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1 Introduction

A significant problem with lazy functional programs is that they often demand
a great deal of space. Multi-megabyte workstations are now commonplace, but
serious users of functional programming systems have to equip even these ma-
chines with additional memory. The essence of laziness is to delay evaluation
rather than compute values that may not be needed; and once values are com-
puted to retain them if they may be needed again. This policy might save time,
but it can easily lead to space faults: the accumulation or retention of large
structures in memory, in ways that the programmer is unaware of, or does not
fully understand, let alone intend. Hence profiling tools, by which programmers
can obtain information about memory use in terms of the source program, are
potentially of great value.

In a previous paper [5] we described the design, implementation and use of
a prototype heap profiling tool for lazy functional programs. As an example
application, we used clausify, an existing 130 line program to normalise log-
ical formulae. The results were even better than we had hoped for: after five
iterations of profiling and refinement, modifying both program and compilation
rules, the cost of running the final version (measured in bytes x seconds) was
less than 0.5% of the cost of running the original. However, the information
from our prototype tool related to individual definitions and constructor func-
tions, and it was not clear whether a similar technique would work for larger
and more complex programs.

This paper reports on the experimental application of heap profiling to
Augustsson and Johnsson’s Lazy ML (LML) compiler [1]. Since our implemen-
tation of heap profiling is itself based on the LML compiler, this amounts to
a boot-strapping exercise. The LML compiler extends to some 16,500 lines of
code in almost 200 modules, and is by any standard a large and sophisticated
piece of software. As it has been developed over a period of almost a decade,
with each successive version outperforming its predecessor, the sort of dramatic
improvement obtained for the clausify program is hardly to be expected; but
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equally savings of only a few percent would not be very compelling. So we set
ourselves the target of a factor of two  halving the cost of LML compilations.

The rest of this paper is organised as follows. Section 2 reviews the design of
our prototype heap profiling tool, and describes how we have modified it to deal
with larger programs. Section 3 outlines the structure of the LML compiler,
identifying its main components and their role within the compiler. Section 4
describes the application of heap-profiling to the compiler, and the successive
reduction of its memory consumption guided by profiling information. Section 5
discusses to what extent the kinds of space problems found in the compiler
might be avoided in future programs by modifying implementation methods.
Section 6 briefly considers some related and future work. Finally, Section 7
offers some conclusions.

2 A Heap Profiling System

Our heap profiling tool has two components. The first component is a modified
implementation which generates profiling information during the execution of
functional programs. When the programmer requests a heap profile, execution
is suspended at specified regular intervals and the implementation traverses
the program graph gathering information from each cell. This information is
appended to a log file and execution is resumed. When execution is complete,
the log file contains a profile of the graph nodes that were stored in the heap
at each interval.

The second component of the tool is a program that generates a graph from
a log file. Examples of these profile graphs will be found in Section 4. A profile
graph shows how the amount of heap storage used by the program (measured in
bytes) varies over the time that it takes to run (measured in seconds). Shaded
bands are used to show how much of the total storage is associated with each
identifier.

Recently, we have made our profiling tool more suitable for dealing with
large programs. The modified implementation now attaches both static and
dynamic tags to every cell in the heap. Static tags carry information deter-
mined at compile-time and dynamic tags carry information determined at run-
time. For the static tags, space is reserved in each cell for a pointer to some
tag information maintained by the compiler. For each dynamic tag, space is
reserved for some tag information maintained by the run-time system. By way
of example, Figure 1 shows how a list node is tagged.

In our first implementation there were only two static tags. These identified
the function that produced the graph node, and the construction that it rep-
resented. When profiling larger programs, it is natural to want to extend this
basic scheme. Thus, the producer is extended to a single module or a group of
modules, and the construction is extended to a type. Each cell has space for
one dynamic tag; in future, we plan to use this tag for the age of the node, but
at the moment it is unused.

Another improvement to the basic scheme reduces the overhead of profiling
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Figure 1: A tagged list node

by performing a garbage collection while sampling the graph.

Usually, profile graphs are automatically scaled to fill the page, and the
bands are automatically shaded and ordered so as to maximise the readability
of the graph. However, for the purpose of comparison it is sometimes useful
to fix certain parameters across several profile graphs. In this paper, all profile
graphs share a common scale, shading and ordering.

3 An Overview of the LML Compiler

The LML compiler [1] consists of two programs which communicate via a text
file. The parser is written in C with the aid of the Yacc parser generator.
It checks the program syntax and outputs a prefix form of the parse tree.
The translator is written in LML. Tt reads the prefix form of the parse tree
and reconstructs it. After a number of transformations, it then produces the
assembly language for the program. We are only concerned with profiling the
translator, and from here on we will loosely refer to it as “the compiler”.

