a trust region step. SIAM J. Sci. Stat. Comput.,4:553{572, 1983.

5. CONCLUDING REMARKS 275. Concluding remarksInductive inference is an essential ingredient in systems that exhibit truly intelligent behavior. Sinceintelligent answers to questions are often ranked by their simplicity, optimization plays an importantrole in e�ective inductive inference systems. In this paper, we applied a method of continuousfunction minimization to implement an inductive inference system.This approach is based on an integer programming formulation for Boolean function synthesis.The introduction of on-line cuts, described in Section 3, enabled our implementation to solve a largernumber of problems than our previous implementation, used in [9].The preliminary computational results presented in this study indicate the feasibility of thisapproach to inductive inference. In forthcoming papers, we will use similar methods to approachother inference problems. These include:Multiple output Boolean model. This model is similar to the single output Boolean model,except that the hidden function is of the form F : f0; 1gn! f0; 1gm, i.e. it has m outputs.Boolean model with correlated variables. This model has no input or output variables. Instead,one is given generic Boolean variables and examples of variable values, with the objective of inferringa relationship between the variables.Threshold gate model. Given a black box with a �xed network of threshold gates (in place ofBoolean gates) and a partial list of input-output examples, the problem is to infer the weights sothat the input-output sample is duplicated by the inferred network.Continuous inputs. All of the above models can be formulated with continuous inputs in place ofBoolean inputs.Finite state machine model. A �nite state machine is de�ned by an input alphabet �, a stateset S, a start state s0 2 S, a transition function ft and a set of accept states A � S. Let L � �� bethe language accepted by this �nite state machine, where �� is the set of all strings formed from theinput alphabet �. Given two sets of strings U; T , where U � L and T � �� � L, one wishes to posethe question: Does there exist a k-state deterministic �nite automaton whose behavior matches thepartially speci�ed �nite state machine?Probabilistic model. In this model one is given n events E1; E2; : : : ; En and a sample of states,each indicating for each event, if that event has occurred or not. One wishes to infer compactrelations between events, such as E1 , (E2 _E3) ^E4, that hold with high probability.Markov chain model. In this model, a hidden Makov chain outputs elements from an outputalphabet with each state transition. This output is observed and one wishes to infer the matrix ofone-step transition probabilities.Approximate model. In this model, noise is present in the observation of the input and output ofthe hidden logic in the black box. One wishes to infer this hidden logic so that with high probabilitythe inferred logic will reproduce the observed input-output patterns.

4. COMPUTATIONAL RESULTS 26
instanceid CPU time32A1 �32B1 159.68s32B2 �32B3 �32B4 �32C1 18.62s32C2 176.32s32C3 �32C4 �32D1 �32D2 �32D3 �32E1 54.57s32E2 144.40s32E3 �32E4 �32E5 �� Did not �nd satis�ableassignment in 43200s.Table 4.9: Davis-Putnam solution statistics: 32-input, 1-output variables

4. COMPUTATIONAL RESULTS 25instance predictionid iters CPU inferred logic accuracy32A1 44 176.73s y = x1�x12 + x2�x5x32 + x19�x23x26 exact32B1 1 5.02s y = �x12�x23x26 + x19�x23x26+ .83x14�x17�x21x3132B2 32 56.65s y = x2�x5�x20x32 + x19�x23x26+ .96x2x3�x14�x21x2232B3 51 189.80s y = x19�x23x26 + x2�x5�x20x32+ .97x2�x9�x10�x12�x14�x2132B4 61 259.43s y = x19�x23x26 + x2�x5�x20x32+ exactx1x2�x9�x12x3132C1 23 23.85s y = x2x19x32 + x2�x7�x8x13+ .80x2x7x15�x2932C2 1 9.38s y = x2�x20x32 + x2x18x19+ .88x2x5x7x14�x17�x2932C3 1 14.27s y = x2�x20x32 + x2�x18�x21�x23x32+ .92x2x15x18x19�x24�x30x3132C4 1 154.62s y = x2�x20x32 + x2�x9�x12x31+ exactx1x2x19�x23x2632D1 49 65.65s y = �x22x28�x29 + x12�x17�x25x27+ .74�x3x9x20 + x11x12�x16�x3232D2 78 178.10s y = x9x11�x22�x29 + x4x11�x22+ .91�x3x9x20 + x12�x15�x16�x2932D3 147 1227.40s y = x4x11�x22 + �x10x11�x29x32+ exact�x3x9x20 + x2x12�x15�x2932E1 5 8.33s y = x2x29�x31 + �x11�x26x29�x31 .8632E2 1 9.67s y = x2x29�x31 + x2x5x23�x31+ .97x9x10x2332E3 40 132.83s y = x2x29�x31 + x2�x4x6�x7�x30+ .98x9x10x2332E4 63 276.93s y = x2x29�x31 + x9x10x23+ .98x2�x4x6�x7�x13�x3032E5 71 390.22s y = x2x29�x31 + x9x10x23+ .98x2�x4�x7x12�x13�x30Table 4.8: Interior point solution statistics: 32-input, 1-output variables

4. COMPUTATIONAL RESULTS 24instanceid CPU time16A1 �16A2 �16B1 �16B2 �16C1 �16C2 �16D1 �16D2 �16E1 �16E2 20449.20s� Did not �nd satis�ableassignment in 43200s.Table 4.6: Davis-Putnam solution statistics: 16-input, 1-output variablesinstance i/o AND Satis�ability Problemhidden logic id samples gates vars clauses lit/clausey = x1�x12 + x2�x5x32 + x19�x23x26 32A1 250 3 459 9212 3.6y = x1x2�x9�x12x31 + x19�x23x26+ 32B1 50 3 228 1374 4.5x2�x5�x20x32 32B2 100 3 261 2558 4.732B3 250 3 348 5734 5.132B4 300 3 381 6918 5.1y = x2�x9�x12x31 + x2�x20x32+ 32C1 50 3 225 1280 4.8x1x2x19�x23x26 32C2 100 3 249 2182 5.332C3 150 3 279 3272 5.332C4 1000 3 759 20862 5.5y = x4x11�x22 + x2x12�x15�x29+ 32D1 50 4 332 2703 3.4�x3x9x20 + �x10x11�x29x32 32D2 100 4 404 5153 3.532D3 400 4 824 19478 3.6y = x9x10x23 + x2x29�x31+ 32E1 50 3 222 1186 5.0x2�x4x6�x7x19�x32 32E2 100 3 267 2746 4.532E3 200 3 330 5680 4.832E4 300 3 387 7106 5.032E5 400 3 450 9380 5.0Table 4.7: Problem statistics: 32-input, 1-output variables

