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5. Concluding remarks

Inductive inference is an essential ingredient in systems that exhibit truly intelligent behavior. Since
intelligent answers to questions are often ranked by their simplicity, optimization plays an important
role in effective inductive inference systems. In this paper, we applied a method of continuous
function minimization to implement an inductive inference system.

This approach is based on an integer programming formulation for Boolean function synthesis.
The introduction of on-line cuts, described in Section 3, enabled our implementation to solve a larger
number of problems than our previous implementation, used in [9].

The preliminary computational results presented in this study indicate the feasibility of this
approach to inductive inference. In forthcoming papers, we will use similar methods to approach
other inference problems. These include:

Multiple output Boolean model. This model is similar to the single output Boolean model,
except that the hidden function is of the form F : {0,1}" — {0,1}™, i.e. it has m outputs.
Boolean model with correlated variables. This model has no input or output variables. Instead,
one is given generic Boolean variables and examples of variable values, with the objective of inferring
a relationship between the variables.

Threshold gate model. Given a black box with a fixed network of threshold gates (in place of
Boolean gates) and a partial list of input-output examples, the problem is to infer the weights so
that the input-output sample is duplicated by the inferred network.

Continuous inputs. All of the above models can be formulated with continuous inputs in place of
Boolean inputs.

Finite state machine model. A finite state machine is defined by an input alphabet X, a state
set S, a start state sy € .5, a transition function f; and a set of accept states A C 5. Let L C X* be
the language accepted by this finite state machine, where X is the set of all strings formed from the
input alphabet X. Given two sets of strings U, T, where U C L and T'C ¥* — L, one wishes to pose
the question: Does there exist a k-state deterministic finite automaton whose behavior matches the
partially specified finite state machine?

Probabilistic model. In this model one is given n events E1, Es, ..., E, and a sample of states,
each indicating for each event, if that event has occurred or not. One wishes to infer compact
relations between events, such as Fy < (F3 V E3) A E4, that hold with high probability.

Markov chain model. In this model, a hidden Makov chain outputs elements from an output
alphabet with each state transition. This output is observed and one wishes to infer the matrix of
one-step transition probabilities.

Approximate model. In this model, noise is present in the observation of the input and output of
the hidden logic in the black box. One wishes to infer this hidden logic so that with high probability

the inferred logic will reproduce the observed input-output patterns.
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instance
id CPU time
32A1 *
32B1 159.68s
32B2 *
32B3 *
32B4 *
32C1 18.62s
32C2 176.32s
32C3 *
32C4 *
32D1 *
32D2 *
32D3 *
32E1 54.57s
32E2 144.40s
32E3 *
32E4 *
32Eb5 *

* Did not find satisfiable

assignment in 43200s.

Table 4.9: Davis-Putnam solution statistics: 32-input, 1-output variables
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instance prediction
id iters CPU inferred logic accuracy

32A1 44 176.73s | y = x1Z12 + x2&5232 + ©19T23%26 exact

32B1 1 5.02s Y = T12T23T26 + T19T23026+ .83
214%17%21231

32B2 32 56.65s Y = T2X5T20%32 + T19T 23026+ .96
ZoX3L14L21%22

32B3 51 189.80s | y = #19%23%T26 + T2T5T20T32+ 97
ZaXoX10812214%21

32B4 61 259.43s | y = T19T23%26 + T2T5T20L32+ exact
Z122T9T12231

32C1 23 23.8bs Y = Xaki9¥szg + ToZrlex13+ .80
ZoX7L15%29

32C2 1 9.38s Y = T2X20@32 + T2X18% 10+ .88
ZoX5L7L14T17T29

32C3 1 14.27s | y = z2ZT20%32 + T2%18%21%23%32+ .92
Z2%15218%19% 24230231

32C4 1 154.62s | y = x2890T32 + T2Z9B12T31+ exact
122219723826

32D1 49 65.65s Y = Z22X28%29 + L12Z17&25L27+ .74
Z3X9x20 + £11212216732

32D2 78 178.10s | y = ®gx11&29%99 + T4x11T22+ 91
Z3X9x20 + £12L15%16%29

32D3 147 1227408 | y = x4@11%22 + £10211T20232+ exact
Z3X9x20 + TaT12L15%29

32E1 5 8.33s Y = T2L29%31 + L£11T262L29%31 .86

32E2 9.67s Y = ToL29T31 + T2T5T23T31+ 97
L9L10L23

32E3 40 132.83s | y = ®amwogZs1 + voZaxe@rZ30+ .98
Lol10L23

32E4 63 276.93s | y = xox29%31 + Tox10T23+ .98
ZaX4Lel7X13T30

32Eb5 71 390.228 | y = wox29%31 + Tox10T23+ .98
ZoX4L7L12T13T30

Table 4.8: Interior point solution statistics: 32-input, 1-output variables
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Instance

id

CPU time

16A1
16A2

*

*

16B1
16B2

16C1
16C2

16D1
16D2

*

16E1
16E2

*

20449.20s

* Did not find satisfiable

assignment in 43200s.