The compiler source code is organised into 19 directories containing 198
modules; in total there are about 16,500 lines of code. In what follows, it will
be useful to have an outline of the way that the compiler works. Below, a very
brief description of each compiler pass is accompanied by the name of directory
that contains the code for that pass.

(1) The prefix form of the parse tree is read, and the tree is reconstructed
(expr).

(2) Conditional and ZF expressions are simplified (curry, zf).

(3) Bound and imported identifiers are renamed if necessary (rename).



Pattern-matching is replaced by the use of case-expressions (transform).
Type checking is performed (type).

Expression simplifications, such as constant folding, are made (simpl).

Nested functions are removed by lambda-lifting (11ift).
G-machine code is generated and optimised (Gcode, Gopt).

)

)

)

7) Simple strictness analysis is performed (strict).

)

)

) M-machine code is generated and optimised (mcode, mopt).
)

Assembly code is generated (m_68000).

Two other important components of the compiler, so far unaccounted for, are
the functions in the standard library (1ib) and the routines in the runtime
system (runtime).

4 Profiling the Compiler

Before we can make any improvements to the LML compiler, we need to find
out what makes it tick (or rather, clunk). The group profiles produced when
the compiler recompiles each of its own source files are a good place to start.
Leafing through them, a clear pattern emerges. Unfortunately, space precludes
us from showing several of these profiles here. Instead we shall have to make
do with a typical one, for the compilation of the 280 line module hcheck (see
Figure 2). This profile shows that during a compilation taking a little over two
and a half minutes, the memory demand exceeded two megabytes at its peak,
and was above one and a half megabytes for most of the time. The “bytes x
seconds” figure (top centre) corresponds to the total area under the graph, and
is our overall measure of cost.

A key to the various shadings used is given on the right. The boxed labels
‘A’) ‘B’ and ‘C’ are not present in the output from the profiler; they have been
added for ease of reference to three important regions of the graph. The region
labelled ‘A’ represents graph structure produced by the M-code generator. The
region labelled ‘B’ includes the three topmost bands; it represents graph struc-
ture produced by the expr and rename passes, and by some standard library
functions 1ib. The region labelled ‘C’ represents graph structure produced
by the run-time system. Together these three regions account for most of the
compiler’s demands on heap memory. We shall now discuss each of them in
turn.

Version 0

Region ‘A’ indicates that the M-code generator produces a large amount of
graph structure towards the end of the compilation. At first, this may not



Imlcomp -g -i5.00 287,088,448 bytes x seconds Fri Jun 19 18:02:35 1992 ‘

[ exor
M eneme
o

] runtime
B mcode
] transform
(] type
M o
[ ite

M simp!
I misc
M Gcode
H

120.0 140.0 seconds

Figure 2: A group profile for hcheck (compiler version 0)

seem particularly surprising: for any program written in a high level language,
the machine code translation is bound to be quite large. Moreover, Johnsson’s
M-code generator is rather sophisticated, and so one might expect a signifi-
cant amount of graph to be required to represent its internal data structures.
However, this reasoning ignores the fact that the compiler is written in a lazy
language. Since all of the clever optimisations described by Johnsson for trans-
lating G-code into M-code are intra-functional, and there are none which are
inter-functional, we would actually expect G-code to be translated into M-code
lazily, one function at a time. Clearly though, this is not happening. Indeed,
it seems that the M-code for every function is generated before any assembly
language is produced.

Although we could investigate further by producing a module profile re-
stricted to the mcode group, it is unnecessary to do so. The profile tells us
that the problem is some form of lazy pipeline blockage, and that information
alone is enough for us to identify the cause. The blockage cannot be at either
of the later stages in the pipeline: the M-code optimiser does little more than
improve the aesthetics of the M-code, and the assembly language generator for
the MC68000 is really just an elaborate pretty printer. By inspection, both are
lazy, so the problem must be with the M-code generator itself. Somewhat em-
barrassingly, it turns out that it is one of our own modifications to the M-code
generator that makes it use so much space.

Recall from Section 2 that our modified compiler attaches static and dy-
namic tags to every cell in the heap, and that the static tags carry information



maintained by the compiler. In practice, this means that during code gener-
ation the compiler must place appropriate vectors of strings in the assembly
language program, to be used at run-time when new nodes are created. This
seems simple enough. However, there is a slight complication: for practical
reasons it is important to ensure that neither the vectors or the strings are
duplicated. Otherwise the resulting code becomes excessively large.