4. COMPUTATIONAL RESULTS 23
instance predictionid iters CPU inferred logic accuracy16A1 264 2038.55s y = x1�x12 + x2x3�x5 + x9 + �x7 exact16A2 78 607.80s y = x1�x12 + x2x3�x5 + x9 + �x7 exact16B1 1 78.27s y = �x3�x11 + x1x2 + x3x12x15+ .99�x2�x10�x16 + �x2x3x6�x10x1116B2 39 236.07s y = x3x12x15 + �x3�x11+ exact�x2�x10�x16 + x1x216C1 105 757.55s y = �x1x4�x9 + x4�x7x11+ .87x6x8x10x13 + �x3x8+x3�x6�x8x12x1516C2 98 520.60s y = x4�x7x11 + x4x10x14+ exact�x9�x14x15 + �x3x816D1 215 1546.78s y = �x1�x12 + �x2�x12�x16+ exact�x5�x8�x10x16 + x3�x5x616D2 106 544.25s y = �x1�x12 + �x2�x12�x16+ exact�x5�x8�x10x16 + x3�x5x616E1 231 2156.42s y = x1�x4x8x9x11�x13 + x1�x2x3�x4+ .99�x13x14�x15x16 + x9�x10x11�x12+x5x6�x7x816E2 89 375.83s y = x1�x2x3�x4 + x5x6�x7x8+ exactx9�x10�x11�x12 + �x13x14�x15x16Table 4.5: Interior point solution statistics: 16-input, 1-output variables

4. COMPUTATIONAL RESULTS 22instanceid CPU time8A1 0.11s8A2 25.15s8A3 77.98s8A4 43.05s8B1 0.25s8B2 2.87s8B3 6.00s8B4 9.48s8C1 2.20s8C2 5.62s8D1 9.53s8D2 11.78s8E1 4.35s8E2 8.35sTable 4.3: Davis-Putnam solution statistics: 8-input, 1-output variablesinstance i/o AND Satis�ability Problemhidden logic id samples gates vars clauses lit/clausey = x1�x12 + x2x3�x5 + x9 + �x7 16A1 100 15 1650 19368 2.316A2 300 6 1602 23281 2.3y = x3x12x15 + �x3�x11+ 16B1 300 8 1728 24792 2.6�x2�x10�x16 + x1x2 16B2 400 4 1076 16121 2.6y = x4�x7x11 + x4x10x14+ 16C1 100 20 1580 16467 3.0�x9�x14x15 + �x3x8 16C2 400 4 924 13803 2.8y = �x5�x8�x10x16 + �x2�x12�x16+ 16D1 200 10 1230 15901 3.0�x1�x12 + x3�x5x6 16D2 400 4 836 12461 3.0y = x1�x2x3�x4 + x5x6�x7x8+ 16E1 200 15 1245 14766 4.2x9�x10�x11�x12 + �x13x14�x15x16 16E2 400 4 532 7825 4.2Table 4.4: Problem statistics: 16-input, 1-output variables

4. COMPUTATIONAL RESULTS 21instance i/o AND Satis�ability Problemhidden logic id samples gates vars clauses lit/clausey = x4�x7 + �x3x4 + x1x2�x6 8A1 10 3 66 186 2.48A2 25 6 180 800 2.68A3 50 6 264 1552 2.68A4 100 6 396 2798 2.7y = �x1�x4x6 + �x2x8 + x2 8B1 50 3 168 1054 2.28B2 100 6 576 4088 2.38B3 150 10 1360 10100 2.38B4 200 6 1068 8214 2.2y = x5 + x6�x8 + x7 8C1 50 10 510 3065 2.48C2 100 10 950 6689 2.3y = �x6 + �x2 + �x3�x7 8D1 50 10 530 3207 2.38D2 100 10 930 6547 2.3y = x8 + x2x5 + �x3x5 8E1 50 10 520 3136 2.48E2 100 10 870 6121 2.4Table 4.1: Problem statistics: 8-input, 1-output variablesinstance predictionid iters CPU inferred logic accuracy8A1 1 0.42s y = x4�x7 + �x3x4 + �x3�x6 .868A2 47 21.37s y = x4�x7 + �x3x4 + x1�x3 .878A3 40 29.77s y = x4�x7 + �x3x4 + x1x2 .928A4 1 9.33s y = x4�x7 + �x3x4 + x1x2�x6 exact8B1 1 2.05s y = x2 + x8 .978B2 59 97.07s y = x2 + x8 + �x1x3�x5x6 .978B3 37 167.07s y = x2 + x8 + x3�x5x6�x7 .968B4 33 122.62s y = x2 + x8 + �x1�x4x6 exact8C1 1 8.02s y = x5 + x7 .948C2 28 84.80s y = x5 + x7 + x6�x8 exact8D1 86 116.98s y = �x6 + �x2 + �x3�x7 exact8D2 13 45.72s y = �x6 + �x2 + �x3�x7 exact8E1 90 122.82s y = x8 + x2x5 + �x3x5 exact8E2 1 16.68s y = x8 + x2x5 + �x3x5 exactTable 4.2: Interior point solution statistics: 8-input, 1-output variables

