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the insatiable demand for increased computing power. For parallel computingto become the normal form of computing we require a model which can play asimilar role to the one that the von Neumann model has played in sequentialcomputing. The emergence of such a model would stimulate the developmentof a new parallel software industry, and provide a clear focus for future hard-ware developments. For a model to succeed in this role it must o�er threefundamental properties:scalability - the performance of software and hardware must be scalable froma single processor to several hundreds of processors.portability - software must be able to run unchanged, with high perfor-mance, on any general purpose parallel architecture.predictability - the performance of software on di�erent architectures mustbe predictable in a straightforward way.It should also, ideally, permit the correctness of parallel programs to be deter-mined in a way which is not much more di�cult than for sequential programs.Recent research on Bulk Synchronous Parallel (BSP) algorithms, architec-tures and languages has shown that the BSP model can achieve all of theserequirements [39,30,38,16,9,32].The BSP model decouples the two fundamental aspects of parallel compu-tation, communication and synchronisation. This decoupling is the key toachieving universal applicability across the whole range of parallel architec-tures. A BSP computation consists of a sequence of parallel supersteps. Eachsuperstep is subdivided into three ordered phases consisting of: (1) simultane-ous local computation in each process, using only values stored in the memoryof its processor; (2) communication actions amongst the processes, causingtransfers of data between processors; and (3) a barrier synchronisation, whichwaits for all of the communication actions to complete, and which then makesany data transferred visible in the local memories of the destination processes.This approach to parallel programming is applicable to all kinds of parallelarchitecture: distributed memory architectures, shared memory multiproces-sors, and networks of workstations. It provides a consistent, and very general,framework within which to develop portable parallel software for scalable par-allel architectures.In this work, we describe BSPlib, a small communications library for BSPprogramming in an SPMD (Single Program Multiple Data) manner. The mainfeatures of BSPlib are two modes of communication, one capturing a one-sideddirect remote memory access (DRMA) paradigm and the other reecting abulk synchronous message passing (BSMP) approach.2



BSPlib is not the only communication library for parallel computing. Oneprominent alternative is the Message Passing Interface (MPI) [34,19].MPI and BSPlib are similar in that they are both designed for the developmentof scalable and portable parallel code. The fundamental di�erence betweenthe two is that BSPlib is based on the superstep programming discipline,while MPI is not. Associated with BSPlib's programming discipline is a simplecost model for the transmission of bulked messages. In contrast, MPI has noexposed cost model, and if one were exposed it would necessarily be basedupon single messages rather than supersteps.One consequence of the BSPlib philosophy is that BSPlib is concise and con-sistent, making it easy to implement e�ciently. MPI's greater exibility leadsto a huge library with competing functionalities, making e�cient implemen-tation far more problematic.The speci�cs of BSPlib were inuenced by experience with the Oxford BSPlibrary [32], the Cray SHMEM library [3], the split-phase assignments in Split-C [10], and the Green BSP library [17].This paper presents the full de�nition of the C interface to BSPlib in Sec-tions 2{4 (the Fortran interface is described in [24]). A quick reference tableof all the 20 primitives can be found on page 35. Section 5 presents a briefdescription and results of applications in benchmarking, Fast Fourier Trans-forms, sorting, and molecular dynamics. The paper is concluded in Section 6,which discusses possible future extensions.2 SPMD FrameworkLike many other communications libraries, BSPlib adopts a Single ProgramMultiple Data (SPMD) programming model. The task of writing an SPMDprogram will typically involve mapping a problem that manipulates a datastructure of size n into p instances of a program that each manipulate an n=psized block of the original domain. The role of BSPlib is to provide the infras-tructure required for the user to take care of the data distribution, and anyimplied communication necessary to manipulate parts of the data structurethat are on a remote process. An alternative role for BSPlib is to provide anarchitecture independent target for higher-level libraries or programming toolsthat automatically distribute the problem domain among the processes.3



2.1 Starting and �nishing SPMD codeProcesses are created in a BSPlib program by the operations bsp begin andbsp end. They bracket a piece of code to be run in an SPMD manner on a num-ber of processors. There can only be one instance of a bsp begin/bsp end pairwithin a program. If bsp begin and bsp end are the �rst and last statementsin a program, then the entire BSPlib computation is SPMD. An alternativemode is available where a single process starts execution and determines thenumber of parallel processes required for the calculation. See Section 2.2 fordetails.2.1.1 Syntax and parametersvoid bsp begin(int maxprocs);void bsp end(void);maxprocs is the number of processes requested by the user.2.1.2 ExampleA trivial BSPlib program is shown below. The program starts as many parallelprocesses as there are available, each of which prints the string \Hello BSPWorldwide". The example illustrates the minimum requirements of BSPlibwith respect to I/O. When a number of processes print a message on eitherstandard output or standard error, the messages are multiplexed to the user'sterminal in a non-deterministic manner. Therefore, this example prints thestrings in an arbitrary order. All other types of I/O (e.g., user input and �leaccess) are only guaranteed to work correctly if performed by process zero.void main(void) {bsp_begin(bsp_nprocs());printf("Hello BSP Worldwide from process %d of %d\n",bsp_pid(),bsp_nprocs());bsp_end();}2.1.3 Notes(1) An implementation of BSPlib may spawn less than maxprocs processes.The actual number of processes started can be found by the enquiryfunction bsp nprocs(). 4



(2) There can only be a single bsp begin/bsp end pair within a BSPlib pro-gram. This excludes the possibility of starting, stopping, and then restart-ing parallel tasks within a program, or any form of nested parallelism.(3) The process with bsp pid()=0 is a continuation of the thread of controlthat initiated bsp begin. This has the e�ect that all the values of the localand global variables prior to bsp begin are available to that process.(4) After bsp begin, the environment from process zero is not inherited byany of the other processes, i.e., those with bsp pid() greater than zero. Ifany of them require part of zero's state, then the data must be transferredfrom process zero.(5) bsp begin has to be the �rst statement of the procedure which containsthe statement. Similarly, bsp end has to be the last statement in the sameprocedure.(6) If the program is not run in a purely SPMD mode, then bsp init has tobe the �rst statement executed by the program, see the next subsection.(7) bsp begin(bsp nprocs()) can be used to request the same number ofprocesses as there are processors on a parallel machine.(8) All processes must execute bsp end for a BSPlib program to completesuccessfully.2.2 Simulating dynamic processesAn alternative mode of starting BSPlib processes is available where a singleprocess starts execution and determines the number of parallel processes re-quired for the calculation. The initial process can then spawn the requirednumber of processes using bsp begin. Execution of the spawned processescontinues in an SPMD manner, until bsp end is encountered by all the pro-cesses. At that point, all but process zero is terminated, and process zero isleft to continue the execution of the rest of the program sequentially.One problem with trying to provide this alternative mode of initialisation isthat some parallel machines available today (almost all distributed memorymachines, e.g. IBM SP2, Cray T3E, Parsytec GC, Hitachi SR2001) do notprovide dynamic process creation. As a solution to this problem we simulatedynamic spawning in the following way: (1) the �rst statement executed bythe BSPlib program is bsp init which takes as its argument a name of a pro-cedure; (2) the procedure named in bsp init contains bsp begin and bsp endas its �rst and last statements. 5



