
Heap Pro�ling of a Lazy FunctionalCompilerColin Runciman and David WakelingUniversity of York�
1 IntroductionA signi�cant problem with lazy functional programs is that they often demanda great deal of space. Multi-megabyte workstations are now commonplace, butserious users of functional programming systems have to equip even these ma-chines with additional memory. The essence of laziness is to delay evaluationrather than compute values that may not be needed; and once values are com-puted to retain them if they may be needed again. This policy might save time,but it can easily lead to space faults : the accumulation or retention of largestructures in memory, in ways that the programmer is unaware of, or does notfully understand, let alone intend. Hence pro�ling tools , by which programmerscan obtain information about memory use in terms of the source program, arepotentially of great value.In a previous paper [5] we described the design, implementation and use ofa prototype heap pro�ling tool for lazy functional programs. As an exampleapplication, we used clausify, an existing 130 line program to normalise log-ical formulae. The results were even better than we had hoped for: after �veiterations of pro�ling and re�nement, modifying both program and compilationrules, the cost of running the �nal version (measured in bytes � seconds) wasless than 0.5% of the cost of running the original. However, the informationfrom our prototype tool related to individual de�nitions and constructor func-tions, and it was not clear whether a similar technique would work for largerand more complex programs.This paper reports on the experimental application of heap pro�ling toAugustsson and Johnsson's Lazy ML (LML) compiler [1]. Since our implemen-tation of heap pro�ling is itself based on the LML compiler, this amounts toa boot-strapping exercise. The LML compiler extends to some 16,500 lines ofcode in almost 200 modules, and is by any standard a large and sophisticatedpiece of software. As it has been developed over a period of almost a decade,with each successive version outperforming its predecessor, the sort of dramaticimprovement obtained for the clausify program is hardly to be expected; but�Authors' address: Department of Computer Science, University of York, Hesling-ton, York Y01 5DD, United Kingdom. Electronic mail: colin@minster.york.ac.uk,dw@minster.york.ac.uk



equally savings of only a few percent would not be very compelling. So we setourselves the target of a factor of two | halving the cost of LML compilations.The rest of this paper is organised as follows. Section 2 reviews the design ofour prototype heap pro�ling tool, and describes how we have modi�ed it to dealwith larger programs. Section 3 outlines the structure of the LML compiler,identifying its main components and their role within the compiler. Section 4describes the application of heap-pro�ling to the compiler, and the successivereduction of its memory consumption guided by pro�ling information. Section 5discusses to what extent the kinds of space problems found in the compilermight be avoided in future programs by modifying implementation methods.Section 6 briey considers some related and future work. Finally, Section 7o�ers some conclusions.2 A Heap Pro�ling SystemOur heap pro�ling tool has two components. The �rst component is a modi�edimplementation which generates pro�ling information during the execution offunctional programs. When the programmer requests a heap pro�le, executionis suspended at speci�ed regular intervals and the implementation traversesthe program graph gathering information from each cell. This information isappended to a log �le and execution is resumed. When execution is complete,the log �le contains a pro�le of the graph nodes that were stored in the heapat each interval.The second component of the tool is a program that generates a graph froma log �le. Examples of these pro�le graphs will be found in Section 4. A pro�legraph shows how the amount of heap storage used by the program (measured inbytes) varies over the time that it takes to run (measured in seconds). Shadedbands are used to show how much of the total storage is associated with eachidenti�er.Recently, we have made our pro�ling tool more suitable for dealing withlarge programs. The modi�ed implementation now attaches both static anddynamic tags to every cell in the heap. Static tags carry information deter-mined at compile-time and dynamic tags carry information determined at run-time. For the static tags, space is reserved in each cell for a pointer to sometag information maintained by the compiler. For each dynamic tag, space isreserved for some tag information maintained by the run-time system. By wayof example, Figure 1 shows how a list node is tagged.In our �rst implementation there were only two static tags. These identi�edthe function that produced the graph node, and the construction that it rep-resented. When pro�ling larger programs, it is natural to want to extend thisbasic scheme. Thus, the producer is extended to a single module or a group ofmodules, and the construction is extended to a type. Each cell has space forone dynamic tag; in future, we plan to use this tag for the age of the node, butat the moment it is unused.Another improvement to the basic scheme reduces the overhead of pro�ling



CONS --UNUSED headtail ----- \library"\listfuns"\map"\List"\(.)" (group)(module)(producer)(type)(construction)
�� -

