
Semesterarbeit in Wirtschaftsinformatik an der Wirtschaftswissenschaftlichen
Abteilung der Universität Zürich

Organizing File Archives in
Large Scale Distributed Systems

Martin A. Blatter
blatter@ifi.unizh.ch -or- blatter@icu.unizh.ch

Pfaffächerstr. 59
8913 Ottenbach

Phone: +41 (1) 761 20 02

Abstract

On the background of the constantly growing size and complexity of international networks
the organization of public or file archives and archive arrays is getting more and more impor-
tant. Based on statistical data of a selected Internet anonymous FTP archive, this study deals
with some current problems of file archives in wide area networks. It presents mechanisms
and solutions to reduce network traffic, costs, and overhead by improving transparency, con-
sistency, and ease of use. Other topics being discussed in this paper are file replication, syn-
chronization of distributed archives. Furthermore, it describes and comments on the protocols
and tools currently in use and proposes requirements for possible new yet to be implemented
protocols.

[Page 1]

1. Introduction

The need for file archives arises when individuals want to share resources, e.g. source code,
binaries, text, graphics, or music over a certain distance. There may be several users in a re-
search institute or a large company working on the same project who need access to the same
files stored on a dedicated local file server. In a larger scale, researchers at universities all over
the world may be looking for scientific data from other researchers on a facility such as an
anonymous FTP archive on the Internet or they might want to share their work with other
people working on similar topics.

As competition in the 1990s will be rougher and tougher than before, there is a need for
speed-up thinking. Products need to be developed, manufactured an delivered faster. This is
what Kotler [20] calls a Turbo-marketing strategy. In multinational companies, or interna-
tional enterprises with many affiliates, file archives can be used to give executives instant ac-
cess to company internal data, such as marketing reports and sales figures. Other applications
include the sharing of engineering data such as technical reports, drawings, or source code be-
tween several engineering departments. A well organized archive allows for long time storage
of old information as well as easy updating of outdated data.

As long as the files are kept in a closed environment and used by a small number of individu-
als, there is not much need for a special organization of an archive. However, if the files are
located on a publicly accessible server on a large international computer network, much more
work has to be put in keeping the archive as consistent and user friendly as possible. Also,
with the ever increasing size of files such as multi media data (graphics, animation, video se-
quences, music) it is becoming more and more important to prevent expensive long-distance
transfers. This can be achieved by distributing the contents of an archive to several hosts at
strategically important positions within the network topology. Another advantage of a distrib-
uted organization is the increase in availability and reliability of an archive due to the redun-
dancy provided by systems sharing the same data.

This study will focus on the Internet, the world’s largest computer network with a heavy aca-
demic background. However, the main findings apply to any wide area network of similar or
smaller extent.

The Internet currently has a host population of more than 940,000 hosts [10, June 1992]. More
than 242,000 hosts belong to the commercial (.com) top-level domain and more than 15,000
are located in Switzerland (.ch). Fig.1 illustrates the growth of the host population during the
last eleven years.

[Page 2]

Fig.1 Growth of the Internet host population 1981-1992 (Source: [1] and [10])

As the Internet is based on the TCP/IP protocol popularized with the Unix operating system,
most public file archives are based on the FTP software [7] originally developed at University
of California, Berkeley. The goal of this work is to propose techniques to improve consistency
and user friendliness amongst a single site or a whole set of sites sharing files with a mecha-
nism of data replication without making the current set of tools obsolete.

File transfers are undoubtedly responsible for a large part of the traffic on the Internet [9]. A
measurement study on the National Science Foundation Network (NSFNET) backbone by
Claffy et al. [14] and more recent data found in [15] and [19] shows that in the last three years,
ftp transfers accounted for 40% to 50% of all transferred bytes (Fig 2).

[Page 3]

Fig. 2 Network usage percentage by protocol on NSFNET [14]
from 1990 to 1993 based on data found in [15]

It is important to note that there is a discrepancy between the traffic measured in bytes and the
number of packets transferred. Fig. 3 shows that interactive services like telnet or irc account
for more packets than bytes, compared to the respective numbers for FTP and thus use net-
work resources in a less efficient way.

a) b)

Fig. 3 Traffic on NSFNET measured in number of packets (a) vs. traffic in bytes (b)

[Page 4]

The average size of an FTP data packets was found to be 350 bytes [14] (a full size packet
contains around 576 bytes) whereas a telnet packet contains an average of about 70 bytes [14].
It must, however, be kept in mind that the size of an «interactive» FTP packet which does not
carry data but rather protocol requests is usually about the same size as a telnet packet.

Fig. 4 displays the packet traffic on NSFNET in absolute numbers from 1989 to 1993. While
these numbers are partly affected by changes in the NSFNET network structure and topology
and measuring errors (1991) a long term trend can be well recognized.

Fig. 4 Packet traffic on the NSFNET backbone by protocol (Source: [15])

The structure of the rest of this paper is as follows: In chapter 2 we will present an overview
of some popular methods used today to retrieve information about desired files on the Internet.
This process of «shopping around» for files which suit the needs of a user is called Resource
Discovery. In chapter 3 we examine the requirements for an efficient file archive. Based on
data of existing archives we will discuss several methods of organizing file archives and net-
works of archives. Chapter 4 and 5 describe an implementation of a large scale distributed In-
ternet file archive initiated at the University of Zürich and our experiences after one year of
operation. Finally, chapter 6 summarizes the main findings and concludes the paper.

[Page 5]

2. Resource Discovery

Before connecting to a file archive, a user looking for a specific file has several possibilities to
get the information he needs for retrieving it depending on what he knows about the file in
question. The required information includes

 - The full name or Internet address of the site where the file is located.
 - The fully qualified path and file name on that host

There are of course several types of archive users:

Someone who is looking for a scientific paper or a specific source code usually knows exactly
the name of the desired file or even where to look for it.

However, many users don’t know the file name but they are aware of what the contents of the
file is. They might be looking for documents, technical reports, or statistical data about a spe-
cific topic, or source code or binaries to solve a problem or accomplish a certain task. A short
description of the contents would help them to judge if the file in question suits their needs or
not.

There is also a large number of archive on the Internet users just looking for the latest freely
distributed software or graphics without specific needs. It is probably the latter kind of user
who wastes most of the network bandwidth. The resource discovery facilities presented in this
chapter can only assist users with specific needs in getting the information and locating their
resources.