2.2.1 Syntax and parametersvoid bsp init(void(*spmd part)(void), int argc, char *argv[])spmd part is the name of a procedure that takes no arguments and doesnot return a value. Its sole purpose is to isolate the SPMD part of thecomputation into a single procedure. The procedure will contain bsp beginand bsp end as its �rst and last statements.2.2.2 Exampleint nprocs; /* global variable */void spmd_part(void) {bsp_begin(nprocs);printf("Hello BSP Worldwide from process %d of %d\n",bsp_pid(),bsp_nprocs());bsp_end();}void main(int argc, char *argv[]) {bsp_init(spmd_part,argc,argv);nprocs=ReadInteger();spmd_part();}Unlike the previous example, when the above program is executed a singleprocess will begin execution and read a number from standard input thatspeci�es the number of parallel processes to be spawned. The desired numberof processes will then be spawned within the procedure spmd part, and eachprocess will print the string \Hello BSP Worldwide".2.3 One process stops allThe function bsp abort provides a simple mechanism for raising errors inBSPlib programs. A single process in a potentially unique thread of controlcan print an error message followed by a halt of the entire BSPlib program.The routine is designed not to require a barrier synchronisation of all processes.2.3.1 Syntax and parametersvoid bsp abort(char *format,...);6



format is a C-style format string as used by printf. Any other argumentsare interpreted in the same way as the variable number of arguments toprintf.2.3.2 Notes(1) If more than one process calls bsp abort in the same superstep, theneither one, all, or a subset of the processes that called bsp abort mayprint their format string to the terminal before stopping the BSPlib com-putation.2.4 Local enquiry functionsThe BSPlib enquiry functions are local operations that do not require com-munication among the processes. They return information concerning: (1) thenumber of parallel processes involved in a BSPlib calculation; (2) a uniqueprocess identi�er of the SPMD process that called the enquiry function; and(3) access to a high-precision clock.If the function bsp nprocs is called before bsp begin, then it returns thenumber of processors which are available. If it is called after bsp begin itreturns p, the actual number of processes allocated to the program, where1 � p � maxprocs, and maxprocs is the number of processes requested inbsp begin. Each of the p processes created by bsp begin has a unique valuem in the range 0 � m � p� 1. The function bsp pid returns the integer m.The function bsp time provides access to a high-precision timer|the accuracyof the timer is implementation speci�c. The function is a local operation ofeach process, and can be issued at any point after bsp begin. The resultof the timer is the elapsed time in seconds since bsp begin. The semanticsof bsp time is as though there were p timers, one per process. BSPlib doesnot impose any synchronisation requirements between the timers on di�erentprocesses.2.4.1 Syntax and parametersint bsp nprocs(void);int bsp pid(void);double bsp time(void); 7



2.5 SuperstepA BSPlib calculation consists of a sequence of supersteps. During a superstepeach process can perform a number of computations on data held locally atthe start of the superstep and may communicate data to other processes. Anycommunications within a superstep are guaranteed to occur by the end of thesuperstep, where all processes synchronise at a barrier|BSPlib has no formof subset synchronisation.The end of one superstep and the start of the next is identi�ed by a call tothe library procedure bsp sync. Communication initiated during a superstepis not guaranteed to occur until bsp sync is executed; this is even the case forthe unbu�ered variants of communication.2.5.1 Syntax and parametersvoid bsp sync(void);3 Direct Remote Memory AccessOne way of performing data communication in the BSP model is to use directremote memory access (DRMA) communication facilities. Some parallel pro-gramming libraries require that the data structures used in DRMA operationshave to be held at statically allocated memory locations. BSPlib does nothave this restriction, which enables communication in certain heterogeneousenvironments, and allows communication into any type of contiguous datastructure including stack or heap allocated data. This is achieved by allowinga process to manipulate certain registered areas of a remote memory whichhave been previously made available by the corresponding processes. In thisregistration procedure, processes use the operation bsp push reg to announcethe address of the start of a local area which is available for global remote use.The operation bsp put deposits locally held data into a registered remotememory area on a target process, without the active participation of the targetprocess. The operation bsp get reaches into the registered local memory ofanother process to copy data values held there into a data structure in its ownlocal memory.Allowing a process to arbitrarily manipulate the memory of another process,8



without the involvement of that process, is potentially dangerous. The mech-anisms we propose here exhibit di�erent degrees of safety depending on thebu�ering requirements of the communication operations. The right choice ofbu�ering depends on the class of applications and the desired goals, and hasto be made by the user.There are four forms of bu�ering with respect to the DRMA operations:Bu�ered on destination: Writing data into registered areas will happen atthe end of the superstep, once all remote reads have been performed.Unbu�ered on destination: Data communication into registered areas cantake e�ect at any time during the superstep. Therefore, for safety, no processshould change the destination data structures used during the course of thesuperstep.Bu�ered on source: If the source data structure is in the memory of theprocess that issues a communication action (i.e., a put), then a copy of thedata is made at the time the communication action is issued; the sourcedata structure can therefore be changed by the user immediately after com-munications are issued. Alternatively, if the source data structure is on aremote process (i.e., a get), then the data is read on the remote process atthe end of the superstep, before any remote writes are performed.Unbu�ered on source: The data transfer resulting from a call to a com-munication operation may occur at any time between the time of issue andthe end of the superstep. Therefore, for safety, no process should change thesource data structures used during the course of the superstep.The various bu�ering choices are crucial in determining the safety of the com-munication operation, i.e., the conditions which guarantee correct data deliv-ery as well as its e�ects on the processes involved in the operation. However,it should be noted that even the most cautious choice of bu�ering mode doesnot completely remove non-determinism. For example, if more than one pro-cess transfers data into overlapping memory locations, then the result at theoverlapping region will be nondeterministically chosen; it is implementationdependent which one of the many \colliding" communications should be writ-ten into the remote memory area.3.1 RegistrationA BSPlib program consists of p processes, each with its own local memory. TheSPMD structure of such a program produces p local instances of the variousdata structures used in the program. Although these p instances share the samename, they will not, in general, have the same physical address. Due to stackor heap allocation, or due to implementation on a heterogeneous architecture,9



one might �nd that the p instances of variable x have been allocated at up top di�erent addresses.To allow BSPlib programs to execute correctly we require a mechanism forrelating these various addresses by creating associations called registrations.A registration is created when each process calls bsp push reg and, respec-tively, provides the address and the extent of a local area of memory. Bothtypes of information are relevant as processes can create new registrations byproviding the same addresses, but di�erent extents. The semantics adoptedfor registration enables procedures called within supersteps to be written in amodular way by allowing newer registrations to temporarily replace older ones.However, the scheme adopted does not impose the strict nesting of push-poppairs that is normally associated with a stack. This provides the bene�ts ofencapsulation provided by a stack, whilst providing the exibility associatedwith a heap-based discipline. In line with superstep semantics, registrationtakes e�ect at the next barrier synchronisation.A registration association is destroyed when each process calls bsp pop regand provides the address of its local area participating in that registration. Aruntime error will be raised if these addresses (i.e., one address per process) donot refer to the same registration association. In line with superstep semantics,de-registration takes e�ect at the next barrier synchronisation.One interpretation of the registration mechanism is that there is a sequenceof registration slots that are accessible by all the processes. If each process iexecutes bsp push reg(identi ; sizei)then the entry hhident0 ; size0 i; : : : ; hidentp�1 ; sizep�1 ii is added to the frontof the sequence of registration slots. The intent of registration is to make itsimple to refer to remote storage areas without requiring their locations to beexplicitly known. A reference to a registered area in a bsp put or bsp get istranslated to the address of the corresponding remote area in its most recentregistration slot. For example, if tgt l is used in a put executed on process l,bsp put(r; src; tgt l; o�set ;nbytes)and the registration sequence 1 is ss ++ [s] ++ ss, where entry s is the mostrecent entry containing tgt l (i.e., the lth element of s is htgt l;nli, and there isno entry s in ss such that the lth element of s is htgt l;mli), then the e�ect isto transfer nbytes of data from the data structure starting at address src on1 the operator ++ is used to concatenate two sequences together.10