4. COMPUTATIONAL RESULTS 20.98 accuracy. Note that for this instance the algorithm produced an algebraic expression thatrealizes the function described in the incomplete truth table. The expression produced had asfew terms as the hidden function. Increasing the number of input-output samples up to 1000did not improve the prediction accuracy. With truth tables having more than 1000 input-output examples, the algorithm converged to local minima. However, the number of violatedconstraints of the integer solution corresponding to the local minima is small (less than 100constraints out of over 20,000). Consequently, the resulting circuit, while not realizing thegiven truth table, may still be a good approximation to the hidden logic.� The number of input-output samples required to achieve a good prediction accuracy was small.All 8-input hidden logic that was correctly predicted required no more than 100 samples, except8B, that required 200. 90% prediction accuracy was obtained with as few as 50 samples. Forthe 16-input logic, 16B, 16C and 16E required 400 input samples for an exact prediction, while16A and 16D required 100 and 200, respectively. For the four 32-input logic instances for whichexact predictions were obtained (32A1, 32B4, 32C4, 32D3), the required number of sampleswas 250, 300, 1000 and 400, respectively. In several instances, as few as 50 and 100 samplessu�ced to obtain predictions with over 80% and 90% accuracy, respectively.� As shown in Section 2, for a �xed number of input-output examples, the number of variablesand clauses in the Satis�ability Problem grows linearly with Kn, where K is the number ofgates and n is the number of inputs to the black box. For this reason, we limited the numberof gates in the 32-input instances to 3 or 4, even though for the 8- and 16-input instances weallowed circuits with as many as 20 gates.� Even though in many instances the number of product terms allowed was much higher thanthe number present in the hidden logic, the algorithm produced functions with duplicate andcovered terms, resulting in expressions with few terms. For example, for problem 16A1 weused K = 15, but the algorithm synthesized an expression with only 4 terms. As mentioned inthe previous bullet item, because of memory limitations, we could not search for expressionswith a large number of product terms in the 32-input instances.� Tables 4.3, 4.6 and 4.9 illustrate the di�culty encountered by the Davis-Putnam algorithmto �nd satis�able assignments for the Satis�ability problems formulated in the computationalexperiment. We limited the running time for each instance to 12 cpu hours (43200 s). Inthat running time the Davis-Putnam code succeeded in �nding satis�able assignments onlyfor the smaller Satis�ability problems. It found assignments for all the 8-input instances, thesmallest (in the number of variables) of the 16-input instances and 5 of the 6 smallest 32-inputinstances. It should be noted that since the 16-input instances had larger values of K (ANDgates) than the 32-input instances, the Satis�ability problems corresponding to the 16-inputinstances are larger than those of the 32-input instances.� Since the bulk of the computational e�ort in this code corresponds to solving a system of linearequations with the conjugate gradient method, a parallel implementation of such procedure isexpected to speed up the solution process signi�cantly.

4. COMPUTATIONAL RESULTS 194. Computational resultsIn this Section, we report on the computational testing of the integer programming algorithm de-scribed in [12] and [9] with the modi�cation of Section 3 on randomly generated instances of a classof inductive inference problems. As in [9], we use rounding scheme B, a greedy scheme based on theordering of the fractional values of the variables of the current interior solution, and o�er no specialtreatment for local minima. To o�er some insight as to how the interior point algorithm compareswith a standard Satis�ability algorithm we run an implementation of the Davis-Putnam algorithm[6] on the test problems. We use the C language implementation by Selman, Mitchell and Levesque[23].The experiment was conducted on a vax 6700 running 10th Edition unix R
. The code is writtenin fortran and C and was compiled on the f77 and cc compilers with the optimization
ag -O set.Running times are measured with the system function times().We consider the problem of inferring the logic in an n-input, 1-output \black box", with n =8; 16; and 32. For each value of n we consider �ve black boxes. For each black box, we record theoutput corresponding to randomly generated input samples and build an incomplete truth table,for which we attempt to synthesis a Boolean expression having a given number of product terms.Tables 4.1, 4.4 and 4.7 show problem statistics. For each black box, these tables display the hiddenlogic, identify the problem instance with a name (8A1, 8A2, ..., 16A1, 16A2, ...,32A1, 32A2, ...),and display the number of random i/o samples generated, the speci�ed number of product terms inthe synthesized expression (AND gates), and statistics for the corresponding Satis�ability Problem(number of variables, clauses and literals per clause). Tables 4.2, 4.5 and 4.8 show statistics for thesolution obtained with the integer programming algorithm, the inferred logic and the accuracy ofthe inferred logic. This accuracy (prediction accuracy) is measured by randomly generating 10,000input samples and comparing outputs for the black box and the inferred logic.Tables 4.3, 4.6 and 4.9 show statistics for the Davis-Putnam algorithm.We make the following observations regarding the computational testing.� Satis�ability problems having from 66 variables and 186 clauses, up to 1,728 variables and24,792 clauses were solved. Of the 41 problems, 15 were solved in less than one cpu minute.Only 6 of the 41 problems required more than 10 cpu minutes.� On all instances tested, the integer programming code synthesized algebraic expressions thatproduced the correct output, given as input the minterms in the incompletely speci�ed truthtable.� Input-output sample sizes varied from 10 to 1000. Increasing sample size increases the Satis�-ability Problem size, but generally increases prediction accuracy and frequently reduces CPUtime. For example, problem 8A3 took 29.77s and 40 iterations with a sample size of 50, while8A4 (with same hidden logic as 8A3) required only 9.33s and a single iteration with a samplesize of 100.� For all instance classes but one (32E), the algorithm correctly predicted the hidden logic. Forthe instance where an exact prediction was not obtained, the algorithm inferred logic with