Table 4.6: Davis-Putnam solution statistics: 16-input, 1-output variables

instance i/o AND Satisfiability Problem

hidden logic id samples gates | vars clauses lit/clause
Y= 21212+ T2Z5232 + 19%23%26 32A1 250 3 459 9212 3.6
Y = T1T2T9T12T31 + T19T23T 26+ 32B1 50 3 228 1374 4.5
ZoZ5 L2032 32B2 100 3 261 2558 4.7
32B3 250 3 348 5734 5.1
32B4 300 3 381 6918 5.1
Y = T2T9T12T31 + TaT20%32+ 32C1 50 3 225 1280 4.8
L1X2X19T23L 26 32C2 100 3 249 2182 5.3
32C3 150 3 279 3272 5.3
32C4 1000 3 759 20862 5.5
Y = TaT11T22 + XoT12T15T 29+ 32D1 50 4 332 2703 3.4
E3T9T20 + T10T11 L2932 32D2 100 4 404 5153 3.5
32D3 400 4 824 19478 3.6
Y = T9X10T23 + T2T20T31+ 32E1 50 3 222 1186 5.0
EoTaTeT7L19%32 32E2 100 3 267 2746 4.5
32E3 200 3 330 5680 4.8
32E4 300 3 387 7106 5.0
32E5 400 3 450 9380 5.0

Table 4.7: Problem statistics: 32-input, l-output variables

24
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instance prediction
id iters CPU inferred logic accuracy

16A1 264  2038.55s | y = x1%12 + wox3®s + x9 + T7 exact

16A2 78 607.80s | y=x1Z12 + T2%3%T5 + 9 + T exact

16B1 1 78.27s Y = T3T11 + T1&2 + T3x12T15+ .99
ToT10%16 + T203T6T10T11

16B2 39 236.07s | y = x3x19w15 + T3T11+ exact
ZaZ10%16 + 122

16C1 105 TH7.50s | y = B1x4%9 + T4Z7011+ 87
Zekgki0®13 + L3rs+
Z3LeL3T1215

16C2 98 520.60s | y = x4T7x11 + Bax10T 14+ exact
ZoZ14%15 + T3Ts

16D1 215 1b546.78s | y = &1%12 + ToZ12%16+ exact
T5Tgx10T16 + L3T5T6

16D2 106 544258 | y = &1%19 + TaZ12%16+ exact
Z5X8L10%16 + L3T5X6

16E1 231 2156.42s | y = 1240829011813 + ©1X223T4+ .99
Z13214%15%16 + ToT10211%12+
L5LeL7Ly

16E2 89 375.838 | y = @1 X223%4 + v5xaTrxs+ exact

ToT10%11L12 + £13214T15% 16

Table 4.5: Interior point solution statistics: 16-input, 1-output variables
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Table 4.3: Davis-Putnam solution statistics: 8-input, l-output variables

instance
id CPU time
8A1 0.11s
8A2 25.15s
8A3 77.98s
8A4 43.05s
8B1 0.25s
8B2 2.87s
8B3 6.00s
8B4 9.48s
8C1 2.20s
8C2 5.62s
8D1 9.53s
8D2 11.78s
8E1 4.35s
8E2 8.3bs

instance i/o AND Satisfiability Problem

hidden logic id samples gates | vars clauses lit/clause
Y = T1T12 + T2x3T5 + To + Ty 16A1 100 15 1650 19368 2.3
16A2 300 1602 23281 2.3
Y = T3T12¥15 + T3T11+ 16B1 300 1728 24792 2.6
TaZ10T16 + T1T2 16B2 400 1076 16121 2.6
Y = T4T7T11 + T4T10T14+ 16C1 100 20 1580 16467 3.0
Tgr14%15 + 3T 16C2 400 4 924 13803 2.8
Y = T5TgT10T16 + T2T12T16+ 16D1 200 10 1230 15901 3.0
T1Z12 + 23T526 16D2 400 4 836 12461 3.0
Y = 1Z223%4 + Tsrelrrs+ 16E1 200 15 1245 14766 4.2
T9T10T11%12 + T13T14T 1516 16E2 400 4 532 7825 4.2

Table 4.4: Problem statistics: 16-input, l-output variables

22
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instance i/o AND Satisfiability Problem
hidden logic id samples gates | vars clauses lit/clause
Y = Xal7 + Tary + X122T6 8A1 10 3 66 186 2.4
8A2 25 6 180 800 2.6
8A3 50 6 264 1552 2.6
8A4 100 6 396 2798 2.7
Y = E1Z4%6 + Tokg + T2 8B1 50 3 168 1054 2.2
8B2 100 6 576 4088 2.3
8B3 150 10 1360 10100 2.3
8B4 200 6 1068 8214 2.2
Yy =5+ xeks + 7 8C1 50 10 510 3065 24
8C2 100 10 950 6689 2.3
Y = ZTs+ Ta+ TaZy 8D1 50 10 530 3207 2.3
8D2 100 10 930 6547 2.3
Yy = xg + 205 + T3xs SE1 50 10 520 3136 2.4
8E2 100 10 870 6121 2.4

Table 4.1: Problem statistics: 8-input, l-output variables

instance prediction
id iters  CPU | inferred logic accuracy
8A1 1 0.42s Y = X7+ Tary + T3l .86
8A2 47 21.37s | y = @427 + Z3xy + 2123 .87
8A3 40 29.77s | y = w427 + T3y + 2125 .92
8A4 1 9.33s Y = Xal7 + Tary + X122T6 exact
8B1 1 2.05s Yy =x2+ &3 97
8B2 59 97.07s | y = @2 4+ vg + T1x3%526 97
8B3 37 167.07s | y = x2 + xg + x3T5262T7 .96
8B4 33 122.62s | y = ¥9 + xg + T12426 exact
8C1 1 8.02s y=x5+ x7 .94
8C2 28 84.80s | y = x5 + x7+ x6Ts exact
8D1 86 116.98s | y = &6 + &2 + Z3%7 exact
8D2 13 45728 | y = s + &2 + XT3k7 exact
SE1 90 122.82s | y = xg + xoxs + T3y exact
S8E2 1 16.68s | y = xs + ®225 + Z3xs exact