process l into the contiguous memory locations starting at tgt r+o�set on pro-cess r, where the base address tgt r comes from the same registration slot s astgt l. Rudimentary bounds checking may be performed on the communication,such that a runtime error can be raised if o�set + nbytes > nr.The e�ect of the de-registrationbsp pop reg(identl )is that given the registration sequencess ++ [hhident0 ; size0 i; : : : ; hidentp�1 ; sizep�1 ii] ++ ss;and suppose that there does not exist an entry s in ss such that the lth elementof s is hidentl;mli, then the registration sequence is changed to ss ++ ssat the start of the next superstep. A runtime error will be raised if di�eringprocesses attempt to de-register a di�erent registration slot during the samede-registration. For example, if process p0 registers x twice, and process p1registers x followed by y, then a runtime error will be raised if both processesattempt to de-register x. This error is due to the active registration for xreferring to a di�erent registration slot on each process.3.1.1 Syntax and parametersvoid bsp push reg(const void *ident, int size);void bsp pop reg(const void *ident);ident is a previously initialised variable denoting the address of the local areabeing registered or de-registered.size is a nonnegative integer denoting the extent, in bytes, of the area beingregistered for use in bounds checking within the library.3.1.2 Notes(1) bsp push reg takes e�ect at the end of the superstep. DRMA operationsmay use the registered areas from the start of the next superstep.(2) DRMA operations are allowed to use memory areas that have been de-registered in the same superstep, as bsp pop reg only takes e�ect at theend of a superstep.(3) Communication into unregistered memory areas raises a runtime error.(4) Registration is a property of an area of memory and not a reference tothe memory. There can therefore be many references (i.e., pointers) to a11



registered memory area.(5) If only a subset of the processes are required to register data because aprogram may have no concept of a commonly named memory area onall processes, then all processes must call bsp push reg although somemay register the memory area NULL. This memory area is regarded asunregistered.(6) While registration is designed for \full duplex" communication, a processcan do half duplex communication by, appropriately, registering an areaof size 0.(7) It is an error to provide negative values for the size of the registrationarea.(8) Since on each process static data structures are allocated at the sameaddress (this is not always the case, as some optimising C compilers un-static statics), the registration slot in such cases will have the form:hhident 0; n0i; : : : ; hident 0; np�1ii| {z }p copiesEven though static data structures are allocated at the same address,they still have to be registered.3.2 Copy to remote memoryThe aim of bsp put and bsp hpput is to provide an operation akin to memcpyavailable in the Unix <string.h> library. Both operations copy a speci�ednumber of bytes, from a byte addressed data structure in the local memory ofone process into contiguous memory locations in the local memory of anotherprocess. The distinguishing factor between these operations is provided by thebu�ering choice.The semantics bu�ered on source, bu�ered on destination is used for bsp putcommunications. While the semantics is clean and safety is maximised, putsmay unduly tax the memory resources of a system. Consequently, BSPlibalso provides a high performance put operation bsp hpput whose semanticsis unbu�ered on source, unbu�ered on destination. The use of this operationrequires care as correct data delivery is only guaranteed if: (1) no communi-cations alter the source area; (2) no subsequent local computations alter thesource area; (3) no other communications alter the destination area; and (4)no computation on the remote process alters the destination area during theentire superstep. The main advantage of this operation is its economical useof memory. It is therefore particularly useful for applications which repeatedlytransfer large data sets. 12



3.2.1 Syntax and parametersvoid bsp put(int pid, const void *src,void *dst, int offset, int nbytes);void bsp hpput(int pid, const void *src,void *dst, int offset, int nbytes);pid is the identi�er of the process where data is to be stored.src is the location of the �rst byte to be transferred by the put operation.The calculation of src is performed on the process that initiates the put.dst is the location of the �rst byte where data is to be stored. It must be apreviously registered area.offset is the displacement in bytes from dst where src will start copyinginto. The calculation of offset is performed by the process that initiatesthe put.nbytes is the number of bytes to be transferred from src into dst. It isassumed that src and dst are addresses of data structures that are at leastnbytes in size. The data communicated can be of arbitrary size. It is notrequired to have a size which is a multiple of the word size of the machine.3.2.2 ExampleThe reverse function shown below highlights the interaction between reg-istration and put communications. This example de�nes a simple collectivecommunication operation, in which all processes have to call the functionwithin the same superstep. The result of the function on process i will be thevalue of the parameter x from process bsp nprocs()� i� 1.int reverse(int x) {bsp_push_reg(&x,sizeof(int));bsp_sync();bsp_put(bsp_nprocs()-bsp_pid()-1,&x,&x,0,sizeof(int));bsp_sync();bsp_pop_reg(&x);return x;}By the end of the �rst superstep, identi�ed by the �rst bsp sync, all theprocesses will have registered the parameter x as being available for remoteaccess by any subsequent DRMA operation. During the second superstep, eachprocess transfers its local copy of the variable x into a remote copy on process13



bsp nprocs()� bsp pid()� 1. Although communications occur to and fromthe same variable within the same superstep, the algorithm does not su�erfrom problems of concurrent assignment because of the bu�ered on source,bu�ered on destination semantics of bsp put. This bu�ering ensures conict-free communication between the outgoing communication from x, and anyincoming transfers from remote processes. The de-register at the end of thefunction reinstates the registration properties that were active on entry to thefunction at the next bsp sync encountered during execution.3.2.3 ExampleThe procedure put array shown below has a semantics de�ned by the con-current assignment: 8i 2 f0; : : : ; n� 1g xs[xs[i]] := xs[i]Conceptually, the algorithm manipulates a global array xs of n elements thatare distributed among the processes. The role of BSPlib is to provide theinfrastructure for the user to take care of the data distribution, and any impliedcommunication necessary to manipulate parts of the data structure that are ona remote process. Therefore, if the user distributes the global array in a block-wise manner (i.e., process zero gets elements 0 to n=p�1, process one gets n=pto 2n=p � 1, etc.) with each process owning an n=p chunk of elements, thenthe BSPlib communications necessary to perform the concurrent assignmentare shown below.void put_array(int *xs, int n) {int i,dst_pid,dst_idx,p=bsp_nprocs(),n_over_p=n/p;if ((n % p) != 0)bsp_abort("{put_array} n=%d not divisible by p=%d",n,p);bsp_push_reg(xs,n_over_p*sizeof(int));bsp_sync();for(i=0;i<n_over_p;i++) {dst_pid = xs[i]/n_over_p;dst_idx = xs[i]%n_over_p;bsp_put(dst_pid,&xs[i],xs,dst_idx*sizeof(int),sizeof(int));}bsp_sync();bsp_pop_reg(xs);}The procedure highlights the use of bsp abort and the o�set parameter inbsp put. Each process's local section of the array xs is registered in the �rstsuperstep. Next, n=p puts are performed, in which the global numbering used14