3. DYNAMIC CHANGE OF METRIC 18This system of linear equations has the same structure as the linear system solved in [12] and thereforethe same computational machinery used there can be used to solve this system. In Section 4, wereport computational results of an interior point code that uses a diagonal preconditioned conjugategradient algorithm used in [9] to solve this system.We conclude this section by describing the dynamic augmentation of the system of linear in-equalities. Our objective is to modify the metric of the descent direction search so as to changethe region where the search for the descent direction of the potential function is carried out. Thepotential function is not modi�ed, as is the case in the restart procedure of [12], and hence, H andh> are left unchanged. Let wk 2 S denote the current iterate, an interior non-integral solution.De�ne, for j = 1; : : : ; n, ~aj = (+1 if wkj > 0�1 otherwise:Periodically, we add the constraint ~a>w � ~c = n� 2 (3.7)to the system of linear inequalities used to de�ne the ellipsoid in (3.3). Assuming ~a 62 I (otherwisethe algorithm terminates with w = ~a as the solution), it is shown in [12] that constraint (3.7)excludes the infeasible solution ~a, but no other integer feasible solution. In the computationalresults reported in Section 4 we add a constraint of this type every 10 iterations of the interior pointalgorithm. Another strategy is to add a constraint every time the interior solution changes orthant,i.e. every time there is a change in the sign of a component of the interior solution.

3. DYNAMIC CHANGE OF METRIC 17where DA = diag(c1� a>1 wk; : : : ; cm � a>mwk). Hence, the problem to be solved at each iteration is:minimize 12(�w)>H�w+ h>�w (3.2)subject to: (�w)>AD�2A A>�w � r2 < 1: (3.3)where H and h> are the Hessian and gradient of '(w), respectively. Ye [26] has shown that (3.2-3.3)can be solved in polynomial time. Our algorithm, which is similar to Ye's, solves (3.2-3.3) by solvinga series of systems of linear equations of the form(H + �AD�2A A>)�w = �h;where � > 0 is a real scalar. This system arises from the �rst-order Karush-Kuhn-Tucker optimalitycondition for (3.2-3.3).To �nd a descent direction �w for the potential function, the algorithm in this paper solvesminimize 12(�w)>H�w+ h>�w (3.4)subject to: (�w)>AD�2A A>�w � r2 < 1; (3.5)where DA = " DA 00 D ~A # ;and D ~A = diag(~c1 � ~a>1 wk; : : : ; ~cm0 � ~a>m0wk) are slacks with respect to the m0 added constraints.The system of equations that is to be solved has the form(H + �AD�2A A>)�w = �h: (3.6)Let f0 = n�wk>wk. Substituting H and AD�2A A> in (3.6) we get�w = � �� 2f0 I � 4f20 wkwk> + 1mAD�2A A> + �AD�2A A> + � ~AD�2~A ~A>��1 h= � �� 2f0 I � 4f20 wkwk> + (1m + �)AD�2A A> + � ~AD�2~A ~A>��1 hAs in [12], let
 = 1=(�+ 1m)), then�w = � �� 2f0 I � 4f20 wkwk> + 1
AD�2A A> + 1
 (1�
m) ~AD�2~A ~A>��1 h= � ��2
f0 I � 4
f20 wkwk> +AD�2A A> + (1�
m) ~AD�2~A ~A>��1
h= � ��2
f0 I � 4
f20 wkwk> +AD0�2A A>��1
h;where D0�2A = " D�2A 00 (1 �
m)D�2~A # :

3. DYNAMIC CHANGE OF METRIC 163. Dynamic change of metricIn this Section we consider the integer program where one wants to �nd w 2 f�1; 1gn such thatA>w � c; (3.1)where A> is an m � n real matrix and c a real m vector. We assume that (3.1) includes 2n boxconstraints of the type �1 � wj � 1; j = 1; : : : ; n:Let I = fw 2 f�1; 1gn j A>w � cgL = fw 2 <n j A>w � cgS = fw 2 <n j A>w < cgdenote the sets of solutions of the integer program, solutions of the linear programming relaxation ofthe integer program, and interior point solutions of the linear programming relaxation, respectively.In [12], Karmarkar, Resende and Ramakrishnan introduce an interior point algorithm for integerprogramming, based on �nding a local minimum of the potential function'(w) = log� n �w>wQmk=1(ck � a>kw)1=m�by an iterative method. Given an interior solution w 2 S, the denominator of the log term of '(w)is the geometric mean of the slacks and is maximized at what is known as the center of the polytopede�ned by L. Since �e � w � e, where e = (1; : : : ; 1)>, the numerator is minimized at a �1 vertexof L. In [12] it is shown that if I 6= ;, w� is a global minimum of this potential function if and onlyif w� 2 I.Let wk 2 S denote the current iterate. The next iterate wk+1 is obtained by moving in a descentdirection �w from wk, i.e. a direction such that '(wk+1) = '(wk + ��w) < '(wk), where � isan appropriate step length. Each iteration of our method is similar to the trust region approachdescribed in Mor�e and Sorensen [16], except that the construction of the search region is based onmaking good global approximations to the polytope, instead of being based on local considerationsas in a trust region method. A descent direction �w of the potential function is found by searchingover a region that is an approximation, like (1.5), to the Riemannian ball. The Riemannian metricis based on an augmented system of inequalitiesA>w � c;where A = �A ... ~A�, A is the matrix corresponding to the original system of linear inequalities and ~Acorresponds to the augmented part of A. The procedure for dynamic augmentation will be describedlater. For a given matrix A, the ellipsoidal approximation (as in (1.5)) to the Riemannian ball isgiven by (�w)>AD�2A A>�w � r2;