2.1. Usenet

A commonly used method to announce the upload of a file to an anonymous FTP file archive
is a posting in a Usenet [11] newsgroup. Table 1 presents some of the more popular news-
groups where such announcements are usually being posted. A study by Schwartz [2] found
that in 1990, 89 different newsgroups regularly contain announcements. Therefore this can
only be a small selection. A quick search through the news spool directories on the news
server of the Computer Science Department at the University of Zurich revealed that the
amount of announcements, requests and references to files available for anonymous ftp has
grown to 4840 in 650 different newsgroups during two years. Of course, these numbers are
not representative and they depend heavily on the amount of time articles stay on the server
until they expire.

[Page 6]

comp.archives (Moderated newsgroup consisting only of upload announcements)
comp.sys.amiga.announce (Files specific to the Amiga personal computer)
comp.sys.mac.announce (Files specific to the Macintosh personal computer)
comp.os.ms-windows.announce (Announcements relating to Windows)
comp.sys.next.announce (Announcements related to the NeXT)
comp.windows.x.announce (X Consortium announcements)

Tab. 1 Selection of newsgroups carrying upload announcements

Unfortunately, there are no binding rules on how such an announcement has to look like. It
therefore greatly depends on the moderator of the respective newsgroup to introduce such
rules and instructions and on the user to follow given rules. This makes it difficult to imple-
ment a program that is able to scan news articles for such upload announcements and extract
the required information in a way like aftpgather [2] does. Another problem is that informa-
tion gathered from news articles is subject to heavy inaccuracy and fast ageing. The reason for
this is that many archive sites maintain a special incoming directory, where new files are being
uploaded. To prevent misplaced uploads, the actual archive directories are usually read-only to
the anonymous user. It is then up to the site administrator to move incoming files to the appro-
priate archive directory. The directory information of most announcements will therefore be
obsolete as soon as the file has been moved to another place by the archive staff.

2.2. Archie

Another approach to reduce the efforts of searching for files is the Archie server [8] developed
at McGill University of Canada. Archie is a comprehensive database of references to files on
more than thousand (October 1992: 1020) anonymous FTP archives all over the world. The
database can be queried interactively by connecting to an Archie server with telnet or
non-interactively using the Prospero protocol [12].

Archie is very useful and efficient in finding a file as long as the user knows the name of it.
Therefore, it is only of use to the first category of users as defined at the beginning of in this
chapter. It is almost impossible to find out about the contents of a file by looking at its name.
Many file names are short and cryptic due to the file name length limitation of some older op-
erating systems and file systems and, as a consequence, often ambiguous. Also, many files on
archive sites are packed and their file names consist of a compressor- respectively ar-
chiver-specific file name extension (e.g. abc.tar.Z). Short file names are also a common
source of confusion to Archie users because it can happen that the same file name is used by
completely different programs. By default, Archie outputs the names of all sites keeping the
file regardless of their location within the network structure. So, users may be tempted to con-
nect to a far away host with an expensive connection rather than retrieving the file from a
nearby site.

[Page 7]

Due to the large amount of sites maintained by Archie the database is only updated twice a
week which is not enough to keep the database consistent with the state of the scanned ar-
chives.

Despite its drawbacks, Archie has become an indispensable tool for the resource discovery on
the Internet and has been replicated recently in order to reduce the number of calls to the origi-
nal Archie server.

2.3 Gopher

Many anonymous ftp sites also have Gopher servers installed. Gopher is a distributed docu-
ment delivery system [13]. It allows users to quickly and easily browse through archive di-
rectories using a Gopher client program and to download files directly by selecting them from
a list.

Thanks to its user interface, it is very easy to display README, INDEX and CONTENTS files
with a gopher client. While this feature may help preventing superfluous downloads, Gopher
generally makes transferring files almost too easy. A user may not realize how much network
bandwidth such a transfer can waste. Fig. 5a-5c demonstrate a sample file retrieval session
with Gopher.

 Internet Gopher Information Client v1.11

 Anonymous FTP archive of the Ifi (DCS of UofZurich) on claude

 1. incoming/
 --> 2. pub/

Press ? for Help, q to Quit, u to go up a menu Page: 1/1

Fig. 5a Sample Gopher session: Selecting an archive directory (e.g. pub)

[Page 8]

 Internet Gopher Information Client v1.11

 pub

 --> 19. synclock.tar.Z <Bin>
 20. techreports/
 21. tex/
 22. utimer.tar.Z <Bin>
 23. xnand/
 24. xxgdb-1.07+.tar.Z <Bin>

Press ? for Help, q to Quit, u to go up a menu Page: 2/2

Fig. 5b Sample Gopher session: Listing files in a directory

 Internet Gopher Information Client v1.11

 pub

 --> 19. synclock.tar.Z <Bin>
 20. techreports/
 +--+
 | |
 | Save in file: synclock.tar.Z |
 | |
 | [Cancel ^G] [Accept - Enter] |
 | |
 +--+

Press ? for Help, q to Quit, u to go up a menu Page: 2/2

Fig 5c Sample Gopher Session: naming and retrieving a file.

[Page 9]

3. Requirements

This chapter describes requirements, methods and mechanisms for an efficient network of file
archives in large scale distributed systems. It presents and evaluates various methods for a
better file archive organization.

3.1. Caching, Decentralization and Replication

As discussed earlier, the Internet file transfer protocol FTP is responsible for almost 50% of
the Internet byte traffic. The main objective of decentralization, caching and data replication
schemes is to reduce this load by diminishing the number of duplicate transfers of the same
data and limiting the traffic to data exchange between adjacent hosts.

A cache in its purest sense is a write-through buffer (e.g. used on the memory bus of a
computer). Here, we use the word cache to describe a facility (i.e. a disk on an archive)
carrying replicas of files. It is up to a data replication scheme to create and maintain these
copies or replicas on a cache. A cache can only contain a subset of all potentially replicable
files. It has been observed that most Archie [8] requests are answered by using only a small
part of the database information while some entries have never been requested. So, in this case
it would be most efficient to replicate only the «popular» files using a cache. (See below for a
discussion of the popularity of files).

Facilities carrying an exact replica of all the files of an archive are called mirrors . The term
mirror is originated from a set of perl [17,18] scripts of the same name designed to replicate
complete file archives on Unix systems [16].

According to Ewing et al. [3] almost half of all transfers could be saved by eliminating the
number of duplicate transmissions, i.e. files that are being transferred more than once to the
same destination host. An ideal archive organization would therefore have caches at
strategically important locations on the network carrying important files. Unfortunately, as
Maffeis [6] and Ewing et al. [3] discovered that a small subset of files is significantly more
popular than others. While some files are being downloaded several hundred times, other files
might never be downloaded. Distributing unpopular files to caches or other archives around
the world would result in an unnecessary waste of resources. Maffeis found that 50% of all
transfers related to only 12% of all retrieved files [6]. However, it is almost impossible to
algorithmically decide if a file is of possible interest of users and subject to many downloads
or not. No algorithm would be able to keep in account all factors which make a file popular.