in the distributed array (i.e., indices in the range 0 through to n � 1), areconverted into pairs of process identi�er and local numbering in the range 0to n=p � 1. Once the conversion from the global scheme to process-id/localindex has been performed, elements of the array can be transferred into thecorrect index on a remote process. It should be noted that if the value ofthe variable dst pid is the same as bsp pid(), then a local assignment (i.e.,memory copy) will occur at the end of the superstep. In this example, bu�eringis necessary as processes need to read data before it is overwritten.3.2.4 Notes(1) The destination memory area used in a put has to be registered. It is anerror to communicate into a data structure that has not been registered.(2) The source of a put does not have to be registered.(3) If the destination memory area dst is registered with size x, then it is abounds error to perform the communication bsp put(pid; src;dst; o; n)if o+ n > x.(4) A communication of zero bytes does nothing.(5) A process can communicate into its own memory if pid = bsp pid().However, for bsp put, due to the bu�ered at destination semantics, thememory copy only takes e�ect at the end of the superstep.(6) The process numbering and o�set parameter start from zero.3.3 Copy from remote memoryThe bsp get and bsp hpget operations reach into the local memory of anotherprocess and copy previously registered remote data held there into a datastructure in the local memory of the process that initiated them.The semantics bu�ered on source, bu�ered on destination is used for bsp getcommunications. This semantics means that the value taken from the sourceon the remote process by the get, is the value available once the remote pro-cess �nishes executing all its superstep computations. Furthermore, writingthe value from the remote process into the destination memory area on theinitiating process only takes e�ect at the end of the superstep after all remotereads from any other bsp get operations are performed, but before any data iswritten by any bsp put. Therefore, computation and bu�ered communicationoperations within a superstep can be thought to occur in the following order:(1) local computation is performed; also, when a bsp put is excecuted, theassociated source data is read;(2) the source data associated with all bsp gets are read;15



(3) data associated with any bsp put or bsp get are written into the desti-nation data structures.A high-performance version of get, bsp hpget, provides the unbu�ered onsource, unbu�ered on destination semantics in which the two-way communi-cation can take e�ect at any time during the superstep.3.3.1 Syntax and parametersvoid bsp get(int pid, const void *src, int offset,void *dst, int nbytes);void bsp hpget(int pid, const void *src, int offset,void *dst, int nbytes);pid is the identi�er of the process where data is to be obtained from.src is the location of the �rst byte from where data will be obtained. srcmust be a previously registered memory area.offset is an o�set from src where the data will be taken from. The calcula-tion of offset is performed by the process that initiates the get.dst is the location of the �rst byte where the data obtained is to be placed.The calculation of dst is performed by the process that initiates the get.nbytes is the number of bytes to be transferred from src into dst. It isassumed that src and dst are addresses of memory areas that are at leastnbytes in size.3.3.2 ExampleThe function bsp sum de�ned below is a collective communication (i.e., allprocesses have to call the function), such that when process i calls the func-tion with an array xs containing nelemi elements, then the result on all theprocesses will be the sum of all the arrays from all the processes.int bsp_sum(int *xs, int nelem) {int *local_sums,i,j,result=0,p=bsp_nprocs();for(j=0;j<nelem;j++) result += xs[j];bsp_push_reg(&result,sizeof(int));bsp_sync();local_sums = calloc(p,sizeof(int));if (local_sums==NULL)bsp_abort("{bsp_sum} no memory for %d int",p);16



for(i=0;i<p;i++)bsp_hpget(i,&result,0,&local_sums[i],sizeof(int));bsp_sync();result=0;for(i=0;i<p;i++) result += local_sums[i];bsp_pop_reg(&result);free(local_sums);return result;}The function contains three supersteps. In the �rst, the local array xs of eachprocess is summed and assigned to the variable result. This variable is thenregistered for communication in the subsequent superstep. Next, each localresult is broadcast into the bsp pid()th element of local sums on everyprocess. Unlike the previous examples, an unbu�ered communication is usedin preference to a bu�ered bsp get because the variable result is not usedin any local computation during the same superstep as the communication.In the �nal superstep of the algorithm, each process returns the sum of the pvalues obtained from each process.3.3.3 Notes(1) The source memory area used in a get has to be registered. It is an errorto fetch from a data structure that has not been registered.(2) The destination of a get does not have to be registered.(3) If the source memory area src is registered with size x, then it is abounds error to perform the communication bsp get(pid; src; o; dst; n)if o+ n > x.(4) A communication of zero bytes does nothing.(5) A process can read from its own memory if pid = bsp pid(). However,due to the bu�ered at destination semantics of bsp get, the memory copyonly takes e�ect at the end of the superstep; i.e, the source data is readand then written at the end of the superstep.4 Bulk Synchronous Message PassingDirect remote memory access (DRMA) is a convenient style of programmingfor BSP computations which can be statically analysed in a straightforwardway. It is less convenient for computations where the volumes of data beingcommunicated in supersteps are irregular and data dependent, and where the17



computation to be performed in a superstep depends on the quantity and formof data received at the start of that superstep. A more appropriate style ofprogramming in such cases is bulk synchronous message passing (BSMP).In BSMP, a non-blocking send operation is provided that delivers messagesto a system bu�er associated with the destination process. The message isguaranteed to be in the destination bu�er at the beginning of the subsequentsuperstep, and can be accessed by the destination process only during thatsuperstep. If the message is not accessed during that superstep it is removedfrom the bu�er. In keeping with BSP superstep semantics, the messages sentto a process during a superstep have no implied ordering at the receiving end;a destination bu�er may therefore be viewed as a queue, where the incomingmessages are enqueued in arbitrary order and are dequeued (accessed) in thatsame order. Note that although messages are typically identi�ed with tags,BSPlib provides no tag-matching facility for the out-of-order access of speci�cincoming messages.In BSPlib, bulk synchronous message passing is based on the idea of two-part messages, a �xed-length part carrying tagging information that will helpthe receiver to interpret the message, and a variable-length part containingthe main data payload. We will call the �xed-length portion the tag andthe variable-length portion the payload. The length of the tag is required tobe �xed during any particular superstep, but can vary between supersteps.The bu�ering mode of the BSMP operations is bu�ered on source, bu�ered ondestination. We note that this bu�ering classi�cation is a semantic description;it does not necessarily describe the underlying implementation.4.1 Choose tag sizeAllowing the user to set the tag size enables the use of tags that are appro-priate for the communication requirements of each superstep. This should beparticularly useful in the development of subroutines either in user programsor in libraries.The procedure must be called collectively by all processes. A change in tagsize takes e�ect in the following superstep; the tag size then becomes valid.4.1.1 Syntax and parametersvoid bsp set tagsize (int *tag nbytes);tag nbytes on entry to the procedure, speci�es the size of the �xed-lengthportion of every message in the subsequent supersteps; the default tag size18



is zero. On return from the procedure, tag nbytes is changed to reect theprevious value of the tag size. This can be used to reinstate the previousstate of the system.4.1.2 Notes(1) The tag size of outgoing messages is prescribed by the tag size that isvalid in the current superstep.(2) The tag size of messages in the system queue is prescribed by the tag sizethat was valid in the previous superstep.(3) bsp set tagsizemust be called by all processes with the same argumentin the same superstep. In this respect, it is similar to bsp push reg.(4) bsp set tagsize takes e�ect in the next superstep.(5) Given a sequence of bsp set tagsize within the same superstep, thevalue of the last of these will be used as the tag size for the next superstep.(6) The default tag size is 0.4.2 Send to remote queueThe bsp send operation is used to send a message that consists of a tag anda payload to a speci�ed destination process. The destination process will beable to access the message during the subsequent superstep. The bsp send op-eration copies both the tag and the payload of the message before returning.The tag and payload variables can therefore be changed by the user imme-diately after the bsp send. Messages sent by bsp send are not guaranteed tobe received in any particular order by the destination process. This is the caseeven for successive calls of bsp send from one process with the same value forpid.4.2.1 Syntax and parametersvoid bsp send(int pid, const void *tag,const void *payload, int payload nbytes);pid is the identi�er of the process where data is to be sent.tag is a token that can be used to identify the message. Its size is determinedby the value speci�ed in bsp set tagsize.payload is the location of the �rst byte of the payload to be communicated.payload nbytes is the size of the payload.19