2. SATISFIABILITY PROBLEM FORMULATION 152.2. Integer programming formulationThe Satis�ability Problem can be formulated as an integer programming feasibility problem. LetC1; : : : ; Cm denote the m clauses of a Satis�ability Problem with n variables z1; : : : ; zn. DenoteIC = fi j zi is in clause CgJC = fi j zi is in clause Cg :Associate with each Boolean literal zi, the integer variable wi, such thatwi = (1 if zi = 10 if zi = 0;and with each Boolean literal zi the integer variable wi = 1 � wi. To satisfy each clause C, it isnecessary that at least one literal with index in IC or in JC be set to 1, i.e.Xj2ICwj + Xj2JC wj � 1; C = C1; : : : ; Cm:Substituting for wi, we get Xj2IC wj � Xj2JC wj � 1� jJCj; C = C1; : : : ; Cm:Applying the above transformation to the Satis�ability Problem formulated in Section 2, we getthe following integer programming feasibility problem: Find (0; 1) values for sji, s0ji and zaj , fori = 1; : : : ; n, j = 1; : : : ;K, a = 1; : : : ; A, such that:sji + s0ji � 1; i = 1; : : : ; n; j = 1; : : : ;KXi2Pr s0ji + Xi2P r sji � n� 1; r = 1; : : : ; R; j = 1; : : : ;KKXj=1 zaj � 1; a = 1; : : : ; Azaj � �aji; i = 1; : : : ; n; j = 1; : : : ;K; a = 1; : : : ; A:

2. SATISFIABILITY PROBLEM FORMULATION 14s11 _ :z31s021 _ :z12s021 _ :z22s21 _ :z32s12 _ :z11s12 _ :z21s012 _ :z31s22 _ :z12s22 _ :z22s022 _ :z32s013 _ :z11s13 _ :z21s013 _ :z31s023 _ :z12s23 _ :z22s023 _ :z32The algebraic expression y = x1x2 + x1x2 that realizes the function in Table 2.1 corresponds to asolution to the above Satis�ability Problem with s11 = s021 = s012 = s22 = 0, s011 = s21 = s012 = s13 =s013 = s12 = s022 = s23 = s023 = 1, z11 = z21 = z32 = 1, and z31 = z12 = z22 = 0.

2. SATISFIABILITY PROBLEM FORMULATION 132.1. An exampleWe now formulate the Satis�ability Problem for the example of Table 2.1. We seek a 2 product-x1 x2 x3 y1 0 1 10 0 1 01 0 0 11 1 1 00 1 1 1Table 2.1: An exampleterm expression to realize this function. In this example, n = 3, K = 2, R = 2, A = 3, P1 = f3g,P1 = f1; 2g, P2 = f1; 2; 3g, and P2 = ;. The on-set = f101; 100; 011g and consequently �1j1 = s0j1,�1j2 = sj2, �1j3 = s0j3, �2j1 = s0j1, �2j2 = sj2, �2j3 = sj3, �3j1 = sj1, �3j2 = s0j2, �3j3 = s0j3.The Satis�ability Problem has 18 variables, 31 clauses and 66 literals. Clauses of type (2.7) are:s11 _ s011s21 _ s021s12 _ s012s22 _ s022s13 _ s013s23 _ s023Clauses of type (2.8) are: :s013 _ :s11 _ :s12:s023 _ :s21 _ :s22:s011 _ :s012 _ :s013:s021 _ :s022 _ :s023Clauses of type (2.9) are: z11 _ z12z21 _ z22z31 _ z32Finally, clauses of type (2.10) are: s011 _ :z11s011 _ :z21

2. SATISFIABILITY PROBLEM FORMULATION 12
...�.............�.............�.............�.............�.............�.............�.............�.............�.............�.............�.............�.............�.............�.............�.............� ..

..

.. .. y�...
... ... _0^1
^K��� ��������� ���

��� ���s0KnxnsKnxns0K1x1sK1x1s01nxns1n
xns011x1s11x1

Figure 2.1: 3-layer Boolean circuit

2. SATISFIABILITY PROBLEM FORMULATION 11Summarizing, in the Satis�ability Problem we wish to �nd Boolean values for sji, s0ji and zaj ,such that the following clauses all evaluate to 1.sji _ s0ji ; i = 1; : : : ; n; j = 1; : : : ;K (2.7)(_i2Pr :s0ji) _ (_i2P r :sji); j = 1; : : : ;K; r = 1; : : : ; R (2.8)K_j=1 zaj ; a = 1; : : : ; A (2.9)�aji _ :zaj ; i = 1; : : : ; n; j = 1; : : : ;K; a = 1; : : : ; A: (2.10)This Satis�ability Problem has (2n + A)K variables, K(n(A + 1) + R) + A clauses, and K(2n(1 +A) + nR+ A) literals.Proposition: Satis�ability Problem (2.7-2.10) is satis�able if K = A.Proof: The canonical expansion has A disjunctive terms and realizes the i/o speci�cation. 2

2. SATISFIABILITY PROBLEM FORMULATION 10Consequently, sji and s0ji also determine the number of disjunctive terms. This unnatural choice ofvalues for s and s0 allows the use of or gates in the input layer. Note that if xi is present in thej-th product term, the output of input gate _1ji is xi, while if it is not in the term, the output is 1and xi has no e�ect on the output of the middle layer and gate ^j. A similar behavior is observedfor s0 and x.Since xi and xi cannot simultaneously be part of the j-th disjunctive term, we have thatsji _ s0ji; i = 1; : : : ; n; j = 1; : : : ;K (2.2)must be satis�ed. Note that if both xi and xi are in the j-th disjunctive term, then sji = 0 ands0ji = 0 and consequently sji _ s0ji = 0.We group the remaining clauses into two classes, corresponding to: (1) off-set minterms; (2)on-set minterms. We �rst consider the case of off-set minterms. For every off-set mintermr = 1; : : : ; R, let Pr be the set of indices of x for which xi = 1 in the minterm, and P r be theset of indices of x for which xi = 0. Since y = 0, then the output of every and gate must be 0.Consequently, for every and gate ^j; j = 1; : : : ;K, at least one input must be 0, i.e.(_i2Pr :s0ji) _ (_i2P r :sji); j = 1; : : : ;K; r = 1; : : : ; R (2.3)must be satis�ed.We next consider the case corresponding to on-set minterms. In this case, at least one output ofevery and gate has value 1. Let the output of and gate ^j for minterm a be the Boolean variablezaj . Consider now the input layer or gate pair _1ji and _0ji for minterm a. If xi = 1 in minterma, then the output of _1ji will be 1 and the value of sji will be irrelevant. The output of _0ji iss0ji. Similarly, if xi = 0 in minterm a, then the output of _0ji will be 1 and the value of s0ji will beirrelevant. The output of _1ji is sji.Consequently, since the outputs of the or pair are combined by the and operator, the resultingvalue is sji if xi = 0 in minterm a or s0ji if xi = 1. To model this, de�ne�aji = (s0ji if xi = 1 in on-set minterm asji if xi = 0 in on-set minterm a:Variables zaj and �aji; j = 1; : : : ;K, a = 1; : : : ; A, must satisfyzaj = n̂i=1�aji: (2.4)To guarantee that zaj = 1, for at least one gate ^j, we require thatK_j=1 zaj ; a = 1; : : : ; A (2.5)be satis�ed. Furthermore, to satisfy (2.4) we must disallow zaj = 1 when, for any i = 1; : : : ; n,�aji = 0. This can be accomplished with the following clauses,�aji _ :zaj ; i = 1; : : : ; n; j = 1; : : : ;K; a = 1; : : : ; A: (2.6)