One approach that has been brought up by some authors is to consider the file type in a
caching mechanism. This may look problematic at first sight: Table 2 shows the contents of a
directory of files with similar contents on an anonymous ftp server at the University of Zurich
and the number of times every single file has been transferred. It shows that even files of the
same or similar type can have totally different popularity.

[Page 10]

file name uploaded @ last d/l byte size downloads

bison-1.16.lha Apr 15 1992 Dec 26 1992 406749 53
bmake15.lzh Dec 31 1991 Dec 29 1992 135684 56
gasldsrc1.38.tar.Z Dec 31 1991 Dec 25 1992 328897 38
gcc.2.2.2-diffs.lha Oct 1 1992 Dec 24 1992 30823 38
gcc21-920420.lha Dec 31 1991 Dec 24 1992 1691779 31
gcc222-fix1.lha Aug 22 1992 Dec 29 1992 32720 115
gcc222-fix2.lha Sep 11 1992 Dec 29 1992 7286 132
gcc222-fix3.lha Nov 9 1992 Dec 30 1992 173155 170
gcc222.lha Jul 13 1992 Dec 30 1992 3306066 105
gcc233.lha Nov 19 1992 Jan 4 1993 3588223 194
gcc233libfix.lha Dec 18 1992 Dec 18 1992 262229 1
libg++2.0-920319.lha Sep 23 1992 Dec 29 1992 369705 77
gcctools-920420.lha Apr 20 1992 Dec 29 1992 102158 55

Tab. 2 Files in the dev/gcc directory of icu.unizh.ch and their download counts

However, observing download counts for a large number of files over a longer period of time
can give at least a clue to determine which categories of files are more important and which
are negligible.

To find out if there really was a distinct correlation between file category and popularity, all
outgoing file transfers on icu.unizh.ch were logged for three months. Instead of using file
extensions (e.g. .jpeg, .Z, .dvi, .lha etc.) to distinguish between file types [3] we
took a completely different approach: All files available on the server and uploaded during the
three month period have been manually examined and assigned to one of the following 15
categories:

Biz Business software (database, spreadsheet, word processing, DTP)
including patches for commercial software

Comm Communications and network software
Demo Demonstration programs, presentations, slideshows
Dev Software development tools, compilers, debuggers
Disk Disk and file management utilities
Doc Text documents, reports, newsletters
Ent Entertainment software
Gfx Graphics software and utilities
HW Hardware projects
Misc Miscellaneous files not falling in any other category
Mods Sound modules, complete compositions and samples
Music Music software
OS 2.0 Various utilities requiring new system software
Pix Pictures, illustrations and graphs

[Page 11]

During the observation period, 105,344 outgoing file transfers of 1,697 different files took
place.

The «average number of downloads per file type» ratio used in Fig. 6 has been calculated as
follows:

of times files of the file type have been retrieved
average # of downloads per file type =

of files of the file type

Fig 6: Average number of downloads on icu.unizh.ch by file type

Fig. 6 shows that the popularity of files on a file archive can indeed be tracked down to their
file type: some categories have almost twice as many average retrievals than the least popular
ones. A cache algorithm considering the file type to estimate which files would benefit from
caching and which not would therefore use collected experience data to decide if a file should
be made available to caches or not. However, keeping in account that even files of the least
popular category have been retrieved an average of 46 times (with a standard deviation of 35),
it would probably be more efficient in the case of icu.unizh.ch to put all files on cache hosts
by creating mirrors carrying a replica of the complete file system of the archive. It is also

[Page 12]

questionable if a simple replication heuristic such as «NAIVE» (as defined by Maffeis and
Cap in [5]) which replicates objects only if they are accessed for the first time would be useful
in this case considering the high average number of retrievals.

Another approach is to consider the file size. Maffeis discovered a distinct relationship
between the size and the popularity of files: Smaller files have a significantly higher
popularity than very large files [6].

3.2. Improving access time and resource discovery

Ewing et. al. found in their study [3] that only 44% of all FTP connections were resulting in
an actual file transfer and suspected that most other operations were file manipulations such as
listing directories. As discussed earlier, this interactive traffic uses considerable network
bandwidth and, on the other hand, is painful for the FTP user. Although there are already
many facilities designed to assist a user in the process of finding his resource such as those
described in chapter 2, the Unix ftp utility is far from being user friendly and has many
disadvantages. For example, it requires the user to switch from an ASCII transfer mode, which
is turned on by default, to a special binary transfer mode. The ASCII mode is used to convert
text files to an intermediate «standard network format» which can be used to compensate for
different character sets on different operating system platforms. Binaries transferred in ASCII
mode are corrupted and therefore unusable and must be retransferred. This misfeature alone is
the cause for many duplicated transfers [3].

There is a wealth of simple methods to reduce and assist browsing (i.e. changing directories,
listing directories) on an archive. First, the directory tree structure must be logically arranged
and predictable. It should not contain too many subdirectories but at the same time the number
of subdirectories in a directory should not be too large. Many archives have directories for
every computer architecture they support in their archive top level. The next directory level
usually contains subdirectories for the most important file types which themselves contain
subdirectories which divide file types further. All files except some special README or
contents listings are exclusively in the lowest directory level. Second, incoming files uploaded
by users should be separated from the real archive to avoid confusion because of misplaced
files. New files should be examined by an administrator and moved into the appropriate
directory according to the file type.

Index files are also a very important feature of a well-managed archive. They should be
available in a compressed format for users who want to copy them to their local machine for
closer inspection. A readme file in the top-level directory should inform users about the
archive contents directory structure, and other administrative details. It is also useful to
display a brief notice about the contents whenever the user changes to a directory using the cd
command to make sure the user does not list a directory he is not really interested in.

Many attempts have been made to enhance the existing ftp utility by making it easier to use, or
by adding additional commands beyond the scope of the RFC specifications [7] to the ftp

[Page 13]

server to make resource discovery easier. Other approaches, while still based on the ftp
protocol, try to replace the user interface of the ftp utility.

3.3. Keeping Consistency

A crucial point for distributed file systems is consistency between the server and its caches.
First, the cache or mirror system should contain the same files as the server, second, the files
must be located in the same directories as on the replicated site. Inconsistent file system
organization can be frustrating to users and may even have the effect that the effort for
resource discovery (directory browsing) is much higher.