Figure 1: A tagged list nodeby performing a garbage collection while sampling the graph.Usually, pro�le graphs are automatically scaled to �ll the page, and thebands are automatically shaded and ordered so as to maximise the readabilityof the graph. However, for the purpose of comparison it is sometimes usefulto �x certain parameters across several pro�le graphs. In this paper, all pro�legraphs share a common scale, shading and ordering.3 An Overview of the LML CompilerThe LML compiler [1] consists of two programs which communicate via a text�le. The parser is written in C with the aid of the Yacc parser generator.It checks the program syntax and outputs a pre�x form of the parse tree.The translator is written in LML. It reads the pre�x form of the parse treeand reconstructs it. After a number of transformations, it then produces theassembly language for the program. We are only concerned with pro�ling thetranslator, and from here on we will loosely refer to it as \the compiler".The compiler source code is organised into 19 directories containing 198modules; in total there are about 16,500 lines of code. In what follows, it willbe useful to have an outline of the way that the compiler works. Below, a verybrief description of each compiler pass is accompanied by the name of directorythat contains the code for that pass.(1) The pre�x form of the parse tree is read, and the tree is reconstructed(expr).(2) Conditional and ZF expressions are simpli�ed (curry, zf).(3) Bound and imported identi�ers are renamed if necessary (rename).



(4) Pattern-matching is replaced by the use of case-expressions (transform).(5) Type checking is performed (type).(6) Expression simpli�cations, such as constant folding, are made (simpl).(7) Simple strictness analysis is performed (strict).(8) Nested functions are removed by lambda-lifting (llift).(9) G-machine code is generated and optimised (Gcode, Gopt).(10) M-machine code is generated and optimised (mcode, mopt).(11) Assembly code is generated (m 68000).Two other important components of the compiler, so far unaccounted for, arethe functions in the standard library (lib) and the routines in the runtimesystem (runtime).4 Pro�ling the CompilerBefore we can make any improvements to the LML compiler, we need to �ndout what makes it tick (or rather, clunk). The group pro�les produced whenthe compiler recompiles each of its own source �les are a good place to start.Lea�ng through them, a clear pattern emerges. Unfortunately, space precludesus from showing several of these pro�les here. Instead we shall have to makedo with a typical one, for the compilation of the 280 line module hcheck (seeFigure 2). This pro�le shows that during a compilation taking a little over twoand a half minutes, the memory demand exceeded two megabytes at its peak,and was above one and a half megabytes for most of the time. The \bytes xseconds" �gure (top centre) corresponds to the total area under the graph, andis our overall measure of cost.A key to the various shadings used is given on the right. The boxed labels`A', `B' and `C' are not present in the output from the pro�ler; they have beenadded for ease of reference to three important regions of the graph. The regionlabelled `A' represents graph structure produced by the M-code generator. Theregion labelled `B' includes the three topmost bands; it represents graph struc-ture produced by the expr and rename passes, and by some standard libraryfunctions lib. The region labelled `C' represents graph structure producedby the run-time system. Together these three regions account for most of thecompiler's demands on heap memory. We shall now discuss each of them inturn.Version 0Region `A' indicates that the M-code generator produces a large amount ofgraph structure towards the end of the compilation. At �rst, this may not
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Figure 2: A group pro�le for hcheck (compiler version 0)seem particularly surprising: for any program written in a high level language,the machine code translation is bound to be quite large. Moreover, Johnsson'sM-code generator is rather sophisticated, and so one might expect a signi�-cant amount of graph to be required to represent its internal data structures.However, this reasoning ignores the fact that the compiler is written in a lazylanguage. Since all of the clever optimisations described by Johnsson for trans-lating G-code into M-code are intra-functional , and there are none which areinter-functional , we would actually expect G-code to be translated into M-codelazily, one function at a time. Clearly though, this is not happening. Indeed,it seems that the M-code for every function is generated before any assemblylanguage is produced.Although we could investigate further by producing a module pro�le re-stricted to the mcode group, it is unnecessary to do so. The pro�le tells usthat the problem is some form of lazy pipeline blockage, and that informationalone is enough for us to identify the cause. The blockage cannot be at eitherof the later stages in the pipeline: the M-code optimiser does little more thanimprove the aesthetics of the M-code, and the assembly language generator forthe MC68000 is really just an elaborate pretty printer. By inspection, both arelazy, so the problem must be with the M-code generator itself. Somewhat em-barrassingly, it turns out that it is one of our own modi�cations to the M-codegenerator that makes it use so much space.Recall from Section 2 that our modi�ed compiler attaches static and dy-namic tags to every cell in the heap, and that the static tags carry information