2. SATISFIABILITY PROBLEM FORMULATION 92. Satis�ability Problem formulationIn this Section, we formulate the Boolean Function Synthesis Problem as a Satis�ability Problem. Wethen use a standard transformation, described in [9], to derive the integer programming formulationfor the problem.Before stating the Satis�ability Problem we need some de�nitions. Let z be a Boolean variable.Boolean variables can be combined by the logical connectives or (_), and (^) and not (z) to formBoolean formulae. A variable or a single negation of the variable is called as literal. A Booleanformula consisting of only literals combined by the _ operator is called a clause. The Satis�abilityProblem (SAT) can now be stated.SAT: Given m clauses C1; : : : ; Cm involving n variables z1; : : : ; zn, does the formulaC1 ^ C2 ^ � � � ^ Cm (2.1)evaluate to 1 for some input vector? If so, we say that the formula is satis�able. Otherwise, it issaid to be unsatis�able. To prove satis�ability, it su�ces to produce an input vector that evaluatesexpression (2.1) to 1.Let us consider the three layer Boolean circuit representation of a Boolean expression and usethat representation to aid our modeling. Figure 2.1 illustrates this Boolean circuit. We assume thatas input we are given the on-set and off-set of the Boolean function F that we wish to synthesize.The function has n input variables x1; : : : ; xn and a single output variable y and we require a sum-of-products expression with K product terms. Let R = joff-setj be the number of minterms in theoff-set and A = jon-setj be the number of minterms in the on-set. The three layered circuit hasin the output layer an or gate with a single output y. This or gate takes its input from K andgates in the middle layer. Each and gate in the middle layer takes as its input the output of the npairs of or gates from the input layer. Each of these n pairs of gates in the input layer correspondsto an input variable. One gate has input in unnegated form (xi), while the other in negated (xi).Finally, each input layer or gate has two inputs. The one that corresponds to the unnegated inputvariable has that variable and a decision variable s as inputs. The other has as input the negatedvariable and another decision variable s0. We wish to construct a three layer logical circuit with Kand gates that realizes the given speci�cation.We identify and gates as ^1; : : : ;^K. The output of all and gates is input into the output layeror gate _0. The or gates from the input layer are _kji, for j = 1; : : : ;K, i = 1; : : : ; n and k = 0; 1.Gate _0ji has as input xi and the decision variable s0ji with its output serving as input to gate ^j.Similarly, gate _1ji has as input xi and the decision variable sji and its output is input to gate ^j.Decision variables sji and s0ji determine which literal (xi or xi, if any) is part of the j-th dis-junctive term, sji = (0 if xi is in the j-th disjunctive term1 if xi is not in the j-th disjunctive terms0ji = (0 if xi is in the j-th disjunctive term1 if xi is not in the j-th disjunctive term.

1. INTRODUCTION 8
...
...
... ..

..
...

...
� � �� � �� � � ���

� ...
.. ... yx1x2x3 ^̂

^ _
Figure 1.1: Circuit representation of Boolean expression y = x1x2x3 + x1x2x3 + x1x2x3.

...

... ...� �� � �� yx1x2 ^̂ _
Figure 1.2: Circuit representation of Boolean expression y = x1x2 + x1x2.

1. INTRODUCTION 7which is in fact an ellipsoid. A more accurate approximation is possible using higher order terms. Inthis paper, we report computational results obtained by using the approximation of the Riemannianball with the Euclidean ellipsoid.An outline of the remainder of this paper is given next. In Section 2 we formulate the problem ofsynthesis of Boolean functions as a Satis�ability Problem. In Section 3 we describe how the interior-point algorithm augments the system of inequalities dynamically. This dynamic change of metrichas not been used in previous investigations of our algorithm. In Section 4 we present computationalresults. Concluding remarks are made in Section 5.

1. INTRODUCTION 6a trust region method, similar to the one described in Mor�e and Sorensen [16], is applied to thenonconvex optimization problemminimize log(n� w>w)� 1m mXk=1 log(ck � a>k w):At each iteration, a quadratic approximation of the potential function'(w) = log(n� w>w)� 1m mXk=1 log(ck � a>k w)is optimized over an ellipsoid inscribed in the polytope de�ned by�w 2 <njA>w � c	 ;and centered at the current iterate, to produce a descent direction. The new iterate is determinedby moving in that direction by a �xed step length, such that the new point is in the interior of theellipsoid. A rounding heuristic is applied to the fractional solution and feasibility of the roundedsolution is tested. A description of the rounding heuristic and initial interior point solution used inthis study can be found in [9].Traditionally, optimization techniques implicitly use a Euclidean metric de�ned on the underly-ing domain. For example, the steepest descent direction for a function implicitly assumes a Euclideanmetric for measuring the steepness. However, there exists a curved Riemannian space that is nat-urally associated with interior point methods. In [11], a Riemannian metric was introduced forproblems formulated with equality and nonnegativity constraints. In this paper, we use a similarmetric for problems stated in all-inequality form. This Riemannian metric is used for de�ning thesearch region. For a polytope de�ned by�w 2 <n j A>w � c	the associated Riemannian metric is given by gij(w)dwidwj, wheregij(w) =Xk aikajkd2kand dk = ck � a>k wkis the k-th slack variable. In this metric, an in�nitesimal ball centered at a strictly interior point wis given by Xi;j gij(w) dwi dwj � �2:An exact search over a ball in this Riemannian metric would have taken into account the variationof the metric gij(w) within the ball. For a ball of �nite radius r, working in this metric is compu-tationally di�cult. Therefore, we approximate gij(w) by a constant gij(w0), where w0 is the centerof the ball, and use it throughout the region. The resulting ball is given byXi;j gij(w0)(w �w0)i(w �w0)j � r2; (1.5)