Also, the file systems must be synchronized regularly. The files must already be available on
the cache system before the first upload announcement (e.g. Usenet) reaches the user. Users of
a mirror site should not get conscious of the «propagation delay» required to distribute a
certain file from the replicating site to the respective host. Otherwise they might be tempted to
rather connect to the site where the file was first uploaded instead of using the local cache or
mirror.

For example, when version 5 of the X Window System (X11R5) was released by the MIT
consortium, it was made available on more than 20 anonymous ftp sites around the world by
manual replication before it was publicly announced on the networks in order to prevent a
network congestion.

3.4. Managing Updates and Duplicates

Sources, binary files as well as text files are often updated by their authors to fix bugs or to
add new information. They replace files that already exist on the archive. In most cases it
makes no sense to keep older versions. However, sometimes, old versions are still required,
especially if the new revision is supplied as a patch which must be applied to the original file.
Because all files uploaded with anonymous ftp get the same file ownership information it is
not possible to identify their originator. Therefore most archives don’t allow anonymous users
to delete files. If someone provides a new version of an existing file the only thing he can
possibly do is to leave it up to the archive’s administrators to delete the old copy. Another
problem is that many archive users don’t name different versions or patches of their files in a
consistent way. Also, users could independently upload the same file twice with different file
names. This leads us to another important issue:

[Page 14]

3.5 File Naming

To make resource discovery (i.e. archive searches), update and duplicate management easier,
archive administrators should enforce certain naming conventions. Unfortunately, some
operating systems (e.g. MS-DOS or VMS) have restrictive file name length and structure
limitations which require users to make their file names short and cryptic.

Here is an example of how a simple file naming system could look like:

XYEditor-100.tar.Z

Full Program Name Program Version (decimal) File extension (file type, archiver, packer)

The full program name allows to identify the contents of the file without having to take a
closer look at the contents of the archive or a readme file. The decimal program version
identifier (where 100 corresponds to version 1.0, 122 equals 1.22 etc.) allows for easy sorting
of different versions of the same file

A patch update could use the same program name as the file it is based on but uses a different
version number and a «p» character identifying it as a patch archive, e.g.

XYEditor-101p.tar.Z

Full Program Name Program Version Patch identifier File extension

For README descriptions or announcements accompanying the document or package, the
string readme would replace the file extension:

XYEditor-100.readme

Enforcing a naming scheme requires a lot of discipline by the archive users but our
experiences presented in chapter 4 prove that it is indeed possible to «educate» archive users
to take care of file naming conventions.

[Page 15]

4. Case Study: Aminet

The following chapter describes an implementation of a replication scheme initiated at the
University of Zurich. It was designed to solve the common problems of a traditional
stand-alone anonymous ftp servers by decentralization and the use of simple but efficient file
distribution. The project is called Aminet because it originally concentrated on binary files for
one personal computer architecture, the Amiga personal computer. Today, Aminet carries
other files as well (e.g. scientific documents, Unix source code etc.).

4.1. Philosophy

Aminet has been established in 1992 by members of the ICU, the Computer Science student’s
association at the University of Zurich which is running a bulletin board system and a file
database for its members on two Unix workstations. The main motivation behind the Aminet
project was first to provide a well managed local file base to prevent users of local Unix ac-
counts from transferring files from remote sites themselves. It has been observed that before
the introduction of the local file base, in many cases different users were downloading the
same files independently. The local file archive should be also accessible by users of the ICU
bulletin board system. Furthermore, we discovered that at that time there existed one large In-
ternet ftp server in the United States carrying binaries and sources for the Amiga personal
computer (ab20.larc.nasa.gov) and interested users from everywhere in the world were con-
necting almost exclusively to this site. When this archive suddenly had to close down, we de-
cided to replace it.

Based on our observations and the experiences with ab20.larc.nasa.gov, the most important
goal was to use the network resources as sparingly as possible. We realized that most of these
problems could only be solved by a large network of sites carrying the same file base and ex-
changing files using a replication scheme. We decided to create a concept that keeps network
load down and at the same time tries to address most of the other problems discussed earlier in
this paper (Tab. 3).

Save resources by:
• creating a network of archives around the world
• replicating file systems
• supporting resource discovery
• simplify file management and administration

Tab. 3 The four main goals of the Aminet project

[Page 16]

The system should be based on existing TCP/IP software and run on any Unix system to make
it possible for all users to immediately take advantage of its features. Table 4 shows the five
levels on which Aminet software is based.

• User Interface
• Statistical tools
• File management tools
• Administration tools
• Enhanced ftpd (FTP server)

Tab. 4 The five software levels of the Aminet system

The structure of the Aminet network could be described as a hierarchical single-directional
mirror system. This means that there is one master host (called Aminet Server) where users put
their files and an arbitrary number of Aminet Mirrors which mirror the archive file system of
the Aminet Server by polling it regularly. The server-mirror structure has been chosen to pre-
vent multiple uploads of the same file to different mirrors and to make administration easier
because the administration work has to be done on the server only. Table 5 shows the 12 hosts
currently participating in the Aminet project. The client-server structure of Aminet is dis-
played in Figure 7.

Location Host name IP Address

Switzerland icu.unizh.ch 130.60.80.80
Switzerland litamiga.epfl.ch 128.178.151.32
Scandinavia ftp.luth.se 130.240.18.2
Germany ftp.uni-kl.de 131.246.9.95
Germany ftp.uni-erlangen.de 131.188.1.43
Germany ftp.cs.tu-berlin.de 130.149.17.7
Germany ftp.th-darmstadt.de 130.83.55.75
Germany ftp.uni-paderborn.de 131.234.2.32
USA wuarchive.wustl.edu 128.252.135.4
USA merlin.etsu.edu 192.43.199.20
USA oes.orst.edu 128.193.124.2
Australia splat.aarnet.edu.au 192.107.107.6

Tab. 5 The 12 Aminet sites

[Page 17]

icu.unizh.ch
(Switzerland)
AMINET SERVER

splat.aarnet.edu.au ftp.uni-kl.de ftp.luth.se wuarchive.wustl.edu
(Australia) (Germany) (Sweden) (USA)
AMINET CLIENT AMINET CLIENT AMINET CLIENT AMINET CLIENT

Fig. 7 The hierarchical client-server structure of the Aminet network (not comprehensive)

4.2. File Organization

In order to keep the archive consistent and well-managed, the file structure on the Aminet is
divided in two main directory trees and follows the traditional structure of most current ftp
sites as described in chapter 2.1. One tree consists of a directory named new which is writable
by anonymous users and where new files can be uploaded. The other tree consists of two di-
rectory levels containing the read-only archive (see Fig. 8). Aminet currently only supports
one machine architecture for binary files (i.e. the Amiga) but could easily be expanded for
more architectures by introducing an /pub/aminet directory tree for every machine type.

 new/
 /pub/aminet/

 text/ tex/
 dtp/

 ...
 comp/ jpg/
 xpk/

 ...
 comm/ term/

 ...
 ...