Table 4.2: Interior point solution statistics: 8-input, l-output variables
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.98 accuracy. Note that for this instance the algorithm produced an algebraic expression that
realizes the function described in the incomplete truth table. The expression produced had as
few terms as the hidden function. Increasing the number of input-output samples up to 1000
did not improve the prediction accuracy. With truth tables having more than 1000 input-
output examples, the algorithm converged to local minima. However, the number of violated
constraints of the integer solution corresponding to the local minima is small (less than 100
constraints out of over 20,000). Consequently, the resulting circuit, while not realizing the

given truth table, may still be a good approximation to the hidden logic.

e The number of input-output samples required to achieve a good prediction accuracy was small.
All 8-input hidden logic that was correctly predicted required no more than 100 samples, except
8B, that required 200. 90% prediction accuracy was obtained with as few as 50 samples. For
the 16-input logic, 16B, 16C and 16E required 400 input samples for an exact prediction, while
16A and 16D required 100 and 200, respectively. For the four 32-input logic instances for which
exact predictions were obtained (32A1, 32B4, 32C4, 32D3), the required number of samples
was 250, 300, 1000 and 400, respectively. In several instances, as few as 50 and 100 samples

sufficed to obtain predictions with over 80% and 90% accuracy, respectively.

e As shown in Section 2, for a fixed number of input-output examples, the number of variables
and clauses in the Satisfiability Problem grows linearly with Kn, where K is the number of
gates and n is the number of inputs to the black box. For this reason, we limited the number
of gates in the 32-input instances to 3 or 4, even though for the 8- and 16-input instances we

allowed circuits with as many as 20 gates.

e Even though in many instances the number of product terms allowed was much higher than
the number present in the hidden logic, the algorithm produced functions with duplicate and
covered terms, resulting in expressions with few terms. For example, for problem 16A1 we
used K = 15, but the algorithm synthesized an expression with only 4 terms. As mentioned in
the previous bullet item, because of memory limitations, we could not search for expressions

with a large number of product terms in the 32-input instances.

e Tables 4.3, 4.6 and 4.9 illustrate the difficulty encountered by the Davis-Putnam algorithm
to find satisfiable assignments for the Satisfiability problems formulated in the computational
experiment. We limited the running time for each instance to 12 cpu hours (43200 s). In
that running time the Davis-Putnam code succeeded in finding satisfiable assignments only
for the smaller Satisfiability problems. It found assignments for all the 8-input instances, the
smallest (in the number of variables) of the 16-input instances and 5 of the 6 smallest 32-input
instances. It should be noted that since the 16-input instances had larger values of K (AND
gates) than the 32-input instances, the Satisfiability problems corresponding to the 16-input

instances are larger than those of the 32-input instances.

e Since the bulk of the computational effort in this code corresponds to solving a system of linear
equations with the conjugate gradient method, a parallel implementation of such procedure is

expected to speed up the solution process significantly.
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4. Computational results

In this Section, we report on the computational testing of the integer programming algorithm de-
scribed in [12] and [9] with the modification of Section 3 on randomly generated instances of a class
of inductive inference problems. As in [9], we use rounding scheme B, a greedy scheme based on the
ordering of the fractional values of the variables of the current interior solution, and offer no special
treatment for local minima. To offer some insight as to how the interior point algorithm compares
with a standard Satisfiability algorithm we run an implementation of the Davis-Putnam algorithm
[6] on the test problems. We use the C language implementation by Selman, Mitchell and Levesque
[23].

The experiment was conducted on a vax 6700 running 10th Edition UNIX®. The code is written
in FORTRAN and C and was compiled on the £77 and cc compilers with the optimization flag -0 set.
Running times are measured with the system function times().

We consider the problem of inferring the logic in an n-input, l-output “black box”, with n =
8,16, and 32. For each value of n we consider five black boxes. For each black box, we record the
output corresponding to randomly generated input samples and build an incomplete truth table,
for which we attempt to synthesis a Boolean expression having a given number of product terms.
Tables 4.1, 4.4 and 4.7 show problem statistics. For each black box, these tables display the hidden
logic, identify the problem instance with a name (8A1, 8A2, ..., 16A1, 16A2, ....32A1, 32A2, ..)),
and display the number of random i/o samples generated, the specified number of product terms in
the synthesized expression (AND gates), and statistics for the corresponding Satisfiability Problem
(number of variables, clauses and literals per clause). Tables 4.2, 4.5 and 4.8 show statistics for the
solution obtained with the integer programming algorithm, the inferred logic and the accuracy of
the inferred logic. This accuracy (prediction accuracy) is measured by randomly generating 10,000
input samples and comparing outputs for the black box and the inferred logic.

Tables 4.3, 4.6 and 4.9 show statistics for the Davis-Putnam algorithm.

We make the following observations regarding the computational testing.

e Satisfiability problems having from 66 variables and 186 clauses, up to 1,728 variables and
24,792 clauses were solved. Of the 41 problems, 15 were solved in less than one CPU minute.