4.2.2 Notes(1) The size of the tag used in bsp send will depend on either the size of tagthat was valid in the previous superstep, or the size speci�ed by the lastbsp set tagsize issued in the previous superstep.(2) If the payload size is zero, then a message that only contains the tag willbe sent. Similarly, if the tag size is zero, then a message just containingthe payload will be sent. If both the tag and payload are zero, a messagethat contains neither tag nor payload will be sent.(3) If the tag size is zero, then the tag argument may be NULL. Similarly,if the payload size is zero, then the payload argument may be NULL.4.3 Number of messages in queueThe function bsp qsize is an enquiry function that returns the number ofmessages that were sent to this process in the previous superstep and havenot yet been consumed by a bsp move. Before any message is consumed bybsp move, the total number of messages received will match those sent byany bsp send operations in the previous superstep. The function also returnsthe accumulated size of all the payloads of the unconsumed messages. Thisoperation is intended to help the user to allocate an appropriately sized datastructure to hold all the messages that were sent to a process during a super-step.4.3.1 Syntax and parametersvoid bsp qsize(int *nmessages, int *accum nbytes);nmessages becomes the number of messages sent to this process in the pre-vious superstep by using bsp send.accum nbytes is the accumulated size of all the message payloads sent to thisprocess.4.3.2 Notes(1) bsp qsize returns the number of messages and their accumulated sizein the system queue at the point the operation is called; the numberreturned therefore decreases after any bsp move operation.20



4.4 Getting the tag of a messageTo receive a message, the user should use the procedures bsp get tag andbsp move. The operation bsp get tag returns the tag of the �rst message inthe queue. The size of the tag will depend on the value set by bsp set tagsize.4.4.1 Syntax and parametersvoid bsp get tag(int *status, void *tag)status becomes �1 if the system queue is empty. Otherwise it becomes thelength of the payload of the �rst message in the queue. This length canbe used to allocate an appropriately sized data structure for copying thepayload using bsp move.tag is unchanged if the system queue is empty. Otherwise it is assigned thetag of the �rst message in the queue.4.5 Move from queueThe operation bsp move copies the payload of the �rst message in the systemqueue into payload, and removes that message from the queue.Note that bsp move serves to ush the corresponding message from the queue,while bsp get tag does not. This allows a program to get the tag of a mes-sage (as well as the payload size in bytes) before obtaining the payload ofthe message. It does, however, require that even if a program only uses the�xed-length tag of incoming messages the program must call bsp move to getsuccessive message tags4.5.1 Syntax and parametersvoid bsp move(void *payload, int reception nbytes);payload is an address to which the message payload will be copied. Thesystem will then advance to the next message.reception nbytes speci�es the size of the reception area where the payloadwill be copied into. At most reception nbytes will be copied into payload.21



4.5.2 ExampleIn the algorithm shown below, an n element vector distributed into n=p chunkson p processes undergoes a communication whereby all the nonzero elementsfrom all the p chunks are broadcast to all the processes. Due to the sparsenature of the problem, the communication pattern is well suited to BSMP asthe amount and placement of data is highly data dependent.int all_gather_sparse_vec(float *dense,int n_over_p,float **sparse_out,int **sparse_ivec_out){int global_idx,i,j,tag_size,p=bsp_nprocs(),nonzeros,nonzeros_size,status, *sparse_ivec;float *sparse;tag_size = sizeof(int);bsp_set_tagsize(&tag_size);bsp_sync();for(i=0;i<n_over_p;i++)if (dense[i]!=0.0) {global_idx = (n_over_p * bsp_pid())+i;for(j=0;j<p;j++)bsp_send(j,&global_idx,&dense[i],sizeof(float));}bsp_sync();bsp_qsize(&nonzeros,&nonzeros_size);if (nonzeros>0) {sparse = calloc(nonzeros,sizeof(float));sparse_ivec = calloc(nonzeros,sizeof(int));if (sparse==NULL || sparse_ivec==NULL)bsp_abort("Unable to allocate memory");for(i=0;i<nonzeros;i++) {bsp_get_tag(&status,&sparse_ivec[i]);if (status!=sizeof(float))bsp_abort("Should never get here");bsp_move(&sparse[i],sizeof(float));}}bsp_set_tagsize(&tag_size);*sparse_out = sparse;*sparse_ivec_out = sparse_ivec;return nonzeros;}The algorithm contains three supersteps. In the �rst superstep, the tag size22



of the messages in the subsequent supersteps is set to the size of an integer.The size of the tag prior to the bsp set tagsize is remembered so that itcan be reinstated at the end of the procedure. Next, the nonzero elements ofthe vector are broadcast to each process using bsp send. The tag for eachsend operation is set to be the position of the vector element within the globalarray of n elements; the payload of the message will be the nonzero element.A bsp sync is used to ensure that all the bsp send operations are deliveredto the system queue on the remote processes, and then bsp qsize is used todetermine how many messages arrived at each process. This information isused to allocate a pair of arrays (one for array indices, and one for values),which have the messages copied into them by a bsp move operation.4.5.3 Notes(1) The payload length is always measured in bytes(2) bsp get tag can be called repeatedly and will always copy out the sametag until a call to bsp move.(3) If the payload to be received is larger than reception nbytes, the pay-load will be truncated.(4) If reception nbytes is zero this simply \removes" the message fromthe system queue. This should be e�cient in any implementation of thelibrary.4.6 A lean method for receiving a messageThe operation bsp hpmove is a non-copying method of receiving messages thatis available in languages with pointers such as C.We note that since messages are referenced directly they must be properlyaligned and contiguous. This puts additional requirements on the library im-plementation that would not be there without this feature, as it requires theavailability of su�cient contiguous memory. The storage referenced by thesepointers remains valid until the end of the current superstep.4.6.1 Syntax and parametersint bsp hpmove(void **tag ptr, void **payload ptr);bsp hpmove is a function which returns �1 if the system queue is empty.Otherwise it returns the length of the payload of the �rst message in thequeue and: (1) places a pointer to the tag in tag ptr; (2) places a pointer23



to the payload in payload ptr; and (3) removes the message (by advancinga pointer representing the head of the queue).5 ApplicationsBSPlib has been developed hand in hand with a number of applications. Thedesign of BSPlib is based on the theory of the BSP model, but the libraryhas been tested in applications and it was further re�ned based on practicalexperience. The primitives of BSPlib have all been found useful in applications.Together, the primitives form a complete set. In this section, we present fourapplications: benchmarking, Fast Fourier Transform, sorting, and moleculardynamics. The �rst two use the DRMA approach, while the others use BSMP.5.1 BenchmarkingOne of the strengths of the BSP model is the ability to accurately predict thecost of parallel algorithms [21,33]. This is achieved by constructing analyticalformulae that are parameterised by three constants capturing the computa-tion, communication, and synchronisation performance of a parallel machine.In this subsection, a series of synthetic benchmarks are described which em-pirically calculate these constants.5.1.1 BSP cost analysisThe superstep structure of BSP programs facilitates cost analysis becausethe barrier synchronisation that delimits a superstep ensures that the costof a sequence of supersteps is simply the sum of the costs of the separatesupersteps. As a single superstep can be decomposed into three distinct phasesof local computation, communication, and barrier synchronisation, it is naturalto express the cost of a superstep by formulae that have the structure:cost of a superstep = MAXprocesseswi + MAXprocesseshi g + lwhere i ranges over the processes. Intuitively, the cost of a superstep is thecost of the process that performs the largest local computation (i.e.,MAX wi),added to the cost of the process that performs the largest communication24