Fig. 8 The Aminet archive file structure

[Page 18]

4.3. Special Files

Various additional files are required for the mirroring system to operate properly. Some files
must be created by the contributor of the file and require quite an amount of discipline from
the single user. A file named README.BEFORE.UPLOAD located in the new directory lists
these rules some of which are discussed in detail below. It also proposes non-stifling naming
conventions to ease administration, duplicates management and resource discovery. However,
most files are maintained automatically by the administration tools.

4.3.1. Files created by the archive user

Every user uploading a file to the Aminet server is expected to provide a corresponding RE-
ADME file which describes the contents. It primarily serves the site administrator to judge
where in the /pub/aminet tree he should put the file. There are no rules whatsoever on
how the README announcement should look like. However there is one short line that should
be in every such announcement: It starts with the keyword SHORT: followed by a 40 charac-
ter summary of the file’s purpose. The Aminet file management utilities scan every announce-
ment for that particular keyword and use the information to create various files described in
the next chapter. The name of this README file is supposed to consist of the name of the ar-
chive or file it refers to and an extension named .README, e.g. FOO.README.

4.3.2. Files created by the Aminet file management and administration tools

The Aminet file management and administration tools are a collection of small C-Shell scripts
handling all tasks required to maintain file lists and statistical data. They also take care of up-
dating the mirror files required for the Aminet replication system.

4.3.2.1. File Database

The ftp daemon program on the Aminet server maintains a database of all files on the archive
in GNU gdbm database format containing various statistics like the date of upload, the date of
the last download, the number of times the file has been retrieved and the e-mail address of the
person who contributed the file. All administration and statistical tools are built around this
file database.

4.3.2.2. User files

User files are text documents designed to assist the user in the process of resource discovery.

[Page 19]

4.3.2.2.1. RECENT

The RECENT file located in the root of the /pub/aminet tree contains a listing of all files
that have been uploaded within the last 7 days sorted by age. The information of this listing
consists of the file name, its location within the /pub/aminet directory tree and the short
description given by the user in the README file. The RECENT listing is prepared automati-
cally twice a day. Two versions of the same listing are being prepared, one in plain ASCII for-
mat another in a compressed format (using the Unix compress utility). Table 6 shows an
example of how the RECENT listing may look like.

Recent uploads to icu.unizh.ch [130.60.80.80] on 16-Oct-92
These are the last 7 days’ uploads, newest first.

#File Dir Size Description
#------------------- --- ---- -----------
emath-3d.V1.0.lzh gfx/misc 35K 3d function plotter
AmigaJPEGV3.lha gfx/conv 138K Version 3 of the JPEG software
sas2ced5.lha dev/c 10K interface from SAS/C 5.10b to CygnusEd 2.12
PCQ12src.lzh dev/lang 149K PCQ Pascal version 1.2 (source)
Din.zoo dev/misc 31K Interprocess communication library
shadow4.6.lzh dev/misc 173K concurrent-object-oriented additions to AmigaOS
sana2.lzh dev/misc 48K Official CBM network architecture standard
TRIX.lha dev/misc 12K Complete Amiga Neural Net package.
AmigaPGP20.lha util/crypt 444K Public-key encryption
ARexxAppList-10-92.l util/rexx 25K The ARexx Application List, 10/92

Tab. 6 The RECENT file

The RECENT listing has mainly been introduced to address the problem of archive users with-
out specific needs discovered by Ewing et alt. [3] and discussed in chapter 2. It prevents them
from scanning directories by just changing directories, listing and downloading files of poten-
tial interest. Thanks to the short description, it also makes it easier for the user to decide if the
file in question is of any use for him. So it comes to no surprise that the RECENT file has be-
come the most downloaded file on all Aminet sites. On the Aminet server, there are currently
almost as many retrievals of the RECENT file as there are successful logins.

4.3.2.2.2. SHORT, ls -lR.Z, CHARTS

The SHORT file, also located in the root of the /pub/aminet directory tree, is somewhat
similar to the RECENT listing. However, it contains entries for all files in the archive sorted by
file name instead of date. Like the RECENT file, it includes short summaries of the file con-
tents. The listing is updated once a day. As it can grow quite large it is only available in a
compressed format.

[Page 20]

ls -lR.Z is named after the command sequence used to generate it. It is a compressed
version of a recursive listing of all files on the archive site. The file can be downloaded by any
user but its main application is to provide the Archie database, which polls the Aminet server
and most clients on a regular basis, with detailed information about the contents of the site.

Another listing which is mainly of informal use for archive users is named CHARTS. Similar
to the SHORT and RECENT files, it contains a location indicator and short descriptions.
However, unlike the other files, it is sorted by the number of times the entries have been
downloaded.

4.3.2.3. Mirror files

These are the files that make up the core of the Aminet replication scheme. Each client system
has its own mirror file in a special /priv directory which is not readable by normal archive
users. It consists of a list of simple get commands for the Unix ftp client software, one line per
file to be transferred. The mirror files are maintained by the administration scripts. Only files
that have already been moved to their final location in the archive directory tree are listed.
Mirror files can also contain delete and move instructions for the client.

If the connection between the server and the client was successful and all file transfers have
been completed without error, the entries for the transferred data will be removed from the
mirror file.

This system has several important advantages over the mirror package [16]. Most noteworthy,
the client does not have to list the complete contents of the server to compare and synchronize
file systems every time it connects to the server because the server itself keeps track of which
files were replicated and which not.

[Page 21]

4.4. The Administrator

Administering an Aminet client site is quite easy, since most of the painful daily work to
maintain the archive is done on the server machine. Of course, client sites must strictly adhere
to the directory tree specifications of Aminet and have the replication and polling scripts
installed. Much more work must be done on the Aminet server: The administrator has to
examine every README document in the new directory and move it and its associated files to
their final destination within the archive tree. The scripts creating mirror files for clients can
be both run by a crontab entry or manually by the administrator after changes to the file
system have been done.