Only 6 of the 41 problems required more than 10 ¢PU minutes.

e On all instances tested, the integer programming code synthesized algebraic expressions that
produced the correct output, given as input the minterms in the incompletely specified truth
table.

e Input-output sample sizes varied from 10 to 1000. Increasing sample size increases the Satisfi-
ability Problem size, but generally increases prediction accuracy and frequently reduces CPU
time. For example, problem 8A3 took 29.77s and 40 iterations with a sample size of 50, while
8A4 (with same hidden logic as 8A3) required only 9.33s and a single iteration with a sample
size of 100.

e For all instance classes but one (32E), the algorithm correctly predicted the hidden logic. For

the instance where an exact prediction was not obtained, the algorithm inferred logic with
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This system of linear equations has the same structure as the linear system solved in [12] and therefore
the same computational machinery used there can be used to solve this system. In Section 4, we
report computational results of an interior point code that uses a diagonal preconditioned conjugate
gradient algorithm used in [9] to solve this system.

We conclude this section by describing the dynamic augmentation of the system of linear in-
equalities. Qur objective is to modify the metric of the descent direction search so as to change
the region where the search for the descent direction of the potential function is carried out. The
potential function is not modified, as is the case in the restart procedure of [12], and hence, H and
hT are left unchanged. Let w* € S denote the current iterate, an interior non-integral solution.
Define, for j =1,...,n,

B +1 if w]l»C >0
a; =
! —1 otherwise.

Periodically, we add the constraint
Glw<é=n—2 (3.7)

to the system of linear inequalities used to define the ellipsoid in (3.3). Assuming @ ¢ 7 (otherwise
the algorithm terminates with w = @ as the solution), it is shown in [12] that constraint (3.7)
excludes the infeasible solution @, but no other integer feasible solution. In the computational
results reported in Section 4 we add a constraint of this type every 10 iterations of the interior point
algorithm. Another strategy is to add a constraint every time the interior solution changes orthant,

i.e. every time there is a change in the sign of a component of the interior solution.
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where D4 = diag(e; —af w* ... e —a) w¥). Hence, the problem to be solved at each iteration is:
| T T

minimize §(Aw) HAw+ h' Aw (3.2)

subject to: (Aw)TAD?ATAw < r? < 1. (3.3)

where H and kT are the Hessian and gradient of p(w), respectively. Ye [26] has shown that (3.2-3.3)
can be solved in polynomial time. Our algorithm, which is similar to Ye’s, solves (3.2-3.3) by solving

a series of systems of linear equations of the form
(H 4 pAD7?AT)Aw = —h,

where g > 0 1s a real scalar. This system arises from the first-order Karush-Kuhn-Tucker optimality
condition for (3.2-3.3).

To find a descent direction Aw for the potential function, the algorithm in this paper solves

1
minimize §(Aw)THAw +hT Aw (3.4)
subject to: (Aw)TADZZAT Aw < r? < 1, (3.5)
where
D 0
Dy = l . :

0 Dy

and D; = diag(¢; — af w®, ... &n — a,),w*) are slacks with respect to the m’ added constraints.

The system of equations that is to be solved has the form
(H + pAD> AT)Aw = —h. (3.6)
Let fo = n— wh Wk, Substituting H and ADZ*AT in (3.6) we get

2 7 4
fo I3

9 4 1 SNIPRN,
— _|:_f_I_kawkT_i_(E_i_ﬂ)ADZZAT+NAD22AT:| h
0 0

1 } o q-t
Aw = - [ whh T+ —ADTIAT + pADTEAT + ﬂADjAT] h
m

Asin [12], let y = 1/(p + =), then

_ [ 2 4 o7 1 o7, 1 Y\Nip-23T -
_ [ 2y 4y g T AD-2AT 1 Y AD=24T - h
= TRl et HADSATH A DADEAT]
0
2 4 T _ -t
= — _f_z - f—gwkwk —I—AD’AZ.AT] vh,

where
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3. Dynamic change of metric
In this Section we consider the integer program where one wants to find w € {—1, 1} such that

ATw< e

— bl

(3.1)

where AT is an m x n real matrix and ¢ a real m vector. We assume that (3.1) includes 2n box
constraints of the type

—1<w; <1, 5=1,...,n.

Let
T = {we{-1,1}"|ATw<c}
L = {weR" | ATw <}
S = {weR"|ATw< ¢}

denote the sets of solutions of the integer program, solutions of the linear programming relaxation of
the integer program, and interior point solutions of the linear programming relaxation, respectively.
In [12], Karmarkar, Resende and Ramakrishnan introduce an interior point algorithm for integer

programming, based on finding a local minimum of the potential function

n—wlw
[Te=i(er — agw)t/im

by an iterative method. Given an interior solution w € S, the denominator of the log term of ¢(w)

o) = los{

is the geometric mean of the slacks and is maximized at what is known as the center of the polytope
defined by L. Since —e < w < e, where e = (1,..., 1)T, the numerator is minimized at a 1 vertex
of £. In [12] it is shown that if Z # (§, w* is a global minimum of this potential function if and only
ifw eZ.