1. INTRODUCTION 5speci�cation a Boolean algebraic expression is synthesized. Besides the application of this study, theBoolean Function Synthesis Problem has applications in Programmable Logic Arrays (PLA's), animportant type of digital integrated circuit design. A Boolean function in sum-of-products form canbe implemented on a two level and/or circuit. Figures 1.1 and 1.2 show the circuits for the Booleanexpressions given in (1.1) and (1.3), respectively. The application of the techniques presented in thispaper to circuit design is the subject of future study.The classical approach to tackle the Boolean Function Minimization Problem (where one wishesto minimize the number of disjuncts in the sum-of-products form) was developed by Quine [19] [20]and McCluskey [14]. To describe the idea behind this approach, a few de�nitions are �rst needed. Ifa product term evaluates to 1 for a given minterm, it is said to contain that minterm. An implicantof a function F is a product term that does not contain any minterm of the off-set of F . A productterm P is said to contain the product term Q if P evaluates to 1 for every minterm that Q evaluatesto 1. A prime implicant of F is an implicant that is not contained in any other implicant of F .The Quine{McCluskey method �rst generates all prime implicants (often an exponential number ofthem [15]) and then selects a minimumsubset of prime implicants that realizes the speci�cation. Thegeneration of the set of prime implicants can be carried out with standard techniques, e.g. [21], [17],[24]. This minimum subset can be found by solving a set covering problem [7]. Exact approaches arelimited to instances having few variables. For example, the state-of-the-art code espresso-exact[22] took 18,365.0 vax 6700 seconds to produce an optimal 3 product-term expression for the 20variable, 30 minterm problem of Table 1.2. Because exact versions of the Quine-McCLuskey methodfail to handle large instances, many heuristic approaches have been developed. These generallygenerate an initial solution and improve it iteratively. They include mini [8], presto [4], andespresso-mv [3]. espresso-mv is widely used in the circuit design industry.In this paper we consider an interior point mathematical programming approach to the BooleanFunction Synthesis Problem and use this procedure for inductive inference. The synthesis problemis formulated as a type of Satis�ability Problem that can be described as an integer programmingproblem, using a standard transformation. We apply the interior point algorithm for integer pro-gramming described in [10] and [12] to synthesize Boolean functions. In particular, we use animplementation derived from the one described in [9], that is suited for �nding a satis�able truthassignment in instances of the Satis�ability Problem. The interior point algorithm is used to attemptto �nd a feasible �1 integer solution w to the following integer program:B>w � bwj = �1; j = 1; : : : ; n; (1.4)where B> 2 <m�n, b 2 <m, and w 2 <n. In [9] it is shown how the Satis�ability Problem can beformulated as an integer programming problem of this form. Let A = �B ... I ... � I�, where I is ann� n identity matrix and let c> = (b>; 1; : : : ; 1).Starting with an interior point solutionw0 2 �w 2 <njA>w < c	 ;

1. INTRODUCTION 4x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 y1 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 01 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1 01 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0 00 1 0 1 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 01 1 1 0 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 01 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 00 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 00 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0 01 1 1 1 1 0 1 1 1 0 1 0 0 1 0 0 1 0 0 0 00 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 01 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 0 0 0 01 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 1 0 01 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 00 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 00 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 00 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 01 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 11 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 1 1 1 1 11 1 1 1 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 11 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 11 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 0 1 10 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 11 1 0 1 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 10 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 10 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 11 0 1 1 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 10 1 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 1 0 0 10 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 11 1 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 0 1 0 11 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 1 1Table 1.2: Speci�cation for a 20 variable function with jon-setj = 14 and joff-setj = 16.expression having only 2 disjuncts, sincey = x1x2x3 + x1x2x3 + x1x2x3= x1x2(x3 + x3) + x1x2x3= x1x2 + x1x2x3: (1.2)A closer examination of Table 1.1 shows that the output is independent of input variable x3 and thefunction can be further simpli�ed to y = x1x2 + x1x2: (1.3)The synthesis of the function in Table 1.1 can be accomplished by inspection. For slightly largerinstances, synthesis may not be so trivial. Consider the speci�cation in Table 1.2. An integerprogramming formulation with 216 variables, 1710 constraints with 4168 nonzero elements in theconstraint matrix can be formulated to produce the following 4 term Boolean function for thisincomplete speci�cation, y = x2x12x19 + x5x9x19 + x14x16x20 + x8x15x18:Note that no more than 3 variables are present in each term, making this circuit easy to implement.Also observe that 9 of the 20 input variables (x1; x3; x4; x6; x7; x10; x11; x13; x17) are irrelevant. Wewill describe in this paper such a formulation and show how it can be solved. For this instance, thecode used in this study took 22.67 cpu seconds on a vax 6700.Our approach in this study is to randomly generate a limited number of inputs and applythem to the hidden logic, thus building an incomplete speci�cation of a Boolean function. For this