One way to do this is to record the vectors and strings arising during code
generation in a table. When all of the M-code has been generated, any dupli-
cates can be purged from the table and the remainder can be output along with
the M-code. Another (very similar) way is to add new vectors and strings to
the table only if they are not already there. This eliminates the need to purge
the table before it is output. As far as coding is concerned, there is not much to
choose between the two alternatives. As far as efficiency is concerned, however,
the difference is rather large. The first alternative generates all of the M-code
in order to create the table of vectors and strings. But none of this M-code
can be output until any duplicates have been purged from the table and the
correct labels for the remainder have been determined. The second alternative
allows the correct labels for the vectors and strings to be determined when they
are added to the table, and so the M-code can be output without delay. As
Figure 3 shows, the second alternative costs 50Mbs less than the first.
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Figure 3: A group profile for hcheck (compiler version 1)



Version 1

Let us now turn our attention to region ‘B’. Figure 4 shows a profile by type,
restricted to the module groups expr, rename and 1ib that make up this region.
Here we can see that half of the graph structure is of either the List or Id types.
A glance at the definition of the Id type sheds further light on the problem:

type Id mkids String String
mkidi String String (Option (Modinfo # String))

+
+ mkid Int String String Idinfo Origname

Every identifier requires two strings: one is the name used by the profiler, and
the other is the name used by the ordinary compiler. Usually, these names are
identical; they differ only for identifiers that are renamed during compilation.
Since strings are just lists of characters, Figure 4 suggests that identifiers could
account for more than 90Mbs of the cost of our typical compilation. This seems
rather high.
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Figure 4: A type profile for the expr, rename and 1ib groups only

An obvious improvement would be to use a more compact string repre-
sentation than the usual list of characters. Although the standard compiler
affords compile-time string literals a compact representation, one cannot form
a compact string at run-time. Let us rectify this by introducing a primitive
function

pack :: [Char] -> [Charl]



Semantically, this function is the identity for finite and fully defined lists of
characters. Pragmatically, it converts an ordinary list of characters into a
compact one. The idea is to use this function in the compiler to pack up
the name strings whenever a new Id is constructed. Somewhat surprisingly,
using pack as described makes no discernible difference to the behaviour of the
compiler. This is because the standard evaluation machinery causes packed
strings to be unpacked. By instrumenting the run-time system to print the
context in which string unpacking was performed, we discovered four operations
in the compiler that cause name strings to be unpacked:

e hashing;

e comparison;

e translation to an assembly language label;
e translation to an assembly language string.

To make these operations work directly on the packed representation, we rewrote
them in M-code. As Figure 5 shows, packed strings reduce the cost of compiling
our example file by another 50Mbs.
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Figure 5: A group profile for the hcheck (compiler version 2)

Version 2

In all of the group profiles that we have seen so far, there has been a large block
of graph structure produced by the run-time system (labelled ‘C’ in Figure 2).



With the aid of a producer profile restricted to the runtime group (see Fig-
ure 6), we can quickly establish that almost all of this structure is produced by
the built-in routine which reads the list of characters in a file.

‘ Imlcomp -p -g{runtime} -i5.00 41,033,832 bytes x seconds Tue Jun 30 15:35:13 1992 ‘
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Figure 6: A producer profile restricted to the runtime group

Recall from Section 3 that the LML compiler consists of two programs,
the parser and the translator, which communicate via a text file. During a
compilation, the translator reads several files, but the only one of significant size
is the text file created by the parser. From Figure 6 it seems that the contents
of this file are retained by the translator as a list of characters for well over half
the total compilation time. This is really most surprising. We would expect
the translator to discard the character list in the process of constructing the
abstract syntax tree. Clearly this does not happen. Yet the list is not dragged
along until the very end of the compilation, so what triggers its release? In
the “valley” of Figure 2 the critical computational event allowing source to be
discarded is the onset of code generation. More specifically, it is the opening
of the output stream for the assembly code.