Let w* € 8 denote the current iterate. The next iterate w**! is obtained by moving in a descent
direction Aw from w*, ie. a direction such that p(w*t1) = p(w* + aAw) < @(w®), where « is
an appropriate step length. Fach iteration of our method is similar to the trust region approach
described in Moré and Sorensen [16], except that the construction of the search region is based on
making good global approximations to the polytope, instead of being based on local considerations
as in a trust region method. A descent direction Aw of the potential function is found by searching
over a region that is an approximation, like (1.5), to the Riemannian ball. The Riemannian metric

is based on an augmented system of inequalities

ATw<e

— bl

where A4 = [A fi] , A is the matrix corresponding to the original system of linear inequalities and A

corresponds to the augmented part of A. The procedure for dynamic augmentation will be described
later. For a given matrix A, the ellipsoidal approximation (as in (1.5)) to the Riemannian ball is
given by

(Aw)TADF?AT Aw < 72,
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2.2. Integer programming formulation

The Satisfiability Problem can be formulated as an integer programming feasibility problem. Let

Ci,...,Cypn denote the m clauses of a Satisfiability Problem with n variables z1, ..., z,. Denote
Ie = {i| z is in clause C}

Je = {i]7%; is in clause C}.

Associate with each Boolean literal z;, the integer variable w;, such that
1 if o — 1
w; = .
0 if z; =0,
and with each Boolean literal z; the integer variable w; = 1 — w;. To satisfy each clause C, 1t is

necessary that at least one literal with index in Iz or in Je be set to 1, i.e.
dwi+ > wW=1,C=C. G
jelc jedc
Substituting for w;, we get
ij— Z ws 21—|Jc|, C:Cl,...,Cm.
jelc jedc

Applying the above transformation to the Satisfiability Problem formulated in Section 2, we get
the following integer programming feasibility problem: Find (0, 1) values for s;;, s/

7; and zf', for
t=1,....n,5=1,...,K,a=1,..., A, such that:

5]'2'—|—5}Z» > 1, ¢=1,...,n,5=1,... . K
s+ Y s < on—1 r=1.. R j=1._K
i€ P, iEFr
Zz]a > 1, a=1,...,A
ji=1
zp < oof, i=1.0n =1, K,a=1,...,A
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S11 vV _|Z?
sh1 V 7z
sh1 V 2z)
S91 vV _|Z§
5192 vV _|Z%
5192 vV _|Z%
s19 V 12}
599 vV _|Z%
599 vV _|Z§
§59 V 125
s13V 7z
513 vV _|Z%
s13V 0z}
sh3 V 723
593 vV _|Z§
sh3 V 125

The algebraic expression y = x1%T2 + Ty that realizes the function in Table 2.1 corresponds to a

solution to the above Satisfiability Problem with s1; = 84 = s]5 = s22 = 0, 8} = 521 = s}5 = 513 =

o Y Y 1 .2 _ .3 _ 3 __ .1 _ 2 _
Slg =812 =58 =S =58 =1 21 =21 =%, =1,and 27 = 23 = 23 = 0.
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2.1. An example

We now formulate the Satisfiability Problem for the example of Table 2.1. We seek a 2 product-

[ B =
_ = O O O
— = O =
== e T == N

Table 2.1: An example

term expression to realize this function. In this example, n =3, K =2 R=2, A =3, P, = {3},
/

Py ={1,2}, P, ={1,2,3}, and P> = . The oN-set = {101,100,011} and consequently 0]11 = %y,

1 .. 1 o 2 _ 2 _ . .2 . 3 _ . .3 _ 3 _ ot
0o = 8j2, 053 = S5, 0j1 = §j1, Ojo = Sj2, 053 = 8§j3, 051 = §j1, Oj9 = Sj9, O3 = 3.

The Satisfiability Problem has 18 variables, 31 clauses and 66 literals. Clauses of type (2.7) are:
S11 vV 5/11

!/
591 vV S91
!/
512 vV S192
!/
599 vV S99
!/
513 vV 513
!/
593 vV So3

Clauses of type (2.8) are:

/
843 vV 511 vV 18519
/
1893 vV 18591 vV 18599
/ / /
781, Vs, V sy
/ / /
7891 V 785, V 893

Clauses of type (2.9) are:
z% Vv z%

2 2
21V zgy
3y, ,3
21V zy

Finally, clauses of type (2.10) are:

/
sV —w%

/ 2
s11 Vg
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Ty
S11
/
511
o o

Figure 2.1: 3-layer Boolean circuit

12
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Summarizing, in the Satisfiability Problem we wish to find Boolean values for s;;, S}Z» and z7,
such that the following clauses all evaluate to 1.
Sji\/S}i , i=1,....n,j=1... K (2.7)
(\ =si) v\ si), j=1,...,K,r=1,...,R (2.8)
i€ P, Z'EFT

K
\ =, a=1,... A (2.9)

ji=1
of; vV =zf, i=1,....n,j=1,..., K, a=1,... A (2.10)

This Satisfiability Problem has (2n + A)K variables, K(n(A 4+ 1)+ R) + A clauses, and K(2n(1 +
A)+nR+ A) literals.
Proposition: Satisfiability Problem (2.7-2.10) is satisfiable if K = A.

Proof: The canonical expansion has A disjunctive terms and realizes the i/o specification. O
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Consequently, s;; and S}Z» also determine the number of disjunctive terms. This unnatural choice of
values for s and s’ allows the use of OR gates in the input layer. Note that if x; is present in the
j-th product term, the output of input gate \/]1»2» is x;, while if it is not in the term, the output is 1
and z; has no effect on the output of the middle layer AND gate A;. A similar behavior is observed
for s’ and =.

Since z; and F; cannot simultaneously be part of the j-th disjunctive term, we have that
sji\/s}i, t=1,....n,5=1,...| K (2.2)

must be satisfied. Note that if both z; and %; are in the j-th disjunctive term, then s;; = 0 and
sj; = 0 and consequently s;; V s%; = 0.