4.5. Replication Techniques

The file systems on server and client machines are currently synchronized on a regular basis,
depending on the client’s capacity and needs by polling the server machine. A special feature
in the Aminet ftpd (ftp server) program used on the server allows clients to log in with special
privileges and therefore circumvent the user count restriction. As the synchronization process
is fully automated it can be activated from within a crontab at times when network activity is
low and transfer rates are reasonably high. Of course, these times greatly depend on the
location of the respective client within the Internet network topology and it is up to every
client administrator to find the best configuration for his situation.

It has been observed that synchronizing file systems about twice or three times a day is
sufficient for most clients keeping in account the propagation delay of announcements
submitted to Usenet until they reach the users.

4.6 File Expiration

File space on archive sites is often limited. Adding new mass media devices to a system does
not solve the real problem, namely that many older file are simply not worth to be stored on
the archive because no user will ever download them again. Also, a partition where files can
be uploaded should never be full in order to prevent incomplete transfers and not frustrating
users. To overcome this problem, a file expiration mechanism was introduced at icu.unizh.ch.

The file database on icu.unizh.ch provides useful information for an algorithm to decide if a
file is still worth staying on the archive. The expiration algorithm takes two parameters: First,
the number of retrievals (used to determine if a file is popular or not). Second the age of the
file. The higher priority was given to the age of the file. Every file has a chance to stay on the
archive for at least a certain amount of time until its popularity is even been considered.
Depending on the amount of free space required on the archive file system, the minimum
number of downloads required to justify the existence of a file can be raised or lowered.

[Page 22]

4.7. User Interfaces

4.7.1. ftp client

The ftp client program offers a very simple way of interacting between the user and an Aminet
archive host. Although the ftp server (ftpd) used on icu.unizh.ch includes several so-called
site-extensions not found in the RFC specifications on which all ftpd implementations are
based on, it is still not easy to use. Some of the more important extensions are presented here:

quote site xcat

Dumps the contents of ASCII documents regardless of if its archived and compressed or not.
Many compression schemes are supported including Berkeley Unix Compress (.Z), Lem-
pel-Ziv, Huffmann (.lzh, .lha), Zoo etc. (Tab. 7)

ftp> quot site xcat make-3.63.readme
 213- Contents of ‘make-3.63.readme’ follow:
 Short: Amiga port of GNU make, OS2. only
 Uploader: bg@macrohard.com
 213- Contents of ‘make-3.63.readme’ complete.

Tab. 7 Output of the quote site xcat command

quote stat

Lists the contents of compressed archives along with several statistics about who uploaded the
file and how much it has been downloaded (Tab. 8). The actual listing of the files in the ar-
chive depends on the archiver used for the particular file.

ftp> quot stat make-3.63.lha
211- status of make-3.63.lha:
211- Created Thu Jan 28 22:03:52 1993 by bg@macrohard.com.
211- Last downloaded Tue Mar 30 04:20:48 1993, total download count 110.
 PERMSSN UID GID PACKED SIZE RATIO CRC STAMP NAME
 ----------------- ------- ------- ------ ---- ----------------- -------------
 [generic] 60396 112488 53.6% e957 Jan 9 13:40 2009 make-3.63/bin/make
 [generic] 1203 2308 52.1% 41e9 Jan 27 17:36 1993 make-3.63/build.sh
 [generic] 1212 3512 34.5% bcce Jan 28 18:33 1993 make-3.63/config.h
 [generic] 6993 17982 38.8% dc3e Jan 28 18:39 1993 make-3.63/COPYING
 [generic] 9285 25265 36.7% 56b8 Jan 3 05:02 1992 make-3.63/libs/COPYING.L IB
 [generic] 77035 148428 51.9% 10da Jan 28 19:28 1993 make-3.63/libs/ixemul.library
 [generic] 693 1781 38.9% 8d41 Jan 28 18:47 1993 make-3.63/make.diff
 [generic] 3175 7992 39.7% 3acd Jan 28 19:23 1993 make-3.63/Makefile
 [generic] 1618 3167 51.0% 90dd Jan 28 22:01 1993 make-3.63/README
 ----------------- ------- ------- ------ ---- ----------------- -------------
 Total 9 files 161610 322923 50.0% Jan 28 22:26 1993
211 End of Status

Tab. 8 Output of the quote stat command

[Page 23]

Furthermore, the ftpd automatically detects if a user tries to transfer a file containing binary
data in ASCII transfer and issues a warning message. Also, it supports the «resume transfer»
feature for incompletely transferred files.

4.7.2. adt

ADT (Aminet Download Tool) is a user-friendly front end to the ftp program which uses the
special files and features of Aminet client hosts. ADT is implemented with the C language. Its
user interface, created with the Unix curses package, is loosely based on the popular freely
distributable electronic mailer program «elm». It allows the user to directly select the files
from lists containing file names and descriptions. These lists can be sorted by name, date, size
and age. ADT includes a pager to display README files and other documentation and list the
contents of archived or compressed files. Desired files can simply be selected (tagged) by
moving a highlighting bar with the cursor keys. A special «batch download» feature helps
downloading several files or documents at once (Fig. 9a to 9d). ADT also includes an
interactive search feature

The advantage of a tool like ADT is that users do not have to worry about the directory
structure and complex ftp client commands. It also takes care of the ASCII mode problems of
the ftp protocol. However, the same that has been said about gopher also applies to ADT:
While it greatly assists the process of resource discovery, it makes downloading files very
easy - almost too easy.

[Page 24]

 New files: 132/142 Aminet Download Tool 1.2.4 Page: 9/10

 File (by dir) Dir Size Description Readme
 NTSC4NTSC_V2.2.lha os30/util 16K Opens all Screens in NTSC (AGA-Support)
 intelclip.lha pix/misc 11K "intel outside" logo for PDraw 3.0 *
 xmen.lzh pix/misc 505K XMEN cartoon *
 conefog.lha pix/trace 184K Raytraced Pic created in Imagine2 *
 5min0320.lha text/anno 13K GEnie 5-Minute News - 3/20/93
 ar101.lha text/anno 54K Report - #1.01 3/19/93
 cebit_review.lha text/anno 121K CeBit review *
 nenscript1.3.lha text/misc 56K PD enscript clone (text->PostScript uti*
 MultiPrint15.lha text/print 29K MultiPrint15 - Nice output of text files*
 ppmore20.lzh text/show 55K File viewer, OS2.x or greater *
 unz51d3xi.lzh util/arc 80K UnZip version 5.1d3 from Info-Zip for un*
 gzip1.07.lha util/gnu 45K Unsupported port of GNU zip, gzip1.0.7
 daterecall16.lha util/misc 11K Scheduler for birthdays, exams, dentist,*
 dbb11.lha util/misc 116K GUI Digital Logic Circuit Simulator (WB2*
 PPI_040.lha util/misc 264K 040 software that comes with Zeus board *
 PCHGLib12.lha gfx/misc 598K PCHG (palette change) chunk specificatio*

 d)ownload i)nfo l)ong n)ame r)eadme s)ort v)iew q)uit

Command:

Fig. 9a Listing RECENT files in short format with ADT

 Name PCHGLib12.lha Date Tue Mar 23 18:21:10 1993 Size 612406

Short: PCHG (palette change) chunk specifications, tools and examples.