(MAX hig), added to a constant cost l that arises from the barrier synchro-nisation. Communication costs are based on the observation that the processthat has the largest amount of data entering or leaving will form the bottle-neck in the system. The global size of the communication phase is expressedby h = MAX hi, and the phase is called an h-relation. Multiplying the max-imum number of words h by g, the communication cost per word, gives thecost in the same units as for the computation.To make the costs meaningful, and to allow comparisons between di�erentparallel computers, we express the costs in op time units, where one unit isthe time it takes to perform one oating point operation (op) on the targetarchitecture. Therefore, we are interested in benchmarking the following threearchitecture-dependent BSP machine parameters:s is the speed of computation of a process in op/s (i.e., the number ofoating point operations per second). It is used to calibrate g and l.g is the cost in op time units to communicate a single word to a remoteprocess, under the conditions where all processors are simultaneously com-municating.l is the synchronisation latency cost in op time units. It is the amount oftime needed for all processors to synchronise.5.1.2 Calculating the BSP machine parametersValues of the BSP cost parameters that were calculated using the Oxford im-plementation of BSPlib [25] are shown in Table 1 2 . The machines are orderedby decreasing computing rate s. Note that a low value of the dimensionlessparameters g and l may either mean that the machine has a powerful com-munication network, or that it is has a particularly poor computing rate. Themotivation for expressing g and l in op time units is that it gives a measureof the \resource balance" of the system, which is important to the algorithmdesigner.The computing rate s depends heavily on the kind of computations beingdone; to express the rate in a single value, we use the average of the followingtwo measured rates: (1) The rate for an inner product computation that ismostly out of cache; this serves as a lower bound on the achievable rate. (2)The rate for a dense matrix multiplication that is mostly in cache; this servesas an upper bound. Note that taking the average yields a value of s that isfar lower than the peak computing rate.The BSP parameter l is obtained by timing a mid-stream sample of a repeated2 A more detailed version of this table is continuously updated at http://www.bsp-worldwide.org/implmnts/oxtool/params.html25



Table 1The BSP cost parameters for a variety of shared memory and distributed memoryparallel machines. The computing rate is for single-precision float operations andthe communication rate for 32-bit words.Machine s (Mop/s) p l g (local) g (global)SGI Origin 2000 101 2 804 7.0 8.34 1789 9.1 10.28 3914 13.2 15.116 15961 38.6 44.9SGI PowerChallenge 74 2 1132 9.8 10.24 1902 9.8 9.3Pentium Pro NOW 61 2 52745 486.3 484.5(10 Mbit/s 4 139981 1098.7 1128.5shared Ethernet) 8 539159 2171.8 1994.116 2884273 3708.2 3614.6Cray T3E 47 2 269 0.9 2.64 357 0.9 2.18 506 0.8 1.616 751 1.0 1.732 1252 1.3 1.9IBM SP2 26 2 1903 6.3 7.84 3583 6.4 8.08 5412 6.9 11.4Cray T3D 12 2 164 0.7 1.04 168 0.7 0.88 175 0.8 0.816 181 0.9 1.032 201 1.1 1.464 148 1.0 1.7128 301 1.1 1.8256 387 1.2 2.4Sparc-20 SMP 10 2 54 3.0 3.44 118 3.3 4.1number of barrier synchronisations.The BSP parameter g is obtained as follows. It is clear from the BSP costformula that a good strategy for writing e�cient BSP programs is to balancecommunication between processes; this is because h is a maximum over theprocesses. Therefore, we measure g by using balanced communications. Inour benchmark, we use two communication patterns. The �rst is a localisedcommunication pattern that performs a cyclic shift of n 32-bit words betweenneighbouring processors using the bsp hpput operation. This is an n-relation.As the expected cost of this benchmark is ng + l, we can obtain the value ofg from the measured time t in seconds by g = (ts � l)=n, where n is chosensu�ciently large. Note that g is an asymptotic value. As g represents the costof communication when all processors are simultaneously communicating, thisbenchmark provides a lower bound on g because each processor only injectsone message into the communication network.26



The second pattern may be called global, since it is a total exchange whereeach processor sends a message of n=(p� 1) 32-bit words to each of the p� 1other processors. This is also an n-relation; g can be obtained in the sameway as before. This benchmark injects the maximum of p(p�1) messages intothe network. Parallel computers have greater di�culty in achieving scalablecommunication for patterns of communication that move lots of data to manydestinations. As no scalable architecture can provide O(p2) dedicated wires|this would be too expensive|sparser interconnection networks are used inpractice. For example, the Cray T3D and T3E use a 3D torus, while the IBMSP2 uses a hierarchy of 8-node fully-connected crossbar switches. This will bereected in increasing communication costs. The value of g for a total exchangetherefore provides a good upper bound on g.It is important to note that the lower and upper bounds for g are still quiteclose for most machines, even though they represent very di�erent commu-nication patterns. This is a posteriori justi�cation for basing communicationcosts exclusively on a count of h, and not on more detailed knowledge of thecommunication pattern. When modelling the cost of algorithms, it is advis-able to err on the safe side and use the upper bound value of g. For a moredetailed discussion on benchmarking BSP parameters, and a description ofthe techniques that were used in the implementation of BSPlib to minimisethe variance in g, see [25,38,12,22].5.2 Fast Fourier TransformThe Fast Fourier Transform (FFT) is important in many areas of scienti�ccomputation. A bulk synchronous parallel implementation of the FFT is partof BSPPACK, a package of parallel numerical software that is being developedat Utrecht University. At present, BSPPACK contains programs for denseLU decomposition [5], FFT, sparse matrix-vector multiplication [6], sparseCholesky factorisation [4], as well as a program for BSP benchmarking of par-allel computers. BSPPACK is written in C, with BSPlib used for parallelism.The main goal of BSPPACK is to teach how to use the BSP model in numeri-cal applications, and to serve as a prototype for optimised numerical software.The following is a brief description of the FFT program of BSPPACK, whichimplements a radix-2 algorithm [40].A radix-2 FFT performs a sequence of operations on a complex vector oflength n, where n is a power of two. In each stage of the computation, vec-tor components are modi�ed in pairs, each input pair yielding a new outputpair. In stage k; 0 � k < log2 n, the components of a pair are at distance2k. Assume that we have p processors, where p is a power of two. The basicidea of the parallel FFT is to permute the vector such that during the next27