maintained by the compiler. In practice, this means that during code gener-ation the compiler must place appropriate vectors of strings in the assemblylanguage program, to be used at run-time when new nodes are created. Thisseems simple enough. However, there is a slight complication: for practicalreasons it is important to ensure that neither the vectors or the strings areduplicated. Otherwise the resulting code becomes excessively large.One way to do this is to record the vectors and strings arising during codegeneration in a table. When all of the M-code has been generated, any dupli-cates can be purged from the table and the remainder can be output along withthe M-code. Another (very similar) way is to add new vectors and strings tothe table only if they are not already there. This eliminates the need to purgethe table before it is output. As far as coding is concerned, there is not much tochoose between the two alternatives. As far as e�ciency is concerned, however,the di�erence is rather large. The �rst alternative generates all of the M-codein order to create the table of vectors and strings. But none of this M-codecan be output until any duplicates have been purged from the table and thecorrect labels for the remainder have been determined. The second alternativeallows the correct labels for the vectors and strings to be determined when theyare added to the table, and so the M-code can be output without delay. AsFigure 3 shows, the second alternative costs 50Mbs less than the �rst.
lmlcomp -g -i5.00 236,185,584 bytes x seconds Fri Jun 19 18:34:53 1992
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Figure 3: A group pro�le for hcheck (compiler version 1)



Version 1Let us now turn our attention to region `B'. Figure 4 shows a pro�le by type,restricted to the module groups expr, rename and lib that make up this region.Here we can see that half of the graph structure is of either the List or Id types.A glance at the de�nition of the Id type sheds further light on the problem:type Id = mkids String String+ mkidi String String (Option (Modinfo # String))+ mkid Int String String Idinfo OrignameEvery identi�er requires two strings: one is the name used by the pro�ler, andthe other is the name used by the ordinary compiler. Usually, these names areidentical; they di�er only for identi�ers that are renamed during compilation.Since strings are just lists of characters, Figure 4 suggests that identi�ers couldaccount for more than 90Mbs of the cost of our typical compilation. This seemsrather high.
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Figure 4: A type pro�le for the expr, rename and lib groups onlyAn obvious improvement would be to use a more compact string repre-sentation than the usual list of characters. Although the standard compilera�ords compile-time string literals a compact representation, one cannot forma compact string at run-time. Let us rectify this by introducing a primitivefunction pack :: [Char] -> [Char]



Semantically, this function is the identity for �nite and fully de�ned lists ofcharacters. Pragmatically, it converts an ordinary list of characters into acompact one. The idea is to use this function in the compiler to pack upthe name strings whenever a new Id is constructed. Somewhat surprisingly,using pack as described makes no discernible di�erence to the behaviour of thecompiler. This is because the standard evaluation machinery causes packedstrings to be unpacked. By instrumenting the run-time system to print thecontext in which string unpacking was performed, we discovered four operationsin the compiler that cause name strings to be unpacked:� hashing;� comparison;� translation to an assembly language label;� translation to an assembly language string.To make these operations work directly on the packed representation, we rewrotethem in M-code. As Figure 5 shows, packed strings reduce the cost of compilingour example �le by another 50Mbs.
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Figure 5: A group pro�le for the hcheck (compiler version 2)Version 2In all of the group pro�les that we have seen so far, there has been a large blockof graph structure produced by the run-time system (labelled `C' in Figure 2).



With the aid of a producer pro�le restricted to the runtime group (see Fig-ure 6), we can quickly establish that almost all of this structure is produced bythe built-in routine which reads the list of characters in a �le.
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Figure 6: A producer pro�le restricted to the runtime groupRecall from Section 3 that the LML compiler consists of two programs,the parser and the translator , which communicate via a text �le. During acompilation, the translator reads several �les, but the only one of signi�cant sizeis the text �le created by the parser. From Figure 6 it seems that the contentsof this �le are retained by the translator as a list of characters for well over halfthe total compilation time. This is really most surprising. We would expectthe translator to discard the character list in the process of constructing theabstract syntax tree. Clearly this does not happen. Yet the list is not draggedalong until the very end of the compilation, so what triggers its release? Inthe \valley" of Figure 2 the critical computational event allowing source to bediscarded is the onset of code generation. More speci�cally, it is the openingof the output stream for the assembly code.Once we knew that the input stream was being retained, we made the abovediagnosis by simply examining the code concerned with input and output. Itlooked something like this:(finput, ftype,. . . fasm) =case basename inNo msg : fail msg|| Yes n : (read (n@".p"), tofile (n@".t"),. . . tofile (n@".s"))end



The intention here is to bind finput to the list of characters read from the inputstream, and ftype and fasm to the streams to be used for the type and assemblylanguage �les. Unfortunately, this rather arcane piece of code su�ers from aspace leak caused by the implementation of lazy pattern matching. Delayedselection means that none of the components of (finput, ftype,. . .fasm)can be released until all of them have been evaluated. As a result, the list ofcharacters read from the input stream is retained until the assembly languagestream is required, which is not until well over half the total compilation timehas elapsed. A �x for this particular problem is trivial: just make separatede�nitions of finput, ftype and fasm. The gain is yet another 50Mbs (seeFigure 7).
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Figure 7: A group pro�le for the hcheck (compiler version 3)5 Cure or Prevention?Heap pro�ling is a diagnostic tool for programmers who want to detect, un-derstand and hence cure space faults in their programs. Although this tool isquite e�ective, we are bound to ask whether the use of other techniques mightprevent the introduction of space faults in the �rst place.Where a space fault is due to excessive laziness , as with the dragging prob-lem of region `C', it may be cured by forcing a little more evaluation in justthe right place. But it is not always as easy as it was in this case to determinean appropriate source level reformulation. Many problems of this kind can be