1. INTRODUCTION 3minimization problem, but many lead to an excessive, often exponential, number of spurious localminima, i.e. those that are not global minima and hence do not correspond to the solution of theoriginal problem. In [10], Karmarkar describes a class of potential functions with good topologicalproperties, such as having connected level sets, which has led to successful interior point methodsfor several problems, e.g. [12], [9], [13], [18]. Guided by these results, we investigate the applicationof a similar approach for inductive inference. For related work, see e.g. [2], [5] and [25].Before we continue, we require some de�nitions. Consider the Boolean function F : f0; 1gn !f0; 1g. An element of the domain of F is called a minterm of F . The set of minterms for whichF evaluates to 1 (0) is called the on-set (off-set). An incompletely speci�ed Boolean function isone for which jon-setj + joff-setj < 2n. Table 1.1 incompletely speci�es a Boolean function with3 input variables x1; x2; x3 and an output y. In that speci�cation, on-set = f101; 100; 011g andoff-set = f001; 111g. x1 x2 x3 y1 0 1 10 0 1 01 0 0 11 1 1 00 1 1 1Table 1.1: An exampleAn algebraic expression for an incompletely speci�ed Boolean function F is a Boolean expression(written with Boolean sums (or) and products (and)) that evaluates to 1 (0) for all minterms inthe on-set (off-set) and evaluates to either 1 or 0 for all other minterms. An algebraic expressionfor F can always be written in sum-of-products (disjunctive normal) form. Each product term inthe algebraic sum-of-products expression is called a disjunct. Let P 0i and P 1i , respectively, denotethe index set of 0 and 1 values of the i-th element of the on-set of F . The canonical expansion,y = Xi2on-set8<: Yj2P1i xj � Yj2P0i xj9=;is a sum-of-products algebraic expression for F . The major drawback of the canonical expansion isthat it has jon-setj disjuncts, each having n variables. The canonical expansion for the function ofTable 1.1 is y = x1x2x3 + x1x2x3 + x1x2x3: (1.1)It requires 3 disjuncts.Given an on-set and off-set of minterms, the Boolean Function Synthesis Problem is to �nd analgebraic sum-of-products expression for F having a speci�ed number of disjuncts. The correspond-ing decision problem is np-complete [3] [7]. The function of Table 1.1 can be expressed by a Boolean

1. INTRODUCTION 21. IntroductionIn this paper, we explore the application of a function minimization method, based on continuousmathematics to the problem of inductive inference, which in its many forms appears to be aninherently discrete problem. Inductive inference is the process of hypothesizing a general rule fromexamples. This problem is of central importance in arti�cial intelligence and machine learning. Asurvey on inductive inference systems is given in [1]. Inductive inference involves the following steps:� Inferring rules from examples, �nding compact abstract models of data or hidden patterns inthe data.� Making predictions based on abstractions.� By comparing predictions with actual results, one can modify the abstraction. This is theprocess of learning.� Designing questions to generate new examples.In this study, we �rst focus on an aspect of this problem, concerned with inferring rules fromexamples or discovering patterns in data. For example, given the sequence 2; 4; 6; 8; : : :, we may ask\What comes next?" One could pick any number and justify it by �tting a fourth degree polynomialthrough the 5 points. However, the answer \10" is considered the most \intelligent". That isso because it is based on the �rst-order polynomial 2n, which is linear and hence simpler than afourth degree polynomial. The answer to an inductive inference problem is not unique. In inductiveinference, one wants a simple explanation that �ts a given set of observations. Simpler answers areconsidered better answers.A recent body of literature has associated inductive inference with the notion of identi�cation inthe limit over the strings of a �nite alphabet. In this paper we use the classic notion of inductiveinference, as in scienti�c discovery, where rules are inferred from incomplete observations of thedata. We enphasize that the observations are from incomplete data sets, di�ering from the notionof deductive inference where a complete set in observed.One therefore needs a way to measure simplicity. For example, in �nite automaton inference, thenumber of states could be a measure of simplicity. In Boolean circuit inference, the measure couldbe the number of gates and wires. Inductive inference is in fact an optimization problem, where onewants to maximize simplicity, or �nd a model no more complex than some speci�ed measure.There are many ways to formalize this optimization problem. In this paper, we study the mostbasic Boolean model with single output. In this model there is a black box with n Boolean inputvariables x1; : : : ; xn and a single Boolean output variable y. The black box contains a hidden Booleanfunction F : f0; 1gn ! f0; 1g that maps inputs to outputs. Given a limited number of inputs andcorresponding outputs, the question to be answered is: Does there exist a logical circuit with nomore than K gates which matches this behavior? If so, what is it?Because the problem formulation belongs to the domain of discrete mathematics or logic doesnot necessarily imply that the algorithm for attacking the problem must be restricted to conceptsfrom the same �elds. There are many ways of formulating a discrete problem as a continuous

A Continuous Approach to Inductive Inference�Anil P. KamathNarendra K. KarmarkarK.G. RamakrishnanMauricio G.C. ResendeMathematical Sciences Research CenterAT&T Bell Laboratories, Murray Hill, NJ 07974 USAMarch 1991(Revised Version 1.03 - January 1992)AbstractIn this paper we describe an interior point mathematical programming approach to inductiveinference. We list several versions of this problem and study in detail the formulation basedon hidden Boolean logic. We consider the problem of identifying a hidden Boolean functionF : f0; 1gn ! f0; 1g using outputs obtained by applying a limited number of random inputsto the hidden function. Given this input-output sample, we give a method to synthesize aBoolean function that describes the sample. We pose the Boolean Function Synthesis Problemas a particular type of Satis�ability Problem. The Satis�ability Problem is translated intoan integer programming feasibility problem, that is solved with an interior point algorithmfor integer programming. A similar integer programming implementation has been used in aprevious study to solve randomly generated instances of the Satis�ability Problem. In this paperwe introduce a new variant of this algorithm, where the Riemannian metric used for de�ningthe search region is dynamically modi�ed. Computational results on 8-, 16- and 32-input,1-output functions are presented. Our implementation successfully identi�ed the majority ofhidden functions in the experiment.Key words: Inductive Inference, Boolean Function Synthesis, Satis�ability, Arti�cial Intelli-gence, Integer Programming, Interior Point Method, Riemannian Geometry.�To appear in Mathematical Programming.