We group the remaining clauses into two classes, corresponding to: (1) OFF-set minterms; (2)
ON-set minterms. We first consider the case of OFF-set minterms. For every OFF-set minterm
r=1,...,R, let P. be the set of indices of # for which #; = 1 in the minterm, and P, be the

set of indices of x for which #; = 0. Since y = 0, then the output of every AND gate must be 0.

Consequently, for every AND gate A;, j =1,..., K, at least one input must be 0, i.e.
(\V =si)v(\ =80, i=1,....K,r=1,..|R (2.3)
i€p, i€P,

must be satisfied.

We next consider the case corresponding to ON-set minterms. In this case, at least one output of
every AND gate has value 1. Let the output of AND gate A; for minterm a be the Boolean variable
zj. Consider now the input layer oR gate pair \/]1»2» and \/?Z» for minterm a. If z; = 1 in minterm
a, then the output of \/]1»2» will be 1 and the value of s;; will be irrelevant. The output of \/?Z» is
5§Z Similarly, if #; = 0 in minterm a, then the output of \/?Z» will be 1 and the value of S}Z» will be
irrelevant. The output of \/]1»2» is sj;.

Consequently, since the outputs of the OR pair are combined by the AND operator, the resulting

value is s;j; if 2; = 0 in minterm « or S}Z» if #; = 1. To model this, define

u { sj; if z; = 1 in ON-set minterm a

s;; 1f z; = 0 in ON-set minterm a.

Variables zi and of;, j=1,..., K, a=1,..., A, must satisfy

n

2= /\ ;. (2.4)

=1

To guarantee that zj = 1, for at least one gate A;, we require that

K
Vo a=1,.. 4 (2.5)
ji=1

be satisfied. Furthermore, to satisfy (2.4) we must disallow zj = 1 when, for any ¢ = 1,...,n,

od

#; = 0. This can be accomplished with the following clauses,

o ;Vozi, i=1,...n j=1,... K, a=1,... A (2.6)
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2. Satisfiability Problem formulation

In this Section, we formulate the Boolean Function Synthesis Problem as a Satisfiability Problem. We
then use a standard transformation, described in [9], to derive the integer programming formulation
for the problem.

Before stating the Satisfiability Problem we need some definitions. Let z be a Boolean variable.
Boolean variables can be combined by the logical connectives or (V), AND (A) and NOT (Z) to form
Boolean formulae. A variable or a single negation of the variable is called as literal. A Boolean
formula consisting of only literals combined by the V operator is called a clause. The Satisfiability
Problem (SAT) can now be stated.

SAT: Given m clauses Cy,...,C,, involving n variables z1, ..., z,, does the formula
CiACaA---ACpy (2.1)

evaluate to 1 for some input vector? If so, we say that the formula is satisfiable. Otherwise, it is
said to be unsatisfiable. To prove satisfiability, 1t suffices to produce an input vector that evaluates
expression (2.1) to 1.

Let us consider the three layer Boolean circuit representation of a Boolean expression and use
that representation to aid our modeling. Figure 2.1 illustrates this Boolean circuit. We assume that
as input we are given the ON-set and OFF-set of the Boolean function F that we wish to synthesize.
The function has n input variables z1, ..., z, and a single output variable y and we require a sum-
of-products expression with K product terms. Let R = |oFF-set| be the number of minterms in the
OoFF-set and A = |oN-set| be the number of minterms in the oN-set. The three layered circuit has
in the output layer an OR gate with a single output y. This OR gate takes its input from K AND
gates in the middle layer. Fach AND gate in the middle layer takes as its input the output of the n
pairs of OR gates from the input layer. Each of these n pairs of gates in the input layer corresponds
to an input variable. One gate has input in unnegated form (z;), while the other in negated (7).
Finally, each input layer OR gate has two inputs. The one that corresponds to the unnegated input
variable has that variable and a decision variable s as inputs. The other has as input the negated
variable and another decision variable s’. We wish to construct a three layer logical circuit with K
AND gates that realizes the given specification.

We identify AND gates as A1,..., Ag. The output of all AND gates is input into the output layer
OR gate Vg. The OR gates from the input layer are \/}“i, forj=1,...,K,i=1,...,nand £k =0,1.
Gate \/?Z» has as input Z; and the decision variable S}Z» with its output serving as input to gate A;.
Similarly, gate \/]1»2» has as input z; and the decision variable s;; and its output is input to gate A;.

Decision variables s;; and S}Z» determine which literal (z; or Z;, if any) is part of the j-th dis-

5]'2'2{

, { 0 if Z; is in the j-th disjunctive term
1

if Z; 1s not in the j-th disjunctive term.

junctive term,
if #; 1s in the j-th disjunctive term

[ ]

if #; 1s not in the j-th disjunctive term
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Figure 1.1: Circuit representation of Boolean expression y = 21Tox3 + £1%T2T3 + T10223.
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Figure 1.2: Circuit representation of Boolean expression y = 1%2 + T1x2.
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which is in fact an ellipsoid. A more accurate approximation is possible using higher order terms. In
this paper, we report computational results obtained by using the approximation of the Riemannian
ball with the Euclidean ellipsoid.