log2 n� log2 p stages both components of the pairs are on the same processor.Papadimitriou and Yannakakis [35] observed that this can be done. The basicidea was �rst analysed in a BSP context by Valiant [39] and it was incorpo-rated in a BSP algorithm by McColl [31]. For the common case p � pn, thisparallel FFT requires only one permutation, which costs ng=p + l. (At thestart, no permutation is needed, provided the input vector is already suitablydistributed. A permutation at the end can be avoided if we accept the outputvector in its current distribution.) This particular case has been implementedby Culler et al. [11] within the framework of the LogP model.The piece of code below illustrates the use of BSPlib in the permutation func-tion of the FFT program. The communication pattern is entirely regular, sothat it is natural to use DRMA. Note that the automatic bu�ering of bsp putmakes it unnecessary to use a temporary array for storing the new vector. Thevector x is registered and de-registered outside the function, because this hasto be done only once, whereas the function may be invoked several times.void bsppermute(complex_t *x, int n){/* This function permutes the vector x of length n,where x is distributed by the block distribution.It is assumed that x has already been registered . */int j, sigma, dst_pid, dst_idx, p=bsp_nprocs(),n_over_p= n/p;for(j=0; j<n_over_p; j++){sigma= j*p + bsp_pid();dst_pid = sigma / n_over_p;dst_idx = sigma % n_over_p;bsp_put(dst_pid,&x[j],x,dst_idx*sizeof(complex_t),sizeof(complex_t));}bsp_sync();}Figure 1 presents the absolute speedup of an FFT of length 16384 on a CrayT3E with 32 processors, using version 1.1 of the Oxford BSP Toolset imple-mentation of BSPlib. The speedup is obtained by comparing to a sequentialprogram with a similar level of optimisation, which runs at 10.9 Mop/s. (Wecall the speedup of a parallel program absolute if it is the speedup comparedto a good sequential program; we call it relative if it is obtained by compar-ing to the same parallel program run with p = 1.) Note that the measuredspeedup is nearly ideal, but that this is attered by cache e�ects; the superlin-ear speedup of 4.4 on four processors shows that the local problems �t betterinto the caches of the processors. 28
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Fig. 1. Absolute speedup of parallel FFT on a Cray T3E with 32 processors. Theproblem size is n = 16234. Speedups are relative to the sequential execution timeof 0.108 s of a radix-2 FFT program.5.3 Randomised sample sortOne approach for parallel sorting that is suitable for BSP computing is ran-domised sample sort. The sequential predecessor to the algorithm is sequen-tial samplesort [14], proposed by Frazer and McKellar as a re�nement ofHoare's quicksort [26]. Samplesort uses a random sample set of input keysto select splitters, resulting in greater balance|and therefore a lower num-ber of expected comparisons|than quicksort. The fact that the sampling ap-proach could be useful for splitting keys in a balanced manner over a numberof processors was discussed in the work of Huang and Chow [27] and Reifand Valiant [36]. Its use was analyzed in a BSP context by Gerbessiotis andValiant [15].The basic idea behind randomised sample sort in a p-processor system is thefollowing:(1) A set of p � 1 splitter keys is selected. Conceptually, the splitters willpartition the input data into p buckets.(2) All keys assigned to the ith bucket are sent to the ith processor.(3) Each processor sorts its bucket.The selection of splitters that de�ne approximately equal-sized buckets is acrucial issue. The standard approach is to randomly select pr keys from theinput set, where r is called the oversampling ratio. These keys are sorted,and the keys with ranks r; 2r; 3r; : : : ; (p � 1)r are selected as the splitters.29



By choosing a large enough oversampling ratio, it can be shown with highprobability that no bucket will contain many more keys than the average [27].Since randomised sample sort is suitable for general-purpose parallel com-puting, it is not surprising that the approach has been used in numerousexperimental studies. Blelloch et al. [8] describe randomised sample sort ex-periments on a Connection Machine CM-2. Hightower, Prins, and Reif [20]use randomised sample sort on a MasPar MP-1. Dusseau et al. [13] implementrandomised sample sort on a Connection Machine CM-5 using the Split-Cprogramming language [10] and the LogP cost model [11]. Randomised sam-ple sort has also been implemented in direct BSP style by Juurlink and Wi-jsho� [28], Shumaker and Goudreau [37], and Hill et al. [23].In terms of a BSPlib implementation, randomised sample sort is interesting inthat the sending of keys to appropriate buckets requires irregular communica-tion. For such routing patters, BSMP is a natural communication approach.The piece of code below shows how the input data is sent to the appropriatebuckets. The input data is stored in the array of doubles a of size a size.The splitters have already been selected and distributed, and are stored inarray s of size p-1. The function bucket() takes a double and the array sand returns the appropriate bucket to send the double to. Each process willstore its bucket in array b of size b size./* Distribute each element of a[] to appropriate processor */for(i = 0; i < a_size; i++) {j = bucket(a[i], s, p-1);bsp_send(j, NULL, &a[i], sizeof(double));}bsp_sync();/* Queue size needed to allocate bucket (dummy not used). */bsp_qsize(&b_size, &dummy);/* Allocate memory for bucket. */b = (double *) calloc(b_size, sizeof(double));/* Read in messages, store in b[]. */for(i = 0; i < b_size; i++)bsp_move(&b[i], sizeof(double));Some experimental results on an SGI Power Challenge with sixteen MIPSR4400 processors are shown in Fig. 2. The Power Challenge is a shared mem-ory platform. The �gure shows the speedup relative to the standard C libraryqsort (quicksort) run on one processor. The input data was randomly gener-ated. Only one test was run in each case.30
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Fig. 2. Absolute speedup for a randomised sample sort on an SGI Challenge with16 processors. The problem size is n = 107 double-precision oating point numberswith an oversampling ratio of r = 100. Speedups are relative to the sequentialexecution time of 128.04 s for the C standard library qsort function.5.4 Barnes-Hut N-Body AlgorithmThe N -body problem is the problem of simulating the movement of a set ofN bodies under the inuence of gravitational, electrostatic, or other type offorce. The problem has numerous applications, e.g. in astrophysics, moleculardynamics, uid dynamics, and even computer graphics. The basic approachtaken by most N -body algorithms is to simulate the system in discrete timesteps, thus reducing the problem to that of computing the forces among the Nbodies. While this can be done for long-range forces in a straightforward wayby computing all N2 pairwise interactions, several more e�cient algorithmshave been proposed that use a tree data structure to approximate the forcesamong N bodies in close to linear time, e.g., see [1,2,18,42].In this subsection, we describe a BSPlib implementation of the Barnes-Hutalgorithm [2], which achieves a running time of O(N logN) (under certain as-sumptions about the input distribution). The algorithm �rst inserts all bodiesinto an oct-tree structure, such that no leaf of the tree contains more thansome �xed number of bodies. Then an upward pass through the tree is per-formed to compute the centre of mass (or some higher-order approximationof the mass distribution) of the bodies in each subtree. Finally, the force ex-erted on each body is approximated by performing a truncated depth-�rsttraversal of the oct-tree, during which the force due to a su�ciently far awaycluster of bodies is approximated using the centre of mass (or higher orderapproximation) of the corresponding subtree.31