This archive contains the PCHG (Palette CHanGe) IFF chunk specs and
tools. The new IFF chunk PCHG allow to specify line-by-line palette
changes in a simple way which is independent of the video mode; while
it allows up to 65536 registers, it’s usually shorter of an equivalent
CTBL or SHAM chunk. Library code with full source and documentation is
provided for a straightforward implementation in your programs. PCHG
has been developed in BIX through an open discussion of many Amiga
programmers, and it is our hope that it will become the Amiga standard
for palette change technology. Stunning sample pictures included 8^).

 End of file - press space to return

Fig. 9b Displaying a README file

[Page 25]

All files: 2069/2694 Aminet Download Tool 1.2.4 Page: 138/180

 File (by name) Description Readme
 Scale.lha musical scales *
 SCAN8800.lzh Database for shortwave frequencies *
 schelober.dms Database manager *
 sci.3d-illusion.lha Optical illusion
 sconfig.lha Some DiskMaster config files *
 scrammer.lha RAM control (2.0 required)
 SCRAMMER373B.lha Check and set CPU & SCRAM options *
 SCRAM_2000.lha 8MEG/SCSI Controller KitWare
 SCRAM_500_KITWARE.LZ 8MEG/SCSI Controller KitWare *
 ScreamForHelp.lha Musical score
 ScreenSelect_V1.2.lh Commodity to change screen orders.
 scripts.lzh Unix shell scripts
 ScrnTst.lha Program to test monitor quality, v2.0 *
 SCSIMounter203.lha Version 2.03 of SCSIMounter. OS 2.0+ only
 ScsiTape.lzh Scsi-Direct tape handler *

 d)ownload i)nfo l)ong n)ame r)eadme s)ort v)iew q)uit

name-i-search: SCSIMoun

Fig. 9c Listing files in long format and searching for strings

Tagged: 2/2 Aminet Download Tool 1.2.4 Page: 1/1

 File (by nothing) Description Readme
+ScrnTst.lha Program to test monitor quality, v2.0 *
+SCSIMounter203.lha Version 2.03 of SCSIMounter. OS 2.0+ only *

 d)ownload i)nfo l)ong n)ame r)eadme s)ort q)uit

Command: Download

 Processing....

Fig. 9d Display and retrieve tagged files

[Page 26]

4.7.3. DCC

Another popular interface to the Aminet archives is IRC. IRC is the Internet Relay Chat
service which allows Internet users to communicate with each other in different conferences.
IRC has a built-in efficient file transfer protocol called DCC which can even be used during a
conversation. The Aminet IRC client, also implemented in C, allows IRC users to transfer
files using the DCC protocol. It also assists users in locating files, either globally (using an
archie front end) or locally by querying the local file listing. It can output descriptions and
information about the size of the queried files. As shown in Fig. 10, it allows to search not
only for file names but also for expressions in the description line. Every Aminet client can
have its own IRC front-end and some clients offer additional resource discovery features.

/msg Merbot help
-> *MerBot* help
-Merbot- This is the IRC frontend to the merlin.etsu.edu ftp site. Commands:
-Merbot- INFO Sends by /dcc a complete help file
-Merbot- LIST n Shows last n uploads, default 10, max 20
-Merbot- NEW Sends by /dcc the list of last 14 days’ uploads
-Merbot- FIND str Finds a file on merlin.
-Merbot- ARCH str Does a worldwide archie query for str. 3 replies max.
-Merbot- GET str Sends a file to you. No path required.
-Merbot- Please note that merlin.etsu.edu also has a CDROM of the ab20
-Merbot- archives online, as they were when they closed. FTP over and
-Merbot- check it out!
-> *MerBot* list 3
-Merbot- FILE DIR SIZE DESCRIPTION
-Merbot- conner-hd-stats.z hard/anno 225K Specs for Conner Peripherals HD.
-Merbot- xdrop2.21.lha util/pack 23K Version 2.21 of xdrop. Requires xpk
-Merbot- AmigaScope.lha hard/hack 25K 8 channel digital oscilloscope, use
-> *MerBot* find xpk
-Merbot- FILE DIR SIZE DESCRIPTION
-Merbot- xdrop2.21.lha util/pack 23K Version 2.21 of xdrop. Requires xpk
-Merbot- xpk24usr.lha util/pack 142K Compression package, user’s edition
-Merbot- xpk24dev.lha util/pack 94K Compression package, developer’s ad
-> *Merbot* get xdrop2.21.lha
*** DCC SEND (xdrop2.21.lha) request received from Merbot
*** DCC GET connection with Merbot established
*** DCC GET:xdrop2.21.lha connection to Merbot completed

Fig. 10 A sample IRC/DCC session

4.7.4. Usenet Postings

To assist resource discovery the statistical tools automatically place weekly postings in the
Usenet newsgroups comp.sys.amiga.archives and de.comp.sys.amiga.archives, which have
been created for this purpose. The announcement contains a list of the most recent files
uploaded to Aminet, similar to the one found in the RECENT file, along with a table of all
Aminet sites and short communications of the archive staff (reminders, announcements etc.).
Other non-Aminet sites (e.g. nic.funet.fi) have also started using these newsgroups.

[Page 27]

5. Experiences and improvements

The experiences gathered during one year of operation of the Aminet project were very
encouraging. While most technical problems could be solved immediately, some drawbacks
appeared only after several months. In the beginning, our biggest concern was the lacking
discipline of many users. Often, files were uploaded without accompanying README file or
the documentation did not include the keywords required for our administration software. This
could be resolved partly by including short upload instructions in the weekly «recent uploads»
posting and a monthly FAQ (Frequently Asked Questions) document on Usenet explaining
how to use anonymous ftp on the Aminet. Also, short instructions were added to the
«message-of-the-day» text which appears on every anonymous login. Users who were still
contributing files with insufficient documentation were sent a pre-fabricated instructions file
by e-mail. As a result, after a few weeks, almost all contributed files were accompanied by
README files. Still, some users did not care about providing documentation to their upload.
Probably, only an enhancement of the ftp protocol for allowing the server to interactively ask
for a description for every uploaded binary file (which would then be stored in a README file)
could solve this problem.