An outline of the remainder of this paper is given next. In Section 2 we formulate the problem of
synthesis of Boolean functions as a Satisfiability Problem. In Section 3 we describe how the interior-
point algorithm augments the system of inequalities dynamically. This dynamic change of metric
has not been used in previous investigations of our algorithm. In Section 4 we present computational

results. Concluding remarks are made in Section 5.
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a trust region method, similar to the one described in Moré and Sorensen [16], is applied to the
nonconvex optimization problem

.« e . 1 _ T = 1 _ T ]
minimize log(n — w ' w) m; og(er — ay w)

At each iteration, a quadratic approximation of the potential function

1 m
o(w) = log(n — w'w) — - ;log(ck —a; w)

1s optimized over an ellipsoid inscribed in the polytope defined by
{w ERATw < c} ,

and centered at the current iterate, to produce a descent direction. The new iterate is determined
by moving in that direction by a fixed step length, such that the new point is in the interior of the
ellipsoid. A rounding heuristic 1s applied to the fractional solution and feasibility of the rounded
solution is tested. A description of the rounding heuristic and initial interior point solution used in
this study can be found in [9].

Traditionally, optimization techniques implicitly use a Fuclidean metric defined on the underly-
ing domain. For example, the steepest descent direction for a function implicitly assumes a Fuclidean
metric for measuring the steepness. However, there exists a curved Riemannian space that is nat-
urally associated with interior point methods. In [11], a Riemannian metric was introduced for
problems formulated with equality and nonnegativity constraints. In this paper, we use a similar
metric for problems stated in all-inequality form. This Riemannian metric is used for defining the

search region. For a polytope defined by
{weR | ATw < e}

the associated Riemannian metric is given by g;;(w)dw;dw;, where
@ik ik

gij(w) = B

a k

and
dk = Cr — a;—wk
is the k-th slack variable. In this metric, an infinitesimal ball centered at a strictly interior point w
is given by
Zglj(w) dw; dw; < €.
i,J

An exact search over a ball in this Riemannian metric would have taken into account the variation
of the metric g;;(w) within the ball. For a ball of finite radius r, working in this metric is compu-
tationally difficult. Therefore, we approximate g;;(w) by a constant g;;(w?), where w® is the center

of the ball, and use it throughout the region. The resulting ball is given by

Zgij(wO)(w_wO)i(w_wO)j <r? (1.5)
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specification a Boolean algebraic expression is synthesized. Besides the application of this study, the
Boolean Function Synthesis Problem has applications in Programmable Logic Arrays (PLA’s), an
important type of digital integrated circuit design. A Boolean function in sum-of-products form can
be implemented on a two level AND/OR circuit. Figures 1.1 and 1.2 show the circuits for the Boolean
expressions given in (1.1) and (1.3), respectively. The application of the techniques presented in this
paper to circuit design is the subject of future study.

The classical approach to tackle the Boolean Function Minimization Problem (where one wishes
to minimize the number of disjuncts in the sum-of-products form) was developed by Quine [19] [20]
and McCluskey [14]. To describe the idea behind this approach, a few definitions are first needed. If
a product term evaluates to 1 for a given minterm, it is said to contain that minterm. An implicant
of a function F is a product term that does not contain any minterm of the oFF-set of 7. A product
term P 1s said to contain the product term Q if P evaluates to 1 for every minterm that Q evaluates
to 1. A prime implicant of F is an implicant that is not contained in any other implicant of F.
The Quine-McCluskey method first generates all prime implicants (often an exponential number of
them [15]) and then selects a minimum subset of prime implicants that realizes the specification. The
generation of the set of prime implicants can be carried out with standard techniques, e.g. [21], [17],
[24]. This minimum subset can be found by solving a set covering problem [7]. Exact approaches are
limited to instances having few variables. For example, the state-of-the-art code ESPRESSO-EXACT
[22] took 18,365.0 vaAX 6700 seconds to produce an optimal 3 product-term expression for the 20
variable, 30 minterm problem of Table 1.2. Because exact versions of the Quine-McCLuskey method
fail to handle large instances, many heuristic approaches have been developed. These generally
generate an initial solution and improve it iteratively. They include MINI [§], PREsTO [4], and
ESPRESSO-MV [3]. ESPRESSO-MV is widely used in the circuit design industry.

In this paper we consider an interior point mathematical programming approach to the Boolean
Function Synthesis Problem and use this procedure for inductive inference. The synthesis problem
is formulated as a type of Satisfiability Problem that can be described as an integer programming
problem, using a standard transformation. We apply the interior point algorithm for integer pro-
gramming described in [10] and [12] to synthesize Boolean functions. In particular, we use an
implementation derived from the one described in [9], that is suited for finding a satisfiable truth
assignment in instances of the Satisfiability Problem. The interior point algorithm is used to attempt

to find a feasible +1 integer solution w to the following integer program:
B'w < b
w; = %1, j=1,...,n, (1.4)
where BT € R7%7 b € ™, and w € . In [9] it is shown how the Satisfiability Problem can be

formulated as an integer programming problem of this form. Let A = [B - I] , where [ is an

n x n identity matrix and let ¢T = (b7 ,1,...,1).

Starting with an interior point solution

w’ € {w eRATw <c},
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Table 1.2: Specification for a 20 variable function with |oN-set| = 14 and |oFF-set| = 16.

expression having only 2 disjuncts, since

Yy = T1T223+ X1T2T3 + T122x3
= 11T2(®3+T3) + T1a203

= l‘lfz —1—511‘21‘3. (12)

A closer examination of Table 1.1 shows that the output i1s independent of input variable z3 and the
function can be further simplified to
Yy =z1T2 + 122 (1.3)

The synthesis of the function in Table 1.1 can be accomplished by inspection. For slightly larger
instances, synthesis may not be so trivial. Consider the specification in Table 1.2. An integer
programming formulation with 216 variables, 1710 constraints with 4168 nonzero elements in the
constraint matrix can be formulated to produce the following 4 term Boolean function for this

incomplete specification,
Y = T2T12@19 + T5T9T19 + T14T16%20 + TT15718.