Once we knew that the input stream was being retained, we made the above
diagnosis by simply examining the code concerned with input and output. It
looked something like this:

(finput, ftype,...fasm) =
case basename in
No msg : fail msg
[| Yesn : (read (n@".p"), tofile (n@".t"),...tofile (n@".s"))
end



The intention here is to bind finput to the list of characters read from the input
stream, and ftype and fasm to the streams to be used for the type and assembly
language files. Unfortunately, this rather arcane piece of code suffers from a
space leak caused by the implementation of lazy pattern matching. Delayed
selection means that none of the components of (finput, ftype,...fasm)
can be released until all of them have been evaluated. As a result, the list of
characters read from the input stream is retained until the assembly language
stream is required, which is not until well over half the total compilation time
has elapsed. A fix for this particular problem is trivial: just make separate
definitions of finput, ftype and fasm. The gain is yet another 50Mbs (see
Figure 7).
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Figure 7: A group profile for the hcheck (compiler version 3)

5 Cure or Prevention?

Heap profiling is a diagnostic tool for programmers who want to detect, un-
derstand and hence cure space faults in their programs. Although this tool is
quite effective, we are bound to ask whether the use of other techniques might
prevent the introduction of space faults in the first place.

Where a space fault is due to ezcessive laziness, as with the dragging prob-
lem of region ‘C’, it may be cured by forcing a little more evaluation in just
the right place. But it is not always as easy as it was in this case to determine
an appropriate source level reformulation. Many problems of this kind can be




avoided at the implementation level, by introducing quasi-parallel reduction
rules into the garbage collector. Wadler [10] has described such a scheme for
the common case of selection from a tuple of multiple results, and this scheme
is generalised in von Dorrien’s stingy evaluator [9]. Indeed, a stingy evaluator
is distributed with the LML compiler — but it is not used for the bootstrap
compilation!

The fault of region ‘A’ was caused by a definition that was not lazy enough,
being over-strict in a (large) argument value. To help avoid such faults, im-
plementations might check and/or generate strictness declarations. Similar
support for type declarations has been available, and widely valued, for some
time. The comparison is pertinent not only because both forms of declara-
tion can characterise useful properties of defined functions, but also because
strictness analysis can be approached as a type inference problem [3].

Packed representations of character lists can bring about substantial sav-
ings in comparison with the usual “cons-cell” chains, even in the context of lazy
evaluation, as Stoye [7] observed several years ago. The use of this technique
to reduce the size of region ‘B’ might easily be dismissed as a specific low-level
optimisation, not linked to any general principle. But packed strings were al-
ready present in the LML implementation, with lazy unpacking as the interface
to normal strings, and no unpacking at all in the context of top-level concate-
nation. So the issue is not just whether or not an implementation employs
a special representation (for example, strings, unboxed values or dictionaries)
but under what circumstances, and how easily the effect can be predicted or
specified by the programmer. We suggest that if a compiler is capable of using
a special representation in some circumstances, the programmer should have
the opportunity to specify its use in other circumstances — a form of equal
opportunity [4]. Recall also that we chose to rewrite some string operations
in M-code to avoid the unpacking machinery: an alternative approach repacks
strings during garbage collection a special case of Turner’s idea [8] that
expressions should revert to an earlier, smaller form when space is short.

6 Related and Future Work

Although there have been many implementations of lazy functional languages,
it seems there has been comparatively little work on profiling. However, we
know of at least two other profiling systems that have been constructed re-
cently [2, 6]. In comparison with the work on these other systems, the distinc-
tive features of our own approach include:

1. putting all the emphasis on profiling memory space, rather than processor
time, and defining overall cost in byte seconds;

2. multi-dimensional profiling (the two dimensions in our present profiler
being producers and constructions) allowing sectioned or product profiles
to be obtained;



3. stressing application of the technique by using the profiler to reduce the
costs of existing programs.

Since the Ayr workshop, Augustsson has added heap profiling, as described
in this paper, to the latest version of the LML compiler.

Although various extensions and refinements of our heap profiling system
could increase its effectiveness  for example, the addition of an age dimension
by tagging graph nodes with their time of creation = we have no immediate
plans to develop it further. Rather, we plan to move on from profiling memory
use to profiling parallelism, applying similar techniques to reveal and to improve
the degree of parallelism in lazy functional programs.

7 Conclusions

We claim a successful outcome from the experimental self-application of our
heap profiling version of the LML compiler. A target factor of two reduction
in execution cost was reached after about three week’s work (and this does not
include the reduction obtained by fixing the M-code generator fault that we
ourselves had introduced!). Based on our own experiments with heap profiling,
and also on the experience of a small number of other users of our system, we
suspect that most lazy functional programs of more than a couple of pages have
space faults. The diagnosis and cure of such faults are neglected problems —
so much so that even rather simple techniques can lead to significant improve-
ments. Perhaps surprisingly, similar techniques apply to both small and large
programs  the compiler has more source modules than clausify has lines of
code!
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