In our parallel implementation, we use Orthogonal Recursive Bisection (ORB)to partition the domain into rectangular regions. Each processor �rst con-structs an oct-tree locally by inserting all bodies that are located in its com-putational domain and computing the centres of mass of that tree. Then appro-priate subtrees, called locally essential trees, are exchanged between the pro-cessors, using a replication scheme similar to those of Warren and Salmon [41]and Liu and Bhatt [29]. Afterwards, every processor has a local oct-tree thatcontains all the data needed to perform the tree-traversal on its bodies, andwhose structure is consistent with that of the global oct-tree constructed bythe sequential algorithm. The BSPlib implementation was obtained by portinga code originally written for the Green BSP library. A more detailed descrip-tion of the replication scheme and its extension to other N -body algorithmscan be found in [7].The Barnes-Hut implementation is a good example for the use of the message-passing primitives in BSPlib. As said before, BSMP often has advantages overDRMA for applications that manipulate irregular data structures, such as theoct-tree structure in the Barnes-Hut algorithm. During the replication phase ofthe parallel implementation, processors use a sender-driven protocol to sendout all data that is needed by another processor. At the receiving end, thedata is inserted back into the local tree structure. As the �nal format anddestination of the data depends on the locally held data, it would be di�cultto implement this replication phase with DRMA operations.Our implementation performs only six supersteps per iteration; this makesthe program e�cient even on fairly small problem sizes and high-latency plat-forms. The application is irregular and dynamic, due to the changing positionsof the bodies. However, the load distribution can be predicted fairly accuratelyfrom that of the previous iteration, as the system evolves only slowly. Undercertain uniformity assumptions, the size of the h-relation in the replicationphase is O(p+n2=3) where n is the number of particles per processor. For rea-sonably large n, these bandwidth requirements are fairly modest, as we werecareful in minimising the amount of data sent during the replication phase.Figure 3 shows the speedup of the Barnes-Hut code on a 16-processor SGIChallenge shared-memory machine. The timings were obtained by runningseveral iterations of the Barnes-Hut algorithm, and taking the average runningtime over all except the �rst two iterations. We used the separation parameter� = 0:5 and centre of mass approximations, and allowed up to 40 bodies in aleaf of the oct-tree. The reported speedups are relative to the running time ofour code on a single processor (which incurs none of the parallel overheads,and which we believe to be a reasonable sequential implementation of theBarnes-Hut algorithm).For our smallest input size (4000 particles), we observe that the speedup in-32
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Fig. 3. Relative speedup for a molecular dynamics computation on an SGI Challengewith 16 processors. Speedups are relative to the parallel program with p = 1, whichtakes 13.64 s per iteration for 4000 particles, 102.32 s for 16000, and 474.7 s for64000.creases to a peak of about 9:5 on 13 processors, after which it stays essentiallyat up to 16 processors 3 . This behaviour can be explained by the fact that forsmall input sizes, the cost of the replication phase is relatively large. We pointout that 4000 particles is indeed a very small input size in many simulations,and that the replication phase was not designed with this case in mind.Figure 3 also shows that the speedup quickly improves as we increase the inputsize. In particular, for 64000 particles, we obtain essentially linear speedup(15:93 on 16 processors). The speedup is actually slightly superlinear for manydata points, probably due to cache e�ects.6 Conclusions and Future WorkThis work has identi�ed a complete set of 20 core primitives, or level 0 oper-ations, that are needed to write parallel programs conveniently in BSP style.Together, these operations de�ne BSPlib; an overview is given in Table 2. Thelimited size of BSPlib makes it easy to learn how to use the library, and alsorelatively easy to implement the library on a new architecture. In particular,this will help hardware and system software developers in focusing their ef-forts to design e�cient implementations of a communications library for their3 The slight variations between 13 and 16 processors are probably due to the dif-ferent partitionings of the data under our partitioning scheme.33



systems.Some message passing systems, such as MPI [34,19], provide operations forvarious specialised collective communication patterns which arise frequentlyin message passing programs. These include broadcast, scatter, gather, totalexchange, reduction (fold), pre�x sums (scan), etc. These standard commu-nication patterns also arise frequently in the design of BSP algorithms. It isimportant that such structured patterns can be conveniently expressed and ef-�ciently implemented in a BSP programming system, in addition to the moreprimitive operations such as put, get, and send which generate arbitrary andunstructured communication patterns.The library we have described can easily be extended to support such struc-tured communications by adding bsp bcast, bsp fold, bsp scan, bsp gather,bsp scatter, bsp exchange, etc. as higher level operations. We call these level1 operations. Such operations can be implemented in terms of the level 0 op-erations, or directly on top of the architecture if that is more e�cient. Formodularity and safety, all level 1 operations have the following semantics: (1)Remote memory areas that are accessed by DRMA operations must be reg-istered and de-registered within the level 1 operation. Registration must befollowed by a synchronisation; for de-registration this is not necessary. (2) Thetag size of messages sent by a BSMP operation must be set within the level1 operation. This requires a synchronisation. The tag size must be reset tothe previous value on exit. This does not require a synchronisation. (3) Themessages issued by a BSMP operation must be delivered within the level 1 op-eration. This requires a synchronisation. They must be moved from the systemqueue, which must be empty on exit. This does not require a synchronisation.We have not included level 1 operations in the BSPlib de�nition, since thiswould lead to a proliferation of primitives, which in turn would diminish thefocus provided by a small size of the library. Furthermore, it is still unclearwhich level 1 operations are really useful in applications; in di�erent applica-tion areas there may be a need for many di�erent types of operations.BSPlib �nalises the de�nition process of a BSP communications library, andit is unlikely to be changed in the future. The work that remains to be done inthe future includes, �rst of all, developing more and better implementationsof BSPlib. In particular, we pose the challenge to hardware vendors to pro-vide good implementations that are characterised by high values of s but lowvalues of g and l. Furthermore, there is much work to be done in the area oflevel 1 operations. We envision a situation where application developers willrelease separate level 1 libraries containing those operations they found useful.For reasons of portability, such libraries should be formulated in terms of thelevel 0 operations. Once a consensus emerges about the important level 1 op-erations, some hardware or software developers could take the opportunity to34



Table 2. A quick reference to the 20 primitives of BSPlib. An empty �eld for return type or parameters denotes void.Class Primitive Meaning Return Parameters Seetype xSPMD bsp begin Start of SPMD part int maxprocs 2.1bsp end End of SPMD part 2.1bsp init Simulate dynamic processes void(*spmd part)(void), int argc, char *argv[] 2.2bsp abort One process halts all char *format,... 2.3bsp nprocs Number of processes int 2.4bsp pid My process identi�er int 2.4bsp time Elapsed local time double 2.4bsp sync Barrier synchronisation 2.5DRMA bsp push reg Make area globally visible const void *ident, int size 3.1bsp pop reg Remove global visibility const void *ident 3.1bsp put Copy to remote memory int pid, const void *src, void *dst, int offset, int nbytes 3.2bsp hpput Unbu�ered put int pid, const void *src, void *dst, int offset, int nbytes 3.2bsp get Copy from remote memory int pid, const void *src, int offset, void *dst, int nbytes 3.3bsp hpget Unbu�ered get int pid, const void *src, int offset, void *dst, int nbytes 3.3BSMP bsp set tagsize Set tag size int *tag nbytes 4.1bsp send Send to remote queue int pid, const void *tag, const void *payld, int payld nbytes 4.2bsp qsize Number of messages in queue int *nmessages, int *accum nbytes 4.3bsp get tag Get message tag int *status, void *tag 4.4bsp move Move message from queue void *payload, int reception nbytes 4.5bsp hpmove High performance move int void **tag ptr, void **payload ptr 4.6
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