Recently, a few additional optional keywords for the README file were proposed. They will
allow future versions of the administration and file management utilities to automatically
move new contributions to the appropriate archive directories and help the administrator to
find out the appropriate file category.

Another concern was that, although users were mostly following naming conventions, updates
were very hard to handle. Often, two versions of the same file were categorized differently by
the archive administrators and duplicates went unnoticed. Also, it was sometimes impossible
to distinguish between incremental updates, patches and replacements. These problems have
only partly been solved yet and will still require much additional research.

It was noted after a few months that some users were always connecting to the server,
regardless of the location of their host within the network topology, instead of using a local
mirror. We discovered that the main reason for this behavior was the propagation delay and
the lacking consistency between server and clients. As a consequence, a lower user limit was
introduced on the Aminet server and the amount of time between two synchronization runs
was considerably reduced. Most clients now synchronize their file systems with the server file
system three times a day instead of just once a day. Furthermore, the new directory, where
new and unclassified files reside, was made unreadable for users.

Also, the single-directional organization was partly broken up by allowing new files to be
submitted to clients. The client then forwards these files to the Aminet server on the next
polling run.

[Page 28]

6. Conclusions

Distributing archive file systems on several hosts in a wide area network can lead to
tremendous savings of network bandwidth and long distance transfers. It makes the sharing of
scientific, business and multi-media data much easier by improving availability, access times
and fault tolerance and significantly reducing the costs for long-distance file transfers. Facing
the exponential growth of wide area networks such as the Internet, the use of distributed file
archives is imminent, not only in an academic environment but also for multinational
companies.

Several of the problems that need to be solved are, amongst many other factors, the heuristics
of the replication process and the consistency between file systems on different sites. While
still relying on existing protocols, the Aminet project addresses most of the problems of
distributed file archives by providing assistance on many levels, from the user-interface,
assisting resource discovery, down to the file management software. It serves as a test case for
distributed archives with replicating file systems. Although many administration tasks can be
automated, a fair amount of manual intervention is still required to maintain the archive as
there are many unpredictable factors which decide over the importance or popularity of a file.

The decent experiences gathered during one year of operation of Aminet prove that it is well
possible to organize file archives in large scale distributed systems without implementing new
protocols. However, new protocols will definitely have to be judged by their amount of
support for the organization of file archives in large scale distributed systems.

[Page 29]

Acknowledgments

This paper would not have been possible without the help of several fine individuals,
especially Silvano Maffeis who assisted and encouraged me in many ways. A very special
thanks to my colleagues at the Computer Science Student’s Association (ICU) especially
Urban D. Müller, who was the driving force behind the Aminet project and who assisted me in
gathering statistical data, and Markus Wild for being ready to answer all my Unix-related
questions.

[Page 30]

References

[1] Lottor, M. K. Internet Growth (1981-1991). RFC 1296, SRI International, Jan. 1992.

[2] Schwartz, M. F. et al. Supporting Resource Discovery Among Public Internet Archives
Using a Spectrum of Information Quality. Tech Rep. CU-CS-487-90, University of
Colorado, Boulder, USA, Sept. 1990.

[3] Ewing, D. J. et. al. A Measurement Study of Internet File Traffic. Tech. Rep.
CU-CS-571-92, University of Colorado, Boulder, USA, Jan. 1992

[4] Sandhu, H. S. and Zhou S. Cluster-Based File Replication in Large-Scale Distributed
Systems. In ACM Sigmetrics and Performance, Vol. 20, No. 1, June 1992, USA

[5] Maffeis, S. and Cap C. Replication Heuristics and Polling Algorithms for Object
Replication and a Replicating File Transfer Protocol. Tech. Rep. IFI-92.06, University of
Zurich, Dpt. of CS, Aug. 1992

[6] Maffeis, S. File Access Patterns in Public FTP Archives and an Index for Locality of
Reference. In ACM Sigmetrics Performance Evaluation Review, Vol 20, No. 3, March
1993

[7] Reynolds, J. and Postel, J. File Transfer Protocol (FTP). RFC 959, Network Information
Center, SRI International, October 1985

[8] Emtage, A. and Deutsch, P. archie - An Electromic Directory Service for the Internet.
Usenix Conference Proceedings, San Francisco, USA, Jan. 1992

[9] Cáceres, R. Measurements of Wide Area Network Traffic, University of California,
Computer Science Division, Berkeley, USA, 1989

[10] Ganatra, N. K. Census: Collecting Host Information on a Wide Area Network,
University of California, Santa Cruz, June 1992

[11] Horton, M. and Adams, R. Standard for Interchange of USENET messages. RFC 1036,
AT&T Bell Laboratories, USA, December 1987

[12] Neumann, B. C. The Prospero File System, Proceedings of the USENIX File System
Workshop, Ann Arbor, Michigan, USA, May 1992

[13] Various, Gopher, Unix manual page, Univ. of Minnesota, Dept. of Computer Science,
Dept. of Computer Sciences, USA, 1992

[Page 31]

[14] Claffy, K. C., Polyzos, G. C., Braun, H.-W. Traffic Characterstics of the T1 NSFNET
Backbone, University of California, Department of Computer Science and Engineering, San
Diego, CA, USA, 1992

[15] NSFNET Service Center, NSFNET traffic statistics, available by anonymous ftp from
nis.nsf.net in /statistics/NSFNET, February 1993

[16] McLoughlin, L . Mirror - Mirror packages on remote sites, Unix manual page, August
1991

[17] Wall, L . Perl - Practical Extraction and Report Language, Unix manual page, NASA Jet
Propulsion Laboratory, USA, October 1989

[18] Wall, L. and Schwartz, R. L. Programming perl, A nutshell handbook, O’Reilly
Sebastopol, USA, 1991

[19] Danzig, B., Hall, R. S., Schwartz, M. F. A Case for Caching File Objects Inside
Internetworks, Tech. Rep. CU-CS-642-93 University of Colorado, Boulder, USA,
March 1993

[20] Kotler, P. Globalization - Realities and Strategies, in «Die Unternehmung» 2/90, Verlag
Paul Haupt Bern, Switzerland, 1990