avoided at the implementation level, by introducing quasi-parallel reductionrules into the garbage collector. Wadler [10] has described such a scheme forthe common case of selection from a tuple of multiple results, and this schemeis generalised in von Dorrien's stingy evaluator [9]. Indeed, a stingy evaluatoris distributed with the LML compiler | but it is not used for the bootstrapcompilation!The fault of region `A' was caused by a de�nition that was not lazy enough,being over-strict in a (large) argument value. To help avoid such faults, im-plementations might check and/or generate strictness declarations . Similarsupport for type declarations has been available, and widely valued, for sometime. The comparison is pertinent not only because both forms of declara-tion can characterise useful properties of de�ned functions, but also becausestrictness analysis can be approached as a type inference problem [3].Packed representations of character lists can bring about substantial sav-ings in comparison with the usual \cons-cell" chains, even in the context of lazyevaluation, as Stoye [7] observed several years ago. The use of this techniqueto reduce the size of region `B' might easily be dismissed as a speci�c low-leveloptimisation, not linked to any general principle. But packed strings were al-ready present in the LML implementation, with lazy unpacking as the interfaceto normal strings, and no unpacking at all in the context of top-level concate-nation. So the issue is not just whether or not an implementation employsa special representation (for example, strings, unboxed values or dictionaries)but under what circumstances, and how easily the e�ect can be predicted orspeci�ed by the programmer. We suggest that if a compiler is capable of usinga special representation in some circumstances, the programmer should havethe opportunity to specify its use in other circumstances | a form of equalopportunity [4]. Recall also that we chose to rewrite some string operationsin M-code to avoid the unpacking machinery: an alternative approach repacksstrings during garbage collection | a special case of Turner's idea [8] thatexpressions should revert to an earlier, smaller form when space is short.6 Related and Future WorkAlthough there have been many implementations of lazy functional languages,it seems there has been comparatively little work on pro�ling. However, weknow of at least two other pro�ling systems that have been constructed re-cently [2, 6]. In comparison with the work on these other systems, the distinc-tive features of our own approach include:1. putting all the emphasis on pro�lingmemory space, rather than processortime, and de�ning overall cost in byte seconds;2. multi-dimensional pro�ling (the two dimensions in our present pro�lerbeing producers and constructions) allowing sectioned or product pro�lesto be obtained;



3. stressing application of the technique by using the pro�ler to reduce thecosts of existing programs.Since the Ayr workshop, Augustsson has added heap pro�ling, as describedin this paper, to the latest version of the LML compiler.Although various extensions and re�nements of our heap pro�ling systemcould increase its e�ectiveness | for example, the addition of an age dimensionby tagging graph nodes with their time of creation | we have no immediateplans to develop it further. Rather, we plan to move on from pro�ling memoryuse to pro�ling parallelism, applying similar techniques to reveal and to improvethe degree of parallelism in lazy functional programs.7 ConclusionsWe claim a successful outcome from the experimental self-application of ourheap pro�ling version of the LML compiler. A target factor of two reductionin execution cost was reached after about three week's work (and this does notinclude the reduction obtained by �xing the M-code generator fault that weourselves had introduced!). Based on our own experiments with heap pro�ling,and also on the experience of a small number of other users of our system, wesuspect that most lazy functional programs of more than a couple of pages havespace faults. The diagnosis and cure of such faults are neglected problems |so much so that even rather simple techniques can lead to signi�cant improve-ments. Perhaps surprisingly, similar techniques apply to both small and largeprograms | the compiler has more source modules than clausify has lines ofcode!AcknowledgementsOur thanks to Lennart Augustsson and Thomas Johnsson, whose work on theLML compiler forms the basis of our own, and to Simon Peyton Jones withwhom we have had some useful discussions about heap pro�ling. We are alsograteful to the referees for their comments.This work was funded by the Science and Engineering Research Council.References[1] L. Augustsson and T. Johnsson. The Chalmers Lazy-ML Compiler. Com-puter Journal, 32(2):127{141, April 1989.[2] S. Clayman, D. Parrot, and C. Clack. A Pro�ling Technique for Lazy,Higher-Order Functional Programs. Technical report, Department of Com-puting Science, University College London, November 1991.[3] T-M. Kuo and Mishra. Strictness Analysis: A New Perspective Basedon Type Inference. In Proceedings of the 1989 Conference on Functional
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