Note that no more than 3 variables are present in each term, making this circuit easy to implement.
Also observe that 9 of the 20 input variables (1, €3, x4, s, 7, £10, 11, ®13, £17) are irrelevant. We
will describe in this paper such a formulation and show how it can be solved. For this instance, the
code used in this study took 22.67 ¢PU seconds on a vax 6700.

Our approach in this study is to randomly generate a limited number of inputs and apply

them to the hidden logic, thus building an incomplete specification of a Boolean function. For this
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minimization problem, but many lead to an excessive, often exponential, number of spurious local
minima, i.e. those that are not global minima and hence do not correspond to the solution of the
original problem. In [10], Karmarkar describes a class of potential functions with good topological
properties, such as having connected level sets, which has led to successful interior point methods
for several problems, e.g. [12], [9], [13], [18]. Guided by these results, we investigate the application
of a similar approach for inductive inference. For related work, see e.g. [2], [5] and [25].

Before we continue, we require some definitions. Consider the Boolean function F : {0,1}" —
{0,1}. An element of the domain of F is called a minterm of F. The set of minterms for which
F evaluates to 1 (0) is called the oN-set (OFF-set). An incompletely specified Boolean function is
one for which |oN-set| + |oFF-set| < 2”. Table 1.1 incompletely specifies a Boolean function with
3 input variables @1, 22, 3 and an output y. In that specification, oN-set = {101,100,011} and
OFF-set = {001, 111}.

O = O =
_ = O O O
— = O =
(el N e B o e

Table 1.1: An example

An algebraic expression for an incompletely specified Boolean function F is a Boolean expression
(written with Boolean sums (oR) and products (AND)) that evaluates to 1 (0) for all minterms in
the oN-set (OFF-set) and evaluates to either 1 or 0 for all other minterms. An algebraic expression
for F can always be written in sum-of-products (disjunctive normal) form. Each product term in
the algebraic sum-of-products expression is called a disjunct. Let P? and P!, respectively, denote

the index set of 0 and 1 values of the i-th element of the ON-set of F. The canonical expansion,

v=2 (Il ux1l=
i€ON-set \jepP} jeP?
is a sum-of-products algebraic expression for . The major drawback of the canonical expansion is
that it has |oN-set| disjuncts, each having n variables. The canonical expansion for the function of
Table 1.1 1s

Yy = 1‘1521‘3+l‘15253+511‘2l‘3. (11)

It requires 3 disjuncts.
Given an ON-set and OFF-set of minterms, the Boolean Function Synthesis Problem is to find an
algebraic sum-of-products expression for F having a specified number of disjuncts. The correspond-

ing decision problem is Np-complete [3] [7]. The function of Table 1.1 can be expressed by a Boolean
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1. Introduction

In this paper, we explore the application of a function minimization method, based on continuous
mathematics to the problem of inductive inference, which in its many forms appears to be an
inherently discrete problem. Inductive inference is the process of hypothesizing a general rule from
examples. This problem is of central importance in artificial intelligence and machine learning. A

survey on inductive inference systems is given in [1]. Inductive inference involves the following steps:

e Inferring rules from examples, finding compact abstract models of data or hidden patterns in
the data.

e Making predictions based on abstractions.

e By comparing predictions with actual results, one can modify the abstraction. This is the

process of learning.
e Designing questions to generate new examples.

In this study, we first focus on an aspect of this problem, concerned with inferring rules from
examples or discovering patterns in data. For example, given the sequence 2,4,6,8, ... we may ask
“What comes next?” One could pick any number and justify it by fitting a fourth degree polynomial
through the b points. However, the answer “10” is considered the most “intelligent”. That is
so because it is based on the first-order polynomial 2n, which is linear and hence simpler than a
fourth degree polynomial. The answer to an inductive inference problem is not unique. In inductive
inference, one wants a simple explanation that fits a given set of observations. Simpler answers are
considered better answers.

A recent body of literature has associated inductive inference with the notion of identification in
the limit over the strings of a finite alphabet. In this paper we use the classic notion of inductive
inference, as in scientific discovery, where rules are inferred from incomplete observations of the
data. We enphasize that the observations are from incomplete data sets, differing from the notion
of deductive inference where a complete set in observed.

One therefore needs a way to measure simplicity. For example, in finite automaton inference, the
number of states could be a measure of simplicity. In Boolean circuit inference, the measure could
be the number of gates and wires. Inductive inference is in fact an optimization problem, where one
wants to maximize simplicity, or find a model no more complex than some specified measure.

There are many ways to formalize this optimization problem. In this paper, we study the most
basic Boolean model with single output. In this model there i1s a black box with n Boolean input
variables 1, ..., z, and a single Boolean output variable y. The black box contains a hidden Boolean
function F : {0,1}" — {0,1} that maps inputs to outputs. Given a limited number of inputs and
corresponding outputs, the question to be answered is: Does there exist a logical circuit with no
more than K gates which matches this behavior? If so, what is 1t?7

Because the problem formulation belongs to the domain of discrete mathematics or logic does
not necessarily imply that the algorithm for attacking the problem must be restricted to concepts

from the same fields. There are many ways of formulating a discrete problem as a continuous
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